Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
#!/usr/bin/env python3
#
# Author: Heresh Fattahi
# Copyright 2016
#
import argparse
import isce
import isceobj
import os
from osgeo import gdal
import matplotlib as mpl; #mpl.use('Agg')
import matplotlib.pyplot as plt
from pykml.factory import KML_ElementMaker as KML
import numpy as np
mpl.use('Agg')
def createParser():
'''
Create command line parser.
'''
parser = argparse.ArgumentParser( description='Create a kml file from geocoded products.')
parser.add_argument('-f', '--filelist', dest='prodlist', type=str, required=True,
help='Input file to be geocoded')
# parser.add_argument('-b', '--bbox', dest='bbox', type=str, required=True,
# help='Bounding box (SNWE)')
parser.add_argument('-m', '--min', dest='min', type=float, default=None,
help='minimum value of colorscale')
parser.add_argument('-M', '--max', dest='max', type=float, default=None,
help='maximum value of color scale')
parser.add_argument('-d', '--dpi', dest='dpi', type=int, default=500,
help='dpi of the png image')
parser.add_argument('-c', '--color_map', dest='color_map', type=str, default='jet',
help='matplotlib colormap')
parser.add_argument('-u', '--unit', dest='unit', type=str, default='',
help='unit in which data is displayed')
parser.add_argument('-s', '--scale', dest='scale', type=float, default=1.0,
help= 'scale factor to scale the data before display')
parser.add_argument('-b', '--start_time', dest='startTime', type=str, default='',
help= 'start time of the observation')
parser.add_argument('-e', '--end_time', dest='endTime', type=str, default='',
help= 'end time of the observation')
parser.add_argument('-r', '--reverse_color_map', dest='reverseColorMap', type=str, default='no',
help= 'reverse color map (default: no)')
parser.add_argument('-w', '--rewrap', dest='rewrap', type=str, default='no',
help= 'reverse color map (default: no)')
parser.add_argument('-n', '--band_number', dest='bandNumber', type=int, default=1,
help='band number if multiple bands exist')
return parser
def cmdLineParse(iargs = None):
'''
Command line parser.
'''
parser = createParser()
inps = parser.parse_args(args = iargs)
inps.prodlist = inps.prodlist.split()
return inps
def reverse_colourmap(cmap, name = 'my_cmap_r'):
"""
In:
cmap, name
Out:
my_cmap_r
Explanation:
t[0] goes from 0 to 1
row i: x y0 y1 -> t[0] t[1] t[2]
/
/
row i+1: x y0 y1 -> t[n] t[1] t[2]
so the inverse should do the same:
row i+1: x y1 y0 -> 1-t[0] t[2] t[1]
/
/
row i: x y1 y0 -> 1-t[n] t[2] t[1]
"""
reverse = []
k = []
for key in cmap._segmentdata:
k.append(key)
channel = cmap._segmentdata[key]
data = []
for t in channel:
data.append((1-t[0],t[2],t[1]))
reverse.append(sorted(data))
LinearL = dict(zip(k,reverse))
my_cmap_r = mpl.colors.LinearSegmentedColormap(name, LinearL)
return my_cmap_r
def get_lat_lon(file):
ds=gdal.Open(file)
b=ds.GetRasterBand(1)
width=b.XSize
length = b.YSize
minLon = ds.GetGeoTransform()[0]
deltaLon = ds.GetGeoTransform()[1]
maxLon = minLon + width*deltaLon
maxLat = ds.GetGeoTransform()[3]
deltaLat = ds.GetGeoTransform()[5]
minLat = maxLat + length*deltaLat
return minLat, maxLat, minLon, maxLon
def rewrap(unw):
rewrapped = unw - np.round(unw/(2*np.pi)) * 2*np.pi
return rewrapped
def display(file,inps):
ds = gdal.Open(file)
b = ds.GetRasterBand(inps.bandNumber)
data = b.ReadAsArray()
data = data*inps.scale
data[data==0]=np.nan
#data = np.ma.masked_where(data == 0, data)
if inps.rewrap=='yes':
data = rewrap(data)
if inps.min is None:
inps.min = np.nanmin(data)
if inps.max is None:
inps.max = np.nanmax(data)
width = b.XSize
length = b.YSize
fig = plt.figure()
fig = plt.figure(frameon=False)
# fig.set_size_inches(width/1000,length/1000)
ax = plt.Axes(fig, [0., 0., 1., 1.], )
# ax.patch.set_alpha(0.0)
ax.set_axis_off()
fig.add_axes(ax)
aspect = width/(length*1.0)
# ax.imshow(data,aspect='normal')
cmap = plt.get_cmap(inps.color_map)
if inps.reverseColorMap=='yes':
cmap = reverse_colourmap(cmap)
cmap.set_bad(alpha=0.0)
# cmap.set_under('k', alpha=0)
try: ax.imshow(data, aspect = 'auto', vmax = inps.max, vmin = inps.min, cmap = cmap)
except: ax.imshow(data, aspect = 'auto', cmap = cmap)
ax.set_xlim([0,width])
ax.set_ylim([length,0])
# figName = k+'.png'
figName = file + '.png'
plt.savefig(figName, pad_inches=0.0, transparent=True, dpi=inps.dpi)
#############################
#pc = plt.figure(figsize=(1,4))
pc = plt.figure(figsize=(1.3,2))
axc = pc.add_subplot(111)
cmap=mpl.cm.get_cmap(name=inps.color_map)
if inps.reverseColorMap=='yes':
cmap = reverse_colourmap(cmap)
norm = mpl.colors.Normalize(vmin=inps.min, vmax=inps.max)
clb = mpl.colorbar.ColorbarBase(axc,cmap=cmap,norm=norm, orientation='vertical')
clb.set_label(inps.unit)
pc.subplots_adjust(left=0.25,bottom=0.1,right=0.4,top=0.9)
#pc.subplots_adjust(left=0.0,bottom=0.0,right=1.0,top=1.0)
# pc.savefig(file+'_colorbar.png',transparent=True,dpi=300)
pc.savefig(file+'_colorbar.png',dpi=300)
return file + '.png' , file+'_colorbar.png'
def writeKML(file, img, colorbarImg,inps):
South, North, West, East = get_lat_lon(file)
############## Generate kml file
print ('generating kml file')
doc = KML.kml(KML.Folder(KML.name(os.path.basename(file))))
slc = KML.GroundOverlay(KML.name(os.path.basename(img)),KML.Icon(KML.href(os.path.basename(img))),\
KML.TimeSpan(KML.begin(),KML.end()),\
KML.LatLonBox(KML.north(str(North)),KML.south(str(South)),\
KML.east(str(East)), KML.west(str(West))))
doc.Folder.append(slc)
#############################
print ('adding colorscale')
latdel = North-South
londel = East-West
slc1 = KML.ScreenOverlay(KML.name('colorbar'),KML.Icon(KML.href(os.path.basename(colorbarImg))),
KML.overlayXY(x="0.0",y="1",xunits="fraction",yunits="fraction",),
KML.screenXY(x="0.0",y="1",xunits="fraction",yunits="fraction",),
KML.rotationXY(x="0.",y="1.",xunits="fraction",yunits="fraction",),
KML.size(x="0",y="0.3",xunits="fraction",yunits="fraction",),
)
doc.Folder.append(slc1)
#############################
from lxml import etree
kmlstr = etree.tostring(doc, pretty_print=True)
print (kmlstr)
kmlname = file + '.kml'
print ('writing '+kmlname)
kmlfile = open(kmlname,'wb')
kmlfile.write(kmlstr)
kmlfile.close()
kmzName = file + '.kmz'
print ('writing '+kmzName)
cmdKMZ = 'zip ' + kmzName +' '+ os.path.basename(kmlname) +' ' + os.path.basename(img) + ' ' + os.path.basename(colorbarImg)
os.system(cmdKMZ)
def runKml(inps):
for file in inps.prodlist:
file = os.path.abspath(file)
img,colorbar = display(file,inps)
writeKML(file,img,colorbar,inps)
def main(iargs=None):
'''
Main driver.
'''
inps = cmdLineParse(iargs)
runKml(inps)
if __name__ == '__main__':
main()