diff --git a/country_summaries/IPCC_classes_DPS/Boreal/Merge_ICESat-2_and_GEDI.ipynb b/country_summaries/IPCC_classes_DPS/Boreal/Merge_ICESat-2_and_GEDI.ipynb index c2f9925de00858e6022b6e5946cafc524945881c..3bef82cbc0a8b26f7b0c9381419e01fd105e6130 100644 --- a/country_summaries/IPCC_classes_DPS/Boreal/Merge_ICESat-2_and_GEDI.ipynb +++ b/country_summaries/IPCC_classes_DPS/Boreal/Merge_ICESat-2_and_GEDI.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 1, + "execution_count": 5, "id": "84f4bc4e-3184-4c91-91b7-c6dea8c664ae", "metadata": { "tags": [] @@ -12,117 +12,52 @@ "name": "stderr", "output_type": "stream", "text": [ - "Loading required package: viridis\n", - "\n", - "Loading required package: viridisLite\n", - "\n", - "Loading required package: tidyverse\n", - "\n", - "── \u001b[1mAttaching core tidyverse packages\u001b[22m ──────────────────────── tidyverse 2.0.0 ──\n", - "\u001b[32m✔\u001b[39m \u001b[34mdplyr \u001b[39m 1.1.3 \u001b[32m✔\u001b[39m \u001b[34mreadr \u001b[39m 2.1.4\n", - "\u001b[32m✔\u001b[39m \u001b[34mforcats \u001b[39m 1.0.0 \u001b[32m✔\u001b[39m \u001b[34mstringr \u001b[39m 1.5.0\n", - "\u001b[32m✔\u001b[39m \u001b[34mggplot2 \u001b[39m 3.4.4 \u001b[32m✔\u001b[39m \u001b[34mtibble \u001b[39m 3.2.1\n", - "\u001b[32m✔\u001b[39m \u001b[34mlubridate\u001b[39m 1.9.3 \u001b[32m✔\u001b[39m \u001b[34mtidyr \u001b[39m 1.3.0\n", - "\u001b[32m✔\u001b[39m \u001b[34mpurrr \u001b[39m 1.0.2 \n", - "── \u001b[1mConflicts\u001b[22m ────────────────────────────────────────── tidyverse_conflicts() ──\n", - "\u001b[31m✖\u001b[39m \u001b[34mdplyr\u001b[39m::\u001b[32mfilter()\u001b[39m masks \u001b[34mstats\u001b[39m::filter()\n", - "\u001b[31m✖\u001b[39m \u001b[34mdplyr\u001b[39m::\u001b[32mlag()\u001b[39m masks \u001b[34mstats\u001b[39m::lag()\n", - "\u001b[36mℹ\u001b[39m Use the conflicted package (\u001b[3m\u001b[34m<http://conflicted.r-lib.org/>\u001b[39m\u001b[23m) to force all conflicts to become errors\n", - "Loading required package: raster\n", - "\n", - "Loading required package: sp\n", - "\n", - "\n", - "Attaching package: ‘raster’\n", - "\n", - "\n", - "The following object is masked from ‘package:dplyr’:\n", - "\n", - " select\n", - "\n", - "\n", - "Loading required package: rgdal\n", - "\n", - "Please note that rgdal will be retired by the end of 2023,\n", - "plan transition to sf/stars/terra functions using GDAL and PROJ\n", - "at your earliest convenience.\n", - "\n", - "rgdal: version: 1.5-32, (SVN revision 1176)\n", - "Geospatial Data Abstraction Library extensions to R successfully loaded\n", - "Loaded GDAL runtime: GDAL 3.6.2, released 2023/01/02\n", - "Path to GDAL shared files: \n", - " GDAL does not use iconv for recoding strings.\n", - "GDAL binary built with GEOS: TRUE \n", - "Loaded PROJ runtime: Rel. 9.1.0, September 1st, 2022, [PJ_VERSION: 910]\n", - "Path to PROJ shared files: /projects/.local/share/proj:/opt/conda/share/proj\n", - "PROJ CDN enabled: TRUE\n", - "Linking to sp version:1.5-1\n", - "To mute warnings of possible GDAL/OSR exportToProj4() degradation,\n", - "use options(\"rgdal_show_exportToProj4_warnings\"=\"none\") before loading sp or rgdal.\n", - "\n", - "Loading required package: terra\n", - "\n", - "terra 1.7.29\n", - "\n", - "\n", - "Attaching package: ‘terra’\n", - "\n", - "\n", - "The following object is masked from ‘package:rgdal’:\n", - "\n", - " project\n", - "\n", - "\n", - "The following object is masked from ‘package:tidyr’:\n", - "\n", - " extract\n", - "\n", - "\n", - "Loading required package: RColorBrewer\n", - "\n", - "Loading required package: gdalUtils\n", - "\n", "Loading required package: parallel\n", "\n", "Loading required package: sf\n", "\n", - "Linking to GEOS 3.11.1, GDAL 3.6.2, PROJ 9.1.0; sf_use_s2() is TRUE\n", + "Linking to GEOS 3.12.0, GDAL 3.7.2, PROJ 9.3.0; sf_use_s2() is TRUE\n", "\n", + "Loading required package: foreign\n", "\n", - "Attaching package: ‘sf’\n", + "Loading required package: geojsonio\n", "\n", + "Registered S3 method overwritten by 'geojsonsf':\n", + " method from \n", + " print.geojson geojson\n", "\n", - "The following object is masked from ‘package:gdalUtils’:\n", "\n", - " gdal_rasterize\n", + "Attaching package: ‘geojsonio’\n", "\n", "\n", - "Loading required package: foreign\n", + "The following object is masked from ‘package:base’:\n", "\n", - "Loading required package: geojsonio\n", + " pretty\n", "\n", - "Warning message in library(package, lib.loc = lib.loc, character.only = TRUE, logical.return = TRUE, :\n", - "“there is no package called ‘geojsonio’â€\n" + "\n" ] }, { - "ename": "ERROR", - "evalue": "Error in library(x, character.only = TRUE, quietly = TRUE): there is no package called ‘geojsonio’\n", - "output_type": "error", - "traceback": [ - "Error in library(x, character.only = TRUE, quietly = TRUE): there is no package called ‘geojsonio’\nTraceback:\n", - "1. lapply(packages, FUN = function(x) {\n . if (!require(x, character.only = TRUE)) {\n . library(x, character.only = TRUE, quietly = TRUE)\n . }\n . })", - "2. FUN(X[[i]], ...)", - "3. library(x, character.only = TRUE, quietly = TRUE) # at line 6 of file <text>" - ] + "data": { + "text/plain": [ + "── \u001b[1mConflicts\u001b[22m ────────────────────────────────────────── tidyverse_conflicts() ──\n", + "\u001b[31m✖\u001b[39m \u001b[34mterra\u001b[39m::\u001b[32mextract()\u001b[39m masks \u001b[34mraster\u001b[39m::extract(), \u001b[34mtidyr\u001b[39m::extract()\n", + "\u001b[31m✖\u001b[39m \u001b[34mdplyr\u001b[39m::\u001b[32mfilter()\u001b[39m masks \u001b[34mstats\u001b[39m::filter()\n", + "\u001b[31m✖\u001b[39m \u001b[34mdplyr\u001b[39m::\u001b[32mlag()\u001b[39m masks \u001b[34mstats\u001b[39m::lag()\n", + "\u001b[31m✖\u001b[39m \u001b[34mraster\u001b[39m::\u001b[32mselect()\u001b[39m masks \u001b[34mdplyr\u001b[39m::select()\n", + "\u001b[36mℹ\u001b[39m Use the conflicted package (\u001b[3m\u001b[34m<http://conflicted.r-lib.org/>\u001b[39m\u001b[23m) to force all conflicts to become errors" + ] + }, + "metadata": {}, + "output_type": "display_data" } ], "source": [ - "packages <- c(\"viridis\",\"tidyverse\",\"raster\", \"rgdal\", \"terra\",\"RColorBrewer\",\"gdalUtils\",\"parallel\", \"sf\", \"sp\",\"foreign\",\"dplyr\",\"geojsonio\")\n", + "packages <- c(\"viridis\",\"tidyverse\", \"terra\",\"RColorBrewer\",\"parallel\", \"sf\", \"sp\",\"foreign\",\"dplyr\",\"geojsonio\")\n", "# packages <- c(\"raster\", \"rgdal\", \"terra\", \"sf\", \"sp\")\n", "package.check <- lapply(packages, FUN = function(x) {\n", " if (!require(x, character.only = TRUE)) {\n", - " # install.packages(x, dependencies = TRUE)\n", + " install.packages(x, dependencies = TRUE)\n", " library(x, character.only = TRUE, quietly=TRUE)\n", " }\n", "})\n", @@ -131,7 +66,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 11, "id": "c486cf3a-a3c5-4873-bc2c-c7f75d97a49d", "metadata": { "tags": [] @@ -150,11 +85,17 @@ "[1] \"GEDI and Boreal Map stats exist for KAZ\"\n", "[1] \"GEDI and Boreal Map stats exist for MNG\"\n", "[1] \"GEDI and Boreal Map stats exist for NLD\"\n", - "[1] \"GEDI and Boreal Map stats exist for NOR\"\n", "[1] \"GEDI and Boreal Map stats exist for POL\"\n", "[1] \"GEDI and Boreal Map stats exist for RUS\"\n", "[1] \"GEDI and Boreal Map stats exist for UKR\"\n", - "[1] \"GEDI and Boreal Map stats exist for USA\"\n" + "[1] \"GEDI and Boreal Map stats exist for USA\"\n", + "[1] \"Only boreal stats exist for LTU\"\n", + "[1] \"Only boreal stats exist for EST\"\n", + "[1] \"Only boreal stats exist for LVA\"\n", + "[1] \"Only boreal stats exist for NOR\"\n", + "[1] \"Only boreal stats exist for SWE\"\n", + "[1] \"Only boreal stats exist for FIN\"\n", + "[1] \"Only boreal stats exist for DNK\"\n" ] } ], @@ -163,9 +104,17 @@ "############# MERGE GEDI AND ICESAT-2 BOREAL RESULTS #############\n", "############# MERGE GEDI AND ICESAT-2 BOREAL RESULTS #############\n", "GEDIv21 <- read_sf('/projects/my-public-bucket/Data/ICESat-2-TILES/merge_Boreal_countries_GEDI_worldbank.gpkg')\n", + "GEDIv21 <- GEDIv21 %>% st_drop_geometry()\n", "GEDIv21$class[GEDIv21$class == \"CAN_3\"] = \"CAN\"\n", + "GEDIv21 <- GEDIv21[!grepl(\"NOR\", GEDIv21$class),]\n", "\n", "GEDIv21_BOREAL <- GEDIv21 \n", + "GEDIv21_BOREAL$ICESAT_2_mean <- 0\n", + "GEDIv21_BOREAL$ICESAT_2_SE <- 0\n", + "GEDIv21_BOREAL$ICESAT_2_Area <- 0\n", + "GEDIv21_BOREAL$BOTH_mean <- 0\n", + "GEDIv21_BOREAL$BOTH_SE <- 0\n", + "\n", "BOREAL_LOC <- '/projects/my-private-bucket/dps_output/run_Boreal_IPCC_classes_ADE/BOREAL_compiled_LD_PAPER/'\n", "for (n in GEDIv21$class) {\n", " if (file.exists(paste0(BOREAL_LOC,n,\"_STATS.csv\"))) {\n", @@ -181,174 +130,183 @@ " COMBINED_mean <- ((Boreal_mean * Boreal_area) + (GEDI_mean * GEDI_area))/(Boreal_area + GEDI_area)\n", " ##### COMBINED_SE <- sqrt(((Boreal_SE^2 * Boreal_area) + (GEDI_SE^2 * GEDI_area))/(Boreal_area + GEDI_area))\n", " COMBINED_SE <- sqrt(((Boreal_SE^2 * Boreal_area^2) + (GEDI_SE^2 * GEDI_area^2))/(Boreal_area + GEDI_area)^2)\n", - " GEDIv21_BOREAL$region_mean[GEDIv21$class == n] = COMBINED_mean\n", - " GEDIv21_BOREAL$region_stderr[GEDIv21$class == n] = COMBINED_SE\n", + " GEDIv21_BOREAL$ICESAT_2_Area[GEDIv21$class == n] <- Boreal_area\n", + " GEDIv21_BOREAL$ICESAT_2_mean[GEDIv21$class == n] <- Boreal_mean\n", + " GEDIv21_BOREAL$ICESAT_2_SE[GEDIv21$class == n] <- Boreal_SE\n", + " GEDIv21_BOREAL$BOTH_mean[GEDIv21$class == n] = COMBINED_mean\n", + " GEDIv21_BOREAL$BOTH_SE[GEDIv21$class == n] = COMBINED_SE\n", + " }\n", + " }\n", + "}\n", + "GEDIv21_BOREAL['region_area'] <- GEDIv21_BOREAL['region_area']/10000 ###units ha\n", + "GEDIv21_BOREAL <- subset(GEDIv21_BOREAL,select=c('region_area','region_mean','region_stderr','class','ICESAT_2_mean','ICESAT_2_SE','ICESAT_2_Area','BOTH_mean','BOTH_SE'))\n", + "\n", + "# ############# FILL BOREAL WHERE GEDI VALUES ARE MISSING FOR NORTHERN LATITUDES ############\n", + "# ############# FILL BOREAL WHERE GEDI VALUES ARE MISSING FOR NORTHERN LATITUDES ############\n", + "# ############# FILL BOREAL WHERE GEDI VALUES ARE MISSING FOR NORTHERN LATITUDES ############\n", + "\n", + "BOREALv01 <- read.csv('/projects/my-public-bucket/Data/ICESat-2-TILES/Boreal_countries_ICESAT2.csv')\n", + "GEDIv21 <- subset(GEDIv21,select=c('region_mean','region_stderr','class'))\n", + "\n", + "for (n in BOREALv01$IPCC_classes_1km) {\n", + " if (file.exists(paste0(BOREAL_LOC,n,\"_STATS.csv\"))) {\n", + " if (length(GEDIv21$region_mean[GEDIv21$class == n]) == 0) {\n", + " Boreal_stats <- read.csv(paste0(BOREAL_LOC,n,\"_STATS.csv\"))\n", + " if (Boreal_stats$value[Boreal_stats$X == 'AGB_mean'] > 0) {\n", + " print(paste0(\"Only boreal stats exist for \", n))\n", + " Boreal_mean <- Boreal_stats$value[Boreal_stats$X == 'AGB_mean']\n", + " Boreal_SE <- Boreal_stats$value[Boreal_stats$X == 'AGB_se']\n", + " Row = data.frame(0,0,0,n,Boreal_mean,Boreal_SE,0,0,0)\n", + " colnames(Row) <- c('region_area','region_mean','region_stderr','class','ICESAT_2_mean','ICESAT_2_SE','ICESAT_2_Area','BOTH_mean','BOTH_SE')\n", + " GEDIv21_BOREAL[nrow(GEDIv21_BOREAL) + 1,] = Row\n", + " }\n", " }\n", " }\n", "}\n", - "# write.csv(GEDIv21_BOREAL, \"/projects/my-public-bucket/Data/Harris_et_al_PAPER/L4B_results_25Jan_BOREAL.csv\", row.names=FALSE)" + "write.csv(GEDIv21_BOREAL, \"/projects/my-public-bucket/Data/ICESat-2-TILES/BOREAL_GEDI_merge_Countries.csv\", row.names=FALSE)\n", + "# write.csv(GEDI, \"/projects/my-public-bucket/Data/Harris_et_al_PAPER/L4B_results_2vvvvv5Jan_BOREAL.csv\", row.names=FALSE)" ] }, { "cell_type": "code", - "execution_count": 3, - "id": "c91f2dc6-7faf-4b71-9dcf-d2215e402d74", + "execution_count": 12, + "id": "4f837663-1664-4ef6-9bb0-d56a67f9089a", "metadata": { "tags": [] }, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "ERROR while rich displaying an object: Error in loadNamespace(x): there is no package called ‘geojsonio’\n", - "\n", - "Traceback:\n", - "1. tryCatch(withCallingHandlers({\n", - " . if (!mime %in% names(repr::mime2repr)) \n", - " . stop(\"No repr_* for mimetype \", mime, \" in repr::mime2repr\")\n", - " . rpr <- repr::mime2repr[[mime]](obj)\n", - " . if (is.null(rpr)) \n", - " . return(NULL)\n", - " . prepare_content(is.raw(rpr), rpr)\n", - " . }, error = error_handler), error = outer_handler)\n", - "2. tryCatchList(expr, classes, parentenv, handlers)\n", - "3. tryCatchOne(expr, names, parentenv, handlers[[1L]])\n", - "4. doTryCatch(return(expr), name, parentenv, handler)\n", - "5. withCallingHandlers({\n", - " . if (!mime %in% names(repr::mime2repr)) \n", - " . stop(\"No repr_* for mimetype \", mime, \" in repr::mime2repr\")\n", - " . rpr <- repr::mime2repr[[mime]](obj)\n", - " . if (is.null(rpr)) \n", - " . return(NULL)\n", - " . prepare_content(is.raw(rpr), rpr)\n", - " . }, error = error_handler)\n", - "6. repr::mime2repr[[mime]](obj)\n", - "7. repr_geojson.sf(obj)\n", - "8. repr_geojson(geojsonio::geojson_list(obj), ...)\n", - "9. loadNamespace(x)\n", - "10. withRestarts(stop(cond), retry_loadNamespace = function() NULL)\n", - "11. withOneRestart(expr, restarts[[1L]])\n", - "12. doWithOneRestart(return(expr), restart)\n" - ] - }, { "data": { "text/html": [ "<table class=\"dataframe\">\n", - "<caption>A sf: 14 × 17</caption>\n", + "<caption>A tibble: 20 × 9</caption>\n", "<thead>\n", - "\t<tr><th></th><th scope=col>class</th><th scope=col>cell_area</th><th scope=col>region_area</th><th scope=col>region_cell_count</th><th scope=col>region_mean</th><th scope=col>sample_var</th><th scope=col>model_var</th><th scope=col>sample_cov</th><th scope=col>model_cov</th><th scope=col>region_var</th><th scope=col>region_stderr</th><th scope=col>region_rel_stderr</th><th scope=col>nshots</th><th scope=col>ntracks</th><th scope=col>nonresponse_cells</th><th scope=col>nmodels</th><th scope=col>geom</th></tr>\n", - "\t<tr><th></th><th scope=col><chr></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><chr></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><chr></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><MULTIPOLYGON [m]></th></tr>\n", + "\t<tr><th scope=col>region_area</th><th scope=col>region_mean</th><th scope=col>region_stderr</th><th scope=col>class</th><th scope=col>ICESAT_2_mean</th><th scope=col>ICESAT_2_SE</th><th scope=col>ICESAT_2_Area</th><th scope=col>BOTH_mean</th><th scope=col>BOTH_SE</th></tr>\n", + "\t<tr><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><chr></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th></tr>\n", "</thead>\n", "<tbody>\n", - "\t<tr><th scope=row>1</th><td>BLR</td><td>5.184e+09</td><td>2.629739e+09</td><td> 11</td><td>71.552379</td><td>2.176783e-01</td><td>8.5113520</td><td>4.142518e-02</td><td>NA</td><td>8.7704554</td><td>9.4446848</td><td> 3.057244</td><td> 454160</td><td>NA</td><td> 0</td><td>3</td><td>MULTIPOLYGON (((2277299 573...</td></tr>\n", - "\t<tr><th scope=row>2</th><td>CAN</td><td>5.184e+09</td><td>2.288319e+12</td><td> 627</td><td>32.727900</td><td>6.916580e-04</td><td>0.4370265</td><td>2.473388e-04</td><td>NA</td><td>0.4379655</td><td>3.9674801</td><td> 1.242924</td><td>205016836</td><td>NA</td><td> 9</td><td>3</td><td>MULTIPOLYGON (((-6332280 50...</td></tr>\n", - "\t<tr><th scope=row>3</th><td>CHN</td><td>5.184e+09</td><td>9.305738e+12</td><td>2016</td><td>41.324090</td><td>3.444781e-04</td><td>0.2889541</td><td>1.976979e-04</td><td>NA</td><td>0.2894963</td><td>0.5372977</td><td> 1.308148</td><td>331396373</td><td>NA</td><td> 3</td><td>5</td><td>MULTIPOLYGON (((10682088 25...</td></tr>\n", - "\t<tr><th scope=row>4</th><td>DEU</td><td>5.184e+09</td><td>2.109578e+11</td><td> 65</td><td>79.169095</td><td>7.463370e-03</td><td>1.7981588</td><td>1.852809e-03</td><td>NA</td><td>1.8074750</td><td>4.0881576</td><td> 1.507628</td><td> 17299568</td><td>NA</td><td> 0</td><td>3</td><td>MULTIPOLYGON (((1330146 550...</td></tr>\n", - "\t<tr><th scope=row>5</th><td>GBR</td><td>5.184e+09</td><td>3.915120e+10</td><td> 23</td><td>27.792137</td><td>2.147697e-02</td><td>2.0322501</td><td>2.738371e-03</td><td>NA</td><td>2.0564654</td><td>5.7466947</td><td> 3.564960</td><td> 5069694</td><td>NA</td><td> 0</td><td>3</td><td>MULTIPOLYGON (((-259910.5 5...</td></tr>\n", - "\t<tr><th scope=row>6</th><td>IRL</td><td>5.184e+09</td><td>5.616566e+08</td><td> 3</td><td>19.783808</td><td>5.722809e-01</td><td>7.1520627</td><td>3.202226e-03</td><td>NA</td><td>7.7275459</td><td>5.7063115</td><td> 9.820159</td><td> 101090</td><td>NA</td><td> 0</td><td>3</td><td>MULTIPOLYGON (((-839409.2 5...</td></tr>\n", - "\t<tr><th scope=row>7</th><td>KAZ</td><td>5.184e+09</td><td>2.362658e+12</td><td> 553</td><td> 5.062741</td><td>6.183252e-05</td><td>0.1944473</td><td>2.403520e-05</td><td>NA</td><td>0.1945332</td><td>0.5492681</td><td>11.169949</td><td>226954869</td><td>NA</td><td> 0</td><td>4</td><td>MULTIPOLYGON (((4889731 517...</td></tr>\n", - "\t<tr><th scope=row>8</th><td>MNG</td><td>5.184e+09</td><td>1.560160e+12</td><td> 362</td><td> 7.912450</td><td>6.998089e-05</td><td>0.1674246</td><td>2.348949e-05</td><td>NA</td><td>0.1675181</td><td>0.4084053</td><td> 5.189205</td><td>144092338</td><td>NA</td><td> 0</td><td>3</td><td>MULTIPOLYGON (((11238039 55...</td></tr>\n", - "\t<tr><th scope=row>9</th><td>NLD</td><td>5.184e+09</td><td>6.720407e+09</td><td> 10</td><td>39.763755</td><td>2.469888e-02</td><td>3.1750318</td><td>2.569909e-03</td><td>NA</td><td>3.2023006</td><td>6.0970993</td><td> 4.043432</td><td> 937626</td><td>NA</td><td> 0</td><td>3</td><td>MULTIPOLYGON (((362358.5 57...</td></tr>\n", - "\t<tr><th scope=row>10</th><td>NOR</td><td>5.184e+09</td><td>5.520980e+07</td><td> 1</td><td>29.603829</td><td>0.000000e+00</td><td>0.0000000</td><td>0.000000e+00</td><td>NA</td><td>0.0000000</td><td>7.3907091</td><td> 0.000000</td><td> 0</td><td>NA</td><td> 1</td><td>0</td><td>MULTIPOLYGON (((335559.4 -5...</td></tr>\n", - "\t<tr><th scope=row>11</th><td>POL</td><td>5.184e+09</td><td>1.220705e+11</td><td> 45</td><td>69.048231</td><td>7.738243e-03</td><td>2.1043726</td><td>2.185907e-03</td><td>NA</td><td>2.1142968</td><td>6.0383301</td><td> 1.987180</td><td> 13172276</td><td>NA</td><td> 0</td><td>3</td><td>MULTIPOLYGON (((1817554 557...</td></tr>\n", - "\t<tr><th scope=row>12</th><td>RUS</td><td>5.184e+09</td><td>1.807355e+12</td><td> 578</td><td>46.795711</td><td>1.158709e-03</td><td>0.5529233</td><td>4.315925e-04</td><td>NA</td><td>0.5545136</td><td>6.3978540</td><td> 1.301883</td><td>137759303</td><td>NA</td><td> 1</td><td>5</td><td>MULTIPOLYGON (((15227973 57...</td></tr>\n", - "\t<tr><th scope=row>13</th><td>UKR</td><td>5.184e+09</td><td>5.770285e+11</td><td> 165</td><td>39.054859</td><td>1.260510e-03</td><td>0.9436175</td><td>3.496119e-04</td><td>NA</td><td>0.9452276</td><td>1.0001882</td><td> 2.551920</td><td> 37904754</td><td>NA</td><td> 1</td><td>3</td><td>MULTIPOLYGON (((2868630 523...</td></tr>\n", - "\t<tr><th scope=row>14</th><td>USA</td><td>5.184e+09</td><td>7.960166e+12</td><td>1734</td><td>49.539453</td><td>2.989194e-04</td><td>0.3659962</td><td>8.492571e-05</td><td>NA</td><td>0.3663800</td><td>1.1685255</td><td> 1.112419</td><td>384983129</td><td>NA</td><td>25</td><td>6</td><td>MULTIPOLYGON (((-9176117 55...</td></tr>\n", + "\t<tr><td> 262973.94</td><td>96.868149</td><td>2.9614955</td><td>BLR</td><td>71.227</td><td> 9.566</td><td> 20460400</td><td>71.552379</td><td>9.4446848</td></tr>\n", + "\t<tr><td>228831857.19</td><td>53.244565</td><td>0.6617896</td><td>CAN</td><td>23.444</td><td> 5.755</td><td> 505699800</td><td>32.727900</td><td>3.9674801</td></tr>\n", + "\t<tr><td>930573822.49</td><td>41.130567</td><td>0.5380486</td><td>CHN</td><td>65.893</td><td> 7.783</td><td> 7329900</td><td>41.324090</td><td>0.5372977</td></tr>\n", + "\t<tr><td> 21095784.35</td><td>89.174784</td><td>1.3444237</td><td>DEU</td><td>64.367</td><td> 9.939</td><td> 14260000</td><td>79.169095</td><td>4.0881576</td></tr>\n", + "\t<tr><td> 3915119.59</td><td>40.225928</td><td>1.4340381</td><td>GBR</td><td>25.323</td><td> 6.882</td><td> 19715300</td><td>27.792137</td><td>5.7466947</td></tr>\n", + "\t<tr><td> 56165.66</td><td>28.307549</td><td>2.7798464</td><td>IRL</td><td>19.714</td><td> 5.753</td><td> 6858000</td><td>19.783808</td><td>5.7063115</td></tr>\n", + "\t<tr><td>236265785.09</td><td> 3.948623</td><td>0.4410592</td><td>KAZ</td><td>13.330</td><td> 3.268</td><td> 31839800</td><td> 5.062741</td><td>0.5492681</td></tr>\n", + "\t<tr><td>156015970.59</td><td> 7.887330</td><td>0.4092897</td><td>MNG</td><td>16.850</td><td> 5.226</td><td> 438500</td><td> 7.912450</td><td>0.4084053</td></tr>\n", + "\t<tr><td> 672040.71</td><td>44.256891</td><td>1.7894973</td><td>NLD</td><td>38.705</td><td> 7.522</td><td> 2852000</td><td>39.763755</td><td>6.0970993</td></tr>\n", + "\t<tr><td> 12207049.06</td><td>73.172129</td><td>1.4540622</td><td>POL</td><td>66.354</td><td> 9.938</td><td> 18684600</td><td>69.048231</td><td>6.0383301</td></tr>\n", + "\t<tr><td>180735529.43</td><td>57.198421</td><td>0.7446567</td><td>RUS</td><td>45.510</td><td> 7.188</td><td>1462334700</td><td>46.795711</td><td>6.3978540</td></tr>\n", + "\t<tr><td> 57702847.75</td><td>38.097908</td><td>0.9722282</td><td>UKR</td><td>64.644</td><td> 9.692</td><td> 2157900</td><td>39.054859</td><td>1.0001882</td></tr>\n", + "\t<tr><td>796016587.16</td><td>54.412356</td><td>0.6052933</td><td>USA</td><td>22.908</td><td> 6.792</td><td> 145651500</td><td>49.539453</td><td>1.1685255</td></tr>\n", + "\t<tr><td> 0.00</td><td> 0.000000</td><td>0.0000000</td><td>LTU</td><td>61.866</td><td> 9.616</td><td> 0</td><td> 0.000000</td><td>0.0000000</td></tr>\n", + "\t<tr><td> 0.00</td><td> 0.000000</td><td>0.0000000</td><td>EST</td><td>71.540</td><td> 9.215</td><td> 0</td><td> 0.000000</td><td>0.0000000</td></tr>\n", + "\t<tr><td> 0.00</td><td> 0.000000</td><td>0.0000000</td><td>LVA</td><td>74.486</td><td>10.403</td><td> 0</td><td> 0.000000</td><td>0.0000000</td></tr>\n", + "\t<tr><td> 0.00</td><td> 0.000000</td><td>0.0000000</td><td>NOR</td><td>29.609</td><td> 7.392</td><td> 0</td><td> 0.000000</td><td>0.0000000</td></tr>\n", + "\t<tr><td> 0.00</td><td> 0.000000</td><td>0.0000000</td><td>SWE</td><td>54.810</td><td> 8.283</td><td> 0</td><td> 0.000000</td><td>0.0000000</td></tr>\n", + "\t<tr><td> 0.00</td><td> 0.000000</td><td>0.0000000</td><td>FIN</td><td>60.866</td><td> 7.849</td><td> 0</td><td> 0.000000</td><td>0.0000000</td></tr>\n", + "\t<tr><td> 0.00</td><td> 0.000000</td><td>0.0000000</td><td>DNK</td><td>43.455</td><td> 9.521</td><td> 0</td><td> 0.000000</td><td>0.0000000</td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ - "A sf: 14 × 17\n", - "\\begin{tabular}{r|lllllllllllllllll}\n", - " & class & cell\\_area & region\\_area & region\\_cell\\_count & region\\_mean & sample\\_var & model\\_var & sample\\_cov & model\\_cov & region\\_var & region\\_stderr & region\\_rel\\_stderr & nshots & ntracks & nonresponse\\_cells & nmodels & geom\\\\\n", - " & <chr> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <chr> & <dbl> & <dbl> & <dbl> & <dbl> & <chr> & <dbl> & <dbl> & <MULTIPOLYGON {[}m{]}>\\\\\n", + "A tibble: 20 × 9\n", + "\\begin{tabular}{lllllllll}\n", + " region\\_area & region\\_mean & region\\_stderr & class & ICESAT\\_2\\_mean & ICESAT\\_2\\_SE & ICESAT\\_2\\_Area & BOTH\\_mean & BOTH\\_SE\\\\\n", + " <dbl> & <dbl> & <dbl> & <chr> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl>\\\\\n", "\\hline\n", - "\t1 & BLR & 5.184e+09 & 2.629739e+09 & 11 & 71.552379 & 2.176783e-01 & 8.5113520 & 4.142518e-02 & NA & 8.7704554 & 9.4446848 & 3.057244 & 454160 & NA & 0 & 3 & MULTIPOLYGON (((2277299 573...\\\\\n", - "\t2 & CAN & 5.184e+09 & 2.288319e+12 & 627 & 32.727900 & 6.916580e-04 & 0.4370265 & 2.473388e-04 & NA & 0.4379655 & 3.9674801 & 1.242924 & 205016836 & NA & 9 & 3 & MULTIPOLYGON (((-6332280 50...\\\\\n", - "\t3 & CHN & 5.184e+09 & 9.305738e+12 & 2016 & 41.324090 & 3.444781e-04 & 0.2889541 & 1.976979e-04 & NA & 0.2894963 & 0.5372977 & 1.308148 & 331396373 & NA & 3 & 5 & MULTIPOLYGON (((10682088 25...\\\\\n", - "\t4 & DEU & 5.184e+09 & 2.109578e+11 & 65 & 79.169095 & 7.463370e-03 & 1.7981588 & 1.852809e-03 & NA & 1.8074750 & 4.0881576 & 1.507628 & 17299568 & NA & 0 & 3 & MULTIPOLYGON (((1330146 550...\\\\\n", - "\t5 & GBR & 5.184e+09 & 3.915120e+10 & 23 & 27.792137 & 2.147697e-02 & 2.0322501 & 2.738371e-03 & NA & 2.0564654 & 5.7466947 & 3.564960 & 5069694 & NA & 0 & 3 & MULTIPOLYGON (((-259910.5 5...\\\\\n", - "\t6 & IRL & 5.184e+09 & 5.616566e+08 & 3 & 19.783808 & 5.722809e-01 & 7.1520627 & 3.202226e-03 & NA & 7.7275459 & 5.7063115 & 9.820159 & 101090 & NA & 0 & 3 & MULTIPOLYGON (((-839409.2 5...\\\\\n", - "\t7 & KAZ & 5.184e+09 & 2.362658e+12 & 553 & 5.062741 & 6.183252e-05 & 0.1944473 & 2.403520e-05 & NA & 0.1945332 & 0.5492681 & 11.169949 & 226954869 & NA & 0 & 4 & MULTIPOLYGON (((4889731 517...\\\\\n", - "\t8 & MNG & 5.184e+09 & 1.560160e+12 & 362 & 7.912450 & 6.998089e-05 & 0.1674246 & 2.348949e-05 & NA & 0.1675181 & 0.4084053 & 5.189205 & 144092338 & NA & 0 & 3 & MULTIPOLYGON (((11238039 55...\\\\\n", - "\t9 & NLD & 5.184e+09 & 6.720407e+09 & 10 & 39.763755 & 2.469888e-02 & 3.1750318 & 2.569909e-03 & NA & 3.2023006 & 6.0970993 & 4.043432 & 937626 & NA & 0 & 3 & MULTIPOLYGON (((362358.5 57...\\\\\n", - "\t10 & NOR & 5.184e+09 & 5.520980e+07 & 1 & 29.603829 & 0.000000e+00 & 0.0000000 & 0.000000e+00 & NA & 0.0000000 & 7.3907091 & 0.000000 & 0 & NA & 1 & 0 & MULTIPOLYGON (((335559.4 -5...\\\\\n", - "\t11 & POL & 5.184e+09 & 1.220705e+11 & 45 & 69.048231 & 7.738243e-03 & 2.1043726 & 2.185907e-03 & NA & 2.1142968 & 6.0383301 & 1.987180 & 13172276 & NA & 0 & 3 & MULTIPOLYGON (((1817554 557...\\\\\n", - "\t12 & RUS & 5.184e+09 & 1.807355e+12 & 578 & 46.795711 & 1.158709e-03 & 0.5529233 & 4.315925e-04 & NA & 0.5545136 & 6.3978540 & 1.301883 & 137759303 & NA & 1 & 5 & MULTIPOLYGON (((15227973 57...\\\\\n", - "\t13 & UKR & 5.184e+09 & 5.770285e+11 & 165 & 39.054859 & 1.260510e-03 & 0.9436175 & 3.496119e-04 & NA & 0.9452276 & 1.0001882 & 2.551920 & 37904754 & NA & 1 & 3 & MULTIPOLYGON (((2868630 523...\\\\\n", - "\t14 & USA & 5.184e+09 & 7.960166e+12 & 1734 & 49.539453 & 2.989194e-04 & 0.3659962 & 8.492571e-05 & NA & 0.3663800 & 1.1685255 & 1.112419 & 384983129 & NA & 25 & 6 & MULTIPOLYGON (((-9176117 55...\\\\\n", + "\t 262973.94 & 96.868149 & 2.9614955 & BLR & 71.227 & 9.566 & 20460400 & 71.552379 & 9.4446848\\\\\n", + "\t 228831857.19 & 53.244565 & 0.6617896 & CAN & 23.444 & 5.755 & 505699800 & 32.727900 & 3.9674801\\\\\n", + "\t 930573822.49 & 41.130567 & 0.5380486 & CHN & 65.893 & 7.783 & 7329900 & 41.324090 & 0.5372977\\\\\n", + "\t 21095784.35 & 89.174784 & 1.3444237 & DEU & 64.367 & 9.939 & 14260000 & 79.169095 & 4.0881576\\\\\n", + "\t 3915119.59 & 40.225928 & 1.4340381 & GBR & 25.323 & 6.882 & 19715300 & 27.792137 & 5.7466947\\\\\n", + "\t 56165.66 & 28.307549 & 2.7798464 & IRL & 19.714 & 5.753 & 6858000 & 19.783808 & 5.7063115\\\\\n", + "\t 236265785.09 & 3.948623 & 0.4410592 & KAZ & 13.330 & 3.268 & 31839800 & 5.062741 & 0.5492681\\\\\n", + "\t 156015970.59 & 7.887330 & 0.4092897 & MNG & 16.850 & 5.226 & 438500 & 7.912450 & 0.4084053\\\\\n", + "\t 672040.71 & 44.256891 & 1.7894973 & NLD & 38.705 & 7.522 & 2852000 & 39.763755 & 6.0970993\\\\\n", + "\t 12207049.06 & 73.172129 & 1.4540622 & POL & 66.354 & 9.938 & 18684600 & 69.048231 & 6.0383301\\\\\n", + "\t 180735529.43 & 57.198421 & 0.7446567 & RUS & 45.510 & 7.188 & 1462334700 & 46.795711 & 6.3978540\\\\\n", + "\t 57702847.75 & 38.097908 & 0.9722282 & UKR & 64.644 & 9.692 & 2157900 & 39.054859 & 1.0001882\\\\\n", + "\t 796016587.16 & 54.412356 & 0.6052933 & USA & 22.908 & 6.792 & 145651500 & 49.539453 & 1.1685255\\\\\n", + "\t 0.00 & 0.000000 & 0.0000000 & LTU & 61.866 & 9.616 & 0 & 0.000000 & 0.0000000\\\\\n", + "\t 0.00 & 0.000000 & 0.0000000 & EST & 71.540 & 9.215 & 0 & 0.000000 & 0.0000000\\\\\n", + "\t 0.00 & 0.000000 & 0.0000000 & LVA & 74.486 & 10.403 & 0 & 0.000000 & 0.0000000\\\\\n", + "\t 0.00 & 0.000000 & 0.0000000 & NOR & 29.609 & 7.392 & 0 & 0.000000 & 0.0000000\\\\\n", + "\t 0.00 & 0.000000 & 0.0000000 & SWE & 54.810 & 8.283 & 0 & 0.000000 & 0.0000000\\\\\n", + "\t 0.00 & 0.000000 & 0.0000000 & FIN & 60.866 & 7.849 & 0 & 0.000000 & 0.0000000\\\\\n", + "\t 0.00 & 0.000000 & 0.0000000 & DNK & 43.455 & 9.521 & 0 & 0.000000 & 0.0000000\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", - "A sf: 14 × 17\n", + "A tibble: 20 × 9\n", "\n", - "| <!--/--> | class <chr> | cell_area <dbl> | region_area <dbl> | region_cell_count <dbl> | region_mean <dbl> | sample_var <dbl> | model_var <dbl> | sample_cov <dbl> | model_cov <chr> | region_var <dbl> | region_stderr <dbl> | region_rel_stderr <dbl> | nshots <dbl> | ntracks <chr> | nonresponse_cells <dbl> | nmodels <dbl> | geom <MULTIPOLYGON [m]> |\n", - "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n", - "| 1 | BLR | 5.184e+09 | 2.629739e+09 | 11 | 71.552379 | 2.176783e-01 | 8.5113520 | 4.142518e-02 | NA | 8.7704554 | 9.4446848 | 3.057244 | 454160 | NA | 0 | 3 | MULTIPOLYGON (((2277299 573... |\n", - "| 2 | CAN | 5.184e+09 | 2.288319e+12 | 627 | 32.727900 | 6.916580e-04 | 0.4370265 | 2.473388e-04 | NA | 0.4379655 | 3.9674801 | 1.242924 | 205016836 | NA | 9 | 3 | MULTIPOLYGON (((-6332280 50... |\n", - "| 3 | CHN | 5.184e+09 | 9.305738e+12 | 2016 | 41.324090 | 3.444781e-04 | 0.2889541 | 1.976979e-04 | NA | 0.2894963 | 0.5372977 | 1.308148 | 331396373 | NA | 3 | 5 | MULTIPOLYGON (((10682088 25... |\n", - "| 4 | DEU | 5.184e+09 | 2.109578e+11 | 65 | 79.169095 | 7.463370e-03 | 1.7981588 | 1.852809e-03 | NA | 1.8074750 | 4.0881576 | 1.507628 | 17299568 | NA | 0 | 3 | MULTIPOLYGON (((1330146 550... |\n", - "| 5 | GBR | 5.184e+09 | 3.915120e+10 | 23 | 27.792137 | 2.147697e-02 | 2.0322501 | 2.738371e-03 | NA | 2.0564654 | 5.7466947 | 3.564960 | 5069694 | NA | 0 | 3 | MULTIPOLYGON (((-259910.5 5... |\n", - "| 6 | IRL | 5.184e+09 | 5.616566e+08 | 3 | 19.783808 | 5.722809e-01 | 7.1520627 | 3.202226e-03 | NA | 7.7275459 | 5.7063115 | 9.820159 | 101090 | NA | 0 | 3 | MULTIPOLYGON (((-839409.2 5... |\n", - "| 7 | KAZ | 5.184e+09 | 2.362658e+12 | 553 | 5.062741 | 6.183252e-05 | 0.1944473 | 2.403520e-05 | NA | 0.1945332 | 0.5492681 | 11.169949 | 226954869 | NA | 0 | 4 | MULTIPOLYGON (((4889731 517... |\n", - "| 8 | MNG | 5.184e+09 | 1.560160e+12 | 362 | 7.912450 | 6.998089e-05 | 0.1674246 | 2.348949e-05 | NA | 0.1675181 | 0.4084053 | 5.189205 | 144092338 | NA | 0 | 3 | MULTIPOLYGON (((11238039 55... |\n", - "| 9 | NLD | 5.184e+09 | 6.720407e+09 | 10 | 39.763755 | 2.469888e-02 | 3.1750318 | 2.569909e-03 | NA | 3.2023006 | 6.0970993 | 4.043432 | 937626 | NA | 0 | 3 | MULTIPOLYGON (((362358.5 57... |\n", - "| 10 | NOR | 5.184e+09 | 5.520980e+07 | 1 | 29.603829 | 0.000000e+00 | 0.0000000 | 0.000000e+00 | NA | 0.0000000 | 7.3907091 | 0.000000 | 0 | NA | 1 | 0 | MULTIPOLYGON (((335559.4 -5... |\n", - "| 11 | POL | 5.184e+09 | 1.220705e+11 | 45 | 69.048231 | 7.738243e-03 | 2.1043726 | 2.185907e-03 | NA | 2.1142968 | 6.0383301 | 1.987180 | 13172276 | NA | 0 | 3 | MULTIPOLYGON (((1817554 557... |\n", - "| 12 | RUS | 5.184e+09 | 1.807355e+12 | 578 | 46.795711 | 1.158709e-03 | 0.5529233 | 4.315925e-04 | NA | 0.5545136 | 6.3978540 | 1.301883 | 137759303 | NA | 1 | 5 | MULTIPOLYGON (((15227973 57... |\n", - "| 13 | UKR | 5.184e+09 | 5.770285e+11 | 165 | 39.054859 | 1.260510e-03 | 0.9436175 | 3.496119e-04 | NA | 0.9452276 | 1.0001882 | 2.551920 | 37904754 | NA | 1 | 3 | MULTIPOLYGON (((2868630 523... |\n", - "| 14 | USA | 5.184e+09 | 7.960166e+12 | 1734 | 49.539453 | 2.989194e-04 | 0.3659962 | 8.492571e-05 | NA | 0.3663800 | 1.1685255 | 1.112419 | 384983129 | NA | 25 | 6 | MULTIPOLYGON (((-9176117 55... |\n", + "| region_area <dbl> | region_mean <dbl> | region_stderr <dbl> | class <chr> | ICESAT_2_mean <dbl> | ICESAT_2_SE <dbl> | ICESAT_2_Area <dbl> | BOTH_mean <dbl> | BOTH_SE <dbl> |\n", + "|---|---|---|---|---|---|---|---|---|\n", + "| 262973.94 | 96.868149 | 2.9614955 | BLR | 71.227 | 9.566 | 20460400 | 71.552379 | 9.4446848 |\n", + "| 228831857.19 | 53.244565 | 0.6617896 | CAN | 23.444 | 5.755 | 505699800 | 32.727900 | 3.9674801 |\n", + "| 930573822.49 | 41.130567 | 0.5380486 | CHN | 65.893 | 7.783 | 7329900 | 41.324090 | 0.5372977 |\n", + "| 21095784.35 | 89.174784 | 1.3444237 | DEU | 64.367 | 9.939 | 14260000 | 79.169095 | 4.0881576 |\n", + "| 3915119.59 | 40.225928 | 1.4340381 | GBR | 25.323 | 6.882 | 19715300 | 27.792137 | 5.7466947 |\n", + "| 56165.66 | 28.307549 | 2.7798464 | IRL | 19.714 | 5.753 | 6858000 | 19.783808 | 5.7063115 |\n", + "| 236265785.09 | 3.948623 | 0.4410592 | KAZ | 13.330 | 3.268 | 31839800 | 5.062741 | 0.5492681 |\n", + "| 156015970.59 | 7.887330 | 0.4092897 | MNG | 16.850 | 5.226 | 438500 | 7.912450 | 0.4084053 |\n", + "| 672040.71 | 44.256891 | 1.7894973 | NLD | 38.705 | 7.522 | 2852000 | 39.763755 | 6.0970993 |\n", + "| 12207049.06 | 73.172129 | 1.4540622 | POL | 66.354 | 9.938 | 18684600 | 69.048231 | 6.0383301 |\n", + "| 180735529.43 | 57.198421 | 0.7446567 | RUS | 45.510 | 7.188 | 1462334700 | 46.795711 | 6.3978540 |\n", + "| 57702847.75 | 38.097908 | 0.9722282 | UKR | 64.644 | 9.692 | 2157900 | 39.054859 | 1.0001882 |\n", + "| 796016587.16 | 54.412356 | 0.6052933 | USA | 22.908 | 6.792 | 145651500 | 49.539453 | 1.1685255 |\n", + "| 0.00 | 0.000000 | 0.0000000 | LTU | 61.866 | 9.616 | 0 | 0.000000 | 0.0000000 |\n", + "| 0.00 | 0.000000 | 0.0000000 | EST | 71.540 | 9.215 | 0 | 0.000000 | 0.0000000 |\n", + "| 0.00 | 0.000000 | 0.0000000 | LVA | 74.486 | 10.403 | 0 | 0.000000 | 0.0000000 |\n", + "| 0.00 | 0.000000 | 0.0000000 | NOR | 29.609 | 7.392 | 0 | 0.000000 | 0.0000000 |\n", + "| 0.00 | 0.000000 | 0.0000000 | SWE | 54.810 | 8.283 | 0 | 0.000000 | 0.0000000 |\n", + "| 0.00 | 0.000000 | 0.0000000 | FIN | 60.866 | 7.849 | 0 | 0.000000 | 0.0000000 |\n", + "| 0.00 | 0.000000 | 0.0000000 | DNK | 43.455 | 9.521 | 0 | 0.000000 | 0.0000000 |\n", "\n" ], "text/plain": [ - " class cell_area region_area region_cell_count region_mean sample_var \n", - "1 BLR 5.184e+09 2.629739e+09 11 71.552379 2.176783e-01\n", - "2 CAN 5.184e+09 2.288319e+12 627 32.727900 6.916580e-04\n", - "3 CHN 5.184e+09 9.305738e+12 2016 41.324090 3.444781e-04\n", - "4 DEU 5.184e+09 2.109578e+11 65 79.169095 7.463370e-03\n", - "5 GBR 5.184e+09 3.915120e+10 23 27.792137 2.147697e-02\n", - "6 IRL 5.184e+09 5.616566e+08 3 19.783808 5.722809e-01\n", - "7 KAZ 5.184e+09 2.362658e+12 553 5.062741 6.183252e-05\n", - "8 MNG 5.184e+09 1.560160e+12 362 7.912450 6.998089e-05\n", - "9 NLD 5.184e+09 6.720407e+09 10 39.763755 2.469888e-02\n", - "10 NOR 5.184e+09 5.520980e+07 1 29.603829 0.000000e+00\n", - "11 POL 5.184e+09 1.220705e+11 45 69.048231 7.738243e-03\n", - "12 RUS 5.184e+09 1.807355e+12 578 46.795711 1.158709e-03\n", - "13 UKR 5.184e+09 5.770285e+11 165 39.054859 1.260510e-03\n", - "14 USA 5.184e+09 7.960166e+12 1734 49.539453 2.989194e-04\n", - " model_var sample_cov model_cov region_var region_stderr region_rel_stderr\n", - "1 8.5113520 4.142518e-02 NA 8.7704554 9.4446848 3.057244 \n", - "2 0.4370265 2.473388e-04 NA 0.4379655 3.9674801 1.242924 \n", - "3 0.2889541 1.976979e-04 NA 0.2894963 0.5372977 1.308148 \n", - "4 1.7981588 1.852809e-03 NA 1.8074750 4.0881576 1.507628 \n", - "5 2.0322501 2.738371e-03 NA 2.0564654 5.7466947 3.564960 \n", - "6 7.1520627 3.202226e-03 NA 7.7275459 5.7063115 9.820159 \n", - "7 0.1944473 2.403520e-05 NA 0.1945332 0.5492681 11.169949 \n", - "8 0.1674246 2.348949e-05 NA 0.1675181 0.4084053 5.189205 \n", - "9 3.1750318 2.569909e-03 NA 3.2023006 6.0970993 4.043432 \n", - "10 0.0000000 0.000000e+00 NA 0.0000000 7.3907091 0.000000 \n", - "11 2.1043726 2.185907e-03 NA 2.1142968 6.0383301 1.987180 \n", - "12 0.5529233 4.315925e-04 NA 0.5545136 6.3978540 1.301883 \n", - "13 0.9436175 3.496119e-04 NA 0.9452276 1.0001882 2.551920 \n", - "14 0.3659962 8.492571e-05 NA 0.3663800 1.1685255 1.112419 \n", - " nshots ntracks nonresponse_cells nmodels geom \n", - "1 454160 NA 0 3 MULTIPOLYGON (((2277299 573...\n", - "2 205016836 NA 9 3 MULTIPOLYGON (((-6332280 50...\n", - "3 331396373 NA 3 5 MULTIPOLYGON (((10682088 25...\n", - "4 17299568 NA 0 3 MULTIPOLYGON (((1330146 550...\n", - "5 5069694 NA 0 3 MULTIPOLYGON (((-259910.5 5...\n", - "6 101090 NA 0 3 MULTIPOLYGON (((-839409.2 5...\n", - "7 226954869 NA 0 4 MULTIPOLYGON (((4889731 517...\n", - "8 144092338 NA 0 3 MULTIPOLYGON (((11238039 55...\n", - "9 937626 NA 0 3 MULTIPOLYGON (((362358.5 57...\n", - "10 0 NA 1 0 MULTIPOLYGON (((335559.4 -5...\n", - "11 13172276 NA 0 3 MULTIPOLYGON (((1817554 557...\n", - "12 137759303 NA 1 5 MULTIPOLYGON (((15227973 57...\n", - "13 37904754 NA 1 3 MULTIPOLYGON (((2868630 523...\n", - "14 384983129 NA 25 6 MULTIPOLYGON (((-9176117 55..." + " region_area region_mean region_stderr class ICESAT_2_mean ICESAT_2_SE\n", + "1 262973.94 96.868149 2.9614955 BLR 71.227 9.566 \n", + "2 228831857.19 53.244565 0.6617896 CAN 23.444 5.755 \n", + "3 930573822.49 41.130567 0.5380486 CHN 65.893 7.783 \n", + "4 21095784.35 89.174784 1.3444237 DEU 64.367 9.939 \n", + "5 3915119.59 40.225928 1.4340381 GBR 25.323 6.882 \n", + "6 56165.66 28.307549 2.7798464 IRL 19.714 5.753 \n", + "7 236265785.09 3.948623 0.4410592 KAZ 13.330 3.268 \n", + "8 156015970.59 7.887330 0.4092897 MNG 16.850 5.226 \n", + "9 672040.71 44.256891 1.7894973 NLD 38.705 7.522 \n", + "10 12207049.06 73.172129 1.4540622 POL 66.354 9.938 \n", + "11 180735529.43 57.198421 0.7446567 RUS 45.510 7.188 \n", + "12 57702847.75 38.097908 0.9722282 UKR 64.644 9.692 \n", + "13 796016587.16 54.412356 0.6052933 USA 22.908 6.792 \n", + "14 0.00 0.000000 0.0000000 LTU 61.866 9.616 \n", + "15 0.00 0.000000 0.0000000 EST 71.540 9.215 \n", + "16 0.00 0.000000 0.0000000 LVA 74.486 10.403 \n", + "17 0.00 0.000000 0.0000000 NOR 29.609 7.392 \n", + "18 0.00 0.000000 0.0000000 SWE 54.810 8.283 \n", + "19 0.00 0.000000 0.0000000 FIN 60.866 7.849 \n", + "20 0.00 0.000000 0.0000000 DNK 43.455 9.521 \n", + " ICESAT_2_Area BOTH_mean BOTH_SE \n", + "1 20460400 71.552379 9.4446848\n", + "2 505699800 32.727900 3.9674801\n", + "3 7329900 41.324090 0.5372977\n", + "4 14260000 79.169095 4.0881576\n", + "5 19715300 27.792137 5.7466947\n", + "6 6858000 19.783808 5.7063115\n", + "7 31839800 5.062741 0.5492681\n", + "8 438500 7.912450 0.4084053\n", + "9 2852000 39.763755 6.0970993\n", + "10 18684600 69.048231 6.0383301\n", + "11 1462334700 46.795711 6.3978540\n", + "12 2157900 39.054859 1.0001882\n", + "13 145651500 49.539453 1.1685255\n", + "14 0 0.000000 0.0000000\n", + "15 0 0.000000 0.0000000\n", + "16 0 0.000000 0.0000000\n", + "17 0 0.000000 0.0000000\n", + "18 0 0.000000 0.0000000\n", + "19 0 0.000000 0.0000000\n", + "20 0 0.000000 0.0000000" ] }, "metadata": {}, @@ -361,164 +319,178 @@ }, { "cell_type": "code", - "execution_count": 4, - "id": "80b13155-d052-4af0-8b60-178c60916b59", + "execution_count": 39, + "id": "98985286-d7ea-4c74-9d63-1195a6dbf28b", "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + }, "tags": [] }, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "ERROR while rich displaying an object: Error in loadNamespace(x): there is no package called ‘geojsonio’\n", - "\n", - "Traceback:\n", - "1. tryCatch(withCallingHandlers({\n", - " . if (!mime %in% names(repr::mime2repr)) \n", - " . stop(\"No repr_* for mimetype \", mime, \" in repr::mime2repr\")\n", - " . rpr <- repr::mime2repr[[mime]](obj)\n", - " . if (is.null(rpr)) \n", - " . return(NULL)\n", - " . prepare_content(is.raw(rpr), rpr)\n", - " . }, error = error_handler), error = outer_handler)\n", - "2. tryCatchList(expr, classes, parentenv, handlers)\n", - "3. tryCatchOne(expr, names, parentenv, handlers[[1L]])\n", - "4. doTryCatch(return(expr), name, parentenv, handler)\n", - "5. withCallingHandlers({\n", - " . if (!mime %in% names(repr::mime2repr)) \n", - " . stop(\"No repr_* for mimetype \", mime, \" in repr::mime2repr\")\n", - " . rpr <- repr::mime2repr[[mime]](obj)\n", - " . if (is.null(rpr)) \n", - " . return(NULL)\n", - " . prepare_content(is.raw(rpr), rpr)\n", - " . }, error = error_handler)\n", - "6. repr::mime2repr[[mime]](obj)\n", - "7. repr_geojson.sf(obj)\n", - "8. repr_geojson(geojsonio::geojson_list(obj), ...)\n", - "9. loadNamespace(x)\n", - "10. withRestarts(stop(cond), retry_loadNamespace = function() NULL)\n", - "11. withOneRestart(expr, restarts[[1L]])\n", - "12. doWithOneRestart(return(expr), restart)\n" - ] - }, { "data": { "text/html": [ "<table class=\"dataframe\">\n", - "<caption>A sf: 14 × 17</caption>\n", + "<caption>A data.frame: 14 × 53</caption>\n", "<thead>\n", - "\t<tr><th></th><th scope=col>class</th><th scope=col>cell_area</th><th scope=col>region_area</th><th scope=col>region_cell_count</th><th scope=col>region_mean</th><th scope=col>sample_var</th><th scope=col>model_var</th><th scope=col>sample_cov</th><th scope=col>model_cov</th><th scope=col>region_var</th><th scope=col>region_stderr</th><th scope=col>region_rel_stderr</th><th scope=col>nshots</th><th scope=col>ntracks</th><th scope=col>nonresponse_cells</th><th scope=col>nmodels</th><th scope=col>geom</th></tr>\n", - "\t<tr><th></th><th scope=col><chr></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><chr></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><chr></th><th scope=col><dbl></th><th scope=col><dbl></th><th scope=col><MULTIPOLYGON [m]></th></tr>\n", + "\t<tr><th scope=col>fid</th><th scope=col>OBJECTID</th><th scope=col>featurecla</th><th scope=col>LEVEL</th><th scope=col>TYPE</th><th scope=col>FORMAL_EN</th><th scope=col>FORMAL_FR</th><th scope=col>POP_EST</th><th scope=col>POP_RANK</th><th scope=col>GDP_MD_EST</th><th scope=col>⋯</th><th scope=col>NAME_RU</th><th scope=col>NAME_SV</th><th scope=col>NAME_TR</th><th scope=col>NAME_VI</th><th scope=col>NAME_ZH</th><th scope=col>WB_NAME</th><th scope=col>WB_RULES</th><th scope=col>WB_REGION</th><th scope=col>Shape_Leng</th><th scope=col>Shape_Area</th></tr>\n", + "\t<tr><th scope=col><int></th><th scope=col><int></th><th scope=col><chr></th><th scope=col><int></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><lgl></th><th scope=col><int></th><th scope=col><int></th><th scope=col><int></th><th scope=col>⋯</th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><chr></th><th scope=col><dbl></th><th scope=col><dbl></th></tr>\n", "</thead>\n", "<tbody>\n", - "\t<tr><th scope=row>1</th><td>BLR</td><td>5.184e+09</td><td>2.629739e+09</td><td> 11</td><td>96.868149</td><td>2.176783e-01</td><td>8.5113520</td><td>4.142518e-02</td><td>NA</td><td>8.7704554</td><td>2.9614955</td><td> 3.057244</td><td> 454160</td><td>NA</td><td> 0</td><td>3</td><td>MULTIPOLYGON (((2277299 573...</td></tr>\n", - "\t<tr><th scope=row>2</th><td>CAN</td><td>5.184e+09</td><td>2.288319e+12</td><td> 627</td><td>53.244565</td><td>6.916580e-04</td><td>0.4370265</td><td>2.473388e-04</td><td>NA</td><td>0.4379655</td><td>0.6617896</td><td> 1.242924</td><td>205016836</td><td>NA</td><td> 9</td><td>3</td><td>MULTIPOLYGON (((-6332280 50...</td></tr>\n", - "\t<tr><th scope=row>3</th><td>CHN</td><td>5.184e+09</td><td>9.305738e+12</td><td>2016</td><td>41.130567</td><td>3.444781e-04</td><td>0.2889541</td><td>1.976979e-04</td><td>NA</td><td>0.2894963</td><td>0.5380486</td><td> 1.308148</td><td>331396373</td><td>NA</td><td> 3</td><td>5</td><td>MULTIPOLYGON (((10682088 25...</td></tr>\n", - "\t<tr><th scope=row>4</th><td>DEU</td><td>5.184e+09</td><td>2.109578e+11</td><td> 65</td><td>89.174784</td><td>7.463370e-03</td><td>1.7981588</td><td>1.852809e-03</td><td>NA</td><td>1.8074750</td><td>1.3444237</td><td> 1.507628</td><td> 17299568</td><td>NA</td><td> 0</td><td>3</td><td>MULTIPOLYGON (((1330146 550...</td></tr>\n", - "\t<tr><th scope=row>5</th><td>GBR</td><td>5.184e+09</td><td>3.915120e+10</td><td> 23</td><td>40.225928</td><td>2.147697e-02</td><td>2.0322501</td><td>2.738371e-03</td><td>NA</td><td>2.0564654</td><td>1.4340381</td><td> 3.564960</td><td> 5069694</td><td>NA</td><td> 0</td><td>3</td><td>MULTIPOLYGON (((-259910.5 5...</td></tr>\n", - "\t<tr><th scope=row>6</th><td>IRL</td><td>5.184e+09</td><td>5.616566e+08</td><td> 3</td><td>28.307549</td><td>5.722809e-01</td><td>7.1520627</td><td>3.202226e-03</td><td>NA</td><td>7.7275459</td><td>2.7798464</td><td> 9.820159</td><td> 101090</td><td>NA</td><td> 0</td><td>3</td><td>MULTIPOLYGON (((-839409.2 5...</td></tr>\n", - "\t<tr><th scope=row>7</th><td>KAZ</td><td>5.184e+09</td><td>2.362658e+12</td><td> 553</td><td> 3.948623</td><td>6.183252e-05</td><td>0.1944473</td><td>2.403520e-05</td><td>NA</td><td>0.1945332</td><td>0.4410592</td><td>11.169949</td><td>226954869</td><td>NA</td><td> 0</td><td>4</td><td>MULTIPOLYGON (((4889731 517...</td></tr>\n", - "\t<tr><th scope=row>8</th><td>MNG</td><td>5.184e+09</td><td>1.560160e+12</td><td> 362</td><td> 7.887330</td><td>6.998089e-05</td><td>0.1674246</td><td>2.348949e-05</td><td>NA</td><td>0.1675181</td><td>0.4092897</td><td> 5.189205</td><td>144092338</td><td>NA</td><td> 0</td><td>3</td><td>MULTIPOLYGON (((11238039 55...</td></tr>\n", - "\t<tr><th scope=row>9</th><td>NLD</td><td>5.184e+09</td><td>6.720407e+09</td><td> 10</td><td>44.256891</td><td>2.469888e-02</td><td>3.1750318</td><td>2.569909e-03</td><td>NA</td><td>3.2023006</td><td>1.7894973</td><td> 4.043432</td><td> 937626</td><td>NA</td><td> 0</td><td>3</td><td>MULTIPOLYGON (((362358.5 57...</td></tr>\n", - "\t<tr><th scope=row>10</th><td>NOR</td><td>5.184e+09</td><td>5.520980e+07</td><td> 1</td><td> 0.000000</td><td>0.000000e+00</td><td>0.0000000</td><td>0.000000e+00</td><td>NA</td><td>0.0000000</td><td>0.0000000</td><td> 0.000000</td><td> 0</td><td>NA</td><td> 1</td><td>0</td><td>MULTIPOLYGON (((335559.4 -5...</td></tr>\n", - "\t<tr><th scope=row>11</th><td>POL</td><td>5.184e+09</td><td>1.220705e+11</td><td> 45</td><td>73.172129</td><td>7.738243e-03</td><td>2.1043726</td><td>2.185907e-03</td><td>NA</td><td>2.1142968</td><td>1.4540622</td><td> 1.987180</td><td> 13172276</td><td>NA</td><td> 0</td><td>3</td><td>MULTIPOLYGON (((1817554 557...</td></tr>\n", - "\t<tr><th scope=row>12</th><td>RUS</td><td>5.184e+09</td><td>1.807355e+12</td><td> 578</td><td>57.198421</td><td>1.158709e-03</td><td>0.5529233</td><td>4.315925e-04</td><td>NA</td><td>0.5545136</td><td>0.7446567</td><td> 1.301883</td><td>137759303</td><td>NA</td><td> 1</td><td>5</td><td>MULTIPOLYGON (((15227973 57...</td></tr>\n", - "\t<tr><th scope=row>13</th><td>UKR</td><td>5.184e+09</td><td>5.770285e+11</td><td> 165</td><td>38.097908</td><td>1.260510e-03</td><td>0.9436175</td><td>3.496119e-04</td><td>NA</td><td>0.9452276</td><td>0.9722282</td><td> 2.551920</td><td> 37904754</td><td>NA</td><td> 1</td><td>3</td><td>MULTIPOLYGON (((2868630 523...</td></tr>\n", - "\t<tr><th scope=row>14</th><td>USA</td><td>5.184e+09</td><td>7.960166e+12</td><td>1734</td><td>54.412356</td><td>2.989194e-04</td><td>0.3659962</td><td>8.492571e-05</td><td>NA</td><td>0.3663800</td><td>0.6052933</td><td> 1.112419</td><td>384983129</td><td>NA</td><td>25</td><td>6</td><td>MULTIPOLYGON (((-9176117 55...</td></tr>\n", + "\t<tr><td> 1</td><td> 9</td><td>Admin-0 country</td><td>2</td><td>Country </td><td>People's Republic of China </td><td>NA</td><td>1379302771</td><td>18</td><td>21140000</td><td>⋯</td><td>КитайÑÐºÐ°Ñ ÐÐ°Ñ€Ð¾Ð´Ð½Ð°Ñ Ð ÐµÑпублика</td><td>Kina </td><td>Çin Halk Cumhuriyeti </td><td>Cá»™ng hòa Nhân dân Trung Hoa </td><td>ä¸åŽäººæ°‘共和国</td><td>China </td><td>None </td><td>EAP </td><td> 376.66709</td><td> 951.364850</td></tr>\n", + "\t<tr><td> 2</td><td> 32</td><td>Admin-0 country</td><td>2</td><td>Sovereign country</td><td>Ukraine </td><td>NA</td><td> 44033874</td><td>15</td><td> 352600</td><td>⋯</td><td>Украина </td><td>Ukraina </td><td>Ukrayna </td><td>Ukraina </td><td>乌克兰 </td><td>Ukraine </td><td>None </td><td>ECA </td><td> 84.13558</td><td> 73.649890</td></tr>\n", + "\t<tr><td> 3</td><td> 33</td><td>Admin-0 country</td><td>2</td><td>Sovereign country</td><td>Republic of Belarus </td><td>NA</td><td> 9549747</td><td>13</td><td> 165400</td><td>⋯</td><td>БелоруÑÑÐ¸Ñ </td><td>Vitryssland </td><td>Beyaz Rusya </td><td>Belarus </td><td>白罗斯 </td><td>Belarus </td><td>None </td><td>ECA </td><td> 33.71343</td><td> 28.122390</td></tr>\n", + "\t<tr><td> 4</td><td> 40</td><td>Admin-0 country</td><td>2</td><td>Sovereign country</td><td>Republic of Kazakhstan </td><td>NA</td><td> 18556698</td><td>14</td><td> 460700</td><td>⋯</td><td>КазахÑтан </td><td>Kazakstan </td><td>Kazakistan </td><td>Kazakhstan </td><td>哈è¨å…‹æ–¯å¦ </td><td>Kazakhstan </td><td>None </td><td>ECA </td><td> 158.82012</td><td> 329.367573</td></tr>\n", + "\t<tr><td> 5</td><td> 45</td><td>Admin-0 country</td><td>2</td><td>Sovereign country</td><td>Mongolia </td><td>NA</td><td> 3068243</td><td>12</td><td> 37000</td><td>⋯</td><td>ÐœÐ¾Ð½Ð³Ð¾Ð»Ð¸Ñ </td><td>Mongoliet </td><td>MoÄŸolistan </td><td>Mông Cổ </td><td>è’™å¤å›½ </td><td>Mongolia </td><td>None </td><td>EAP </td><td> 85.72407</td><td> 184.602987</td></tr>\n", + "\t<tr><td> 6</td><td> 46</td><td>Admin-0 country</td><td>2</td><td>Sovereign country</td><td>Russian Federation </td><td>NA</td><td> 142257519</td><td>17</td><td> 3745000</td><td>⋯</td><td>РоÑÑÐ¸Ñ </td><td>Ryssland </td><td>Rusya </td><td>Nga </td><td>ä¿„ç½—æ–¯ </td><td>Russian Federation </td><td>Do not use \"Russia\"</td><td>ECA </td><td>1645.53615</td><td>2925.332609</td></tr>\n", + "\t<tr><td> 7</td><td> 48</td><td>Admin-0 country</td><td>2</td><td>Sovereign country</td><td>Federal Republic of Germany </td><td>NA</td><td> 80594017</td><td>16</td><td> 3979000</td><td>⋯</td><td>Ð“ÐµÑ€Ð¼Ð°Ð½Ð¸Ñ </td><td>Tyskland </td><td>Almanya </td><td>Äức </td><td>德国 </td><td>Germany </td><td>None </td><td>Other</td><td> 68.23519</td><td> 45.930027</td></tr>\n", + "\t<tr><td> 8</td><td> 51</td><td>Admin-0 country</td><td>2</td><td>Sovereign country</td><td>Kingdom of Norway </td><td>NA</td><td> 5320045</td><td>13</td><td> 364700</td><td>⋯</td><td>ÐÐ¾Ñ€Ð²ÐµÐ³Ð¸Ñ </td><td>Norge </td><td>Norveç </td><td>Na Uy </td><td>æŒªå¨ </td><td>Norway </td><td>None </td><td>Other</td><td> 552.73323</td><td> 85.597443</td></tr>\n", + "\t<tr><td> 9</td><td> 75</td><td>Admin-0 country</td><td>2</td><td>Sovereign country</td><td>Republic of Poland </td><td>NA</td><td> 38476269</td><td>15</td><td> 1052000</td><td>⋯</td><td>Польша </td><td>Polen </td><td>Polonya </td><td>Ba Lan </td><td>波兰 </td><td>Poland </td><td>None </td><td>ECA </td><td> 37.81876</td><td> 41.141773</td></tr>\n", + "\t<tr><td>10</td><td> 76</td><td>Admin-0 country</td><td>2</td><td>Sovereign country</td><td>Ireland </td><td>NA</td><td> 5011102</td><td>13</td><td> 322000</td><td>⋯</td><td>Ð˜Ñ€Ð»Ð°Ð½Ð´Ð¸Ñ </td><td>Irland </td><td>İrlanda </td><td>Cá»™ng hòa Ireland </td><td>爱尔兰共和国 </td><td>Ireland </td><td>None </td><td>Other</td><td> 48.24202</td><td> 9.334048</td></tr>\n", + "\t<tr><td>11</td><td> 77</td><td>Admin-0 country</td><td>2</td><td>Country </td><td>United Kingdom of Great Britain and Northern Ireland</td><td>NA</td><td> 64769452</td><td>16</td><td> 2788000</td><td>⋯</td><td>Ð’ÐµÐ»Ð¸ÐºÐ¾Ð±Ñ€Ð¸Ñ‚Ð°Ð½Ð¸Ñ </td><td>Storbritannien</td><td>BirleÅŸik Krallık </td><td>Vương quốc Liên hiệp Anh và Bắc Ireland</td><td>英国 </td><td>United Kingdom </td><td>None </td><td>Other</td><td> 155.61409</td><td> 33.545736</td></tr>\n", + "\t<tr><td>12</td><td>150</td><td>Admin-0 country</td><td>2</td><td>Country </td><td>United States of America </td><td>NA</td><td> 326625791</td><td>17</td><td>18560000</td><td>⋯</td><td>Соединённые Штаты Ðмерики </td><td>USA </td><td>Amerika BirleÅŸik Devletleri</td><td>Hoa Kỳ </td><td>美国 </td><td>United States of America</td><td>None </td><td>Other</td><td> 948.72432</td><td>1116.361761</td></tr>\n", + "\t<tr><td>13</td><td>151</td><td>Admin-0 country</td><td>2</td><td>Sovereign country</td><td>Canada </td><td>NA</td><td> 35623680</td><td>15</td><td> 1674000</td><td>⋯</td><td>Канада </td><td>Kanada </td><td>Kanada </td><td>Canada </td><td>åŠ æ‹¿å¤§ </td><td>Canada </td><td>None </td><td>Other</td><td>2573.71248</td><td>1691.869076</td></tr>\n", + "\t<tr><td>14</td><td>238</td><td>Admin-0 country</td><td>2</td><td>Country </td><td>Kingdom of the Netherlands </td><td>NA</td><td> 17084719</td><td>14</td><td> 870800</td><td>⋯</td><td>Ðидерланды </td><td>Nederländerna </td><td>Hollanda </td><td>Hà Lan </td><td>è·è˜ </td><td>Netherlands </td><td>None </td><td>Other</td><td> 22.81639</td><td> 4.884540</td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ - "A sf: 14 × 17\n", - "\\begin{tabular}{r|lllllllllllllllll}\n", - " & class & cell\\_area & region\\_area & region\\_cell\\_count & region\\_mean & sample\\_var & model\\_var & sample\\_cov & model\\_cov & region\\_var & region\\_stderr & region\\_rel\\_stderr & nshots & ntracks & nonresponse\\_cells & nmodels & geom\\\\\n", - " & <chr> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <dbl> & <chr> & <dbl> & <dbl> & <dbl> & <dbl> & <chr> & <dbl> & <dbl> & <MULTIPOLYGON {[}m{]}>\\\\\n", + "A data.frame: 14 × 53\n", + "\\begin{tabular}{lllllllllllllllllllll}\n", + " fid & OBJECTID & featurecla & LEVEL & TYPE & FORMAL\\_EN & FORMAL\\_FR & POP\\_EST & POP\\_RANK & GDP\\_MD\\_EST & ⋯ & NAME\\_RU & NAME\\_SV & NAME\\_TR & NAME\\_VI & NAME\\_ZH & WB\\_NAME & WB\\_RULES & WB\\_REGION & Shape\\_Leng & Shape\\_Area\\\\\n", + " <int> & <int> & <chr> & <int> & <chr> & <chr> & <lgl> & <int> & <int> & <int> & ⋯ & <chr> & <chr> & <chr> & <chr> & <chr> & <chr> & <chr> & <chr> & <dbl> & <dbl>\\\\\n", "\\hline\n", - "\t1 & BLR & 5.184e+09 & 2.629739e+09 & 11 & 96.868149 & 2.176783e-01 & 8.5113520 & 4.142518e-02 & NA & 8.7704554 & 2.9614955 & 3.057244 & 454160 & NA & 0 & 3 & MULTIPOLYGON (((2277299 573...\\\\\n", - "\t2 & CAN & 5.184e+09 & 2.288319e+12 & 627 & 53.244565 & 6.916580e-04 & 0.4370265 & 2.473388e-04 & NA & 0.4379655 & 0.6617896 & 1.242924 & 205016836 & NA & 9 & 3 & MULTIPOLYGON (((-6332280 50...\\\\\n", - "\t3 & CHN & 5.184e+09 & 9.305738e+12 & 2016 & 41.130567 & 3.444781e-04 & 0.2889541 & 1.976979e-04 & NA & 0.2894963 & 0.5380486 & 1.308148 & 331396373 & NA & 3 & 5 & MULTIPOLYGON (((10682088 25...\\\\\n", - "\t4 & DEU & 5.184e+09 & 2.109578e+11 & 65 & 89.174784 & 7.463370e-03 & 1.7981588 & 1.852809e-03 & NA & 1.8074750 & 1.3444237 & 1.507628 & 17299568 & NA & 0 & 3 & MULTIPOLYGON (((1330146 550...\\\\\n", - "\t5 & GBR & 5.184e+09 & 3.915120e+10 & 23 & 40.225928 & 2.147697e-02 & 2.0322501 & 2.738371e-03 & NA & 2.0564654 & 1.4340381 & 3.564960 & 5069694 & NA & 0 & 3 & MULTIPOLYGON (((-259910.5 5...\\\\\n", - "\t6 & IRL & 5.184e+09 & 5.616566e+08 & 3 & 28.307549 & 5.722809e-01 & 7.1520627 & 3.202226e-03 & NA & 7.7275459 & 2.7798464 & 9.820159 & 101090 & NA & 0 & 3 & MULTIPOLYGON (((-839409.2 5...\\\\\n", - "\t7 & KAZ & 5.184e+09 & 2.362658e+12 & 553 & 3.948623 & 6.183252e-05 & 0.1944473 & 2.403520e-05 & NA & 0.1945332 & 0.4410592 & 11.169949 & 226954869 & NA & 0 & 4 & MULTIPOLYGON (((4889731 517...\\\\\n", - "\t8 & MNG & 5.184e+09 & 1.560160e+12 & 362 & 7.887330 & 6.998089e-05 & 0.1674246 & 2.348949e-05 & NA & 0.1675181 & 0.4092897 & 5.189205 & 144092338 & NA & 0 & 3 & MULTIPOLYGON (((11238039 55...\\\\\n", - "\t9 & NLD & 5.184e+09 & 6.720407e+09 & 10 & 44.256891 & 2.469888e-02 & 3.1750318 & 2.569909e-03 & NA & 3.2023006 & 1.7894973 & 4.043432 & 937626 & NA & 0 & 3 & MULTIPOLYGON (((362358.5 57...\\\\\n", - "\t10 & NOR & 5.184e+09 & 5.520980e+07 & 1 & 0.000000 & 0.000000e+00 & 0.0000000 & 0.000000e+00 & NA & 0.0000000 & 0.0000000 & 0.000000 & 0 & NA & 1 & 0 & MULTIPOLYGON (((335559.4 -5...\\\\\n", - "\t11 & POL & 5.184e+09 & 1.220705e+11 & 45 & 73.172129 & 7.738243e-03 & 2.1043726 & 2.185907e-03 & NA & 2.1142968 & 1.4540622 & 1.987180 & 13172276 & NA & 0 & 3 & MULTIPOLYGON (((1817554 557...\\\\\n", - "\t12 & RUS & 5.184e+09 & 1.807355e+12 & 578 & 57.198421 & 1.158709e-03 & 0.5529233 & 4.315925e-04 & NA & 0.5545136 & 0.7446567 & 1.301883 & 137759303 & NA & 1 & 5 & MULTIPOLYGON (((15227973 57...\\\\\n", - "\t13 & UKR & 5.184e+09 & 5.770285e+11 & 165 & 38.097908 & 1.260510e-03 & 0.9436175 & 3.496119e-04 & NA & 0.9452276 & 0.9722282 & 2.551920 & 37904754 & NA & 1 & 3 & MULTIPOLYGON (((2868630 523...\\\\\n", - "\t14 & USA & 5.184e+09 & 7.960166e+12 & 1734 & 54.412356 & 2.989194e-04 & 0.3659962 & 8.492571e-05 & NA & 0.3663800 & 0.6052933 & 1.112419 & 384983129 & NA & 25 & 6 & MULTIPOLYGON (((-9176117 55...\\\\\n", + "\t 1 & 9 & Admin-0 country & 2 & Country & People's Republic of China & NA & 1379302771 & 18 & 21140000 & ⋯ & КитайÑÐºÐ°Ñ ÐÐ°Ñ€Ð¾Ð´Ð½Ð°Ñ Ð ÐµÑпублика & Kina & Çin Halk Cumhuriyeti & Cá»™ng hòa Nhân dân Trung Hoa & ä¸åŽäººæ°‘共和国 & China & None & EAP & 376.66709 & 951.364850\\\\\n", + "\t 2 & 32 & Admin-0 country & 2 & Sovereign country & Ukraine & NA & 44033874 & 15 & 352600 & ⋯ & Украина & Ukraina & Ukrayna & Ukraina & 乌克兰 & Ukraine & None & ECA & 84.13558 & 73.649890\\\\\n", + "\t 3 & 33 & Admin-0 country & 2 & Sovereign country & Republic of Belarus & NA & 9549747 & 13 & 165400 & ⋯ & БелоруÑÑÐ¸Ñ & Vitryssland & Beyaz Rusya & Belarus & 白罗斯 & Belarus & None & ECA & 33.71343 & 28.122390\\\\\n", + "\t 4 & 40 & Admin-0 country & 2 & Sovereign country & Republic of Kazakhstan & NA & 18556698 & 14 & 460700 & ⋯ & КазахÑтан & Kazakstan & Kazakistan & Kazakhstan & 哈è¨å…‹æ–¯å¦ & Kazakhstan & None & ECA & 158.82012 & 329.367573\\\\\n", + "\t 5 & 45 & Admin-0 country & 2 & Sovereign country & Mongolia & NA & 3068243 & 12 & 37000 & ⋯ & ÐœÐ¾Ð½Ð³Ð¾Ð»Ð¸Ñ & Mongoliet & MoÄŸolistan & Mông Cổ & è’™å¤å›½ & Mongolia & None & EAP & 85.72407 & 184.602987\\\\\n", + "\t 6 & 46 & Admin-0 country & 2 & Sovereign country & Russian Federation & NA & 142257519 & 17 & 3745000 & ⋯ & РоÑÑÐ¸Ñ & Ryssland & Rusya & Nga & ä¿„ç½—æ–¯ & Russian Federation & Do not use \"Russia\" & ECA & 1645.53615 & 2925.332609\\\\\n", + "\t 7 & 48 & Admin-0 country & 2 & Sovereign country & Federal Republic of Germany & NA & 80594017 & 16 & 3979000 & ⋯ & Ð“ÐµÑ€Ð¼Ð°Ð½Ð¸Ñ & Tyskland & Almanya & Äức & 德国 & Germany & None & Other & 68.23519 & 45.930027\\\\\n", + "\t 8 & 51 & Admin-0 country & 2 & Sovereign country & Kingdom of Norway & NA & 5320045 & 13 & 364700 & ⋯ & ÐÐ¾Ñ€Ð²ÐµÐ³Ð¸Ñ & Norge & Norveç & Na Uy & æŒªå¨ & Norway & None & Other & 552.73323 & 85.597443\\\\\n", + "\t 9 & 75 & Admin-0 country & 2 & Sovereign country & Republic of Poland & NA & 38476269 & 15 & 1052000 & ⋯ & Польша & Polen & Polonya & Ba Lan & 波兰 & Poland & None & ECA & 37.81876 & 41.141773\\\\\n", + "\t 10 & 76 & Admin-0 country & 2 & Sovereign country & Ireland & NA & 5011102 & 13 & 322000 & ⋯ & Ð˜Ñ€Ð»Ð°Ð½Ð´Ð¸Ñ & Irland & İrlanda & Cá»™ng hòa Ireland & 爱尔兰共和国 & Ireland & None & Other & 48.24202 & 9.334048\\\\\n", + "\t 11 & 77 & Admin-0 country & 2 & Country & United Kingdom of Great Britain and Northern Ireland & NA & 64769452 & 16 & 2788000 & ⋯ & Ð’ÐµÐ»Ð¸ÐºÐ¾Ð±Ñ€Ð¸Ñ‚Ð°Ð½Ð¸Ñ & Storbritannien & BirleÅŸik Krallık & Vương quốc Liên hiệp Anh và Bắc Ireland & 英国 & United Kingdom & None & Other & 155.61409 & 33.545736\\\\\n", + "\t 12 & 150 & Admin-0 country & 2 & Country & United States of America & NA & 326625791 & 17 & 18560000 & ⋯ & Соединённые Штаты Ðмерики & USA & Amerika BirleÅŸik Devletleri & Hoa Kỳ & 美国 & United States of America & None & Other & 948.72432 & 1116.361761\\\\\n", + "\t 13 & 151 & Admin-0 country & 2 & Sovereign country & Canada & NA & 35623680 & 15 & 1674000 & ⋯ & Канада & Kanada & Kanada & Canada & åŠ æ‹¿å¤§ & Canada & None & Other & 2573.71248 & 1691.869076\\\\\n", + "\t 14 & 238 & Admin-0 country & 2 & Country & Kingdom of the Netherlands & NA & 17084719 & 14 & 870800 & ⋯ & Ðидерланды & Nederländerna & Hollanda & Hà Lan & è·è˜ & Netherlands & None & Other & 22.81639 & 4.884540\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", - "A sf: 14 × 17\n", + "A data.frame: 14 × 53\n", "\n", - "| <!--/--> | class <chr> | cell_area <dbl> | region_area <dbl> | region_cell_count <dbl> | region_mean <dbl> | sample_var <dbl> | model_var <dbl> | sample_cov <dbl> | model_cov <chr> | region_var <dbl> | region_stderr <dbl> | region_rel_stderr <dbl> | nshots <dbl> | ntracks <chr> | nonresponse_cells <dbl> | nmodels <dbl> | geom <MULTIPOLYGON [m]> |\n", - "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n", - "| 1 | BLR | 5.184e+09 | 2.629739e+09 | 11 | 96.868149 | 2.176783e-01 | 8.5113520 | 4.142518e-02 | NA | 8.7704554 | 2.9614955 | 3.057244 | 454160 | NA | 0 | 3 | MULTIPOLYGON (((2277299 573... |\n", - "| 2 | CAN | 5.184e+09 | 2.288319e+12 | 627 | 53.244565 | 6.916580e-04 | 0.4370265 | 2.473388e-04 | NA | 0.4379655 | 0.6617896 | 1.242924 | 205016836 | NA | 9 | 3 | MULTIPOLYGON (((-6332280 50... |\n", - "| 3 | CHN | 5.184e+09 | 9.305738e+12 | 2016 | 41.130567 | 3.444781e-04 | 0.2889541 | 1.976979e-04 | NA | 0.2894963 | 0.5380486 | 1.308148 | 331396373 | NA | 3 | 5 | MULTIPOLYGON (((10682088 25... |\n", - "| 4 | DEU | 5.184e+09 | 2.109578e+11 | 65 | 89.174784 | 7.463370e-03 | 1.7981588 | 1.852809e-03 | NA | 1.8074750 | 1.3444237 | 1.507628 | 17299568 | NA | 0 | 3 | MULTIPOLYGON (((1330146 550... |\n", - "| 5 | GBR | 5.184e+09 | 3.915120e+10 | 23 | 40.225928 | 2.147697e-02 | 2.0322501 | 2.738371e-03 | NA | 2.0564654 | 1.4340381 | 3.564960 | 5069694 | NA | 0 | 3 | MULTIPOLYGON (((-259910.5 5... |\n", - "| 6 | IRL | 5.184e+09 | 5.616566e+08 | 3 | 28.307549 | 5.722809e-01 | 7.1520627 | 3.202226e-03 | NA | 7.7275459 | 2.7798464 | 9.820159 | 101090 | NA | 0 | 3 | MULTIPOLYGON (((-839409.2 5... |\n", - "| 7 | KAZ | 5.184e+09 | 2.362658e+12 | 553 | 3.948623 | 6.183252e-05 | 0.1944473 | 2.403520e-05 | NA | 0.1945332 | 0.4410592 | 11.169949 | 226954869 | NA | 0 | 4 | MULTIPOLYGON (((4889731 517... |\n", - "| 8 | MNG | 5.184e+09 | 1.560160e+12 | 362 | 7.887330 | 6.998089e-05 | 0.1674246 | 2.348949e-05 | NA | 0.1675181 | 0.4092897 | 5.189205 | 144092338 | NA | 0 | 3 | MULTIPOLYGON (((11238039 55... |\n", - "| 9 | NLD | 5.184e+09 | 6.720407e+09 | 10 | 44.256891 | 2.469888e-02 | 3.1750318 | 2.569909e-03 | NA | 3.2023006 | 1.7894973 | 4.043432 | 937626 | NA | 0 | 3 | MULTIPOLYGON (((362358.5 57... |\n", - "| 10 | NOR | 5.184e+09 | 5.520980e+07 | 1 | 0.000000 | 0.000000e+00 | 0.0000000 | 0.000000e+00 | NA | 0.0000000 | 0.0000000 | 0.000000 | 0 | NA | 1 | 0 | MULTIPOLYGON (((335559.4 -5... |\n", - "| 11 | POL | 5.184e+09 | 1.220705e+11 | 45 | 73.172129 | 7.738243e-03 | 2.1043726 | 2.185907e-03 | NA | 2.1142968 | 1.4540622 | 1.987180 | 13172276 | NA | 0 | 3 | MULTIPOLYGON (((1817554 557... |\n", - "| 12 | RUS | 5.184e+09 | 1.807355e+12 | 578 | 57.198421 | 1.158709e-03 | 0.5529233 | 4.315925e-04 | NA | 0.5545136 | 0.7446567 | 1.301883 | 137759303 | NA | 1 | 5 | MULTIPOLYGON (((15227973 57... |\n", - "| 13 | UKR | 5.184e+09 | 5.770285e+11 | 165 | 38.097908 | 1.260510e-03 | 0.9436175 | 3.496119e-04 | NA | 0.9452276 | 0.9722282 | 2.551920 | 37904754 | NA | 1 | 3 | MULTIPOLYGON (((2868630 523... |\n", - "| 14 | USA | 5.184e+09 | 7.960166e+12 | 1734 | 54.412356 | 2.989194e-04 | 0.3659962 | 8.492571e-05 | NA | 0.3663800 | 0.6052933 | 1.112419 | 384983129 | NA | 25 | 6 | MULTIPOLYGON (((-9176117 55... |\n", + "| fid <int> | OBJECTID <int> | featurecla <chr> | LEVEL <int> | TYPE <chr> | FORMAL_EN <chr> | FORMAL_FR <lgl> | POP_EST <int> | POP_RANK <int> | GDP_MD_EST <int> | ⋯ ⋯ | NAME_RU <chr> | NAME_SV <chr> | NAME_TR <chr> | NAME_VI <chr> | NAME_ZH <chr> | WB_NAME <chr> | WB_RULES <chr> | WB_REGION <chr> | Shape_Leng <dbl> | Shape_Area <dbl> |\n", + "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n", + "| 1 | 9 | Admin-0 country | 2 | Country | People's Republic of China | NA | 1379302771 | 18 | 21140000 | ⋯ | КитайÑÐºÐ°Ñ ÐÐ°Ñ€Ð¾Ð´Ð½Ð°Ñ Ð ÐµÑпублика | Kina | Çin Halk Cumhuriyeti | Cá»™ng hòa Nhân dân Trung Hoa | ä¸åŽäººæ°‘共和国 | China | None | EAP | 376.66709 | 951.364850 |\n", + "| 2 | 32 | Admin-0 country | 2 | Sovereign country | Ukraine | NA | 44033874 | 15 | 352600 | ⋯ | Украина | Ukraina | Ukrayna | Ukraina | 乌克兰 | Ukraine | None | ECA | 84.13558 | 73.649890 |\n", + "| 3 | 33 | Admin-0 country | 2 | Sovereign country | Republic of Belarus | NA | 9549747 | 13 | 165400 | ⋯ | БелоруÑÑÐ¸Ñ | Vitryssland | Beyaz Rusya | Belarus | 白罗斯 | Belarus | None | ECA | 33.71343 | 28.122390 |\n", + "| 4 | 40 | Admin-0 country | 2 | Sovereign country | Republic of Kazakhstan | NA | 18556698 | 14 | 460700 | ⋯ | КазахÑтан | Kazakstan | Kazakistan | Kazakhstan | 哈è¨å…‹æ–¯å¦ | Kazakhstan | None | ECA | 158.82012 | 329.367573 |\n", + "| 5 | 45 | Admin-0 country | 2 | Sovereign country | Mongolia | NA | 3068243 | 12 | 37000 | ⋯ | ÐœÐ¾Ð½Ð³Ð¾Ð»Ð¸Ñ | Mongoliet | MoÄŸolistan | Mông Cổ | è’™å¤å›½ | Mongolia | None | EAP | 85.72407 | 184.602987 |\n", + "| 6 | 46 | Admin-0 country | 2 | Sovereign country | Russian Federation | NA | 142257519 | 17 | 3745000 | ⋯ | РоÑÑÐ¸Ñ | Ryssland | Rusya | Nga | ä¿„ç½—æ–¯ | Russian Federation | Do not use \"Russia\" | ECA | 1645.53615 | 2925.332609 |\n", + "| 7 | 48 | Admin-0 country | 2 | Sovereign country | Federal Republic of Germany | NA | 80594017 | 16 | 3979000 | ⋯ | Ð“ÐµÑ€Ð¼Ð°Ð½Ð¸Ñ | Tyskland | Almanya | Äức | 德国 | Germany | None | Other | 68.23519 | 45.930027 |\n", + "| 8 | 51 | Admin-0 country | 2 | Sovereign country | Kingdom of Norway | NA | 5320045 | 13 | 364700 | ⋯ | ÐÐ¾Ñ€Ð²ÐµÐ³Ð¸Ñ | Norge | Norveç | Na Uy | æŒªå¨ | Norway | None | Other | 552.73323 | 85.597443 |\n", + "| 9 | 75 | Admin-0 country | 2 | Sovereign country | Republic of Poland | NA | 38476269 | 15 | 1052000 | ⋯ | Польша | Polen | Polonya | Ba Lan | 波兰 | Poland | None | ECA | 37.81876 | 41.141773 |\n", + "| 10 | 76 | Admin-0 country | 2 | Sovereign country | Ireland | NA | 5011102 | 13 | 322000 | ⋯ | Ð˜Ñ€Ð»Ð°Ð½Ð´Ð¸Ñ | Irland | İrlanda | Cá»™ng hòa Ireland | 爱尔兰共和国 | Ireland | None | Other | 48.24202 | 9.334048 |\n", + "| 11 | 77 | Admin-0 country | 2 | Country | United Kingdom of Great Britain and Northern Ireland | NA | 64769452 | 16 | 2788000 | ⋯ | Ð’ÐµÐ»Ð¸ÐºÐ¾Ð±Ñ€Ð¸Ñ‚Ð°Ð½Ð¸Ñ | Storbritannien | BirleÅŸik Krallık | Vương quốc Liên hiệp Anh và Bắc Ireland | 英国 | United Kingdom | None | Other | 155.61409 | 33.545736 |\n", + "| 12 | 150 | Admin-0 country | 2 | Country | United States of America | NA | 326625791 | 17 | 18560000 | ⋯ | Соединённые Штаты Ðмерики | USA | Amerika BirleÅŸik Devletleri | Hoa Kỳ | 美国 | United States of America | None | Other | 948.72432 | 1116.361761 |\n", + "| 13 | 151 | Admin-0 country | 2 | Sovereign country | Canada | NA | 35623680 | 15 | 1674000 | ⋯ | Канада | Kanada | Kanada | Canada | åŠ æ‹¿å¤§ | Canada | None | Other | 2573.71248 | 1691.869076 |\n", + "| 14 | 238 | Admin-0 country | 2 | Country | Kingdom of the Netherlands | NA | 17084719 | 14 | 870800 | ⋯ | Ðидерланды | Nederländerna | Hollanda | Hà Lan | è·è˜ | Netherlands | None | Other | 22.81639 | 4.884540 |\n", "\n" ], "text/plain": [ - " class cell_area region_area region_cell_count region_mean sample_var \n", - "1 BLR 5.184e+09 2.629739e+09 11 96.868149 2.176783e-01\n", - "2 CAN 5.184e+09 2.288319e+12 627 53.244565 6.916580e-04\n", - "3 CHN 5.184e+09 9.305738e+12 2016 41.130567 3.444781e-04\n", - "4 DEU 5.184e+09 2.109578e+11 65 89.174784 7.463370e-03\n", - "5 GBR 5.184e+09 3.915120e+10 23 40.225928 2.147697e-02\n", - "6 IRL 5.184e+09 5.616566e+08 3 28.307549 5.722809e-01\n", - "7 KAZ 5.184e+09 2.362658e+12 553 3.948623 6.183252e-05\n", - "8 MNG 5.184e+09 1.560160e+12 362 7.887330 6.998089e-05\n", - "9 NLD 5.184e+09 6.720407e+09 10 44.256891 2.469888e-02\n", - "10 NOR 5.184e+09 5.520980e+07 1 0.000000 0.000000e+00\n", - "11 POL 5.184e+09 1.220705e+11 45 73.172129 7.738243e-03\n", - "12 RUS 5.184e+09 1.807355e+12 578 57.198421 1.158709e-03\n", - "13 UKR 5.184e+09 5.770285e+11 165 38.097908 1.260510e-03\n", - "14 USA 5.184e+09 7.960166e+12 1734 54.412356 2.989194e-04\n", - " model_var sample_cov model_cov region_var region_stderr region_rel_stderr\n", - "1 8.5113520 4.142518e-02 NA 8.7704554 2.9614955 3.057244 \n", - "2 0.4370265 2.473388e-04 NA 0.4379655 0.6617896 1.242924 \n", - "3 0.2889541 1.976979e-04 NA 0.2894963 0.5380486 1.308148 \n", - "4 1.7981588 1.852809e-03 NA 1.8074750 1.3444237 1.507628 \n", - "5 2.0322501 2.738371e-03 NA 2.0564654 1.4340381 3.564960 \n", - "6 7.1520627 3.202226e-03 NA 7.7275459 2.7798464 9.820159 \n", - "7 0.1944473 2.403520e-05 NA 0.1945332 0.4410592 11.169949 \n", - "8 0.1674246 2.348949e-05 NA 0.1675181 0.4092897 5.189205 \n", - "9 3.1750318 2.569909e-03 NA 3.2023006 1.7894973 4.043432 \n", - "10 0.0000000 0.000000e+00 NA 0.0000000 0.0000000 0.000000 \n", - "11 2.1043726 2.185907e-03 NA 2.1142968 1.4540622 1.987180 \n", - "12 0.5529233 4.315925e-04 NA 0.5545136 0.7446567 1.301883 \n", - "13 0.9436175 3.496119e-04 NA 0.9452276 0.9722282 2.551920 \n", - "14 0.3659962 8.492571e-05 NA 0.3663800 0.6052933 1.112419 \n", - " nshots ntracks nonresponse_cells nmodels geom \n", - "1 454160 NA 0 3 MULTIPOLYGON (((2277299 573...\n", - "2 205016836 NA 9 3 MULTIPOLYGON (((-6332280 50...\n", - "3 331396373 NA 3 5 MULTIPOLYGON (((10682088 25...\n", - "4 17299568 NA 0 3 MULTIPOLYGON (((1330146 550...\n", - "5 5069694 NA 0 3 MULTIPOLYGON (((-259910.5 5...\n", - "6 101090 NA 0 3 MULTIPOLYGON (((-839409.2 5...\n", - "7 226954869 NA 0 4 MULTIPOLYGON (((4889731 517...\n", - "8 144092338 NA 0 3 MULTIPOLYGON (((11238039 55...\n", - "9 937626 NA 0 3 MULTIPOLYGON (((362358.5 57...\n", - "10 0 NA 1 0 MULTIPOLYGON (((335559.4 -5...\n", - "11 13172276 NA 0 3 MULTIPOLYGON (((1817554 557...\n", - "12 137759303 NA 1 5 MULTIPOLYGON (((15227973 57...\n", - "13 37904754 NA 1 3 MULTIPOLYGON (((2868630 523...\n", - "14 384983129 NA 25 6 MULTIPOLYGON (((-9176117 55..." + " fid OBJECTID featurecla LEVEL TYPE \n", + "1 1 9 Admin-0 country 2 Country \n", + "2 2 32 Admin-0 country 2 Sovereign country\n", + "3 3 33 Admin-0 country 2 Sovereign country\n", + "4 4 40 Admin-0 country 2 Sovereign country\n", + "5 5 45 Admin-0 country 2 Sovereign country\n", + "6 6 46 Admin-0 country 2 Sovereign country\n", + "7 7 48 Admin-0 country 2 Sovereign country\n", + "8 8 51 Admin-0 country 2 Sovereign country\n", + "9 9 75 Admin-0 country 2 Sovereign country\n", + "10 10 76 Admin-0 country 2 Sovereign country\n", + "11 11 77 Admin-0 country 2 Country \n", + "12 12 150 Admin-0 country 2 Country \n", + "13 13 151 Admin-0 country 2 Sovereign country\n", + "14 14 238 Admin-0 country 2 Country \n", + " FORMAL_EN FORMAL_FR POP_EST \n", + "1 People's Republic of China NA 1379302771\n", + "2 Ukraine NA 44033874\n", + "3 Republic of Belarus NA 9549747\n", + "4 Republic of Kazakhstan NA 18556698\n", + "5 Mongolia NA 3068243\n", + "6 Russian Federation NA 142257519\n", + "7 Federal Republic of Germany NA 80594017\n", + "8 Kingdom of Norway NA 5320045\n", + "9 Republic of Poland NA 38476269\n", + "10 Ireland NA 5011102\n", + "11 United Kingdom of Great Britain and Northern Ireland NA 64769452\n", + "12 United States of America NA 326625791\n", + "13 Canada NA 35623680\n", + "14 Kingdom of the Netherlands NA 17084719\n", + " POP_RANK GDP_MD_EST ⋯ NAME_RU NAME_SV \n", + "1 18 21140000 ⋯ КитайÑÐºÐ°Ñ ÐÐ°Ñ€Ð¾Ð´Ð½Ð°Ñ Ð ÐµÑпублика Kina \n", + "2 15 352600 ⋯ Украина Ukraina \n", + "3 13 165400 ⋯ БелоруÑÑÐ¸Ñ Vitryssland \n", + "4 14 460700 ⋯ КазахÑтан Kazakstan \n", + "5 12 37000 ⋯ ÐœÐ¾Ð½Ð³Ð¾Ð»Ð¸Ñ Mongoliet \n", + "6 17 3745000 ⋯ РоÑÑÐ¸Ñ Ryssland \n", + "7 16 3979000 ⋯ Ð“ÐµÑ€Ð¼Ð°Ð½Ð¸Ñ Tyskland \n", + "8 13 364700 ⋯ ÐÐ¾Ñ€Ð²ÐµÐ³Ð¸Ñ Norge \n", + "9 15 1052000 ⋯ Польша Polen \n", + "10 13 322000 ⋯ Ð˜Ñ€Ð»Ð°Ð½Ð´Ð¸Ñ Irland \n", + "11 16 2788000 ⋯ Ð’ÐµÐ»Ð¸ÐºÐ¾Ð±Ñ€Ð¸Ñ‚Ð°Ð½Ð¸Ñ Storbritannien\n", + "12 17 18560000 ⋯ Соединённые Штаты Ðмерики USA \n", + "13 15 1674000 ⋯ Канада Kanada \n", + "14 14 870800 ⋯ Ðидерланды Nederländerna \n", + " NAME_TR NAME_VI \n", + "1 Çin Halk Cumhuriyeti Cá»™ng hòa Nhân dân Trung Hoa \n", + "2 Ukrayna Ukraina \n", + "3 Beyaz Rusya Belarus \n", + "4 Kazakistan Kazakhstan \n", + "5 MoÄŸolistan Mông Cổ \n", + "6 Rusya Nga \n", + "7 Almanya Äức \n", + "8 Norveç Na Uy \n", + "9 Polonya Ba Lan \n", + "10 İrlanda Cá»™ng hòa Ireland \n", + "11 BirleÅŸik Krallık Vương quốc Liên hiệp Anh và Bắc Ireland\n", + "12 Amerika BirleÅŸik Devletleri Hoa Kỳ \n", + "13 Kanada Canada \n", + "14 Hollanda Hà Lan \n", + " NAME_ZH WB_NAME WB_RULES WB_REGION\n", + "1 ä¸åŽäººæ°‘共和国 China None EAP \n", + "2 乌克兰 Ukraine None ECA \n", + "3 白罗斯 Belarus None ECA \n", + "4 哈è¨å…‹æ–¯å¦ Kazakhstan None ECA \n", + "5 è’™å¤å›½ Mongolia None EAP \n", + "6 ä¿„ç½—æ–¯ Russian Federation Do not use \"Russia\" ECA \n", + "7 德国 Germany None Other \n", + "8 æŒªå¨ Norway None Other \n", + "9 波兰 Poland None ECA \n", + "10 爱尔兰共和国 Ireland None Other \n", + "11 英国 United Kingdom None Other \n", + "12 美国 United States of America None Other \n", + "13 åŠ æ‹¿å¤§ Canada None Other \n", + "14 è·è˜ Netherlands None Other \n", + " Shape_Leng Shape_Area \n", + "1 376.66709 951.364850\n", + "2 84.13558 73.649890\n", + "3 33.71343 28.122390\n", + "4 158.82012 329.367573\n", + "5 85.72407 184.602987\n", + "6 1645.53615 2925.332609\n", + "7 68.23519 45.930027\n", + "8 552.73323 85.597443\n", + "9 37.81876 41.141773\n", + "10 48.24202 9.334048\n", + "11 155.61409 33.545736\n", + "12 948.72432 1116.361761\n", + "13 2573.71248 1691.869076\n", + "14 22.81639 4.884540" ] }, "metadata": {}, @@ -526,13 +498,13 @@ } ], "source": [ - "GEDIv21" + "BOREALv01" ] }, { "cell_type": "code", "execution_count": null, - "id": "55e70c13-47bb-4529-bf6d-37a2151d2993", + "id": "1ac85db0-3261-429b-a0fa-bff779b83ac0", "metadata": {}, "outputs": [], "source": [] diff --git a/country_summaries/IPCC_classes_DPS/ESA_WC_and_FH.ipynb b/country_summaries/IPCC_classes_DPS/ESA_WC_and_FH.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..cf920890013b4f0dd2e9e57cc08a5a41bb38cbc9 --- /dev/null +++ b/country_summaries/IPCC_classes_DPS/ESA_WC_and_FH.ipynb @@ -0,0 +1,156 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "0515b949-02d6-4193-831f-5607f9f5fd5b", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: rasterio in /opt/conda/lib/python3.10/site-packages (1.3.9)\n", + "Requirement already satisfied: affine in /opt/conda/lib/python3.10/site-packages (from rasterio) (2.4.0)\n", + "Requirement already satisfied: attrs in /opt/conda/lib/python3.10/site-packages (from rasterio) (23.1.0)\n", + "Requirement already satisfied: certifi in /opt/conda/lib/python3.10/site-packages (from rasterio) (2023.7.22)\n", + "Requirement already satisfied: click>=4.0 in /opt/conda/lib/python3.10/site-packages (from rasterio) (8.1.7)\n", + "Requirement already satisfied: cligj>=0.5 in /opt/conda/lib/python3.10/site-packages (from rasterio) (0.7.2)\n", + "Requirement already satisfied: numpy in /opt/conda/lib/python3.10/site-packages (from rasterio) (1.26.1)\n", + "Requirement already satisfied: snuggs>=1.4.1 in /opt/conda/lib/python3.10/site-packages (from rasterio) (1.4.7)\n", + "Requirement already satisfied: click-plugins in /opt/conda/lib/python3.10/site-packages (from rasterio) (1.1.1)\n", + "Requirement already satisfied: setuptools in /opt/conda/lib/python3.10/site-packages (from rasterio) (68.2.2)\n", + "Requirement already satisfied: pyparsing>=2.1.6 in /opt/conda/lib/python3.10/site-packages (from snuggs>=1.4.1->rasterio) (3.1.1)\n", + "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n", + "\u001b[0mRequirement already satisfied: rio_cogeo in /opt/conda/lib/python3.10/site-packages (5.2.0)\n", + "Requirement already satisfied: click>=7.0 in /opt/conda/lib/python3.10/site-packages (from rio_cogeo) (8.1.7)\n", + "Requirement already satisfied: rasterio>=1.3.3 in /opt/conda/lib/python3.10/site-packages (from rio_cogeo) (1.3.9)\n", + "Requirement already satisfied: numpy~=1.15 in /opt/conda/lib/python3.10/site-packages (from rio_cogeo) (1.26.1)\n", + "Requirement already satisfied: morecantile<6.0,>=5.0 in /opt/conda/lib/python3.10/site-packages (from rio_cogeo) (5.3.0)\n", + "Requirement already satisfied: pydantic~=2.0 in /opt/conda/lib/python3.10/site-packages (from rio_cogeo) (2.6.1)\n", + "Requirement already satisfied: attrs in /opt/conda/lib/python3.10/site-packages (from morecantile<6.0,>=5.0->rio_cogeo) (23.1.0)\n", + "Requirement already satisfied: pyproj~=3.1 in /opt/conda/lib/python3.10/site-packages (from morecantile<6.0,>=5.0->rio_cogeo) (3.6.1)\n", + "Requirement already satisfied: annotated-types>=0.4.0 in /opt/conda/lib/python3.10/site-packages (from pydantic~=2.0->rio_cogeo) (0.6.0)\n", + "Requirement already satisfied: pydantic-core==2.16.2 in /opt/conda/lib/python3.10/site-packages (from pydantic~=2.0->rio_cogeo) (2.16.2)\n", + "Requirement already satisfied: typing-extensions>=4.6.1 in /opt/conda/lib/python3.10/site-packages (from pydantic~=2.0->rio_cogeo) (4.8.0)\n", + "Requirement already satisfied: affine in /opt/conda/lib/python3.10/site-packages (from rasterio>=1.3.3->rio_cogeo) (2.4.0)\n", + "Requirement already satisfied: certifi in /opt/conda/lib/python3.10/site-packages (from rasterio>=1.3.3->rio_cogeo) (2023.7.22)\n", + "Requirement already satisfied: cligj>=0.5 in /opt/conda/lib/python3.10/site-packages (from rasterio>=1.3.3->rio_cogeo) (0.7.2)\n", + "Requirement already satisfied: snuggs>=1.4.1 in /opt/conda/lib/python3.10/site-packages (from rasterio>=1.3.3->rio_cogeo) (1.4.7)\n", + "Requirement already satisfied: click-plugins in /opt/conda/lib/python3.10/site-packages (from rasterio>=1.3.3->rio_cogeo) (1.1.1)\n", + "Requirement already satisfied: setuptools in /opt/conda/lib/python3.10/site-packages (from rasterio>=1.3.3->rio_cogeo) (68.2.2)\n", + "Requirement already satisfied: pyparsing>=2.1.6 in /opt/conda/lib/python3.10/site-packages (from snuggs>=1.4.1->rasterio>=1.3.3->rio_cogeo) (3.1.1)\n", + "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n", + "\u001b[0mRequirement already satisfied: pandas in /opt/conda/lib/python3.10/site-packages (2.2.0)\n", + "Requirement already satisfied: numpy<2,>=1.22.4 in /opt/conda/lib/python3.10/site-packages (from pandas) (1.26.1)\n", + "Requirement already satisfied: python-dateutil>=2.8.2 in /opt/conda/lib/python3.10/site-packages (from pandas) (2.8.2)\n", + "Requirement already satisfied: pytz>=2020.1 in /opt/conda/lib/python3.10/site-packages (from pandas) (2023.3.post1)\n", + "Requirement already satisfied: tzdata>=2022.7 in /opt/conda/lib/python3.10/site-packages (from pandas) (2024.1)\n", + "Requirement already satisfied: six>=1.5 in /opt/conda/lib/python3.10/site-packages (from python-dateutil>=2.8.2->pandas) (1.16.0)\n", + "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n", + "\u001b[0m" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/tmp/ipykernel_5644/2900853303.py:16: DeprecationWarning: \n", + "Pyarrow will become a required dependency of pandas in the next major release of pandas (pandas 3.0),\n", + "(to allow more performant data types, such as the Arrow string type, and better interoperability with other libraries)\n", + "but was not found to be installed on your system.\n", + "If this would cause problems for you,\n", + "please provide us feedback at https://github.com/pandas-dev/pandas/issues/54466\n", + " \n", + " import pandas as pd\n" + ] + } + ], + "source": [ + "!pip install rasterio\n", + "!pip install rio_cogeo\n", + "!pip install pandas\n", + "import os\n", + "import numpy as np\n", + "import sys\n", + "import rasterio\n", + "import argparse\n", + "from rasterio.io import MemoryFile\n", + "from rasterio.rio import options\n", + "from rasterio.shutil import copy, delete\n", + "from rasterio.vrt import WarpedVRT\n", + "from rio_cogeo.cogeo import cog_translate\n", + "from rio_cogeo.profiles import cog_profiles\n", + "import copy\n", + "import pandas as pd" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "3bb8cbd8-e707-43ce-af3e-4a3c635e2795", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "TILES = [\"00N_000E\",\"00N_010E\",\"00N_020E\",\"00N_030E\",\"00N_040E\",\"00N_040W\",\"00N_050W\",\"00N_060W\",\"00N_070E\",\"00N_070W\",\"00N_080W\",\"00N_090E\",\"00N_090W\",\"00N_100E\",\"00N_100W\",\"00N_110E\",\"00N_120E\",\"00N_130E\",\"00N_140E\",\"00N_150E\",\"00N_160E\",\"00N_170E\",\"10N_000E\",\"10N_010E\",\"10N_010W\",\"10N_020E\",\"10N_020W\",\"10N_030E\",\"10N_040E\",\"10N_050E\",\"10N_050W\",\"10N_060W\",\"10N_070E\",\"10N_070W\",\"10N_080E\",\"10N_080W\",\"10N_090E\",\"10N_090W\",\"10N_100E\",\"10N_100W\",\"10N_110E\",\"10N_120E\",\"10N_130E\",\"10N_150E\",\"10N_160E\",\"10N_170E\",\"10S_010E\",\"10S_020E\",\"10S_030E\",\"10S_040E\",\"10S_040W\",\"10S_050E\",\"10S_050W\",\"10S_060W\",\"10S_070W\",\"10S_080W\",\"10S_110E\",\"10S_120E\",\"10S_130E\",\"10S_140E\",\"10S_150E\",\"10S_160E\",\"10S_170E\",\"10S_180W\",\"20N_000E\",\"20N_010E\",\"20N_010W\",\"20N_020E\",\"20N_020W\",\"20N_030E\",\"20N_030W\",\"20N_040E\",\"20N_050E\",\"20N_060W\",\"20N_070E\",\"20N_070W\",\"20N_080E\",\"20N_080W\",\"20N_090E\",\"20N_090W\",\"20N_100E\",\"20N_100W\",\"20N_110E\",\"20N_110W\",\"20N_120E\",\"20N_120W\",\"20N_160W\",\"20S_010E\",\"20S_020E\",\"20S_030E\",\"20S_040E\",\"20S_050E\",\"20S_050W\",\"20S_060W\",\"20S_070W\",\"20S_080W\",\"20S_110E\",\"20S_120E\",\"20S_130E\",\"20S_140E\",\"20S_150E\",\"20S_160E\",\"20S_180W\",\"30N_000E\",\"30N_010E\",\"30N_010W\",\"30N_020E\",\"30N_020W\",\"30N_030E\",\"30N_040E\",\"30N_050E\",\"30N_060E\",\"30N_070E\",\"30N_080E\",\"30N_080W\",\"30N_090E\",\"30N_090W\",\"30N_100E\",\"30N_100W\",\"30N_110E\",\"30N_110W\",\"30N_120E\",\"30N_120W\",\"30N_130E\",\"30N_160W\",\"30N_170W\",\"30S_010E\",\"30S_020E\",\"30S_030E\",\"30S_060W\",\"30S_070W\",\"30S_080W\",\"30S_110E\",\"30S_120E\",\"30S_130E\",\"30S_140E\",\"30S_150E\",\"30S_170E\",\"40N_000E\",\"40N_010E\",\"40N_010W\",\"40N_020E\",\"40N_020W\",\"40N_030E\",\"40N_040E\",\"40N_050E\",\"40N_060E\",\"40N_070E\",\"40N_070W\",\"40N_080E\",\"40N_080W\",\"40N_090E\",\"40N_090W\",\"40N_100E\",\"40N_100W\",\"40N_110E\",\"40N_110W\",\"40N_120E\",\"40N_120W\",\"40N_130E\",\"40N_130W\",\"40N_140E\",\"40S_070W\",\"40S_080W\",\"40S_140E\",\"40S_160E\",\"40S_170E\",\"50N_000E\",\"50N_010E\",\"50N_010W\",\"50N_020E\",\"50N_030E\",\"50N_040E\",\"50N_050E\",\"50N_060E\",\"50N_060W\",\"50N_070E\",\"50N_070W\",\"50N_080E\",\"50N_080W\",\"50N_090E\",\"50N_090W\",\"50N_100E\",\"50N_100W\",\"50N_110E\",\"50N_110W\",\"50N_120E\",\"50N_120W\",\"50N_130E\",\"50N_130W\",\"50N_140E\",\"50N_150E\",\"50S_060W\",\"50S_070W\",\"50S_080W\",\"60N_000E\",\"60N_010E\",\"60N_010W\",\"60N_020E\",\"60N_020W\",\"60N_030E\",\"60N_040E\",\"60N_050E\",\"60N_060E\",\"60N_060W\",\"60N_070E\",\"60N_070W\",\"60N_080E\",\"60N_080W\",\"60N_090E\",\"60N_090W\",\"60N_100E\",\"60N_100W\",\"60N_110E\",\"60N_110W\",\"60N_120E\",\"60N_120W\",\"60N_130E\",\"60N_130W\",\"60N_140E\",\"60N_140W\",\"60N_150E\",\"60N_150W\",\"60N_160E\",\"60N_160W\",\"60N_170E\",\"60N_170W\",\"60N_180W\",\"70N_000E\",\"70N_010E\",\"70N_020E\",\"70N_030E\",\"70N_040E\",\"70N_050E\",\"70N_060E\",\"70N_070E\",\"70N_070W\",\"70N_080E\",\"70N_080W\",\"70N_090E\",\"70N_090W\",\"70N_100E\",\"70N_100W\",\"70N_110E\",\"70N_110W\",\"70N_120E\",\"70N_120W\",\"70N_130E\",\"70N_130W\",\"70N_140E\",\"70N_140W\",\"70N_150E\",\"70N_150W\",\"70N_160E\",\"70N_160W\",\"70N_170E\",\"70N_170W\",\"70N_180W\",\"80N_010E\",\"80N_020E\",\"80N_030E\",\"80N_070E\",\"80N_080E\",\"80N_090E\",\"80N_100E\",\"80N_110E\",\"80N_120E\",\"80N_130E\",\"80N_130W\",\"80N_140E\",\"80N_140W\",\"80N_150E\",\"80N_150W\",\"80N_160E\",\"80N_160W\",\"80N_170E\",\"80N_170W\"]\n", + "TILES = [\"00N_000E\",\"00N_010E\",\"00N_020E\",\"00N_030E\",\"00N_040E\",\"00N_040W\",\"00N_050W\",\"00N_060W\",\"00N_070W\",\"00N_080W\",\"00N_090E\",\"00N_090W\",\"00N_100E\",\"00N_110E\",\"00N_120E\",\"00N_130E\",\"00N_140E\",\"00N_150E\",\"00N_160E\",\"10N_000E\",\"10N_010E\",\"10N_010W\",\"10N_020E\",\"10N_020W\",\"10N_030E\",\"10N_040E\",\"10N_050E\",\"10N_050W\",\"10N_060W\",\"10N_070E\",\"10N_070W\",\"10N_080E\",\"10N_080W\",\"10N_090E\",\"10N_090W\",\"10N_100E\",\"10N_110E\",\"10N_120E\",\"10N_130E\",\"10S_010E\",\"10S_020E\",\"10S_030E\",\"10S_040E\",\"10S_040W\",\"10S_050E\",\"10S_050W\",\"10S_060W\",\"10S_070W\",\"10S_080W\",\"10S_110E\",\"10S_120E\",\"10S_130E\",\"10S_140E\",\"10S_150E\",\"10S_160E\",\"10S_170E\",\"20N_000E\",\"20N_010E\",\"20N_010W\",\"20N_020E\",\"20N_020W\",\"20N_030E\",\"20N_040E\",\"20N_050E\",\"20N_060W\",\"20N_070E\",\"20N_070W\",\"20N_080E\",\"20N_080W\",\"20N_090E\",\"20N_090W\",\"20N_100E\",\"20N_100W\",\"20N_110E\",\"20N_110W\",\"20N_120E\",\"20N_160W\",\"20S_010E\",\"20S_020E\",\"20S_030E\",\"20S_040E\",\"20S_050W\",\"20S_060W\",\"20S_070W\",\"20S_080W\",\"20S_110E\",\"20S_120E\",\"20S_130E\",\"20S_140E\",\"20S_150E\",\"20S_160E\",\"30N_000E\",\"30N_010E\",\"30N_010W\",\"30N_020E\",\"30N_020W\",\"30N_030E\",\"30N_040E\",\"30N_050E\",\"30N_060E\",\"30N_070E\",\"30N_080E\",\"30N_080W\",\"30N_090E\",\"30N_090W\",\"30N_100E\",\"30N_100W\",\"30N_110E\",\"30N_110W\",\"30N_120E\",\"30N_120W\",\"30N_130E\",\"30N_160W\",\"30N_170W\",\"30S_010E\",\"30S_020E\",\"30S_030E\",\"30S_060W\",\"30S_070W\",\"30S_080W\",\"30S_110E\",\"30S_120E\",\"30S_130E\",\"30S_140E\",\"30S_150E\",\"30S_170E\",\"40N_000E\",\"40N_010E\",\"40N_010W\",\"40N_020E\",\"40N_020W\",\"40N_030E\",\"40N_040E\",\"40N_050E\",\"40N_060E\",\"40N_070E\",\"40N_080E\",\"40N_080W\",\"40N_090E\",\"40N_090W\",\"40N_100E\",\"40N_100W\",\"40N_110E\",\"40N_110W\",\"40N_120E\",\"40N_120W\",\"40N_130E\",\"40N_130W\",\"40N_140E\",\"40S_070W\",\"40S_080W\",\"40S_140E\",\"40S_160E\",\"40S_170E\",\"50N_000E\",\"50N_010E\",\"50N_010W\",\"50N_020E\",\"50N_030E\",\"50N_040E\",\"50N_050E\",\"50N_060E\",\"50N_060W\",\"50N_070E\",\"50N_070W\",\"50N_080E\",\"50N_080W\",\"50N_090E\",\"50N_090W\",\"50N_100E\",\"50N_100W\",\"50N_110E\",\"50N_110W\",\"50N_120E\",\"50N_120W\",\"50N_130E\",\"50N_130W\",\"50N_140E\",\"50N_150E\",\"50S_070W\",\"50S_080W\",\"60N_000E\",\"60N_010E\",\"60N_010W\",\"60N_020E\",\"60N_020W\",\"60N_030E\",\"60N_040E\",\"60N_050E\",\"60N_060E\",\"60N_060W\",\"60N_070E\",\"60N_070W\",\"60N_080E\",\"60N_080W\",\"60N_090E\",\"60N_090W\",\"60N_100E\",\"60N_100W\",\"60N_110E\",\"60N_110W\",\"60N_120E\",\"60N_120W\",\"60N_130E\",\"60N_130W\",\"60N_140E\",\"60N_140W\",\"60N_150E\",\"60N_150W\",\"60N_160E\",\"60N_160W\",\"60N_170E\",\"60N_170W\",\"60N_180W\",\"70N_000E\",\"70N_010E\",\"70N_020E\",\"70N_030E\",\"70N_040E\",\"70N_050E\",\"70N_060E\",\"70N_070E\",\"70N_070W\",\"70N_080E\",\"70N_080W\",\"70N_090E\",\"70N_090W\",\"70N_100E\",\"70N_100W\",\"70N_110E\",\"70N_110W\",\"70N_120E\",\"70N_120W\",\"70N_130E\",\"70N_130W\",\"70N_140E\",\"70N_140W\",\"70N_150E\",\"70N_150W\",\"70N_160E\",\"70N_160W\",\"70N_170E\",\"70N_170W\",\"80N_010E\",\"80N_020E\",\"80N_030E\",\"80N_070E\",\"80N_080E\",\"80N_090E\",\"80N_100E\",\"80N_110E\",\"80N_120E\",\"80N_130E\",\"80N_130W\",\"80N_140E\",\"80N_140W\",\"80N_150E\",\"80N_150W\",\"80N_160E\",\"80N_160W\",\"80N_170W\"]\n", + "len(TILES)\n", + "df = pd.DataFrame(columns=['TILE','ESA_eq_10','ESA_10_and_3m',\"ESA_10_and_5m\",\"FH_ge_5\",\"FH_ge_5_and_ESA\",\"FH_lt_5_and_ESA\"])\n", + "for i in range(0,len(TILES)):\n", + " tile = TILES[i]\n", + " ESA = rasterio.open('/projects/my-public-bucket/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_'+tile+'_C.tif').read(1)\n", + " FH = rasterio.open('/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_height_2020/2020_'+tile+'.tif').read(1)\n", + " FH[ESA == 0] = 0\n", + " df.loc[i, ['TILE']] = tile\n", + " df.loc[i, ['ESA_eq_10']] = (len(ESA[(ESA == 10)]))\n", + " df.loc[i, ['ESA_10_and_3m']] = (len(ESA[(ESA == 10) & (FH < 5) & (FH > 0)]))\n", + " df.loc[i, ['ESA_10_and_5m']] = (len(ESA[(ESA == 10) & (FH >= 5)]))\n", + " df.loc[i, ['FH_ge_5']] = (len(FH[(FH >= 5)]))\n", + " df.loc[i, ['FH_ge_5_and_ESA']] = (len(FH[(FH >= 5) & (ESA == 10)]))\n", + " df.loc[i, ['FH_lt_5_and_ESA']] = (len(FH[(ESA == 10) & (FH < 5) & (FH > 0)]))\n", + " df.to_csv('/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_height_2020/AREA_3m_or_5m.csv', index=False) " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "23643e48-425c-4d9e-87c2-fff61baa7dcf", + "metadata": {}, + "outputs": [], + "source": [ + "CSV = read.csv('/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_height_2020/AREA_3m_or_5m.csv')\n", + "print(nrow(CSV))\n", + "sum(CSV$FH_ge_5_and_ESA)/sum(CSV$FH_ge_5)*100" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.13" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/country_summaries/IPCC_classes_DPS/Generate_presigned_URLS.ipynb b/country_summaries/IPCC_classes_DPS/Generate_presigned_URLS.ipynb index 55f3dd1f9a7ef10d5fc8f8e7475412ca6251f5f0..1a1b2a97d0d508c4bb3b5f4762fe43a684cd5b63 100644 --- a/country_summaries/IPCC_classes_DPS/Generate_presigned_URLS.ipynb +++ b/country_summaries/IPCC_classes_DPS/Generate_presigned_URLS.ipynb @@ -40,7 +40,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_452/950621156.py:5: DeprecationWarning: \n", + "/tmp/ipykernel_195/950621156.py:5: DeprecationWarning: \n", "Pyarrow will become a required dependency of pandas in the next major release of pandas (pandas 3.0),\n", "(to allow more performant data types, such as the Arrow string type, and better interoperability with other libraries)\n", "but was not found to be installed on your system.\n", @@ -162,7 +162,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "{'ResponseMetadata': {'RequestId': 'QKMWJSY5JB07XC72', 'HostId': 'bnWrquNwcuhz41aezw4ADcGBLrfLRGjroas5hFhbLvCJfiSpu3vJUPq66XBlDiXA85Gp1f8Is88=', 'HTTPStatusCode': 200, 'HTTPHeaders': {'x-amz-id-2': 'bnWrquNwcuhz41aezw4ADcGBLrfLRGjroas5hFhbLvCJfiSpu3vJUPq66XBlDiXA85Gp1f8Is88=', 'x-amz-request-id': 'QKMWJSY5JB07XC72', 'date': 'Fri, 16 Feb 2024 14:56:34 GMT', 'x-amz-bucket-region': 'us-west-2', 'content-type': 'application/xml', 'transfer-encoding': 'chunked', 'server': 'AmazonS3'}, 'RetryAttempts': 1}, 'IsTruncated': False, 'Contents': [{'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_000E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 21, 38, tzinfo=tzutc()), 'ETag': '\"ce9983a070f5f1b095cc6de09c76f41c\"', 'Size': 6202639, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_010E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 21, 41, tzinfo=tzutc()), 'ETag': '\"3a273064856101520311fe163591d53c-1\"', 'Size': 126903451, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_010W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 21, 43, tzinfo=tzutc()), 'ETag': '\"120f757937478fe7f2e7d8f5fa1168e1\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_020E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 21, 50, tzinfo=tzutc()), 'ETag': '\"a638d7ca05da726ed2357e5b39d19ce1-1\"', 'Size': 155480005, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_020W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 21, 53, tzinfo=tzutc()), 'ETag': '\"2bcafd712390028fe2b770c2dddd653b\"', 'Size': 4335357, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_030E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 21, 57, tzinfo=tzutc()), 'ETag': '\"4d288ef74f2e3446a54debf2eb2b7608-1\"', 'Size': 179447544, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_030W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 22, tzinfo=tzutc()), 'ETag': '\"9e78b00d4ed002fcc77a489c64e139a7\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_040E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 22, 1, tzinfo=tzutc()), 'ETag': '\"e6f27f684b963ea9f1c73a96c2c76ca9\"', 'Size': 11294296, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_040W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 22, 3, tzinfo=tzutc()), 'ETag': '\"68cb6cd7303ad3c00f56a374a424237b-1\"', 'Size': 37861291, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_050E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 22, 4, tzinfo=tzutc()), 'ETag': '\"e962b1c9dab6c057922f348ae363727c\"', 'Size': 4418701, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_050W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 22, 9, tzinfo=tzutc()), 'ETag': '\"4740a65371c9cd8bb9c2a82dfc3c7e4f-1\"', 'Size': 161354155, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_060E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 22, 12, tzinfo=tzutc()), 'ETag': '\"acd278460816bca421b36875c3a7df38\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_060W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 22, 14, tzinfo=tzutc()), 'ETag': '\"92f2efbefe837f9602d4b3c2d5fee36c-1\"', 'Size': 78602573, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_070E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 22, 15, tzinfo=tzutc()), 'ETag': '\"7cff707d3c4bb0a4c1b61102a41f32ed\"', 'Size': 4387258, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_070W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 22, 16, tzinfo=tzutc()), 'ETag': '\"2067dd3241a956b69853436806729762-1\"', 'Size': 46443625, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_080E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 22, 18, tzinfo=tzutc()), 'ETag': '\"66f8e2b00c8911ff72693e31e0b724cf\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_080W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 22, 20, tzinfo=tzutc()), 'ETag': '\"6cf6bd3413ea337200abb3503720bd6e-1\"', 'Size': 74060164, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_090E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 22, 21, tzinfo=tzutc()), 'ETag': '\"ed456864b3b7a3b9c5104734f629a385\"', 'Size': 4913775, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_090W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 22, 23, tzinfo=tzutc()), 'ETag': '\"074650ca7f912d9e5d2f8182f0ff3a27\"', 'Size': 13681502, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_100E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 22, 26, tzinfo=tzutc()), 'ETag': '\"b708de18ae8a76ce33dfc9fe4642f754-1\"', 'Size': 56430678, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_100W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 22, 27, tzinfo=tzutc()), 'ETag': '\"07dafcc98af08389d807e4c007757e85\"', 'Size': 4980146, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_110E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 22, 29, tzinfo=tzutc()), 'ETag': '\"03e7d3de768643f5c331423e96329647-1\"', 'Size': 64408424, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_120E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 22, 31, tzinfo=tzutc()), 'ETag': '\"778ed27f66f6a00dbfdf38eafa94a842-1\"', 'Size': 34528844, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_130E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 22, 33, tzinfo=tzutc()), 'ETag': '\"ea80d94149f7bed2c239e798568e47cb-1\"', 'Size': 27988387, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_130W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 22, 34, tzinfo=tzutc()), 'ETag': '\"f14f581c73188d08d773671b1dfdc4e3\"', 'Size': 4320504, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_140E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 22, 36, tzinfo=tzutc()), 'ETag': '\"825e3980bf7a09e89f1e98e1f9e7c6e6-1\"', 'Size': 38570842, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_140W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 22, 37, tzinfo=tzutc()), 'ETag': '\"d0de60e5d97dc1d219ae5a64c7b20f93\"', 'Size': 4514266, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_150E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 22, 38, tzinfo=tzutc()), 'ETag': '\"5eaad1a2818a39428ef226ff080c4afd\"', 'Size': 9385640, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_150W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 22, 39, tzinfo=tzutc()), 'ETag': '\"ab9d70c29366d1bf4da169b798a6e11c\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_160E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 22, 40, tzinfo=tzutc()), 'ETag': '\"cde39759b71ebcd73bca170b32a01161\"', 'Size': 5328362, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_160W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 22, 41, tzinfo=tzutc()), 'ETag': '\"cc9708ecf45b165a6c61ad8501f6dd18\"', 'Size': 4333776, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_170E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 22, 41, tzinfo=tzutc()), 'ETag': '\"0baeb0adf74bb55abb814ea944d029b1\"', 'Size': 4430245, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_170W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 22, 42, tzinfo=tzutc()), 'ETag': '\"af1d21a707b8b65d710b251ef7e80fd8\"', 'Size': 4320495, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_180W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 22, 43, tzinfo=tzutc()), 'ETag': '\"bf27a37472745c30a15c3d9b15a53a18\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_000E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 22, 47, tzinfo=tzutc()), 'ETag': '\"a02a63cd47614f6e75c9f4c9832edd64-1\"', 'Size': 106581940, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_010E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 22, 56, tzinfo=tzutc()), 'ETag': '\"f0e02d8ade52c56312bb7092b278cdb6-1\"', 'Size': 142877598, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_010W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 1, tzinfo=tzutc()), 'ETag': '\"45a5d22d35c53bfe7e03f25030c13ef0-1\"', 'Size': 116990147, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_020E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 7, tzinfo=tzutc()), 'ETag': '\"ae0968b9eb8b59cc2269a3a8f1bf1a6b-1\"', 'Size': 176912603, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_020W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 11, tzinfo=tzutc()), 'ETag': '\"dff87550b19bc6697a2112e7e2f71d4c-1\"', 'Size': 33724015, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_030E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 15, tzinfo=tzutc()), 'ETag': '\"622f84ce8a5ce7121702c8123bb42400-1\"', 'Size': 157573375, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_030W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 18, tzinfo=tzutc()), 'ETag': '\"87f5e607906d1c41cd6e275b29dc0b13\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_040E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 19, tzinfo=tzutc()), 'ETag': '\"ef787435e858cbb10e8ca6e8c0fed563-1\"', 'Size': 26993916, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_040W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 20, tzinfo=tzutc()), 'ETag': '\"6a3f66d2da69a5c5243d117fe438d510\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_050E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 21, tzinfo=tzutc()), 'ETag': '\"178171289bca1773999b014131b825c0\"', 'Size': 4320591, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_050W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 22, tzinfo=tzutc()), 'ETag': '\"993825a2ecd8875fc19ff37adc92a8fb\"', 'Size': 4900550, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_060E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 23, tzinfo=tzutc()), 'ETag': '\"6be51001f7234661c0fe02aaa0bfb8b8\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_060W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 25, tzinfo=tzutc()), 'ETag': '\"947211aefb42852b65d7eb62752a2d84-1\"', 'Size': 27605046, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_070E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 27, tzinfo=tzutc()), 'ETag': '\"c2bb4b4566feb9fc8c350b778da50de1\"', 'Size': 14462204, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_070W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 29, tzinfo=tzutc()), 'ETag': '\"368ebe839978af6449a2290a4bd63ceb-1\"', 'Size': 95792028, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_080E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 33, tzinfo=tzutc()), 'ETag': '\"2d39fc75214bb780eb2f218b9113c9b9\"', 'Size': 16675159, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_080W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 36, tzinfo=tzutc()), 'ETag': '\"8039781cd5d763b7b44ce069b4acaa6f-1\"', 'Size': 150010285, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_090E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 40, tzinfo=tzutc()), 'ETag': '\"d1733a1f977168d3896703c39d0b2542-1\"', 'Size': 28242316, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_090W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 41, tzinfo=tzutc()), 'ETag': '\"fafea08590539c03b182d231e6e80d58\"', 'Size': 19255905, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_100E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 43, tzinfo=tzutc()), 'ETag': '\"2d6e2946bcef07b8eaed181ea32bf571-1\"', 'Size': 46042854, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_100W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 45, tzinfo=tzutc()), 'ETag': '\"e945336ef95bf4f7dd28ae983deebc9a\"', 'Size': 4356189, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_110E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 46, tzinfo=tzutc()), 'ETag': '\"ffa57a952e55429024665ae2f8eea6c2-1\"', 'Size': 29542989, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_110W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 48, tzinfo=tzutc()), 'ETag': '\"87f39b54a0004af547e220a5a5c03410\"', 'Size': 4320495, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_120E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 49, tzinfo=tzutc()), 'ETag': '\"62886327c3523e713174508270ecac15-1\"', 'Size': 32351887, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_120W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 50, tzinfo=tzutc()), 'ETag': '\"4f3331e622dc647964e51af801b9c59d\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_130E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 51, tzinfo=tzutc()), 'ETag': '\"6f5b073a9adc4f809ac3d92640533ddd\"', 'Size': 4563172, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_130W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 52, tzinfo=tzutc()), 'ETag': '\"d6fa9b6102eb37aacfeb9fd8888178b9\"', 'Size': 4320504, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_140E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 53, tzinfo=tzutc()), 'ETag': '\"09309bfd27b76df0775c9c68e8e45b50\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_140W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 54, tzinfo=tzutc()), 'ETag': '\"1cc5f5843a516dc23d0c0c12a91ddd13\"', 'Size': 4320504, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_150E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 55, tzinfo=tzutc()), 'ETag': '\"3abbbda4e6563b74daa1f9380fc2bb05\"', 'Size': 4366966, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_150W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 56, tzinfo=tzutc()), 'ETag': '\"a84153a52677e4259e17e68145a0ebf8\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_160E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 57, tzinfo=tzutc()), 'ETag': '\"715e705b56bf41094a4700fb8640b1bf\"', 'Size': 4424847, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_160W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 58, tzinfo=tzutc()), 'ETag': '\"5dec398e601eaf9ccda269116fea0f07\"', 'Size': 4321239, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_170E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 59, tzinfo=tzutc()), 'ETag': '\"ce02fe09094f277be7eb3e4ab79afda7\"', 'Size': 4531188, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_170W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 24, tzinfo=tzutc()), 'ETag': '\"29ec3f3e499a4b80f7eab786e2528c2e\"', 'Size': 4320495, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_000E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 24, tzinfo=tzutc()), 'ETag': '\"8f5a390384b4d2412cf35cec9a5b7a70\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_010E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 24, 3, tzinfo=tzutc()), 'ETag': '\"4eabf80595828197c5ed473fd24db26c-1\"', 'Size': 115371458, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_010W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 24, 6, tzinfo=tzutc()), 'ETag': '\"a1aa49d474c7c77e99fa67bbf7fafd8d\"', 'Size': 4350107, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_020E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 24, 12, tzinfo=tzutc()), 'ETag': '\"5706e810e01b7d043837e12d1fe81615-1\"', 'Size': 209066850, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_030E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 30, 57, tzinfo=tzutc()), 'ETag': '\"f4a358b401e0fbaf82f9aada82ca4745-1\"', 'Size': 236474610, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_040E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 31, 3, tzinfo=tzutc()), 'ETag': '\"114831d2b1c699e63011f2e483888a61-1\"', 'Size': 81212943, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_040W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 31, 5, tzinfo=tzutc()), 'ETag': '\"402453eb835f87e0cdbc842e2dcabf85-1\"', 'Size': 33511632, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_050E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 31, 6, tzinfo=tzutc()), 'ETag': '\"01e5217648a5160ac7f996985b30d868\"', 'Size': 6874430, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_050W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 31, 13, tzinfo=tzutc()), 'ETag': '\"a545398796d2562803a2ca50cb9eceef-1\"', 'Size': 215563720, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_060E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 31, 16, tzinfo=tzutc()), 'ETag': '\"70e429e55719015748ecdee9f0db128e\"', 'Size': 4371988, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_060W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 31, 20, tzinfo=tzutc()), 'ETag': '\"f6f6d2e42aedc3b4a94cabff47e7c725-1\"', 'Size': 156960049, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_070E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 31, 23, tzinfo=tzutc()), 'ETag': '\"00b6cc1aac3aaa84ca5d80f0a6107269\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_070W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 31, 26, tzinfo=tzutc()), 'ETag': '\"26a8b16c68fb681f286ffca8b4d3629c-1\"', 'Size': 109855381, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_080W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 31, 30, tzinfo=tzutc()), 'ETag': '\"fa18f1f9aba86e96927346a079f6be5f-1\"', 'Size': 26378447, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_090W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 31, 31, tzinfo=tzutc()), 'ETag': '\"139509dce3c5efd255dad97c22994b8a\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_100E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 31, 32, tzinfo=tzutc()), 'ETag': '\"645674b831dd001ebf86814389e0aaf7\"', 'Size': 4346432, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_100W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 31, 33, tzinfo=tzutc()), 'ETag': '\"e865ec2bad890ce71d58817bfc687b4a\"', 'Size': 4320504, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_110E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 31, 34, tzinfo=tzutc()), 'ETag': '\"37e5c310fe9efd2d01740a54f160ba54\"', 'Size': 4335924, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_110W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 31, 36, tzinfo=tzutc()), 'ETag': '\"88ab0cb6058104f0f6eb0adcdce0c2f1\"', 'Size': 4320504, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_120E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 31, 38, tzinfo=tzutc()), 'ETag': '\"72024b3b7dd9045e73e59be8251396f5-1\"', 'Size': 74128235, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_120W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 31, 40, tzinfo=tzutc()), 'ETag': '\"92a48644cfa53ef619c496b47712b2e2\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_130E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 31, 44, tzinfo=tzutc()), 'ETag': '\"49f62071077134fb22ff4b77e3c54bc9-1\"', 'Size': 119574966, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_130W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 31, 46, tzinfo=tzutc()), 'ETag': '\"015fde078539e2e853dc28b3fad6a4ed\"', 'Size': 4320495, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_140E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 31, 49, tzinfo=tzutc()), 'ETag': '\"4521e7120b1b8a3a3496326eb188977e-1\"', 'Size': 86774285, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_140W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 31, 51, tzinfo=tzutc()), 'ETag': '\"aa595c1fa91707b68c178093e815fd9d\"', 'Size': 4376684, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_150E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 31, 52, tzinfo=tzutc()), 'ETag': '\"1e18983c94bc03e9eb0aa7b9ac5ed757\"', 'Size': 4995720, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_150W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 31, 53, tzinfo=tzutc()), 'ETag': '\"11ec14a1f78e96c5946eb95da5fa9bae\"', 'Size': 4786003, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_160E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 31, 54, tzinfo=tzutc()), 'ETag': '\"d192900d0f8ecea7441db52234b51d93\"', 'Size': 5972888, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_160W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 31, 55, tzinfo=tzutc()), 'ETag': '\"6b8d1f9c1425278e58f08bb8b770c22f\"', 'Size': 4489372, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_170E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 31, 56, tzinfo=tzutc()), 'ETag': '\"7c92d84fc96740f884dcd13ff503f8b8\"', 'Size': 8210746, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_170W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 31, 57, tzinfo=tzutc()), 'ETag': '\"c164f285094f0d3b2e99e8a4230e4571\"', 'Size': 4386107, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_180W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 31, 58, tzinfo=tzutc()), 'ETag': '\"5a09d4fb6034b2c17a38893b94dbb5bf\"', 'Size': 5356998, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_000E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 32, tzinfo=tzutc()), 'ETag': '\"f2e1c66de0378b2df89f8f580e0b352b\"', 'Size': 26124213, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_010E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 32, 2, tzinfo=tzutc()), 'ETag': '\"d500ac7964c0bb381cb4765fca571e97\"', 'Size': 24084850, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_010W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 32, 4, tzinfo=tzutc()), 'ETag': '\"e2215cb673cbf8dbc607a0e4dfd243f7-1\"', 'Size': 52576378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_020E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 32, 6, tzinfo=tzutc()), 'ETag': '\"2090adf4cc48bae236f19196ecdae8b7\"', 'Size': 19626192, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_020W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 32, 9, tzinfo=tzutc()), 'ETag': '\"1ce9eacfe28066ffd9cba607bc302ebc-1\"', 'Size': 74179655, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_030E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 32, 12, tzinfo=tzutc()), 'ETag': '\"005d0b3ecf199f45b01e9f23bb2f02ce-1\"', 'Size': 48281291, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_030W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 32, 14, tzinfo=tzutc()), 'ETag': '\"bc3479e22696c44f45a4e0d02483dc08\"', 'Size': 4567925, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_040E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 32, 15, tzinfo=tzutc()), 'ETag': '\"c58acda7f968cc3690efbb46e793e9e8\"', 'Size': 8650697, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_050E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 32, 16, tzinfo=tzutc()), 'ETag': '\"7b4a35ddb93879e85fa6fefb93c57e3b\"', 'Size': 4634731, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_050W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 32, 17, tzinfo=tzutc()), 'ETag': '\"b36b42e4bafac44413f57d3cc2756d56\"', 'Size': 4320495, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_060E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 32, 18, tzinfo=tzutc()), 'ETag': '\"8de11d423dac53776f03c35d4b27c3fc\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_060W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 32, 19, tzinfo=tzutc()), 'ETag': '\"349aabced3ed31943da44b89b9f0b902\"', 'Size': 4516341, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_070E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 32, 22, tzinfo=tzutc()), 'ETag': '\"3e073278305150c07c5e2220dd074977-1\"', 'Size': 115070755, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_070W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 32, 25, tzinfo=tzutc()), 'ETag': '\"1f3573240726d4977de8b2d84aa09b40\"', 'Size': 25595832, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_080E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 32, 27, tzinfo=tzutc()), 'ETag': '\"e88e3dc93582d3d256735ff399e0a462-1\"', 'Size': 44446716, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_080W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 32, 29, tzinfo=tzutc()), 'ETag': '\"5e199440d3bd5267f129c84b70e01d62-1\"', 'Size': 38738539, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_090E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 32, 32, tzinfo=tzutc()), 'ETag': '\"c13729ec0d8895e13af71a5c88c71964-1\"', 'Size': 62968797, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_090W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 32, 35, tzinfo=tzutc()), 'ETag': '\"417aa23483afcb0f493f1e30133525f6-1\"', 'Size': 90438362, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_100E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 32, 41, tzinfo=tzutc()), 'ETag': '\"c1eb8a818e9d15bdcd2c55dedfd6d3d0-1\"', 'Size': 156461177, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_100W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 32, 46, tzinfo=tzutc()), 'ETag': '\"b1e2b3d2e36b0a40e0f1c27138a8d526-1\"', 'Size': 95438111, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_110E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 32, 48, tzinfo=tzutc()), 'ETag': '\"7a0e0b6e6eccd33c4a39935aaa90ee27\"', 'Size': 9494351, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_110W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 32, 50, tzinfo=tzutc()), 'ETag': '\"aa8b8a1cc521b101d4b3969e7849446c-1\"', 'Size': 33733961, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_120E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 32, 52, tzinfo=tzutc()), 'ETag': '\"d8a14af6d2510e2ef2f65fd405a095dc-1\"', 'Size': 40611899, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_120W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 32, 54, tzinfo=tzutc()), 'ETag': '\"63a7251692e8305212504623ed146c85\"', 'Size': 4366876, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_130E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 32, 55, tzinfo=tzutc()), 'ETag': '\"e4b402c15b084c7bbb8531d330f06939\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_140E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 32, 56, tzinfo=tzutc()), 'ETag': '\"d47646b877216d004329d6e862c56095\"', 'Size': 4688046, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_150E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 32, 56, tzinfo=tzutc()), 'ETag': '\"1fca2d3a3b9f8063e75c36083f77d2f3\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_150W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 32, 58, tzinfo=tzutc()), 'ETag': '\"5e7bd7f13738416ab469e6fb57623d73\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_160E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 32, 58, tzinfo=tzutc()), 'ETag': '\"d48aa7ecc775a3f3074e36659d894425\"', 'Size': 4357681, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_160W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, tzinfo=tzutc()), 'ETag': '\"f064431f0764e5765b6ea65c87ea7a59\"', 'Size': 6056524, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_170E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, 1, tzinfo=tzutc()), 'ETag': '\"4e94de3b38e8a76f903ac7cbf9b54e36\"', 'Size': 4323139, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_170W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, 2, tzinfo=tzutc()), 'ETag': '\"72fc863442c3bd9fa635aa72751a7119\"', 'Size': 4320504, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_000E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, 2, tzinfo=tzutc()), 'ETag': '\"98da8694becfb7a8d003b4801695fa48\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_010E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, 3, tzinfo=tzutc()), 'ETag': '\"88f8fafa51dcc6db1eb591745a47a500\"', 'Size': 7190616, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_010W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, 5, tzinfo=tzutc()), 'ETag': '\"e173e86ddf9f3360785b48c024eadf86\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_020E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, 7, tzinfo=tzutc()), 'ETag': '\"9192188ad611f8bf757e1050e62b08e3-1\"', 'Size': 68453235, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_020W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, 9, tzinfo=tzutc()), 'ETag': '\"23d3ba890afedfd1390a8837faa6ce07\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_030E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, 11, tzinfo=tzutc()), 'ETag': '\"8a698bc09e08859fe4512664b0663b57-1\"', 'Size': 109784856, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_040E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, 14, tzinfo=tzutc()), 'ETag': '\"0e682511ee50511b03643015fb46dffb-1\"', 'Size': 45683868, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_040W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, 16, tzinfo=tzutc()), 'ETag': '\"7c8e7b13acc1edb55eb54883ce75790d\"', 'Size': 4320495, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_050E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, 17, tzinfo=tzutc()), 'ETag': '\"061fc1559d4dc290cfe882309cecaf85\"', 'Size': 5978012, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_050W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, 19, tzinfo=tzutc()), 'ETag': '\"3cdd66f952258a659a124ba7b8d3ce8a-1\"', 'Size': 100883603, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_060E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, 22, tzinfo=tzutc()), 'ETag': '\"cacf8bc86331a6a326f46fce564a3959\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_060W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, 28, tzinfo=tzutc()), 'ETag': '\"266c0ae3dea44036a132d48de6b7e4e1-1\"', 'Size': 200140569, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_070E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, 30, tzinfo=tzutc()), 'ETag': '\"4b4d8a221ee43a9d3772316df12a54ea\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_070W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, 34, tzinfo=tzutc()), 'ETag': '\"9fda6dc174aa81463af7578c591037ff-1\"', 'Size': 121402796, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_080W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, 37, tzinfo=tzutc()), 'ETag': '\"a59be46a51b1397963e0dbe36b52a277\"', 'Size': 4634564, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_090W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, 38, tzinfo=tzutc()), 'ETag': '\"3e137480f49aca79646a0126c4f9306f\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_100E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, 39, tzinfo=tzutc()), 'ETag': '\"c7193b715fd44951a0cefb283c84e6b4\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_100W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, 40, tzinfo=tzutc()), 'ETag': '\"71ea011b3a461bbb8fdd1aec7be8782e\"', 'Size': 4320504, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_110E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, 42, tzinfo=tzutc()), 'ETag': '\"6a157055f551f0eaa4ee41c1c4bb1bbf-1\"', 'Size': 36630198, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_110W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, 43, tzinfo=tzutc()), 'ETag': '\"969a6fd336e808b57b35da2de34b2be2\"', 'Size': 4363450, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_120E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, 44, tzinfo=tzutc()), 'ETag': '\"5ce05b0ce36b2f4cc2cb74d08011ec60-1\"', 'Size': 46828540, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_120W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, 46, tzinfo=tzutc()), 'ETag': '\"a07c817e52e6125c114c15fc57f9b1f3\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_130E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, 47, tzinfo=tzutc()), 'ETag': '\"5468f9965c8a958106c722474994987a-1\"', 'Size': 37662702, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_130W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, 49, tzinfo=tzutc()), 'ETag': '\"238faa799aacabab8299d18a6992d6d6\"', 'Size': 4343913, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_140E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, 53, tzinfo=tzutc()), 'ETag': '\"4e6af1273def7c78e9dab043b9b82eef-1\"', 'Size': 154674162, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_140W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, 55, tzinfo=tzutc()), 'ETag': '\"87aea6ec479a3588b6a9167c870b1d59\"', 'Size': 4365426, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_150E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, 56, tzinfo=tzutc()), 'ETag': '\"8a24d797b83e22e50c910f42b37e5a1b-1\"', 'Size': 46626691, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_150W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, 58, tzinfo=tzutc()), 'ETag': '\"f9b8055bbf5bf486906ceaaf484f2172\"', 'Size': 4370295, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_160E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, 59, tzinfo=tzutc()), 'ETag': '\"bacf2e323b48123cfec6458f1612fcd6\"', 'Size': 9296057, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_160W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 34, tzinfo=tzutc()), 'ETag': '\"961baf3e1b7cfce342fef6c597d387fd\"', 'Size': 4383236, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_170E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 34, 1, tzinfo=tzutc()), 'ETag': '\"dae88ac7a8ec3bc7f3cac95466f338e1\"', 'Size': 4321176, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_170W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 34, 2, tzinfo=tzutc()), 'ETag': '\"da72ddf467f76a896ee325429ab0b38a\"', 'Size': 4320495, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_180W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 34, 3, tzinfo=tzutc()), 'ETag': '\"ca4a9bf245ae9cdb22a07a853a0af406\"', 'Size': 4519880, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_000E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 34, 4, tzinfo=tzutc()), 'ETag': '\"c4f27f053e18e992dbe2420629cbf299\"', 'Size': 5014225, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_010E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 34, 5, tzinfo=tzutc()), 'ETag': '\"402a735f51057d9e50aa87b483d40bd1\"', 'Size': 5392531, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_010W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 34, 6, tzinfo=tzutc()), 'ETag': '\"957ca7c40b43137298a578f3d6f4b239\"', 'Size': 5050062, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_020E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 34, 7, tzinfo=tzutc()), 'ETag': '\"7675a175a0c84a7c68d54f06293b1464\"', 'Size': 5172072, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_020W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 34, 8, tzinfo=tzutc()), 'ETag': '\"f1613347d469d9985e5d3aba98b4b150\"', 'Size': 5674890, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_030E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 34, 9, tzinfo=tzutc()), 'ETag': '\"812dcc01191ae2c81489d6c2cf77740c\"', 'Size': 10577111, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_030W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 34, 10, tzinfo=tzutc()), 'ETag': '\"f6e59176b1dd67b28f417d8e73a4937f\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_040E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 34, 11, tzinfo=tzutc()), 'ETag': '\"ab7b957527c509f9c5a8dfe157a90e8b\"', 'Size': 6630524, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_050E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 34, 12, tzinfo=tzutc()), 'ETag': '\"1294694d3ec51c75c45dc18771802757\"', 'Size': 10750645, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_050W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 34, 13, tzinfo=tzutc()), 'ETag': '\"b2f198ea236640682db9c7834fa98168\"', 'Size': 4320504, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_060E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 34, 15, tzinfo=tzutc()), 'ETag': '\"74b3cf108e649b646bfb097c6e9b657d\"', 'Size': 16126701, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_060W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 34, 16, tzinfo=tzutc()), 'ETag': '\"12f464e4c6b75e290008a2f48868bdca\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_070E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 34, 18, tzinfo=tzutc()), 'ETag': '\"bda2c30537cf1b4f0ef6494bee645316-1\"', 'Size': 126185702, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_070W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 34, 21, tzinfo=tzutc()), 'ETag': '\"31398602880f8a93bdb90fb5975e85b0\"', 'Size': 4320495, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_080E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 34, 25, tzinfo=tzutc()), 'ETag': '\"6fce4235d09b888d02fc4cacb4186c3d-1\"', 'Size': 185518261, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_080W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 34, 28, tzinfo=tzutc()), 'ETag': '\"85646deb33b06328d680c4831a4f6478\"', 'Size': 21387372, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_090E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 34, 32, tzinfo=tzutc()), 'ETag': '\"e1575cd186e817c8acd120ec51fa15c8-1\"', 'Size': 154500023, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_090W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 34, 36, tzinfo=tzutc()), 'ETag': '\"a95848d4d8cac79b47a0fc2900c9a8e2-1\"', 'Size': 45534831, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_100E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 34, 43, tzinfo=tzutc()), 'ETag': '\"aba7ec354d557bc96c97b490b12b13b3-1\"', 'Size': 244398518, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_100W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 34, 47, tzinfo=tzutc()), 'ETag': '\"727b6f5926079ab51850d57fd2be1b57-1\"', 'Size': 78044215, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_110E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 34, 52, tzinfo=tzutc()), 'ETag': '\"b410e8e200a716dae904dc9f8adfdbf0-1\"', 'Size': 163989207, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_110W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 34, 57, tzinfo=tzutc()), 'ETag': '\"36bf7a54493e3f18c0dcc7cc965aa728-1\"', 'Size': 117869668, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_120E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 34, 59, tzinfo=tzutc()), 'ETag': '\"507526cfc318b4c94a7eef340e4fd24b\"', 'Size': 23140292, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_120W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 1, tzinfo=tzutc()), 'ETag': '\"74b6e78121e0d2e414018c5c26395106\"', 'Size': 10503461, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_130E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 2, tzinfo=tzutc()), 'ETag': '\"ac36c757878b9b933d27771c46231328\"', 'Size': 4331157, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_130W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 3, tzinfo=tzutc()), 'ETag': '\"398ad2c5f02abf1bfcdfac599acab4bc\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_140E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 3, tzinfo=tzutc()), 'ETag': '\"9404cea71168059ae1115bf64c082b4a\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_150E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 4, tzinfo=tzutc()), 'ETag': '\"afd5682782a2d55984288474f58537ba\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_150W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 5, tzinfo=tzutc()), 'ETag': '\"b7b1bf972f1ea7bc58143bdf04257ee5\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_160E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 6, tzinfo=tzutc()), 'ETag': '\"1e1ec437051abf9b8c90bd1c4522959c\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_160W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 7, tzinfo=tzutc()), 'ETag': '\"b67d0c191b80101b00d642b4d2ea2db0\"', 'Size': 6331696, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_170E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 8, tzinfo=tzutc()), 'ETag': '\"ea5df7de13a9bcbda270334e3a34eb00\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_170W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 9, tzinfo=tzutc()), 'ETag': '\"e2d1ee3f6ba15275d777c8eae72b9558\"', 'Size': 4405583, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30S_010E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 10, tzinfo=tzutc()), 'ETag': '\"4cfed3f4abc43406c971577a91b1e626\"', 'Size': 8253500, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30S_010W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 11, tzinfo=tzutc()), 'ETag': '\"4f76964c17fdd10fdc190baeb7cedf4b\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30S_020E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 13, tzinfo=tzutc()), 'ETag': '\"9d7cba8373379a8f51c015c4ad9e8bd4-1\"', 'Size': 26774854, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30S_020W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 14, tzinfo=tzutc()), 'ETag': '\"ba8f8f8f8975d87ce49c408d15039c2d\"', 'Size': 4371063, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30S_030E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 15, tzinfo=tzutc()), 'ETag': '\"f5229bcb77d48c148e4fa5400bda8888\"', 'Size': 6888715, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30S_040E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 16, tzinfo=tzutc()), 'ETag': '\"7ff43692d9dcf5cf458f03d3028c2066\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30S_040W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 17, tzinfo=tzutc()), 'ETag': '\"11b49aa1fc40e196ce2016abede5c728\"', 'Size': 4320504, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30S_050E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 18, tzinfo=tzutc()), 'ETag': '\"37c3c646fd4888a15ed841711595b902\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30S_050W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 19, tzinfo=tzutc()), 'ETag': '\"8f656ef89382bd1ce2ccf7de92dd94dc\"', 'Size': 4320495, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30S_060W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 21, tzinfo=tzutc()), 'ETag': '\"2632ade761bd89eb49c0cb3156196dd6-1\"', 'Size': 63192456, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30S_070W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 23, tzinfo=tzutc()), 'ETag': '\"2919682fa60ee2fd23b0ad1e96035002-1\"', 'Size': 40700679, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30S_080W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 25, tzinfo=tzutc()), 'ETag': '\"4dd3b04f502593d924d65972db753117-1\"', 'Size': 44706999, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30S_090W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 26, tzinfo=tzutc()), 'ETag': '\"f042c7c5449b6470fc74573f9c9db1ee\"', 'Size': 4343130, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30S_110E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 27, tzinfo=tzutc()), 'ETag': '\"d5f16ba09c8aeee0b9befa2975cf6009-1\"', 'Size': 38041527, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30S_120E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 29, tzinfo=tzutc()), 'ETag': '\"cf24c5d85d68c585da737c32c34237b3-1\"', 'Size': 54534819, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30S_130E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 31, tzinfo=tzutc()), 'ETag': '\"ecf9c2a8d07c4b9f81044b20b8019ec3-1\"', 'Size': 34025677, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30S_140E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 35, tzinfo=tzutc()), 'ETag': '\"9f5e3b9748e39a16b18dc35c2ecf8f7d-1\"', 'Size': 116657564, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30S_150E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 38, tzinfo=tzutc()), 'ETag': '\"4a79ba153cbe64fd76c2211425caae82-1\"', 'Size': 27171496, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30S_160E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 39, tzinfo=tzutc()), 'ETag': '\"2e591153e19cb9e36fd1b9458b9a4c4a\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30S_170E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 40, tzinfo=tzutc()), 'ETag': '\"478244e92afd7268564a15806dc40263\"', 'Size': 25821391, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30S_170W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 41, tzinfo=tzutc()), 'ETag': '\"6fd168ad9c6f0736c422a3bec903e015\"', 'Size': 4320504, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30S_180W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 43, tzinfo=tzutc()), 'ETag': '\"7949e2d70506bc9ba4fa64ed069dd2b2\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40N_000E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 44, tzinfo=tzutc()), 'ETag': '\"7b93c5f5662f5fe1e24d8c5d606f84ae-1\"', 'Size': 33595782, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40N_010E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 46, tzinfo=tzutc()), 'ETag': '\"34196b0242a1368c8a2b80061eef5806\"', 'Size': 19760013, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40N_010W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 49, tzinfo=tzutc()), 'ETag': '\"c1d61f6b6535325eb264b13820116753-1\"', 'Size': 88664212, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40N_020E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 53, tzinfo=tzutc()), 'ETag': '\"9998955c49d996ce88617cfd1225ac0d-1\"', 'Size': 57693121, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40N_020W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 54, tzinfo=tzutc()), 'ETag': '\"5c92772d2fc594316fee81afdf5705af\"', 'Size': 4636276, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40N_030E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 57, tzinfo=tzutc()), 'ETag': '\"408e7c80313a2462d440479bbac4aecc-1\"', 'Size': 58013066, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40N_030W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 58, tzinfo=tzutc()), 'ETag': '\"f4a208cb8cf923d8d9bd84b0886d83d3\"', 'Size': 5281763, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40N_040E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 36, tzinfo=tzutc()), 'ETag': '\"d4e4d899970c27d58e632095ce594367-1\"', 'Size': 43414230, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40N_040W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 36, 1, tzinfo=tzutc()), 'ETag': '\"bbe5f87579e82f382cb7558a9666e7cc\"', 'Size': 4404438, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40N_050E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 36, 3, tzinfo=tzutc()), 'ETag': '\"8cca85edd88e277411640a2dc37d8cd7\"', 'Size': 16296118, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40N_060E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 36, 4, tzinfo=tzutc()), 'ETag': '\"cea3d1b50845d4b63b9cd1c721c1a0d0\"', 'Size': 18569129, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40N_070E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 36, 7, tzinfo=tzutc()), 'ETag': '\"9d79193aace7a63ef1f222a07b073c71-1\"', 'Size': 86726362, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40N_070W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 36, 9, tzinfo=tzutc()), 'ETag': '\"aa9799b3c2e270bcae405009ba97177d\"', 'Size': 4372128, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40N_080E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 36, 10, tzinfo=tzutc()), 'ETag': '\"68eb93407d9d8df848aa747f01f1b604\"', 'Size': 5547117, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40N_080W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 36, 12, tzinfo=tzutc()), 'ETag': '\"1c04aaa7bea11bb37516d7fd5051b277-1\"', 'Size': 65510080, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40N_090E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 36, 15, tzinfo=tzutc()), 'ETag': '\"2a0e539c980e6f159e7a6743157f9ea4\"', 'Size': 20881120, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40N_090W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 36, 21, tzinfo=tzutc()), 'ETag': '\"7ebcacb1aab2e5f7b024963840a7095b-1\"', 'Size': 204145309, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40N_100E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 36, 27, tzinfo=tzutc()), 'ETag': '\"0609638173de40ca5faa85c62adea299-1\"', 'Size': 119027019, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40N_100W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 36, 34, tzinfo=tzutc()), 'ETag': '\"a98c627e8964122fc5fb5730da41c9bc-1\"', 'Size': 198749598, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40N_110E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 36, 42, tzinfo=tzutc()), 'ETag': '\"76ca3e9f0c953d2262cd6d6d5caf1183-1\"', 'Size': 183936610, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40N_110W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 36, 47, tzinfo=tzutc()), 'ETag': '\"26b3ec31f1eee9d023d2f81a0f958986-1\"', 'Size': 95064840, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40N_120E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 36, 51, tzinfo=tzutc()), 'ETag': '\"e8dc82e8326c767b3824058426bf1013-1\"', 'Size': 58555411, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40N_120W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 36, 54, tzinfo=tzutc()), 'ETag': '\"9665f2535e3b1192387a7c3289b3d84b-1\"', 'Size': 88843194, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40N_130E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 36, 57, tzinfo=tzutc()), 'ETag': '\"bf52731eb019573ce15a3eea168fe15d-1\"', 'Size': 37090297, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40N_130W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, tzinfo=tzutc()), 'ETag': '\"cd29b0d59e85e9b4f077017537ca0640-1\"', 'Size': 32093933, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40N_140E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 2, tzinfo=tzutc()), 'ETag': '\"dfd9083dd656928fa53d71d8431c4240\"', 'Size': 14965682, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40N_150W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 3, tzinfo=tzutc()), 'ETag': '\"0687331d7b6e7b177f2ad34850569fa2\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40N_160W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 4, tzinfo=tzutc()), 'ETag': '\"31234702a68d2fd48e0b6278d6ac6f74\"', 'Size': 4320504, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40N_170W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 5, tzinfo=tzutc()), 'ETag': '\"d076838d9ae7c14f97330505652c701c\"', 'Size': 4320504, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40S_010W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 6, tzinfo=tzutc()), 'ETag': '\"eabeeb70af2ff3569134a0b42432c28f\"', 'Size': 4353049, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40S_020W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 6, tzinfo=tzutc()), 'ETag': '\"d21f4f7c1e56e11c14bb35848ddafcf1\"', 'Size': 4322765, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40S_030E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 7, tzinfo=tzutc()), 'ETag': '\"59b51575c84f6c67de5aa4040e8c81a5\"', 'Size': 4333390, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40S_030W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 8, tzinfo=tzutc()), 'ETag': '\"544404cf91f486752f15c0006aaa30bf\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40S_040E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 9, tzinfo=tzutc()), 'ETag': '\"e25d1de746e07f55b48d689affc7fe50\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40S_040W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 10, tzinfo=tzutc()), 'ETag': '\"8fe402325a35e05f37ea729894464357\"', 'Size': 4320504, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40S_050E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 11, tzinfo=tzutc()), 'ETag': '\"efa5e9efc3e74a62d50490775df0d677\"', 'Size': 4337787, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40S_050W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 12, tzinfo=tzutc()), 'ETag': '\"6869a0f9fee001693d7b9e133d3db3c3\"', 'Size': 4320504, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40S_060E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 13, tzinfo=tzutc()), 'ETag': '\"fcdeee027d0993d6b712e23db88be125\"', 'Size': 4725599, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40S_060W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 13, tzinfo=tzutc()), 'ETag': '\"48c30b63699b395a5ded27a7b23ccf86\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40S_070E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 14, tzinfo=tzutc()), 'ETag': '\"a69ec7d0d935077a6d8906d1a2f465fa\"', 'Size': 4400962, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40S_070W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 15, tzinfo=tzutc()), 'ETag': '\"5f6ae43e977ca6c220f06ad0c6a51efa\"', 'Size': 5303426, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40S_080E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 16, tzinfo=tzutc()), 'ETag': '\"a6935154908140fbe0b94a215b136811\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40S_080W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 18, tzinfo=tzutc()), 'ETag': '\"c918048d0566d71b5fe4c59e61d93147-1\"', 'Size': 53006623, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40S_090W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 20, tzinfo=tzutc()), 'ETag': '\"a74e6717101c896e94232a8921372529\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40S_130E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 20, tzinfo=tzutc()), 'ETag': '\"b047a0f37f4f6a90033e72b0c34649b6\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40S_140E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 22, tzinfo=tzutc()), 'ETag': '\"ed2b295b3d11483192b2fe2184b5af34\"', 'Size': 17398828, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40S_150E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 23, tzinfo=tzutc()), 'ETag': '\"63fecd288ac4660037d92e1966e79967\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40S_160E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 24, tzinfo=tzutc()), 'ETag': '\"09d99d3e13d891bf76e8e584f9abe31c\"', 'Size': 16019945, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40S_170E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 25, tzinfo=tzutc()), 'ETag': '\"11f03a7189b6586e0984d020a250ccad\"', 'Size': 24377553, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40S_170W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 26, tzinfo=tzutc()), 'ETag': '\"266d97231f6cb47a3effc58836debd01\"', 'Size': 4320504, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40S_180W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 27, tzinfo=tzutc()), 'ETag': '\"293564e311a7671eef0a2a919fd97162\"', 'Size': 4594497, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50N_000E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 32, tzinfo=tzutc()), 'ETag': '\"15747992103816b59dc1aea691f55dc2-1\"', 'Size': 164548403, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50N_010E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 37, tzinfo=tzutc()), 'ETag': '\"ba8d50dbab5e9e3fa6c883f85dc54f07-1\"', 'Size': 161602303, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50N_010W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 41, tzinfo=tzutc()), 'ETag': '\"a4f80e499ead6ff466b148d2f9240c82-1\"', 'Size': 104790177, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50N_020E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 46, tzinfo=tzutc()), 'ETag': '\"59742f313be52012e5b633fdb49b5994-1\"', 'Size': 155454016, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50N_020W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 49, tzinfo=tzutc()), 'ETag': '\"5409ede351780bac6f0edd6b7284d125\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50N_030E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 52, tzinfo=tzutc()), 'ETag': '\"370b1c133e52a38869ef5c222e325882-1\"', 'Size': 89007869, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50N_030W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 54, tzinfo=tzutc()), 'ETag': '\"72bd5bafe0c238ebac2b937cb00528b2\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50N_040E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 56, tzinfo=tzutc()), 'ETag': '\"66b6c488e9faa93396eebef1c8062276-1\"', 'Size': 69032010, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50N_040W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 57, tzinfo=tzutc()), 'ETag': '\"89c6ba3a8eb229b6dd536456a0ed30f7\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50N_050E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 58, tzinfo=tzutc()), 'ETag': '\"bec415160bfee5ee027eb95eed9d038a\"', 'Size': 5015185, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50N_050W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 59, tzinfo=tzutc()), 'ETag': '\"923e922bb1712f94a369addd49ca79cd\"', 'Size': 4320504, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50N_060E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 38, tzinfo=tzutc()), 'ETag': '\"a7848aad64c50ce3118b29fc57d9d044\"', 'Size': 8470504, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50N_060W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 38, 2, tzinfo=tzutc()), 'ETag': '\"2a344bafeec992d9e0c32950ccb91d46-1\"', 'Size': 36404385, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50N_070E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 38, 3, tzinfo=tzutc()), 'ETag': '\"5a076f2cf18715fd41094d0350690fd5-1\"', 'Size': 27924377, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50N_070W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 38, 5, tzinfo=tzutc()), 'ETag': '\"dfc122e80301cd14556050b92f354476-1\"', 'Size': 57265723, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50N_080E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 38, 7, tzinfo=tzutc()), 'ETag': '\"f3947de9fe40e33400190bfdc1ebe489-1\"', 'Size': 42796027, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50N_080W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 38, 14, tzinfo=tzutc()), 'ETag': '\"d475b959bd5b1687065349fecf976a39-1\"', 'Size': 160573608, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50N_090E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 38, 18, tzinfo=tzutc()), 'ETag': '\"288a413f284caf8a067dd278e91cfccf\"', 'Size': 14825810, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50N_090W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 38, 22, tzinfo=tzutc()), 'ETag': '\"9e46561ab92b6feac79709b1601ef9f9-1\"', 'Size': 134093907, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50N_100E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 38, 25, tzinfo=tzutc()), 'ETag': '\"cdb1ffabcbf353dfa2bd5b6bd766b4b9-1\"', 'Size': 31817202, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50N_100W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 38, 28, tzinfo=tzutc()), 'ETag': '\"c4595f2a57dc7ae8382510879011c10e-1\"', 'Size': 126617271, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50N_110E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 38, 31, tzinfo=tzutc()), 'ETag': '\"3e1494ecd161182db5a5eca57a62047e-1\"', 'Size': 52897170, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50N_110W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 38, 37, tzinfo=tzutc()), 'ETag': '\"2ac4b78c8e6c040905d900e3d20cfb6c-1\"', 'Size': 61493156, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50N_120E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 38, 41, tzinfo=tzutc()), 'ETag': '\"cd6ad68beb37f73506dbc6dfc7cc3821-1\"', 'Size': 117849108, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50N_120W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 38, 45, tzinfo=tzutc()), 'ETag': '\"27e2827e487f5a9d62bf11bf3b9e5074-1\"', 'Size': 111471915, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50N_130E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 38, 49, tzinfo=tzutc()), 'ETag': '\"1226daf24625477f7dc15da71ecc62da-1\"', 'Size': 53651840, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50N_130W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 38, 51, tzinfo=tzutc()), 'ETag': '\"55ea9f2393c7929fdebecabfe1cd6690-1\"', 'Size': 71908816, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50N_140E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 38, 54, tzinfo=tzutc()), 'ETag': '\"893890b5a243253858b899da47f390bb\"', 'Size': 25365108, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50N_140W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 38, 55, tzinfo=tzutc()), 'ETag': '\"ef45ba9446d426c354ec22d03b213019\"', 'Size': 4320495, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50N_150E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 38, 56, tzinfo=tzutc()), 'ETag': '\"8a994579d712abaa7001ad3f27228a3a\"', 'Size': 5263771, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50N_160E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 38, 57, tzinfo=tzutc()), 'ETag': '\"a0f60b3f1c319fa8bad526e82c0bb9e1\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50S_030W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 38, 58, tzinfo=tzutc()), 'ETag': '\"b70d97c721fd75e1ef249e43563c0077\"', 'Size': 4320444, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50S_040W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 38, 59, tzinfo=tzutc()), 'ETag': '\"025be38a89d791b49b23987ef18cf2fa\"', 'Size': 4410414, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50S_050W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 39, tzinfo=tzutc()), 'ETag': '\"e88adfed32829647ac4c0e30b1c7f5c8\"', 'Size': 4320504, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50S_060E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 39, tzinfo=tzutc()), 'ETag': '\"e2bfc6b444ec1cf1f8847e90bc7dbf39\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50S_060W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 39, 1, tzinfo=tzutc()), 'ETag': '\"ca411cc24394b03ebe3841486ae6e34e\"', 'Size': 4336822, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50S_070E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 39, 2, tzinfo=tzutc()), 'ETag': '\"b5b968cd61c39540c6bbf126eb4bc98d\"', 'Size': 4328896, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50S_070W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 39, 3, tzinfo=tzutc()), 'ETag': '\"182bd654ce79ac9fe40e7beb153dba9a\"', 'Size': 13327324, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50S_080E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 39, 4, tzinfo=tzutc()), 'ETag': '\"70af384012b801ed5caa270a6fad3842\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50S_080W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 39, 5, tzinfo=tzutc()), 'ETag': '\"6623840f6f8502199f1b90785c3d39df-1\"', 'Size': 28317473, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50S_090W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 39, 7, tzinfo=tzutc()), 'ETag': '\"e3c284aff3158ac7e58df56a1bb3e63d\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50S_150E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 39, 8, tzinfo=tzutc()), 'ETag': '\"5e97920bfbce60c5c719eca1da3ed1a8\"', 'Size': 4337877, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50S_160E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 39, 9, tzinfo=tzutc()), 'ETag': '\"d90578735e280833f8fe3a981f66b0aa\"', 'Size': 4619584, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50S_170E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 39, 10, tzinfo=tzutc()), 'ETag': '\"94b9eeebb98293c258e81abe6971acf2\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_000E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 39, 12, tzinfo=tzutc()), 'ETag': '\"96f7514be7dc205fdfbb28aaa3b49c26-1\"', 'Size': 86906236, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_010E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 39, 17, tzinfo=tzutc()), 'ETag': '\"5afa0e526f22b57e8fa8285539922f2e-1\"', 'Size': 128760203, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_010W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 39, 20, tzinfo=tzutc()), 'ETag': '\"94965817ebd290d184e3e64f7b6013c4-1\"', 'Size': 78941927, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_020E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 39, 24, tzinfo=tzutc()), 'ETag': '\"d46681db06ac00be8eec2efab89c9057-1\"', 'Size': 141095907, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_020W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 39, 27, tzinfo=tzutc()), 'ETag': '\"cf130dd172dfc54602bde21a306818ba\"', 'Size': 4642389, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_030E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 39, 30, tzinfo=tzutc()), 'ETag': '\"12dc14ec861b52b10e57fc93af45c7e1-1\"', 'Size': 146984257, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_040E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 39, 35, tzinfo=tzutc()), 'ETag': '\"fc785862f0536cfa609b535d1fc7bc1c-1\"', 'Size': 110788937, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_040W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 39, 37, tzinfo=tzutc()), 'ETag': '\"26424f6c611276443ea7217d29b3279a\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_050E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 39, 39, tzinfo=tzutc()), 'ETag': '\"6f6babce38728d7a1af32dc634ce93ae-1\"', 'Size': 91084115, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_050W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 39, 40, tzinfo=tzutc()), 'ETag': '\"907b7273510a5a94896e4a7728eb61c4\"', 'Size': 4346265, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_060E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 39, 43, tzinfo=tzutc()), 'ETag': '\"b884159609e540a4da6255d9501d189f-1\"', 'Size': 86035564, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_060W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 39, 45, tzinfo=tzutc()), 'ETag': '\"6fe793071aea4a0eef46994469f1ceaa-1\"', 'Size': 37573471, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_070E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 39, 47, tzinfo=tzutc()), 'ETag': '\"07f1555b476b82d9d2ff5f9936b39a82-1\"', 'Size': 86064712, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_070W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 39, 52, tzinfo=tzutc()), 'ETag': '\"1e74c68bf21b97b845d3299e84f6e46c-1\"', 'Size': 144623433, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_080E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 39, 57, tzinfo=tzutc()), 'ETag': '\"3896984b0ac2801e6c9583143e1e658b-1\"', 'Size': 125884432, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_080W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 40, 2, tzinfo=tzutc()), 'ETag': '\"046fb777578b15d55fb81b74bb4c6e7a-1\"', 'Size': 156815889, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_090E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 40, 7, tzinfo=tzutc()), 'ETag': '\"bba2c096f20b8d6afc62b09509b32c7c-1\"', 'Size': 92303789, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_090W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 40, 11, tzinfo=tzutc()), 'ETag': '\"4f6e0091530f570daab6d32bf3fe5293-1\"', 'Size': 90349423, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_100E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 40, 14, tzinfo=tzutc()), 'ETag': '\"2c2c8b173edd05b841515311a46d639b-1\"', 'Size': 90960768, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_100W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 40, 20, tzinfo=tzutc()), 'ETag': '\"9741d37d817e80ee253f27d93a96517f-1\"', 'Size': 162744493, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_110E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 40, 26, tzinfo=tzutc()), 'ETag': '\"47df381892038977be3baf4535abad93-1\"', 'Size': 133961271, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_110W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 40, 33, tzinfo=tzutc()), 'ETag': '\"ad01c298ca69d2fc54f634823b0881dd-1\"', 'Size': 160451813, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_120E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 40, 38, tzinfo=tzutc()), 'ETag': '\"56a61d49b45eb9b04882e350012ea249-1\"', 'Size': 123970084, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_120W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 40, 43, tzinfo=tzutc()), 'ETag': '\"24e170400df07dd08c86040ebf2164ba-1\"', 'Size': 145358872, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_130E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 40, 48, tzinfo=tzutc()), 'ETag': '\"89e7e01f51ef33829b3889b5622e978a-1\"', 'Size': 118395422, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_130W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 40, 53, tzinfo=tzutc()), 'ETag': '\"1ab6e43fa8b3ed3f82d6ce0847deb0d1-1\"', 'Size': 124802846, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_140E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 40, 57, tzinfo=tzutc()), 'ETag': '\"de1c68052e7c9d888c5aaca19f5f60d7-1\"', 'Size': 31095140, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_140W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 40, 59, tzinfo=tzutc()), 'ETag': '\"9bfc760853310d382010465790a8547f-1\"', 'Size': 43689288, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_150E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 41, 2, tzinfo=tzutc()), 'ETag': '\"cc1b01add06756c9d582c8c782fa460a-1\"', 'Size': 57199976, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_150W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 41, 3, tzinfo=tzutc()), 'ETag': '\"cdf4c8773b774c2d1cff05ed9ddd2d2f\"', 'Size': 5252539, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_160E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 41, 5, tzinfo=tzutc()), 'ETag': '\"df8477e3b38fd2d75359d95d311768c0-1\"', 'Size': 35120453, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_160W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 41, 7, tzinfo=tzutc()), 'ETag': '\"40cad83d1da6640cd8b7e52ba0e4eeeb\"', 'Size': 23253458, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_170E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 41, 8, tzinfo=tzutc()), 'ETag': '\"b985c1f2b4c849ac998c9649adfb6bcf\"', 'Size': 4597541, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_170W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 41, 9, tzinfo=tzutc()), 'ETag': '\"ffb2a7d22f1271d534364daa9e109edd\"', 'Size': 6619165, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_180W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 41, 10, tzinfo=tzutc()), 'ETag': '\"6445c77a83be5d2d6895d324f4c8a8b7\"', 'Size': 4615551, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_000E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 41, 11, tzinfo=tzutc()), 'ETag': '\"5f7b2f00acc5d14d3e29b4249646c799-1\"', 'Size': 26329185, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_010E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 41, 14, tzinfo=tzutc()), 'ETag': '\"81efe9220bd339864e73fa527fdb6df0-1\"', 'Size': 108807367, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_010W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 41, 17, tzinfo=tzutc()), 'ETag': '\"1d42e60348edae61a81b957fc479dea7\"', 'Size': 4658848, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_020E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 41, 20, tzinfo=tzutc()), 'ETag': '\"003649caf5da3822f7df23928fca4f6e-1\"', 'Size': 130634368, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_020W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 41, 23, tzinfo=tzutc()), 'ETag': '\"2a48f3c84bd35f97b0db99002a4c374c\"', 'Size': 5538751, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_030E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 41, 25, tzinfo=tzutc()), 'ETag': '\"09044e643da5e29c347b634a4aa4b1f0-1\"', 'Size': 96808962, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_030W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 41, 27, tzinfo=tzutc()), 'ETag': '\"d62ebba8d98b50beb029843bbcc03ebe\"', 'Size': 5467118, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_040E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 41, 29, tzinfo=tzutc()), 'ETag': '\"7bd0a654e60f31a876c60c2034478cc3-1\"', 'Size': 66257149, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_040W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 41, 31, tzinfo=tzutc()), 'ETag': '\"29109d3d4b7bc68f27d73fa148f6927b\"', 'Size': 4332951, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_050E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 41, 33, tzinfo=tzutc()), 'ETag': '\"e1f6605ba05ffdccb82b1be880c33eee-1\"', 'Size': 76090870, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_050W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 41, 35, tzinfo=tzutc()), 'ETag': '\"77de8f9498ecd5e7c4661a0204cd2908\"', 'Size': 5377171, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_060E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 41, 38, tzinfo=tzutc()), 'ETag': '\"87f3b42d870e6900cb59c51a344ebb3c-1\"', 'Size': 110166441, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_060W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 41, 41, tzinfo=tzutc()), 'ETag': '\"ae2c03d68c9743a4da98c6daf9067b20\"', 'Size': 7888896, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_070E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 41, 43, tzinfo=tzutc()), 'ETag': '\"1841e2e17fd53cf43b321894b0f808ce-1\"', 'Size': 102706366, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_070W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 41, 45, tzinfo=tzutc()), 'ETag': '\"06ec35869e7b188fb5f6415f7e05cffc\"', 'Size': 4389515, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_080E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 41, 48, tzinfo=tzutc()), 'ETag': '\"a5a16986bd97b7fd939e14bd64654ba9-1\"', 'Size': 117753670, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_080W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 41, 51, tzinfo=tzutc()), 'ETag': '\"0dbaa6d2cd0d4bd892b7389e70bd232b\"', 'Size': 4458140, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_090E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 41, 53, tzinfo=tzutc()), 'ETag': '\"56b71e369db71a70d995d1cc3efca3ca-1\"', 'Size': 87592891, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_090W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 41, 55, tzinfo=tzutc()), 'ETag': '\"4ea6ce72b7e140ac965b7b513154b08a\"', 'Size': 4370363, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_100E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 41, 57, tzinfo=tzutc()), 'ETag': '\"9b8fc706a813f6239d9bb303d3678486-1\"', 'Size': 98154242, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_100W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 42, tzinfo=tzutc()), 'ETag': '\"2d7d9c001140138782a9933eec283386\"', 'Size': 12035047, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_110E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 42, 3, tzinfo=tzutc()), 'ETag': '\"f4fd3aa0b9c8b6cdde17fb734a7cb8ff-1\"', 'Size': 80503646, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_110W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 42, 5, tzinfo=tzutc()), 'ETag': '\"615822997b3c58dc3dcdaeb3c97f0c74-1\"', 'Size': 53399236, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_120E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 42, 9, tzinfo=tzutc()), 'ETag': '\"52df6dab306dd2797196695eba3bd66e-1\"', 'Size': 130667312, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_120W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 42, 14, tzinfo=tzutc()), 'ETag': '\"b039d921c95b8b94a685db73297a3bcf-1\"', 'Size': 109148684, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_130E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 42, 19, tzinfo=tzutc()), 'ETag': '\"fdb66e3ccb5ce2597ba4cdbeb0517e44-1\"', 'Size': 146279499, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_130W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 42, 24, tzinfo=tzutc()), 'ETag': '\"8baac4a13d47cd13121856948c184f08-1\"', 'Size': 131360731, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_140E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 42, 31, tzinfo=tzutc()), 'ETag': '\"0a81b72b6c0061703fa51a87927f2c79-1\"', 'Size': 166198653, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_140W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 42, 36, tzinfo=tzutc()), 'ETag': '\"ce3fe571f84da206469feacd1d859e32-1\"', 'Size': 119748494, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_150E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 42, 42, tzinfo=tzutc()), 'ETag': '\"923651657a868e47d2b838e3592defac-1\"', 'Size': 144513913, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_150W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 42, 46, tzinfo=tzutc()), 'ETag': '\"ee24a374715d57e6107bb726131fdf3b-1\"', 'Size': 106929319, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_160E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 42, 50, tzinfo=tzutc()), 'ETag': '\"90591955a95955d6d049ab2b12d6cf4e-1\"', 'Size': 90473684, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_160W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 42, 55, tzinfo=tzutc()), 'ETag': '\"0a51e92e373fb56d53cf4443452485a5-1\"', 'Size': 112977045, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_170E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 42, 57, tzinfo=tzutc()), 'ETag': '\"79c15c24a624fba953293a126035172e\"', 'Size': 25680777, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_170W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 42, 59, tzinfo=tzutc()), 'ETag': '\"68a98af35a2f24b57e8165a3924dedaa-1\"', 'Size': 26403221, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_180W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 1, tzinfo=tzutc()), 'ETag': '\"ad50d07a1511918c183119c0865966d9\"', 'Size': 4400317, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_000E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 1, tzinfo=tzutc()), 'ETag': '\"225b73b6679562618b37bccbc6629318\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_010E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 2, tzinfo=tzutc()), 'ETag': '\"5805f66732de001178f591394bfd329a\"', 'Size': 4640516, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_010W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 3, tzinfo=tzutc()), 'ETag': '\"4b12a50a7870662c9292129df073d59b\"', 'Size': 4366887, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_020E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 5, tzinfo=tzutc()), 'ETag': '\"14538330fb049de724d0184cde52281a\"', 'Size': 8045586, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_020W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 6, tzinfo=tzutc()), 'ETag': '\"a36ae4987e16743392922fcf0a084860\"', 'Size': 4325370, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_030E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 7, tzinfo=tzutc()), 'ETag': '\"6d0cdac03a1ed9efa447e2bdaa34f57d\"', 'Size': 4465693, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_030W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 8, tzinfo=tzutc()), 'ETag': '\"a3858273186f28e3fbf85a7b2ad8366a\"', 'Size': 4372755, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_040E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 8, tzinfo=tzutc()), 'ETag': '\"2bf06d6908a088db144831fbc3c6b496\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_040W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 9, tzinfo=tzutc()), 'ETag': '\"9f30da82c31233141f81454ebf8a82b8\"', 'Size': 4320413, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_050E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 10, tzinfo=tzutc()), 'ETag': '\"6c8a202a1e915b39bb9a38987be6f438\"', 'Size': 4865912, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_050W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 12, tzinfo=tzutc()), 'ETag': '\"1afff3ecbdea14755c403718abe181b1\"', 'Size': 4320495, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_060E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 12, tzinfo=tzutc()), 'ETag': '\"a77848f582777d90df78949d1e532701\"', 'Size': 4537443, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_060W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 13, tzinfo=tzutc()), 'ETag': '\"7dec04677a693a87d874d669eebf79b6\"', 'Size': 4365279, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_070E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 14, tzinfo=tzutc()), 'ETag': '\"c9c47e816a2f06842f9f3794dadbe533\"', 'Size': 4748211, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_070W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 15, tzinfo=tzutc()), 'ETag': '\"e6d52daabde12d994818cbb351096122\"', 'Size': 4331834, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_080E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 16, tzinfo=tzutc()), 'ETag': '\"8d9589020f8d6c4f680c86ff9b54a598\"', 'Size': 9719070, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_080W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 17, tzinfo=tzutc()), 'ETag': '\"7d5427b6abe3814442861d4b23b088ed\"', 'Size': 4332960, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_090E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 19, tzinfo=tzutc()), 'ETag': '\"b2346647a0e1fa4a10eba59ccd36ab7f\"', 'Size': 22641994, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_090W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 20, tzinfo=tzutc()), 'ETag': '\"5cb880d76f84c9ad2aa4f04f6beae6bf\"', 'Size': 4329184, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_100E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 21, tzinfo=tzutc()), 'ETag': '\"2d61e5b4cfc72769da886b652c554470-1\"', 'Size': 26390200, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_100W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 22, tzinfo=tzutc()), 'ETag': '\"7ed35f3eebb4c17c756646f5a8d69276\"', 'Size': 4329258, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_110E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 24, tzinfo=tzutc()), 'ETag': '\"895738cf9e525edc402d73fcff955b66\"', 'Size': 22670666, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_110W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 25, tzinfo=tzutc()), 'ETag': '\"5d9011f0c13ac6f07426588124cc42d1\"', 'Size': 4322273, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_120E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 26, tzinfo=tzutc()), 'ETag': '\"0b5b80c089c8f8030121230682c6086a\"', 'Size': 24119000, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_120W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 27, tzinfo=tzutc()), 'ETag': '\"146c8c33479eb52043a4cb01ba595660\"', 'Size': 4321590, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_130E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 29, tzinfo=tzutc()), 'ETag': '\"3698d05dc817abf52b77362855ac0067\"', 'Size': 15323515, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_130W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 30, tzinfo=tzutc()), 'ETag': '\"b2f2d4baca198e37de625af0e25c824d\"', 'Size': 4324067, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_140E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 31, tzinfo=tzutc()), 'ETag': '\"bb02eea837138dcf91a0a6e6b9209315\"', 'Size': 12382553, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_140W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 32, tzinfo=tzutc()), 'ETag': '\"95a97821ce72b6d810453ef5b5c2fbe7\"', 'Size': 4320495, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_150E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 33, tzinfo=tzutc()), 'ETag': '\"a1cb0bdb09b4dbaa18e09f168a85fb8b\"', 'Size': 4412494, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_150W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 34, tzinfo=tzutc()), 'ETag': '\"b6888dcc56e581b0f8261090cab106b3\"', 'Size': 4320556, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_160E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 35, tzinfo=tzutc()), 'ETag': '\"69a9368043e8564aa604d75cacbd9fab\"', 'Size': 4320479, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_160W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 35, tzinfo=tzutc()), 'ETag': '\"bd78f26b67574786db2c38bbe324fa2a\"', 'Size': 4324981, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_170E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 36, tzinfo=tzutc()), 'ETag': '\"b8603d151ed55568c2cbbee5b65102e7\"', 'Size': 4321188, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_170W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 37, tzinfo=tzutc()), 'ETag': '\"2ba7e675d372cb603138375dd932b848\"', 'Size': 4320542, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_180W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 38, tzinfo=tzutc()), 'ETag': '\"c9069d8c6dbbeb07574c4cb68dc2beb5\"', 'Size': 4321711, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_90N_000E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 39, tzinfo=tzutc()), 'ETag': '\"5811fc194a97e2eba45cee24cc4e3f82\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_90N_010E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 40, tzinfo=tzutc()), 'ETag': '\"41042e78fddbc233edf58e88c3e228ac\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_90N_020E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 41, tzinfo=tzutc()), 'ETag': '\"19fb15d54d1aded27d4a9abb523834e0\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_90N_020W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 42, tzinfo=tzutc()), 'ETag': '\"9e92e63a549928eb0bf9dcd23bba6fe3\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_90N_030W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 43, tzinfo=tzutc()), 'ETag': '\"2559306914796d44dde9d281cca5122e\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_90N_040E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 44, tzinfo=tzutc()), 'ETag': '\"232fbe0555594a047fd56bcf32f993b4\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_90N_040W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 45, tzinfo=tzutc()), 'ETag': '\"b714551b331ed82ac6ae879a91139b1d\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_90N_050E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 46, tzinfo=tzutc()), 'ETag': '\"cbb8011080cf7e065b3f2f90690021fe\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_90N_050W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 47, tzinfo=tzutc()), 'ETag': '\"e09dffacda74cc257c0cad663784c72f\"', 'Size': 4320504, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_90N_060E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 48, tzinfo=tzutc()), 'ETag': '\"e035a07c0882cbf65ecb429646248df3\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_90N_060W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 49, tzinfo=tzutc()), 'ETag': '\"4124551386df51e777850f8be182de33\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_90N_070E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 49, tzinfo=tzutc()), 'ETag': '\"ae240e87a4346aa7786bbf8b93ab4ab4\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_90N_070W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 50, tzinfo=tzutc()), 'ETag': '\"cdba1c623df88b9ca4347d1024a8b567\"', 'Size': 4320504, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_90N_080E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 51, tzinfo=tzutc()), 'ETag': '\"65c9cbacb734ee7fc9aeed5d0e284a0a\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_90N_080W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 52, tzinfo=tzutc()), 'ETag': '\"602047f0205ab3eb9d4c49f93fe406a0\"', 'Size': 4320504, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_90N_090E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 53, tzinfo=tzutc()), 'ETag': '\"e871bc905d96c402f4cb798b7635ce09\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_90N_090W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 54, tzinfo=tzutc()), 'ETag': '\"6baf772c6c5da46e38a945f80bd05fc9\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_90N_100E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 55, tzinfo=tzutc()), 'ETag': '\"15e81f78901b3e71713bf71e9c0cda72\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_90N_100W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 56, tzinfo=tzutc()), 'ETag': '\"dc006c7551128f57c89190eae5f09ec5\"', 'Size': 4320504, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_90N_110E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 57, tzinfo=tzutc()), 'ETag': '\"290ed02fc73bad7f8333de6fc46624fe\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_90N_110W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 57, tzinfo=tzutc()), 'ETag': '\"4bfca903f5235af102bd2da54bd835f6\"', 'Size': 4320504, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_90N_120E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 58, tzinfo=tzutc()), 'ETag': '\"69d013bc3109acb0f5e788b22b550819\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_90N_120W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 59, tzinfo=tzutc()), 'ETag': '\"db9597de9e21505af747d34df6b24908\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_90N_130E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 44, tzinfo=tzutc()), 'ETag': '\"34ac8e41d92bf15a85ff6896b744f939\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_90N_130W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 44, 1, tzinfo=tzutc()), 'ETag': '\"05421d7b4c14bafcb9285bdf95b207bb\"', 'Size': 4320504, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_90N_140E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 44, 2, tzinfo=tzutc()), 'ETag': '\"43738a4d7eea85fc215c67942011d042\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_90N_140W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 44, 3, tzinfo=tzutc()), 'ETag': '\"d39d5497b4af391e68d1535b9596b390\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_90N_150E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 44, 4, tzinfo=tzutc()), 'ETag': '\"5b94636fa4a735e8424438e78b48f9c6\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_90N_160E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 44, 5, tzinfo=tzutc()), 'ETag': '\"afa987c87fa9075d302e0c1d064df3a8\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}], 'Name': 'maap-ops-workspace', 'Prefix': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_', 'MaxKeys': 1000, 'EncodingType': 'url', 'KeyCount': 452}\n", + "{'ResponseMetadata': {'RequestId': '052XWMFSSQ2H6XNM', 'HostId': 'xnGCxdWRsJHw7p3YC6XQLYMs0LQQykyR0psSrvOJB3kSNfb32VFjcASt8Ig/3xvb0nXC8hScb5s=', 'HTTPStatusCode': 200, 'HTTPHeaders': {'x-amz-id-2': 'xnGCxdWRsJHw7p3YC6XQLYMs0LQQykyR0psSrvOJB3kSNfb32VFjcASt8Ig/3xvb0nXC8hScb5s=', 'x-amz-request-id': '052XWMFSSQ2H6XNM', 'date': 'Thu, 22 Feb 2024 18:48:55 GMT', 'x-amz-bucket-region': 'us-west-2', 'content-type': 'application/xml', 'transfer-encoding': 'chunked', 'server': 'AmazonS3'}, 'RetryAttempts': 1}, 'IsTruncated': False, 'Contents': [{'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_000E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 21, 38, tzinfo=tzutc()), 'ETag': '\"ce9983a070f5f1b095cc6de09c76f41c\"', 'Size': 6202639, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_010E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 21, 41, tzinfo=tzutc()), 'ETag': '\"3a273064856101520311fe163591d53c-1\"', 'Size': 126903451, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_010W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 21, 43, tzinfo=tzutc()), 'ETag': '\"120f757937478fe7f2e7d8f5fa1168e1\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_020E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 21, 50, tzinfo=tzutc()), 'ETag': '\"a638d7ca05da726ed2357e5b39d19ce1-1\"', 'Size': 155480005, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_020W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 21, 53, tzinfo=tzutc()), 'ETag': '\"2bcafd712390028fe2b770c2dddd653b\"', 'Size': 4335357, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_030E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 21, 57, tzinfo=tzutc()), 'ETag': '\"4d288ef74f2e3446a54debf2eb2b7608-1\"', 'Size': 179447544, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_030W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 22, tzinfo=tzutc()), 'ETag': '\"9e78b00d4ed002fcc77a489c64e139a7\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_040E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 22, 1, tzinfo=tzutc()), 'ETag': '\"e6f27f684b963ea9f1c73a96c2c76ca9\"', 'Size': 11294296, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_040W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 22, 3, tzinfo=tzutc()), 'ETag': '\"68cb6cd7303ad3c00f56a374a424237b-1\"', 'Size': 37861291, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_050E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 22, 4, tzinfo=tzutc()), 'ETag': '\"e962b1c9dab6c057922f348ae363727c\"', 'Size': 4418701, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_050W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 22, 9, tzinfo=tzutc()), 'ETag': '\"4740a65371c9cd8bb9c2a82dfc3c7e4f-1\"', 'Size': 161354155, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_060E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 22, 12, tzinfo=tzutc()), 'ETag': '\"acd278460816bca421b36875c3a7df38\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_060W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 22, 14, tzinfo=tzutc()), 'ETag': '\"92f2efbefe837f9602d4b3c2d5fee36c-1\"', 'Size': 78602573, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_070E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 22, 15, tzinfo=tzutc()), 'ETag': '\"7cff707d3c4bb0a4c1b61102a41f32ed\"', 'Size': 4387258, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_070W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 22, 16, tzinfo=tzutc()), 'ETag': '\"2067dd3241a956b69853436806729762-1\"', 'Size': 46443625, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_080E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 22, 18, tzinfo=tzutc()), 'ETag': '\"66f8e2b00c8911ff72693e31e0b724cf\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_080W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 22, 20, tzinfo=tzutc()), 'ETag': '\"6cf6bd3413ea337200abb3503720bd6e-1\"', 'Size': 74060164, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_090E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 22, 21, tzinfo=tzutc()), 'ETag': '\"ed456864b3b7a3b9c5104734f629a385\"', 'Size': 4913775, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_090W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 22, 23, tzinfo=tzutc()), 'ETag': '\"074650ca7f912d9e5d2f8182f0ff3a27\"', 'Size': 13681502, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_100E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 22, 26, tzinfo=tzutc()), 'ETag': '\"b708de18ae8a76ce33dfc9fe4642f754-1\"', 'Size': 56430678, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_100W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 22, 27, tzinfo=tzutc()), 'ETag': '\"07dafcc98af08389d807e4c007757e85\"', 'Size': 4980146, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_110E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 22, 29, tzinfo=tzutc()), 'ETag': '\"03e7d3de768643f5c331423e96329647-1\"', 'Size': 64408424, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_120E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 22, 31, tzinfo=tzutc()), 'ETag': '\"778ed27f66f6a00dbfdf38eafa94a842-1\"', 'Size': 34528844, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_130E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 22, 33, tzinfo=tzutc()), 'ETag': '\"ea80d94149f7bed2c239e798568e47cb-1\"', 'Size': 27988387, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_130W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 22, 34, tzinfo=tzutc()), 'ETag': '\"f14f581c73188d08d773671b1dfdc4e3\"', 'Size': 4320504, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_140E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 22, 36, tzinfo=tzutc()), 'ETag': '\"825e3980bf7a09e89f1e98e1f9e7c6e6-1\"', 'Size': 38570842, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_140W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 22, 37, tzinfo=tzutc()), 'ETag': '\"d0de60e5d97dc1d219ae5a64c7b20f93\"', 'Size': 4514266, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_150E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 22, 38, tzinfo=tzutc()), 'ETag': '\"5eaad1a2818a39428ef226ff080c4afd\"', 'Size': 9385640, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_150W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 22, 39, tzinfo=tzutc()), 'ETag': '\"ab9d70c29366d1bf4da169b798a6e11c\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_160E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 22, 40, tzinfo=tzutc()), 'ETag': '\"cde39759b71ebcd73bca170b32a01161\"', 'Size': 5328362, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_160W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 22, 41, tzinfo=tzutc()), 'ETag': '\"cc9708ecf45b165a6c61ad8501f6dd18\"', 'Size': 4333776, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_170E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 22, 41, tzinfo=tzutc()), 'ETag': '\"0baeb0adf74bb55abb814ea944d029b1\"', 'Size': 4430245, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_170W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 22, 42, tzinfo=tzutc()), 'ETag': '\"af1d21a707b8b65d710b251ef7e80fd8\"', 'Size': 4320495, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_00N_180W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 22, 43, tzinfo=tzutc()), 'ETag': '\"bf27a37472745c30a15c3d9b15a53a18\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_000E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 22, 47, tzinfo=tzutc()), 'ETag': '\"a02a63cd47614f6e75c9f4c9832edd64-1\"', 'Size': 106581940, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_010E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 22, 56, tzinfo=tzutc()), 'ETag': '\"f0e02d8ade52c56312bb7092b278cdb6-1\"', 'Size': 142877598, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_010W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 1, tzinfo=tzutc()), 'ETag': '\"45a5d22d35c53bfe7e03f25030c13ef0-1\"', 'Size': 116990147, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_020E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 7, tzinfo=tzutc()), 'ETag': '\"ae0968b9eb8b59cc2269a3a8f1bf1a6b-1\"', 'Size': 176912603, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_020W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 11, tzinfo=tzutc()), 'ETag': '\"dff87550b19bc6697a2112e7e2f71d4c-1\"', 'Size': 33724015, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_030E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 15, tzinfo=tzutc()), 'ETag': '\"622f84ce8a5ce7121702c8123bb42400-1\"', 'Size': 157573375, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_030W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 18, tzinfo=tzutc()), 'ETag': '\"87f5e607906d1c41cd6e275b29dc0b13\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_040E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 19, tzinfo=tzutc()), 'ETag': '\"ef787435e858cbb10e8ca6e8c0fed563-1\"', 'Size': 26993916, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_040W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 20, tzinfo=tzutc()), 'ETag': '\"6a3f66d2da69a5c5243d117fe438d510\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_050E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 21, tzinfo=tzutc()), 'ETag': '\"178171289bca1773999b014131b825c0\"', 'Size': 4320591, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_050W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 22, tzinfo=tzutc()), 'ETag': '\"993825a2ecd8875fc19ff37adc92a8fb\"', 'Size': 4900550, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_060E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 23, tzinfo=tzutc()), 'ETag': '\"6be51001f7234661c0fe02aaa0bfb8b8\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_060W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 25, tzinfo=tzutc()), 'ETag': '\"947211aefb42852b65d7eb62752a2d84-1\"', 'Size': 27605046, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_070E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 27, tzinfo=tzutc()), 'ETag': '\"c2bb4b4566feb9fc8c350b778da50de1\"', 'Size': 14462204, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_070W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 29, tzinfo=tzutc()), 'ETag': '\"368ebe839978af6449a2290a4bd63ceb-1\"', 'Size': 95792028, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_080E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 33, tzinfo=tzutc()), 'ETag': '\"2d39fc75214bb780eb2f218b9113c9b9\"', 'Size': 16675159, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_080W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 36, tzinfo=tzutc()), 'ETag': '\"8039781cd5d763b7b44ce069b4acaa6f-1\"', 'Size': 150010285, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_090E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 40, tzinfo=tzutc()), 'ETag': '\"d1733a1f977168d3896703c39d0b2542-1\"', 'Size': 28242316, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_090W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 41, tzinfo=tzutc()), 'ETag': '\"fafea08590539c03b182d231e6e80d58\"', 'Size': 19255905, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_100E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 43, tzinfo=tzutc()), 'ETag': '\"2d6e2946bcef07b8eaed181ea32bf571-1\"', 'Size': 46042854, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_100W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 45, tzinfo=tzutc()), 'ETag': '\"e945336ef95bf4f7dd28ae983deebc9a\"', 'Size': 4356189, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_110E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 46, tzinfo=tzutc()), 'ETag': '\"ffa57a952e55429024665ae2f8eea6c2-1\"', 'Size': 29542989, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_110W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 48, tzinfo=tzutc()), 'ETag': '\"87f39b54a0004af547e220a5a5c03410\"', 'Size': 4320495, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_120E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 49, tzinfo=tzutc()), 'ETag': '\"62886327c3523e713174508270ecac15-1\"', 'Size': 32351887, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_120W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 50, tzinfo=tzutc()), 'ETag': '\"4f3331e622dc647964e51af801b9c59d\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_130E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 51, tzinfo=tzutc()), 'ETag': '\"6f5b073a9adc4f809ac3d92640533ddd\"', 'Size': 4563172, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_130W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 52, tzinfo=tzutc()), 'ETag': '\"d6fa9b6102eb37aacfeb9fd8888178b9\"', 'Size': 4320504, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_140E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 53, tzinfo=tzutc()), 'ETag': '\"09309bfd27b76df0775c9c68e8e45b50\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_140W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 54, tzinfo=tzutc()), 'ETag': '\"1cc5f5843a516dc23d0c0c12a91ddd13\"', 'Size': 4320504, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_150E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 55, tzinfo=tzutc()), 'ETag': '\"3abbbda4e6563b74daa1f9380fc2bb05\"', 'Size': 4366966, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_150W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 56, tzinfo=tzutc()), 'ETag': '\"a84153a52677e4259e17e68145a0ebf8\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_160E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 57, tzinfo=tzutc()), 'ETag': '\"715e705b56bf41094a4700fb8640b1bf\"', 'Size': 4424847, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_160W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 58, tzinfo=tzutc()), 'ETag': '\"5dec398e601eaf9ccda269116fea0f07\"', 'Size': 4321239, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_170E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 23, 59, tzinfo=tzutc()), 'ETag': '\"ce02fe09094f277be7eb3e4ab79afda7\"', 'Size': 4531188, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10N_170W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 24, tzinfo=tzutc()), 'ETag': '\"29ec3f3e499a4b80f7eab786e2528c2e\"', 'Size': 4320495, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_000E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 24, tzinfo=tzutc()), 'ETag': '\"8f5a390384b4d2412cf35cec9a5b7a70\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_010E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 24, 3, tzinfo=tzutc()), 'ETag': '\"4eabf80595828197c5ed473fd24db26c-1\"', 'Size': 115371458, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_010W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 24, 6, tzinfo=tzutc()), 'ETag': '\"a1aa49d474c7c77e99fa67bbf7fafd8d\"', 'Size': 4350107, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_020E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 24, 12, tzinfo=tzutc()), 'ETag': '\"5706e810e01b7d043837e12d1fe81615-1\"', 'Size': 209066850, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_030E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 30, 57, tzinfo=tzutc()), 'ETag': '\"f4a358b401e0fbaf82f9aada82ca4745-1\"', 'Size': 236474610, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_040E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 31, 3, tzinfo=tzutc()), 'ETag': '\"114831d2b1c699e63011f2e483888a61-1\"', 'Size': 81212943, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_040W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 31, 5, tzinfo=tzutc()), 'ETag': '\"402453eb835f87e0cdbc842e2dcabf85-1\"', 'Size': 33511632, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_050E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 31, 6, tzinfo=tzutc()), 'ETag': '\"01e5217648a5160ac7f996985b30d868\"', 'Size': 6874430, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_050W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 31, 13, tzinfo=tzutc()), 'ETag': '\"a545398796d2562803a2ca50cb9eceef-1\"', 'Size': 215563720, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_060E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 31, 16, tzinfo=tzutc()), 'ETag': '\"70e429e55719015748ecdee9f0db128e\"', 'Size': 4371988, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_060W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 31, 20, tzinfo=tzutc()), 'ETag': '\"f6f6d2e42aedc3b4a94cabff47e7c725-1\"', 'Size': 156960049, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_070E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 31, 23, tzinfo=tzutc()), 'ETag': '\"00b6cc1aac3aaa84ca5d80f0a6107269\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_070W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 31, 26, tzinfo=tzutc()), 'ETag': '\"26a8b16c68fb681f286ffca8b4d3629c-1\"', 'Size': 109855381, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_080W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 31, 30, tzinfo=tzutc()), 'ETag': '\"fa18f1f9aba86e96927346a079f6be5f-1\"', 'Size': 26378447, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_090W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 31, 31, tzinfo=tzutc()), 'ETag': '\"139509dce3c5efd255dad97c22994b8a\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_100E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 31, 32, tzinfo=tzutc()), 'ETag': '\"645674b831dd001ebf86814389e0aaf7\"', 'Size': 4346432, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_100W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 31, 33, tzinfo=tzutc()), 'ETag': '\"e865ec2bad890ce71d58817bfc687b4a\"', 'Size': 4320504, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_110E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 31, 34, tzinfo=tzutc()), 'ETag': '\"37e5c310fe9efd2d01740a54f160ba54\"', 'Size': 4335924, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_110W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 31, 36, tzinfo=tzutc()), 'ETag': '\"88ab0cb6058104f0f6eb0adcdce0c2f1\"', 'Size': 4320504, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_120E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 31, 38, tzinfo=tzutc()), 'ETag': '\"72024b3b7dd9045e73e59be8251396f5-1\"', 'Size': 74128235, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_120W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 31, 40, tzinfo=tzutc()), 'ETag': '\"92a48644cfa53ef619c496b47712b2e2\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_130E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 31, 44, tzinfo=tzutc()), 'ETag': '\"49f62071077134fb22ff4b77e3c54bc9-1\"', 'Size': 119574966, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_130W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 31, 46, tzinfo=tzutc()), 'ETag': '\"015fde078539e2e853dc28b3fad6a4ed\"', 'Size': 4320495, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_140E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 31, 49, tzinfo=tzutc()), 'ETag': '\"4521e7120b1b8a3a3496326eb188977e-1\"', 'Size': 86774285, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_140W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 31, 51, tzinfo=tzutc()), 'ETag': '\"aa595c1fa91707b68c178093e815fd9d\"', 'Size': 4376684, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_150E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 31, 52, tzinfo=tzutc()), 'ETag': '\"1e18983c94bc03e9eb0aa7b9ac5ed757\"', 'Size': 4995720, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_150W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 31, 53, tzinfo=tzutc()), 'ETag': '\"11ec14a1f78e96c5946eb95da5fa9bae\"', 'Size': 4786003, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_160E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 31, 54, tzinfo=tzutc()), 'ETag': '\"d192900d0f8ecea7441db52234b51d93\"', 'Size': 5972888, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_160W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 31, 55, tzinfo=tzutc()), 'ETag': '\"6b8d1f9c1425278e58f08bb8b770c22f\"', 'Size': 4489372, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_170E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 31, 56, tzinfo=tzutc()), 'ETag': '\"7c92d84fc96740f884dcd13ff503f8b8\"', 'Size': 8210746, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_170W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 31, 57, tzinfo=tzutc()), 'ETag': '\"c164f285094f0d3b2e99e8a4230e4571\"', 'Size': 4386107, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_10S_180W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 31, 58, tzinfo=tzutc()), 'ETag': '\"5a09d4fb6034b2c17a38893b94dbb5bf\"', 'Size': 5356998, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_000E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 32, tzinfo=tzutc()), 'ETag': '\"f2e1c66de0378b2df89f8f580e0b352b\"', 'Size': 26124213, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_010E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 32, 2, tzinfo=tzutc()), 'ETag': '\"d500ac7964c0bb381cb4765fca571e97\"', 'Size': 24084850, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_010W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 32, 4, tzinfo=tzutc()), 'ETag': '\"e2215cb673cbf8dbc607a0e4dfd243f7-1\"', 'Size': 52576378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_020E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 32, 6, tzinfo=tzutc()), 'ETag': '\"2090adf4cc48bae236f19196ecdae8b7\"', 'Size': 19626192, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_020W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 32, 9, tzinfo=tzutc()), 'ETag': '\"1ce9eacfe28066ffd9cba607bc302ebc-1\"', 'Size': 74179655, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_030E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 32, 12, tzinfo=tzutc()), 'ETag': '\"005d0b3ecf199f45b01e9f23bb2f02ce-1\"', 'Size': 48281291, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_030W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 32, 14, tzinfo=tzutc()), 'ETag': '\"bc3479e22696c44f45a4e0d02483dc08\"', 'Size': 4567925, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_040E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 32, 15, tzinfo=tzutc()), 'ETag': '\"c58acda7f968cc3690efbb46e793e9e8\"', 'Size': 8650697, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_050E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 32, 16, tzinfo=tzutc()), 'ETag': '\"7b4a35ddb93879e85fa6fefb93c57e3b\"', 'Size': 4634731, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_050W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 32, 17, tzinfo=tzutc()), 'ETag': '\"b36b42e4bafac44413f57d3cc2756d56\"', 'Size': 4320495, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_060E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 32, 18, tzinfo=tzutc()), 'ETag': '\"8de11d423dac53776f03c35d4b27c3fc\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_060W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 32, 19, tzinfo=tzutc()), 'ETag': '\"349aabced3ed31943da44b89b9f0b902\"', 'Size': 4516341, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_070E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 32, 22, tzinfo=tzutc()), 'ETag': '\"3e073278305150c07c5e2220dd074977-1\"', 'Size': 115070755, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_070W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 32, 25, tzinfo=tzutc()), 'ETag': '\"1f3573240726d4977de8b2d84aa09b40\"', 'Size': 25595832, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_080E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 32, 27, tzinfo=tzutc()), 'ETag': '\"e88e3dc93582d3d256735ff399e0a462-1\"', 'Size': 44446716, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_080W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 32, 29, tzinfo=tzutc()), 'ETag': '\"5e199440d3bd5267f129c84b70e01d62-1\"', 'Size': 38738539, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_090E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 32, 32, tzinfo=tzutc()), 'ETag': '\"c13729ec0d8895e13af71a5c88c71964-1\"', 'Size': 62968797, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_090W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 32, 35, tzinfo=tzutc()), 'ETag': '\"417aa23483afcb0f493f1e30133525f6-1\"', 'Size': 90438362, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_100E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 32, 41, tzinfo=tzutc()), 'ETag': '\"c1eb8a818e9d15bdcd2c55dedfd6d3d0-1\"', 'Size': 156461177, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_100W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 32, 46, tzinfo=tzutc()), 'ETag': '\"b1e2b3d2e36b0a40e0f1c27138a8d526-1\"', 'Size': 95438111, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_110E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 32, 48, tzinfo=tzutc()), 'ETag': '\"7a0e0b6e6eccd33c4a39935aaa90ee27\"', 'Size': 9494351, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_110W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 32, 50, tzinfo=tzutc()), 'ETag': '\"aa8b8a1cc521b101d4b3969e7849446c-1\"', 'Size': 33733961, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_120E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 32, 52, tzinfo=tzutc()), 'ETag': '\"d8a14af6d2510e2ef2f65fd405a095dc-1\"', 'Size': 40611899, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_120W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 32, 54, tzinfo=tzutc()), 'ETag': '\"63a7251692e8305212504623ed146c85\"', 'Size': 4366876, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_130E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 32, 55, tzinfo=tzutc()), 'ETag': '\"e4b402c15b084c7bbb8531d330f06939\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_140E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 32, 56, tzinfo=tzutc()), 'ETag': '\"d47646b877216d004329d6e862c56095\"', 'Size': 4688046, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_150E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 32, 56, tzinfo=tzutc()), 'ETag': '\"1fca2d3a3b9f8063e75c36083f77d2f3\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_150W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 32, 58, tzinfo=tzutc()), 'ETag': '\"5e7bd7f13738416ab469e6fb57623d73\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_160E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 32, 58, tzinfo=tzutc()), 'ETag': '\"d48aa7ecc775a3f3074e36659d894425\"', 'Size': 4357681, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_160W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, tzinfo=tzutc()), 'ETag': '\"f064431f0764e5765b6ea65c87ea7a59\"', 'Size': 6056524, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_170E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, 1, tzinfo=tzutc()), 'ETag': '\"4e94de3b38e8a76f903ac7cbf9b54e36\"', 'Size': 4323139, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20N_170W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, 2, tzinfo=tzutc()), 'ETag': '\"72fc863442c3bd9fa635aa72751a7119\"', 'Size': 4320504, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_000E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, 2, tzinfo=tzutc()), 'ETag': '\"98da8694becfb7a8d003b4801695fa48\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_010E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, 3, tzinfo=tzutc()), 'ETag': '\"88f8fafa51dcc6db1eb591745a47a500\"', 'Size': 7190616, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_010W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, 5, tzinfo=tzutc()), 'ETag': '\"e173e86ddf9f3360785b48c024eadf86\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_020E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, 7, tzinfo=tzutc()), 'ETag': '\"9192188ad611f8bf757e1050e62b08e3-1\"', 'Size': 68453235, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_020W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, 9, tzinfo=tzutc()), 'ETag': '\"23d3ba890afedfd1390a8837faa6ce07\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_030E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, 11, tzinfo=tzutc()), 'ETag': '\"8a698bc09e08859fe4512664b0663b57-1\"', 'Size': 109784856, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_040E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, 14, tzinfo=tzutc()), 'ETag': '\"0e682511ee50511b03643015fb46dffb-1\"', 'Size': 45683868, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_040W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, 16, tzinfo=tzutc()), 'ETag': '\"7c8e7b13acc1edb55eb54883ce75790d\"', 'Size': 4320495, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_050E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, 17, tzinfo=tzutc()), 'ETag': '\"061fc1559d4dc290cfe882309cecaf85\"', 'Size': 5978012, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_050W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, 19, tzinfo=tzutc()), 'ETag': '\"3cdd66f952258a659a124ba7b8d3ce8a-1\"', 'Size': 100883603, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_060E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, 22, tzinfo=tzutc()), 'ETag': '\"cacf8bc86331a6a326f46fce564a3959\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_060W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, 28, tzinfo=tzutc()), 'ETag': '\"266c0ae3dea44036a132d48de6b7e4e1-1\"', 'Size': 200140569, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_070E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, 30, tzinfo=tzutc()), 'ETag': '\"4b4d8a221ee43a9d3772316df12a54ea\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_070W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, 34, tzinfo=tzutc()), 'ETag': '\"9fda6dc174aa81463af7578c591037ff-1\"', 'Size': 121402796, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_080W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, 37, tzinfo=tzutc()), 'ETag': '\"a59be46a51b1397963e0dbe36b52a277\"', 'Size': 4634564, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_090W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, 38, tzinfo=tzutc()), 'ETag': '\"3e137480f49aca79646a0126c4f9306f\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_100E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, 39, tzinfo=tzutc()), 'ETag': '\"c7193b715fd44951a0cefb283c84e6b4\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_100W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, 40, tzinfo=tzutc()), 'ETag': '\"71ea011b3a461bbb8fdd1aec7be8782e\"', 'Size': 4320504, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_110E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, 42, tzinfo=tzutc()), 'ETag': '\"6a157055f551f0eaa4ee41c1c4bb1bbf-1\"', 'Size': 36630198, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_110W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, 43, tzinfo=tzutc()), 'ETag': '\"969a6fd336e808b57b35da2de34b2be2\"', 'Size': 4363450, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_120E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, 44, tzinfo=tzutc()), 'ETag': '\"5ce05b0ce36b2f4cc2cb74d08011ec60-1\"', 'Size': 46828540, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_120W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, 46, tzinfo=tzutc()), 'ETag': '\"a07c817e52e6125c114c15fc57f9b1f3\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_130E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, 47, tzinfo=tzutc()), 'ETag': '\"5468f9965c8a958106c722474994987a-1\"', 'Size': 37662702, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_130W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, 49, tzinfo=tzutc()), 'ETag': '\"238faa799aacabab8299d18a6992d6d6\"', 'Size': 4343913, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_140E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, 53, tzinfo=tzutc()), 'ETag': '\"4e6af1273def7c78e9dab043b9b82eef-1\"', 'Size': 154674162, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_140W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, 55, tzinfo=tzutc()), 'ETag': '\"87aea6ec479a3588b6a9167c870b1d59\"', 'Size': 4365426, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_150E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, 56, tzinfo=tzutc()), 'ETag': '\"8a24d797b83e22e50c910f42b37e5a1b-1\"', 'Size': 46626691, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_150W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, 58, tzinfo=tzutc()), 'ETag': '\"f9b8055bbf5bf486906ceaaf484f2172\"', 'Size': 4370295, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_160E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 33, 59, tzinfo=tzutc()), 'ETag': '\"bacf2e323b48123cfec6458f1612fcd6\"', 'Size': 9296057, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_160W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 34, tzinfo=tzutc()), 'ETag': '\"961baf3e1b7cfce342fef6c597d387fd\"', 'Size': 4383236, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_170E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 34, 1, tzinfo=tzutc()), 'ETag': '\"dae88ac7a8ec3bc7f3cac95466f338e1\"', 'Size': 4321176, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_170W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 34, 2, tzinfo=tzutc()), 'ETag': '\"da72ddf467f76a896ee325429ab0b38a\"', 'Size': 4320495, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_20S_180W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 34, 3, tzinfo=tzutc()), 'ETag': '\"ca4a9bf245ae9cdb22a07a853a0af406\"', 'Size': 4519880, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_000E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 34, 4, tzinfo=tzutc()), 'ETag': '\"c4f27f053e18e992dbe2420629cbf299\"', 'Size': 5014225, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_010E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 34, 5, tzinfo=tzutc()), 'ETag': '\"402a735f51057d9e50aa87b483d40bd1\"', 'Size': 5392531, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_010W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 34, 6, tzinfo=tzutc()), 'ETag': '\"957ca7c40b43137298a578f3d6f4b239\"', 'Size': 5050062, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_020E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 34, 7, tzinfo=tzutc()), 'ETag': '\"7675a175a0c84a7c68d54f06293b1464\"', 'Size': 5172072, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_020W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 34, 8, tzinfo=tzutc()), 'ETag': '\"f1613347d469d9985e5d3aba98b4b150\"', 'Size': 5674890, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_030E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 34, 9, tzinfo=tzutc()), 'ETag': '\"812dcc01191ae2c81489d6c2cf77740c\"', 'Size': 10577111, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_030W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 34, 10, tzinfo=tzutc()), 'ETag': '\"f6e59176b1dd67b28f417d8e73a4937f\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_040E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 34, 11, tzinfo=tzutc()), 'ETag': '\"ab7b957527c509f9c5a8dfe157a90e8b\"', 'Size': 6630524, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_050E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 34, 12, tzinfo=tzutc()), 'ETag': '\"1294694d3ec51c75c45dc18771802757\"', 'Size': 10750645, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_050W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 34, 13, tzinfo=tzutc()), 'ETag': '\"b2f198ea236640682db9c7834fa98168\"', 'Size': 4320504, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_060E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 34, 15, tzinfo=tzutc()), 'ETag': '\"74b3cf108e649b646bfb097c6e9b657d\"', 'Size': 16126701, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_060W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 34, 16, tzinfo=tzutc()), 'ETag': '\"12f464e4c6b75e290008a2f48868bdca\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_070E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 34, 18, tzinfo=tzutc()), 'ETag': '\"bda2c30537cf1b4f0ef6494bee645316-1\"', 'Size': 126185702, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_070W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 34, 21, tzinfo=tzutc()), 'ETag': '\"31398602880f8a93bdb90fb5975e85b0\"', 'Size': 4320495, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_080E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 34, 25, tzinfo=tzutc()), 'ETag': '\"6fce4235d09b888d02fc4cacb4186c3d-1\"', 'Size': 185518261, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_080W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 34, 28, tzinfo=tzutc()), 'ETag': '\"85646deb33b06328d680c4831a4f6478\"', 'Size': 21387372, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_090E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 34, 32, tzinfo=tzutc()), 'ETag': '\"e1575cd186e817c8acd120ec51fa15c8-1\"', 'Size': 154500023, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_090W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 34, 36, tzinfo=tzutc()), 'ETag': '\"a95848d4d8cac79b47a0fc2900c9a8e2-1\"', 'Size': 45534831, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_100E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 34, 43, tzinfo=tzutc()), 'ETag': '\"aba7ec354d557bc96c97b490b12b13b3-1\"', 'Size': 244398518, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_100W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 34, 47, tzinfo=tzutc()), 'ETag': '\"727b6f5926079ab51850d57fd2be1b57-1\"', 'Size': 78044215, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_110E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 34, 52, tzinfo=tzutc()), 'ETag': '\"b410e8e200a716dae904dc9f8adfdbf0-1\"', 'Size': 163989207, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_110W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 34, 57, tzinfo=tzutc()), 'ETag': '\"36bf7a54493e3f18c0dcc7cc965aa728-1\"', 'Size': 117869668, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_120E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 34, 59, tzinfo=tzutc()), 'ETag': '\"507526cfc318b4c94a7eef340e4fd24b\"', 'Size': 23140292, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_120W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 1, tzinfo=tzutc()), 'ETag': '\"74b6e78121e0d2e414018c5c26395106\"', 'Size': 10503461, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_130E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 2, tzinfo=tzutc()), 'ETag': '\"ac36c757878b9b933d27771c46231328\"', 'Size': 4331157, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_130W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 3, tzinfo=tzutc()), 'ETag': '\"398ad2c5f02abf1bfcdfac599acab4bc\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_140E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 3, tzinfo=tzutc()), 'ETag': '\"9404cea71168059ae1115bf64c082b4a\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_150E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 4, tzinfo=tzutc()), 'ETag': '\"afd5682782a2d55984288474f58537ba\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_150W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 5, tzinfo=tzutc()), 'ETag': '\"b7b1bf972f1ea7bc58143bdf04257ee5\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_160E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 6, tzinfo=tzutc()), 'ETag': '\"1e1ec437051abf9b8c90bd1c4522959c\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_160W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 7, tzinfo=tzutc()), 'ETag': '\"b67d0c191b80101b00d642b4d2ea2db0\"', 'Size': 6331696, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_170E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 8, tzinfo=tzutc()), 'ETag': '\"ea5df7de13a9bcbda270334e3a34eb00\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30N_170W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 9, tzinfo=tzutc()), 'ETag': '\"e2d1ee3f6ba15275d777c8eae72b9558\"', 'Size': 4405583, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30S_010E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 10, tzinfo=tzutc()), 'ETag': '\"4cfed3f4abc43406c971577a91b1e626\"', 'Size': 8253500, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30S_010W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 11, tzinfo=tzutc()), 'ETag': '\"4f76964c17fdd10fdc190baeb7cedf4b\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30S_020E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 13, tzinfo=tzutc()), 'ETag': '\"9d7cba8373379a8f51c015c4ad9e8bd4-1\"', 'Size': 26774854, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30S_020W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 14, tzinfo=tzutc()), 'ETag': '\"ba8f8f8f8975d87ce49c408d15039c2d\"', 'Size': 4371063, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30S_030E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 15, tzinfo=tzutc()), 'ETag': '\"f5229bcb77d48c148e4fa5400bda8888\"', 'Size': 6888715, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30S_040E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 16, tzinfo=tzutc()), 'ETag': '\"7ff43692d9dcf5cf458f03d3028c2066\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30S_040W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 17, tzinfo=tzutc()), 'ETag': '\"11b49aa1fc40e196ce2016abede5c728\"', 'Size': 4320504, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30S_050E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 18, tzinfo=tzutc()), 'ETag': '\"37c3c646fd4888a15ed841711595b902\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30S_050W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 19, tzinfo=tzutc()), 'ETag': '\"8f656ef89382bd1ce2ccf7de92dd94dc\"', 'Size': 4320495, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30S_060W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 21, tzinfo=tzutc()), 'ETag': '\"2632ade761bd89eb49c0cb3156196dd6-1\"', 'Size': 63192456, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30S_070W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 23, tzinfo=tzutc()), 'ETag': '\"2919682fa60ee2fd23b0ad1e96035002-1\"', 'Size': 40700679, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30S_080W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 25, tzinfo=tzutc()), 'ETag': '\"4dd3b04f502593d924d65972db753117-1\"', 'Size': 44706999, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30S_090W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 26, tzinfo=tzutc()), 'ETag': '\"f042c7c5449b6470fc74573f9c9db1ee\"', 'Size': 4343130, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30S_110E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 27, tzinfo=tzutc()), 'ETag': '\"d5f16ba09c8aeee0b9befa2975cf6009-1\"', 'Size': 38041527, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30S_120E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 29, tzinfo=tzutc()), 'ETag': '\"cf24c5d85d68c585da737c32c34237b3-1\"', 'Size': 54534819, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30S_130E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 31, tzinfo=tzutc()), 'ETag': '\"ecf9c2a8d07c4b9f81044b20b8019ec3-1\"', 'Size': 34025677, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30S_140E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 35, tzinfo=tzutc()), 'ETag': '\"9f5e3b9748e39a16b18dc35c2ecf8f7d-1\"', 'Size': 116657564, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30S_150E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 38, tzinfo=tzutc()), 'ETag': '\"4a79ba153cbe64fd76c2211425caae82-1\"', 'Size': 27171496, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30S_160E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 39, tzinfo=tzutc()), 'ETag': '\"2e591153e19cb9e36fd1b9458b9a4c4a\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30S_170E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 40, tzinfo=tzutc()), 'ETag': '\"478244e92afd7268564a15806dc40263\"', 'Size': 25821391, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30S_170W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 41, tzinfo=tzutc()), 'ETag': '\"6fd168ad9c6f0736c422a3bec903e015\"', 'Size': 4320504, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_30S_180W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 43, tzinfo=tzutc()), 'ETag': '\"7949e2d70506bc9ba4fa64ed069dd2b2\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40N_000E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 44, tzinfo=tzutc()), 'ETag': '\"7b93c5f5662f5fe1e24d8c5d606f84ae-1\"', 'Size': 33595782, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40N_010E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 46, tzinfo=tzutc()), 'ETag': '\"34196b0242a1368c8a2b80061eef5806\"', 'Size': 19760013, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40N_010W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 49, tzinfo=tzutc()), 'ETag': '\"c1d61f6b6535325eb264b13820116753-1\"', 'Size': 88664212, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40N_020E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 53, tzinfo=tzutc()), 'ETag': '\"9998955c49d996ce88617cfd1225ac0d-1\"', 'Size': 57693121, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40N_020W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 54, tzinfo=tzutc()), 'ETag': '\"5c92772d2fc594316fee81afdf5705af\"', 'Size': 4636276, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40N_030E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 57, tzinfo=tzutc()), 'ETag': '\"408e7c80313a2462d440479bbac4aecc-1\"', 'Size': 58013066, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40N_030W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 35, 58, tzinfo=tzutc()), 'ETag': '\"f4a208cb8cf923d8d9bd84b0886d83d3\"', 'Size': 5281763, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40N_040E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 36, tzinfo=tzutc()), 'ETag': '\"d4e4d899970c27d58e632095ce594367-1\"', 'Size': 43414230, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40N_040W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 36, 1, tzinfo=tzutc()), 'ETag': '\"bbe5f87579e82f382cb7558a9666e7cc\"', 'Size': 4404438, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40N_050E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 36, 3, tzinfo=tzutc()), 'ETag': '\"8cca85edd88e277411640a2dc37d8cd7\"', 'Size': 16296118, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40N_060E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 36, 4, tzinfo=tzutc()), 'ETag': '\"cea3d1b50845d4b63b9cd1c721c1a0d0\"', 'Size': 18569129, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40N_070E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 36, 7, tzinfo=tzutc()), 'ETag': '\"9d79193aace7a63ef1f222a07b073c71-1\"', 'Size': 86726362, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40N_070W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 36, 9, tzinfo=tzutc()), 'ETag': '\"aa9799b3c2e270bcae405009ba97177d\"', 'Size': 4372128, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40N_080E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 36, 10, tzinfo=tzutc()), 'ETag': '\"68eb93407d9d8df848aa747f01f1b604\"', 'Size': 5547117, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40N_080W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 36, 12, tzinfo=tzutc()), 'ETag': '\"1c04aaa7bea11bb37516d7fd5051b277-1\"', 'Size': 65510080, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40N_090E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 36, 15, tzinfo=tzutc()), 'ETag': '\"2a0e539c980e6f159e7a6743157f9ea4\"', 'Size': 20881120, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40N_090W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 36, 21, tzinfo=tzutc()), 'ETag': '\"7ebcacb1aab2e5f7b024963840a7095b-1\"', 'Size': 204145309, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40N_100E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 36, 27, tzinfo=tzutc()), 'ETag': '\"0609638173de40ca5faa85c62adea299-1\"', 'Size': 119027019, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40N_100W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 36, 34, tzinfo=tzutc()), 'ETag': '\"a98c627e8964122fc5fb5730da41c9bc-1\"', 'Size': 198749598, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40N_110E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 36, 42, tzinfo=tzutc()), 'ETag': '\"76ca3e9f0c953d2262cd6d6d5caf1183-1\"', 'Size': 183936610, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40N_110W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 36, 47, tzinfo=tzutc()), 'ETag': '\"26b3ec31f1eee9d023d2f81a0f958986-1\"', 'Size': 95064840, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40N_120E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 36, 51, tzinfo=tzutc()), 'ETag': '\"e8dc82e8326c767b3824058426bf1013-1\"', 'Size': 58555411, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40N_120W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 36, 54, tzinfo=tzutc()), 'ETag': '\"9665f2535e3b1192387a7c3289b3d84b-1\"', 'Size': 88843194, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40N_130E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 36, 57, tzinfo=tzutc()), 'ETag': '\"bf52731eb019573ce15a3eea168fe15d-1\"', 'Size': 37090297, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40N_130W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, tzinfo=tzutc()), 'ETag': '\"cd29b0d59e85e9b4f077017537ca0640-1\"', 'Size': 32093933, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40N_140E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 2, tzinfo=tzutc()), 'ETag': '\"dfd9083dd656928fa53d71d8431c4240\"', 'Size': 14965682, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40N_150W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 3, tzinfo=tzutc()), 'ETag': '\"0687331d7b6e7b177f2ad34850569fa2\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40N_160W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 4, tzinfo=tzutc()), 'ETag': '\"31234702a68d2fd48e0b6278d6ac6f74\"', 'Size': 4320504, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40N_170W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 5, tzinfo=tzutc()), 'ETag': '\"d076838d9ae7c14f97330505652c701c\"', 'Size': 4320504, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40S_010W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 6, tzinfo=tzutc()), 'ETag': '\"eabeeb70af2ff3569134a0b42432c28f\"', 'Size': 4353049, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40S_020W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 6, tzinfo=tzutc()), 'ETag': '\"d21f4f7c1e56e11c14bb35848ddafcf1\"', 'Size': 4322765, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40S_030E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 7, tzinfo=tzutc()), 'ETag': '\"59b51575c84f6c67de5aa4040e8c81a5\"', 'Size': 4333390, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40S_030W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 8, tzinfo=tzutc()), 'ETag': '\"544404cf91f486752f15c0006aaa30bf\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40S_040E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 9, tzinfo=tzutc()), 'ETag': '\"e25d1de746e07f55b48d689affc7fe50\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40S_040W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 10, tzinfo=tzutc()), 'ETag': '\"8fe402325a35e05f37ea729894464357\"', 'Size': 4320504, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40S_050E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 11, tzinfo=tzutc()), 'ETag': '\"efa5e9efc3e74a62d50490775df0d677\"', 'Size': 4337787, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40S_050W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 12, tzinfo=tzutc()), 'ETag': '\"6869a0f9fee001693d7b9e133d3db3c3\"', 'Size': 4320504, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40S_060E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 13, tzinfo=tzutc()), 'ETag': '\"fcdeee027d0993d6b712e23db88be125\"', 'Size': 4725599, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40S_060W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 13, tzinfo=tzutc()), 'ETag': '\"48c30b63699b395a5ded27a7b23ccf86\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40S_070E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 14, tzinfo=tzutc()), 'ETag': '\"a69ec7d0d935077a6d8906d1a2f465fa\"', 'Size': 4400962, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40S_070W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 15, tzinfo=tzutc()), 'ETag': '\"5f6ae43e977ca6c220f06ad0c6a51efa\"', 'Size': 5303426, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40S_080E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 16, tzinfo=tzutc()), 'ETag': '\"a6935154908140fbe0b94a215b136811\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40S_080W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 18, tzinfo=tzutc()), 'ETag': '\"c918048d0566d71b5fe4c59e61d93147-1\"', 'Size': 53006623, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40S_090W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 20, tzinfo=tzutc()), 'ETag': '\"a74e6717101c896e94232a8921372529\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40S_130E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 20, tzinfo=tzutc()), 'ETag': '\"b047a0f37f4f6a90033e72b0c34649b6\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40S_140E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 22, tzinfo=tzutc()), 'ETag': '\"ed2b295b3d11483192b2fe2184b5af34\"', 'Size': 17398828, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40S_150E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 23, tzinfo=tzutc()), 'ETag': '\"63fecd288ac4660037d92e1966e79967\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40S_160E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 24, tzinfo=tzutc()), 'ETag': '\"09d99d3e13d891bf76e8e584f9abe31c\"', 'Size': 16019945, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40S_170E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 25, tzinfo=tzutc()), 'ETag': '\"11f03a7189b6586e0984d020a250ccad\"', 'Size': 24377553, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40S_170W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 26, tzinfo=tzutc()), 'ETag': '\"266d97231f6cb47a3effc58836debd01\"', 'Size': 4320504, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_40S_180W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 27, tzinfo=tzutc()), 'ETag': '\"293564e311a7671eef0a2a919fd97162\"', 'Size': 4594497, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50N_000E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 32, tzinfo=tzutc()), 'ETag': '\"15747992103816b59dc1aea691f55dc2-1\"', 'Size': 164548403, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50N_010E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 37, tzinfo=tzutc()), 'ETag': '\"ba8d50dbab5e9e3fa6c883f85dc54f07-1\"', 'Size': 161602303, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50N_010W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 41, tzinfo=tzutc()), 'ETag': '\"a4f80e499ead6ff466b148d2f9240c82-1\"', 'Size': 104790177, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50N_020E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 46, tzinfo=tzutc()), 'ETag': '\"59742f313be52012e5b633fdb49b5994-1\"', 'Size': 155454016, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50N_020W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 49, tzinfo=tzutc()), 'ETag': '\"5409ede351780bac6f0edd6b7284d125\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50N_030E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 52, tzinfo=tzutc()), 'ETag': '\"370b1c133e52a38869ef5c222e325882-1\"', 'Size': 89007869, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50N_030W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 54, tzinfo=tzutc()), 'ETag': '\"72bd5bafe0c238ebac2b937cb00528b2\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50N_040E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 56, tzinfo=tzutc()), 'ETag': '\"66b6c488e9faa93396eebef1c8062276-1\"', 'Size': 69032010, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50N_040W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 57, tzinfo=tzutc()), 'ETag': '\"89c6ba3a8eb229b6dd536456a0ed30f7\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50N_050E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 58, tzinfo=tzutc()), 'ETag': '\"bec415160bfee5ee027eb95eed9d038a\"', 'Size': 5015185, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50N_050W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 37, 59, tzinfo=tzutc()), 'ETag': '\"923e922bb1712f94a369addd49ca79cd\"', 'Size': 4320504, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50N_060E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 38, tzinfo=tzutc()), 'ETag': '\"a7848aad64c50ce3118b29fc57d9d044\"', 'Size': 8470504, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50N_060W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 38, 2, tzinfo=tzutc()), 'ETag': '\"2a344bafeec992d9e0c32950ccb91d46-1\"', 'Size': 36404385, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50N_070E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 38, 3, tzinfo=tzutc()), 'ETag': '\"5a076f2cf18715fd41094d0350690fd5-1\"', 'Size': 27924377, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50N_070W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 38, 5, tzinfo=tzutc()), 'ETag': '\"dfc122e80301cd14556050b92f354476-1\"', 'Size': 57265723, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50N_080E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 38, 7, tzinfo=tzutc()), 'ETag': '\"f3947de9fe40e33400190bfdc1ebe489-1\"', 'Size': 42796027, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50N_080W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 38, 14, tzinfo=tzutc()), 'ETag': '\"d475b959bd5b1687065349fecf976a39-1\"', 'Size': 160573608, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50N_090E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 38, 18, tzinfo=tzutc()), 'ETag': '\"288a413f284caf8a067dd278e91cfccf\"', 'Size': 14825810, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50N_090W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 38, 22, tzinfo=tzutc()), 'ETag': '\"9e46561ab92b6feac79709b1601ef9f9-1\"', 'Size': 134093907, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50N_100E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 38, 25, tzinfo=tzutc()), 'ETag': '\"cdb1ffabcbf353dfa2bd5b6bd766b4b9-1\"', 'Size': 31817202, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50N_100W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 38, 28, tzinfo=tzutc()), 'ETag': '\"c4595f2a57dc7ae8382510879011c10e-1\"', 'Size': 126617271, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50N_110E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 38, 31, tzinfo=tzutc()), 'ETag': '\"3e1494ecd161182db5a5eca57a62047e-1\"', 'Size': 52897170, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50N_110W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 38, 37, tzinfo=tzutc()), 'ETag': '\"2ac4b78c8e6c040905d900e3d20cfb6c-1\"', 'Size': 61493156, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50N_120E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 38, 41, tzinfo=tzutc()), 'ETag': '\"cd6ad68beb37f73506dbc6dfc7cc3821-1\"', 'Size': 117849108, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50N_120W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 38, 45, tzinfo=tzutc()), 'ETag': '\"27e2827e487f5a9d62bf11bf3b9e5074-1\"', 'Size': 111471915, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50N_130E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 38, 49, tzinfo=tzutc()), 'ETag': '\"1226daf24625477f7dc15da71ecc62da-1\"', 'Size': 53651840, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50N_130W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 38, 51, tzinfo=tzutc()), 'ETag': '\"55ea9f2393c7929fdebecabfe1cd6690-1\"', 'Size': 71908816, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50N_140E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 38, 54, tzinfo=tzutc()), 'ETag': '\"893890b5a243253858b899da47f390bb\"', 'Size': 25365108, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50N_140W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 38, 55, tzinfo=tzutc()), 'ETag': '\"ef45ba9446d426c354ec22d03b213019\"', 'Size': 4320495, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50N_150E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 38, 56, tzinfo=tzutc()), 'ETag': '\"8a994579d712abaa7001ad3f27228a3a\"', 'Size': 5263771, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50N_160E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 38, 57, tzinfo=tzutc()), 'ETag': '\"a0f60b3f1c319fa8bad526e82c0bb9e1\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50S_030W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 38, 58, tzinfo=tzutc()), 'ETag': '\"b70d97c721fd75e1ef249e43563c0077\"', 'Size': 4320444, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50S_040W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 38, 59, tzinfo=tzutc()), 'ETag': '\"025be38a89d791b49b23987ef18cf2fa\"', 'Size': 4410414, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50S_050W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 39, tzinfo=tzutc()), 'ETag': '\"e88adfed32829647ac4c0e30b1c7f5c8\"', 'Size': 4320504, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50S_060E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 39, tzinfo=tzutc()), 'ETag': '\"e2bfc6b444ec1cf1f8847e90bc7dbf39\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50S_060W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 39, 1, tzinfo=tzutc()), 'ETag': '\"ca411cc24394b03ebe3841486ae6e34e\"', 'Size': 4336822, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50S_070E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 39, 2, tzinfo=tzutc()), 'ETag': '\"b5b968cd61c39540c6bbf126eb4bc98d\"', 'Size': 4328896, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50S_070W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 39, 3, tzinfo=tzutc()), 'ETag': '\"182bd654ce79ac9fe40e7beb153dba9a\"', 'Size': 13327324, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50S_080E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 39, 4, tzinfo=tzutc()), 'ETag': '\"70af384012b801ed5caa270a6fad3842\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50S_080W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 39, 5, tzinfo=tzutc()), 'ETag': '\"6623840f6f8502199f1b90785c3d39df-1\"', 'Size': 28317473, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50S_090W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 39, 7, tzinfo=tzutc()), 'ETag': '\"e3c284aff3158ac7e58df56a1bb3e63d\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50S_150E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 39, 8, tzinfo=tzutc()), 'ETag': '\"5e97920bfbce60c5c719eca1da3ed1a8\"', 'Size': 4337877, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50S_160E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 39, 9, tzinfo=tzutc()), 'ETag': '\"d90578735e280833f8fe3a981f66b0aa\"', 'Size': 4619584, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_50S_170E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 39, 10, tzinfo=tzutc()), 'ETag': '\"94b9eeebb98293c258e81abe6971acf2\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_000E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 39, 12, tzinfo=tzutc()), 'ETag': '\"96f7514be7dc205fdfbb28aaa3b49c26-1\"', 'Size': 86906236, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_010E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 39, 17, tzinfo=tzutc()), 'ETag': '\"5afa0e526f22b57e8fa8285539922f2e-1\"', 'Size': 128760203, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_010W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 39, 20, tzinfo=tzutc()), 'ETag': '\"94965817ebd290d184e3e64f7b6013c4-1\"', 'Size': 78941927, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_020E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 39, 24, tzinfo=tzutc()), 'ETag': '\"d46681db06ac00be8eec2efab89c9057-1\"', 'Size': 141095907, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_020W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 39, 27, tzinfo=tzutc()), 'ETag': '\"cf130dd172dfc54602bde21a306818ba\"', 'Size': 4642389, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_030E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 39, 30, tzinfo=tzutc()), 'ETag': '\"12dc14ec861b52b10e57fc93af45c7e1-1\"', 'Size': 146984257, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_040E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 39, 35, tzinfo=tzutc()), 'ETag': '\"fc785862f0536cfa609b535d1fc7bc1c-1\"', 'Size': 110788937, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_040W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 39, 37, tzinfo=tzutc()), 'ETag': '\"26424f6c611276443ea7217d29b3279a\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_050E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 39, 39, tzinfo=tzutc()), 'ETag': '\"6f6babce38728d7a1af32dc634ce93ae-1\"', 'Size': 91084115, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_050W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 39, 40, tzinfo=tzutc()), 'ETag': '\"907b7273510a5a94896e4a7728eb61c4\"', 'Size': 4346265, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_060E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 39, 43, tzinfo=tzutc()), 'ETag': '\"b884159609e540a4da6255d9501d189f-1\"', 'Size': 86035564, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_060W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 39, 45, tzinfo=tzutc()), 'ETag': '\"6fe793071aea4a0eef46994469f1ceaa-1\"', 'Size': 37573471, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_070E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 39, 47, tzinfo=tzutc()), 'ETag': '\"07f1555b476b82d9d2ff5f9936b39a82-1\"', 'Size': 86064712, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_070W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 39, 52, tzinfo=tzutc()), 'ETag': '\"1e74c68bf21b97b845d3299e84f6e46c-1\"', 'Size': 144623433, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_080E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 39, 57, tzinfo=tzutc()), 'ETag': '\"3896984b0ac2801e6c9583143e1e658b-1\"', 'Size': 125884432, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_080W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 40, 2, tzinfo=tzutc()), 'ETag': '\"046fb777578b15d55fb81b74bb4c6e7a-1\"', 'Size': 156815889, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_090E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 40, 7, tzinfo=tzutc()), 'ETag': '\"bba2c096f20b8d6afc62b09509b32c7c-1\"', 'Size': 92303789, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_090W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 40, 11, tzinfo=tzutc()), 'ETag': '\"4f6e0091530f570daab6d32bf3fe5293-1\"', 'Size': 90349423, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_100E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 40, 14, tzinfo=tzutc()), 'ETag': '\"2c2c8b173edd05b841515311a46d639b-1\"', 'Size': 90960768, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_100W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 40, 20, tzinfo=tzutc()), 'ETag': '\"9741d37d817e80ee253f27d93a96517f-1\"', 'Size': 162744493, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_110E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 40, 26, tzinfo=tzutc()), 'ETag': '\"47df381892038977be3baf4535abad93-1\"', 'Size': 133961271, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_110W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 40, 33, tzinfo=tzutc()), 'ETag': '\"ad01c298ca69d2fc54f634823b0881dd-1\"', 'Size': 160451813, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_120E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 40, 38, tzinfo=tzutc()), 'ETag': '\"56a61d49b45eb9b04882e350012ea249-1\"', 'Size': 123970084, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_120W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 40, 43, tzinfo=tzutc()), 'ETag': '\"24e170400df07dd08c86040ebf2164ba-1\"', 'Size': 145358872, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_130E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 40, 48, tzinfo=tzutc()), 'ETag': '\"89e7e01f51ef33829b3889b5622e978a-1\"', 'Size': 118395422, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_130W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 40, 53, tzinfo=tzutc()), 'ETag': '\"1ab6e43fa8b3ed3f82d6ce0847deb0d1-1\"', 'Size': 124802846, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_140E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 40, 57, tzinfo=tzutc()), 'ETag': '\"de1c68052e7c9d888c5aaca19f5f60d7-1\"', 'Size': 31095140, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_140W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 40, 59, tzinfo=tzutc()), 'ETag': '\"9bfc760853310d382010465790a8547f-1\"', 'Size': 43689288, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_150E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 41, 2, tzinfo=tzutc()), 'ETag': '\"cc1b01add06756c9d582c8c782fa460a-1\"', 'Size': 57199976, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_150W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 41, 3, tzinfo=tzutc()), 'ETag': '\"cdf4c8773b774c2d1cff05ed9ddd2d2f\"', 'Size': 5252539, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_160E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 41, 5, tzinfo=tzutc()), 'ETag': '\"df8477e3b38fd2d75359d95d311768c0-1\"', 'Size': 35120453, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_160W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 41, 7, tzinfo=tzutc()), 'ETag': '\"40cad83d1da6640cd8b7e52ba0e4eeeb\"', 'Size': 23253458, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_170E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 41, 8, tzinfo=tzutc()), 'ETag': '\"b985c1f2b4c849ac998c9649adfb6bcf\"', 'Size': 4597541, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_170W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 41, 9, tzinfo=tzutc()), 'ETag': '\"ffb2a7d22f1271d534364daa9e109edd\"', 'Size': 6619165, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_60N_180W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 41, 10, tzinfo=tzutc()), 'ETag': '\"6445c77a83be5d2d6895d324f4c8a8b7\"', 'Size': 4615551, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_000E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 41, 11, tzinfo=tzutc()), 'ETag': '\"5f7b2f00acc5d14d3e29b4249646c799-1\"', 'Size': 26329185, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_010E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 41, 14, tzinfo=tzutc()), 'ETag': '\"81efe9220bd339864e73fa527fdb6df0-1\"', 'Size': 108807367, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_010W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 41, 17, tzinfo=tzutc()), 'ETag': '\"1d42e60348edae61a81b957fc479dea7\"', 'Size': 4658848, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_020E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 41, 20, tzinfo=tzutc()), 'ETag': '\"003649caf5da3822f7df23928fca4f6e-1\"', 'Size': 130634368, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_020W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 41, 23, tzinfo=tzutc()), 'ETag': '\"2a48f3c84bd35f97b0db99002a4c374c\"', 'Size': 5538751, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_030E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 41, 25, tzinfo=tzutc()), 'ETag': '\"09044e643da5e29c347b634a4aa4b1f0-1\"', 'Size': 96808962, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_030W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 41, 27, tzinfo=tzutc()), 'ETag': '\"d62ebba8d98b50beb029843bbcc03ebe\"', 'Size': 5467118, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_040E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 41, 29, tzinfo=tzutc()), 'ETag': '\"7bd0a654e60f31a876c60c2034478cc3-1\"', 'Size': 66257149, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_040W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 41, 31, tzinfo=tzutc()), 'ETag': '\"29109d3d4b7bc68f27d73fa148f6927b\"', 'Size': 4332951, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_050E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 41, 33, tzinfo=tzutc()), 'ETag': '\"e1f6605ba05ffdccb82b1be880c33eee-1\"', 'Size': 76090870, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_050W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 41, 35, tzinfo=tzutc()), 'ETag': '\"77de8f9498ecd5e7c4661a0204cd2908\"', 'Size': 5377171, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_060E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 41, 38, tzinfo=tzutc()), 'ETag': '\"87f3b42d870e6900cb59c51a344ebb3c-1\"', 'Size': 110166441, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_060W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 41, 41, tzinfo=tzutc()), 'ETag': '\"ae2c03d68c9743a4da98c6daf9067b20\"', 'Size': 7888896, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_070E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 41, 43, tzinfo=tzutc()), 'ETag': '\"1841e2e17fd53cf43b321894b0f808ce-1\"', 'Size': 102706366, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_070W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 41, 45, tzinfo=tzutc()), 'ETag': '\"06ec35869e7b188fb5f6415f7e05cffc\"', 'Size': 4389515, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_080E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 41, 48, tzinfo=tzutc()), 'ETag': '\"a5a16986bd97b7fd939e14bd64654ba9-1\"', 'Size': 117753670, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_080W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 41, 51, tzinfo=tzutc()), 'ETag': '\"0dbaa6d2cd0d4bd892b7389e70bd232b\"', 'Size': 4458140, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_090E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 41, 53, tzinfo=tzutc()), 'ETag': '\"56b71e369db71a70d995d1cc3efca3ca-1\"', 'Size': 87592891, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_090W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 41, 55, tzinfo=tzutc()), 'ETag': '\"4ea6ce72b7e140ac965b7b513154b08a\"', 'Size': 4370363, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_100E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 41, 57, tzinfo=tzutc()), 'ETag': '\"9b8fc706a813f6239d9bb303d3678486-1\"', 'Size': 98154242, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_100W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 42, tzinfo=tzutc()), 'ETag': '\"2d7d9c001140138782a9933eec283386\"', 'Size': 12035047, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_110E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 42, 3, tzinfo=tzutc()), 'ETag': '\"f4fd3aa0b9c8b6cdde17fb734a7cb8ff-1\"', 'Size': 80503646, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_110W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 42, 5, tzinfo=tzutc()), 'ETag': '\"615822997b3c58dc3dcdaeb3c97f0c74-1\"', 'Size': 53399236, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_120E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 42, 9, tzinfo=tzutc()), 'ETag': '\"52df6dab306dd2797196695eba3bd66e-1\"', 'Size': 130667312, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_120W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 42, 14, tzinfo=tzutc()), 'ETag': '\"b039d921c95b8b94a685db73297a3bcf-1\"', 'Size': 109148684, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_130E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 42, 19, tzinfo=tzutc()), 'ETag': '\"fdb66e3ccb5ce2597ba4cdbeb0517e44-1\"', 'Size': 146279499, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_130W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 42, 24, tzinfo=tzutc()), 'ETag': '\"8baac4a13d47cd13121856948c184f08-1\"', 'Size': 131360731, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_140E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 42, 31, tzinfo=tzutc()), 'ETag': '\"0a81b72b6c0061703fa51a87927f2c79-1\"', 'Size': 166198653, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_140W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 42, 36, tzinfo=tzutc()), 'ETag': '\"ce3fe571f84da206469feacd1d859e32-1\"', 'Size': 119748494, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_150E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 42, 42, tzinfo=tzutc()), 'ETag': '\"923651657a868e47d2b838e3592defac-1\"', 'Size': 144513913, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_150W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 42, 46, tzinfo=tzutc()), 'ETag': '\"ee24a374715d57e6107bb726131fdf3b-1\"', 'Size': 106929319, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_160E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 42, 50, tzinfo=tzutc()), 'ETag': '\"90591955a95955d6d049ab2b12d6cf4e-1\"', 'Size': 90473684, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_160W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 42, 55, tzinfo=tzutc()), 'ETag': '\"0a51e92e373fb56d53cf4443452485a5-1\"', 'Size': 112977045, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_170E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 42, 57, tzinfo=tzutc()), 'ETag': '\"79c15c24a624fba953293a126035172e\"', 'Size': 25680777, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_170W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 42, 59, tzinfo=tzutc()), 'ETag': '\"68a98af35a2f24b57e8165a3924dedaa-1\"', 'Size': 26403221, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_70N_180W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 1, tzinfo=tzutc()), 'ETag': '\"ad50d07a1511918c183119c0865966d9\"', 'Size': 4400317, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_000E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 1, tzinfo=tzutc()), 'ETag': '\"225b73b6679562618b37bccbc6629318\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_010E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 2, tzinfo=tzutc()), 'ETag': '\"5805f66732de001178f591394bfd329a\"', 'Size': 4640516, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_010W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 3, tzinfo=tzutc()), 'ETag': '\"4b12a50a7870662c9292129df073d59b\"', 'Size': 4366887, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_020E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 5, tzinfo=tzutc()), 'ETag': '\"14538330fb049de724d0184cde52281a\"', 'Size': 8045586, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_020W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 6, tzinfo=tzutc()), 'ETag': '\"a36ae4987e16743392922fcf0a084860\"', 'Size': 4325370, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_030E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 7, tzinfo=tzutc()), 'ETag': '\"6d0cdac03a1ed9efa447e2bdaa34f57d\"', 'Size': 4465693, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_030W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 8, tzinfo=tzutc()), 'ETag': '\"a3858273186f28e3fbf85a7b2ad8366a\"', 'Size': 4372755, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_040E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 8, tzinfo=tzutc()), 'ETag': '\"2bf06d6908a088db144831fbc3c6b496\"', 'Size': 4320378, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_040W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 9, tzinfo=tzutc()), 'ETag': '\"9f30da82c31233141f81454ebf8a82b8\"', 'Size': 4320413, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_050E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 10, tzinfo=tzutc()), 'ETag': '\"6c8a202a1e915b39bb9a38987be6f438\"', 'Size': 4865912, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_050W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 12, tzinfo=tzutc()), 'ETag': '\"1afff3ecbdea14755c403718abe181b1\"', 'Size': 4320495, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_060E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 12, tzinfo=tzutc()), 'ETag': '\"a77848f582777d90df78949d1e532701\"', 'Size': 4537443, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_060W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 13, tzinfo=tzutc()), 'ETag': '\"7dec04677a693a87d874d669eebf79b6\"', 'Size': 4365279, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_070E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 14, tzinfo=tzutc()), 'ETag': '\"c9c47e816a2f06842f9f3794dadbe533\"', 'Size': 4748211, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_070W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 15, tzinfo=tzutc()), 'ETag': '\"e6d52daabde12d994818cbb351096122\"', 'Size': 4331834, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_080E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 16, tzinfo=tzutc()), 'ETag': '\"8d9589020f8d6c4f680c86ff9b54a598\"', 'Size': 9719070, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_080W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 17, tzinfo=tzutc()), 'ETag': '\"7d5427b6abe3814442861d4b23b088ed\"', 'Size': 4332960, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_090E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 19, tzinfo=tzutc()), 'ETag': '\"b2346647a0e1fa4a10eba59ccd36ab7f\"', 'Size': 22641994, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_090W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 20, tzinfo=tzutc()), 'ETag': '\"5cb880d76f84c9ad2aa4f04f6beae6bf\"', 'Size': 4329184, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_100E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 21, tzinfo=tzutc()), 'ETag': '\"2d61e5b4cfc72769da886b652c554470-1\"', 'Size': 26390200, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_100W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 22, tzinfo=tzutc()), 'ETag': '\"7ed35f3eebb4c17c756646f5a8d69276\"', 'Size': 4329258, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_110E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 24, tzinfo=tzutc()), 'ETag': '\"895738cf9e525edc402d73fcff955b66\"', 'Size': 22670666, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_110W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 25, tzinfo=tzutc()), 'ETag': '\"5d9011f0c13ac6f07426588124cc42d1\"', 'Size': 4322273, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_120E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 26, tzinfo=tzutc()), 'ETag': '\"0b5b80c089c8f8030121230682c6086a\"', 'Size': 24119000, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_120W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 27, tzinfo=tzutc()), 'ETag': '\"146c8c33479eb52043a4cb01ba595660\"', 'Size': 4321590, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_130E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 29, tzinfo=tzutc()), 'ETag': '\"3698d05dc817abf52b77362855ac0067\"', 'Size': 15323515, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_130W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 30, tzinfo=tzutc()), 'ETag': '\"b2f2d4baca198e37de625af0e25c824d\"', 'Size': 4324067, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_140E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 31, tzinfo=tzutc()), 'ETag': '\"bb02eea837138dcf91a0a6e6b9209315\"', 'Size': 12382553, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_140W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 32, tzinfo=tzutc()), 'ETag': '\"95a97821ce72b6d810453ef5b5c2fbe7\"', 'Size': 4320495, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_150E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 33, tzinfo=tzutc()), 'ETag': '\"a1cb0bdb09b4dbaa18e09f168a85fb8b\"', 'Size': 4412494, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_150W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 34, tzinfo=tzutc()), 'ETag': '\"b6888dcc56e581b0f8261090cab106b3\"', 'Size': 4320556, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_160E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 35, tzinfo=tzutc()), 'ETag': '\"69a9368043e8564aa604d75cacbd9fab\"', 'Size': 4320479, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_160W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 35, tzinfo=tzutc()), 'ETag': '\"bd78f26b67574786db2c38bbe324fa2a\"', 'Size': 4324981, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_170E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 36, tzinfo=tzutc()), 'ETag': '\"b8603d151ed55568c2cbbee5b65102e7\"', 'Size': 4321188, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_170W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 37, tzinfo=tzutc()), 'ETag': '\"2ba7e675d372cb603138375dd932b848\"', 'Size': 4320542, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_80N_180W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 38, tzinfo=tzutc()), 'ETag': '\"c9069d8c6dbbeb07574c4cb68dc2beb5\"', 'Size': 4321711, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_90N_000E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 39, tzinfo=tzutc()), 'ETag': '\"5811fc194a97e2eba45cee24cc4e3f82\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_90N_010E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 40, tzinfo=tzutc()), 'ETag': '\"41042e78fddbc233edf58e88c3e228ac\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_90N_020E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 41, tzinfo=tzutc()), 'ETag': '\"19fb15d54d1aded27d4a9abb523834e0\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_90N_020W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 42, tzinfo=tzutc()), 'ETag': '\"9e92e63a549928eb0bf9dcd23bba6fe3\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_90N_030W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 43, tzinfo=tzutc()), 'ETag': '\"2559306914796d44dde9d281cca5122e\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_90N_040E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 44, tzinfo=tzutc()), 'ETag': '\"232fbe0555594a047fd56bcf32f993b4\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_90N_040W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 45, tzinfo=tzutc()), 'ETag': '\"b714551b331ed82ac6ae879a91139b1d\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_90N_050E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 46, tzinfo=tzutc()), 'ETag': '\"cbb8011080cf7e065b3f2f90690021fe\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_90N_050W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 47, tzinfo=tzutc()), 'ETag': '\"e09dffacda74cc257c0cad663784c72f\"', 'Size': 4320504, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_90N_060E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 48, tzinfo=tzutc()), 'ETag': '\"e035a07c0882cbf65ecb429646248df3\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_90N_060W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 49, tzinfo=tzutc()), 'ETag': '\"4124551386df51e777850f8be182de33\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_90N_070E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 49, tzinfo=tzutc()), 'ETag': '\"ae240e87a4346aa7786bbf8b93ab4ab4\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_90N_070W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 50, tzinfo=tzutc()), 'ETag': '\"cdba1c623df88b9ca4347d1024a8b567\"', 'Size': 4320504, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_90N_080E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 51, tzinfo=tzutc()), 'ETag': '\"65c9cbacb734ee7fc9aeed5d0e284a0a\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_90N_080W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 52, tzinfo=tzutc()), 'ETag': '\"602047f0205ab3eb9d4c49f93fe406a0\"', 'Size': 4320504, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_90N_090E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 53, tzinfo=tzutc()), 'ETag': '\"e871bc905d96c402f4cb798b7635ce09\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_90N_090W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 54, tzinfo=tzutc()), 'ETag': '\"6baf772c6c5da46e38a945f80bd05fc9\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_90N_100E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 55, tzinfo=tzutc()), 'ETag': '\"15e81f78901b3e71713bf71e9c0cda72\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_90N_100W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 56, tzinfo=tzutc()), 'ETag': '\"dc006c7551128f57c89190eae5f09ec5\"', 'Size': 4320504, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_90N_110E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 57, tzinfo=tzutc()), 'ETag': '\"290ed02fc73bad7f8333de6fc46624fe\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_90N_110W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 57, tzinfo=tzutc()), 'ETag': '\"4bfca903f5235af102bd2da54bd835f6\"', 'Size': 4320504, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_90N_120E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 58, tzinfo=tzutc()), 'ETag': '\"69d013bc3109acb0f5e788b22b550819\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_90N_120W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 43, 59, tzinfo=tzutc()), 'ETag': '\"db9597de9e21505af747d34df6b24908\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_90N_130E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 44, tzinfo=tzutc()), 'ETag': '\"34ac8e41d92bf15a85ff6896b744f939\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_90N_130W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 44, 1, tzinfo=tzutc()), 'ETag': '\"05421d7b4c14bafcb9285bdf95b207bb\"', 'Size': 4320504, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_90N_140E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 44, 2, tzinfo=tzutc()), 'ETag': '\"43738a4d7eea85fc215c67942011d042\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_90N_140W_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 44, 3, tzinfo=tzutc()), 'ETag': '\"d39d5497b4af391e68d1535b9596b390\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_90N_150E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 44, 4, tzinfo=tzutc()), 'ETag': '\"5b94636fa4a735e8424438e78b48f9c6\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}, {'Key': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_90N_160E_C.tif', 'LastModified': datetime.datetime(2024, 2, 16, 14, 44, 5, tzinfo=tzutc()), 'ETag': '\"afa987c87fa9075d302e0c1d064df3a8\"', 'Size': 4320386, 'StorageClass': 'STANDARD'}], 'Name': 'maap-ops-workspace', 'Prefix': 'shared/nehajo88/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C/WC_', 'MaxKeys': 1000, 'EncodingType': 'url', 'KeyCount': 452}\n", "yes\n" ] }, diff --git a/country_summaries/IPCC_classes_DPS/IPCC_raster_post_processing.ipynb b/country_summaries/IPCC_classes_DPS/IPCC_raster_post_processing.ipynb index c530564ecba9f3d1255b5f59645d38153ce75023..7cffa8c3e00cb8be84fd027d0d56160765f2c2a6 100644 --- a/country_summaries/IPCC_classes_DPS/IPCC_raster_post_processing.ipynb +++ b/country_summaries/IPCC_classes_DPS/IPCC_raster_post_processing.ipynb @@ -161,7 +161,7 @@ "# packages <- c(\"raster\", \"rgdal\", \"terra\", \"sf\", \"sp\")\n", "package.check <- lapply(packages, FUN = function(x) {\n", " if (!require(x, character.only = TRUE)) {\n", - " install.packages(x, dependencies = TRUE)\n", + " # install.packages(x, dependencies = TRUE)\n", " library(x, character.only = TRUE, quietly=TRUE)\n", " }\n", "})\n", @@ -289,7 +289,7 @@ }, "outputs": [], "source": [ - "# ############## ESA WORLD COVER FACT CHECK ##############\n", + "# ############## ESA WORLD COVER FACT CHECK ######################################################\n", "# files <- list.files(path=\"/projects/my-public-bucket/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2\", pattern=\"*C.tif\", full.names=TRUE, recursive=FALSE)\n", "# for (file in rev(files)){\n", "# print(file)\n", @@ -298,7 +298,7 @@ "# }\n", "# }\n", "\n", - "# ######################### ESTIMATING FOREST AREA GLOBALLY ##########\n", + "# ######################### ESTIMATING FOREST AREA GLOBALLY ########################################\n", "# Table <- data.frame(matrix(ncol=3,nrow=0, dimnames=list(NULL, c('FILE','RES','ESA_AREA'))))\n", "# files <- list.files(path=\"/projects/my-public-bucket/Data/Harris_et_al_PAPER/ESA_WorldCover_2021_v2_CRS\", pattern=\"*C.tif\", full.names=TRUE, recursive=FALSE)\n", "# files <- files[rev(1:length(files))]\n", @@ -309,6 +309,22 @@ "# STR = c(file,toString(res(raster)[1]),toString(fre$count[fre$value == 10]*((res(raster)[1])^2)/10000000000))\n", "# Table[nrow(Table) + 1,] = STR\n", "# write.csv(Table,\"/projects/my-public-bucket/Data/Harris_et_al_PAPER/ESA_WorldCover_2021_v2_CRS/AREA_per_ESA_TILE_REV.csv\", row.names=FALSE)\n", + "# }\n", + "\n", + "# ######################### ESTIMATING HEIGHTS ABOVE AND BELOW 5 M WITH ESA WC MASK ##############################\n", + "# Table <- data.frame(matrix(ncol=3,nrow=0, dimnames=list(NULL, c('FILE','3m_AREA','5m_AREA'))))\n", + "# files <- list.files(path=\"/projects/my-public-bucket/Data/Harris_et_al_PAPER/ESA_WorldCover2021_v2_C\", pattern=\"*C.tif\", full.names=TRUE, recursive=FALSE)\n", + "# for (file in files){\n", + "# tile <-strsplit(strsplit(basename(file), split = \"WC_\")[[1]][2],split = \"_C.tif\")[[1]]\n", + "# FH <- rast(paste0('/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/',tile,'.tif'))\n", + "# ESA <- rast(file)\n", + "# FH[ESA == 0] = 0\n", + "# FH[FH < 5] = 3\n", + "# FH[FH >= 5] = 5\n", + "# fre = freq(FH)\n", + "# STR = c(file,toString(fre$count[fre$value == 3]),toString(fre$count[fre$value == 5]))\n", + "# Table[nrow(Table) + 1,] = STR\n", + "# write.csv(Table,\"/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/AREA_3m_or_5m.csv\", row.names=FALSE)\n", "# }" ] }, @@ -873,143 +889,23 @@ }, { "cell_type": "code", - "execution_count": 23, - "id": "bf817c12-282a-468d-8d4a-8db5c390fdc6", + "execution_count": 15, + "id": "4c4ba68c-ebf6-44d2-99fb-38c6a00f1936", "metadata": {}, - "outputs": [], - "source": [ - "IPCC_guidelines <- read.csv('/projects/my-public-bucket/Data/Harris_et_al_PAPER/IPCC_Table_GIBBS_for_JOIN.csv')\n", - "# IPCC_guidelines$Uncertainty[IPCC_guidelines$Uncertainty_TYPE == 'default'] = 0.9/1.96*IPCC_guidelines$AGB[IPCC_guidelines$Uncertainty_TYPE == 'default']#NA\n", - "IPCC_Table <- merge(x=IPCC_Table,y=IPCC_guidelines,by.x='IPCC_Table_NAME',by.y='NAME',all.x=TRUE)\n", - "IPCC_Table <- IPCC_Table[!is.na(IPCC_Table$region_mean),]\n", - "sum(IPCC_Table$area,na.rm=TRUE)\n", - "\n", - "MAP_EXT <- read.csv('/projects/my-public-bucket/Data/Harris_et_al_PAPER/AGB_Extract_IPCC_Classes.csv')\n", - "IPCC_Table <- merge(IPCC_Table,MAP_EXT,by.x=c(\"IPCC_classes_1km.x\"),by.y=c(\"IPCC_classes_1km\"))\n", - "\n", - "IPCC_Table_W <- IPCC_Table[,c(\"Continent\",\"GEZ_NAME\",\"AGE_CLASS.x\",\"AGB\",\"Uncertainty\",\"Uncertainty_TYPE\",\"area_T\",\"region_mean\",\"region_stderr\",\"GEDI_ICESat_Q2\",\"GEDI_ICESat_Q3\",\"GEDI_ICESat_Q4\",\"GEDI_SD\",\"CCI_mean\",\"CCI_stdev\",\"CCI_Q2\",\"CCI_Q3\",\"CCI_Q4\",\"CCI_SD\",\"IPCC_classes_1km.x\")]\n", - "colnames(IPCC_Table_W) <- c(\"Continent\",\"Ecological zone\",\"Status/condition\",\"IPCC_AGB_mean\",\"IPCC_AGB_uncertainty\",\"IPCC_AGB_uncertainty_type\",\"Area_year_2020\",\"GEDI_AGBD_mean\",\"GEDI_AGBD_uncertainty\",\"GEDI_DIST_Q1\",\"GEDI_DIST_Q2\",\"GEDI_DIST_Q3\",\"GEDI_DIST_SD\",\"CCI_AGBD_mean\",\"CCI_AGBD_uncertainty\",\"CCI_DIST_Q1\",\"CCI_DIST_Q2\",\"CCI_DIST_Q3\",\"CCI_DIST_SD\",\"ID\")\n", - "IPCC_guidelines$Uncertainty[IPCC_guidelines$Uncertainty_TYPE == 'default'] = 0.9/1.96*IPCC_guidelines$AGB[IPCC_guidelines$Uncertainty_TYPE == 'default']#NA\n", - "IPCC_Table_W[''] <- ''\n", - "IPCC_Table_W['Description'] <- c(\"Columns 'Continent' to 'IPCC_ABG_uncertainty_type': Replica of Table 4.7 from IPCC 2019 Guidelines\"\n", - " \"Column 'Area_year_2020': Area identified in this study [Mha]\",\n", - " \"Column 'GEDI_AGBD_mean': Estimated AGBD by GEDI/ICESat-2 [Mg/ha]\",\n", - " \"Column 'GEDI_AGBD_uncertainty': Estimated uncertainty GEDI/ICESat-2 [Mg/ha]\",\n", - " \"Column 'GEDI_DIST_Q1' to 'GEDI_DIST_Q3': GEDI/ICESat-2 25th, 50th and 75th quartiles of AGBD distribution across ecoregion [Mg/ha]\",\n", - " \"Column 'GEDI_DIST_SD': GEDI/ICESat-2 standard deviation of AGBD distribution across ecoregion [Mg/ha]\",\n", - " \"Column 'CCI_AGBD_mean': Estimated AGBD by CCI Biomass [Mg/ha]\",\n", - " \"Column 'CCI_AGBD_uncertainty': Estimated uncertainty CCI Biomass [Mg/ha]\",\n", - " \"Column 'CCI_DIST_Q1' to 'CCI_DIST_Q3': CCI Biomass 25th, 50th and 75th quartiles of AGBD distribution across ecoregion [Mg/ha]\", \n", - " \"Column 'CCI_DIST_SD': CCI Biomass standard deviation of AGBD distribution across ecoregion [Mg/ha]\",\n", - " \"Column 'ID': Unique ID\",\n", - " rep(\"\", nrow(IPCC_Table_W)-11))\n", - "\n", - "write.csv(IPCC_Table_W,\"/projects/my-public-bucket/Data/Harris_et_al_PAPER/IPCC_Table.csv\", row.names=FALSE)\n", - "\n", - "IPCC_Table$Uncertainty[IPCC_Table$Uncertainty_TYPE == 'default' & !is.na(IPCC_Table$AGB)] = 0.9/1.96*IPCC_Table$AGB[IPCC_Table$Uncertainty_TYPE == 'default' & !is.na(IPCC_Table$AGB)]#NA" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "id": "022676d4-c87a-44f7-9223-e9cc37152891", - "metadata": { - "tags": [] - }, "outputs": [ { "data": { "text/html": [ - "<style>\n", - ".list-inline {list-style: none; margin:0; padding: 0}\n", - ".list-inline>li {display: inline-block}\n", - ".list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex}\n", - "</style>\n", - "<ol class=list-inline><li>332.2</li><li>162</li><li>51.6</li><li>301.1</li><li>214.7</li><li>27.8</li><li>126.1</li><li>153.9</li><li>22.3</li><li>1.9</li><li>104.2</li><li>104.2</li></ol>\n" - ], - "text/latex": [ - "\\begin{enumerate*}\n", - "\\item 332.2\n", - "\\item 162\n", - "\\item 51.6\n", - "\\item 301.1\n", - "\\item 214.7\n", - "\\item 27.8\n", - "\\item 126.1\n", - "\\item 153.9\n", - "\\item 22.3\n", - "\\item 1.9\n", - "\\item 104.2\n", - "\\item 104.2\n", - "\\end{enumerate*}\n" - ], - "text/markdown": [ - "1. 332.2\n", - "2. 162\n", - "3. 51.6\n", - "4. 301.1\n", - "5. 214.7\n", - "6. 27.8\n", - "7. 126.1\n", - "8. 153.9\n", - "9. 22.3\n", - "10. 1.9\n", - "11. 104.2\n", - "12. 104.2\n", - "\n", - "\n" - ], - "text/plain": [ - " [1] 332.2 162.0 51.6 301.1 214.7 27.8 126.1 153.9 22.3 1.9 104.2 104.2" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "<style>\n", - ".list-inline {list-style: none; margin:0; padding: 0}\n", - ".list-inline>li {display: inline-block}\n", - ".list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex}\n", - "</style>\n", - "<ol class=list-inline><li>104.2</li><li>1.9</li><li>104.2</li><li>126.1</li><li>332.2</li><li>301.1</li><li>22.3</li><li>51.6</li><li>27.8</li><li>153.9</li><li>162</li><li>214.7</li></ol>\n" + "3259.18191464996" ], "text/latex": [ - "\\begin{enumerate*}\n", - "\\item 104.2\n", - "\\item 1.9\n", - "\\item 104.2\n", - "\\item 126.1\n", - "\\item 332.2\n", - "\\item 301.1\n", - "\\item 22.3\n", - "\\item 51.6\n", - "\\item 27.8\n", - "\\item 153.9\n", - "\\item 162\n", - "\\item 214.7\n", - "\\end{enumerate*}\n" + "3259.18191464996" ], "text/markdown": [ - "1. 104.2\n", - "2. 1.9\n", - "3. 104.2\n", - "4. 126.1\n", - "5. 332.2\n", - "6. 301.1\n", - "7. 22.3\n", - "8. 51.6\n", - "9. 27.8\n", - "10. 153.9\n", - "11. 162\n", - "12. 214.7\n", - "\n", - "\n" + "3259.18191464996" ], "text/plain": [ - " [1] 104.2 1.9 104.2 126.1 332.2 301.1 22.3 51.6 27.8 153.9 162.0 214.7" + "[1] 3259.182" ] }, "metadata": {}, @@ -1017,13 +913,48 @@ } ], "source": [ - "IPCC_guidelines$AGB[IPCC_guidelines$Uncertainty_TYPE == 'default']\n", - "IPCC_Table$AGB[IPCC_Table$Uncertainty_TYPE == 'default' & !is.na(IPCC_Table$AGB)]" + "IPCC_guidelines <- read.csv('/projects/my-public-bucket/Data/Harris_et_al_PAPER/IPCC_Table_GIBBS_for_JOIN.csv')\n", + "# IPCC_guidelines$Uncertainty[IPCC_guidelines$Uncertainty_TYPE == 'default'] = 0.9/1.96*IPCC_guidelines$AGB[IPCC_guidelines$Uncertainty_TYPE == 'default']#NA\n", + "IPCC_Table <- merge(x=IPCC_Table,y=IPCC_guidelines,by.x='IPCC_Table_NAME',by.y='NAME',all.x=TRUE)\n", + "IPCC_Table <- IPCC_Table[!is.na(IPCC_Table$region_mean),]\n", + "sum(IPCC_Table$area,na.rm=TRUE)\n", + "\n", + "MAP_EXT <- read.csv('/projects/my-public-bucket/Data/Harris_et_al_PAPER/AGB_Extract_IPCC_Classes.csv')\n", + "IPCC_Table <- merge(IPCC_Table,MAP_EXT,by.x=c(\"IPCC_classes_1km.x\"),by.y=c(\"IPCC_classes_1km\"))" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "1ced6789-b5e2-4297-a881-7d82686d6453", + "metadata": {}, + "outputs": [], + "source": [ + "IPCC_Table_W <- IPCC_Table[,c(\"Continent\",\"GEZ_NAME\",\"AGE_CLASS.x\",\"AGB\",\"Uncertainty_IPCC\",\"Uncertainty_TYPE\",\"area_T\",\"region_mean\",\"region_stderr\",\"GEDI_ICESat_Q2\",\"GEDI_ICESat_Q3\",\"GEDI_ICESat_Q4\",\"GEDI_SD\",\"CCI_mean\",\"CCI_stdev\",\"CCI_Q2\",\"CCI_Q3\",\"CCI_Q4\",\"CCI_SD\",\"IPCC_classes_1km.x\")]\n", + "colnames(IPCC_Table_W) <- c(\"Continent\",\"Ecological zone\",\"Status/condition\",\"IPCC_AGB_mean\",\"IPCC_AGB_uncertainty\",\"IPCC_AGB_uncertainty_type\",\"Area_year_2020\",\"GEDI_AGBD_mean\",\"GEDI_AGBD_SE\",\"GEDI_DIST_Q1\",\"GEDI_DIST_Q2\",\"GEDI_DIST_Q3\",\"GEDI_DIST_SD\",\"CCI_AGBD_mean\",\"CCI_AGBD_SE\",\"CCI_DIST_Q1\",\"CCI_DIST_Q2\",\"CCI_DIST_Q3\",\"CCI_DIST_SD\",\"ID\")\n", + "# IPCC_guidelines$Uncertainty[IPCC_guidelines$Uncertainty_TYPE == 'default'] = 0.9/1.96*IPCC_guidelines$AGB[IPCC_guidelines$Uncertainty_TYPE == 'default']#NA\n", + "# IPCC_Table_W[''] <- ''\n", + "IPCC_Table_W['Description'] <- c(\"Columns 'Continent' to 'IPCC_ABG_uncertainty_type': Replica of Table 4.7 from IPCC 2019 Guidelines\",\n", + " \"Column 'Area_year_2020': Area identified in this study [Mha]\",\n", + " \"Column 'GEDI_AGBD_mean': Estimated AGBD by GEDI/ICESat-2 [Mg/ha]\",\n", + " \"Column 'GEDI_AGBD_SE': Estimated uncertainty GEDI/ICESat-2 [Mg/ha]\",\n", + " \"Column 'GEDI_DIST_Q1' to 'GEDI_DIST_Q3': GEDI/ICESat-2 25th, 50th and 75th quartiles of AGBD distribution across ecoregion extent [Mg/ha]\",\n", + " \"Column 'GEDI_DIST_SD': GEDI/ICESat-2 standard deviation of AGBD distribution across ecoregion extent [Mg/ha]\",\n", + " \"Column 'CCI_AGBD_mean': Estimated AGBD by CCI Biomass [Mg/ha]\",\n", + " \"Column 'CCI_AGBD_SE': Estimated uncertainty CCI Biomass [Mg/ha]\",\n", + " \"Column 'CCI_DIST_Q1' to 'CCI_DIST_Q3': CCI Biomass 25th, 50th and 75th quartiles of AGBD distribution across ecoregion extent [Mg/ha]\", \n", + " \"Column 'CCI_DIST_SD': CCI Biomass standard deviation of AGBD distribution across ecoregion extent [Mg/ha]\",\n", + " \"Column 'ID': Unique ID\",\n", + " rep(\"\", nrow(IPCC_Table_W)-11))\n", + "\n", + "write.csv(IPCC_Table_W,\"/projects/my-public-bucket/Data/Harris_et_al_PAPER/IPCC_Table.csv\", row.names=FALSE)\n", + "\n", + "IPCC_Table$Uncertainty[IPCC_Table$Uncertainty_TYPE == 'default' & !is.na(IPCC_Table$AGB)] = 0.9/1.96*IPCC_Table$AGB[IPCC_Table$Uncertainty_TYPE == 'default' & !is.na(IPCC_Table$AGB)]#NA" ] }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 11, "id": "48b60e80-115a-478a-a1f5-b7ed52d21b91", "metadata": {}, "outputs": [], @@ -1048,7 +979,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 12, "id": "0d5d0fe7-db96-480d-9859-fe564160c889", "metadata": {}, "outputs": [], @@ -1062,7 +993,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 32, "id": "72b500c2-3535-4390-87d8-d9f5b8cfea16", "metadata": {}, "outputs": [ @@ -1073,41 +1004,24 @@ "Warning message:\n", "“\u001b[1m\u001b[22mUsing \u001b[32msize\u001b[39m for a discrete variable is not advised.â€\n", "Warning message:\n", + "“\u001b[1m\u001b[22mRemoved 4 rows containing missing values (`geom_point()`).â€\n", + "Warning message:\n", "“\u001b[1m\u001b[22mUsing \u001b[32msize\u001b[39m for a discrete variable is not advised.â€\n", "Warning message:\n", + "“\u001b[1m\u001b[22mRemoved 4 rows containing missing values (`geom_point()`).â€\n", + "Warning message:\n", "“\u001b[1m\u001b[22mUsing \u001b[32msize\u001b[39m for a discrete variable is not advised.â€\n", "Warning message:\n", - "“\u001b[1m\u001b[22mUsing \u001b[32msize\u001b[39m for a discrete variable is not advised.â€\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAAFoCAIAAADIFpV9AAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdZ0AU19oH8DPb2GWBpSyg0puiIqIgVkQTKwoqokYilqgRy03TN7HcJHqT\nmGtM1JtiomAsKUZJQQVbDBrQ2AVLEJEi0nvfvjvvh032ctUgxhl2gf/v0+6Zs8/zYKLwMGfO\noWiaJgAAAAAAAND1cIxdAAAAAAAAABgHGkIAAAAAAIAuCg0hAAAAAABAF4WGEAAAAAAAoItC\nQwgAAAAAANBFoSEEAAAAAADoonjGLsDIampqrl27ZuwqAAAAAAAAjKCrN4S5ublxcXEjRoww\ndiEAAAAAAADtKiEhoas3hIQQX1/ff/zjH8auAgAAAAAAoF0dO3YMzxACAAAAAAB0USZ3h7Cq\nqmr//v3Xrl2rr6+XSCR9+/Zdvny5SCTSX9XpdImJiSdOnKisrJRKpePGjYuMjORw/tvWPnYC\nAAAAAAAA6JlWQ1hQULB27Vq1Wj1o0KDu3bs3NTVlZWXJZDJDQxgfH5+UlDRs2LCIiIjMzMx9\n+/ZVVVXFxsYaIjx2AgAAAAAAAOiZUEOo0+k2b95saWm5YcMGR0fHhycUFhYmJyeHhoauXLmS\nEDJp0iQ+n3/s2LGJEye6ubm1ZQIAAAAAAHRuOp1u06ZNe/fuLSgoUCgUn3zyyYoVKx45s6io\nyMXFZcqUKYmJie1cpOkwobWUV65cuX///rx58xwdHeVyuUqlemBCWloaTdPh4eGGkYiICJqm\nU1NT2zgBAAAAAAA6uvfee4+iKIqi7ty58/DV7du3r1271sbGZvXq1e+///6wYcPav8IOxITu\nEF69epWiKHNz85dffjk/P5+iqD59+ixevNjT01M/IScnh8vlenl5GT7i4eEhEAhyc3PbOAEA\nAAAAADo0mqZ37dpFURRN03FxcR9++OEDE5KSkgghR44ckUqlrYdycHBIS0uzs7Njq9aOwIQa\nwpKSEi6Xu3HjxoEDB0ZFRVVWVh48eHDt2rXbtm3r1q0bIaSmpkYikXC5XMNHKIqysbGprq7W\nv33sBL1t27aVlZXpXwuFQta/MAAAAAAAYMjJkyfz8/Pnz59/7NixvXv3bty4USAQtJygbyse\n2w0SQgQCAQ4kN6Elo3K5XKPR9O3b94033ggJCYmMjFy9erVMJvvhhx/0E5RKJZ/Pf+BTAoFA\nqVS2cYLehQsXTv3p7t277Hw1AAAAAADAvLi4OELI4sWLn3/++aqqqp9++slwadWqVRRF3bx5\nU6vV6teUWltbE0IyMjIoipo/f35ubu5zzz3n4ODA4XAuXLhQVFREUdTUqVMfSHHhwoWZM2f2\n6NHDzMyse/fu48aNO3jwYMsCpk6d6uHhIRKJrK2tQ0NDExIS2uVLZ4UJ3SE0MzMjhIwePdow\nEhAQYGNjc+vWLcMEuVz+wKdUKpXhLt9jJ+h9/PHHarVa//r27dtpaWnMfREAAAAAAMCW8vLy\nw4cP9+zZc9iwYVZWVlu2bNm5c+esWbP0V6OjowMCAtasWVNSUrJ3715CSMubh4WFhYMHD5ZK\npRMmTGhubv6rpYJffPHF8uXL+Xx+RESEt7d3RUXFlStXtm/fPnPmTP2EJUuWBAcHjx492tHR\nsaKiIikpaebMmZs2bXr99ddZ/upZYUINoX7xro2NTctBa2vrmpoa/WtbW9uCggKtVmtYFErT\ndG1trZ+fXxsn6Dk4OBhel5SUsPPVAAAAAAAAw3bv3q1Wq+fPn08I8fPzGzhw4OnTp3Nycry9\nvQkhAwcOHDhw4L///e/S0tI5c+Y88NmUlJQVK1Zs27bN0CwUFRU9MOfGjRsrVqywtrY+e/Zs\n7969DeMtZxYUFLi4uBjeymSy0NDQ9evXL168+IFepkMwoSWjPj4+hJCqqirDCE3T1dXVEolE\n/9bLy0ur1ebl5Rkm5Ofnq1Qqwy4yj50AAAAAAAAdFE3T8fHxHA5n7ty5+pH58+frB9vycalU\numnTppYbjjzs888/12q169evb9kNEkKcnZ0Nr/XdIE3T9fX15eXlDQ0N06ZNk8vlHXThoQk1\nhEOHDuXxeMePH9fpdPqRs2fPNjQ0DBw4UP82JCSEoqgjR44YPnLkyBGKokJCQto4AQAAAAAA\nOqiUlJTc3NyxY8c6OTnpR6KjowUCwZ49ewxPhLUiICDA3Ny89TkXLlwghEycOLGVOenp6VOm\nTJFIJNbW1t26devevfu6desIIcXFxW39SkyJCS0ZlUqlzz333Ndff7127dohQ4ZUVlYeO3ZM\nKpVOnz5dP8HV1TUsLCw5OVmtVvv5+WVmZqalpU2YMMHd3b2NEwAAAAAAoIPauXMnIUS/XlTP\nzs4uPDz8hx9+OHToUFRUVOsf79Gjx2NT1NXVEUIMDefDrl27NmLECKFQuHTp0v79++vPODh1\n6tRHH330wE6WHYUJNYSEkJkzZ9rY2Bw+fPirr74SCoUhISFz5841LBklhCxevNjOzu7kyZMX\nL160s7OLiYmJjIxsGeGxEwAAAAAAoMOprKxMTEwkhMyePXv27NkPXN25c+djG0KKoh6bRb8r\naXFxsf6hxIdt2bJFLpcfPnx4zJgxhsGrV68+NrLJMq2GkBAyduzYsWPH/tVVDocTFRXVyn/s\nx04AAAAAAIAOZ+/evSqVKjAwMCAg4IFLhw8fPnXqVH5+voeHx1NmGTJkSEZGxrFjx/7xj388\ncsK9e/f001oOpqSkPGVeIzKhZwgBAAAAAAAeSb9zzPbt2+MfsmTJkrZvLdO6ZcuWcbnc9evX\nZ2VltRw37DLq6elJCPn5558Nl7799tuHG8J///vfEyZMOHr06NOXxDY0hAAAAAAAYNLOnDlz\n586dfv36BQcHP3x14cKFFEXt3r1bo9E8ZaJ+/fp98skndXV1AQEBM2fOXLduXWxsbFBQUExM\njH7CihUruFzu7Nmz582b99Zbb0VERMydO3fGjBkPxMnIyDhx4kRhYeFT1tMO0BACAAAAAIBJ\ni4uLI4QsWrTokVfd3d3HjBlTWlra8riBv23p0qWpqakTJ048c+bM5s2bDx8+LJVKly9frr8a\nHBx86tSp4ODgxMTE//znP83NzSdPnoyIiHggSHZ2Np/PHzdu3NPXwzaKpmlj12BMly9fTkpK\n2rBhg7ELAQAAAACAzqCmpsbe3j42Nvazzz4zdi2PERYWhjuEAAAAAAAAjDl9+rSZmdk///lP\nYxfSJmgIAQAAAAAAGDN9+nSZTNa9e3djF9ImaAgBAAAAAAC6KDSEAAAAAAAAXRQaQgAAAAAA\ngC4KDSEAAAAAAEAXhYYQAAAAAAA6pKKiIoqipk6dauxCOjA0hAAAAAAAYDQKhYJqgcvlSqXS\nZ5999ttvvzV2aV0Cz9gFAAAAAABAVycQCBYsWEAIUavVOTk5KSkpKSkpV65c2bJlSyufcnBw\nSEtLs7Oza68yOyE0hAAAAAAAYGQikeiLL74wvD1+/PikSZO2bdv20ksvubu7/9WnBALBiBEj\n2qO+zgtLRgEAAAAAwLRMmDBh4MCBNE1fvnyZEJKRkUFR1Pz583Nzc5977jkHBwcOh3PhwoWH\nnyE0zMzJyYmMjLS1tbWysgoLC8vOziaElJaWzp8/39HRUSQSjRgx4urVqy2TxsXFTZ061cPD\nQyQSWVtbh4aGJiQktJzwyDI+++wziqIiIiIe+BJomu7Zs6e5uXltbS1bf0xMwB1CE3Xv3r3K\nykpjV8EAHo83YMAAY1cBAAAAAB0MTdOEEIqiDCOFhYWDBw+WSqUTJkxobm4WCoV/9dn79+8P\nHTrU29s7Ojo6Kyvr2LFjGRkZqampo0ePlkql06dPv3//fnJy8tixY/Py8qytrfWfWrJkSXBw\n8OjRox0dHSsqKpKSkmbOnLlp06bXX3+9ZfAHyhg+fPigQYOOHj1aWFjo4uJimHb69Om7d+/O\nmzfPxsaG4T8aRqEhNFEVFRW5ubmspigoKGhubvb19eVwWLxRbGZmhoYQAAAAAJ7IsWPH0tPT\nKYoaNGiQYTAlJWXFihXbtm3jcrn6kaKiokd+/PTp0xs2bHjrrbf0bxcvXhwfHx8cHDx37tyt\nW7fqm8w333zz3Xff3bFjxxtvvKGfVlBQ0LKjk8lkoaGh69evX7x4ccum7uEyli1btmDBgl27\ndq1fv94wbceOHYSQJUuWPO2fBcvQEJqovn37ent7s5ri7Nmz5eXlY8eO5fFY/N+A1W4TAAAA\nADoHuVweGxtL/txUJi0tjabpV1991c3NzTBHKpVu2rTJ0Ia1ws3Nbd26dYa38+fPj4+PJ4S8\n//77hluO8+fPf/fddzMyMgzT9N0gTdMNDQ0KhYKm6WnTpl25ciUtLa3litCHy5g1a9bKlSvj\n4+PffPNN/XhFRUViYmK/fv2GDh36d/9I2gkaQhMlFovFYjGrKSwtLZubm21tbVltCAEAAAAA\nHkulUulvqXE4HGtr61GjRi1cuPD5559vOScgIMDc3Lwt0QYMGNCyYXNyciKE9O3bVyQSPTDY\n8h5jenr6+vXrT58+3djY2DJacXFx62WIRKL58+dv2bIlOTlZ3zru3r1bpVLpW1wTh04AAAAA\nAACMTCKR1NXVtT6nR48ebY/W8q3+/scjB9Vqtf7ttWvXRowYIRQKly5d2r9/f4lEwuVyT506\n9dFHHymVyseWsXTp0q1bt+7YsSMiIoKm6bi4OLFYPGfOnDYWbERoCAEAAAAAoANoucEM47Zs\n2SKXyw8fPjxmzBjD4APbkLZShre395gxY44fP15QUJCdnZ2bm7tw4UIrKyv2CmYKnu8CAAAA\nAICu7t69e4SQIUOGtBxMSUlpe4Rly5bpdLr4+PiOsp2MHhpCAAAAAADo6jw9PQkhP//8s2Hk\n22+/faKGMDw83NnZeefOnYcPHx44cGDL/VFNGRpCAAAAAADo6lasWMHlcmfPnj1v3ry33nor\nIiJi7ty5M2bMaHsELpf74osvVlRUqNXqjnJ7kDD1DOGKFSueaP6qVavc3d0ZSQ0AAAAAAPCU\ngoODT5069dZbbyUmJhJCgoKCTp48WVJSkpCQ0PYgL7zwwltvvWVpaRkdHc1apQxjpiH87LPP\nnmj+nDlz0BACAAAAAIBQKKRpuvU5AQEBj5zj7Oz8wPgjZz48jRDC4/EeGBw1alRqauoD01ru\nFPpXZRjcuHGDEPL8889bWFi0Ms2kMLbLaGJi4vDhwx87TalUOjs7M5UUAAAAAADARHzwwQeE\nkOXLlxu7kCfAWEMokUikUuljpykUCqYyAgAAAAAAGN21a9eOHz9+4cKFM2fOzJo1y8/Pz9gV\nPQFmGsLz58/36dOnLTPNzMzOnz/fsf6MAAAAAAAA/spvv/22bt06a2vr2bNnb9++3djlPBlm\nGsIHzutoBUVRbZ8MAAAAAABg4lasWPGku2yaDhw7AQAAAAAA0EUx9gxhSzRNnzp16uLFizU1\nNTqdruWlbdu2sZERAAAAAAAAnhTzDWFjY+PEiRPPnTv3yKtoCAEAAAAAAEwE80tG33777fPn\nz2/cuDEzM5MQkpSU9Ouvv44bN27QoEH37t1jPB0AAAAAAAD8Pcw3hD/99NPMmTPXrFnj4eFB\nCLGzsxs5cuTRo0dpmv70008ZTwcAAAAAAAB/D/MNYXFxcUhICCGEw+EQQtRqNSGEy+U+99xz\nCQkJjKcDAAAAAACAv4f5hlAsFuubQIFAIBQKS0pK9ONWVlZlZWWMpwMAAAAAAIC/h/mG0NPT\n886dO/rX/fv3/+6772ia1mg0Bw4ccHZ2ZjwdAAAAAAAA/D3MN4Tjxo374Ycf9DcJFy1alJiY\n6O3t7ePj88svvyxYsIDxdAAAAAAAAPD3MN8Qrl69+pdfftEfP7ho0aIPP/xQKBRaWFisX79+\n9erVjKcDAAAAAACAv4f5cwglEolEIjG8Xbly5cqVKxnPAgAAAAAAAE+J+TuEAAAAAAAA0CEw\nf4fQQKfTNTY20jTdctDa2pq9jAAAAAAAANB2zDeEOp1ux44dH3/8cV5enkqleuDqA/0hAAAA\nAAAAGAvzDeG777779ttvOzg4hIeHS6VSxuMDAAAAAAAAI5hvCOPi4gYOHJiWlmZubs54cAAA\nAAAAAGAK85vKlJeXR0dHoxsEAAAAAAAwccw3hN7e3vX19YyHBQAAAAAAAGYx3xC+8sor+/bt\na2hoYDwyAAAAAAAAMIiZZwgTExMNrx0cHFxcXPz9/ZcuXerl5cXj/U+KqVOnMpIRGIFNXwEA\nAAAAujJmGsJp06Y9PLh69eqHB9vYgdy5c+f111+nafq9997r16+fYVyn0yUmJp44caKyslIq\nlY4bNy4yMpLD4bR9AhBCiouLb9++ffbs2ZqaGktLSy8vL19fX/wpAQAAAAB0Ncw0hAkJCYzE\n0dPpdJ9//rmZmZlCoXjgUnx8fFJS0rBhwyIiIjIzM/ft21dVVRUbG9v2CXDnzp3t27c7OTk1\nNjYqlcqcnJzU1NRJkyaFhoZSFGXs6gAAAAAAoP0w0xBGRUU1NzeLxWJGoiUnJ5eXl4eFhf34\n448txwsLC5OTk0NDQ1euXEkImTRpEp/PP3bs2MSJE93c3NoyAZqbmzMyMnx9fa2trRsbG1Uq\nlb29vZ2d3ZEjR1xcXLy8vIxdIAAAAAAAtB/GVgna29tPnTp13759tbW1TxOntrb2m2++mTNn\njkQieeBSWloaTdPh4eGGkYiICJqmU1NT2zgBioqKrl+/bm1t3XKQz+d369atoKDAWFUBAAAA\nAIBRMNYQ/t///V9OTs68efMcHR3Hjx+/Y8eO8vLyvxEnPj7e0dFx4sSJD1/Kycnhcrkt72J5\neHgIBILc3Nw2ToDm5maRSPTwuLm5eXNzc/vXAwAAAAAARsTMklFCyIYNGzZs2HD37t0ffvjh\nxx9/jI2NXbZs2bBhwyIjIyMjI9u4YvP69etnz559//33H7nBSU1NjUQi4XK5hhGKomxsbKqr\nq9s4Qe+ll14y3A1zcnKyt7d/0i+24xIIBBqN5uFxtVotEAjavx4AAAAAADAihjeW9PHxWb16\n9aVLl+7fv79lyxYOh7Nq1Sp3d/egoKCNGzdmZWW18lmNRvPFF1+Ehob26dPnkROUSiWfz39g\nUCAQKJXKNk7Qa25ubvzTw/vWdG6Ojo719fUqleqB8crKSkdHR6OUBAAAAAAAxsLWSQMuLi4v\nv/zyr7/+WlZWtnPnTqlUun79+t69e/fp0ycpKemRH/nxxx9ra2sXLFjwVzHNzMzUavUDgyqV\nyszMrI0T9Hbt2pXyp6VLlz7x19aR2dvbR0ZG3r59WyaT6Uc0Gk1ubm5QUJCvr69xawMAAAAA\ngHbG+tFz9vb2ixcvPn78eGVl5VdffeXr63v79u2HpzU0NBw8eHDMmDEKhaK0tLS0tLSxsZEQ\nUl1dXVpaqj+90NbWtr6+XqvVGj5F03Rtba2dnZ3+7WMnACFk2LBhU6dOvX79enZ29r17965c\nuRIUFPTMM88IhUJjlwYAAAAAAO2KsWcIH0sikcyZM2fOnDmPvNrQ0KBSqQ4fPnz48OGW41u2\nbCGEHDx4UCgUenl5XblyJS8vz8fHR381Pz9fpVIZdpF57AQghPB4vCFDhvTv3z8pKamsrCw6\nOhoNMwAAAABA19R+DWHr7Ozs3njjjZYjly9fTklJmT17tqurq36/k5CQkIMHDx45cuS1117T\nzzly5AhFUSEhIfq3j50ABiKRSCqVajSah4/3AAAAAACALoL5hvCvVh5SFCUSidzc3MaPH79q\n1SqpVNryqkgkGj58eMuRiooKQoifn1+/fv30I66urmFhYcnJyWq12s/PLzMzMy0tbcKECe7u\n7m2cAAAAAAAAAAbMN4STJ0++fft2Zmami4tLz549CSF37twpKirq06ePs7Nzdnb2pk2bvv76\n64sXLzo5OT1p8MWLF9vZ2Z08efLixYt2dnYxMTGRkZFPNAEAAAAAAAD0KP1+LQw6d+7cxIkT\nP//88+joaIqiCCE0TX/99dfLly8/ceLE0KFDv/3225iYmAULFsTHxzOb+m+4fPlyUlLShg0b\njF2IEZw+fbqsrGzGjBk8nqmsHAYAAAAAgHYTFhbGfCewevXq+fPnP//884YRiqJiYmIuXbq0\nZs2aM2fOREdHp6SknDhxgvHUAAAAAAAA0HbMHztx7do1f3//h8f9/f2vXLmifz1kyJDy8nLG\nUwMAAAAAAEDbMd8Q8vn8jIyMh8fT09P5fL7+tVKpFIvFjKcGAAAAAACAtmO+IQwLC/viiy92\n7dplOCBeq9XGxcXt2LFj0qRJ+pFLly5h508AAAAAAADjYv4Zws2bN1+4cGHRokWrV6/28fGh\naTonJ6eqqsrLy+uDDz4ghCgUivv370dHRzOeGgAAAAAAANqO+YbQyckpPT39ww8/PHTo0I0b\nNwghnp6eS5cuXbVqlZWVFSFEKBSePn2a8bwAAAAAAADwRFg5b0AikbzzzjvvvPMOG8EBAAAA\nAACAEcw/QwgAAAAAAAAdAmN3CBUKRVumCYVCpjICAAAAAADA02CsIRSJRG2ZRtM0UxkB2plS\nqVSr1caughkWFhbGLgEAAAAAjI/JZwiFQuGQIUO4XC6DMQFMR2ZmZlZWFqspZDKZSqWSSCQU\nRbGXhcPhzJo1i734AAAAANBRMNYQenl55ebmZmdnz58//4UXXvDy8mIqMoCJkEql3t7erKbI\nyMiorq7u16+fmZkZe1lY7TYBAAAAoANhrCG8e/fumTNndu3atXXr1vfff3/UqFELFy6MjIxs\n41JSaH9msiLH+gxCZhi7kA7DxcXFxcWF1RRKpdLCwiIwMBB/cQAAAACgHTC2yyhFUaNHj/76\n669LSko+/fTT+vr6OXPm9OjRY/ny5deuXWMqCzDIquKia+VxY1cBAAAAAABGw/yxE9bW1suW\nLbt69Wp6evqcOXP2798fGBj44YcfMp4I/gbl5S/lx9eSh7b2UWcdbU5YYJSSAAAAAADAWFg8\nh9Db2zsgIED/MGFTUxN7iaDteC7BykvxsiMvt+wJ1VnJzV9N57kOMWJhAAAAAADQ/pjcZdTg\n3Llzu3btOnjwYHNz89ChQ+Pj47GloYngdvOzjP21aeczMo2SED4hRJN9QvHtDNHkD80GLzF2\ndQBP7N69e/n5+caughkjR47ELs0AAADQzphsCMvKyvbt2/fll1/euXPHwcEhNjZ24cKFvXv3\nZjBF10GrZUSjZCMyx7KbeG5i894IW66tRtOk+DZKOO5fgoBoWl7LRjpCKEpkzU5kANLU1FRW\nVsZqioKCgurq6j59+giFQlYT4ZhWAAAAaH+MNYRTpkw5evQoTdPjxo177733IiIi+Hw+U8G7\noMbPhmlLr7OaQkQqCCE0IfLk1+XJr7OVhsOzeb+THOYOJsjPz8/Pz4/VFJcuXcrNzQ0LC5NI\nJKwmAgAAAGh/jDWEhw8fFgqFU6dOdXJyOn/+/Pnz5x85DbvLtBFlbku4AkZD0kSn+5+3tP4t\nRagWj5JS//v2qVF8dm+qAAAAAADA38bkklGFQvHdd9+1PgcNYRtZvpjCXnD1nePNX0XW2Q6i\nG4ttuc38PlPMp31OcFg5AAAAAEAXw1hDePnyZaZCAav03aAo7IOiO1nC5irRwkT5rrEyQtAT\nAgAAAAB0NYw1hEFBQUyFAvZocn5p3jdNNPkjs6HLyJ0VhBCOva/FwhONcc9SZpaiSZuNXSAA\nAAAAALQfFs8hBBNEq+XmkTvMhi5rOcjt7m/5YgolxIYZAAAAAABdCzMN4Z49e9q487tWq92z\nZ09lZSUjeeFJ8XtPFgTO/eMNxSHkjzWi3G79hM/+02hlAQAAAACAMTDTEC5YsCArK6stM9Vq\n9YIFC3JzcxnJC0+jrvvoO07PG7sKAAAAAAAwGsaeIczMzGzLqc0qlYqpjPCU1ALrBpG7sasA\nAAAAAACjYawhXL58OVOhAAAAAAAAoB0w0xB+8sknTzTfw8ODkbyd2O+//15UVMRqiuvXr9fW\n1kokEi6Xy14WgUAwevRo9uIDAAAAAMDfxkxDuGLFCkbigIFCoWhqamI1hbu7u5ubm1wuZzWL\nmZkZq/EBAAAAAOBvY2zJKDArMDAwMDDQ2FUAAAAAAEBnhnMIAQAAAAAAuig0hAAAAAAAAF0U\nGkIAAAAAAIAuCg0hAAAAAABAF4WGEAAAAAAAoItisSHUarXsBQcAAAAAAICnxHBDWFNT8/bb\nbwcGBlpYWPB4PAsLi8DAwPXr19fW1jKbCAAAAAAAAJ4Sk+cQXr9+ffz48eXl5YQQS0tLJyen\nhoaGa9euXbt2LS4u7vjx4/369WMwHQAAAAAAADwNxu4QyuXy6dOnV1ZWvvbaazk5OQ0NDUVF\nRQ0NDdnZ2a+88kppaWlUVJRSqWQqHUAnQ9N0SUlJXl5efn5+Xl6eQqEwdkUAAAAA0Pkxdofw\nwIEDubm5n3322bJly1qO+/j4bN261cPD4+WXX05ISJgzZw5TGQE6Dblcnpqaevz48bq6uubm\n5urq6sGDBwcHB7u7uxu7NAAAAADozBi7Q3j48GF3d/fY2NhHXl2xYoWrq+uhQ4eYSgfQmZw9\ne/a3334LDAx0c3NzdHT09/cvLy/fsmVLVVWVsUsDAAAAgM6MsYbwxo0bzz77LIfz6IAcDmfM\nmDEZGRlMpQPoNMrLy5OTk729vblcrmFQKpU6OjpmZWUZsTAAAAAA6PQYawjLy8vd3NxameDq\n6lpRUcFUOoBOo6amxtLSksd7cP22jY1NdXW1UUoCAAAAgC6CsYawublZJBK1MkEsFjc2NjKV\nDqDT0Ol0j7y1TlGUTqdr/3oAAAAAoOtgrCGkaZqROQBdjZWVVVNT08N/OxobGyUSiVFKAgAA\nAIAugslzCBMSElp55OnmzZsM5gLoNHr06DFy5MisrCxXV1fDoEwmKy0t9fLyMmJhAAAAANDp\nMdkQXrp06dKlSwwGBOgKuFzu8OHDNRpNenp6XV1dY2Njfn5+XV1dTExM68/lAp7qJvsAACAA\nSURBVAAAAAA8JcYawsuXLzMVCqCrkUqlYWFhPj4+Z86cKS0tHT16dM+ePbt3727sugAAAACg\nk2OsIQwKCnrKCEVFRWfOnLl69WppaSmPx3NxcZk6dergwYNbztHpdImJiSdOnKisrJRKpePG\njYuMjGy5IcdjJwCYJpFI5O/v39DQUFhYGBwc3PoWTQAAAAAAjDChTungwYM//vijtbV1WFhY\naGhoSUnJe++9t3///pZz4uPj9+zZ4+HhsXDhQh8fn3379u3cufOJJoBBQ5Ws4EaZsasAAAAA\nAACjYfIZwocplcrbt283NDT4+/tbW1u3Pjk0NHThwoWGbRVnz579yiuvJCQkTJkyxdzcnBBS\nWFiYnJwcGhq6cuVKQsikSZP4fP6xY8cmTpyof9TqsROgpatHs66fzHnl65nGLgQAAAAAAIyD\nyTuEx44dmzVrVkxMTGpqKiHk5MmTXl5eAwYMCA0NdXR0fPfdd1v/eGBgYMtN9i0sLIYMGaLR\naMrK/riLlZaWRtN0eHi4YU5ERARN0/p0bZkAN07l/pbwx3avtI4YTjooul2Z/PFvRisLAAAA\nAACMgbE7hL/++uukSZP0Z6kdPHgwOTk5MjLS3Nx8ypQpKpUqLS3tzTff9PX1jYqKanvMhoYG\nQoiNjY3+bU5ODpfLbbkRv4eHh0AgyM3NbeMEEFrw41/+RSlXj5470DBYlFmxLSZhxHP+RiwM\nAAAAAADaH2MN4datW8Vi8f79+93d3ZcsWaLfMf/cuXP6laL5+fkDBgzYvn172xvC4uLic+fO\nDRw40NAQ1tTUSCQSLpdrmENRlI2NTXV1dRsn6DU3N2u1Wv1rpVL5d7/iDqnnENelX0z9PDaR\nGO4NZlZsi0kYEtln6v+FGLU0AJOj0Wjy8/Nv3bp17949Z2fn3r17S6VSYxcFAAAAwCTGGsKr\nV6/OmjVr8uTJhJANGzaMHTt2zZo1hucGPTw8Zs+e/d1337Uxmkwme//99/l8fmxsrGFQqVTy\n+fwHZgoEAkNT99gJegsXLszJydG/7tWrl7e3dxurak8H/5VyMTGTpeAcLufgO6e5PA6tozdG\nfMUVcM//8Pv5H35nI5eFjWjDLwvZiAzAqqamptOnT6elpTU3N9fV1anV6u+//37BggUBAQHG\nLg0AAACAMYw1hGVlZYa1mp6enoQQV1fXlhPc3Nzq6+vbEkqhUGzYsKG8vHz9+vXdunUzjJuZ\nmcnl8gcmq1QqoVDYxgl6Q4YMcXd3178WCoW04UE6UyIQ8c2tzBgMqNPR8kal/sYgh0OZiXhK\nmZoQwhNw+QIuraP/zMvjmzG51ZDIksmvAqB90DR99uzZ9PT0gICAvLw8Dofj7e1N0/TevXut\nra0N/4AAAAAAdHSM/eiv0WgMd+cEAgEhhMf7n+A8Hq8trZdSqXznnXdycnLefPPNvn37trxk\na2tbUFCg1WoNi0Jpmq6trfXz82vjBL1XXnnF8Pry5ctJSUlP9JW2DwtbkdT1MfuyPhG1UqNR\nauk/l4rqNBx9Q8jlc3lm/11ka2FnbmlrzmBeNITQEVVVVR0/fjwoKIiiKMOgWCx2cnLKzs5G\nQwgAAACdBrvHTjwplUr17rvvZmZmrlmz5uF1WV5eXleuXMnLy/Px8dGP5Ofnq1Qqw53Jx07o\nQMpyq7POFbRDImWzStmsMrxtrJIxG9+C0fYSoH3U1dWJxeKWDyTrSSSSuro6o5QEAAAAwAYm\nG8KEhISsrCxCiEwmI4R88skniYmJhqs3b95s/eNqtXrjxo03b958/fXXg4ODH54QEhJy8ODB\nI0eOvPbaa/qRI0eOUBQVEhLSxgkdyMw3n4l8I5SNyCV3Kj+PPTRoci/r7la/n8l/dsHAL19L\nnvTSsJDZ/dlI1/IGC0BHpKqitFftSQAhhJjmCnMAAACAv43JhvDSpUuXLl0yvD158uQTfXzH\njh3Xrl3r2bNnYWHhgQMHDOMjR47s3r07IcTV1TUsLCw5OVmtVvv5+WVmZqalpU2YMMGwfOux\nEzoQgYgvED24Qc7TK7pd+cXSw8Oi/KavHZWy5xqHxwmY0DPWXPDF0kShWBAaM4DxjAAdkZWF\npLFGptFoeDyeTsahG/44srW+vr6HnWvrnwUAAADoQBhrCC9fvvyUEcrLywkh2dnZ2dnZLcc9\nPT31DSEhZPHixXZ2didPnrx48aKdnV1MTExkZGTLyY+d0MUVZpaHzgkIf3V4y8E+I92XfjH1\n6tE7xqoKwNQUXKziXnTLFuX7BnrxKZW7bQkhDo2NjQUpjWXf3Z08fYKxCwQAAABgBmMNYVBQ\n0FNGeOeddx47h8PhREVFtXKY4WMndHFDp/93f52Wazl7h7j3DnFv/3oAnpJaqVErNIyH7TvK\n0/+sz/Wfs6/U3fJQ3Qnz/zXud9umm3xusc38zybJ6hWMZySEiKyEWGENAAAA7cy0NpWB9tQ3\n1EPqIjF2FQBP5ee4y0e2nmM8rItdgZtdgbJpJPnVjuphRVlTDYfsCCGWoup7Hy/YfiOc8YyE\nkG03XzYzZ36hOAAAAEArmGwIjx07xuFwxo8fTwipqKh44YUXWl719/ffuHEjg+ngKTm42zi4\n2xi7CoCnInWx9h3uxmxMnY625pIxjrtdPKijGRP1d+0oDunlx5vqGV+j9vARuXC4HMbv5nG4\nuD8IAAAA7Y2xhvD69euTJk36/PPP9W9lMllycnLLCcnJydOnTw8MDGQqIwBA8JTewVN6Mxiw\noUq2ZtgXOi0psl78wsidwx3r71W5E0KszOomOX1xv7zHgQtTtXTh4Gl95n8YxmBeAAAAAKNg\nrCHctWuXvb39ggULWg7u3r17woQJhBCNRuPv77937140hADAoMyT6Xd+vcFszJGTJbSOJsT6\nOrVqkPeH3a1LeFx17DOfNfPcS6WxIyZzCSF8bsVP6/Yymzf8red5ZljGDwAAAO2KsR8+zpw5\nM3bsWIFA0HLQ2tq6W7du+tfh4eGpqalMpQMAIIRwLq4fpTnMcND/fY7Py+Gu/oWEZPQgsf+9\nwPReNpqmMJ6ZPcNBAQAAAFrFYSpQfn6+j49PKxPc3d3z8/OZSgcAQAjp5iR4/KQOQmDG2D/I\nAAAAAG3E2B1ChULB5//39+pubm6NjY0ikcgwYm5uLpfLmUoHAEAIsZr6gbZ6CeNh714qOrXr\ncuRLfS1uvdek4FLNNeYWHH7P8WczAwtulL2wbTLjGQkhHHNrNsICAAAAtIKxhtDW1ra4uNjw\nlqIoCwuLlhOKiors7OyYSgcAQAjh2HpwbD0YD+vhqJwdMEiQPIXnPjS/rJdTww6LmJ80+6eF\nDnerilnL93FgPCMAAACAUTC2QmnAgAEnTpzQ6XSPvKrT6U6cODFgwACm0gEAsMeMrhIkRfB6\nBIhn7+cKBRRFiKO/5cLjyitfSu9vM3Z1AAAAAIxhrCGcNWtWbm7u1q1bH3l169atd+/enTlz\nJlPpAADYoy27wfd+Rjx7P+HyrZ3NBVZcQgjXOchy0UltKcObmgIAAAAYEWMN4Zw5cwIDA1et\nWvXCCy9cuXJFo9EQQjQazZUrV1544YVVq1YFBQU9//zzTKUDAGAPv9dE8+lxhMt/YJzrHGSx\nIMkoJQEAAACwgbFnCPl8/qFDh8LDw3fv3r17926KoszNzWUyGU3ThJCBAwceOnSo5a4zAAAd\ngtzWr6rb9P7GLgMAAACADUzucu7k5HTx4sX4+Pjx48f36NGDoqgePXqMHz9+165dFy5c6NGj\nB4O5AADah1ZoV2wbYuwqAAAAAFjB2B1CPT6fv3DhwoULFz7yanp6OvaVgY6rqqqqrq6O1RRF\nRUXl5eW5ublCoZC9LBRFeXl5sRcfAAAAADoKhhvCR6qvr//222/j4+OvXbumX0EK0BEVFhZm\nZWWxmqKyslKhUGRkZHC5XPaycDgcNIQAAAAAQNhuCM+ePRsfH5+QkCCTycRi8YwZM1hNB8Aq\nFxcXS0tLY1fBAIqijF0CAAAAAJgEVhrCysrKffv2xcfH62+njB8/fsmSJRMmTBCJRGykA2gf\nUqlUKpUauwoAAAAAAMYwuamMTqc7efLkzJkznZ2dV61aZW5uvm7dOkJIbGzstGnT0A0CAAAA\nAACYFMbuEP7rX//68ssvCwoK7O3tly1btmDBAn9//3v37r333ntMpQAAANNXWlqal5dn7CqY\nMWjQIIFAYOwqAAAAWMRYQ/j22297e3v/+OOPkydPxnmDAABdVmNj4/3791lNUVpaWllZ6e3t\nbW5uzmqigQMHshofAADA6BhrCKVSaU5Oztq1a7Ozs2NiYnDqIABA1+Th4cH2t4Dr169nZ2eP\nHj2a7cd6WT0ABgC6IJom5w7cGDajH4eLDd7AVDDWEBYXF//0009xcXFr1qxZt27d+PHj9atG\nmYoPAAAdAp/PZ3udiLm5uVAoFIvFFhYWrCYCAGCWvEHxzbqTfUM9bLp3hn3L20FVYf03604a\nuwpmTFg6uNdQV2NX8QiMNYQCgWDWrFmzZs3Ky8vbtWvXnj17ZsyYIRaLCSElJSVMZQEAAAAA\nYENTjSz7QiHjYeUNynMJN0fM6ie0MFPK1ISQWym5YhuRSq5O++5GcERvSzvmV797BTlLHMSM\nh21/ymZV1rkCY1fBjGFRfsYu4dEolk6K12q1ycnJcXFxx44d02q1Hh4eUVFRM2bMGDRoEBvp\n/rbLly8nJSVt2LDB2IUAgIm6dOlSbm5uWFiYRCIxdi3wh/T09KysrDFjxtjb2xu7FgDoPO5e\nKtoy+ztjV8GM5bsi/UZ5GrsKBui0tKJJyWqK33/N//LV5LDlQ55dGMRqIoE5n8fnspribwgL\nC2PrYHoulxsREREREVFcXLx79+5du3Zt3rx58+bNLPWfAAAAAABPQ+oimfb6SDYi67S6i4mZ\nzXUKVz/H33/N7zXUrfJeDcWhhs3oxxOw0iF087JjI2z743Apcwm7j3ObmQsIIXwhj+1EJout\nhtDAycnpn//857p1606dOhUXF8d2OgAAAADQK8qscO7jYOwqOgxzW4HvxG4sBe81vtsPb527\nd7OEEFKSU2nlIHpuc6hAxNaP4mIpjsyBtmK9IdSjKGrs2LFjx45tn3QAHZdOS2PnMYDWNVYo\nsg7Ujhlj7Do6jrKystu3bxu7CmYEBwfrdyiAx6otbXwvfN+2my+bmeM8sDapr68/d+4cszHv\nn2lU1Gn+eEMThUxFCGmuk5u7kG/eOq4f5os5HmMZfiohNDRUJBIxGxM6q3ZqCAGgLTJO3j29\nN/3Vb2YauxAAk0PTRKvW6tdWNVbKa3MVhktqpYZvhm9nrVEoFGVlZaymKC0tLS0t9fLyYvtp\nW41G8/hJXVhTjezSoduj5w2kOJROqyOE0DqaEKLV6FJ2Xw2J7i8U48bRX7K0tGR8twt+aV5D\npVz/WqvWVWfmawlNUZzuzo584R//cIlthIGDvJjNa21tzWxA6MTwHRTAyOormhXNKkcPG0KI\nvFGpaPzjyWmNWnv/ZrnnQBzpCUAIITd/yf3u7VOvfjvL3u1/fsq5+FPmd2+f2nx1uQk+qW86\n3N3d3d3dWU1x69atmzdvhoaG4iBi49Jq6JNxl4uyKmPeH99iUBf/jyPFdypHzMJ5YK0RiUTe\n3t7MxvR+7Y+A8kblJ/O/N7cW1stlVg6issyGV7+eaWWP292mQq3sur9sQkMIYGS3z947+K+U\nf+yJ8gjozlcU9LY+TUiMRq2NW364trRx7ZG5xi4QwCT0e8Yz/YTrh7P2v7R3elNTk06na2ho\nuHeh6uu1J+ZumoBusHUXf8rcs+poOyRKJd+yneKt4/O7+0jZztIObvyS+/mLP7EU/Pz3t85/\nf0v/+tX+HxvGXxvwCRvp/i8hunP8+rKqsD5t/3U2ImtU2qvJdwhFJD3E9aUyc4mZslH7r4l7\ngib7srSgd1iUn6OnLRuROx/9lpfyRpWxCzEaNIQARjYksm/V/bpP5n//j91R5o0ZfWxOa9Ta\n+BVHyvJqXvtmlrGrA3hiv6fm/5Zwi5XQNKEp3cYpX6nNmjlK0eYZ+6lGkXNvacbPORk/57CR\nMPqdsWLrzrDpnMRB7DvcjdUUJbmVDWWybj421g5WrCbS7wfYCZhbmbn6ObIUXKPSlufVcHgc\ntUIjEPJ1Wp2Dhw1Lu1kSQjrNM4q1pY0nd1xiNUV9eRMhpPj3av3bX79KZymRT7AzGsJWNNfJ\nN037ZuF/Jrv5/882QrVljdsX/Rj97jiPgO7Gqq39oSEEaKui25UV+TWMh7UoP9Rfd7Z8+IJt\ncw5MerbCVaf7aMb+2vLG2fO1zbvH5/p/yXhGikMNmNCT8bAAehX3aq8dvcNqCq7anBBC6oWE\n0EW/Vxb9XslSohn/HM1S5HbmO9yNvYZQLpdnZmYmfVzaUEbsh3JDo/r4+vpyubhn+xgeA7v/\n45tpzMa8eSpPVv/HcwdNNfJTcVcJIRSHGvdikPmfv9qQOIh9Q1yZzdtpNi9x9XNccyiG8bCy\nBsXZ/TdGzR0gEPHz7xZ8typ12jtDfP19NCrt6T3XBk/va8XCwfQPrK6HB4itRYGTev1nXsLL\ne2cYBmvLGrfOPuDc296tH1u/rDFNaAgB2upi4u+n4q8wHtZK2Lh41Hnfhvx05Zz7t8p7+Gjv\n3Szz7X67x919RzKmXI47wnhGLo/z6Z3XGA8LoBfyXP/BU/owGFApV/97yldqlVatUtM0TVGU\nRqkjNKE4FFdA6XQ6Ho/L5fF6D3d7/r1xDOYlhIgszZgN2PnU19f/8ssv6enpTXV8QsyLior2\n7bs9evToZ555RiDoJLfyWFJWVpaamspszNsHatQyneGtVqclhGi0mt+SMwyDQhvu3TobZvOO\nHTtWKu0M63jNzPks3bb1HfbHb2RkdD0hROphpU/UOZbadlBTVoVQHOo/cxMmLBtKCFE2q7ZG\nH3Dubb/w43AOl2Ps6toVGkKAtuLwOE6+9gwG1Ki05fm1DQrJjjPLFo/8Ys7wPZlFfoSQnt2y\noofsO3oj/HL+EEKIha1I4mDBYF6KwrEWwKKMn+/+vPMyszHF1iK1Wl1T0ywUCjVKmigIIYSm\naZ6IQzgcDoeyshKX59X+Z24Cs3lXfDndkoXf3HcmFy5cyMzM7NOnT8aNIgUhEonE2d8jNTVV\nKpUGBQUZuzqTJq/WNN1k+Mcwlz+PHNTp6Hu/VXEJcbHPu1/rxdXxXYNsKc4f//g33WQ2LZEP\nUpPO0A+2BzMLfp9oWwvbzrAWvROIeG0EIST543OEkPQTd32HuS78OJzL61rdIEFDCPAE1PKa\nvPvMhhTxCSFEq+N9dX7+vGG7h/dM4/HUc4bu/fn3CdcLB4gEckKItkle08TkUlVuF/u9F7Qz\nRaOqqrCe8bA6nY5WcpVKrVZNU1xC6wjFoRR1Wq6Aoji6BpWM8YyEEJ2WZiNsp1GcX3Yk/nRw\neB9CCPnzj4rD4bi6uP6WcHNAwAAuDwtH/5KsUnPtQAGrKazN6xaHfr4+8d3qfLo6v4m9RM9G\nDWcveOcj7SMyNOdgFF+vPVH4e4Xhrb4DVMnVVUUNH0z/Rj8osjR7ed+MLvJfCg0hQFs9Y752\nVMS19sk10T9pon8SmxnWsRkcurQRz/mPeI75re3Ly8vf+8d/tNftfGfY1jRXVP7M8X9ZUnFG\nV5kpGxTbfe6y2YxnhMeqKqnRXrcts1O4hP53TxFaRxcdU9fk1zW+3mxtx+4GMx2am5/j4k/C\nGQ9LKSqqj279OWNk91CrkuwsQoiuZ2lP74Elv9ZOHnLOavwams/8fxRHT4bXoHZuYmWJsUvo\n6gZP6ePu/8eeMbIGxfHtFwkhhCZ9QtylLn+cpGph24X6djSEAG3Fd/RV1eUzGZGmaa2K0LRW\nraVpwuMTolURQgjF1dE8rVbHE3ApDkVxeITD5F9VitN57hBqtVqtVstqCrVardFoVCqVSsXu\nhtR44Kp1dflK7XU7xzGUg7+o5jwhhFAU8Q6X1FTV3thdpVmsxckT7c/Ry9ZsWM39X7n0n7cH\naZrc+aGuqUgzaKmzuSUWxbVG4mgxMKwX42HLblE2aWfNQ29d91jhbuFIFKTXCBdKWDuL+kSi\n0dgPdLF26fb4KMCO+vr6gru/h9xelSF1sre3x9nxxuIz2MVnsAvR7yITfaC7t11eeolLX4fU\nbzL0x4AZu8D2hoYQoK3MZ3/DxrNEp/dd+/WrjFfetSaHn6+3C1eXZDi4WPBtPc7UrLqUnPuv\nlEUs5Ow8bt++ffMm00/D/K/CwsLa2lqNRiMUsvvT7YwZM3g8/Jv8l5x97ed9OvbrI/G8fIVS\nqaZpYUNDw/379599aYiLuBe6QaOws7MbOnFAsWt1XkIjz5oQQqqvajSNWsfJ2m4edvgdh1E4\n9vU5Gvxuv1vrbBq+/pU8SwjhEe0zTQcEIsWdwM0+6AaNgVY1qS7vzhQO3b13n0An6y8mJ44m\n/3Tyt5g5c/ppLpsFzKbMcT7EX5LL5bdusXKUUXON8ti/rtu6it2H2+all5j34Pb0ctwWc2Dc\nmn4OPqysbvD09LSzs2Mj8lPCDx8ARjYyOmDIgGLldzNFkz8quV7LK75p8WJK085nRtl++Oz3\n+41dnamzsLDo1o3dn2/Yjm+AzX5aJ7YWBY/19xzw1o0bNy7UXrSxL3BwGBwaGtq/f38zM+wF\nagS30+7JG5WCGpvCuzcdh3QrTVMQQuTlOofh3JLbVUE+kmtH79g5Sx444wsMdLUF6uwTjIeV\nyWRVlw6XuI7xqDo6jr5PCBlf/6mII8+1m1CWtrvRvp6NRp3fdwrHomtt0/9kNMrGX95vapQE\n+L+maqompcTT05Nn49r0/eJm8xKB3zT8698KpVKZk8P8SbNaFX3t0wpxN57LZLN7GXmEkLKy\nMr+obt1qRMfeywhc5ii0Zf73jA4ODmgIAeAR6IJfld/NFEVsMxu8xKpoq1bE41h2s1j0c+OO\nUdTxF0n0d8Yu0KS5u7u7u7sbuwpoP1Kp9JlnnummzrPjv88J22Bvz+TGv9B2Oi196KOzzXVy\nQghf2a1GraYJTQil1erqrnPFAtfUXb8TQryCnOZ/GGbsYk2Upviy7MclbESOEBBSRgghAtJA\nCLHWlhIt6VP+XR8B0SSd1rCQ0cK+JxrC1ohsL/Vc3+/mWmnll2micEIIoenAmgOOvHuXvNaP\nE+OPrjWWlpbjx49nPKxGpbWVZw+K7MXlcc4prk94du553hvjx48n40l6co7PUGc2doK1sGBy\n03gGoSEEMDa+ufnMPYL+swghDh42ilIrQghH4mS55IzqOrpBgD9oy26ps48LQ1YSiqIITVF/\nPLVGy6oVZz4QTXiP2UdtoXUcLrU6cY7+tU5L73r1cNH5S4uGffLByfWjng+MeCXEuOV1DMpm\nY1fAHLXc2BUwRKehlY2MR21sbDzz2xVN/1VB9z4apvyWEBLUlNRdk3vF87Vfr2QNGXOfjYcJ\nKYEF4fIfP8/kcblcW1tWltROiFZzrKQ0TXMoytmmSNjcJJFIuFzu6KmuHAsHQnWeDRceC98+\nAYyM5zqYuA7+4w2HS1F/LFHgSJyEI1carSwAE0PxzBRnNunqCs3DtxkGaVl1485nKbG0S33n\nNh20WqapyP76o+J76eW9BlqIzZpGLep/+st0Ho83LoLDcwkmWAj917jd/AT+M9iIXF5eXltd\n5USVcDUyHq3SUAIt36JQ62jv4MjSTXWOrScbYdufOvtk0+5JbEReIyIkmxBCnEgVIcRDkU4I\nGXp3/VAhIdt21rGQUTx7vyDgORYCdxK0rLphk5dq9MbzzZ5JiSnDepM7eZmJiYlBjirJicUW\ni37muQ01do3tBw0hgAnh+0VyXQYZuwoAU8SR+ljGpjbtfEamURJxICGEKOoa98+mhFYW8xLR\nEBqFuuRmw/YQTt4Lr3676eTmLwgh9u6SFbun39q4sK74nN3bRZRQYuwaTRfXKVD8/EE2IttV\nV+h2hsnqeScE855Txn1n9uJk5TfWttb2L/wktsK2lq2hZdXGLoExtKzS2CWYNMrcTh0ez01c\nwLOI8PQKIYRIpVLNvbPCS9tlQcutu1I3SNAQApgUSiDm2vsauwoAE8V16K3fcklidZvQNDdh\nBmVuZfHCUUpgok9lmI76+vri4mLGw5ZkakruxkzuvbvhhldzUzMRkuLiYnfll8N7nf3q0pLR\nNwsEYuZ/zPDy8sI2Qq2gNQruT3OkAvndifvEN66SImLl1Kuu116P8y+Tw4tJ9H4srm4Fz3OU\naOK/2YhcWFiYmZnZT1hoqbjP06lUlEhpJr2u9u7Zy9fNzY2NjHxfVm51GoFWpasvYiPw72Xq\nBvGUEU2JfJ6CEOIhyh5RdequxfBatbdDVQ6HhTO6KAsH0/yGhX8UAACASfLDLysvxTEcVNdy\nIwxa1FhGCCEVN7QcXv36P58toShCMbwpnOVLV7kOvZmNaRR1lcV3L//MRmTJFP/shud6nV3r\nIRhJCHEv/di87PxN11jPXq4FmafZyOjUzd7MDJsJ/SVd3X1CUZLYM4PE9raWQnKAjBo1yq2n\nn65//+aD83XNlRzLLnfGWttxrF2Eo95gI7KbUqndESUoLvmOmjmHfH2Anh6uONLbXuMyc7OZ\nSMxGxk5DW5HVsK0/G5ENQQdxkgkhodbJREd8m06T66cbr7ORkIhnfyMIiGYl9NNBQwgAAEzS\nNVXQ7bPDBE3TWjW7GdQKVuO3G9vK30ZmvsJqikBJCiHEV5dCCAnI38peIuGYUYR0hoawuLg4\nNTWVldDm88nhU4QQedmdaYScOHHC8upNQgixXEySzrCRcOzYsVKplI3InQRNa5Jf6t5wpWr6\n9865ZSTja+fewVq/efY/L9QcWmI2cy/h4CTVv0RrVVwHhhdP6WoLHvt9iqI4HHsfQhh9EFqj\nZDIac9AQAgAAk8Qz95hP285ScFpR17Q3UiFrpJqKeWaWZr3DRJO3sLdzZBZtRwAAIABJREFU\nSad5BI6vqtGKbJiNScvrCKEfM4nDo8wsmc3LVTcxG9BYBAIBS3snGnBsBhVaLHRz6cv27j48\nHn6ebI2uvlBz76zFiykSh95cqwySQfr37+81YKTO83TT3qna6rt4WqQVsgattiKr/fPStE5b\ncYfZmDXlStM8mBV/gQEAgFE8M4rHyiNetLy26asZlNCqpudC23NrNLN+4nwfRY6vMZ/2BXaz\nbJ2CtqXltUZIrNMwnldNWXSOn13s7e3ZOF3tIZP82c8BreNYu1q99vsjxm09rV690f71dCyN\nuh67f3mZpeA9rEvCAw5dLQga7Plbavbo4d6pZ7NDbxX3Yyld2OAANIQAAND51dfXV1Yyv7sd\nR1lvmTSHFto0jPq04soRa53ufgPffmyc1dF5dU0K2bA3Gc9ICHF3d+8ctz7u1A7b8/1mloI/\n2/fkcO+0IxlTo4IOHLgUHTXowA9XZl6/P4CldG8tchKxFBqAfTTf4p79RAsRuzeHOxOpZ7eo\n/7zKRmS69Kz08qLz8pBrjs8OJr/lde9To3SJ8N3vGz6M9F7ERsYePU10ZXVn+D4HAACmo7y8\n/OrVq4yHtW267aqzviF9UZd+S1BZ2ZOQzMxMMzMzS/c3fAv2XuWd11HMf0dzcnLqHA1hj17S\ncUuC2YjsLv/SWf7bDautHmMEpP5gt7AXs1VeMwa/7/+sV7lgDBsZxTbmbIQFaCccbpZTTBAX\nO+W2lZk533c48xux0rKa+uOx3DFr7S3GON28SXKJjYe5R/AMrnCs4+FFVhOmcJ2DGE9qsjrD\n97mWdDpdYmLiiRMnKisrpVLpuHHjIiMj2dg3FgAAHsnR0XHQIDaO0xxEyNxAQggh/FId/+fd\nI0aM+HM8MpCFfIQQPp/PTuD25tLHwaWPA+NhNfmpTXsSLZb98qzrYG1JRsPHZNrrIwkZqbrq\n1een2KErX6NEOPUOAEwRJbKxXJrG7REwlBBXFxfyCRk2bFjP4aGEEK37QK6dl7ELbFedrSGM\nj49PSkoaNmxYREREZmbmvn37qqqqYmNjjV0XAEBXIZFIJBJ292Khe9iqeBvtvL1ZzQKPxXMf\nIXkjjzJ/cPGbIHAu3zcM3SAAPD2lUpmbm8tObAGpyySElJeX9+RK8kuqNZmZf1ypZiWjk5MT\n298f/55O1RAWFhYmJyeHhoauXLmSEDJp0iQ+n3/s2LGJEyeydOgnAAC0P8rc1mzoMmNXAYRQ\nHEM3SFk48NyH//eK2EQflQGAjkUul1+/zs6xgH9SKBRXbf9pVautYTmRWCxGQ8i6tLQ0mqbD\nw8MNIxERESkpKampqTExMUYsDAAAoHPjWPWwjGXnVD0A6MLEYvHw4cMfP68jMNnjOjtVQ5iT\nk8Plcr28/rvq18PDQyAQsHajGQAAAAA6Ca1WK5c/5rzypySTyRQKhUwma2pi90RNkUjE5XaG\n8+75fL6rq6uxq+jkOlVDWFNTI5FIWv7fT1GUjY1NdXV1y2kXLlww/CWsqKho1xIBAAAAwCRV\nV1f/8ssvrKaoq6srKSmRyWSZhsfV2BEaGtqjRw9WU0Cn0akaQqVS+fCOcAKBQKlUthzZtm1b\nTk6O/nWvXr28sS0BAAAAQJcnEok6zY+FYrHY2CVAh9GpGkIzM7OHb/SrVCqhUNhyJDo6ura2\nVv9aJpOVlZW1U30AAAAAYKosLS3ZOTUHwKR1qobQ1ta2oKBAq9UaVo3SNF1bW+vn59dyWkRE\nhOH15cuXk5KS2rVKAAAAAAAA09CpTmz38vLSarV5eXmGkfz8fJVK1XKbGQAAAAAAANDrVA1h\nSEgIRVFHjhwxjBw5coSiqJCQECNWBQAAAAAAYJo61ZJRV1fXsLCw5ORktVrt5+eXmZmZlpY2\nYcIEd3d3Y5cGAAAAAABgcjpVQ0gIWbx4sZ2d3cmTJy9evGhnZxcTExMZGWnsogAAAAAAAExR\nZ2sIORxOVFRUVFSUsQsBAAAAAAAwdZ3qGUIAAAAAAABou852h/BvuHjx4rJly4xdBQAAAAAA\nQLuqq6ujaJo2dhnGpPz/9u41rKkz3Rv4kwMQEIEIIhRBCiKHEVGpSEQUlVZQcXY7Or2se1fU\n2o7TMpUe1HJSRwuM4+yCrYcpnWmLjjrVztRRRIEN2BasEAJBRAQBLQknA+EgEiFhvR/WfrMz\nQZFak7Ug/98nXYlet948686d9RwePFAoFExHAQAAAAAAwABTbwgBAAAAAABMFtYQAgAAAAAA\nmCg0hAAAAAAAACYKDSEAAAAAAICJQkMIAAAAAABgotAQAgAAAAAAmCg0hAAAAAAAACYKDSEA\nAAAAgGGp1eq+vj6mowB4CDSEAAAAAAAGpNFoUlNTExIS7t27x3QsAPrQEAIAAAAAGBCHw7G0\ntKyvr09MTERPCGyDhtDk1NTUUBRF/1omk+3ataunp4fZkABJARglDBYWQlJYCElhGy6XGxsb\nu3jxYvSEwEK83bt3Mx0DGI9EIklKSmpubg4ODpbL5fHx8Y2Njf39/fPmzWM6NNOFpACMEgYL\nCyEpLISksBOHwwkODm5paSkvL6+oqFi4cKG5uTnTQQEQQgif6QDAqLy8vKZNm1ZYWKhSqW7e\nvKlUKmfNmrVp0yam4zJpSArLKRSKzMzM2tpaR0fHqKgofKJiEAYLCyEpLISksBb9nJAQcvny\n5cTExL1791pbWzMdFKDQE452RgGYiN7e3oSEhMbGRkLIrFmzEhMTLSwsmA7K1CEprNXV1RUb\nG9vR0aG9EhkZ+cYbb3C5mG/PDAwWFkJSWAhJYSGlUpmZmSmVSjkczt27dwkhnp6e6AkZh0JP\n8ITQBPX19XV1ddG/FgqFmK7ABkgKa2VmZnZ0dHh6eq5fv76vr+/LL7/Mzs7u7++PjY3lcDhM\nR2eKMFhYCElhISSFbRQKxfvvv9/R0eHo6Lh48WKKor799lt6PSF6Qmah0BOsITRB5ubmVVVV\nDg4O1tbWFRUVra2twcHBpvMTz05ICmsdPnzYxsbmwIED06ZNc3d3DwsLk0gkUqkUOWIKBgsL\nISkshKSwTXp6em1trY+Pz/79+wMDAwMCAiIiIuRyuVQqxXpCZqHQEzSEpkapVKpUqvDw8LCw\nsEWLFlVUVJSXl+v9xF+9etXGxgZzS4wGSWGzf/zjH6tWrQoICKB/KxAIQkJCTLBUsAQGCwsh\nKSyEpLCNRqNJT08fGhras2ePvb09fZHH44lEIrFYXF9fj56QQSj0BA2h6ejs7ExPTz906ND3\n33+/YMECW1tbCwuLkJAQbZ0ICgricrkFBQUHDhwQi8XLli3j8zGj2LCQFHZSKpWfffbZ8ePH\nxWJxT0/PzJkzvb29ta+aZqlgHAYLCyEpLISksJNarT516hSfz3/99dd1r3O5XIFAcOXKFaVS\niZ7QmFDo9aAhNAktLS07duyora21sbFZtWqVp6enlZUVIUS3TpSXl1dVVZ06dYqiqBUrVsye\nPZvpqMc5JIWdlErlO++8U1VV1d3d3dzc3N/f393d/fzzz+suLtctFc8++6yrqyuDAZsCDBYW\nQlJYCElhLR6PV1hY2NPTIxKJ7OzsdF/q7u4uKCiYN29eVVWVk5PT9OnTmQrSdKDQD4eGcPwb\nGBiIi4tra2vz8fFJTk4ODAykKwTNwsIiNDS0rq6uurr69u3bXC43Ojp67dq1DAZsCpAU1jp6\n9Gh1dbWHh8dbb701Z86c2tra5ubmjo6OoKAg3S8I6VLh5OS0ZMkSBqM1BRgsLISksBCSwnJq\ntbqioqKpqSksLEy38Th79mxdXd3u3btnzpwZFhbGXIAmBIV+OBw7Mf5lZ2cfOXLEyckpLS1N\nWx6kUqlUKnVwcFi+fDmPx6MoqqioqKmpSSQSubu7MxqvSUBSWEihUNjb20dHR5uZmR08eJDO\nS2dnZ3x8vFwuDw8Pj4mJGfeTRlgIg4WFkBQWQlJYTqPRbN++va6uLjAw8O2336afE2ZnZx89\netTW1vbzzz/n8XhMxzj+odA/CiaOj383b94khKxcuZL+uZfJZIcPH66qquLxeBqNpqioaN++\nfRwOZ+HChUxHakKQFLaRy+VxcXGBgYE8Hi8iIkL7cWrSpEnJyclxcXF5eXmEEJMtFQzCYGEh\nJIWFkBS2oZ+4aEsGj8dLSkratWtXWVnZa6+95unpqVQqW1tbCSGvvvoqukEjQKEfgQkduWiy\npk6dSgiRSqVNTU0nTpzYtm0bRVFpaWknTpxwcnK6du1aXV0d0zGaHCSFbaysrKysrPLy8hQK\nhd6afqFQmJyc7OLikpeX9/HHH2NWhZFhsLAQksJCSAp73L17d+/evS+99NK6deuOHDly7949\n+rqtrW1qauovf/lLDodz48aN1tZWKyurrVu3hoeHMxuwiUChHwGeEI5/q1atKi0tFYvFYrF4\n4sSJmzZtioyM5HA4FEXR30gNDQ0xHaPJQVLYhi4GcXFxcrm8oKBg5cqVut/Xal/Ny8sLDg4O\nCgpiMFRTg8HCQkgKCyEpLKFUKrdv397R0UEIuX//fnZ2dnl5+e9//3snJydCiEAg2Lx58/r1\n6xsbGymK8vDwEAgETIdsKlDoR4A1hONQX1/f119/XVpa+uDBAy8vr7Vr17q6upaVlWk0moCA\nAO0j8nPnzmVkZAiFwr/+9a+Yq2BoSMqYoFQq6VLx0IUESqWyuLh45cqVTIVnCoaPFHd3d41G\ng8HCICSFhZAU1vrkk09ycnK8vLy2bt1qbW391Vdf5eXlOTg4JCcn0z0hMAuF/qHQEI43zc3N\nSUlJ7e3thBBLS8v+/n4+n/+73/1Od+sqiqK+/vrrY8eOURT1/vvvh4aGMhauaUBSWOihH6fI\n40oFGNRoRgrBYDEuJIWFkBR2ojcs2bJly9DQ0MGDB62trenrJ0+ePHnyJHpCRjy01qPQD4dj\nJ8YVlUq1c+fOtrY2T0/PPXv2bNmypbOzs66u7ocffli4cKGtrS0hpLy8/JNPPsnNzeVwONHR\n0REREUxHPc4hKSzU3Ny8Y8eO0tLS7u5ujUZTX1+fm5s7ZcoUd3d3S0vLkJCQ0tJSqVSqUCj0\nNqEGwxnNSCEYLMaFpLAQksJOcrl8x44dTU1NbW1t4eHhgYGB2pf8/f0JISUlJVeuXJk/f762\nUQRDe1St9/X1RaHXgzWE48rZs2dbWlqeffbZlJQUgUBw8eLFnJwcQsjmzZvpIzW7urqOHDnS\n2trq5OT029/+FifSGgGSwjYqlWrPnj3t7e2enp5vv/22u7v7oUOHLl269NFHH3l6erq6uuou\nJCCmuuGY8T12pBAMFqNDUlgISWEn7YYlhBBLS0u9V9etW0cIOXnyZFxcHJ4TGsdjaz0K/b+h\nYByJjY2NioqiVypfvHhx9erVUVFRZ8+epV+9dOlSf3//3bt3i4qKhoaGmAzUlCApbHPq1Kmo\nqKjf/e53/f39FEVlZ2frJYXW2dn5m9/8Jioq6urVqwxFalpGM1IoisJgMSYkhYWQFNbSVo23\n335brVYPf8OJEyeioqK++eYb48dmgkZT61HotXDsxLjS3d3t6Ojo7u6ek5Nz+PBhiqJee+21\n1atXE0J6e3s//fTT1NRUBweHBQsWmPoXIUaEpLDN1atXCSGxsbECgeDSpUtHjhzRTUpOTo5K\npSL/f8OxN954w9S2GmPKaEYKIQSDxZiQFBZCUlhLe3RBQ0PDoUOHqGGbdKxbty45OfmXv/wl\nI+GZmtHUehR6LTSEY55MJmtoaKB/7eTk1NPTc/bsWfpOpP25J4R88cUXAwMD2vkkYFBICpuN\n8uMUIUQoFJrgVmPGhJHCQkgKCyEp7ERRVGVlZVZWllgs1mg0ZBTH2c2cOZOJSE3RKGs9Cj0N\nm8qMbV1dXTt37szNzQ0KCrK1tdVoNMXFxeXl5YQQ3SJx6dKlU6dOCQSCd999V7sVNRgIksJy\nJSUlLS0t5ubmn376qd7HqU8//bSuri4oKGju3LnMBmkKMFJYCElhISSFndrb23ft2nXmzJmy\nsrLLly9/9913M2bMsLe3x85kLIFa/5PgCeHYduzYMYVC4e7u7ujoSAgJDw/38fEhhLi4uCxc\nuJAQolKpjh07dvjwYUJITEyMg4MDswGbAiSFJWpqarTfzspksl27dvX09BBCFi9erFKp/vKX\nv+hViEuXLuXm5goEAsznMQ6MFBZCUlgISWGh7u7unTt31tXVCYXCNWvWREVFtbW1xcfHSyQS\nMornhPC0PKrQE9T6nwjnEI5V9HE30dHR5ubmBw8e1G5p1d3dvWvXroaGBi6X6+jo2NnZOTAw\nQO86/eKLLzIb87iHpLCHRCLZu3dvaGhobGysXC6Pj49XKpWRkZFbt24dGhrauXNnTU2Ni4vL\nhx9+OGnSJJVKdfr06TNnzlA4rcsoMFJYCElhISSFtXbv3i2RSHx9fePj421sbLKzs48ePUpR\nlLm5eVxcHP3cSXvYXUJCApaoGcIIhZ4Qglr/k2DK6Jike9xNREREQECA9iWBQBAWFkZRlEwm\n6+joGBoamjVr1jvvvIOfe0NDUljF2tpaIpGUl5ffvn37q6++UiqVs2bN2rZtG5/P53A4QUFB\nUqn0xx9//Ne//pWfn/+3v/3t2rVrHA5n48aNy5cvZzr2cQ4jhYWQFBZCUhinVquHhoa4XP3J\ndDU1NZmZmQ4ODikpKTY2NhcvXqS7waVLl966dau4uHj69OnOzs703NEpU6YsWbKEkfjHvREK\nPSEEtf4nwRPCMUn7tRMhJDo6+qWXXhr+Hoqient7LS0tzczMjB6gKUJS2Ka3tzchIaGxsZEQ\nMmvWrMTERAsLC+2rKpXqq6++ys3N7e7u5nA4/v7+69ev9/X1ZS5eU4GRwkJICgshKcxSq9X0\npiMffPABj8fTfen06dPHjh374IMPRCLRlStXUlNTtZMS//CHPxQVFek+JwSDGrnQE9T6UcMa\nwjFJOz2dEJKfn0/vbaWHw+HY2NigSBgNksI2fX19XV1d9K+FQqG5ubnuqwKB4NVXX83MzDx+\n/PiZM2f27duHCmEcGCkshKSwEJLCLLVa3dvbW1JSkpKSovef/6tf/Wr16tVBQUE9PT0HDx6k\nKGrdunX0EjUXFxehUKjRaJKTk1tbWxmK3YSMXOgJav2oYcroWKXdxkomk929e3f+/PnYxopx\nSAqrmJubV1VVOTg4WFtbV1RUtLa2BgcH62WEw+FYWFjoffsLhoaRwkJICgshKQzi8/mhoaFV\nVVVSqbSxsTEkJEQ7d5TD4cydO5fL5WZlZZWWls6ZMycmJoZ+6fjx4wKBYOvWrc8880xwcDBz\n4ZuK0RR6glo/CmgIxzBtqaisrMTWxiyBpLCEUqlUqVTh4eFhYWGLFi2qqKgoLy/XKxVXr161\nsbHRm14CxoGRwkJICgshKQwaoSek5efn19fX//rXv/bw8CCEZGVlXbp0ycfH5+WXX8Z5g0aA\nQv8UoSEcM9RqdX5+/rlz50pKSnp6eqZOncrn83HcDbOQFBbq7OxMT08/dOjQ999/v2DBAltb\nWwsLi5CQEG2pCAoK4nK5BQUFBw4cEIvFy5Ytoxegg+FgpLAQksJCSArbjNwT9vT0XL16ValU\nTp48+fz58ydPnuRwOFu3bqUPCAHDQaF/6tAQjg0tLS1xcXG5ubmNjY0NDQ0lJSWXL1/29vZ2\ncHBAqWAKksJCLS0tO3bsqK2ttbGxWbVqlaenJ31As26pKC8vr6qqOnXqFEVRK1asmD17NtNR\nj3MYKSyEpLAQksJOI/SE06ZNu3HjRnV1dWFhYW1tLSEkOjp68eLFjMY7/qHQGwIawjGAPv+0\npaXF2dl5zZo1QUFBDx48aGxsvHz58i9+8QtHR0fdUjF9+nR6DToYFJLCQgMDA3FxcW1tbT4+\nPsnJyYGBgXSRoFlYWISGhtbV1VVXV9++fZvL5UZHR69du5bBgE0BRgoLISkshKSw2aN6Qi6X\nu3DhQj6fPzg46OHhsWXLlqVLlzId7DiHQm8oFLDJ4ODg4cOH29radC8ePnw4Kirq3Xff7e/v\n1148ffp0VFTU+vXre3p66CudnZ3nz583arimAUkZKy5cuBAVFbVly5a+vj7txYqKii+//DIr\nK0utVlMUNTQ09N133504caKxsZGxQMcpjBQWQlJYCEkZo/r7+7dv3x4VFbV37166oIDxodAb\nCJ4QssjQ0ND+/fsLCgquX7++fPly7YSQtLS0gYGB+Ph43Vnpfn5+crm8traWy+XS59VaWlrO\nmDGDmdDHLyRlDMnKympsbHz55Zf9/f0JITKZLDU19e9///vNmzdLS0urq6uXLl3K4XDc3Nz8\n/f3t7OyYjndcwUhhISSFhZCUsWJoaEjvVPrH7jEDRoBCbyD4UWaRs2fPXrlyxdraOiYmRlsk\nKIq6d+8eIcTNzU3v/StWrCCESCQSI8dpUpAUlpPJZLdu3aJ/PXXqVEKIVCptamo6ceLEtm3b\nKIpKS0s7ceKEk5PTtWvX6urqGA12PMNIYSEkhYWQFLbRaDQUReleUSgUf/jDH37961+/9NJL\nb7755rlz54aGhuiXBALBnj17fH19H3o+IRgICr0RoCFkkf/5n/8hhGzbts3Dw0Mmk/3www+E\nEA6H4+zsTAgZ/iMuEAgIIffv3zd6pCYESWEzlUoVHx//z3/+k/7tqlWrfH19xWLxm2++mZWV\ntWnTpuTkZA8PD4FAQJ8+pC3q8NRhpLAQksJCSAqrqNXqlJSUjz/+WNsTKpXK999/v6ioaGBg\ngKKopqamjIyMuLi43t5e+g26PWFxcTFzsZsKFHrjQEPIIvS6WDMzM5lMFh8f/4c//KGyspIQ\n8sILLxBC/vKXvwwMDOi+//Lly4SQZ599lolgTQWSwmYCgcDBweHKlSvd3d30b5OTkxMSEj74\n4IOMjIwVK1bQX8CfP39eLpcLhUIvLy+mQx63MFJYCElhISSFVfr6+uRyeV5enrYn/Pzzzzs6\nOnx8fNLT08+ePXvgwAEfH5/q6uo9e/ZoU0P3hL/73e9CQ0MZDd8koNAbB9YQsohQKPz222/F\nYnFhYaFSqfT393/ppZf4fL6Xl5dEIrl169b169dnzZo1YcIEiqKysrJOnDjB4XBiYmIcHByY\njn3cQlJYzsLCoqioaOLEiX5+foQQLpfr4uLi6upqZmZGCKEo6uuvv/7iiy8IITExMe7u7owG\nO55hpLAQksJCSAqrCAQCvfM8jhw5Ymdnt3///smTJ3M4HHt7+7CwsJqamurq6qGhIXolJyGE\nz+fTh9GDEaDQGwFHb+Y0MCszM/PMmTOEEB8fn71791pYWNDXu7u7d+3a1dDQwOVy3dzcuru7\nlUolIWTjxo0vvvgikxGbACSFzdRq9ebNm83MzDIyMvQO5iovLz9z5sy1a9c4HM6GDRteeukl\npoI0ERgpLISksBCSwjZKpTIuLk4ul4eHh0skkhdeeOGVV17RfYNCodiyZYu5ufmxY8fMzc2Z\nitNkodAbAZ4Qskhzc3NGRoZKpSKEPHjw4LnnnhMKhfRLAoEgLCxsYGCgsbGxo6NDpVJNmjTp\nrbfeWr58OaMhj39ICstxuVyVSnX16tUZM2Y888wz2utdXV0pKSkNDQ1OTk7bt29fsmQJg0Ga\nAowUFkJSWAhJYSHdMx77+/tnzpxJ72CpZWVl9cMPP9y9ezcoKMje3p6pOE0WCr0R4Akhi9y/\nfz8pKUkgEMyePTszM3PixIl79+7Vm5OgUqmamprMzMymTZum9zUJGAKSwioymaypqWn+/Pm6\nm313dXVt2rRpzpw5iYmJum9WKBS1tbUikQhJMQKMFBZCUlgISWEt7XPCZ5555pNPPuHz+dqX\nKIravHmzQqHYv3+/j48Pg0GaAhR6RuAJIYuYmZktXLgwLCxs1qxZ9NdRRUVFc+bM0X59SAjh\n8/n29vZ2dnb40TcOJIU9urq63n///dzc3Pz8fLVa7erqSk/dEQgEzc3NxcXFy5YtmzBhgvb9\nVlZWrq6uSIpxYKSwEJLCQkgKqzQ3N/N4PHopmvY5YXNzc1tb2/z587X//xcuXPjuu++srKw2\nbtyo2yjCU4dCzxQ0hKxAP6flcDhmZmb0vcbHx+dRpQKMDElhCYFAMG/ePA6HQ58/e/78+bt3\n7zo5Odna2k6ePPnSpUsWFhbaFf9gfBgpLISksBCSwhLt7e07duwoKSlZuHChXk947dq18vJy\nKyur7u7uf/3rXydPniSEvPbaa3g8aGgo9ExBQ8iwu3fv/vd//3daWto333xz9+5dX19f7Xpl\nlAoWQlKYolQq+/r6nJycAgMDV61a5ejo2NbWJhaLL1y4UF1d7ebm1tbWVllZuXr1at1JJsAU\njBQWQlJYCElhkEAgqK2traioqKysHN4TNjY2FhUV5efn19bW2tjYvP7661jMaWgo9AxCQ8gk\npVL53nvv3bp1i6KowcHBW7duFRUVzZs3z9ramn4DSgULISlG1tnZmZ6efujQoe+//37+/PnW\n1tZ8Pn/69OkRERFz5swZHByUSCT0Bu79/f3Tpk1zc3NjOuTxTyaTtbe3T5o0aYT3YKQYGZIy\nRiEpTOFyuSKRqKmp6VE9YW9v7/z58+Pj4//zP/8Tp9sZFAo949AQMukvf/lLVVWVl5dXQkLC\nr371q/7+/srKyitXrtCDgX6PtlQ4OTn5+voyGzDQkBSjaWlp2bFjB/0F7apVqzw9PeljnWkO\nDg4ikSgiImLixInNzc19fX3d3d3Lli1jMGBToFKpYmNjOzs7Q0JCRn4nRorRICljGpLClMf2\nhDdu3JgzZ46rqyvTkY5nKPRsgF1GmaFQKOzt7bds2TI0NHTw4EFt+3fy5MmTJ086ODgkJyc7\nOTlp33/z5k1vb2+Ggh2H1Gr1gwcPdNclPwEkxdAGBga2bdsmk8l8fHw++OCDkb84pyjq8OHD\nly5dSktLw3nBhvbuu+82NjZ+/vnntra2j30zRopxICljHZJiBH1DsJU6AAAgAElEQVR9fcNL\nv0aj+eMf/1hcXDxjxozf//732m5EqVQWFxevXLnS6GGaEBR6lsATQsNSq9VDQ0N6c53lcvmO\nHTuampra2trCw8MDAwO1L9FH35SUlOg9J3RwcDBm2OObRqNJTU3NyspauHDhzzlhFkkxtJyc\nnPz8fCcnp9TUVBsbG/qiVCrNycmRy+UeHh66I4vD4QiFwpycHC6X+9xzzzEUsqmwsLAoKiqa\nOHGin5/fY9+MkWIcSMpYh6QYmkwme/fdd/l8vl7jTT8nlEgkdXV1es8JZ8yYwVCwpgKFniWw\nKNOA1Gp1ampqamqqRqPRvW5lZWVlZZWXl9fe3m5paan3p9atW7du3TqFQhEXF9fa2mrEeE0F\nh8OxtLSsr69PTEy8d+8e0+HAI928eZMQsnLlSvr7WplMFhcXl5iY+M9//vPo0aNJSUl6Exwm\nTpxICLlx4wYj0ZqUhQsXCoXCixcvYo4JeyApAI8ik8kaGho0Go1Go8nIyDh37pzeG3g83tq1\nawkhtbW1SUlJ9+/fZyJMU4RCzxJoCA1IrVb39vZWV1fr9XVCoTA5OdnFxYUQUlhYqNcuEp2e\n8OrVq8YL12RwudzY2NjFixejJ2S5qVOnEkKkUmlTU9OJEye2bdtGUVRaWtqJEyecnJyuXbtW\nV1enffPQ0NAXX3xBCNGdaw0GwufzIyIi2tvby8rKmI4F/heSAvBQXV1dSUlJiYmJXC73ww8/\ntLGxeWhPSE8lDQoKqq2t/f7775mI1BSh0LMEpowaEJ/PDw0NFYlErq6ubW1tlpaW2gff2vXK\nP/74Y0dHR1BQkN6pmv7+/v7+/osWLWIi8PGPw+EEBwe3tLSUl5dXVFT8zLmjYCAeHh5VVVWV\nlZUXLly4c+fOhg0bfvOb30yaNInP52dnZ/f29oaHh2snWd26deuLL76wtLTcvn27dtoJPBUy\nmez69esuLi66tylXV9dz587du3dv8eLFDMZmspAUdtKeKsx0IPB/MjIyqqqqvL29V6xYYW9v\nHxgYWFRUdOXKFWtra925o6dPn66vr09JSZkxY8aSJUsYDNikoNCzBBpCw+Lz+ba2tvQGStXV\n1SEhIcN7QqlUqlAohveEjo6OTIRsKkbZE8rlctx0mMLn85cuXerl5RUSErJlyxY/Pz96jJw/\nf76wsFAoFG7atEk7oOzt7T08PCIjI5999llGox5vurq63n///dzc3Pz8fLVa7erqSo8UgUDQ\n3NxcXFy8bNmyn7k/E/xUSArjNBoNh8PRrdojnCqsB2XFaBQKhaWl5eHDh21tbVNSUgQCASHE\nzs5O2xMODQ35+/tzOJxz586dPn3awcHh5ZdfxpEGxoRCzxJoCI3BzMxMLBZLpdLGxsaf1BOC\ngSiVyk8//TQjI0OhUNy/f1+pVD60JywsLExKSpowYQJ2fmMKl8t1cXFxdXWll/hTFPX111/T\nM0ZiYmLc3d113+zi4mJvb89EmOOZQqF49tlnJ02adPPmzdLS0vPnz9+9e9fJycnW1nby5MmX\nLl2ysLAICAhgOkzTgqQwi94gQCqVaqv2Y08V1kJZMRrdDfwiIiJ0RwTdE165cqWsrOzChQvn\nz5+n54i+/vrr6DSMD4WeDdAQGgM9d7Sqqgo9IRsoFIr33nvv+vXr1tbWYWFhfn5+CoVCJpMN\n7wnLysoqKiq8vb3p3V+BWeXl5Z988klubi6Hw4mOjo6IiGA6ovGvq6tr586dV69e3bp16/r1\n6x0dHdva2sRi8YULF6qrq93c3Nra2iorK1evXq23lzIYDpLCuN7e3n/+85+6VXs0pwrTUFaM\nRqPRfPvtt1KptL+/f+7cuXoHPNrZ2YWEhDQ2NjY1Nd2/f9/c3Hzz5s3Lly9nKlqgodAzBQ2h\nkYyyJ5w+fTq92QwYTnp6em1trY+Pz/79+wMDAwMCAiIiIuRyuVQq1esJ/fz8AgICli5dymzA\nQAjp6upKSUlpaGhwcnLavn07FngYh+7aG4FAMH369IiIiDlz5gwODkokksLCQqVS2d/fP23a\nNEyyMhokhXECgUDvm9yMjAxLS8v9+/c7OTlZW1vPnz+fPOwEKYKyYkTaD1e9vb2dnZ3Lly/X\n+4pkwoQJy5YtCwkJmT9//qZNm9CiMw6FnkFoCA2Foqhr166JxeKenp4pU6ZwudzH9oRTpkzB\nT7+haTSa9PT0oaGhPXv2aGcd8Hg8kUgkFovr6+v1esLJkyczFyz8H4FAIBKJfH19t27d6uzs\nzHQ4499D197QHBwcRCJRRETExIkTm5ub+/r6uru7ly1bxmC0JgJJYQ+92T2jP1WYoKwYkTZN\nMpns7t278+fPHz4Jy9bW1tnZ2cLCgpEIQRcKPYPQEBpEe3v7rl27zpw5U1ZWdvny5e+++27G\njBn29vYj94Q4/9QI1Gr1qVOn+Hz+66+/rnudy+UKBIIrV648aj0hMM7KysrV1RVzqp8utVrd\n39+v99M+wtobLYFA4OfnFxUVpVQq6Y+8QqHQWFGPc0jKmKDbE/b19QUFBfn4+Oi+YYSeEIxG\nm6bKykoszGE/FHqmYIHB09fd3b1z5866ujqhULhmzZqoqKi2trb4+HiJREIIEQgEe/bs8fX1\nLSkpSUlJGX4IIRiUubm5s7OzWq2+ffu23kv0J6d58+bV19cXFRUxEByAcWk0mtTU1ISEBL3T\nOK2srKysrPLy8jo6Ong83gh/A4fDeeGFFwghOTk5ho3VZCApYwhOFWYhiqL0jjLXpikvL+/j\njz/WexUACJ4QGkJqamp9fb2vr29KSkpQUFB7e3tpaalarS4uLp4+fbqzs7Puc0I3N7dp06Yx\nHbJpUavVFRUVTU1NYWFhuisKzp49W1dXt3v37pkzZ4aFhTEXIIDxiMXi4SevPHbtja7BwcFz\n586p1erIyEhjRT3OISljCE4VZspPOvkDG/gBjAwN4VNWU1OTmZnp4OCQkpJiY2Nz8eLFo0eP\nUhS1dOnSW7du6fWEzs7OWDRofDNmzJBIJDU1Nbdu3Zo9eza9Dic7O/vkyZN2dnavvPIKdmIA\nEzHCaZyjWXtDCBkaGjp06FBTU5Ovr29oaKhxwx+fkJQxB6cKG98TnPyBDfwARoCG8CkrKCio\nrKx8++23PT09r1y5kpaWRlHUa6+9tmHDhh9//PH27du6PaGHhwfT8ZoiLpcbHBwslUqrq6uz\nsrLKyspOnz5dWFhICHn99denT5/OdIDjnEKhOHr06JdffllSUmJtbY2qzKzRtB8jrL25devW\nF198YWlpuX37dpy1/bQgKWMOHkAZ2ZOd/IEN/IwGhX7MQUP4dMhkMoVCIRQKfX1979+/v2rV\nqnv37iUmJg4MDKxbt27NmjWEkNu3bzc3N6tUqqKiokWLFmF9OYMEAkFYWNjAwEB9fX1ra+u9\ne/esrKxee+01nEFkaF1dXe++++6NGzd6e3tbW1u//fbbrq6uwMBAvQ9PcrkcH2SNZjTtx6M+\n5trb23t4eERGRuI056cLSRlz0BMa0xOf/IEN/IxglIWeoNazCRrCp4A+Jjg3NzcoKMjOzm7u\n3LlcLjcrK6u0tHTOnDkxMTH0244fPy4QCLZu3frMM88EBwczG/O4VFNTY29vT99xZDLZn/70\np8DAwEftJc3n8+fOnbt69ernnnsuPDx848aNeqfWgiF8+umn169f9/T0jImJee655+rq6ior\nK1tbW4ODg7WlorCwMCkpacKECd7e3sxGawqUSuWnn36akZGhUCju378/fJfdx37MdXFx0Z7g\nAk8FkjJGYVKiMf2ckz/AoEZT6AlqPcugIXwKdI8J5vP59MX8/Pz6+vpf//rX9LzQrKysS5cu\n+fj4vPzyyzNnzmQ03vFJIpEkJSU1NzcHBwfL5fL4+PjGxsb+/v558+aN8Kf4fP7kyZMnT56s\nTRwY1OHDh21sbA4cODBt2jR3d/ewsDCJRCKVSnVLRVlZWUVFhbe3N44JNjSFQvHee+9dv37d\n2to6LCzMz89PoVDIZLIR2g98zDU0JGVMw6REY8LJH+w0mkJPUOtZBg3hzzLCMcE9PT1Xr15V\nKpWTJ08+f/78yZMnORzO1q1bsbjcQKytrSUSSXl5+e3bt7/66iulUjlr1qxt27ah02OVf/zj\nH6tWrdIeoUZP+9ErFX5+fgEBAUuXLmU2VFOQnp5eW1vr4+Ozf//+wMDAgICAiIgIuVwulUof\n2n7gY64RICljHSYlGpPu7rvd3d3PP/+83u672p7Q0dFRr10EAxlNoSeEoNazChrCJzfyMcHT\npk27ceNGdXV1YWFhbW0tISQ6Onrx4sUMBTv+WVhYhISElJeXV1VVqVSqWbNmJSYmPmq+KBiT\nUqn87LPPjh8/LhaLe3p6Zs6cqTs/5KGlYvLkyQwGbCI0Gk16evrQ0NCePXu00wt5PJ5IJBKL\nxfX19cPbD3zMNTQkBWCUlEplX1+flZUVTv5ggyco9IQQ1Hr2wMH0T27kY4J5PF5SUtIrr7zi\n4+MTFBS0e/ful156iZE4TUdfX19XVxf9a6FQqP3MBAxSKpXvvPNObm7unTt3xGJxR0dHQUGB\n3vHNtra2+/btmzZtWmFh4Q8//MBUqKZGo9EMDg7y+XxXV1fd6zwe75e//CUhpL6+PjExUe94\ndDAoJIVxNTU12oPLZTLZrl27enp6mA0J9HR2dqampm7cuHH79u2tra1kFEfPY6mOQaHQjwN4\nQvjkHntMMI/Hmzlz5vPPP79o0SJnZ2em4jQd5ubmVVVVDg4O1tbWFRUVw1cwg/EdPXq0urra\nw8PjrbfemjNnTm1tbXNz8/AvcemvD52cnDD5zWh4PF5hYWFPT49IJLKzs9N9qbu7u6CgYN68\neVVVVU5OTjiLxWiQFGY92Vp0MKaWlpYdO3bU1tba2NisWrXK09PTysqKYJdXRqHQjwNoCH+W\nUR4TDEagVCpVKlV4eHhYWNiiRYsqKirKy8v1esKrV6/a2NhgHqlx0Ctsjx49Si8ud3d39/Dw\nWLx48aMKtkAg8PLyYjBgE6RWqysqKpqamsLCwnS/zzp79mxdXd3u3btnzpwZFhbGXICmCElh\nENais9zAwEBcXFxbW5uPj09ycnJgYCDdDdLQExofCv24gYbw5xrNMcFgUJ2dnenp6YcOHfr+\n++8XLFhga2tLryfU9oRBQUFcLregoODAgQNisXjZsmWo7oamXWHb3t4eGRmpXWGLgs0qM2bM\nkEgkNTU1t27dmj17Nr0tVnZ29smTJ+3s7F555RU3NzemYzQ5SAqDfupadJyiZmQ5OTn5+flO\nTk6pqana/3mpVJqTkyOXyz08PKysrLD7rtGg0I8naAifAvzoM+hRs0d0e0K6up86dYqiqBUr\nVsyePZvpqMc/jUbz7bffSqXS+/fvz5s3T3dxOcYLe3C53ODgYKlUWl1dnZWVVVZWdvr06cLC\nQkLI66+/jkmJjEBSmKVUKs+fP69SqQghPj4+CxcufNQNCqeoGV9WVlZjY+PLL79M7x0qk8lS\nU1P//ve/37x5s7S0tLq6eunSpdh912hQ6McTNIRPB370GTHy7BELC4vQ0NC6urrq6urbt29z\nudzo6Oi1a9cyGLDpGHkrcByhxh4CgSAsLGxgYKC+vr61tfXevXtWVlavvfba8uXLmQ7NdCEp\nxqTRaMRi8TPPPENX7dGvRccpasYnk8mkUimPx/Pw8MjKyvroo48mTZoUHx8fHR39/fffNzQ0\nPPfcc/b29th91zhQ6McTzvC9mOCJKZXKuLg4uVyekJAQFBTEdDjjilqtJoToTfXMzs4+cuSI\nk5NTWlqathWUSqVSqdTBwWH58uU8Ho+iqKKioqamJpFI5O7ubvzITZl2RISHh8fExOh9qFIq\nlcXFxStXrmQqPNClUqkaGxspivLw8NA9UhUYhKQYWmFh4fHjx9vb23XvUQMDA4SQBw8eJCYm\nNjQ0hIWFxcbG6q5F9/X1pecrVldX+/n5MRi/qVGpVLt27bpx4wYhZOLEievXr4+MjORwOBRF\n/fa3v5XL5fv378dhg0aGQj8+oCF8yvCjbwhqtTo1NZUQ8sEHH+ie8JGWlpafn79582Z6Q3aZ\nTHb48OGqqioej6fRaPz9/fft24dHtcwauVQAADBCo9H8+c9/vnjxIiFEJBKtXbt2+HTc3t5e\nbU/49ttv83i8goKC9PR0V1fXAwcOYH8yRmg0mrKyMo1GExAQoP0i+Ny5cxkZGUKh8K9//evw\nY8DA0FDoxwFMGf03arW6v79f9/w6mUymUCiEQuEo/wZMVDCEgYGBS5cu1dfXL1iwQHcF/yhn\njzAYOWA2tdEMv32Rn34HAzAR6enpeXl5AoEgNjZ2/fr1kyZNGv4erEVnIS6X6+Li4urqamZm\nRgihKOrrr7/+4osvCCExMTGYB8QIFPpxAA3h/6EfQ2VlZS1cuJD+UNXV1bVz587c3NygoCBb\nW1umAzRdfD4/NDRUJBK5urq2tbVZWlrS89Q9PDyqqqoqKysvXLhw586dDRs2/OY3v5k0aRKf\nz8/Ozu7t7Q0PD3dwcGA6fFOHUmEEw29fBHcwgEe4cuXKsWPH+Hz+vn37AgMDR3gn1qKzWXl5\n+SeffJKbm8vhcKKjoyMiIpiOyHSh0I912Hz/f9Efp0pKSqytrRUKhbW1NSHk2LFjCoXC39/f\n0dGR6QBNnUAgcHNza2lp2blzp5eXFz13VCAQJCcnD589cv78eblcLhQKcdwNSwiFwuTk5Li4\nuLy8vODgYKywfboeevsiuIOxQE1Njbe3N/3BSCaTZWRkvPvuuziogHHnzp0jhKxdu3b4erOm\npia5XO7o6Ojh4UFfmTBhwt69e7EWnW26urqOHDnS2trq5OT029/+Fs9sGYdCP6ZhDSEh//5x\nat++fR4eHgqFwt7ePjo62tzc/ODBg5aWlkzHCIToLCgPCgrSW09Io2ePHDt2jKKo999/PzQ0\nlJE44aGwwtYQht++CCG4g7GBRCLZu3dvaGhobGysXC6Pj49XKpWRkZFbt25lOjRTt379+t7e\n3o8++sjT01N7saam5rPPPqutraV/GxgY+N57702YMIGhGE2UTCYbGBjQduMjUygUtbW1IpEI\nD6PYA4V+jMKU0Yd8nNIetdnW1hYREaE9ahMYR88draqqkkqljY2NISEhunscY/aIQWGFLQs9\ntBvEHYwlrK2tJRJJeXn57du3v/rqK6VSOWvWrG3btuntlgzGl5+f39PTM2PGDLohVKlUn3/+\n+eHDhzs6OlxcXPz8/BQKRVNT061bt5YuXcp0sOOZXln5qbPcraysXF1d0Q2yCgr9GGXqDaH2\n45SZmVlKSgpdG7RHbfb398+dO9fX1/ehf1Yul2Pmj/E9qifs6upKSUlpaGhwcnLavn07TqR9\nurDCloUeevsio7uD4fZlBPSWJPRmJCqVatasWYmJiSNsTYmkGFNZWVllZSVFUTdu3EhLS6uo\nqLC1tX3zzTffeuutRYsWiUSivLy85ubmX/ziF1OmTGE62PFpeFnJyMioqqry9vZesWIFvjcB\nMCbu498yfmk/ThFCBgcHi4qK6Ov0NGj6DM38/HyNRjP8zxYWFr755pv0OgQwMoFAsGfPHl9f\n35KSkpSUFDpBdnZ2ycnJO3fu/POf/4y1BE+XdqS0tbUpFAr6Ir0+zd3dHevTGPGo2xcZxR0M\nty/D0Wg0JSUl2rUYfX19XV1d9K+FQqHeHrC6kBRjWrFixQsvvKBSqY4fP56ZmdnR0bFo0aJP\nPvkkLCyMfoOrqyv9TcqdO3eYDHT80isrCoWCoiixWDxlypSEhAQc6QFgZKb7hFB3qtV//dd/\nVVVVVVVVDQ4O0tOrtNslyWSyu3fvzp8/X29OQllZWUVFhbe3t7+/P0P/ApOgVqvz8/PPnTtX\nUlLS09MzdepU+lvDhz4nxOwRQ9CblPjss88qFApLS8vDhw/b2tqmpKTgvGzjG/n2RR53B8Pt\ny0AKCwuTk5Ozs7O1m+yZm5tXVVU5ODhYW1tXVFS0trYGBwc/9B6FpBgTh8MJCgry9va2tbV9\n7rnn3njjjcjISN1bmVqtzszMVKlUkZGRU6dOZTDUcUmvrJibm2OWO0vU1NTY29tr98H605/+\nFBgYiP7cFJhoQ6h3MxKJRF5eXkVFRQ/tCSsrK4dvoevn5xcQEIDVBQbV0tISFxeXm5vb2NjY\n0NBQUlJy+fJlb29v+iSJkdcTwlOBFbYsNJrbFxnxDobb11On0WiOHj167Nixvr4+kUj0H//x\nH/QJqDweb8GCBWFhYYsWLaKPs9PrCa9evWpjY2NhYYGkGJ+zs/PcuXNnzpw5fNL73//+d7FY\nLBQK33jjDRx0/nQNLytYp8MSEokkKSmpubk5ODiY3gersbGxv79/3rx5TIcGBmeiDWFOTs43\n33yjuw2Ds7PzCD3hQ49VmTx5MmP/ABPQ3d29c+fOlpYWZ2fnNWvWBAUFPXjwoLGx8fLly7/4\nxS/oaYq6PaGbm9u0adOYjnpcwQpbdhrl7YuMeAfD7evpGuGUcx6Px+PxdI84b21tDQoK4nK5\nBQUFBw4cEIvFy5Yt4/P5SApLZGdn0wedv/POOygrT9dDy4r2TtXb29vZ2bl8+fLhX+8WFhYm\nJSVNmDDB29ubicBNwk/dBwuFfjwx0YbQ09NzYGBg48aNulsbP0FPCIbz+eefS6XSGTNm/PGP\nf/T3958xY8ayZcvMzMwkEklpaenzzz9Pz2Gge0JnZ2fsIvN06S5RGxoamjhxot6IQOVmyuhv\nXwR3MKMY5Snnuj0hvdPMqVOnKIpasWIFlj2zxIMHD/785z+fOnWKELJhw4YXXniB6YjGlUeV\nFYJ1Ouzwk/bBQqEfZ0y0IeRwOLNnzx6+Xf5je8Lp06fTWzWAoaWlpQ0MDMTHx+vuWeLn5yeX\ny2tra7lcrraQ8Pn8UZ5ZBKOEFbZs9pNuXwR3MMM7cuRIe3v7yy+/PPxrqaamphs3bgwMDND5\nsrCwCA0Nraurq66uvn37NpfLjY6OXrt2LRNRw7/RaDRZWVmpqanXr1+3sLCIjY2NjIxkOqhx\nZfQrn7FOx5g0Go1YLH7mmWfo/22lUnn+/HmVSkUI8fHxWbhw4aO+Q0ShH2dMtCEcwQg94ZQp\nU/AYyjgoisrMzCSEbNmyRW/9hp2dXV5enkqlwjGDBoIVtmPXyD0h7mAG8te//nVgYGDz5s26\nM0VrampSU1OPHTv23XffXbx4sba2dt68eebm5ubm5kuWLHFzc3Nzc9uyZYtIJGIwctDicrnf\nfvttZWWlSCTasWMHPuM+XT915TPW6RjHz9kHC4V+nEFD+BCP6glx1KbRcDicy5cv9/b2zpkz\nR+9Ug97e3osXL1pYWERFRTEV3viGFbZj2gg9Ie5gBvJTTznncDhubm7+/v52dnZMxw7/JzAw\ncNGiRStWrMCyqKfuqax8hqfo5++DRVDoxxc0hA/3qFsVGM3AwEBFRcWdO3eWLFmi+5Dwm2++\nqamp8ff3Dw0NZTC8cQwrbMc63L6MD6ecjw9oBQ3kiVc+Y5a7gTyVfbAYjB+eOjSEj6S9Vfn7\n+2P2iKEpFIqjR49++eWX9JQSFxcXLy8viURy69at69evz5o1a8KECRRFZWVlnThxgsPhxMTE\n0IdPwFOHFbbjAG5fxuTl5dXZ2Xnz5s3Kykp6A95FixYlJib6+PjQb7C1tb127VpbW5unpyc2\nYAAT9GQrnzHL3UCwDxYMx6EoiukYWI0+9oDpKMa5rq6u2NjYjo4O7ZXIyMg33nijt7d3165d\nDQ0NXC7Xzc2tu7tbqVQSQjZu3Pjiiy8yF69Jk0gkH3744eDg4Jo1a1599VX6olKpLC4uXrly\nJbOxgR7cvoyJ3q7d2tp6wYIFrq6uui+p1epNmzZ1dXXFx8fPnz+fqQgB2OmhZQUMJy4urqqq\nat26devWrdN7qampSS6XOzo6ap/l9vX1paSkVFZWEkK4XO6GDRvwAWxcQkMIzDt48GBeXp6n\np+f69ev7+vq+/PJLhUIRFhYWGxv74MGDv/3tbxcvXnzw4AEhZNKkSZs3b8ZkUWaheAP8JCdP\nnjx58qRQKPzss8/MzMyYDgeAdVBWjGn9+vW9vb0fffQRveyZVlNT89lnn9XW1tK/DQwMfO+9\n9yZMmEAIoSiqqKioqalJJBK5u7szEjMYGhpCYN6GDRvMzMwOHjxoZWVFCOnu7k5ISLhz5w7d\nE3I4HJVK1dTUZGZmNm3aNKxSYwMUb4BRys7OPnr0KEVRcXFxwcHBTIcDwFIoK0bz5ptvNjU1\nxcTEPP/884QQlUp17Nix8+fPUxTl4uIyderUioqKBw8eBAQE7N27l+lgwUiwhhCY949//GPV\nqlXaxQMCgSAkJEQikUilUnp7KzMzM3t7ezs7O3SDLIElagCPhVPOAUYPZcWYsA8W6METQmCG\nUqk8fvx4bW3t5MmTGxsbX3zxxdWrV+u+YfhzQqZChUfBEjWAh9JoNBcuXDh9+nRXV5eFhUVM\nTMyiRYuYDgpgDEBZMQKKog4dOpSTk0P/lsPhhIaGbtmyxdbWVvuexMREqVS6ZcsWHPFlIrBp\nLDBAqVS+88479C4yd+7cIYQUFBSsXLlS93gJW1vbffv2JSQkFBYWikQiHN/MQijbAA/F4/Fa\nW1u7urpEItGrr76K3XcBRgllxQg4HM5bb721YMGCEfbBoj+b6R0EDeMYnhACAz766KOCggIP\nD4/169f39PRkZmYqlcrw8PCYmBi9J4Hd3d3FxcWRkZFMhQoA8GTkcjlaQQAYc7APlglCQwhG\npVAo7O3to6OjdXeR6ezsjI+Pl8vlD+0JAQAAAMAIsA+WacKmMmA8crl8x44dTU1N7e3tkZGR\nekfQ0oebKxSKoKAg9IQAAAAARoN9sEwZ1hCC8VhZWVlZWeXl5RFCzM3NdV8SCoXJyclxcXH0\nq3hOCAAAAGAE2AcLuEwHACaE7vroRTUFBQUajeahr+bl5ToaNk8AAANGSURBVJWWljIUIwAA\nAIAJ0d0HKy0tDd2gCcIaQjA2pVIZFxf3qBWDSqWyuLh45cqVTIUHAAAAYGqwD5YpQ0MIDBi5\nJwQAAAAAAOPAlFFggO7s0I8//hjfSgAAAAAAMAINITADPSEAAAAAAOPQEAJjsIsMAAAAAACz\nsIYQGIZdZAAAAAAAmIKGEH4WtVr94MGDCRMmaK/IZLKBgQEPDw8GowIAAAAAgNHAlFF4cmq1\nOjU1NSEh4d69e/SVrq6upKSkxMTEpqYmZmMDAAAAAIDHQkMIT4juBktKStra2hQKBX3x2LFj\nCoXC3d3d0dGR2fAAAAAAAOCx0BDCk9B2g9bW1vv27XN3d1coFBRFicXiKVOmJCQkWFhYMB0j\nAAAAAAA8Bp/pAGDs0esGPTw85HJ5XFxcYGAgl8t94YUXLC0tmY4RAAAAAAAeD08I4afRdoNm\nZmZ79+6lN4+xsrKysrLKy8vr6Ojg8XiP+rNyudyIkQIAAAAAwGOgIYSfQNsNEkIGBweLioro\n69oTBQkh+fn5Go1m+J8tLCx88803z507Z8yAAQAAAABgBGgIYbR0Z4pu3rzZzMzszJkzmZmZ\n9KvanvDHH3/8+OOPhx9n0tHRMTQ0pN2PFAAAAAAAGMfbvXs30zHAGKC3blAkEnl5eRUVFVVV\nVQ0ODgYEBBBCLC0tQ0JCSktLKysrFQpFUFAQh8PR/g1+fn4BAQFLly5l7h8BAAAAAAD/Bg0h\njEpOTs4333yj3UWGEOLs7DxCTyiVSof3hJMnT2bsHwAAAAAAAMOgIYRR8fT0HBgY2LhxI90N\n0p6gJwQAAAAAAPZAQwijwuFwZs+eLRQK9a4/tiecPn06vdkMAAAAAACwDRpC+LlG6AmnTJmy\nZMkSpgMEAAAAAICH4wzfDRLgCUgkkg8//HBwcHDNmjWvvvoq0+EAAAAAAMDj4QkhPB0PfU4I\nAAAAAABshnMI4amZO3dufHy8mZmZmZkZ07EAAAAAAMDjYcooPGUtLS3Ozs5MRwEAAAAAAI+H\nhhAAAAAAAMBEYcooAAAAAACAiUJDCAAAAAAAYKLQEAIAAAAAAJgoNIQAAAAAAAAmCg0hAAAA\nAACAiUJDCAAAAAAAYKL+HzLDKP9WLJY6AAAAAElFTkSuQmCC", - "text/plain": [ - "plot without title" - ] - }, - "metadata": { - "image/png": { - "height": 180, - "width": 600 - } - }, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ + "“\u001b[1m\u001b[22mRemoved 3 rows containing missing values (`geom_point()`).â€\n", "Warning message:\n", "“\u001b[1m\u001b[22mUsing \u001b[32msize\u001b[39m for a discrete variable is not advised.â€\n", "Warning message:\n", - "“\u001b[1m\u001b[22mUsing \u001b[32msize\u001b[39m for a discrete variable is not advised.â€\n" + "“\u001b[1m\u001b[22mRemoved 3 rows containing missing values (`geom_point()`).â€\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAAFoCAIAAADIFpV9AAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdd1xUV9oH8HOnMUObofcOVkRBRWMjJoqCgh171KixkV3f6CZGUzRRU2zZ\nuNEoWGNiiwYQRI1RFI0FRdQEEUFEeq8zMPW+f0wyy6JRjAcHnN/3r5lzn3nOuZN8kId7CsOy\nLAEAAAAAAADDw9H3AAAAAAAAAEA/UBACAAAAAAAYKBSEAAAAAAAABgoFIQAAAAAAgIFCQQgA\nAAAAAGCgUBACAAAAAAAYKJ6+B6BnlZWVqamp+h4FAAAAAACAHhh6QZidnR0VFTVgwAB9DwQA\nAAAAAOCFOnz4sKEXhISQTp06vf322/oeBQAAAAAAwAuVmJiINYQAAAAAAAAGqs09ISwvL9+/\nf39qampNTY1YLO7ateuiRYtEIpH2qkajiYmJOXnyZFlZmbW1dXBw8NixYzmc/5a1Tw0AAAAA\nAAAArbZVEObm5i5fvlypVPbu3dvBwaG+vj4jI0Mmk+kKwujo6Pj4+H79+oWHh6enp+/du7e8\nvHz+/Pm6DE8NAAAAAAAAAK02VBBqNJp169aZmZmtWrXKzs7u0YC8vLyEhISgoKAlS5YQQkaM\nGMHn8xMTE0NCQtzc3FoSAAAAAAAALzeNRvPFF1/s2bMnNze3sbFx8+bNkZGRj43Mz893cXEZ\nNWpUTEzMCx5k29GG5lJeu3bt4cOHM2bMsLOza2hoUCgUzQKSk5NZlg0LC9O1hIeHsyx7/vz5\nFgYAAAAAAEB7t2bNGoZhGIa5e/fuo1e3bNmyfPlyCwuLZcuWffbZZ/369XvxI2xH2tATwuvX\nrzMMY2xs/M9//jMnJ4dhmC5dusydO9fT01MbkJWVxeVyvby8dB/x8PAQCATZ2dktDAAAAAAA\ngHaNZdkdO3YwDMOybFRU1Pr165sFxMfHE0KOHTtmbW395FS2trbJyclWVlatNdb2oA0VhIWF\nhVwud+3atQEBAePHjy8rKzt06NDy5cu/+uore3t7QkhlZaVYLOZyubqPMAxjYWFRUVGhffvU\nAK2vvvqquLhY+1ooFLb6jQEAAAAAACWnTp3KycmZOXNmYmLinj171q5dKxAImgZoy4qnVoOE\nEIFAgAPJ29CU0YaGBpVK1bVr1/fee2/gwIFjx45dtmyZTCY7cuSINkAul/P5/GafEggEcrm8\nhQFaly9fPv2ne/futc7dAAAAAAAAfVFRUYSQuXPnTp06tby8/KefftJdWrp0KcMwt2/fVqvV\n2jmlEomEEJKWlsYwzMyZM7OzsydNmmRra8vhcC5fvpyfn88wzOjRo5t1cfny5YiICEdHRyMj\nIwcHh+Dg4EOHDjUdwOjRoz08PEQikUQiCQoKOnz48Au59VbRhp4QGhkZEUIGDx6sa+nRo4eF\nhcVvv/2mC2hoaGj2KYVCoXvK99QAra+//lqpVGpf37lzJzk5md5NAAAAAABAaykpKYmLi+vQ\noUO/fv3Mzc03bty4ffv2iRMnaq9OmTKlR48e77//fmFh4Z49ewghTR8e5uXl9enTx9raevjw\n4VKp9K+mCn777beLFi3i8/nh4eHe3t6lpaXXrl3bsmVLRESENmDevHmBgYGDBw+2s7MrLS2N\nj4+PiIj44osv3n333Va++1bRhgpC7eRdCwuLpo0SiaSyslL72tLSMjc3V61W6yaFsixbVVXl\n6+vbwgAtW1tb3evCwsLWuRsAAAAAAKBs165dSqVy5syZhBBfX9+AgICzZ89mZWV5e3sTQgIC\nAgICAj7//POioqJp06Y1++yZM2ciIyO/+uorXbGQn5/fLObWrVuRkZESieTChQudO3fWtTeN\nzM3NdXFx0b2VyWRBQUErV66cO3dus1qmXWhDU0Z9fHwIIeXl5boWlmUrKirEYrH2rZeXl1qt\nvn//vi4gJydHoVDodpF5agAAAAAAALRTLMtGR0dzOJw33nhD2zJz5kxtY0s+bm1t/cUXXzTd\ncORRW7duVavVK1eubFoNEkKcnZ11r7XVIMuyNTU1JSUltbW1Y8aMaWhoaKcTD9tQQfjKK6/w\neLwTJ05oNBpty4ULF2prawMCArRvBw4cyDDMsWPHdB85duwYwzADBw5sYQAAAAAAALRTZ86c\nyc7OHjp0qJOTk7ZlypQpAoFg9+7duhVhT9CjRw9jY+Mnx1y+fJkQEhIS8oSYGzdujBo1SiwW\nSyQSe3t7BweHFStWEEIKCgpaeidtSRuaMmptbT1p0qR9+/YtX768b9++ZWVliYmJ1tbW48aN\n0wa4urqGhoYmJCQolUpfX9/09PTk5OThw4e7u7u3MAAAAAAAANqp7du3E0K080W1rKyswsLC\njhw5EhsbO378+Cd/3NHR8aldVFdXE0J0BeejUlNTBwwYIBQKFyxY0L17d+0ZB6dPn96wYUOz\nnSzbizZUEBJCIiIiLCws4uLivvvuO6FQOHDgwDfeeEM3ZZQQMnfuXCsrq1OnTl25csXKymr6\n9Oljx45tmuGpAQAAAAAA0O6UlZXFxMQQQiZPnjx58uRmV7dv3/7UgpBhmKf2ot2VtKCgQLso\n8VEbN25saGiIi4sbMmSIrvH69etPzdxmta2CkBAydOjQoUOH/tVVDoczfvz4J/zHfmoAAAAA\nAAC0O3v27FEoFD179uzRo0ezS3FxcadPn87JyfHw8HjOXvr27ZuWlpaYmPj2228/NuDBgwfa\nsKaNZ86cec5+9agNrSEEAAAAAAB4LO3OMVu2bIl+xLx581q+tcyTLVy4kMvlrly5MiMjo2m7\nbpdRT09PQsjPP/+su/TDDz88WhB+/vnnw4cPP378+PMPqbWhIAQAAAAAgDYtKSnp7t273bp1\nCwwMfPTq7NmzGYbZtWuXSqV6zo66deu2efPm6urqHj16RERErFixYv78+b169Zo+fbo2IDIy\nksvlTp48ecaMGR999FF4ePgbb7wxYcKEZnnS0tJOnjyZl5f3nON5AVAQAgAAAABAmxYVFUUI\nmTNnzmOvuru7DxkypKioqOlxA3/bggULzp8/HxISkpSUtG7duri4OGtr60WLFmmvBgYGnj59\nOjAwMCYm5t///rdUKj116lR4eHizJJmZmXw+Pzg4+PnH09oYlmX1PQZ9SklJiY+PX7Vqlb4H\nAgAAAAAAL4PKykobG5v58+d/8803+h7LU4SGhuIJIQAAAAAAADVnz541MjL64IMP9D2QFkFB\nCAAAAAAAQM24ceNkMpmDg4O+B9IiKAgBAAAAAAAMFApCAAAAAAAAA4WCEAAAAAAAwEChIAQA\nAAAAADBQKAgBAAAAAMDQWVtbu7u763sUeoCCEAAAAADgRRs1ahTDMJs3b3700uXLl3k8XocO\nHaRS6YsfGBgaFIQAAAAAAC9adHS0nZ3du+++m56e3rRdKpVOmzaNYZh9+/aZmJjoa3hgOFAQ\nAgAAAAC8aDY2Nrt27WpsbJw6dapCodC1L168ODs7+6OPPgoMDNTj8MBwoCAEAAAAANCDkJCQ\nRYsWpaWlffDBB9qWuLi46Ojofv36LV++XNty4MCBgQMHmpubi0Sibt26ff7553K5XJchPj6e\nYZiVK1c2yyyRSLy9vXVv09LSGIaZOXNmXl7elClTrK2tRSJR7969jx8/3uyDarV6w4YNnTp1\nEgqFLi4uixcvrq+vb8niusTExKFDhzo6OhoZGTk4OAwYMGDdunVNAy5dujRu3Dh7e3uBQODo\n6Dht2rSMjIxmSS5fvhwREaFLEhwcfOjQoaYBT/42Wn6bGo3mq6++6ty5s/Y2/+///q++vv7R\nm4qKiho9erSHh4dIJJJIJEFBQYcPH24aoOsxOzt70qRJtra2HA7nm2++YRgmPDy8WTaWZTt0\n6GBsbFxVVfXkL/MF4+l7AAAAAAAABmrdunVnzpzZsGFDaGholy5d5syZY2Zm9t1333G5XELI\nu+++u27dOltb22nTppmYmCQkJLz//vsnTpz4+eef+Xz+s/aVl5fXu3dvJyeniIiI0tLSmJiY\nsLCwpKSkgQMH6mLeeuutnTt3uru7R0ZGcjico0ePXr9+Xa1WPznz3r17Z8yYYW9vP2rUKFtb\n27Kyst9//z06Ovpf//qXNiAqKmr+/PlWVlYjR460tbXNyck5fPhwTEzML7/80qdPH23Mt99+\nu2jRIj6fHx4e7u3tXVpaeu3atS1btkRERGgDWvhttOQ2FyxYsH37djc3t8jISIZhjh49eu3a\ntUdvc968eYGBgYMHD7azsystLY2Pj4+IiPjiiy/efffdZl9snz59rK2thw8fLpVK+/fvr61C\n8/LyXFxcdGFnz569d+/ejBkzLCwsWvif7AVhDdvVq1c/+ugjfY8CAAAAAAzUjRs3BAKBi4vL\nsGHDCCE7d+7Utp8/f54Q4uHhUVpaqm1RKpUhISGEkDVr1mhbjh07Rgj5+OOPm+UUi8VeXl5N\nu9D+5v/BBx9oNBpt43fffUcICQsL04WdPn2aENK9e/f6+npti0wm69WrFyHEzc3tCbfQr18/\nLpdbUFDQtLGyslL7Ij09nc/nDxs2TCaT6a7evHnT1NTUz89P95bL5VpaWqanpzdNkpeX1/Jv\no4W3efbs2Wa3KZVK/f39H73Nhw8fNn0rlUp79eolEol0t6brMTIyUqVS6SJ37dr16H8XbWX7\n66+//uX3qA8hISEoCFEQAgAAAIA+ffHFF9q6YuzYsbrGmTNnEkJ27drVNDI9PZ1hGA8PD+3b\nZyoIXV1dlUqlrlGj0YjFYjs7O13LG2+8QQiJiYlpmurEiRMtKQgFAkFJScljr0ZGRhJCzp07\nV/a/Ro0aRQh58OABy7Lz588nhHz99dd/1UVLvo0W3uaMGTMIIT/99FPTVAkJCX91mxqNprq6\nuri4uKioaM2aNYSQ2NjYpj1aW1tLpdKmH5HJZJaWlk5OTroqsaSkRCAQdOvW7a9uUF9CQkKw\nhhAAAAAAQJ+WLl1qb29PCFm/fr2uMTU1lRAyePDgppGdO3d2cHDIycmprq5+1l78/f15vP+u\nF2MYxtnZuel6Nm1503RqJSFkwIABT808efJkhULRtWvXyMjIH3/8sbi4uOnVS5cuEUKCgoJs\n/ldsbCwhpKioiBBy+fJlQoj2id9jtfzbaOFtDho0qGmqZm91kaNGjRKLxRKJxN7e3sHBYcWK\nFYSQgoKCpmE9evQwNjZu2iISiWbOnFlQUKCtMwkhu3btUigU2rq3rcEaQgAAAAAAfeJwOEZG\nRoQQkUika6ypqSGEaAvFphwcHAoLC2tqaiQSyTP18mg8j8drunCutraWx+NZWlo2jTExMXnq\n6ReRkZEWFhbffPPN1q1bv/nmG0LIK6+8sm7duv79+xNCKioqCCFxcXFN706nc+fOhBBtRefk\n5PRXXbT823jqbdbU1Dx6m6amps1uMzU1dcCAAUKhcMGCBd27dxeLxVwu9/Tp0xs2bGi6kw0h\nxNHR8dEBL1iwYNOmTdu2bQsPD2dZNioqysTEZNq0aX91g3qEghAAAAAAoM0Ri8WEkOLiYjc3\nt6bt2kdq2qscDocQolKpmgYolUqpVGptbf2sPZqbm+fm5lZWVjYtlqRSaUuyTZ06derUqbW1\ntZcuXYqJidmxY0dISMjvv//u4uKiHaq9vX3v3r3/6uPaKq6goKDp5qhNteTbaCGxWPzobdbX\n1ze7zY0bNzY0NMTFxQ0ZMkTXeP369UcTMgzzaKO3t/eQIUNOnDiRm5ubmZmZnZ09e/Zsc3Pz\nlo/zhcGUUQAAAACANke7zUlSUlLTxrt37xYVFXl4eGgrKO1+lXl5eU1jbty40axEbKEePXoQ\nQi5cuNC0sdnbJzM3Nx82bNjWrVuXLFlSV1d35swZQkjfvn0JIQcOHHjCB7UxiYmJfxXQkm+j\nhbSptLvU6DR7Swh58OCBbmA62jtqoYULF2o0mujo6G3bthFC5s2b1/LPvkgoCAEAAAAA2pw3\n33yTEPLpp59qp1wSQlQq1ZIlS1iWnT17tralW7duQqEwNjZWt2yvpqbmnXfe+Xs9ajeVWbly\npUwm07Y0NjZ+9NFHT/3gzz//3KwELS8vJ4RoV9ZFRkbyeLzNmzc3q6bq6+sPHjyofb1w4UIu\nl7ty5cpmhxPm5+drX7Tk22gh7aYyK1eulEql2haZTPbhhx82C/P09NTemq7lhx9+eKaCMCws\nzNnZefv27XFxcQEBAU94QKpfmDIKAAAAANDmDBo06J133tm4cWPXrl3Hjx9vbGyckJCQnp4+\ncOBA3fl+pqam2rVqPXr0CAsLUygUP//8c8+ePf/e1MQhQ4bMmDFjz549vr6+48aNYxjmp59+\nsre3l0gk2rmpf2Xy5Mk8Hi8oKMjNzY3L5V65cuXs2bNdu3YdOXIkIcTX13fbtm3z5s0bMmRI\ncHCwv7+/Wq3OyMg4c+aMu7v7xIkTCSHdunXbvHlzZGRkjx49wsPDfXx8Kioqrl27ZmZmpj0l\noiXfRgsNHjx47ty5UVFRuts8evSoo6Njs8eMkZGRP/zww+TJkydOnOjm5paWlnb8+PEJEyY0\nO5v+Cbhc7ltvvaWtqNvs40FCqyDUbibbckuXLnV3d6fSNQAAAADAS2nDhg0BAQFbtmzZs2eP\nUqn09vZevXr1kiVLBAKBLmbdunXm5ua7d+/es2ePo6Pj7NmzP/zwQ1tb27/X444dO7p27RoV\nFfX111/b2NiMGzdu5cqVtra2zVbuNbN69eqTJ09eu3YtPj6ez+e7ubmtXr160aJFul1k3nzz\nzYCAgI0bNyYlJZ09e9bExMTR0XH69OnaalBrwYIFfn5+69evT0pKiomJsba29vPzmzNnzjN9\nGy307bffdu7c+dtvv928ebONjc2ECRM+/fTTZuVJYGDg6dOnP/roo5iYGEJIr169Tp06VVhY\n2PKCUHvjH330kZmZ2ZQpU551kC8Mw7IshSyPW0n5BJcuXWo2H1dfUlJS4uPjV61ape+BAAAA\nAAC0OTdv3uzRo8ekSZP279+v77G0P4mJiaGhofPnz9+6dau+x/J4oaGh1KaMxsTEaDeWfTK5\nXO7s7EyrUwAAAAAAoKW8vLzpTpsymUw7IXPMmDH6G1Q79uWXXxJCFi1apO+BPAm1glAsFrdk\nc9vGxkZaPQIAAAAAAEUrV65MSkp69dVX7e3tCwsLjx8/npubGxISMmHCBH0PrT1JTU09ceLE\n5cuXk5KSJk6c6Ovrq+8RPQmdgvDSpUtdunRpSaSRkdGlS5fa+JcCAAAAAGCAhg8fnpmZ+eOP\nP1ZVVfF4vI4dO0ZGRv7zn/981gViBu7XX39dsWKFRCKZPHnyli1b9D2cp6CzhrD9whpCAAAA\nAAAwTKGhoTiHEAAAAAAAwEC1yjmELMuePn36ypUrlZWVGo2m6aWvvvqqNXoEAAAAAACAZ0W/\nIKyrqwsJCbl48eJjr6IgBAAAAAAAaCPoTxn9+OOPL126tHbt2vT0dEJIfHz8uXPngoODe/fu\n/eDBA+rdAQAAAAAAwN9DvyD86aefIiIi3n//fQ8PD0KIlZXVoEGDjh8/zrLsf/7zH+rdAQAA\nAAAAwN9DvyAsKCgYOHAgIYTD4RBClEolIYTL5U6aNOnw4cPUuwMAAAAAAIC/h35BaGJioi0C\nBQKBUCgsLCzUtpubmxcXF1PvDgAAAAAAAP4e+gWhp6fn3bt3ta+7d+9+4MABlmVVKtXBgwed\nnZ2pdwcAAAAAAAB/D/2CMDg4+MiRI9qHhHPmzImJifH29vbx8fnll19mzZpFvTsAAAAAAAD4\ne+gXhMuWLfvll1+0xw/OmTNn/fr1QqHQ1NR05cqVy5Yto94dAAAAAAAA/D30zyEUi8VisVj3\ndsmSJUuWLKHeCwAAAAAAADwn+k8IAQAAAAAAoF2g/4RQR6PR1NXVsSzbtFEikbRejwAAAAAA\nANBy9AtCjUazbdu2r7/++v79+wqFotnVZvUhAAAAAAAA6Av9gnD16tUff/yxra1tWFiYtbU1\n9fwAAAAAAABABf2CMCoqKiAgIDk52djYmHpyAAAAAAAAoIX+pjIlJSVTpkxBNQgAAAAAANDG\n0S8Ivb29a2pqqKcFAAAAAAAAuugXhIsXL967d29tbS31zAAAAAAAAEARnTWEMTExute2trYu\nLi5+fn4LFizw8vLi8f6ni9GjR1PpEQAAAAAAAJ4TnYJwzJgxjzYuW7bs0cYWHjtx9+7dd999\nl2XZNWvWdOvWTdeu0WhiYmJOnjxZVlZmbW0dHBw8duxYDofT8gAAAAAAAADQolMQHj58mEoe\nLY1Gs3XrViMjo8bGxmaXoqOj4+Pj+/XrFx4enp6evnfv3vLy8vnz57c8AAAAAAAAALToFITj\nx4+XSqUmJiZUsiUkJJSUlISGhh49erRpe15eXkJCQlBQ0JIlSwghI0aM4PP5iYmJISEhbm5u\nLQkAAAAAAAAAHWpzKW1sbEaPHr13796qqqrnyVNVVfX9999PmzZNLBY3u5ScnMyybFhYmK4l\nPDycZdnz58+3MAAAAAAAAAB0qBWE//rXv7KysmbMmGFnZzds2LBt27aVlJT8jTzR0dF2dnYh\nISGPXsrKyuJyuV5eXroWDw8PgUCQnZ3dwgAAAAAAAADQoTNllBCyatWqVatW3bt378iRI0eP\nHp0/f/7ChQv79es3duzYsWPHtnDG5s2bNy9cuPDZZ589dhuYyspKsVjM5XJ1LQzDWFhYVFRU\ntDBA6x//+Edubq72tZOTk42NzbPeLAAAAAAAwEuA8vabPj4+y5Ytu3r16sOHDzdu3MjhcJYu\nXeru7t6rV6+1a9dmZGQ84bMqlerbb78NCgrq0qXLYwPkcjmfz2/WKBAI5HJ5CwO0pFJp3Z8e\n3bcGAAAAAADAQLTWeQwuLi7//Oc/z507V1xcvH37dmtr65UrV3bu3LlLly7x8fGP/cjRo0er\nqqpmzZr1VzmNjIyUSmWzRoVCYWRk1MIArR07dpz504IFC5753gAAAAAAAF4KrX5An42Nzdy5\nc0+cOFFWVvbdd9916tTpzp07j4bV1tYeOnRoyJAhjY2NRUVFRUVFdXV1hJCKioqioiLt6YWW\nlpY1NTVqtVr3KZZlq6qqrKystG+fGgAAAAAAAAA61NYQPpVYLJ42bdq0adMee7W2tlahUMTF\nxcXFxTVt37hxIyHk0KFDQqHQy8vr2rVr9+/f9/Hx0V7NyclRKBS6XWSeGgAAAAAAAAA6L64g\nfDIrK6v33nuvaUtKSsqZM2cmT57s6uoqEAgIIQMHDjx06NCxY8feeecdbcyxY8cYhhk4cKD2\n7VMDAAAAAAAAQId+QSgUCh/bzjCMSCRyc3MbNmzY0qVLra2tm14ViUT9+/dv2lJaWkoI8fX1\n7datm7bF1dU1NDQ0ISFBqVT6+vqmp6cnJycPHz7c3d29hQEAAAAAAACgQ78gHDly5J07d9LT\n011cXDp06EAIuXv3bn5+fpcuXZydnTMzM7/44ot9+/ZduXLFycnpWZPPnTvXysrq1KlTV65c\nsbKymj59+tixY58pAAAAAAAAALQY7X4tFF28eDEkJGTr1q1TpkxhGIYQwrLsvn37Fi1adPLk\nyVdeeeWHH36YPn36rFmzoqOj6Xb9N6SkpMTHx69atUrfAwEAAAAAAHihQkND6T8hXLZs2cyZ\nM6dOnaprYRhm+vTpV69eff/995OSkqZMmXLmzJmTJ09S7xoAAAAAAABajv6xE6mpqX5+fo+2\n+/n5Xbt2Tfu6b9++JSUl1LsGAAAAAACAlqNfEPL5/LS0tEfbb9y4wefzta/lcrmJiQn1rgEA\nAAAAAKDl6BeEoaGh33777Y4dO3QHxKvV6qioqG3bto0YMULbcvXqVez8CQAAAAAAoF/01xCu\nW7fu8uXLc+bMWbZsmY+PD8uyWVlZ5eXlXl5eX375JSGksbHx4cOHU6ZMod41AAAAAAAAtBz9\ngtDJyenGjRvr16+PjY29desWIcTT03PBggVLly41NzcnhAiFwrNnz1LvFwAAAAAAAJ4J/YKQ\nECIWiz/99NNPP/20NZIDAAAAAAAAFfTXEAIAAAAAAEC7QO0JYWNjY0vChEIhrR4BAAAAAADg\neVArCEUiUUvCWJal1SMAAAAAAAA8D5prCIVCYd++fblcLsWcAAAAAAAA0EqoFYReXl7Z2dmZ\nmZkzZ8588803vby8aGUGAAAAAACA1kBtU5l79+6dOXNm8ODBmzZt8vHxee21177//vuGhgZa\n+QEAAAAAAIAuagUhwzCDBw/et29fYWHhf/7zn5qammnTpjk6Oi5atCg1NZVWLwAAAAAAAEAL\n/WMnJBLJwoULr1+/fuPGjWnTpu3fv79nz57r16+n3hEAAAAAAAA8j1Y8h9Db27tHjx7axYT1\n9fWt1xEAAAAAAAD8DTR3GdW5ePHijh07Dh06JJVKX3nllejo6IkTJ7ZGRy+xjIyMoqIifY/i\nGTAM8+qrr+p7FAAAAAAA8AxoFoTFxcV79+7duXPn3bt3bW1t58+fP3v27M6dO1PswnDU1tYW\nFxdTT5udnV1TU+Pn58fjUf5bAIfTik+bAQAAAACgNVCrCkaNGnX8+HGWZYODg9esWRMeHs7n\n82klN0CBgYGBgYHU0547d66wsHDs2LFGRkbUkwMAAAAAQPtCrSCMi4sTCoWjR492cnK6dOnS\npUuXHhuG3WUAAAAAAADaCJrzBhsbGw8cOPDkGBSEAAAAAAAAbQS1gjAlJYVWKgAAAAAAAHgB\nqBWEvXr1opUKAAAAAAAAXgDsDAkAAAAAAGCg6BSEu3fvbuEZCWq1evfu3WVlZVT6BQAAAAAA\ngL+NTkE4a9asjIyMlkQqlcpZs2ZlZ2dT6RcAAAAAAAD+NmprCNPT04VC4VPDFAoFrR4BAAAA\nAADgeVArCBctWkQrFQAAAAAAALwAdArCzZs3P1O8h4cHlX4BAAAAAADgb6NTEEZGRlLJAwAA\nAAAAAC8Mjp0AAAAAAAAwUCgIAQAAAAAADBQKQgAAAAAAAAOFghAAAAAAAMBAoaE3zpEAACAA\nSURBVCAEAAAAAAAwUCgIAQAAAAAADFQrFoRqtbr1kgMAAAAAAMBzolwQVlZWfvzxxz179jQ1\nNeXxeKampj179ly5cmVVVRXdjgAAAAAAAOA50TmYXuvmzZvDhg0rKSkhhJiZmTk5OdXW1qam\npqampkZFRZ04caJbt24UuwMAAAAAAIDnQe0JYUNDw7hx48rKyt55552srKza2tr8/Pza2trM\nzMzFixcXFRWNHz9eLpfT6g4AAAAAAACeE7WC8ODBg9nZ2Zs3b96wYYOXl5eu3cfHZ9OmTV99\n9VVmZubhw4dpdQcAAAAAAADPiVpBGBcX5+7uPn/+/MdejYyMdHV1jY2NpdUdAAAAAAAAPCdq\nBeGtW7def/11DufxCTkczpAhQ9LS0mh1BwAAAAAAAM+JWkFYUlLi5ub2hABXV9fS0lJa3QEA\nAAAAAMBzolYQSqVSkUj0hAATE5O6ujpa3QEAAAAAAMBzolYQsixLJQYAAAAAAABeDJrnEB4+\nfDgjI+Ovrt6+fZtiXwAAAAAAAPCcaBaEV69evXr1KsWEAAAAAAAA0HqoFYQpKSm0UgEAAAAA\nAMALQK0g7NWr13NmyM/PT0pKun79elFREY/Hc3FxGT16dJ8+fZrGaDSamJiYkydPlpWVWVtb\nBwcHjx07tulZF08NAAAAAAAAAK02VCkdOnTo6NGjEokkNDQ0KCiosLBwzZo1+/fvbxoTHR29\ne/duDw+P2bNn+/j47N27d/v27c8UAAAAAAAAAFo01xA+Si6X37lzp7a21s/PTyKRPDk4KCho\n9uzZYrFY+3by5MmLFy8+fPjwqFGjjI2NCSF5eXkJCQlBQUFLliwhhIwYMYLP5ycmJoaEhGiP\nQHxqAAAAAAAAAOjQfEKYmJg4ceLE6dOnnz9/nhBy6tQpLy8vf3//oKAgOzu71atXP/njPXv2\n1FWDhBBTU9O+ffuqVKri4mJtS3JyMsuyYWFhupjw8HCWZbXdtSQAAAAAAAAAdKg9ITx37tyI\nESO0Jw0eOnQoISFh7NixxsbGo0aNUigUycnJH374YadOncaPH9/ynLW1tYQQCwsL7dusrCwu\nl+vl5aUL8PDwEAgE2dnZLQwAAAAAAAAAHWpPCDdt2mRiYnLs2LHbt2/36tVr+vTpbm5umZmZ\nMTExx48fv3Xrllgs3rJlS8sTFhQUXLx4MSAgQFcQVlZWisViLperi2EYxsLCoqKiooUBWlKp\ntPZPcrn8799zu6JQKO7evfvbb79lZGTcunWrurpa3yMCAAAAAAA9o/aE8Pr16xMnThw5ciQh\nZNWqVUOHDn3//fd16wY9PDwmT5584MCBFmaTyWSfffYZn8+fP3++rlEul/P5/GaRAoFAV9Q9\nNUBr9uzZWVlZ2tcdO3b09vZu4ajar6qqqnPnzl2+fLmqqqq+vj42Nra2tnbhwoWdOnXS99AA\nAAAAAEBvqBWExcXFurmanp6ehBBXV9emAW5ubjU1NS1J1djYuGrVqpKSkpUrV9rb2+vajYyM\nGhoamgUrFAqhUNjCAK2+ffu6u7trXwuFQu0015eYWq1OTk5OT0/38/PLyMgQCAQdOnRoaGjY\nunXr8uXL7ezs9D1AAAAAAADQD2oFoUql0j2dEwgEhBAe73+S83i8lpRecrn8008/zcrK+vDD\nD7t27dr0kqWlZW5urlqt1k0KZVm2qqrK19e3hQFaixcv1r1OSUmJj49/pjttdwoLC8+dO9ez\nZ0+GYXSN5ubmdnZ2mZmZKAgBAAAAAAxWGzqHkBCiUChWr16dnp7+3nvv9ejRo9lVLy8vtVp9\n//59XUtOTo5CodA9mXxqgGGqrq42MzNrWg1qicVirCQEAAAAADBkNM8hPHz4cEZGBiFEJpMR\nQjZv3hwTE6O7evv27Sd/XKlUrl279vbt2++++25gYOCjAQMHDjx06NCxY8feeecdbcuxY8cY\nhhk4cGALAwAAAAAAAECHZkF49erVq1ev6t6eOnXqmT6+bdu21NTUDh065OXlHTx4UNc+aNAg\nBwcHQoirq2toaGhCQoJSqfT19U1PT09OTh4+fLhuQeBTAwyThYVFbW0ty7LNHhJWV1d3795d\nX6MCAAAAAAC9o1YQpqSkPGeGkpISQkhmZmZmZmbTdk9PT21BSAiZO3eulZXVqVOnrly5YmVl\nNX369LFjxzYNfmqAAXJ0dHzttdfS0tK0m/1oVVVVlZSUdOzYUY8DAwAAAAAA/WJe+j02n0y7\nqcyqVav0PZDWVVtbm5SUdOHChcrKSplM5u7u3r1794CAAB8fH30PDQAAAAAA9CM0NJTmlFFo\ns8zNzUNDQ7t27Xr69Oni4uLw8HBvb28zMzN9jwsAAAAAAPSJZkGYmJjI4XCGDRtGCCktLX3z\nzTebXvXz81u7di3F7uCZ8Hg8Ly+v/Px8c3PzLl26GBkZ6XtEAAAAAACgZ9QKwps3b44YMWLr\n1q3atzKZLCEhoWlAQkLCuHHjevbsSatHAAAAAAAAeB7UziHcsWOHjY3NrFmzmjbu2rWrqKio\nqKgoLy/PwsJiz549tLoDAAAAAACA50TtCWFSUtLQoUMFAkHTRolEYm9vr30dFhZ2/vx5Wt0B\nAAAAtIS6PJMoG7gOOGkJAOAxqD0hzMnJefKWle7u7jk5ObS6AwAAAGgJxZWoxuRN+h4FAEAb\nRe0JYWNjI5/P1711c3Orq6sTiUS6FmNj44aGBlrdAQAAAPwV+dUoRigW+EX88f7PQ7aUmSfV\nxbeFg5bqbWQAAG0MtSeElpaWBQUFurcMw5iamnK5XF1Lfn6+lZUVre4AAAAA/grH2Ep68A3F\nje+bNirvJkr3jGaEYn2NCgCgDaL2hNDf3//kyZMajYbDeUyRqdFoTp486e/vT6s7AAAAgL/C\n9x1rMmmf9MA0wmq0LcrMk9LvxolGrDMKnKvfsQEAtCnUnhBOnDgxOzt706bHz9HftGnTvXv3\nIiIiHnsVAAAAgC5Bt/Emk/ZJj8xVl6Rragule8eIQr806hep73EBALQt1J4QTps27Ztvvlm6\ndOnvv/++cOHCHj168Hg8lUqVlpa2ZcuWXbt29erVa+rUqbS6AwAAgJdMzecemqoH1NMq7x7X\nvpDFvi2LfZtiZo6xlfjjcooJAQBePGoFIZ/Pj42NDQsL27Vr165duxiGMTY2lslkLMsSQgIC\nAmJjY5vuOgMAAADwPzRqfY/g2bBsOxswAMCjqBWEhBAnJ6crV67s3bv38OHDv/32W01NjaOj\no6+vb0RExPTp01ENAgAAwBOYL/mdaFQUEyqzfpEdnM5z6cOqVaqCa8YjNwl6TKKYnzDcp8cA\nALRtNAtCQgifz589e/bs2bMfe/XGjRvYVwYAAAAeizEyo5hNefeE7OAbotB1mqpcTX2pycDF\n0gPTGIGJoOcbFHsBAGjvqG0q8wQ1NTVbt27t2bNnQEDAC+gOAAAADJwy86R07xjRiPW6XWQE\n3cabROyRHn1LcfOAfscGANCmUH5C2MyFCxeio6MPHz4sk8lMTEwmTJjQqt0BAAAAEEI0pXdE\no75udsKEoPtEwuGqi2/ra1QAAG1QqxSEZWVle/fujY6OzsjIIIQMGzZs3rx5w4cPF4lErdEd\nAAAAQFNGAxY/tl3QbTzpNv4FDwYAoC2jOWVUo9GcOnUqIiLC2dl56dKlxsbGK1asIITMnz9/\nzJgxqAYBAADgxRMETDfqO1/fowAAaKOoPSH85JNPdu7cmZuba2Njs3DhwlmzZvn5+T148GDN\nmjW0ugCAdqe6uvr333/X9yieTadOnaysrPQ9CgCghuvgp+8hAAC0XdQKwo8//tjb2/vo0aMj\nR47ECRMAoNXY2Pjw4UPqaauqqvLy8hwdHa2traknd3V1RUEIAAAABoJaQWhtbZ2VlbV8+fLM\nzMzp06c7OjrSygzQSpRKpVwu1/cono2xsTGH8yI2B6bFxsYmLCyMetqHDx9euXIlICDAy8uL\nenKhUEg9JwAAAEDbRK0gLCgo+Omnn6Kiot5///0VK1YMGzZMO2uUVn5Dk3u7uCKvhnraW4l5\nhRmVnsb3qD/FZTiM//AOdHO2tvv376emplJP29jY2NjYaGpqyuPR37Rp5MiRZmY0z+lqbVwu\n19TUlHpaY2NjoVBobGzcGskBAAAADAe1X1gFAsHEiRMnTpx4//79HTt27N69e8KECSYmJoSQ\nwsJCWr0YjuT9Ny8ebK19sXe/c4J6Th6fuzmjnRWEZmZmrq6u1NNmZWWVlpa6uLhYWFhQT94a\nRSYAAAAAGCz6v1x6enquWbPmk08+SUhIiIqKSkxMXLRo0fr168ePHz9hwoTevXtT7/Gl1Gd0\nV3c/Byqp7iQ/uJeSP2ROL2Nz4dH1SQ1VijHLBopMRVdj0yvyakLffoVKLwzDUMnzIjk6OrbG\n3GZTU1OBQBAYGGhra0s9OQAAAAAARa31tIHL5YaHh4eHhxcUFOzatWvHjh3r1q1bt24dy7Kt\n1ONLxifQ2SfQmUqqfhO67Xon4dy+tHd+mCjYym2oIr3CO53aklKaU7l4X4SDD/09OQAAAAAA\noF1o9elnTk5OH3zwwYoVK06fPh0VFdXa3cGjOFxm1sYRu95J2DjlIKNRmQikxzZcSD+Xi2oQ\nAAAMQXlejVKucvDG7sHwgtTX11dWVup7FM/GwcGhfR0ToJSrakql+h7FszGzMjYybotf8gta\nj8QwzNChQ4cOHfpiugMduUypVqoJIRM/fv2HD05x7+3v8cq1/b9YLooaK7Y1ldU0EkJE5sJ2\nON8TAP6gUCguXryo71E8Gw8PD3d3d32PAgzF+e/T6ipkM9aF6HsgYCiKi4tTUlKop62tra2r\nq7OysmqN3bBDQkIkEgn1tK0n93bJhon79T2KZ/PmphG9wzvrexSPgQ0qXmYFd8tXh+62FxcJ\nePKHFe6EkD6eSh5HLa2Wfzlhv7FA5mV373Ze9+C3Ase8N0jfg315KBvVpbcayOv6HgcYDI1G\nU1xcTD2tTCbLyMiwsbFxcXGhntzGxoZ6TngJrJuyr+D3Ciqp1CoNQwiHxyGEqBRqwpIbpzIJ\nIRo1y2pYLp/O+T0WziYfJ8yhkgpeJra2tq2xa8bdu3fv3bvXqVOn1vgRamxsTD1nqzK1EAWE\ndqSetrqo7v6NQudOtrae9LcGtHA0p56TChSELzOnjtZrzr/F3j3COb1QHbIvPkZEbl8mhIjt\nTN9a11/y6xRi6hwxcq7YxkTfI315KJXKB7cLM2Mqq2dV29jYtMe9dqDdEQqFkydPpp62qqrq\nxIkTPj4+vXr1op68Pdq+KK6hrj2dXNqhj0vIor76HsWzYQVKPqXfl5gG0litFhozPCEjL9YQ\nlohsuGo5K69UGZlz+ZT+3eOINHQSwcvF3Nzc3Jz+r/4NDQ21tbXu7u4ODnT2HWzX7L0s526m\nf9Bx6vG7998u7DOmy5A5BvRvHwrCl5ylkzlxmtVoopIenaK886apGY8Q0qG7ieKHMNLB0WL2\nYUZguMe45d4uvvvrQyqpqorrHt4usfU1LS8vu3Mji6e02BC5o3PnzjYSuwfXSnuO6Mjh0vlr\ndP+JfiYSQz82XaPR1NTUVFZW1tTUaDQaDofOdwvwZPeu5NVXNeh7FM+gPf6smLNxlEKhoJXt\nt9MPYlb/GvqPfnFf/KpWsBM+GPz9kjOvvdVj4Bu+tLrAUUAA8BLAD7KXH8uSmOMemrvjx/fY\ndaMwkMNoRntvLC8y2Rw7JXKc2orOVqbtUva1gp++PE8x4f0bhBDCJ1aEEJJtcze7/C4pJ4Tk\nZ5TR6qJ7sE97/CWPoocPH16/fj02NraiouLKlStjxozx9/fHajR4AdZdW0Q9p1qliey40bu3\n85IDk6gnb48sLS0pZrOfZi+RSPb8K5FlCCHkh6VnQxa9MnxBH4pdADxWfaWssrCOetqy7Nr6\nQmXR3UplBf2/hDp4W/GFqAsMFP7Dt1Gl2yYxeaefPw9Ho1CrNUFKDa8zV8My/nbJLEtIaYGV\nQDQ/4D3lpncrjHgsw2OZ5/3JwjBc609Lnn/AL5LvYE+JHZ0HpCqV6tL5K9k/VxmZ8ZQahbyE\nse3Fr7mjJiaqnqO9fLtR+2u02Nag5/cWFBRs2LDBw8PD39//3qUCj+72Dx8+TEpKWrJkiaur\nq75H9/LQaDSZmZkZGRkpKSllZWUajaZLly6mpoY7m0BLKpVSPzlJrdIQQtRqdX19Pd3MhBAe\nj9caO0+0feV5NRcP3tJo/viP1WWQ+63T2YQQF1+7hjq59u+ADMMEjurs2MEQt9pWq9VqtVrf\no3g2AoFA30N4Nqkn7u3/8OfWSk4SWyPtBwkznDphdbeBQkHYRjXmpJixdBbWcwjh8wn5c5kD\nwxBC1Iy6XsAlhBBC6R8Flm1/i+Vs3S1s3emsGC4sLHx47veei/xv7apQ1jOEkJoMlbmH0HWE\nmZFY5R/SAYsJqbhx44arq6udnV1JQZk6xVbdlTh627Ise+PGDRcXF3zJVKjV6qSkpBMnTkgk\nkpqamry8vIqKiocPH7766qvW1ob427POyZMn5XLKawhZDSGElJWVHTt2jG5mQoirq2v//v2p\np237GurkZQ+rdcV7Y71S+0Kl0JTn1ejCpNWNL35sbUFaWlpmZib1tEqlUq1WGxkZtcaP4kmT\nJrWvn/AO3lYDJvlRT3s35UFZdq13X0d7d/o/jU0sRNRzQnuBgrCNkvdZW5F1k2JCDttoV3NA\nI69nNRoRX15mPlom8KGYn3A4NCf6tB9qlebo5+cqSiuV6ZIH+bWmDjyj7NLQV44dujWDJ2Ty\nf5ZzOBX70k66+zkMnNxd34PVg8Z6RemDKiqpqspqjn9xvetw5/pCZWMpSwhRlJN6Y6VQKf55\n400ngbetC51/IG1cJSJzIyqp2qP09PSTJ0/6+fnJ5fLi4mKJROLp6ZmdnW1kZDRixAhDXrHp\n5OSkUqno5lQp1YQUqNXq1njEbbAFvEsX2zlf/7HVRFZK/n/ePMIVcDQqNj+95LWZAb3DOul3\neHpnZmZmb29PPe3t27fLysr69+9vZET/52f7qgYJIT6Bzj6B9NfkRC87WpZd22dCpwGjA6gn\nB0OGgrCN8hkzkZCJtLKxDVV10cGMufdDUXfj3FOS1/9pd3yJydhD/M70d2cyNAxDuDwOn89j\nWDkhhGWJWFTtbXeP1bCEJSqVysyEy+FweHyuvkeqHw9uFv37jcP08pn8tvO/5WVBvKaAlBJC\nCDHeEUltCs1bW0b5D6P655J25cGDB87Ozjwer+nTMBcXl19++SUwMNDOzk6PY9OvPn3orz0r\nKy0n5CqPw/f39293e763fdpqcPjCvse3/Mpq2BnrQvb8K5EQYuA1YYcOHTp06EA9LZ/Pz8vL\nCwoKEonwoKm1NNQo9T0EeDmhIHz5/VEN8kWmbx5nD35MCOH1ms3j8aT7IkymoSZ8XhwuZ+yy\nIMWdhKrvt/zEnXM3wcHMlBBCOHxGUafp0iMphPOzxaoKhmeIK3kIIVbO4uB5gVRSqdXqjPS7\npbdkHA7DE7PSPI3QgRAFTyXTqG1rXn19EJ/Pp9KRnQf9o4faC5ZlpVKpiUnzpaoMwxgbG9fV\n1RlyQUhXTU3NpUuXEuKPE+JaXVa3bNmySZMm9e7dm9b/xu1U/L9/Lcqis1yirlKWnVJg7W5+\nPek3ZaOasOTkdxdtPMW73klI+u4GrQXkFvam41cMppKqXdP+6Kirq1MqlSgI6Sq4W37hwM1x\ny1/l8bmE/HcZc02p9Kcvz03+ZKiRsUH/0KBOu1ZcJW9n62yfEwrCNorimm/llWhiJBZM/VFJ\nBGq1mmVZhUJh5D9ToGyU/bxK5DWMSi+kHa75Ln1QlZ9eSicX6yUUBo0s/7ZcMpfhqgkhQje1\ni+xSsDqhyOPTB6dy6fRCSJcgD6FJe/qebdwkY94dRCvbmTPshbO/1p8zl9cqCSGaRsLlEttR\njX2C+gcHv06rF0PGMAyHw3nsDx+1Wo0d9mn58bOztUbFhbLs3r17X0os4fP5/v7+x44dSz+Z\n372XnyE/v7p3JS/zSh7FhKXZ1brX+df+mF9w/3oBrfwO3lZkBa1k7RLLsnfu3Llz587+/ful\nUqmRkZG7u3vv3r3xxJsWMyvj9PMPKgvjxqzsV1dXRwgpKSkpzCmNmhdv42bBN8KPZco0Kg0h\npEFK7fybdgH/G7VR169fz87OppTMmZjNJnGJhBDjBw+8GmSxsbFcLpcQG2KzhBw5QqUPDocz\ncSK1Oa4vxm9n7x9efZZWNob0C/MvndE16vjtkYQQ96rb4wIPHUmJuHmERwi17SJWnp4t9GhP\nBSEtyftvlufVyOVqQaGd2rxcWconhChrCc+nkV9sU3GZ/JR2XmJnOniGIS6raKxXHPksiVa2\nwkJZaWm1qalKpVKpKyyrsnmZt6pUKlV9pegcSb/Io7MXRfch3r6DPamkao+k8tpru/P9Zjpz\nuX9MJhcKheIqt+tncv36ddbv2PTrzU0jlAo6fwytqan56quvOnbsaGJicuPoA00j6TnFvaGh\nISMjY+HChbQWWHL5hruqVistLe27777z9PTs0qVLVVVVQ0PDmTNnqqurhw8f3hqLCQ2QubXx\n4h8ivhi/95Mx2zV8JUPMz/58/tLuTGtnydz/hHG47Wx1JUV1dXUZGRlUUjVUK2LeuzZkaTcb\nH7P790sIIcVFRSkpKTVFDSfX3nrtnS7WHmZUOvL09LSysqKSii4UhG2Uubl5a6z5NhYNYyps\nnZycqGdudwu+CSGdvcsWv03n2V1DnaKqqM7Bx59bVze+1xFCVBP77q+zeH3AcLFX1jWXLta0\nvh9zYxkhhjihsSK/Vrs9oFhgrTHlFjJVasIyDLE0sTXnS+rL5PVErpJT3vCjvVA0KC8cuEU1\nJaeeyAghhJhJCZH+8dr08sN0Wh1I7M0MuSB06Ceyvs/9bW9Flyl/7MaVf7E+/5zM4jW50IHy\nyRbti5jSTE5CSH5FjqWTmZWzOSGE7yFTyTVCC67QwtS2waJGUd7JxYtWR4asrq4uMzOzc+fO\npqam5eXlhBCRSNSxY8erV6+6urr6+/vre4AviXu5d9QB+cLLtooatZoQbpYN15otdkjLLxzk\n4eGh79HpTWNjY1ZWFq1stgHC46tv+M20qSyoJYQUFhbeuiy/tbPc0kdYrSqpzqJzspqtrS0K\nQngGnTp16tSpNWYNDSaEdG2FvO2Rec42YVEMrWxuZoQUE0II+bP0M686ZU6Ik+Wf7TRwa8OI\nHf16vu0b/a+B2hcqpTpqUVyliUyqaDQWC4WMaPbGMANfQWFiIXo/djrFhMXFxenp6SnnbmrS\nrNXWtUadZMOHD+/atSvFLUbFtgZ9qqFSqbTpzTczE6b/UEkIYRVM7i91XaZaVhKZUolNI+iQ\nSqW6WYtcC5Xmzy/W2Ni4NU59NEzFxcVpaWl+fv9zvgLDMHZ2doWFhSgInxOrYWPWJddVSR88\neCBUOnCceaW3ZIQQjZI1thSQHKcDH/3i6urq0tVu0BRD3MbcwsJi2DBq657IMPLL9hsX9t7u\nNtI1l9y3NLfJ/L7GN8hz7AcDGA61Zx5t9kRfFIRguHg+QzU1FBarsMrGP04TI4SV12pqCwnL\nEg6Xa+FGuH9OmOHyGS6FooVr4fb8SV6k6pL6387ep5VNo9Yk779ZWy5z7mqV/etDG09xVWH9\n2rC9g2cE8ATU9nHt1N/N2kVMK9sLwOVxXH1p7vXi6mvnH9TF3cP94OKL7h1cIjdPNDc3p5jf\nkGVeyUuJu1NYWFZW1mhiwjW25dXlK1kFI+4gKLstq6piLhdl34urGragj4U9nRlKBovH4z12\nNaxKpTLwnXtuns66n1pIJVVZWZnirtn9ohpCSF2lQN0geVgj5XAaFAoiu1mo+P08lV4IIaP/\nNagdzkOigGVZuVxeVlZmbW2t+XMSjHYWgVAoVCgUGo2G1RjotAIej2dpSfPIswnLXhcKhae+\nvUIIuX+xtNfITm98PpxiNdiWoSAEw2X0ykKjVxZSTKi4eVB6aEaN71sm6Xs53SZxso6bvhXH\ntTPoJ7LFWRXfrzhFPW1DVfWH4R9/mbhCKjchhBxc9QvF5G9tGdW+CsLWwOfzbWxsCCE81gjV\nIEVqpYYQYmZmlpubKxKJCMMwhGUJQxiiUCgsLS1NTU1ZDcuqDfQ3PIpsbW0rKyvd3NyaPtlm\nWbaiosLW1laPA9O7jIu5SXtv0MsnkBHtE1cBIYLC+7I/2xW5SVdp9TF66UBieBUhw2HGLgvK\nz8/P/PdF9w5et3aU8UREJSVcPqOo03SIMBcI+WPGvCoUGug25rRsXxibl15KCFGpVHK5XKVW\nEcJRKdQ3z959f2CO9u9HZtbG7/44Vd8jbUUoCAHo0FaDJhN2lpQrTNL3ql/7TCQS1W9/3fSt\nXwy5JrT3tpq6JphKqsYaaf4vsc5DxwnNjCry7/PLlP0mu9v6+MtlyrwTRxxeDTGxpFPFuXQx\n6F8WpdWNJpL//nqhavzjGUtjvUIg4nG4hr6FxnPqPMCt8wA3lmUvXLD9ccNpVbH5xD4/ZFd6\nXb/fl9Or9O2P5rTGAXGGyc3N7bXXXrty5YqX1x/LBVUqVU5OTv/+/XUthunV6f7dh3hTSSWX\nyy9dulRfX29iYnInoURZyvUZZy4049+/f/+1117z9KS3TtjwqkEdc3PzxlrVrR1lQgmPY6Ws\nz2DsBwnKr6p+21feZ54bdu55fsHzAisLaquqqmJiYiyMbeRXOBoNYQgx7cBWK/NCQ0NtbW1N\nrV7yXXNREAJQoHpwQXpohsnEvQK/CHJ6NyGEMIzxqM0ytaI+Olj83n3CM9Af2RI70wGT/J4e\n1wKa2sLagi1CD2PhkI8yU5XkIPF6xb77EL/G5E2N9/9tPnE2x8pAf8lTqVSZmXQ2/2Q17PYp\nPwdO9PEf45GbW0QIkTXI0tPTq/Lrf/rg6oDZnToMdKTSkY2NjfYJpGHSYLudbgAAIABJREFU\nFN5QZHA0mZLAt1yEtxqMRQ2+o5wyEnicgiqNTS6nvc0Mb5s4HM7gwYONjIxiY2OLiorUarVG\nowkNDe3Xr5+BTxm187S086Q20Y5np4yOjnazc2OMNIRwGUt5Yf3DweNfGRo8wMC/Z1oYJU/0\nm6fCSNZ5is2tQw2EEK6QdJkuSd1ekn20nh1HGGoLJgyUe3cH9+4OiYmJ9h2sSo9zhHasLF9j\nZMdUpmqcwuwaxOX+IQPa49aJzwQFIRiurKysmzdvUknFV0tFHVfV3uOSe0fk2amvqdWJCQnm\n5uYMGSZxcKiKjafSCyFk2LBhbXZFcmvjmDuazj5RvzOEEFbgPIYQYmJhJL/wVePJD0xmxBps\nNUgIUalUtP5PJoR0niy5tDcjP6/A3JNHCFEqlZd+ua7daa3BrOzmzTIqvXTr1s2QC8KCHYss\nH5a/ve2YRx/v1Lc+4PF4C76YfNbhkFFMcHFRpOOUNfoe4EtCJBK9/vrrAQEBR48ebWxsnDx5\nMt0VR0AI6dq1a2Rk5O+///6ASSeEiMXiV17t7e/vj2qQltoyabdB3ma9FZevXjJmG+eH7N1W\n8c8Sdc7IlcMKk+RKucrAt1WjorGxMeHwz5xUZ6sOQq5142DruBTucFEX6/xjdQUFvwYFBb30\nPzpQEILh4nA4AgGtM/0EjSILbS4LFy+m3kx3yJXUprchnhvYOnhu/UzfTKzfGSLqXEIIEWUd\nabi902RGLN9niL6Hpk98Pr9///7U0vUn3bqVHVqWbGXqQUil2NQiY19tp/6uoUt7UVxbLxa3\nv1WaR48elcvlVFIVZEeMcdrMnB19JOddD0JUKlXs7o19ylfn8rpdTvOwZfZT6cXV1ZXm/xjt\nloWFhb29fWNj40v/K52+eHl5eXl53YguKSY1ISEhDu6G+7ee1uDoZTrl/9zVEi+fjt7n1u4x\nE9V2cOkweEIfDw8PTZ80LqpBGmrK69RX7Ky7CDuMljz4taC/d/KdvH7Or3kQls1NtinOqXjp\nf3qgIATD5enpSXOFQ1Oq+WGGOke0GWXWLw3H36OQSC0nmj8WszEiS0HaNkKI8Y1vGLFLQ9w/\nGrQXONz/buv6HESvf8DvOvr587wwXC7X1dWVYkJXV1c7O7vNs34khBRlVAWGd562NthAdlp7\nAolEQutMCMspljnKdZ3SlvfL31jCaMxFjb3ur62xCazptLgTefn3N4eXkkKmJu3zUOI2Tl2Q\nWh81xGTa4a5dR2a42BA16dixo6enZ8PPK+UXNomX5zNG2JH4eZnxZctGbkpxna9k/ueoZ+9+\nDaPM1ltxehPio6+xvRgoCAFaAarBP6nyr6sLrrdWdpbVVD+knlWd+2v7Kghp2fl/CSlxd5q2\nzAn6NvHWyF8Pq349fFvbwjfiffbrPBOJSB8D1LOe1+axsornTsMSjUb3mlXITG3V3uQeUfFt\nKn61uXjpjyscCquC+F1Hk+47nz8PvGTu3Lnz8CGdn5wPL1eVZdT7T3fmcBmpVEoISU5ONs8w\nLrpVez+pov8/qJ2ZHhwc3L5KzXtX86/GptPK5swu8N097gZ3eUmGgviQK4czBFc2eWp+TOGu\nrvzk0tM/3zIj/tFPYmegf0UytnNTeAzs92BdquhDhuERQhiGCBXlAfc+UTn72nYfpO8BtjoU\nhADQijTeI2S9S+jm5Jek8vIuMKyK5fBV9r2VTn0p5+8cQTdhexHx0WtDZvfi1OVozDwqC2u/\ne/+klWm5mag+aKR/v/G+jKyYNZIITM0MsxokhGiqc4ma/qnxf/ySq1aytJOrc6n9pggvE5lM\nVllZSSWVwF5dFl93cUtW50mWrpIiN5ubddIZJfeq7xyo9BohptVLe1SUVXHhwC16+Rx7eYwK\n77G6VD6cEOJWu9tNcW7nxdk5ZSwh1Hp5dbq/wRaEhBD7qTvv75zR8+6qh+pZhBAjboV/RlSj\nuKP19ENU/kLXxqEgBIBWVMezOq/sRTGhe1lih6JLl+3nvVL0zSXb2YHFuws1jln2Yyl2MYBn\noP8kmlqITCXC6k/+n707D2jqzBoG/twkkLCGCCKIIIJsFnBBWRQQd3AdHa2ftVVcsONYWqlt\nVRAt1QLjOK/g1KVia6tWbNW2VhBBBnEBimAgiIisdpKwBsIiEkKS+/1xZ/LmRUWWcC8J5/eX\nhng9nqZPzrn3Wd6SOb534p9ODjOsEULmE0b9frXYiiNwE4cZrD6jY6/OVGsWxgR/vLNFjRfE\nZRJFY5lcpkAYRmey6GYOCFPnqR46DgvUeDWgNTw8PDw8PNR1tZWrOo6++1PLbdaE0W0Oek9e\nWEy7EJ/2duS82e9OUddfoYmmTCieFHpdDRdSSDH8P3MKMIl10ORkhOPz3voXbuK0Zc1DhB4i\nhHAaA2FqqOeNDIMQ0qT1n4r2uu6S39R1NV2EJkyd09pdswb/BiH0Z4uLyGiciecaverfuqrV\n9ZcgnYlzaabqOfRFvbStIVQoFL/++mtqampjY6OZmdnChQtXrVqleigtAIBMbDZ7xowZ6rqa\nXvF3+vVX2gJPO5m5onPHXeas6+iYY5+y2crK6sW0D9T1t3A4nDe/SVthmHTxVdmlJWv8A0e/\ne1xxGrEMdD/6hxPz5p9rzf7k4jpyu0GEkFFIuhqvJheVPf96ju7Udx/fyG5nuc146xnGYBlu\nScF0R+btiP/Iy8sbisdKXC5XKpUOxaJKAwMDX19ftV9WU3TlHMcKfgj75urRLTcN6S+QNTq/\nN211eID3xJy2I+uMP3ny5ktoKfqzZHrt3aG6Oq7AxE/UPoOWJn6CxmnSscmy0qQXP7+v3msa\nov9M29DDXqDWMjx11wu1Xp/lv0tvyRG1XlI9tK0hPHPmTFJS0syZM5cvX15SUnLu3DmRSPSX\nv/yF6rgAGKH09PQmTlTPzTCF+I+2/KMGwdc4DgvwzpYWhGxtbWkm/jIrK9q3QWNmh9DHaNI3\n2fCE4+joR098/A/760VKuVEvEDKi13Fy1ne4rD8V/1aIT5XrnKHZh2mEIbpBHadA5oqv8Ruu\nclzXaOut9jMLnn8TNMJ7wra2tqFoCCdMmIDj+FBcWS6Xq/2aGqGl/vn5PTfpCqP5pk3Y/8we\nZbqnu16GEOJYGHbe/+p50bnb4k+EGy5PDXT0f2cy1cFSQHfGVoxlrIYLKWTKDdVkNYXy2iKE\n4wij6djPppn8dy8xmg5Sx5MPurXX4C9Cpi7dUThDHUsYcDnCceXvMIUMIRwRj17/d5cvTC0T\nR7v0xgzPRRcYrpICTcfn8z/44AN/f/9du3YRr8TFxd2+ffvYsWPjx7/6nN+8vLykpKSoqCgS\nwwQADBAu7cB0DRBCeGdLy+cc9t4/iG9E5esjE/6iqeOXHeq4kgIpZB1iiYEJC5e0yqrvKeQy\nhNEYpnZ0S1fJ824dXTpdl4FoariTyJy0TGfq+sFfh0yfTj/+XNyplkv9Zc7xhjbzX7ircRwL\n9jtT1TDx7tMAfd0Xm/1Pl9a6pD9epJa/xWOJ09Zjy9RyKQB66JbI7l0qknXJaIpOx7owueT5\n3UI3D9vckpZ58ydcqhgT3aLvhxBy8rEZ725BdbDaoPPW5113j4infWKc+6V8/t90b0cYrL+k\nM2kF1XFRqbGxMT1dnRM3WFKRZ8Whxq6x47HCx12+jvoF+fZ7W/XVeRt05syZr2tJKLR48WKt\nekJ47949HMeXLfvf77/ly5dnZGTcvXv3vffeozAwAIBaKLs+TFdfx2EBpsfp8frIJG8Vdhf9\nqK6r6SLULfzPr2kYQkiuaCpXNJXTEVIgpOjtj/ZHR4PGNYTjXEa/aFPPOYT/at7dJde3fgtD\nCOkZMk1ohjY6YxBCyfVRGB3ZuKrn7FIzaxO1XAdoGSnvkqzy9uCv4/3fB2Bi+URUkRroxkdI\nMZ99oU7qPsn6KY1WhhBCFehFxeD/KqS/8hTSqF1G1YvoBg0336j/owYhJH9rnR6b3fHD/xvh\nPaGxsbEaj1qlPa/R+2WPwnq6SDds/JMFbZZbcNs878d/71x+QW7urq6/RXlI9XCjVQ1hRUUF\nnU63t7dXvjJhwgRdXd3KykoKowIAqB9d13BrGtVBDBd0tpXu5LVquJBCgf93bhLe1SKruqeQ\nyzEMo5tNoI/579chhmF0NXxx6Lpo3pOrj84PyfaznTceudj4BLmuHIqLA/CyrpyTsmp1Lm/T\nRwipnLVkqVPYnVeoxusjhPT/dAJhmrTTY3d3d1eXeu4f4c/uyu79D2P9b5LR0yRPqxBCHR0d\nRi5raZ0dHRfXMcIqkZrOIdTX19esTTeYTKa6zuDFJa1tiQEMW2+DdT+Y3ihBCBkZG495+6sX\nSbq05GDjDx/SOMPusZ56aVVD2NzczGaz6fT/HTIwDONwOE1N/+fkqN9///358+fErxsaGkgN\nEQAA1A3TNzV455IaLyivKWhPmN/tsvVF/sUao3cnvUikm04YnuvgtYDe4sNUhwBGFtooO6TW\nhpAMmvZ48I8//sjLy1PLpTBcoeNwWFpQjwquK4TFVjh++/ZtQ0NDhEYzHY90pWWq5W9BCAUF\nBZmYaNK0gq4X3fVValoYLJfo2m+VOm1sKmkSCdpsEWpv7Pj34wZku1tHNq69qgNnqucALdNx\nbAMTlloupV5a1RB2dXXp6Oj0eFFXV7fHTZq4uLiKiv/MYHByclLXjhcAAECJtsaO3d4n1XW1\nsSbCzf6nuc9m3Dhnt3sJepAp+Zdkw+aWk9wz+TeKlqrrb1m6c9aSUB91XQ0A0HcGb581ePus\nWi5VXVjbLGxzHX2389qHjxpnm2KPLF3t6PgLxYpf89Pr529R55lDmsXY2HgoykuGpUF3XvqU\nKUNypAeTyXzzm4YTfknDP9Ymqu96ugglIoQYNLnHSizrSsn175VN4A11/R2bjy6ZsdxFXVdT\nI61qCJlMZmdnzxX/UqmUxfo/vfg777wjFouJX7948aKuro6k+AAAYAjQdejOs9Q1mwVfO+aL\n8hcLqozWO89COrqMcZPMhV1TM9vGzHc4JB89/Q+JerahG23NVst1AAAUmjDFcqw0qfPahwbv\n/iSKTeKwirGVV7Hkt2nX/jRv6y2qo6OSubm5ubn5kFw6YLnlkFxX83AsDBe+7zkUV36gOD/9\nXeuhuLLlRNOhuOzgaVVDOGrUqD/++EMulytnjeI4LhaLXV1dVd+2fPly5a+JXUZJjRIAANTK\nwIT10bk16rqaQjTVwszBDyGEUGv0xyu2+uo4L0YIKVrfW6HPwXT01fUXAQA0nfTR1c5rHxps\n+FnHKUjf+BaSIqSjb7jxt+ffBj4//2ej99WwdQ0Ar2M6jr3yM3+qo9ASmrR49I3s7e3lcnlV\nVZXylerqaqlUqrrNDAAAgF7QzBz+99em9jTD/9zkprGtoBsEAKiiW7oZbvuXjlMQQgij/WeZ\nH8YyNtySypz5AaWhAQD6QasaQj8/PwzDrl+/rnzl+vXrGIb5+flRGBUAAGgoo/cz6eNG7iog\nAEDv6GaOjPEziV/Lka5c8Z95ZxjTSNftz9TFBQDoH62aMmpjY7N48eLk5OTu7m5XV9eSkpJ7\n9+4FBgba2tpSHRoAAAAAAPXyk0qf5vxb7Zd9WjjxecMWt7/d0dXrub3f4L1zaKGm7TMKgCbR\nqoYQIRQSEmJqapqWlpabm2tqavree++tWrWK6qAAAAAAAIaFyofC+5eKhubaeg+uPRmK675z\ncIHGnTwBgAbRtoaQRqOtXr169erVVAcCAAAAADDsLNzm6fNn1ze/bzhRLlAEAAwFbWsIAQAA\nAADA63AsjTiWRlRHAQAYRqAhRLm5uX/961+pjgIAAAAAAAAASNXS0oLhOE51GFTq6uoSiURU\nRwEAAAAAAAAAFBjpDSEAAAAAAAAAjFhadQ4hAAAAAAAAAIC+g4YQAAAAAAAAAEYoaAgBAAAA\nAAAAYISChhAAAAAAAAAARihoCAEAAAAAAABghIKGEAAAAAAAAABGKGgIAQAAAAAAGL5kMllH\nRwfVUQCtBQ0hAAAAAAAAw5RcLo+Njd23b9/z58+pjgVoJ2gIAQAAAAAAGKYwDNPT06usrIyM\njISeEAwFaAgBUJvS0lIcx4lfCwSCAwcOtLW1URuS9oEkkwCSTAJIMgkgyUA70Gi0sLCw2bNn\nQ08Ihgj9888/pzoGALQBl8vdv39/TU2Nt7e3UCiMiIiorq7u7OycMWMG1aFpD0gyCSDJJIAk\nkwCSDLQJhmHe3t61tbUFBQWFhYW+vr66urpUBwW0B4PqAACpRCLRuXPnysrKzM3Nly1bBt+L\nauTg4DB+/PjMzEyJRPL06VOxWOzu7r5582aq49IqkGQSQJJJAEkmASSZZB0dHVevXs3Ly+vq\n6nJwcFizZo2trS3VQWkV4jkhQujOnTuRkZEHDx40NDSkOigtNDJLZUw5mwJovZaWlrCwsKam\nJuUrQUFB77//Po0GM4fVo729fd++fdXV1Qghd3f3yMhIJpNJdVDaBpJMAkgyCSDJJIAkk6am\npmb//v0NDQ0IIT09vc7OTgaD8eGHHwYEBFAdmpYQi8Xnzp3j8XgYhjU2NiKE7O3toSdUuxFb\nKmv5Pw+oOnfuXFNTk729/f79+3ft2mVmZpaSkhIXFwc3BdSlo6OjpaWF+DWHw4HpHEMBkkwC\nSDIJIMkkgCSTQyKRREVFNTQ02NvbHzt27Mcff1y0aJFMJjt69Cifz6c6Om0gEok+/vjjf/3r\nXzQaLSAgYPXq1ebm5rCecCiM2FIZ1hCOICdOnDA2Nj5y5Mj48eNtbW0DAgK4XC6Px6urq/P2\n9sYwjOoANZ6urm5xcbGZmZmhoWFhYSEkdihAkkkASSYBJJkEkGRyXL16NTs7e8KECbGxsWZm\nZjdv3vzxxx8RQlu3bvX09KQ6Om0QHx9fVlbm7Ox8+PBhDw+PyZMnBwYGCoVCHo8H6wnVa8SW\nytAQjiA///zz0qVLJ0+eTPyWxWLNmjVrhHzQSSAWiyUSyfz58wMCAvz9/QsLCwsKCnokNjc3\n19jYGOYsDRgkmQSQZBJAkkkASSbNt99+29zc/MUXX5iZmaWmpp48eRLH8a1bty5fvhwhlJaW\nZmVlxWDAphUDJJfL4+PjFQpFVFSUqakp8SKdTvfx8cnPz6+srISeUI1GbKkMDaGWE4vFZ86c\nuXDhQn5+fltbm6urq5OTk/KnI+eDPqSam5vj4+OPHz9+//79mTNnstlsJpM5a9YsZf3h6elJ\no9Fu37595MiR/Pz8efPmwVdjf0GSSQBJJgEkmQSQZJL99NNPhoaGGzZsSEtLO3HihGo32N7e\nvn///rKyMlhMOGAymezSpUsMBmPbtm2qr9NoNBaLlZOTIxaLoSccDCiVETSE2k0sFn/88cfF\nxcWtra01NTWdnZ2tra0LFixQXRqr+kGfMGGCtbU1hQFrotra2t27d5eVlRkbGy9dutTe3l5f\nXx8hpFp/FBQUFBcXX7p0CcfxxYsXT5kyheqoNQwkmQSQZBJAkkkASSbfgwcPamtrdXV1T58+\nrdoNIoROnz5dXl7u6ek5bdo0aoPUXHQ6PTMzs62tzcfHx8TERPVHra2tt2/fnjFjRnFxsYWF\nxcSJE6kKUnNBqUyAhlCbnTp1qqSkxM7O7oMPPpg6dWpZWVlNTU1TU5Onp6fq7Q3ig25hYTFn\nzhwKo9VEUqk0PDy8vr7e2dk5Ojraw8ODqDwITCbTz8+vvLy8pKTk2bNnNBotODh4zZo1FAas\niSDJJIAkkwCSTAJIMiXkcnl2dnZBQQFCSLUbTE1NvXTpEovF2rVrl+p/CNBfMpmssLCQz+cH\nBASoNirXrl0rLy///PPPXV1d4RnswECpTIBjJ7STSCQyNTUNDg7W0dE5duwYMRA3NzdHREQI\nhcL58+eHhoZq5SNvkqWkpJw8edLCwiIuLk75bcfj8Xg8npmZ2aJFi+h0Oo7jWVlZfD7fx8cH\nDmUaAEgyCSDJJIAkkwCSTAKFQoHjOJ1OV31lz549paWlVlZWX3755ahRoyQSyeXLl69cuYLj\n+Keffurn50dhwFpALpd/9tln5eXlHh4eH330EfGcMCUl5dSpU2w2++zZs6r/OUAfQamsCibN\nayGhUBgeHu7h4UGn0wMDA5VfiqNGjYqOjg4PD09PT0cIjagP+hB5+vQpQmjJkiVEkgUCwYkT\nJ4qLi+l0ulwuz8rKOnToEIZhvr6+VEeqwSDJJIAkkwCSTAJI8pASiUTffPNNXl5ed3f3uHHj\nAgMDlyxZQqPRaDRaRETEgQMHqqqqNm/ebG5u3tzcLJVKMQzbtGkTdIMDQDytURZpdDp9//79\nBw4cePjw4datW+3t7cVicV1dHUJow4YN0A0OAJTKPcA5hFpIX19fX18/PT1dJBL1WGHM4XCi\no6OtrKzS09P/+c9/wvPhQRo3bhxCiMfj8fn8ixcv7ty5E8fxuLi4ixcvWlhYPHr0qLy8nOoY\nNR4kmQSQZBJAkkkASR46YrH4008/zcrKkkqlOI7z+fyEhITw8PD29naEEJvNjo2NXb16tZGR\nUV1dXXd3t7u7e2xs7MqVK6kOXMM0NjYePHhw1apV69atO3nypPKYQSLDK1aswDDsyZMndXV1\n+vr627dvnz9/PrUBaygolXuAJ4RaiPgoh4eHC4XC27dvL1myRPXukfKn6enp3t7ecEbQYCxd\nujQvLy8/Pz8/P9/IyGjz5s1BQUEYhimn0ygUCqpj1HiQZBJAkkkASSYBJHnonD17tqmpydnZ\nefv27ba2tuXl5WfOnCkpKYmKioqOjtbV1WWxWBs2bHjvvffa29v19PR0dHSoDlnziMXizz77\nrKmpCSH04sWLlJSUgoKCL774wsLCAiHEYrG2bNmyfv366upqHMft7OxYLBbVIWsqKJV7gDWE\nWkssFhMf9FdOgxaLxdnZ2UuWLKEqPE3U0dFx9erVvLy8rq4uBweHNWvW2NrayuXyhw8fyuXy\nyZMnK6ccXL9+PSEhgcPhfPvttzCXo18gySSAJJPj5TxbW1tDktULkkwCYqnVhg0bWCzWsWPH\n9PT0iNe7u7ujoqKKiopWr169YcMGaoPUDl999VVaWpqDg8P27dsNDQ1/+umn9PR0MzOz6Oho\noicE6gWlshI0hNrgleUdetMHHfRLTU3N/v37GxoaEEJ6enqdnZ0MBuPDDz/ssa8XjuNXr149\nf/48rKQfAEgyCSDJ5OhLniHJgwRJJoFyqRWXy124cOE777yj+lORSBQSEqKrq3v+/Hk4BG8w\niK47JCREoVAcO3bM0NCQeD0xMTExMRF6QrV4ZbUMpTIBjp3QeDU1Nbt3787Ly2ttbZXL5ZWV\nlbdu3RozZoytra2ent6sWbPy8vJ4PJ5IJOqxhS7oO4lEsmfPnvr6ent7+6ioqJCQkObm5vLy\n8t9//93X15fNZhNvKygo+Oqrr27duoVhWHBwcGBgILVhaxZIMgkgyeToS54hyYMESSaHXC6/\ne/cuj8fr7Ox0dXV1c3NT/am+vv7vv//e2Njo6elpampKVZCaTigU7t69m8/n19fXz58/38PD\nQ/kjIuEPHjzIycnx8vJSNoqgv15XLbu4uECpjGBTGU0nkUiioqIaGhrs7e2PHTv2448/Llq0\nSCaTHT16lM/no5G6NFbtrl27VltbO2HChJiYGFtb25s3b6alpSGEtmzZojyftKWl5eTJk48e\nPbKwsIiKilq1ahWlIWseSDIJIMnkeGOeIcmDB0kmh7KKQAjdvXtXJpOp/hTH8ba2NgSLMwdH\nucFJQ0ODckau0rp169atWycSicLDw4mdRUF/9V4tQ6mMEEI40GSXLl1atmzZhx9+2NnZieN4\nSkrK8uXLly1bdu3aNdW3NTc3/+Uvf1m2bFlubi5FkWq2sLCwZcuWEcu4b9682SPJqampRP4b\nGxuzsrKIM5pAf0GSSQBJJkdf8gxJHiRIMpmUVcQ//vEPuVyufD0pKWnZsmVr166VSCQUhqcF\nlBn+6KOPZDLZy2+4ePHismXLfv31V/Jj0wJ9qZZHeKkMTwg1W25uLkIoLCyMxWKlpqaePHkS\nx/GtW7cuX74cIZSWliaRSNB/7/C9//77I2GjpKHQ2tpqbm5ua2ublpZ24sQJ1SS3t7efPn06\nNjYWIWRmZjZz5syROdlg8CDJJIAkk6MveYYkDxIkeUgpFAq5XK78rfIRSmZm5u7du+/fv//o\n0aOEhITTp08jhDZu3MhkMqkLVhsoM1xVVXX8+HH8pYdU69ati46OXrFiBSXhabq+VMsjvFSG\nhlCz9bG8QwhxOJwRslGSuggEgqqqKuLXFhYWbW1t165dI4ZpZZIRQt99951UKlVOtwP9pcwz\nJHnoQJJJACMGCSDJJBCJRH/729/efvvtVatW7dix4/r168R0UGXH8vTp08OHD0dERFy/ft3I\nyCg0NDQoKIjqqDUMjuNFRUXJycn5+fnKxvuNExddXV1Jj1RL9LFaHsmlMmwqo9kePHhQW1ur\nq6t7+vTpHt+Ip0+fLi8v9/T0nDZtGrVBaqKWlpY9e/bcunXL09OTzWbL5fLs7OyCggKEkGqS\nU1NTL126xGKxdu3apdzfHPSdap4NDAwgyUMBkkwCGDFIAEkmgVgs/uSTT54+fUp0KW1tbVwu\nt6ioyMvLi8lkKneqa29v9/LyioiIePfddx0cHKiOWsM0NDQcOHDgypUrDx8+vHPnzr179xwd\nHYkteWAvwCEC1fIbwRNCzVBaWqq8VyQQCA4cOEAs4549e7ZEIvnmm296fL5TU1Nv3brFYrFg\ndsHAnD9/XiQS2drampubI4Tmz5/v7OyMELKysvL19UUISSSS8+fPnzhxAiEUGhpqZmZGbcAa\nSjXPkOQhAkkmAYwYJIAkk0B5+nx8fPy1a9eOHDni7OxMnD4vlUqRylOs3Nzcn3/+GQ517K/W\n1tY9e/aUl5dzOJzVq1cvW7asvr4+IiKCy+USb4ANTgbsdaUygmrWnqPyAAAgAElEQVS5D+Ac\nQg3A5XIPHjzo5+cXFhYmFAojIiLEYnFQUND27dsVCsWePXtKS0utrKy+/PLLUaNGSSSSy5cv\nX7lyBYczlwaEOAsoODhYV1dX9QTe1tbWAwcOVFVV0Wg0c3Pz5uZmqVRKbGW+cuVKamPWRK/M\nMyRZvSDJJIARgwSQZBL06/R5OLptwD7//HMul+vi4hIREWFsbJySknLq1Ckcx3V1dcPDw5UP\nqZQZ3rdv38hc0tZfvZTKCCGolt8IpoxqAENDQy6XW1BQ8OzZs59++kksFru7u+/cuZPBYGAY\n5unpyePx/v3vf//2228ZGRk//PDDo0ePMAzbtGnTokWLqI5dw6ieBRQYGDh58mTlj1gsVkBA\nAI7jAoGgqalJoVC4u7t//PHHMIgMwOvyDElWI0gyCWDEIAEkmQQ9zsFTnTtHp9Pd3d2TkpKq\nqqpWrFhBPBKEmY1vJJPJFAoFjfZ/JuKVlpaeO3fOzMwsJibG2Nj45s2bRDc4d+7cioqK7Ozs\niRMnWlpaov9meMyYMXPmzKHoX6BheimVEUJQLb8Rg+oAwJsZGRkdPHhw3759v//+O0LI3d09\nMjJSuaMXm82OjY396aefbt26VVdXh2GYu7v7+vXrXVxcKI1aIynPAkIIvTwThsVibdiw4b33\n3mtvb9fT09PR0aEiRm3QS54hyeoCSSYBjBgkgCSTQDXJLzMzMxs/fnxVVdWzZ88cHR2JF4mZ\njeHh4dnZ2atXrx47diyJ8Q53MpmM2KRk7969qh/aR48eIYRCQkKMjIxycnJU97rs6urKysoi\nUko05CN5g5MB6L1URlAtvwmsIdQMHR0dLS0txK85HI6urq7qT4lvxHPnzl24cOHKlSuHDh2C\nz/fAqJ7Am5GRobrpthKGYcbGxlB2DMYb8wxJHjxIMglgxCABJJkEAzt9nvhThw4dgm6wB5lM\n1t7e/uDBg5iYGNVP7J///Ofly5d7enq2tbUdO3YMx/F169YR69msrKw4HI5cLo+OjobT5wem\n91IZQbXcK5gyqhl0dXWLi4vNzMwMDQ0LCwvr6uq8vb17zNDAMIzJZMIK70FSzoQRCASNjY1e\nXl4wE2YoQJ5JAEkmASSZBJBkEiiTXFNTU19fr5rkGzdu3Lt3T19ff9OmTcQEPNU/NWrUKCri\nHdYYDIafn19xcTGPx6uurp41axYxdxTDsGnTptFotOTk5Ly8vKlTp4aGhhJ/5MKFCywWa/v2\n7WPHjvX29qY0fE3Vl1IZQbX8GtAQDndisbijo8PIyGjmzJkBAQH+/v6FhYUFBQU9Pui5ubnG\nxsZwMqxaKL8Xi4qKYHXE0IE8kwCSTAJIMgkgySRQJvnRo0cFBQX6+vqtra2//fZbYmIiQmjr\n1q3Etq6gL17XExIyMjIqKyvffvttOzs7hFBycnJqaqqzs/PatWvhsMGBEYvFEolk/vz5UCoP\nDDSEw1dzc3N8fPzx48fv37/v5eXFZrPpdDqTyZw1a5byg+7p6Umj0W7fvn3kyJH8/Px58+b1\nuHsH3kgmk2VkZFy/fv3BgwdtbW3jxo1jMBiwYl69XplkBDsTqBUkmQSQZHLAsEyCjo6OS5cu\nnTlz5tdffyV2XzQxMVEmubq6OisrKyMjo6yszNjYeNu2bbDxRn/10hO2tbXl5uaKxeLRo0cn\nJSUlJiZiGLZ9+3biSBXQL6rV8syZM9lsNpTKAwDHTgxTtbW14eHhTU1NbDZ7+fLlc+bMUT1S\nqb29PTIysqqqytHRcezYsZmZmQihdevWrVu3jrKINVNtbe2hQ4f4fL7yFXNz808//dTJyQnB\nztpq0nuSEeRZHSDJJIAkkwOGZRLU1NTs37+/oaEBIaSnp9fZ2clgMD788MOAgACkkmQvL6+N\nGzdaWFhAAT1gEonkwIEDT5488fT0VO4xI5fLDxw4UFRUpHxbcHDwqlWrqAtTU/VSLUOp3C/w\nhHA4kkql4eHh9fX1zs7O0dHRHh4e+vr6qm9gMpl+fn7l5eUlJSXPnj2j0WjBwcFr1qyhKmAN\nRZwPW1tba2lpuXr1ak9Pz66ururq6jt37rz11lvm5uaqN6QnTpxILLgH/fLGJKP/+3QF8jwA\nkGQSQJLJAcMyCSQSyZ49e+rr6+3t7aOiokJCQpqbm8vLy3///XdfX182m61M8pMnT7q6ul65\nEAv00SufE9JoNF9fXwaD0d3dbWdnFxISMnfuXKoj1Ty9V8tQKvcLNITDUVpaWkZGhoWFRWxs\nrLGxMfEij8dLS0sTCoV2dnY0Gk1XV3fOnDk2NjY2NjYhISE+Pj7UxjzMyWSyr7/+evz48QYG\nBsoXz549y+PxHB0d//73v7u5uTk6Os6bN09HR4fL5ebl5S1YsIDJZMJZQH034CQjOHOpzyDJ\nJIAkkwOGZapcvXo1Ozt7woQJsbGxZmZmN2/e/PHHHxFCW7duVZ6BDhN01eiVPSGdTnd1dV2w\nYIG/vz9x9iDorzdWy0wmE0rlPoKGcDhKTk6urq5eu3atm5sbQkggEMTGxv74449Pnz7Ny8sr\nKSmZO3cuhmEYhtnY2Li5uZmYmFAd8rCmUCgOHz58+/btx48fL1q0SPmtFhcXJ5VKIyIiVGft\nT5o0SSgUlpWV0Wg04gRkPT095clL4HUGmWQEee4DSDIJIMnkgGGZQt9++21zc/MXX3xhZmaW\nmpqqehoeQigtLc3KygoWbQ6GQqHocSp973vMgIHpY7UMpXJfwMdxGBEIBBUVFQihcePGIYR4\nPB6fz7948eLOnTtxHI+Li7t48aKFhcWjR4/Ky8upDlaTXLt2LScnx9DQUHXBCY7jz58/RwjZ\n2Nj0eP/ixYsRQlwul+Q4NRokmQSQZBJAkskBeaZQa2urubm5ra1tWlraiRMnVLvB9vb206dP\nE4eqI5XzCbOzs2traymNejiSy+U9duIQiUR/+9vf3n777VWrVu3YseP69evKwxtZLFZUVJSL\ni8vL5xOCvlOWygiqZbWChnC4kEgkERERv/zyC0Jo6dKlLi4u+fn5O3bsSE5O3rx5c3R0tJ2d\nHYvFIpYj9zgcFvTuX//6F0Jo586ddnZ2AoHg999/RwhhGEZM0nh5vGCxWAihFy9ekB6pBoMk\nkwCSTAJIMjkgz0OttLRU2asIBIIDBw4Qh8sjhCwsLNra2q5du3b8+HHVbhAh9N1330mlUmtr\na+V14PT515HJZDExMf/85z+VeRaLxZ9++mlWVpZUKsVxnM/nJyQkhIeHt7e3E29Q7Qmzs7Op\ni11TqZbKCKpltYKGcLhgsVhmZmY5OTmtra0sFis6Onrfvn179+5NSEhYvHgxcQM1KSlJKBRy\nOBwHBweq49UkxCJjHR0dgUAQERHxt7/9jdjaa+HChQihb775RiqVqr7/zp07CKEJEyZQEaym\ngiSTAJJMAkgyOSDPQ4rL5e7du/fo0aM4jhMZLigo+OGHH4ifzp49WyKRfPPNNz26wdTU1Fu3\nbrFYrBUrVqhejcPhTJw4kex/w7DX0dEhFArT09OVPeHZs2ebmpqcnZ3j4+OvXbt25MgRZ2fn\nkpKSqKgo5eeZ6Ak//PBDPz8/SsPXSKqlMvFbqJbVBdYQDiNMJjMrK8vIyGjSpEk0Gs3Kysra\n2lpHRwchhOP41atXv/vuO4RQaGiora0ttaFqFg6Hc/fu3fz8/MzMTLFY7ObmtmrVKgaD4eDg\nwOVyKyoqHj9+7O7ubmBggON4cnLyxYsXMQwLDQ1VPeoD9A6STAJIMgkgyeSAPA8pQ0NDLpdb\nUFDw7Nmzn376SSwWu7u779y5kzg9YsKECYWFhSKRyMrKatOmTXp6ehKJJDEx8fvvv0cIhYWF\nubi4UP0v0AAsFqvHGsuTJ0+amJgcPnx49OjRGIaZmpoGBASUlpaWlJQoFArlMmMGg0GcRw8G\nQLVURghBtawucA7hMCKTybZs2aKjo5OQkKC6dLugoODKlSuPHj3CMGzjxo1wUs0AnDt37sqV\nKwghZ2fngwcPEvsBIoRaW1sPHDhQVVVFo9FsbGxaW1vFYjFCaNOmTStXrqQyYg0ESSYBJJkE\nkGRyQJ6HVHt7+759+6qrqxFC7u7ukZGRygyj/5tkc3Pz5uZmqVSKYVhwcDAkuV9UD8bkcrkL\nFy585513VN8gEolCQkJ0dXXPnz+vq6tLVZxa43WlMoJqeXDgCeEwQqPRJBJJbm4ucYYm8WJL\nS0tMTExVVZWFhcVnn30Gu2wPQE1NTUJCgkQiQQh1dXVNnz6dw+EQP2KxWAEBAVKptLq6uqmp\nSSKRjBo16oMPPli0aBGlIWseSDIJIMkkgCSTA/I81MRicVJSEpFhZ2dnX19f1eqZSDIxobSp\nqUmhULi7u3/88ccwj7G/VPdi7ezsdHV1JXa8VNLX1//9998bGxs9PT1NTU2pilNrvLJURlAt\nDxo8IaSMQCDg8/leXl6qWw+3tLRs3rx56tSpkZGRyhdFIlFZWZmPjw/s+DwwL1682L9/P4vF\nmjJlyrlz54yMjA4ePNhjwoZEIuHz+To6OuPHj4c8DwAkmQSQZBJAkskBeR5qUqk0Ojq6u7u7\no6OjqqoqICAgLCzs5TTiON7e3q6np0fMuAMDo3xOOHbs2K+++oqYmkvAcXzLli0ikejw4cPO\nzs4UBqmJ+l4qI6iWBweeEFKjpaXl008/vXXrVkZGhkwms7a2JiYSsFismpqa7OzsefPmKc/q\n1dfXt7a2hs/3gOno6Pj6+gYEBLi7uxP36rKysqZOnaq8IY0QYjAYpqamJiYmkOeBgSSTAJJM\nAkgyOSDPQ0osFkskkvnz5wcEBPj7+xcWFhYUFNTV1Xl7eyuTmZuba2xszGKxmEwmsSUj6Jea\nmho6nU400srnhDU1NfX19V5eXso837hx4969e/r6+ps2bVJtFMEb9atURlAtDw40hNRgsVgz\nZszAMIw4PTMpKamxsdHCwoLNZo8ePTo1NZXJZCrXH4PB09HRIQZiZ2fn1xUfYJAgySSAJJMA\nkjx0iElJRMUGeR4Kzc3N8fHxx48fv3///syZM9lsNpPJnDVrlrIn9PT0pNFot2/fPnLkSH5+\n/rx586BLGYCGhobdu3c/ePDA19e3R0/46NGjgoICfX391tbW3377LTExESG0detWeDzYX1Aq\nkwkaQgqIxeKOjg4LCwsPD4+lS5eam5vX19fn5+ffuHGjpKTExsamvr6+qKho+fLlqo/IgbpA\n8UECSDIJIMkkgCSrS2Nj4//8z//ExcX9+uuvjY2NLi4uqhtsQJ7Vora2dvfu3WVlZcbGxkuX\nLrW3tyeO91DtCQsKCoqLiy9duoTj+OLFi6dMmUJ11BqJxWKVlZUVFhYWFRW93BNWV1dnZWVl\nZGQQ/y22bdsGK2D7C0plkkFDSCrVW3deXl6GhoYMBmPixImBgYFTp07t7u7mcrnEHtydnZ3j\nx4+3sbGhOmTtBMXHIAkEgoaGhlGjRvXyHkjy4L0xz5BkEkCSB08sFn/yyScVFRU4jnd3d1dU\nVGRlZc2YMcPQ0FD5HsjzIEml0vDw8Pr6emdn5+joaA8PD6IbJDCZTD8/v/Ly8pKSkmfPntFo\ntODg4DVr1lAYsEaj0Wg+Pj58Pv91PWF7e7uXl1dERMS7774Lp+H1C5TKlICGkDyvu3VHMDMz\n8/HxCQwMNDIyqqmp6ejoaG1tnTdvHoUBazdl8WFhYQFnLvWLRCIJCwtrbm6eNWtW7++EJA9G\nH/MMSSYBJHmQvvnmm+LiYgcHh3379v35z3/u7OwsKirKyckhqj3l2yDPg5GWlpaRkWFhYREb\nG2tsbEy8yOPx0tLShEKhnZ0dk8mcM2eOjY2NjY1NSEiIj48PtQFrujf2hE+ePJk6daq1tTXV\nkWoSKJWpAruMkkQqle7cuVMgEDg7O+/du7f3e584jp84cSI1NTUuLg5OL30dmUzW1dWlup54\nAJ4+ferk5KSukEaOXbt2VVdXnz17ls1mv/HNkOQB63ueIckkgCQPgEgkMjU1DQkJUSgUx44d\nU7Z/iYmJiYmJZmZm0dHRFhYWqn8E8jwwcXFxGRkZW7ZsWbFiBUJIIBCcOHGiuLiYTqfL5XI3\nN7dDhw7BfhuD0dHR8XLJIZfL//73v2dnZzs6On7xxRfK7kUsFmdnZy9ZsoT0MDUYlMoUgieE\nJHnjrTvVOdAYhnE4nLS0NBqNNn36dIpCHtbkcnlsbGxycrKvr+9gTno1MzNTY1QjB5PJzMrK\nMjIymjRp0hvfDEkesL7nGZJMAkhy72QymUKhUP0uEwqFu3fv5vP59fX18+fP9/DwUP6IOKvt\nwYMHLz8nhDwPjEAg4PF4dDrdzs4uOTn56NGjo0aNioiICA4Ovn//flVV1fTp0+EcvAETCAS7\ndu1iMBg97lYQzwm5XG55eXmP54SOjo4UBaupoFSmECzEJMnTp08RQkuWLCHuHgkEgvDw8MjI\nyF9++eXUqVP79+/v8ajWyMgIIfTkyRNKoh3+MAzT09OrrKyMjIx8/vw51eGMOL6+vhwO5+bN\nmzDFYEhBnoGmkMlksbGxsbGxcrlc+aK+vr6+vn56enpDQ4Oenl6PP7Ju3bp169aJRKLw8PC6\nujpy49VCS5cudXFxyc/P37FjR3Jy8ubNm6Ojo+3s7FgsFnGqhEKhoDpGjSQQCKqqquRyuVwu\nT0hIuH79eo830Ol0YjVmWVnZ/v37X7x4QUWY2gBKZQpBQ0iScePGIYR4PB6fz7948eLOnTtx\nHI+Li7t48aKFhcWjR4/Ky8uVb1YoFN999x1CqMdEGqBEo9HCwsJmz54NPSElGAxGYGBgQ0PD\nw4cPqY5Fm0GegaaQyWTt7e0lJSWqrR2Hw4mOjrayskIIZWZmqvaKBGVPmJubS2q42ojFYkVH\nR+/bt2/v3r0JCQmLFy8mJogmJSUJhUIOhwNbmwxAS0vL/v37IyMjaTTal19+aWxs/MqekJhK\n6unpWVZWdv/+fSoi1QZQKlMIpoySxM7Orri4uKio6MaNG3/88cfGjRv/8pe/jBo1isFgpKSk\ntLe3z58/XzlPpqKi4rvvvtPT0/vss8+UD81BDxiGeXt719bWFhQUFBYWDnLuKOiFQCB4/Pix\nlZWV6voTa2vr69evP3/+fPbs2RTGpk0gz+RQPQoPqAuDwfDz8/Px8bG2tq6vr9fT0yMmdyk3\n2Pj3v//d1NTk6enZI/Nubm5ubm7+/v4UBa5VaDSalZWVtbU1MWsRx/GrV68SRXNoaKitrS21\n4WmihISE4uJiJyenxYsXm5qaenh4ZGVl5eTkGBoaqs4dvXz5cmVlZUxMjKOj45w5cygMWKNB\nqUwhaAhJwmAw5s6d6+DgMGvWrJCQkEmTJilv3WVmZnI4nM2bNyvnRpuamtrZ2QUFBU2YMIHS\nqIe7PvaEQqEQBosBa2lp+fTTT2/dupWRkSGTyaytrYkks1ismpqa7OzsefPmDXJrH4Agz0NA\nLpdjGKbafvR+FJ4SjBgDw2Aw2Gw2sUlgSUnJrFmzevSEPB5PJBK93BOam5tTFLI2Kygo+Oqr\nr27duoVhWHBwcGBgINURaRiRSKSnp3fixAk2mx0TE8NisRBCJiYmyp5QoVC4ublhGHb9+vXL\nly+bmZmtXbsWjkAYDCiVKQQNIXn6devOysoKFn/3TiwWnz59OiEhQSQSvXjxQiwWv7InzMzM\n3L9/v4GBAWxbNzAikWjChAmjRo16+vRpXl5eUlJSY2OjhYUFm80ePXp0amoqk8mcPHky1WFq\nNoFA8Pz584ULF2IYBnlWC2JJG4/HU7YffTkKD8GIMWg6Ojr5+fk8Hq+6urrvPSFQr5aWlpiY\nmKqqKgsLi88++wyeWfWX6n5IgYGBqmMv0RPm5OQ8fPjwxo0bSUlJxBzRbdu2QWcyeFAqUwUa\nQmrArbtBEolEn3zyyePHjw0NDQMCAiZNmiQSiQQCwcs94cOHDwsLC52cnIhN7UC/tLS07Nmz\nJzc3d/v27evXrzc3N6+vr8/Pz79x40ZJSYmNjU19fX1RUdHy5ctV9/4C/UIk+datW/Pnz587\nd+7SpUshz4PX3t7+yy+/qLYffTwKD0aMQSLmjhYXF0NPSCEWi+Xj4+Pi4rJ9+3ZLS0uqw9E8\ncrn87t27PB6vs7Nz2rRpPU7FNDExmTVrVnV1NZ/Pf/Hiha6u7pYtWxYtWkRVtNoKSmUyQUNI\nAbh1N3jx8fFlZWXOzs6HDx/28PCYPHlyYGCgUCjk8Xg9esJJkyZNnjx57ty51AasoVSXT7BY\nrIkTJwYGBk6dOrW7u5vL5WZmZorF4s7OzvHjx8M8mQFTTTKDwWAwGJDnwWOxWD3aj4SEBD09\nvcOHD1tYWBgaGnp5eaFXHXsAI8bg9aUnnDhxIrHZDBgi+vr61tbW0HUPjPKz2t7e3tzcvGjR\noh434wwMDObNmzdr1iwvL6/NmzfD/SO1g1KZZNAQUgBu3Q2SXC6Pj49XKBRRUVHK2QJ0Ot3H\nxyc/P7+ysrJHTzh69GjqgtVUr1w+QTAzM/Px8QkMDDQyMqqpqeno6GhtbZ03bx6F0WqoXpKM\nIM+D1uORVN+PwoMRo79wHH/06FF+fn5bW9uYMWNoNFrvPeGYMWOgvAPDnHIAEQgEjY2NXl5e\nL3fXbDbb0tKSyWRSEqF2g1KZZNAQUgNu3Q2GTCa7dOkSg8HYtm2b6us0Go3FYuXk5LxuPSF4\nJZlM1tnZqZqrXpZPKLFYrEmTJi1btkwsFhP1NIfDITFqDTOwJCPI8+Co9oQdHR2enp7Ozs6q\nb+jleHTQRw0NDQcOHLhy5crDhw/v3Llz7949R0dHU1PTXnpCOLC7L0pLS01NTYk6QSAQ/OMf\n//Dw8IDeg0zKAaSoqAjmOZMPSmUywXIUoHl0dXUtLS1lMtmzZ896/IiolWfMmFFZWZmVlUVB\ncJpGLpfHxsbu27dP9SxH5XHSTU1NxInGr4Nh2MKFCxFCaWlpQx6rxhpkkhHkeRDgKLwh1dra\numfPnvLycg6Hs3r16mXLltXX10dERHC5XIQQi8WKiopycXF58OBBTEzMy8kHr8Plcvfu3Xv0\n6FEcxwUCQUREREFBwQ8//EB1XFoOx/EeR58rB5D09PR//vOfPX4KgNaAJ4RAI8lkssLCQj6f\nHxAQoDqz/9q1a+Xl5Z9//rmrq2tAQAB1AWqS/Pz8Hud2vHH5hKru7u7r16/LZLKgoCASo9Yw\ng0wygjwPAhyFN3RiY2MrKytdXFxiYmI8PT0bGhry8vJkMll2dvbEiRMtLS1VnxPa2NiMHz+e\n6pA1g6GhIZfLLSgoePbs2U8//SQWi93d3Xfu3MlgMKgOTRv060wa2A8JjATQEAKN5OjoyOVy\nS0tLKyoqpkyZQiy+SklJSUxMNDExeeedd2DvjT563VmOfVk+gRBSKBTHjx/n8/kuLi5+fn6k\nh68ZBplkBHkeNDgKbyiUlpaeO3fOzMwsJibG2Nj45s2bp06dwnF87ty5FRUVPXpCS0tLWDfY\nd0wmc9asWQUFBcXFxRKJxN3dPTIyspf5onB4Zt8N4Ewa2A8JaD1oCAdFJBKdOnXq+++/f/Dg\ngaGhIYwRpKHRaN7e3jwer6SkJDk5+eHDh5cvX87MzEQIbdu2beLEiVQHqEne2K70snyioqLi\nu+++09PT++yzz6Ac6cVgkowgz+oAt/nV7vbt20VFRR999JG9vX1OTk5cXByO41u3bt24ceO/\n//3vZ8+eqfaEdnZ2VMerYcRicVJSkkQiQQg5Ozv7+vq+7hMLh2f2y8DOpIH9kAYMSmWNAA3h\nwLW0tOzatevJkyft7e11dXV3795taWnx8PDoMWTDfbshwmKxAgICpFJpZWVlXV3d8+fP9fX1\nt27dCmcBDcAb25XX1dCmpqZ2dnZBQUFwIO8bDTjJCPKsJtATqoVAIBCJRBwOx8XF5cWLF0uX\nLn3+/HlkZKRUKl23bt3q1asRQs+ePaupqZFIJFlZWf7+/rBbT1/I5fL8/PyxY8cSH0tdXd3i\n4mIzMzNDQ8PCwsK6ujpvb+9XfmLh8Mx+GfCZNLAf0gD0sVRGUC1TDRrCgTt9+vTjx4/t7e1D\nQ0OnT59eXl5eVFTUY8iG+3b91a991RgMxrRp05YvXz59+vT58+dv2rSpx+mxoC/EYvHp06cT\nEhJEItGLFy967NH6xhrayspKefgHeJ1BJhlBntUEpn4NUktLy549e27duuXp6WliYjJt2jQa\njZacnJyXlzd16tTQ0FDibRcuXGCxWNu3bx87dqy3tze1MWuEzMzM6OjolJQU5QhAp9NnzpwZ\nEBDg7+9fWFhYUFDQo8DIzc01NjZmMplweGZ/DfhMGtBffSmVEVTLwwA0hAN34sQJY2PjI0eO\njB8/3tbWNiAggMvl8ng81Q863LfrFy6Xu3///pqaGm9vb6FQGBERUV1d3dnZOWPGjF7+FIPB\nGD169OjRo2G1/QCIRKJPPvnk8ePHhoaGAQEBkyZNEolEAoHgde0K1NADAEkeVmDq12AkJCQU\nFxc7OTktXrxYOeRmZGRUVla+/fbbxLzQ5OTk1NRUZ2fntWvXurq6UhqvBpDL5adOnTp//nxH\nR4ePj8+f/vQn1fN16XQ6sZ5Q2RN6enrSaLTbt28fOXIkPz9/3rx5xJcgtf8KjQNn0pCjL6Uy\ngmp5GICGcOB+/vnnpUuXKk8PIyYh9Pigw327foF91cgXHx9fVlbm7Ox8+PBhDw+PyZMnBwYG\nCoVCHo/3crsCNfTAQJKHG5j6NQAikUhPT+/EiRNsNjsmJobYyovQ1taWm5srFotHjx6dlJSU\nmJiIYdj27dthq56+iI+PT09PZ7FYYWFh69evHzVq1MvvUe0JiZ1mLl26hOP44sWLp0yZQn7M\n2kF1q+fW1tYFCxb02OpZ2ROam5v3aBdBH/WlVEYIQbVMOWgI+0csFp85c+bChQv5+fltbW2u\nrq6qT7df+UGH+3Z919991cAgyeXy+Ph4hUIRFRWlek/axz5Kn7gAABfZSURBVMcnPz+/srKy\nR7sCNfQAQJKBFhAKhbt37+bz+fX19YGBgcryjjB+/PgnT56UlJRkZmaWlZUhhIKDg2fPnk1R\nsJokJyfn/PnzDAbj0KFDqlMWX8ZkMv38/MrLy0tKSp49e0aj0YKDg9esWUNaqNpELBZ3dHTo\n6+vDmTRDYQClMkIIqmVqQUPYD2Kx+OOPPy4uLm5tba2pqens7Hz5lpLqB33ChAnW1tYUBqyJ\n+r6vGhg8mUx26dIlBoOxbds21ddpNBqLxcrJyemx1A0MACRZ7fq10hiohVwuv3v3Lo/H6+zs\nnDZtWo/V2jQazdfXl8FgdHd329nZhYSEwJ3+Pjp58mRDQ8PatWtfnhfA5/OfPHkilUo5HA7x\niq6u7pw5c2xsbGxsbEJCQnx8fEiPV+M1NzfHx8cfP378/v37xERQOJNGvaBU1lDQEPbDqVOn\nSkpK7OzsPvjgg6lTp5aVldXU1Lx8S4n4oFtYWMC8rwHo+75qYPDodHpmZmZbW5uPj4+JiYnq\nj1pbW2/fvj1jxozi4mILCws4yWPAIMnqNbCVxmCQVCfXNTc3L1q0qMfkOjqd7urqumDBAn9/\nf0tLS6ri1DjffvutVCrdsmWL6kzR0tLS2NjY8+fP37t37+bNm2VlZTNmzCBuGGEYZmNj4+bm\n1mMwAX1RW1u7e/fusrIyY2PjpUuX2tvb6+vrI9h/WK2gVNZQ0BD2CbF24tSpU8TSWFtbWzs7\nu9mzZ79u+GCxWA4ODhQGrKHEYrFEIpk/f35f9lWjNlStIZPJCgsL+Xx+QECAaoV37dq18vLy\nzz//3NXVNSAggLoAtQEkWY1gpTFVlEWzQCBobGz08vKConnwMjIy2traHB0d7e3tEUISieTs\n2bMnTpxoamqysrIiNqDi8/kVFRXw0HWQpFJpeHh4fX29s7NzdHS0h4cH0Q0SoCccPCiVNRo0\nhG+mXDvR0NAQFBSkXDsBw4caqc7imDlzJpvN7su+alRHrQ0cHR25XG5paWlFRcWUKVOIjSJS\nUlISExNNTEzeeecdGxsbqmPUeJBkNerXSmM42Eq9lN96RUVF8K2nLg8fPiwqKsJx/MmTJ3Fx\ncYWFhWw2e8eOHR988IG/v7+Pj096enpNTc1bb701ZswYqoPVYGlpaRkZGRYWFrGxscphgcfj\npaWlCYVCOzs7fX192Op5wKBU1nTQEL6Zcu3EixcvZsyYobo0Fj7oavG6WRywrxoJaDSat7c3\nj8crKSlJTk5++PDh5cuXMzMzEULbtm2DSYxqAUlWrz6uNIaDrYYCfOupl4ODQ3Nz89OnT4uK\nioglmv7+/pGRkco9Ldls9qNHj+rr6+3t7eGTPBjJycnV1dVr164l9g4VCASxsbE//vjj06dP\n8/LySkpK5s6dC1s9DxiUypoOGsI3631jYjg9bJB6n8UB+6qRgMViBQQESKXSysrKurq658+f\n6+vrb926ddGiRVSHpj0gyQMml8vz8/PHjh2rrCH6uNIYDrYaIlDeqRGGYZ6enk5OTmw2e/r0\n6e+//35QUJDqkR4ymezcuXMSiSQoKGjcuHEUhqrpBAIBj8ej0+l2dnbJyclHjx4dNWpURERE\ncHDw/fv3q6qqpk+fbmpqCls9DwyUypoOw3Gc6hg0g1gsDg8PFwqF8+fPDw0N7fH9JxaLs7Oz\nlyxZQlV4GkEmkyGEekz1TElJOXnypIWFRVxcnLIV5PF4PB7PzMxs0aJFdDodx/GsrCw+n+/j\n42Nra0t+5COERCKprq7GcdzOzk61IgFqBEnul8zMzAsXLjQ0NPQYeKVSKUKoq6srMjKyqqoq\nICAgLCxMdaWxi4uLsbFxSUnJpEmTKIteqym/E/ft2+fp6Ul1OForMTExMTGRw+GcOXNGR0eH\n6nA0mEQiOXDgwJMnTxBCRkZG69evDwoKwjAMx/G//vWvQqHw8OHDcNjgIEGprLmgIeyH3j/o\noHcymSw2NhYhtHfvXjqdrnw9Li4uIyNjy5YtK1asQAgJBIITJ04UFxfT6XS5XO7m5nbo0CFI\nNQAjjVwu//rrr2/evIkQ8vHxWbNmzSvn1ra3tyt7wo8++ohOp9++fTs+Pt7a2vrIkSOw+9SQ\ngvJuqKWkpJw6dQrH8fDwcG9vb6rD0Xhyufzhw4dyuXzy5MnKG9DXr19PSEjgcDjffvutanEC\nBgZKZQ0FU0b7AebJDIZUKk1NTa2srJw5c6bqNg99nMVBYeSaQiaTdXZ29jjLTiAQiEQi5TFW\nAGiK+Pj49PR0FosVFha2fv161U35VcFK4wF7ecTo73ABk+uGTldX19dff33p0iWE0MaNGxcu\nXEh1RNqARqNZWVlZW1sTz1pxHL969ep3332HEAoNDYX5R2oBpbKGgieE/QY3PwZMIpE0NDTY\n2NjU19ebmZkRt+JgFodaEA9gm5qaDh48aGhoSLzY0tLy8ccfd3V1xcbGwsGvQIPk5OTExMQw\nGIzo6Oi+/O/f0dERExNTVFSEEKLRaBs3bly5cuXQh6nBXh4xYLgYJuRy+Y0bNy5fvtzS0sJk\nMkNDQ/39/akOSgsVFBRcuXLl0aNHGIZt3Lhx1apVVEekVaBU1jiwcX+/cTic6Ojo8PDw9PR0\nb29vWDvRdywWy8bGpra2ds+ePQ4ODsTcURaLFR0d/fIsjqSkJKFQyOFw4JiaNyJquwcPHhga\nGopEImVDeP78eZFI5ObmZm5uTm2E2qS0tNTJyYn4ehMIBAkJCbt27YKzDdTr+vXrCKE1a9a8\n3A3y+XyhUGhubm5nZ6d80cDA4ODBg7DSuI9eOWLAcDFM0On0urq6lpYWHx+fDRs2wPYbQ6Gl\npeXkyZN1dXUWFhZ//etfYTaB2kGprHHgCeEAwdqJAVM+EvT09OyxnpBAzOI4f/48juOffvqp\nn58fJXFqCtXa7tChQ0SVLBKJTE1Ng4ODdXV1jx07pqenR3WYWoLL5R48eNDPzy8sLEwoFEZE\nRIjF4qCgoO3bt1MdmlZZv359e3v70aNHidO6CaWlpWfOnCkrKyN+6+Hh8cknnxgYGFAUo6Z6\necSA4WIYEgqF0Ar2l0AgkEqlqreKeiESicrKynx8fODh1dCBUlmDjNA1hLB2gkIMBsPPz6+4\nuJjH41VXV8+aNUt1b+KCgoKvvvrq1q1bGIYFBwcHBgZSGOrw98puUHk+bH19fWBgoPJ8WDB4\nhoaGXC63oKDg2bNnP/30k1gsdnd337lzZ4+9c8EgZWRktLW1OTo6Eg2hRCI5e/bsiRMnmpqa\nrKysJk2aJBKJ+Hx+RUXF3LlzqQ5Wk7w8YsBwMTzBpIM36lHItbS07Nmz59atW56enmw2+41/\nXF9f39raGrrBIQWlsgYZiQ0h8Y2YnJzs6+tLDCX9HUfAIL2uJ2xpaYmJiamqqrKwsPjss8/g\nZNjeKWs7HR2dmJgY5bMU5fmwnZ2d06ZNc3FxefnPCoVCKDgGgNjChNi8RCKRuLu7R0ZGvm4r\nS0jyYDx8+LCoqAjH8SdPnsTFxRUWFrLZ7B07dnzwwQf+/v4+Pj7p6ek1NTVvvfXWmDFjqA5W\nM7xyxOjLcIHgwwyGmZcLuYSEhOLiYicnp8WLF8MdOgD6i/bmt2gX5TdifX29SCQiXiTWTtja\n2sLaCdKwWKyoqCgXF5cHDx7ExMTI5XKEkImJSXR09J49e77++muY09875ScZIdTd3Z2VlaX8\nETF3n5hulJGRQeRWVWZm5o4dO4hlWqB3crn8wYMHqlPrOzo6WlpaiF9zOJwe27oqQZIHY/Hi\nxQsXLpRIJBcuXDh37lxTU5O/v/9XX30VEBBAvMHa2ppoXf744w8qA9Ucrxsx3jhcIPgwg2Gm\nRyEnEolwHM/Pzx8zZsy+ffvgsBkABmBkPSHsMVtmwoQJIpFIT0/vxIkTbDY7JiYGzokeIjKZ\nLCMj4/r16w8ePGhraxs3bhyDwXjlc0KYxdEXqp/k9957r7i4uLi4uLu7WzndS7nvs0AgaGxs\n9PLyUk3pw4cPCwsLnZyc3NzcKPoXaIbMzMzo6OiUlBTVvbN1dXWLi4vNzMwMDQ0LCwvr6uq8\nvb1f/sRCkgcDwzBPT08nJyc2mz19+vT3338/KChIdXyWyWTnzp2TSCRBQUHjxo2jMFSN0PuI\n0ftwgeDDDIaTHoWcrq4uzHkeIqWlpaampsod1P7xj394eHhAv62tRlBDCGsnqFJbWxseHn7r\n1q3q6uqqqqoHDx7cuXPHycnJzMys9/WE4JV6fJJ9fHwcHByysrJe1xMWFRX1OAto0qRJkydP\nhsVXvZDL5adOnTp//nxHR4ePj8+f/vQn5WGYdDp95syZAQEB/v7+xPF3PXrC3NxcY2PjqVOn\nQpIHydLSctq0aa6uri/P5P/xxx/z8/M5HM77778PZ0n3ri8jRi/DBYIRAwwbLxdysERiiHC5\n3P3799fU1Hh7exM7qFVXV3d2ds6YMYPq0MCQGCkN4YDXTsA4Mkitra179uypra21tLRcvXq1\np6dnV1dXdXX1nTt33nrrLXNzc9We0MbGZvz48VSHPNylpaX9+uuvqrvIWFpa9t4Tvnw+7OjR\noyn7B2iC3k9Fp9PpdDpd9Uj0uro6T09PGo12+/btI0eO5Ofnz5s3z9LSkqr4tVtKSgpxlvTH\nH38MI8Yb9XHE6P04aRgxAOVeWcgpP7ft7e3Nzc2LFi3qcVs5MzNz//79BgYGTk5OFAWukfq7\ngxpUy5puRDSEqmsnFAqFkZFRj+8/GEeGztmzZ3k8nqOj49///nc3NzdHR8d58+bp6Ohwudy8\nvLwFCxYwmUyiJ7S0tIRdZPrC3t5eKpVu2rRJdXPtAfSE4HVycnLOnz/PYDAOHTrk4eHRyztV\ne0Jip5lLly7hOL548WJYBDsUurq6vv7660uXLiGENm7cuHDhQqoj0gB9HzFguADD1usKOQRL\nJIZGv3ZQg2pZC2h/QziYtRMwjgxeXFycVCqNiIhQ3bBn0qRJQqGwrKyMRqMR/yEYDEYfzw4C\nGIZNmTLl5SNS+tITTpw4Ec62eqOTJ082NDSsXbv25TsUfD7/yZMnUqlUmX8mk+nn51deXl5S\nUvLs2TMajRYcHLxmzRrSo9Zycrk8OTk5Njb28ePHTCYzLCwsKCiI6qA0Q79GDBguwDDU92Xz\nsERiMORyeX5+/tixY4nsicXipKQkiUSCEHJ2dvb19X3dHSKolrWAljeEg1w7AePIIOE4fu7c\nOYRQSEhIj3U+JiYm6enpEokEThpUo957wjFjxsAz2L749ttvpVLpli1bVGeKlpaWxsbGnj9/\n/t69ezdv3iwrK5sxYwaxxaiuru6cOXNsbGxsbGxCQkJ8fHyoi11r0Wi0u3fvFhUV+fj47N69\nG8oOteilJ4ThAgwT/V02D0skBublTdT6uIMagmpZK2h5Qzj4tRMwjgwGhmF37txpb2+fOnVq\njyM92tvbb968yWQyly1bRlV4WqmXnhDOh+2jAZyKjmGYjY2Nm5ubiYkJpbFrMw8PD39//8WL\nF8NKFTV63XciDBdgmFDLsnnQi9dtotbHHdSIeaRQLWs6LW8IYe0E5aRSaWFh4R9//DFnzhzV\nh4S//vpraWmpm5ubn58fheFppdd9WYK+g1PRhydoBYcCjBhgOBvwsnmY89xHvWyi1scd1F63\n0wzQIFreEMLaCTKJRKJTp059//33xNQOIoEODg5cLreiouLx48fu7u4GBgY4jicnJ1+8eBHD\nsNDQUDMzM6oD10LKT7ibmxtMrusvBweH5ubmp0+fFhUVEbsQ+/v7R0ZGOjs7E29gs9mPHj2q\nr6+3t7eHNfRAC8CIAYatgS2bhznPfdTHTdRgBzWth+E4TnUMlOFyuV9++WV3d/fq1as3bNhA\nvCgWi7Ozs5csWUJtbBqnpaUlLCysqalJ+UpQUND7779Po9FaW1sPHDhQVVVFo9FsbGxaW1vF\nYjFCaNOmTStXrqQuZO1HnPZBdRSaithx29DQcObMmdbW1qo/kslkmzdvbmlpiYiI8PLyoipC\nANQLRgygcV5ZyIG+Cw8PLy4uXrdu3bp163r8iM/nC4VCc3Nz5bPZjo6OmJiYoqIihBCNRtu4\ncSNUcVpjRDeECIYS9Tl27Fh6erq9vf369es7Ojq+//57kUgUEBAQFhaGYZhEIvnhhx9u3rzZ\n1dWFEBo1atSWLVtgsijQUImJiYmJiRwO58yZMzo6OlSHAwAAIxcUcoOxfv369vb2o0ePEmvm\nCaWlpWfOnCkrKyN+6+Hh8cknnxgYGCCEcBzPysri8/k+Pj62traUxAyGwkhvCBEMJWqyceNG\nHR2dY8eO6evrI4RaW1v37dv3xx9/KHtChJBEIuHz+To6OuPHj4clmkBDpaSknDp1Csfx8PBw\nb29vqsMBAICRDgq5AduxYwefzw8NDV2wYAFCSCKRnD9/PikpCcdxKyurcePGFRYWdnV1TZ48\n+eDBg1QHC4aQlq8h7AtYO6EWP//889KlS5WT+Fks1qxZs7hcLo/HU25LxWAwTE1NTUxMoBsE\nmghORQcAgGEICrnBgE3UAIInhEqwdmIAxGLxhQsXysrKRo8eXV1dvXLlyuXLl6u+4ZXPCQHQ\nOHK5/MaNG5cvX25paWEymaGhof7+/lQHBQAA4H9BITcAOI4fP348LS2N+C2GYX5+fiEhIWw2\nW/meyMhIHo8XEhIC54RpMdgo9j9gEOkvsVj8/9u7f9em1jgOwCfNjdIoSJFaupWoi0tFoZB2\nUkQoXd2Eojiqi4uQRhGs4qbQ/6CuDoKbBNOlHYwIFf8BrQd/cGqquNi0eocDub1t7aW5jcf0\nPM94DinfbPn0fd/Pe+3atbhF5s2bN0EQVKvVsbGxtXdLHDhwYHJyslwuz8zMFItFF3bTobLZ\n7IcPH5aWlorF4vj4uApigD+NH3ItyGQyV65cGR4e3qJELf6Nt+42aXYZK4S06P79+9VqtVAo\nnD9//uvXr9PT0/V6/cyZM1evXl23Evjly5e5ubnR0dGkRoUdEYahKAhAeihRSwmBkG2Loujg\nwYMXLlxY2yLz+fPniYmJMAw3zYQAAHQQJWrpoVSG7QnD8Pr16wsLC58+fRodHV13FWytVpuf\nn4+iaGhoSCYEAOg4StTSxhlCtiefz+fz+UqlEgTBnj171r7q6em5e/duqVSK31onBADoIErU\n0qkr6QHoMHHqi09SVavV1dXVTd9WKpVarZbQjAAAbNvaErUHDx5IgynhDCGtqNfrpVLpVycG\n6/X63Nzc2NhYUuMBANAaJWppIxDSoq0zIQAA8OezZZQWrd0dOjU15T8LAADQcQRCWicTAgBA\nRxMI+V+0yAAAQOdyhpAdoEUGAAA6kUBIsLKy8v3793379jWfvHv3bnl5uVAoJDgVAADQbraM\npt3Kysq9e/fK5fK3b9/iJ0tLSzdv3rxx48bCwkKyswEAAG0lEKZanAafP3/+8ePHKIrihw8f\nPoyiaGBg4NChQ8mOBwAAtJVAmF7NNLh///7JycmBgYEoin7+/PnixYu+vr5yubx3796kZwQA\nANror6QHIBnr0mChUAjDsFQqnTx5squr6+zZs93d3UnPCAAAtJcVwjRqpsFcLnf79u24PCaf\nz+fz+Uqlsri4mM1mf/XZMAx/46QAAEAbCYSp00yDQRA0Go3Z2dn4efNGwSAInj17trq6uvGz\nMzMzly9ffvLkye8cGAAAaBOBMF3W7hS9dOlSLpd79OjR9PR0/LaZCd++fTs1NbXxSpLFxcUf\nP340+0gBAICOlr1161bSM/CbrDs3WCwWjx49Ojs7+/r160ajMTg4GARBd3f3yMhIrVZ79epV\nFEVDQ0OZTKb5F44dOzY4OHj69OnkvgQAALBjBMIUefr06ePHj5stMkEQ9Pf3b5EJ5+fnN2bC\n3t7exL4AAACwowTCFDl8+PDy8vLFixfjNBhrIRMCAAC7g0CYIplM5vjx4z09Peue/2cmPHLk\nSFw2AwAA7CYCIUGwZSbs6+s7depU0gMCAAA7L7OxSZLUevny5Z07dxqNxrlz58bHx5MeBwAA\naC8rhPxj03VCAABgt3IPIf9y4sSJiYmJXC6Xy+WSngUAAGgvW0bZxPv37/v7+5OeAgAAaC+B\nEAAAIKVsGQUAAEgpgRAAACClBEIAAICUEggBAABSSiAEAABIKYEQAAAgpf4GTyRUMBnkmzQA\nAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAAFoCAIAAADIFpV9AAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdeVxU1f/H8TMzzLDLKi4oq+SG+5ImiJb7gopbLnzdc61MK00zNTP7Vt9s\n01Ixy9IU01BzNzWxnzsqmrkrIriD7DAwc39/TN/5khtoF+7AvJ6PHo/unDlzzxuaDvOZe++5\nKkmSBAAAAADA+qiVDgAAAAAAUAYFIQAAAABYKQpCAAAAALBSFIQAAAAAYKUoCAEAAADASlEQ\nAgAAAICVslE6gMJSUlLi4uKUTgEAAAAACrD2gvDixYtLliwJCQlROggAAAAAlKo1a9ZYe0Eo\nhKhVq9bLL7+sdAoAAAAAKFVbtmzhGkIAAAAAsFIUhAAAAABgpSzulNE7d+78+OOPcXFxaWlp\nLi4udevWHT9+vL29velZo9EYExOzbdu227dve3p6dujQISIiQq3+X1lbZAcAAAAAgIllVUoJ\nCQmvvvpqbGxsnTp1IiIinn322WvXrmVnZ5s7REVFffvtt/7+/iNGjAgKClq+fPnixYsL76HI\nDgAAAABQfNeuXVOpVD179lQ6SImwoCOERqPxo48+cnZ2nj17dqVKlR7skJiYuGnTprCwsMmT\nJwshunbtqtVqt2zZ0rlzZ19f3+J0AAAAAKCUI0eOLFiw4Lfffrt+/bpWq/Xz8+vYsePEiRO9\nvb2Vjma9LOgI4ZEjR65evTpkyJBKlSrl5OTo9fr7OsTGxkqS1L17d3NLeHi4JEl79+4tZgcA\nAAAApU+SpClTpjRr1uy7777z8vIaOHBgjx49cnNzP/7442eeeeann35SOuDjeHl5xcbGzps3\nT+kgJcKCjhAePXpUpVI5ODi8+uqrly9fVqlUderUGTVqVEBAgKnDhQsXNBpNYGCg+SX+/v46\nne7ixYvF7AAAAACg9M2ZM+fDDz+sXr36Tz/91Lx5c3P7d999N3r06BdffHHHjh1t27ZVMOFj\n6HS6cnzfcgs6QpicnKzRaN5///2qVau+8cYbQ4YMuXz58rRp027cuGHqkJKS4uLiotFozC9R\nqVRubm53794tZgeTV155pcd/LVu2rOR/MgAAAMB6XblyZc6cOTqdbvPmzYWrQSHEkCFDvvji\nC4PBMHbsWKPRWPipAwcO9OvXr2rVqra2tlWqVOnQoUN0dHThDvv37+/du3flypV1Ol3VqlUH\nDx585syZwh2WLFnSs2dPf39/e3t7V1fXsLCwNWvWFO5w/PhxlUo1dOjQxMTEgQMHenp62tvb\nN2vWbPPmzYW7PfQawiJ3XlZYUEGYk5NTUFBQt27dKVOmhIaGRkRETJ06NTs7e+3ataYOeXl5\nWq32vlfpdLq8vLxidjDJysrK+K/c3NyS+WkAAAAACCHEsmXLCgoKXnzxxeDg4AefHTFihJ+f\n39mzZ3/77Tdz49dff92qVasNGzaEhIRMnjy5a9eut27dWrhwobnDkiVLQkJCYmNju3TpMmnS\npNDQ0DVr1jRt2vTgwYPmPqNHj75x40bbtm0nTpzYu3fvM2fO9OvX78MPP7wvQGJiYrNmzc6e\nPduvX7+uXbseO3ase/fusbGxj/+hirlzy2dBp4za2toKIQofKW7YsKGbm9upU6fMHXJycu57\nlV6vt7OzK2YHk6VLl5q3Dx8+/Msvv8j0EwAAAAC43759+4QQHTt2fOizarW6Xbt2UVFRv//+\nu6kWiI+PnzBhgqur6759+2rXrm3uee3aNdPGn3/+OX78+Pbt2//888/mG9TFx8e3atXqpZde\nOnHihKklISGhevXq5pdnZ2eHhYXNmjVr1KhRbm5u5vZdu3a9/fbb7777rkqlEkL88MMPkZGR\nH330UWho6GN+qGLu3PJZ0BFCDw8PIcR9vz5XV9fMzEzTtru7e1pamsFgMD8rSVJqaqrphcXp\nAAAAAKCUXb9+XQjh4+PzqA6mp5KTk00Pv/rqK4PBMGvWrMLVoBCiWrVqpo2FCxfm5+dPmzYt\nKyvrzn9VrVr1hRdeiI+PT0hIMHUzFWySJKWlpd28eTM9Pb1Xr145OTn3Hf3z8fGZOXOmqRoU\nQgwaNMjFxeXQoUOP/6GKuXPLZ0FHCIOCgvbs2XPnzh1ziyRJd+/edXV1NT0MDAw8cuTIpUuX\ngoKCTC2XL1/W6/XmVWSK7AAAAACglEmSJIQwV1yPYu5w4MABIUTnzp0f1XP//v1CiLCwsIc+\ne/36ddM9544dOzZr1qzdu3dnZGQU7pCUlFT4YaNGjWxs/lcWqVSqatWqnT9//vFpi7lzy2dB\nBWHLli2XLVu2devW1q1bq9VqIcS+ffvS09Off/55U4fQ0NDo6OiNGzdOmjTJ1LJx40aVSmU+\nmFtkBwAAAAClrEqVKmfOnElISGjVqtVDO1y9etXUzfTw3r17QojH3JzQtGbkhg0bzOeLFmY6\nrhgXFxcSEmJnZzd27NgGDRqY1p7cuXPnf/7zn/tWGDEffzKzsbEpfNbhg4q/c8tnQQWhp6fn\niy+++MMPP0ybNq1Fixa3b9/esmWLp6dn7969TR18fHy6dOmyadOm/Pz84ODg06dPx8bGdurU\nyc/Pr5gdAAAAAJSykJCQ3bt3b9u2beDAgQ8+azQad+7cKYQwl4umCi0pKalGjRoP3aGLi4sQ\nonLlys2aNXvUoJ988klOTs6GDRvatWtnbjx69Og/+DlKaeelzIKuIRRC9OvX7+WXX87Kyvr+\n++/37NkTGhr60Ucfmf57m4waNepf//rXxYsXly5deu7cucjIyNGjRxfeQ5EdAAAAAJSmoUOH\najSaVatW/fHHHw8+u3Tp0itXrtSsWdN8CmiLFi2EEFu2bHnUDk0dVq1a9ZhBr1y5Yu5ptmvX\nridOX+o7L22SdTt06NA777yjdAoAAACgPJsxY4YQonr16ocOHSrcvnz5cltbW41G8+uvv5ob\n4+PjNRqNu7v7n3/+WbhzYmKiaePkyZM2NjZarbbwqyRJysjIWLVqlWk7MjJSCLFu3TrzsytW\nrDBVQPPnzze1HDt2TAgxZMiQ+9I2aNBAo9EUHlcI0aNHD3NLcXYuSdK8efM6duy4adOmon49\niuncubMFnTIKAAAAoFyaNWtWVlbWJ5988uyzzz777LN169bV6/UHDhw4f/68vb39jz/+aF43\nRAhRr169L774YsKECQ0bNgwPDw8KCrp79+6RI0ecnZ13794thAgODl60aNHo0aPbtWvXoUOH\nRo0aGQyGM2fO7Nq1y8/Pr3///kKICRMmrFy5csCAAf379/f19T1+/PjmzZv79u0ry+3ji7nz\n48ePb9u2rVevXv98xJJDQQgAAACgZKnV6v/85z/9+/dfsGDB3r17jx07ptVq/fz8Jk+ePHHi\nRPP9JMzGjh1bv379jz/+eM+ePTExMZ6envXr1x85cqS5w/Dhwxs3bvzJJ5/s2bNn9+7djo6O\nVatWjYyMNFWDQojmzZvv3LnznXfeiYmJEUI0bdp0+/btycnJshSExdz5uXPntFpthw4d/vmI\nJUclSZLSGZRkujH97NmzlQ4CAAAAoPxISUmpWLHimDFjFixYoHSWR+rSpYtlLSoDAAAAAOXA\n7t27bW1t3377baWDFIGCEAAAAABk1rt37+zsbPPNFS0WBSEAAAAAWCkKQgAAAACwUhSEAAAA\nAGClKAgBAAAAwEpREAIAAAAok65du6ZSqXr27Kl0kDKMghAAAACAYnJzc1WFaDQaT0/PF154\nYeXKlUpHswo2SgcAAAAAYO10Ot2wYcOEEPn5+RcuXNi1a9euXbuOHDnyySefPOZVXl5esbGx\nHh4epRWzHKIgBAAAAKAwe3v7r7/+2vxw69atXbt2/fTTT1955RU/P79HvUqn04WEhJRGvvKL\nU0YBAAAAWJZOnTo1btxYkqTDhw8LIY4fP65SqYYOHXrx4sUXX3zRy8tLrVYfOHDgwWsIzT0v\nXLgQERHh7u5eoUKFLl26nDt3Tghx/fr1oUOHVqpUyd7ePiQk5OjRo4UHXbJkSc+ePf39/e3t\n7V1dXcPCwtasWVO4w0NjLFiwQKVShYeH3/cjSJL0zDPPODg4pKamltSvSQ4cIQQAAABgcSRJ\nEkKoVCpzS2Ji4rPPPuvp6dmpU6esrCw7O7tHvfbq1astW7asUaPGwIEDz5w5s2XLluPHj+/d\nu7dt27aenp69e/e+evXqpk2b2rdvf+nSJVdXV9OrRo8e3bx587Zt21aqVOnWrVu//PJLv379\n/v3vf7/55puFd35fjFatWjVr1mzz5s2JiYnVq1c3d9u9e/f58+eHDBni5uYm869GVhSEAAAA\nACzLli1bjh07plKpmjVrZm7ctWvXhAkTPv30U41GY2q5du3aQ1++e/fu2bNnv/POO6aHo0aN\nioqKat68+b/+9a/58+ebiswZM2a89957ixYtmjJliqlbQkJC4YouOzs7LCxs1qxZo0aNKlzU\nPRhj3Lhxw4YNW7p06axZs8zdFi1aJIQYPXr0P/1dlDBOGQUAAACgsJycnDFjxowZM2bEiBFh\nYWFdu3Y1Go0TJ0709fU19/H09Pz3v/9tLsMew9fXd/r06eaHQ4cONW3MmzfPfMjR1Hj8+HFz\nN1M1KElSWlrazZs309PTe/XqlZOTExsbW3jnD8bo37+/u7t7VFSUwWAwtdy6dSsmJqZevXot\nW7Z8ot9D6eMIIQAAAACF6fV60yE1tVrt6urapk2bESNGDBo0qHCfhg0bOjg4FGdvjRo1Klyw\neXt7CyHq1q1rb29/X2PhY4zHjh2bNWvW7t27MzIyCu8tKSnp8THs7e2HDh36ySefbNq0yXQx\n4bJly/R6/ZgxY4qTVlkUhAAAAAAU5uLicu/evcf3qVq1avH3VvihjY3Noxrz8/NND+Pi4kJC\nQuzs7MaOHdugQQMXFxeNRrNz587//Oc/eXl5RcYYO3bs/PnzFy1aFB4eLknSkiVLHB0dBw8e\nXMzACqIgBAAAAFAGFF5gRnaffPJJTk7Ohg0b2rVrZ268bxnSx8SoUaNGu3bttm7dmpCQcO7c\nuYsXL44YMaJChQolF1guXEMIAAAAwNpduXJFCNGiRYvCjbt27Sr+HsaNG2c0GqOiosrKcjIm\nFIQAAAAArF1AQIAQYseOHeaWlStXPlFB2L1792rVqi1evHjDhg2NGzcuvD6qJaMgBAAAAGDt\nJkyYoNFoBgwYMGTIkHfeeSc8PPxf//pX3759i78HjUbz0ksv3bp1Kz8/v6wcHhQUhAAAAADQ\nvHnznTt3Nm/ePCYm5rPPPsvKytq+fbtpydDiGz58uBDC2dl54MCBJRNTfiwqAwAAAEAxdnZ2\nkiQ9vk/Dhg0f2qdatWr3tT+054PdhBA2Njb3NbZp02bv3r33dSu8UuijYpjFx8cLIQYNGuTk\n5PSYbhaFI4QAAAAAIIMPP/xQCDF+/HilgzwBjhACAAAAwNOLi4vbunXrgQMH9uzZ079//+Dg\nYKUTPQEKQgAAAAB4ev/3f/83ffp0V1fXAQMGLFy4UOk4T4aCEAAAAACe3oQJEyZMmKB0iqfE\nNYQAAAAAYKUoCAEAAADASlEQAgAAAICVkucawic9Zfb111/38/OTZWgAAAAAwNORpyBcsGDB\nE/UfPHgwBSEAAAAAKEu2VUZjYmJatWpVZLe8vLxq1arJNSgAAAAA4KnJVhC6uLh4enoW2S03\nN1euEQEo6M99CWf+L0HpFOVK99da2Wg1SqcAAADWRZ6CcP/+/XXq1ClOT1tb2/379wcHB8sy\nLgClXDxybfuiQ0qnKFe6TGhJQQgAAEqZPAVhixYtitlTpVIVvzMAi/VsRN0azSz99O/021nL\nJm9+pkX1zuPKwLSjtZXtlA0AAIBi4vMHgKdR0ce1oo+r0imKcPdamhCigqdjrVa+SmcBAACw\nRCVSEEqStHPnzoMHD6akpBiNxsJPffrppyUxIgAAAADgSclfEGZkZHTu3Pn3339/6LMUhAAA\nAABgIdSy73HmzJn79+9///33T58+LYT45Zdffvvttw4dOjRr1uzKlSuyDwcAAAAAeDryF4Q/\n//xzv3793nrrLX9/fyGEh4dH69atN2/eLEnSl19+KftwAAAAAICnI39BmJSUFBoaKoRQq9VC\niPz8fCGERqN58cUX16xZI/twAAAAAICnI39B6OjoaCoCdTqdnZ1dcnKyqb1ChQo3btyQfTgA\nAAAAwNORvyAMCAg4e/asabtBgwarVq2SJKmgoGD16tXVqln6XcsAAAAAwHrIXxB26NBh7dq1\npoOEI0eOjImJqVGjRlBQ0K+//jps2DDZhwMAAAAAPB35C8KpU6f++uuvptsPjhw58uOPP7az\ns3Nycpo1a9bUqVNlHw4AAAAA8HTkvw+hi4uLi4uL+eHkyZMnT54s+ygAAAAAgH9I/iOEAAAA\nAIAyQf4jhGZGozEjI0OSpMKNrq6uJTciAAAAAKD45C8IjUbjokWLPv/880uXLun1+vueva8+\nBAAAAAAoRf6C8L333ps5c6aXl1f37t09PT1l3z8ASyDl54iCXKVTFCUv3V6Xo1NlSjmpSkcp\nmsrOVahUSqcAAADWRf6CcMmSJY0bN46NjXVwcJB95wAsRO6eD3J3vqt0iiKohZgRLoQQ92Yp\nnKQ4XOdkqnSOSqcAAADWRf6C8ObNmxMnTqQaBMo3jXuANqid0imKkJ+VKZIP5EluTs80UTpL\nMag1SicAAABWR/6CsEaNGmlpaf9wJ2fPnn3zzTclSZo7d269evXM7UajMSYmZtu2bbdv3/b0\n9OzQoUNERIRarS5+BwCy0DUZomsyROkURbj750n1t/VvG+tVHrlD6SwAAACWSP5KaeLEicuX\nL09PT3/qPRiNxq+++srW1vbBp6Kior799lt/f/8RI0YEBQUtX7588eLFT9QBAAAAAGAizxHC\nmJgY87aXl1f16tXr168/duzYwMBAG5u/DdGzZ88i97Zp06abN2926dJl3bp1hdsTExM3bdoU\nFhZmutN9165dtVrtli1bOnfu7OvrW5wOAAAAAAAzeQrCXr16Pdg4derUBxuLvO1EamrqihUr\nIiMjH7xlRWxsrCRJ3bt3N7eEh4fv2rVr7969kZGRxekAAAAAADCTpyBcs2aNLPsRQkRFRVWq\nVKlz587r16+/76kLFy5oNJrAwEBzi7+/v06nu3jxYjE7AAAAAADM5CkI+/Tpk5WV5ej4TxdM\nP3HixL59++bNm/fQZWBSUlJcXFw0mv8txKdSqdzc3O7evVvMDiZz585NSkoybbu4uOh0un8Y\nGwAAAADKItlWGa1YsaJpSc/u3bu7ubk9xR4KCgq+/vrrsLCwOnXqPLRDXl6eVqu9r1Gn0+Xl\n5RWzg8nJkycvXLhg2q5Zs2aNGjWeIi0AAAAAlHWyFYRvvPHG2rVrhwwZotVq27ZtGxER0bNn\nz0qVKhV/D+vWrUtNTR02bNijOtja2ubk5NzXqNfr7ezsitnBZOnSpQaDwbQdHx+/Ywfr0QMA\nAACwRrLddmL27NmnTp06d+7cu+++m5qaOmbMmKpVq4aGhs6fPz8hIaHIl6enp0dHR7dr1y43\nN/f69evXr1/PyMgQQty9e/f69eumpWjc3d3T0tLMtZwQQpKk1NRUDw8P08MiO5g4OjpW+K+H\n3twCAAAAAKyBzDemDwoKmjp16tSpUxMTE9etW7du3brXX3990qRJTZo0iYiIiIiIqFWr1kNf\nmJ6ertfrN2zYsGHDhsLtn3zyiRAiOjrazs4uMDDwyJEjly5dCgoKMj17+fJlvV5vXkWmyA4A\nACtxbOu5rV8dVDpFuTLm655uVZyVTgEAkJnMBaFZ9erVX3311VdfffX27dsxMTFr166dNWvW\n9OnTa9eu/eGHH3br1u2+/h4eHlOmTCnccvjw4V27dg0YMMDHx8e07ktoaGh0dPTGjRsnTZpk\n6rNx40aVShUaGmp6WGQHAICVyM3U30lMUzpF0XLS89Qata3j/RfAWyBDgVHpCAAA+ZVUQWhW\nsWLFUaNGjRo1Ki0tbePGjevWrfvzzz8fLAjt7e1btWpVuOXWrVtCiODg4Hr16plafHx8unTp\nsmnTpvz8/ODg4NOnT8fGxnbq1MnPz6+YHQAAVqJln+CWfYKVTlEEQ4FxQs1P/BtVmbzqRaWz\nAACsVIkXhGYuLi6DBw8ePHjwP9nJqFGjPDw8tm/ffvDgQQ8Pj8jIyIiIiCfqAAAAAAAwKb2C\n8En16tWrV69e9zWq1eo+ffr06dPnUa8qsgMAAAAAwET+gvC+ezyYqVQqe3t7X1/fjh07vv76\n656enrIPDQAAAAAoPtluO2HWrVu3wMDAvLw8Ly+vkJCQkJCQihUr5uXlBQQENGvW7N69e//+\n978bNmyYlJQk+9AAAAAAgOKTvyB87bXXEhMTf/jhh4SEhJ07d+7cufPq1avLly9PTEycNWvW\n5cuXV6xYcf369ZkzZ8o+NAAAAACg+OQ/ZXTq1KlDhw4dNGiQuUWlUkVGRh46dOitt97as2fP\nwIEDd+3atW3bNtmHRikzGo0ZGRn29vam+4IAAAAAKFvkLwjj4uKGDBnyYHv9+vWXLVtm2m7R\nosXy5ctlH7o8SUlJyczMVDrFI2VlZZ08efLWrVtHjhxp0qSJs7Nz7dq1q1SponSuR1Kr1dWq\nVVM6BQAAAGBZ5C8ItVrt8ePHH2w/duyYVvvXjXfz8vIcHR1lH7o8uXDhwsWLF5VO8XC5ubkn\nT568evWqi4uLXq8/evRoQUHB6tWrO3fuXLFiRaXTPZxWq2XtWQAAAOA+8heEXbp0+frrrxs1\najR06FCNRiOEMBgM33zzzaJFiwYMGGDqc+jQIW4W/3h+fn7u7u5Kp3i4uLi4goKCkJCQrKys\ns2fPVqxY0dvbOyUlRaPRNG7c2PQf3dKo1fJfLgsAAACUdfIXhB999NGBAwdGjhw5derUoKAg\nSZIuXLhw586dwMDADz/8UAiRm5t79erVgQMHyj50eeLl5eXl5aV0ioc7duxY3bp1K1SokJGR\ncePGDXd390qVKnl5eR05ciQiIsKSTxwFAAAAUJj8BaG3t/exY8c+/vjj9evXx8fHCyECAgLG\njh37+uuvV6hQQQhhZ2e3e/du2cdF6cjPzy8oKHhwFRmVSqXT6XJychRJBQBA2WJIOpq7599K\npyhX7NrN1FSqq3QKoOyRvyAUQri4uMyZM2fOnDklsXMoS6vVajQavV5vZ2d331N6vd7e3l6R\nVAAAlC3G9GR9/BqlU5Qrti3HKR0BKJNKpCDEP3f7QlzWnatKp3g456yLl8/EO1StKnJyKmQn\n6FLuFdjcSU9Pb1bdPefy/isJlni1nkpt49u8m9IpAAD4i02NF1ymWOjqcYWlf9FMZevk/FIZ\nOLdL5cxFK8DTkK0gzM3NLU63Bw8r4aGyd77rcnm90ikeroUQLXRC3BFCCOEphPjv9g0hLDSy\nKNA4iOZZSqcAAOAvKq2Dyj1A6RTFoNIItVZdJqICeCqyFYTFPFdQkiS5RizfHGu1z7Oz3NMv\n9Xp9SkqKOudO9dxTyfluOe513dzcLPlWIpIN30RYL0OBUekIAAAAFkrOU0bt7OxatGhhmXcd\nKHM824wXYrzSKR7HR4icC7/lLmnj0zrSuednSscBHqkg36B0BAAAAAslW0EYGBh48eLFc+fO\nDR06dPjw4YGBgXLtGRZLq9XmCmFjw5WosCwf9V3ZYXTzBu1qFG7MzytY+uovjTo+82yvOkoF\nAwAAsDSyrf9x/vz5Xbt2tW3bdv78+UFBQc8///yKFSu4CQGA0vdc33pRL288sfOCuSU/r+Dr\nMTG3rtyrG+anXC4AAACLI1tBqFKp2rZt+8MPPyQnJ3/55ZdpaWmDBw+uWrXq+PHj4+Li5BoF\nAIrUql+9Ae+2i3p548XDSUIIIYklEzamJKW/uryvk7uD0ukAAAAsiPx3CHB1dR03btzRo0eP\nHTs2ePDgH3/8sUmTJh9//LHsAwHAozzXt96Ad9tt/HSfECI3S387IXXiD/1dvCx33SMAAABF\nlODVXzVq1GjYsOGBAweOHDmSmZlZcgMBgMnOpUcOb/jT/NDRxV4IYcwv0Gg1C0etMzXa6DQv\nfRnuUslJmYgAIIQQIiUp/XTsFaVTFK1mXoGxQH9yVbzSQYpWr20AczvwFEqkIPz999+XLl0a\nHR2dlZXVsmXLqKio/v37l8RAAFDYMy2q2znqTNvGAuPRVdeFEC4OaTWCvKvV9jK1a2zUjm6W\ne08XAFbi2pnbK6ZvVzpF0aZ31+cWZJeJqK+t7E9BCDwFOQvCGzduLF++/Jtvvjl79qyXl9eY\nMWNGjBhRu3ZtGYcAgMfwqVvJp24l/ZFlqqDuS16PNd2BUGur+T365MjPu9fxvaR28dZUqqt0\nTAAQ1WpVHDS3g9IpiuHgbLVaVSaiVvJzUzoCUCbJVhD26NFj8+bNkiR16NBh7ty54eHhWq1W\nrp0DQPHlxa24teq99GuvDXznebFeaGzUA95td/Dfs6s3i3Yeup6CEJbGWGBUOgIU4O5dIeTF\n+kqnKFrSQaFSq8pEVABPR7aCcMOGDXZ2dj179vT29t6/f//+/fsf2o3VZQCUtJVHRj6nfXdM\nuyUGhwamlqY1/6zZLHrd0b6te9R5RtlwwAPS72QrHQEAYL3kPGU0Nzd31apVj+9DQQigpD0T\n8oxfx71ifT/j9lFCCFtNRtbqfzn3W9q07bP2FeyUTgeIvSuO12zpUynA3fRQEpJp49SeSxob\nTe0QX+WiAQCsjmwF4eHDh+XaFQA8HcOtPw03TrVqKMTNi1Kz4flbZwshXGxu2jafIDS2dSof\nFwUi/5RGW7u70HBOOxRz/cLdzV/uf21Ff08fV3Nj3OazyyZvHv5pNwWDAQCskGwFYdOmTeXa\nFYQQO5ce+eO3y0qnKEJF3dnOHiJu67kj0WuUzlIEW3vtmEU9lU6BEpd/er0+/qf/PS7I+evf\nl/cWJPyfaVul1miqN1e7VCv9eChNxrsXC5LilE7xcD17Ci/99c2vvNlpQsvgakjzsJYAACAA\nSURBVPHO7g5nv8s5tDxuzOT6QVWO6+OPKx3w4bS1Oqt0LOEIAOVNCd6HEP/EjYt3z/yeoHSK\nImR73BBtRUpS+pl4S49q72yrdASUBrs2U+3aTDVt6+PXZK4aLIQoEPYalcp55DaVg4ei6VCq\n8s/vyP55rNIpHqmhEA3rCrF76cAWQgghTov+TYU4L7LOKxzsMVzeOKfyDFI6BUqbVpOn/u9Z\nzbAqUk5q/vmdSqcoV2x8nlW7+iid4iHkKQi//fbbTp06Va5cucieBoPh+++/79q1a8WKFWUZ\nurzqN+P5iClhSqcoQvKeTeL/FlSv7fWfbyconaUIKpVK6QgoVfr4NVmrI8Vzs0TstAypmp29\nW8aSds6jdlITWg+bgDCHiEVKp7jfvZuZyWfvmLYlIZJP32jltSwly/2KdoB71QqmdpVaFdC4\nqq2DxZ3VrHLyUjoCSonh+gm1SzXThKlSCZX010K4xsybUtZdTaU6iqZDKTGmXMpa0U/pFOWK\n44AVuoYDlU7xEPIUhMOGDdu9e3dxCsL8/Pxhw4bt37+fgvDxdPZanb3FfRq4jymhWqNycGGh\nDlgQ/YlVWdFDHft+k2FbTxU7TRJqp6EbMr/pmhHV0XnUDpU9N6qyChqv2hovi7sRbuIvZ34/\nedL8MONuRiuvZUKIo4nP2d79a85XqVWVe7StUIMvL6CYvN8/L0g85Dzq18LfAhjTrmUsaqut\n3c2h+3wFs6HUqCp423f+QOkURcvb95mUfceuwxylgxRNU6Wh0hEeTrZTRk+fPm1nV3RVoNfr\n5RoRAB4qd/cHjn2X6RoOEH/+9clbpXNyGr4pa3kv/amfbZsNVzYerFnTbrWadquVu3uetman\nEyccl0/eIIKFWq26m3hv4or+HpnbVDpHbZ0eSseEtXPouTDzhz4ZX4c5jd5lajFVg5qKNR3K\nQoUAWaidK9u1maJ0iqLpj/8o5d4rE1EtlmwF4fjx4+XaFQD8ExUmPmRNDpXOyWnkjtIPAzxI\n0memLmy7beeI/u9GisNCpVY17PjM7tdf7VRnjfPQDUqnA4SwsXUa/FPmD30yFz0vhCSEZKoG\nnSLXChuuyQfKG3kKwi+++OKJ+vv7+8syLgAUSS+xLiIsy5/GIYmnD730whLnJhFZh4UQole3\nhMy86Jj44V21zSspHQ/WTCrINd78w7Rt//y07M1TNLfOaNQGtZuPfbsZhpunhBBCqDSVg4VG\np2BOADKSpyCcMMHS1xRBybGV7iodAXicAuGgdATgb45tORcc+ZmDw4rs77oJIXSa3Jz14ytE\nrnZcW+GPPZcq+TdROiCsV378mqzoIUL637KiKpUQQiq4sCv9yxb/bVI7Df5JG9xLkYQAZKdW\nOgDKGknSH18pDPmFmgymf+Wf32FMT1YkFACUCQVXD+ZsmTqw8776dsuF0aD2rCmEsLfJ1NXq\nakg8GN58R8vKa3K2vW3MvKl0UlgpXeNItw+MG4ybvzr9nXbCBbVHDaOkMkgaTcVa6rEXPj/+\nzQ6HX90+MFANAuUJBSGekLEgZ8eszBX9/l4TirzD32R+291476pSuQDA8kmZN40pl8z/CGPB\nX+15af9rv3tB5GUomxNWbsC77Tzds+580kryrGs0avINOmMF/7vzQ6tVN/Sa2lrpdABkxo3p\n8YQ0WucxezMXP5+5vKeqyl+rNeYd/iY7ZpzTwFU2Pi0e/2oAsGbaOuHaOuGm7bzD3+hjxgkh\n9JKD6tpRp5Hbbao1UzQd8Bcb/c1+df5zJcn3x5geI5/ZLIRY8HNEj1q3+tT8WKPvKmyrKB0Q\ngJw4Qognpnau7PTSLmPKZbv4eUIIe+MNUzWordtT6WgAUDaYvkdz6PuDECLP4GTbclxmVIeC\na4eVzgVrV5BvuJOYdm/1BKNbnUrj19vY2kpCEpJk7+rsOXajwaHavXVv3klMMxqMSicFIBuO\nEOIJGG6fNd5LNG3btZuVv26CEMLZcM6u3Uyhc8o/v1MIobKxtfEPVTIlAFi2vMNLs2PGOw2K\nVgd2NLXYd5wrCvSZSzs5v7RLU6WBsvFgzQ5v+HP5m1t1Ns3yDTrp3z8IIYSvEEKcP5Q4u/MK\ntaqDjaZA/+6SlxaEN+r0jLJRAciFghBPIC92fv75QndyM+QKIYRQ6Y9+p49bbmpTae2cxx9Q\n2TorkA8AygLD1YNOg6K1dcINeXnmRvuuHwmdQ8HVgxSEUFDL3sEtewebttPvZH86OFqSNAaj\nTbXaFV/9vp+Tm72y8QCUhBIsCA0Gg0ajKbn9o/Q5RHxt3s47/E3WujFCCIOw01aq7RS5jpvV\nAkBxOPRe/NB2+/azSzkJ8CimatC9inO+Qas32Dm62n8WGU1NCJRLMheEKSkpn3322S+//HL2\n7NmsrCxHR8eaNWt279791VdfdXNzk3csKMh09UtuvdftT8y7Z9PQK+Vy5vcR1IQALIcx7Zrh\n1hmlUxTBmJ8vhDBKatMp9xbOxu85lZa7eloFczU4+useN6cIIcS4Jb0WjvqZmhAol+QsCE+c\nONGxY8ebN28KIZydnb29vdPT0+Pi4uLi4pYsWbJ169Z69erJOByUYl5TNCNJLYQwqLROI3dk\nLGqTufJFp0HRQqNVOiAAiPw/f8n+eazSKYrFRXsjM6q90imK5vLGOZVnkNIpUBpWz/7Vo1qF\n0Qt72Oj+OtVLZ68du7jXwpHrYj7cO3heR2XjAZCXbAVhTk5O7969b9++PWnSpHHjxgUGBpra\nz58/v3Dhws8++6xPnz7x8fG2thxBKuMM+Tmb3/hrTdGkDaY2tYu38+g9mYufzz+3VVu7u7IB\nAUAIoanayK7NFKVTFEEySjuWHHat4tw8vLbSWYqmsudMH2sxeG4HW0etWvO3tehtHbQvf9en\nIM+gVCoAJUS2gnD16tUXL15csGDBuHHjCrcHBQXNnz/f39//1VdfXbNmzeDBg+UaEcrQaF1n\n3n2wWe3iXeGNs6UfBwAeysbnWRufZ5VOUQRDgXHrK5/UsKsW1vlFpbMA/2NfodDX9yohVH9t\n2mg1NlqWhwDKG9nuQ7hhwwY/P78xY8Y89NkJEyb4+PisX79eruFgOQpUTkpHAAAAJUIlhEqt\nKrofgDJLtoIwPj7+hRdeUKsfvkO1Wt2uXbvjx4/LNRwsh0GwxgAAAABQJslWEN68edPX1/cx\nHXx8fG7duiXXcAAAAACAf0i2gjArK8ve/nHLEDs6OmZkZMg1HAAAAADgH5KtIJQkSZY+AAAA\nAIDSIed9CNesWXPmzCPvAnzy5EkZxwIAAAAA/ENyFoSHDh06dOiQjDsEAAAAgEeR8nOFZFQ6\nRdkmW0F4+PBhuXYFAAAAAEWScu8JY4HSKco22QrCpk2byrUrAAAAAHiovH2fSkaDXevJ97Xr\nT/5kSNhv3+0/iqQqu2RbVAZWq6CAw/QAAAAoJZpqTXN3zMrd9X7hRn18dNaqwZpqHKN6YnJe\nQ/igvLy8P//8Mz09vX79+q6uriU6FpRSkGdQOgIAAGXMjfg/Lqxfq3SKogWqCmxE7r457yod\npGi1+w/yeCZQ6RQoDTZ+IU4jtmZ+01lIf30K1Z/8KWv1vxx7L9E1HKBstrJIzoJwy5Yt3377\nrU6nGzVqVOvWrbdv3z58+PCkpCQhhE6nmzFjxttvv/2Yl1+7dm3Pnj1Hjx69fv26jY1N9erV\ne/bs+eyzzxbuYzQaY2Jitm3bdvv2bU9Pzw4dOkRERKjV6uJ3wD9kKDBOD100eF7H4DYBhdvT\nb2d9PmRNzzdaB7cNeNRrAQCAScbp/6ubOVPpFMWgFULklomoaedrURBaDxu/Vk7Dt2R+01lI\nkpCkrFWDHXsv0TWOVDpXmSRbQfjbb7917drVdKfB6OjoTZs2RUREODg49OjRQ6/Xx8bGzpgx\no1atWn369HnUHqKjo/ft29egQYNGjRrl5eXt27dv7ty5AwYMGDDgf4V+VFTUL7/88txzz4WH\nh58+fXr58uV37twZM2ZM8TvgH9LYqLtMaLl43IaXFoZX+G9j+u2s+YOjPau51Grlq2Q4AADK\niCrNW6bmTVE6RblSsX4jpSOUK9f+vD1/0GqlU9yvotP10ICtKvHXvc0ddFV83c4JIZJTKqd9\nPl+I+ab2o9dCrqQ8o1jKRxg0t0PjzhaXSshYEM6fP9/R0fHHH3/08/MbPXp0ZGSkr6/v77//\nbjpT9PLly40aNVq4cOFjCsKwsLARI0a4uLiYHg4YMGDixIlr1qzp0aOHg4ODECIxMXHTpk1h\nYWGTJ08WQnTt2lWr1W7ZsqVz586+vr7F6QBZtB7UUK1RLx634cXRzrWFkIzGTyPXeFSt8NLC\ncBudRul0AACUAU4BwU4BHyidAngkG63as7qL0inu56TNz7PxNheEdjbXTRsqrV1evre5m71H\nRU9Hiwtv66hVOsLDyVYQHj16tH///t26dRNCzJ49u3379m+99Zb5ukF/f/8BAwasWrXqMXto\n0qRJ4YdOTk4tWrTYsGHDjRs3AgIChBCxsbGSJHXv3t3cJzw8fNeuXXv37o2MjCxOB8gl5MX6\nQoh9XyytHSJSr2e4V3Ee/XUPrW3JXpIKAACA0lG5hsdb6y3z8/Nrpn/pT/6UtWqwPs9eq86t\n6poc0GOQ3QszTE+1VS5cWSTbJ/gbN24EBv513rapfvPx8SncwdfXNy0t7Yn2mZ6eLoRwc3Mz\nPbxw4YJGozGPIoTw9/fX6XQXL14sZgf8Q6tm7vzjt8vmh25ajRCiIN9449LddzsuMzXaOmjf\n+GmQrYOFfgUCwEr8uS9h3+p4pVMUwXSdxY2LKUte3qh0lqL1m/G8i5ej0ikAQIj/VoOOvZdk\nr5igFXl/XU8ohLkmRPHJVhAWFBRotX/VADqdTghhY/O3ndvY2Jj+8hVTUlLS77//3rhxY3NB\nmJKS4uLiotH876RElUrl5uZ29+7dYnYwWbJkye3bt03brDfzREIHNHjm2eqm7ZyMvCNRZ03b\nTbrU8q1XybStc9Dq7KkGASjs9tV7cZvPKp2iWDJTsstE1B6TQ4SgIASgvPw/YrJWDXbsE6Vr\nNFismCBMa8wM25T5TRehdXjw/oR4PAs9xy87O3vevHlarbbwejB5eXnmmtNMp9Pl5eUVs4PJ\nr7/+euHCBdN2zZo1a9SoIXP68su7VkXvWhWFEOl3sj8dHO3n5SSEcPawX/td3MjPu9dvx9Je\nACxF8/DadUL9lE5RrrhVcVY6AgAIIYSkz3Ls/72uft/CjTb+oU4jthZcPaBUqrJLzoJwzZo1\nZ86cEUJkZ2cLIb744ouYmBjzsydPnizmfnJzc2fPnn3z5s1Zs2ZVrlzZ3G5ra5uTk3NfZ71e\nb2dnV8wOJu+//765RLx06dKhQ4eKGQwmpmrQvYpzaL+GYo+wd7brP/OFqFc2UhMCsBx2Tjo7\nJ53SKQAA8tM1GvTQdhu/VjZ+rUo5TDkgZ0F46NChwsXV9u3bn2IneXl5c+bMuXDhwowZM+rW\nrVv4KXd394SEBIPBYD4pVJKk1NTU4ODgYnYwMV3iaJKZmfkUIa2Z0WCcP2i1Z3WX0Qt7JO/Z\nZGps1b+eocAQ9crGST/292tQRdmEAAAAsBJ5BidbdbbSKco22QrCw4cP//Od6PX699577/Tp\n02+99VbDhg3vezYwMPDIkSOXLl0KCgoytVy+fFmv15tXkSmyQxmSvXZU3qEopVM83CsNhRAi\nY4YwnTwUpI1JnaKqJ0S97kKsfC11paLhHkFl5+I6+57SKcoV492LhpTLRfdTVvJlIYStSM0/\nv1PpKEXTBrYVam7cAgDAEzBIGklSKZ2ibJOtIGzatOk/3EN+fv77779/8uTJN998s3nz5g92\nCA0NjY6O3rhx46RJk0wtGzduVKlUoaGhxexQhqi9amuD2imdogg5GXkJ8TcqeDpWrempdJai\naFkIQWZ5cctzd76rdIoimNaMqqg5mRnVXuEoxeA6J1Ol440KAABKlQUtKrNo0aK4uLhnnnkm\nMTFx9erV5vbWrVtXqVJFCOHj49OlS5dNmzbl5+cHBwefPn06Nja2U6dOfn5+pp5FdihD7EIn\nidBJSqcowq245KVfrmw3oukzI9sonQWlzcYvxK7NFKVTFCEnIy925YnKgR5l4upWlYbleQEA\nQGmTsyDcsmWLWq3u2LGjEOLWrVvDhw8v/Gz9+vXff//9x7z85s2bQohz586dO3eucHtAQICp\nIBRCjBo1ysPDY/v27QcPHvTw8IiMjIyIiCjcucgOAGShDWqvDbL0w27Z19K2vrWkqW+tZzt3\nUzoLAACAJZKtIDxx4kTXrl2/+uor08Ps7OxNmzYV7rBp06bevXs3adLkUXuYM2dOkaOo1eo+\nffr06dPnqTsAAAAAAExkKwiXLl1asWLFYcOGFW5ctmxZp06dhBAFBQX169f/7rvvHlMQAihD\n4ndePLn7otIpipCbpRdCXIm/sWL60yx6XMr6z3zBRseiMgAAPAHJqHSCsk+2gnDPnj3t27fX\n6f520ydXV1fzjQS7d+++d+9euYYDoKyrp27sWxWvdIpiuXP13r6rZWCN2T7T21IQAgDwRCQj\nFeE/JVtBePny5d69ez+mg5+fX+H71AMo054f1qRF7+Ci+6HYdPYsKgMAQNG2LDiQm6nvNaX1\nfe2xP564cuJG5AcdFUlVdslWEObm5mq1//s04+vrm5GRYW9vb25xcHDIycmRazgAynJwsXNw\nsVM6BQAAsDr1ng/8dHB0Qb6h79ttzY2//XB87ft7Rn/VQ8FgZZRsBaG7u3tSUpL5oUqlcnJy\nKtzh2rVrHh4ecg0HAAAAwApVq11x4g/9PouMFkLUF0IIsW9V/Nr394z8onvdMH9ls5VFarl2\n1KhRo23bthkfcRav0Wjctm1bo0aN5BoOAAAAgHWqVrviq9/3OxRz2miUhBDR7+4a+UX3+i+U\ngdsOWyDZjhD2799/+PDh8+fPnzx58oPPzp8///z589OmTZNrOAAAAABW5eofN2M+3CtJfz2s\n6OtqWmXUK8B993dxu7+LM7W3/Vfj+u0oDotLtoJw8ODBCxYseP311//4449x48Y1bNjQxsam\noKDg+PHjCxcuXLZsWdOmTQcNGiTXcAAAAACsimsl59ohfpLxr4rwyonrwiCEEPaO2lrP+apU\nQgghVKJSoLtiEcsg2QpCrVa7fv367t27L1u2bNmyZSqVysHBITs7W5IkIUTjxo3Xr19feNUZ\nAAAAACi+Cp4O7Uc1M23vWxV/as/l1m1UQogbF1N86lXuM73tXzUhnoRs1xAKIby9vQ8ePBgV\nFdWxY8eqVauqVKqqVat27Nhx6dKlBw4cqFq1qoxjAQAAALBO+1bFm64bNFWApusJf5q723w2\nKYpPtiOEJlqtdsSIESNGjHjos8eOHWNdGQAAAABP7cC6P6Lf3fXSwvDgNgFn1wnx3zVmPh0c\nbeugDZ8UonTAMkbOI4SPkpaW9tVXXzVp0qRx48alMBwAAACA8srBxW5cVERwm4DCjdVqV3xt\nZX/P6i5KpSq7ZD5CeJ99+/ZFRUWtWbMmOzvb0dGxb9++JTocAAAAgPLtUbeX8K7p6V3Ts5TD\nlAMlUhDevn17+fLlUVFRZ86cEUJ07Nhx9OjRnTp1sre3L4nhAAAAAFghtaY0Tngs3+T8DRqN\nxu3bt/fr169atWqvv/66g4PD9OnThRBjxozp1asX1SAAAAAAObGs6D8mW0H47rvvBgQEdOzY\ncc+ePePGjTtx4sTRo0dHjhwp1/4BAAAAAPKS7ZTRmTNn1qhRY926dd26deN+gwAAAEDZZbx3\nNXfXXKVTFM1Jm6pRG7LXjVY6SNF0zUbYVG+udIqHkK0g9PT0vHDhwrRp086dOxcZGcldBwEA\nAIAySsq6nXdwsdIpimanEUKIMhHVJiBMlO+CMCkp6eeff16yZMlbb701ffr0jh07Dhs2rH79\n+nLtHwAAAEDpUHvVrvDKEaVTFO2bib/cTU5/I3qg0kGKpnbzVzrCw8lWEOp0uv79+/fv3//S\npUtLly799ttv+/bt6+joKIRITk6WaxQAAAAAJU2lddB4N1E6RdFu5Zy6eS+1TES1WPKv0xoQ\nEDB37tyrV6+uX7++bdu2Go1m/PjxAQEBb7755uHDh2UfDgAAAADwdErqxh0ajSY8PHzjxo0J\nCQlz5syRJOmjjz5q3twSz5oFAAAAAOtU4ndy9Pb2fvvtty9durR9+/a+ffuW9HAAAAAAgGKS\n7RrCx1OpVO3bt2/fvn3pDFcOHPz59IUj15ROUYT0O9lCiD/3XVkxfbvSWYqgs7PpO+N5pVMA\nAAAAlqWUCkI8qfOHE39ffVLpFMWSdPZO0tk7Sqcogr2zLQUhAABAMRXoDfduZiqdomgF+UZJ\nEncS05QOUjRnDwdbB0u8WzsFoYXqMr5l64ENlU5RfqjVKqUjAAAAlBnJ5+7M6/G90imKa0ab\nJUpHKNrw+V2bhddWOsVDUBBaKHfvCu7eFZROAQAAAGvk4GLXuEtNpVOUK25VLfSzPQUhAAAA\ngL/xrO4y6ovuSqdAaSjxVUYBAAAAAJaJghAAAAAArBQFIQAAAABYKQpCAAAAALBSFIQAAAAA\nYKUoCAEAAADASlEQAgAAAICVoiAEAAAAACtFQQgAAAAAVoqCEAAAAACsFAUhAAAAAFgpCkIA\nAAAAsFIUhAAAAABgpSgIAQAAAMBKURACAAAAgJWiIAQAAAAAK0VBCAAAAABWioIQAAAAAKwU\nBSEAAAAAWCkKQgAAAACwUhSEAAAAAGClKAgBAAAAwEpREAIAAACAlaIgBAAAAAArRUEIAAAA\nAFaKghAAAAAArBQFIQAAAABYKRulA8jMaDTGxMRs27bt9u3bnp6eHTp0iIiIUKupewEAAADg\nfuWtUoqKivr222/9/f1HjBgRFBS0fPnyxYsXKx0KAAAAACxRuTpCmJiYuGnTprCwsMmTJwsh\nunbtqtVqt2zZ0rlzZ19fX6XTAQAAAIBlKVdHCGNjYyVJ6t69u7klPDxckqS9e/cqmAoAAAAA\nLFO5KggvXLig0WgCAwPNLf7+/jqd7uLFiwqmAgAAAADLVK5OGU1JSXFxcdFoNOYWlUrl5uZ2\n9+7dwt02bNiQmppq2s7Ozi7ViAAAAABgMcpVQZiXl6fVau9r1Ol0eXl5hVtWrlx54cIF03bN\nmjVr1KhRSvkAAAAAwJKUq4LQ1tY2Jyfnvka9Xm9nZ1e4ZeLEiZmZmabtW7dunT17tpTyAQAA\nAIAlKVcFobu7e0JCgsFgMJ81KklSampqcHBw4W4tWrQwbx8+fJiCEAAAAIB1KleLygQGBhoM\nhkuXLplbLl++rNfrCy8zAwAAAAAwKVcFYWhoqEql2rhxo7ll48aNKpUqNDRUwVQAAAAAYJnK\n1SmjPj4+Xbp02bRpU35+fnBw8OnTp2NjYzt16uTn56d0NAAAAACwOOWqIBRCjBo1ysPDY/v2\n7QcPHvTw8IiMjIyIiFA6FAAAAABYovJWEKrV6j59+vTp00fpIAAAAABg6crVNYQAAAAAgOIr\nb0cIn0J+fn56errSKQAAAACgVEmSpJIkSekYSjp9+vS8efOUTgEAAAAACrD2ghAAAAAArBbX\nEAIAAACAlaIgBAAAAAArRUEIAAAAAFaKghAAAAAArBQFIQAAAABYKQpCAAAAALBSFIQAAAAA\nYKUoCAEAAADASlEQAgAAAICVoiAEAAAAACtFQYincebMGUmSTNvXrl2bOXNmenq6spGAwniL\nAsA/wSwKWA/NrFmzlM6AMiYuLu6dd95JTk5u0aJFUlLS9OnTL1++nJOT06xZM6WjAULwFkXZ\ncefOna+//vq77747dOiQk5OTt7e30okAIZhFUaYwkf5zNkoHQNkTFBTk6+u7Z8+e3Nzcs2fP\npqam1q9ff/jw4UrnAv7CWxRlwr1799544427d+8KIZKTk48fP965c+fRo0er1Zy8A4Uxi6Ks\nYCKVBUcI8cRsbW1btWp17NixU6dO5ebm1q9ff8aMGba2tkrnAv7CWxRlwuLFi//444/AwMCX\nX365adOm58+fj4+Pv3HjRosWLVQqldLpYNWYRVFWMJHKgiOEeBpZWVn37t0zbbu5uel0OmXz\nAPfhLQrLd/ToUS8vr7lz5zo4OAghGjZs+Pbbb+/Zs0cI8dprr/FRBspiFkWZwEQqC44Q4mno\ndLpTp055eno6OTkdP36cb2JgaXiLwvKtW7euW7duDRo0MD20s7Nr1apVXFzciRMneMdCccyi\nKBOYSGVBQYgnlpqampub265duzZt2rRu3fr48ePHjh277/+6gwcPVqhQgdNLoAjeorBYqamp\nUVFRP/zww5EjR9LT04ODg2vWrGl+lo8ysBDMorBkTKSyoyDEE0hJSfnss88WLFiwb9++5557\nzsXFxXSZgflPRfPmzdVq9e7duz/++OMjR4688MILNjaclozSw1sUliw1NXXSpEmnTp1KS0tL\nTk7OyclJS0tr37594cUPCn+U8ff3r169uoKBYYWYRWHhmEhLAgUhiuv69etTpkw5d+5chQoV\nunXrFhgYaDpdu/CfCtMF6KtWrZIkqUuXLg0bNlQ6NawIb1FYuK+//vr06dMBAQETJkxo1KjR\nuXPnkpOT796927x588JfYJs+ylSuXLlt27YKpoUVYhaF5WMiLQkq811HgcfQ6/UTJ068du1a\nrVq13nrrLTc3t/s6ZGVlzZs3Lz4+XgihVquHDBnSq1cvJZLCSvEWhSW7c+eOh4fH0KFDtVrt\n559/bvqQnZKSMn369KSkpHbt2r388suc1ARlMYvCwjGRlhyOEKJYtm/fvmvXrsqVK3/wwQcV\nKlQwNZ44cWL79u1JSUkBAQG2trZt27b18fHx8fEZNWpUy5YtlQ0Ma8NbFBYrKSlpypQpiYmJ\nt27d6ty5s3nxA3t7+1atWh0+fPjEiRN37ty57+ttoJQxi8KSMZGWKE77tSiuNwAAIABJREFU\nRrGcPXtWCNG1a1fT9zHXrl1buHDhqVOnNBqNwWD4/fff33vvPZVKFRISonRSWCneorBYDg4O\nDg4OO3fuFELct3a/m5vb+++/P23aNNOzfL0NBTGLwpIxkZYoddFdACGqVasmhDhx4kRiYuLK\nlSsnTpwoSdKnn366cuXKypUrnzx58vz580pnhFXjLQqLZfqw4u3tLYTYvXu3wWB46LM7d+48\nfPiwQhkBZlFYNCbSEsUpoyiWgICAU6dOxcfHb968OSEhYciQIWPGjHF3d7exsdmyZUtGRka7\ndu08PT2VjgnrxVsUlsx8UlNCQsKDix+Ynq1UqRKLH0BBzKKwcEykJYdFZfAQWVlZa9euPXz4\ncF5eXlBQUN++ff38/AwGw9GjRw0GQ4MGDUznkwghNm7cuGTJEjc3t2+++Uaj0SgbG9aDtyjK\notTU1GnTprH4ASzEgxNp9erVmUVh4ZhISwIFIe6XnJz8zjvv3Lp1Swhhb2+fk5NjY2Pzyiuv\ntGnTpnA3SZLWrl37/fffS5L0xhtvhIaGKhMX1oe3KCzfQ7+zEHyUgcUozkTKLAoFPWoWFUyk\nJYBTRvE3ubm5U6dOvXnzZmBg4OzZs0eNGpWSknL+/PkDBw6EhIS4uLiYuh07duzLL7/csWOH\nSqUaOnRop06dlI0N68FbFJYvOTl5ypQphw8fTktLMxgMFy9e3LFjR6VKlfz8/FgQD5agOBMp\nsygU9JhZVLCyaAlgURn8zfr1669fv+7v7z9v3jw/P7+tW7du375dCDFixIjq1aub+ty7d++r\nr746efJk5cqVZ8+eHRERoWhkWBfeorBwubm5s2fPvnXrVmBg4Oeff7569eqOHTsWFBTMnz8/\nMTFRsPgBLECREymzKBRU5CwqmEjlxm0n8DcHDx4UQrz22mt2dnbbtm376quvJEkaOXJkeHi4\nEGL79u2tW7d2dXV9//33z50717JlS76SQSnjLQoLV/ijtp2d3UO/szB9lPm///u/5s2bKxoW\nVqo4EymzKJRSnFlUMJHKiiOE+Ju0tDQvLy8/P7/t27cvXLiw8F+IjIyMxYsXf/DBB0IIT0/P\n5557jj8SKH28RWHhivyonZubK4Rwc3Pr2rWrwllhrYozkTKLQinFnEUFE6l8KAghhBDXrl27\ndOmSEKJy5crp6enr169fsGBB4f/9hBDffvutXq8v/N0MUGp4i6KsKOZ3FkApM8+igokUlo1Z\ntPRREELcu3fvnXfemTFjRmJiYlhYWG5u7tKlS+/7C7Ft27YdO3bY2dn16NFD2bSwQrxFUYbw\nURsWqPAsKoRgIoUlYxYtfRSEEN9///2dO3f8/Py8vLzatWtXq1YtIYS3t3dISIgQIjc39/vv\nv1+4cKEQ4uWXX+amtCh9vEVhac6cOWO+adO1a9dmzpyZnp5ueshHbVigwrOoEIKJFIpjFrUo\n3IfQqt25c8fDw2Po0KE6ne7zzz+3t7cXQqSlpc2cOfPSpUtqtdrLyyslJUWv15tWne7Vq5fS\nkWFdeIvCAsXFxc2ZMyc0NPS1115LSkqaPn16ampq586dx44dK4QwGo1Tp049c+aMt7f33Llz\n3d3dc3Nz16xZ89NPP3EzN5S+h86igokUimIWtTQUhNYrKSlp2rRpTZo0OXbsWJcuXfr27Wt+\nKjc3Nzo6eseOHWlpaSqVql69eoMGDapdu7aCaWGFeIvCMmVkZMyYMePSpUstWrQ4e/Zsampq\n/fr1Z8yYYWtra+rAR21YiMfMooKJFMphFrU0FITWKzU1ddq0aUlJSUKIoUOHPniXIUmSMjIy\n7O3ttVqtEgFh7XiLwmJlZGS8/fbbly9fFkLc9znGhI/asARFzqKCiRQKYRa1KBSEVs38p8LH\nx+ezzz7TaDRKJwL+hrcoLNONGzemTJmSmpoqhAgLC5s0adJDV+f///buPqipK/8f+ElISHg2\nQjEIgjw/CCKCgYii+AiKXWfrrst0tOis48xWZtVt1QWldpeCte6KtrK06mptB3Vna+0UugpU\nkRGsEAOJARVQbEl4DATEQoRAfn9kNr98g1VWJfcmeb/+83LpfJg5/dz7ueecz8GrNlAOWRTo\nCVmUVmz2799PdQxAGTs7u/j4+JqaGrlc3t3dHRsbixOHgFYwRIGebG1tZTKZm5ubo6NjXV1d\nR0dHXFzc+MHJYDA4HA5ewYFCyKJAT8iitIKC0IpoNJorV658++231dXVjx498vLyYrFY+keF\nVCpVKpUCgQCPCqAKhiiYBZVKpVarly1btnjx4oSEhLq6utraWqO3mZs3bzo7OxutgAIwgfGJ\n1NHREVkUaAVZlG5QEFqL9vb2jIyM0tLSlpaWBw8eVFdXX7t2LTg42M3NTf/CLZFI8KgAqmCI\nAv319vYeOXLk2LFj169fnz9/vouLC4fDiY+P17/NCAQCJpN59erVQ4cOiUSipUuXslgsqqMG\nK/JLidTLywtZFOgAWZSeUBBahf7+/j179rS3t3t4eKxbt04gEDx58qSlpeXatWuzZs1yd3fH\nCzdQC0MU6K+9vX337t2NjY3Ozs4pKSn+/v729vaEEMO3mdraWplMdu7cOa1Wu2rVqjlz5lAd\nNViRZydSb29vZFGgFrIobaEgtDQajebTTz/18fFxcHDQXzx16pREIgkKCvroo48iIiKCgoKW\nLl3KZrPFYnFNTc3y5cs5HI7hC3dAQICnpyeFfwVYMAxRMEfDw8MZGRmdnZ0hISE5OTnR0dG6\n9xgdDoezcOHCpqamhoaGhw8fMpnMtLQ0oxb/AK/QiyVSFxcXZFGgCrIonaEgtChjY2MHDx68\nevVqfX39ypUr9R//8vLyhoeHMzMz3d3d9TeHhYUpFIrGxkYmkxkZGUn+u/V82rRpiYmJ1PwB\nYOkwRMFMlZSUXLlyhc/nHzhwwNnZWXdRIpGUlJQoFAo/Pz8Oh5OYmOjt7e3t7b1lyxahUEht\nwGDBXiaRIosCVZBF6Qyrci3KN998c+PGDUdHx/T0dP0TQqvVPn78mBDi7e1tdP+qVasqKirE\nYvHGjRt1V3g83urVq00ZM1gVDFEwU/fu3SOErF69WvdJWy6X5+fny2QyGxub0dHRysrK7Oxs\nBoOxYMECqiMFy/eSiRRZFCiBLEpnTKoDgFfp+++/J4Rs377dz89PLpf/8MMPhBAGg+Hh4UEI\naWpqMrqfy+USQgYHB00eKVgpDFEwL3K5vLm5mRDi5eVFCJFIJK2trYWFhdu3b9dqtXl5eYWF\nhXw+//bt2+NHL8AkQSIFM4IsahZQEFoU3UcXNpstl8szMzM//PBDqVRKCFmxYgUh5OTJk8PD\nw4b3X7t2jRDi6+tLRbBgjTBEwYyo1erMzMyvv/6aEJKSkhIaGioSid5+++3i4uLNmzfn5OT4\n+flxuVzdAVljY2NUxwvWAokUzAWyqLnAHkKLwuPxKioqRCJReXm5SqWKiIj49a9/zWKxAgMD\nxWJxc3NzfX397NmzHRwctFptcXFxYWEhg8FIT093c3OjOnawChiiYEZYLNb169dv376dlJTk\n6Oi4ZMmSwMDA+Pj4LVu2hIWF6ZbqFRUVlZeX83i8zZs3M5n4xgqmgEQK5gJZ1FygILQo06dP\nHxkZqaurU6vVISEh+/fv1x3oyWQy4+LiJBJJY2NjUVFRVVXV+fPnKysrCSGbNm1auHAh1YGD\ntcAQBfPC4XAqKyudnJzCwsKYTKanp+eMGTPYbDYhRKvVfvXVV6dPnyaEpKenz5w5k9pQwXog\nkYIZQRY1CygILUpbW9vx48fVajUh5MmTJzExMTweT/cjLpe7ePHi4eHhlpaWnp4etVo9derU\nbdu2rVy5ktKQwbpgiIJ58fLyKikpaWlpWbNmjeGhbbW1tZ988klpaSmDwUhLS0tKSqIwSLA2\nSKRgRpBFzQJDq9VSHQO8MoODg1lZWVwud86cOWfOnHFycvrrX//q5+dneI9arW5tbWWz2T4+\nPjiUFkwMQxTMztmzZ8+ePZuVlRUTE6O70tfXt2vXro6ODj6f/4c//AHnJoOJIZGCeUEWpT8U\nhJZmcHDQxsaGw+F88803J0+efOpzAoBCGKJAW3K5vLW1NTY21nAfS19f3+bNm6Oiovbt26e/\nqFQqGxsbhUIhXrWBEkikQE/IomYKS0YtDZvNZrFYhJCQkBB7e/sffvihsrIyKipKv54EgCq6\nz0+2trYYokBDfX197777bmlp6ZUrVzQazYwZM2xtbQkhXC63ra2tqqpq6dKlDg4Oupvt7e1n\nzJiB9xigCp71QEPIouYLBaElw3MCaKK7u/vvf/97Xl7exYsXu7u7Q0NDdQ8JDFGgDy6XO2/e\nPAaDce/evZqamqKiou7ubj6f7+Li8tprr12+fJnD4URGRlIdJoAxJFKgCWRR84WC0MLhOQGU\nU6lU77zzTnNzs1arHRkZaW5urqysnDdvnqOjI8EQBXpQqVQ///wzn8+Pjo5OSUlxd3fv7OwU\niUTfffddQ0ODt7d3Z2enVCp9/fXX0RUdaAiJFCiHLGrWUBBaPv1zgs/nh4aGUh0OWJ2TJ0/K\nZLLAwMC9e/e+8cYbQ0NDUqn0xo0bsbGxRjUhhiiYXm9v75EjR44dO3b9+nXdmGSxWAEBAUlJ\nSVFRUSMjI2KxWHfa29DQkI+Pj7e3N9UhAzwFEilQBVnUAqCpjLW4d+9ecHAw1VGAxdJoNIQQ\n3Z4WPaVS6erqumXLlrGxsaNHj+rKP/LfhmNubm45OTl8Pl93EUMUTK+9vT0jI6Onp8fFxeX1\n119PTEwcf3J3f39/aWnppUuXurq6wsPDc3JyKAkVYCKQSMHEkEUtA2YIrcX4/z8BXhWNRnPg\nwIHr16/Hx8frl4IoFIrdu3e3trZ2dnYuW7YsOjpaf39ERAQhpLq62nCeEEMUTGx4eDgjI6Oz\nszMkJCQnJyc6Otre3n78bVwuNywsbM2aNSqVSjdisR4PaAuJFEwJWdRiYBUvALwsjUYzMDDQ\n0NDQ0dGhv2hvb29vb19WVtbV1WVnZ2f0K6mpqampqUqlMiMjw/C3AEzm+++/l8vlfD5///79\n+rcTiURy5syZ7777bnR01PBmBoOxYsUKQkhJSQkFsQIA0A+yqMVgPf8WAIBn4nK577//fldX\nl6enZ2dnp5ubm42NDY/Hy8nJycjIUCgU5eXla9assbGxMfyt1NRUQsjZs2dv3rz5q1/9iqLY\nwXrdu3ePELJ69WrdJ225XJ6fny+TyWxsbEZHRysrK7Ozsw1bojs5ORFC7ty5Q1XAAAC0gixq\nMTBDCACvAJfL9fb2bm9v37VrV25uru67oK4m9PT0fPDgwbFjx8bvWE5NTc3JyUE1CJTw8vIi\nhEgkktbW1sLCwu3bt2u12ry8vMLCQj6ff/v27aamJv3NY2Njp0+fJoTod70CTB6tVosWD0B/\nyKIWAzOEZkOj0ZSXl9fX1zMYjNDQ0ISEBA6HQ3VQAP8Hj8fj8/nV1dW5ubl//vOfDecJy8rK\nCCHp6elGp9CGh4dTFCxYu5SUlJqaGpFIJBKJnJycNm/enJyczGAwtFqtbjZ7bGxMf/P9+/dv\n3rxpb2+/ceNG6kIGSzM6OspkMg2zYnd3d0FBgVgs5nA4ixYt2rBhg74dFwDdIItaDHQZNQ/t\n7e3Z2dmtra36K+7u7u++++74ZmIKhcLT09O00QH8f2q1+r333rtz545AINDVhIQQlUqlWzu6\nbNmy8TUhAFVGR0dv3bo1OjoaGRmp74Xw7bffHj9+nMfj/fOf/zRc51xdXT1lypSgoCCKggVL\no2vH5ezsrM+KKpVq586dPT09+nv4fP5f/vIXoxkVPOiBPpBFLQO6jJqB/v7+PXv2tLe3e3h4\nrFu3TiAQPHnypKWl5dq1a7NmzXJ3d9ffWV5enpWV5eDggK7TQBUWi7Vw4UKZTCaRSFpaWnR9\nR+3s7OLj42tqaiQSiVKpFAgEqAmBDphMpqen54wZM9hsNiFEq9V+9dVXukVN6enpM2fONLzZ\n09PT1dWVijDBMg0MDHz99deGWfG5p7YSPOiBZpBFLQMKQjNw6tQpiUQSFBT00UcfRUREBAUF\nLV26lM1mi8Ximpqa5cuX69eO3rp1q66uLjg4WNfWH4ASz60JAwIC8Hkb6Ka2tvaTTz4pLS1l\nMBhpaWlJSUlURwQWjsvlGn0pO378uJ2d3cGDB/l8vqOjY2xsLBl3Qg8e9EBbyKLmCwWhGcjL\nyxseHs7MzDScDAwLC1MoFI2NjUwmMzIyUn8xMjJyyZIlFEUK1kir1d6+fVskEj169GjatGm6\ncwifURNOmzYtMTGR6qgB/o++vr7c3NwHDx7w+fxdu3ZhiIJpGK2emMiprXjQAz0hi5o17CGk\nO61Wu3btWq1W++9//9vW1tbwRw0NDXv27PHz88vLy6MqPLByXV1dH374ob6N2PTp03fu3Knf\nHvDU/YQA9KRUKhsbG4VCIdYzg4npd1kTQjZv3rx27VqjG86ePXv27Fk3N7ecnBx0aATaQhY1\nXzh2gu4YDIaHhwchxLB1rw6XyyWEDA4OUhAWwH93tzY1NfF4vHXr1q1Zs6azszMzM1MsFutu\n0J1PGBoaWl1dXVVVRW20AM/m5uY2f/58vMeA6elP6CGElJeXGx3nTQhJTU1NTU1VKpU3b96k\nIkCACUEWNV9YMmoGhoeH6+rqfvzxx8TERMM5losXL969ezciImLhwoUUhgdW68CBA/fv3w8N\nDc3NzRUIBF1dXTU1NRqNpqqqKiAgQPchQ7d21MPDA6tHAAB+iX7t6E8//dTT0zO+81ZERERE\nRERCQgJVEQKABUNBaAYCAwPFYnFzc3N9ff3s2bMdHBy0Wm1xcXFhYSGDwUhPT3dzc6M6RrA6\nd+/ePXPmjJubW25urrOz86VLlwoKCrRa7ZIlS5qbm41qQj8/P6rjBQCgted2YzbsIwAA8Aqh\nIDQDTCYzLi5OIpE0NjYWFRVVVVWdP3++srKSELJp0yZMD4IpyeVypVLJ4/GuXr0qlUr/+Mc/\n+vv737hxIy8vT6vV/v73v3/rrbd++umnhw8fGtaEAADwXDihBwAogYLQPHC53MWLFw8PD7e0\ntPT09KjV6qlTp27btm3lypVUhwZWpK+vb8+ePaWlpQKBIDY2dnBwMCUl5fHjx/v27RseHk5N\nTV23bh0h5OHDh21tbWq1urKyMiEhQX98FoAJKJXKgoKCzz//vLq62tHREQecgHlBTQiUQxa1\nQugyambUanVrayubzfbx8cFDAkzs448/Li0tjYiIyMrK0p9+eeHChdOnT0dFRb3//vu6K7t2\n7dJoNL/73e9aWlrWr19PXbxgdfr6+nbs2NHT06O/kpycvHXrVt1pKHoKhQKvOEBn+r6je/fu\nFQgEVIcDVgRZ1DphhtDMsFgsV1fXKVOmoBoEU1IqlXZ2dvn5+S4uLrm5uboOtzpXrly5f//+\nb3/7W91GweLi4suXL4eEhKxfvz48PJy6kMEaffbZZ/X19f7+/unp6TExMU1NTVKptKOjIy4u\nTp8zy8vLs7KyHBwcgoODqY0W4Jfg1FagCrKodWJRHQAA0J1CocjIyIiOjmYymStWrLCzszP8\naXBw8OXLly9duuTq6ioSiYqKihgMRkpKClXRgjW7deuWu7v7Bx98YG9vTwiZM2fO3r17y8vL\nCSE7duzQvc309PSMjY09fvyY2lABno3H461evZrqKMDqIItaJxSEAPAc9vb29vb2ZWVlhJDx\nh8snJiaWl5dLpdL33ntPdyUtLQ1zg0CJsbGxpKQk3XsMIcTFxSU7O9vobeaNN94IDQ0NCwuj\nMlAAAFpCFrVOWDIKAM+hb3IwMDDQ29u7cuVKw70ETCZzwYIFLBZrZGTEz89vy5YtS5YsoTBa\nsDYqlerEiRNffvmlSCR69OhReHi44SomLpcbHx8vFoslEol+1dNrr71GYcBg8e7evevq6qqb\nS5HL5X/729+io6P1+64B6AZZFFAQAsDz6WtCuVze3d0dGxtruIvVxsYmPDx8+fLlCQkJOGcC\nTEmlUu3cuVMmk/X397e1tQ0NDfX39y9fvtzwm4Xh24yvr++MGTMoDBgsnlgszsrKamtri4uL\nUygUmZmZLS0tQ0ND8+bNozo0gKdAFgWCgpAqaOkLZkdfE0qlUjRDB5ooKChoaGjw8/Pbtm1b\nVFRUY2NjW1tbT0+P0fjUvc3w+Xy06IDJ5ujoKBaLa2trHz58+K9//UulUs2ePXv79u0sFjbp\nAB0hiwLBsROUmGBLX4KuvkA/+mboy5YtS09PR00IVFEqla6urmlpaWw2++jRo7odL729vZmZ\nmRifQK2BgYG9e/e2tLQQQmbPnr1v375nrBfFgx6ogiwKepghpMBEWvoSdPUFWsKhyUAHCoVi\n9+7dra2tXV1dycnJkZGRuusYn0CV0dFRkUg0ffp0BoOhUqmKiorUajUhJCQkZMGCBb80DvGg\nB6ogi4Ih4ykpMAF9S9+YmJhFixYdPnzYx8envLz88OHDhhO26OoL9MTj8XJycjw9PcvKympq\naqgOB6yRvvOtUqm0tbU1/JHh+Pz444+xCgZMoLy8fOvWrdnZ2bohN3XqVF9f34iICD8/v2vX\nrhk93A3hQQ9UQRYFQ5ghpMCFCxdSUlL0H2Oe2r6JEBIWFhYZGYmGjUBDODQZqGXY+XZ8/wPD\nL9wBAQFYjweTZ3R0tKCg4Isvvvj555+FQuHatWtdXV1tbGzmz5+/ePHihISEurq62tpao0VA\nN2/edHZ25nA4eNADVZBFwRAKQhN5gZa+hBB09YVJotFohoaGDD8KyuVypVLJ4/Em+F+ws7ML\nCgqanOgAnk//vvLjjz+O73+AbxZgGkeOHCkrK+NyuTt27HjzzTenTp2qu25jY2NjY8PhcOLj\n4/U1oUAgYDKZV69ePXTokEgkWrp0KYvFwoMeqIIsCnooCE0BLX2BVjQazYEDB4qLixcsWKCr\nCfv6+vbs2VNaWioQCFxcXKgOEGBCnr3XBd8sYLLduHHjiy++YLFY2dnZ0dHRT73HsCasra2V\nyWTnzp3TarWrVq2aM2eOiQMGMIIsCjooCE0BLX2BPnTVYHV19cjIiFAonDJlCiHk+PHjMpks\nODh41apV6I0OZgT9D4BC//jHP7q6utavXz/+qd3a2nrnzp3h4WEej8fhcBYuXNjU1NTQ0PDw\n4UMmk5mWlvab3/yGkpgBjCCLAsGxE6+cRqN58uSJg4OD7p9o6Qu0oq8GHR0ds7Oz/fz89EPU\n1tb26NGjdnZ2VMcI8D/DaShAiTfffHNgYODw4cP+/v76i3fv3j1x4kRjY6Pun9HR0e+8846D\ng4NWq62srGxtbRUKhTNnzqQmYoBfgCxq5TBD+CoZrcRDS1+glfHVoH6IdnZ2JiUl6YcogHlB\n/wOgxJUrVx49ehQUFKQrCNVq9alTp/Lz83t6ejw9PcPCwpRKZWtra3Nz85IlSxgMhre3d0RE\nhG5dBgCtIItaORSEr8z4lXijo6MVFRUSiWRwcHDevHmGXWRQE4KJ6ccnm83Ozc3Vvb7oh+jQ\n0NDcuXNDQ0Of+rsKhcLZ2dm08QL8b9D/AChx69YtqVSq1Wrv3LmTl5dXV1fn4uLy9ttvb9u2\nLSEhQSgUlpWVtbW1zZo1a9q0aVQHC/AsyKLWDAXhq2E09+Lr60vQ0hdoQz8+CSFjY2NOTk66\nyUDDIdrb27ty5UrDIaqDc5PBNND5FsxOYGBgb2/vvXv3pFKp7staQkLCvn37QkJCdDe4uLjc\nvn27s7PT398fKRToD1nUaqEgfAXGr8TT/wgtfYFyhuNzw4YNMplMJpONjIwY1YRyuby7uzs2\nNtZosvrWrVt1dXXBwcEREREU/QVg+dD5FswRg8EQCATBwcEuLi4xMTFbt25NTk7mcrn6GzQa\nzZkzZ9RqdXJyspeXF4WhAgA8AwrCl/XUlXiG0NIXKGT0tUIoFAYGBlZWVj61JpRKpeOHKM5N\nhsmGzrdg1jw8PObOnRseHj7+y8X58+dFIhGPx9u6dauNjQ0l4QEAPBcKwpfySyvxjGDHIFCl\npKTk4sWLhnPXHh4ez6gJnzpEcW4yTJ7x6+2VSqWdnV1+fr6Li0tubq7hfAuAGfnPf/5z+vRp\nQsjOnTt9fHyoDgcA4BehIHxxz16JZwQ1IVDC399/eHh406ZNhiuZX6AmBJgM6HwLFunJkyef\nfvrpuXPnCCFvvfXWihUrqI4IrIhSqSwoKPj88891qRUtKmAiUBC+oImsxDOCLjJgegwGY86c\nOePbcjy3JsQQhcn2wp1v0fYWaGt0dLS4uPjAgQP19fUcDmfHjh3JyclUBwVWpK+v709/+tOd\nO3cGBgY6OjoqKir6+vqio6ONvvAii4IRFIQvaIIr8YygiwzQxzNqQgxRmGwv3PkWbW+BzphM\nZkVFhVQqFQqFu3fvRi8uMLHPPvusvr7e398/PT09JiamqalJKpV2dHTExcXpa0JkURgPBeEL\nmvhKPCPoIgP08Us1IYYoTKqX6XyLtrdAc9HR0QkJCatWrcIMDJhefn6+s7PzoUOHfHx8Zs6c\nuXjxYrFYLJFIDGtCZFEYDwXhC/qfVuIB0BZGLJjYS3a+RdtboD+UgkCVCxcupKSk6B/lXC43\nPj7eqCZEFoXxUBC+enjDBvOiH7ERERH4XgiT7eU736LtLQCAnkqlOnHixJdffikSiR49ehQe\nHm64FvSpNSGyKBhBQTgpUBOCefHw8EhISBAKhVQHApYPnW8BAF4VlUq1c+dOmUzW39/f1tY2\nNDTU39+/fPlyw93XhjWhr6/vjBkzKAwY6AkF4WRBTQjmxcnJieoQwCqg8y0AwP9Ko9EMDQ3Z\n2toaXS8oKGhoaPDz89u2bVtUVFRjY2NbW1tPT4/RFzRdTcjn89ExDp4KBeEkwko8AICJQ+db\nAIDxdFuvi4uLFyxYoK8JlUqlnZ1dQUGBrovMzJkz/fz8Fi1a9EsnqxJSAAACRUlEQVSrKrhc\nbmBgIEV/AdAdCsLJhZV4AAATh863AACG9I24RkZGhELhlClTCCEKhWL37t2tra1dXV3Jycn6\nZWhYaQ8vBgXhpMNKPACAicN6ewAAHaO2zL6+vrrro6OjFRUVEolkcHBw3rx5hl1kUBPCC2A+\n/xYAAAATmjt3bmZmJpvNZrPZVMcCAEANo2rQsBEXj8fLycnRbau+evXq6Oio4S/qf1pWVlZT\nU2PquMEMMbRaLdUxAAAAGGtvb/fw8KA6CgAACuirQTabffDgQX9///H3qFSqjIwMhUKxbNmy\n9PR0o5lAlUpVVVW1evVqU4UMZgxLRgEAgI6w3h4ArJO+GiSEjI2NOTk5PXXx/LNXh2L3NUwc\nCkIAAAAAAFowXCm6YcMGmUz2jA3V2DEIrwQKQgAAAAAA6hntGxQKhc9tsoWaEF4eCkIAAAAA\nAOqVlJRcvHjRsIvMRBovG9aEAQEBumYzABOHghAAAAAAgHr+/v7Dw8ObNm0y7Ck68Zpw2rRp\niYmJJowXLAS6jAIAAAAA0JpYLP7ggw9GRkbWrVu3ceNGqsMBi4IZQgAAAAAAWpvIPCHAi0FB\nCAAAAABAd6gJYZKgIAQAAAAAMAOoCWEyMKkOAAAAAAAAJmTu3LmZmZlsNpvNZlMdC1gINJUB\nAAAAADAn7e3tHh4eVEcBFgIFIQAAAAAAgJXCklEAAAAAAAArhYIQAAAAAADASqEgBAAAAAAA\nsFIoCAEAAAAAAKwUCkIAAAAAAAArhYIQAAAAAADASv0/aVuUGMAGO8YAAAAASUVORK5CYII=", "text/plain": [ "plot without title" ] @@ -1127,16 +1041,16 @@ "Warning message:\n", "“\u001b[1m\u001b[22mUsing \u001b[32msize\u001b[39m for a discrete variable is not advised.â€\n", "Warning message:\n", - "“\u001b[1m\u001b[22mRemoved 5 rows containing missing values (`geom_point()`).â€\n", + "“\u001b[1m\u001b[22mRemoved 3 rows containing missing values (`geom_point()`).â€\n", "Warning message:\n", "“\u001b[1m\u001b[22mUsing \u001b[32msize\u001b[39m for a discrete variable is not advised.â€\n", "Warning message:\n", - "“\u001b[1m\u001b[22mRemoved 5 rows containing missing values (`geom_point()`).â€\n" + "“\u001b[1m\u001b[22mRemoved 3 rows containing missing values (`geom_point()`).â€\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAAFoCAIAAADIFpV9AAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdd0CT194H8PMkJCRhhBG27CEqIOKeaOsCFa0D6l61Lnrbt9rWaodex22r\ntd7rrVbBOroc1aKCuCpuERA3IkNA9p4BMp/3j/Tmcp0oB0Pk+/krOc/J75wnCuSXsxiWZQkA\nAAAAAAC0PxxddwAAAAAAAAB0AwkhAAAAAABAO4WEEAAAAAAAoJ1CQggAAAAAANBOISEEAAAA\nAABop5AQAgAAAAAAtFMGuu6AjlVUVCQnJ+u6FwAAAAAAADrQ3hPCzMzMiIiIAQMG6LojAAAA\nAAAAr9SBAwfae0JICPH29n7vvfd03QsAAAAAAIBXKjY2FmsIAQAAAAAA2qk2N0JYVlb222+/\nJScnV1dXi8XiLl26LF68WCgUaq6q1eqoqKgTJ06UlpZKJJLhw4ePHz+ew/lvWvvcCgAAAAAA\nAKDRthLCnJyc5cuXKxSKnj172tnZ1dXVpaam1tfXaxPCyMjI6Ojofv36hYSEpKSk7Nmzp6ys\nbMGCBdoIz60AAAAAAAAAGm0oIVSr1evXrzcxMVm1apWNjc3jFXJzc2NiYgIDA5csWUIIGTVq\nFI/Hi42NDQoKcnZ2bk4FAAAAAAB4vanV6q+//nr37t05OTmNjY2bN28ODw9/Ys28vDxHR8ex\nY8dGRUW94k62HW1oLmVSUtLDhw9nzpxpY2PT0NAgl8sfqXDhwgWWZceMGaMtCQkJYVn2/Pnz\nzawAAAAAAAD6bu3atQzDMAxz//79x69u2bJl+fLl5ubmy5Yt+8c//tGvX79X30M90oZGCK9d\nu8YwjEgkev/997OyshiG6dy587x589zc3DQVMjIyuFyuu7u79iWurq58Pj8zM7OZFQAAAAAA\nQK+xLLtjxw6GYViWjYiI2LBhwyMVoqOjCSFHjx6VSCTPDmVtbX3hwgVLS8vW6qs+aEMJYUFB\nAZfLXbduXUBAwMSJE0tLS/fv3798+fJNmzbZ2toSQioqKsRiMZfL1b6EYRhzc/Py8nLN0+dW\n0Ni0aVNRUZHmsUAgaPUbAwAAAAAASk6ePJmVlTVr1qzY2Njdu3evW7eOz+c3raBJK56bDRJC\n+Hw+DiRvQ1NGGxoalEplly5dPvnkk4EDB44fP37ZsmX19fUHDx7UVJDJZDwe75FX8fl8mUzW\nzAoa8fHxp/8jPT29de4GAAAAAADoi4iIIITMmzdv6tSpZWVlf/zxh/bS0qVLGYa5ffu2SqXS\nzCk1MzMjhNy4cYNhmFmzZmVmZr799tvW1tYcDic+Pj4vL49hmHHjxj3SRHx8fGhoqL29vaGh\noZ2d3fDhw/fv39+0A+PGjXN1dRUKhWZmZoGBgQcOHHglt94q2tAIoaGhISFkyJAh2hJ/f39z\nc/M7d+5oKzQ0NDzyKrlcrh3le24FjX/9618KhULz+N69excuXKB3EwAAAAAA0FqKi4uPHDni\n5eXVr18/U1PTjRs3bt++PSwsTHN1ypQp/v7+n376aUFBwe7duwkhTQcPc3Nze/fuLZFIRo4c\nKZVKnzZV8Icffli8eDGPxwsJCfHw8CgpKUlKStqyZUtoaKimwvz583v16jVkyBAbG5uSkpLo\n6OjQ0NCvv/76448/buW7bxVtKCHUTN41NzdvWmhmZlZRUaF5bGFhkZOTo1KptJNCWZatrKz0\n8fFpZgUNa2tr7eOCgoLWuRsAAAAAAKBs586dCoVi1qxZhBAfH5+AgIC4uLiMjAwPDw9CSEBA\nQEBAwFdffVVYWDht2rRHXnvmzJnw8PBNmzZpk4W8vLxH6ty6dSs8PNzMzOzixYudOnXSljet\nmZOT4+joqH1aX18fGBi4cuXKefPmPZLL6IU2NGXU09OTEFJWVqYtYVm2vLxcLBZrnrq7u6tU\nqgcPHmgrZGVlyeVy7S4yz60AAAAAAAB6imXZyMhIDoczY8YMTcmsWbM0hc15uUQi+frrr5tu\nOPK4rVu3qlSqlStXNs0GCSEdOnTQPtZkgyzLVldXFxcX19TUvPXWWw0NDXo68bANJYR9+/Y1\nMDA4fvy4Wq3WlFy8eLGmpiYgIEDzdODAgQzDHD16VPuSo0ePMgwzcODAZlYAAAAAAAA9debM\nmczMzGHDhjk4OGhKpkyZwufzd+3apV0R9gz+/v4ikejZdeLj4wkhQUFBz6hz/fr1sWPHisVi\nMzMzW1tbOzu7FStWEELy8/ObeydtSRuaMiqRSN5+++2ff/55+fLlffr0KS0tjY2NlUgkEyZM\n0FRwcnIKDg6OiYlRKBQ+Pj4pKSkXLlwYOXKki4tLMysAAAAAAICe2r59OyFEM19Uw9LScsyY\nMQcPHjx8+PDEiROf/XJ7e/vnNlFVVUUI0Sacj0tOTh4wYIBAIFi4cGHXrl01ZxycPn3622+/\nfWQnS33RhhJCQkhoaKi5ufmRI0d++ukngUAwcODAGTNmaKeMEkLmzZtnaWl58uTJq1evWlpa\nTp8+ffz48U0jPLcCAAAAAADondLS0qioKELI5MmTJ0+e/MjV7du3PzchZBjmua1odiXNz8/X\nLEp83MaNGxsaGo4cOTJ06FBt4bVr154buc1qWwkhIWTYsGHDhg172lUOhzNx4sRn/GM/twIA\nAAAAAOid3bt3y+Xy7t27+/v7P3LpyJEjp0+fzsrKcnV1bWErffr0uXHjRmxs7HvvvffECtnZ\n2ZpqTQvPnDnTwnZ1qA2tIQQAAAAAAHgizc4xW7ZsiXzM/Pnzm7+1zLMtWrSIy+WuXLkyNTW1\nabl2l1E3NzdCyKlTp7SXfv3118cTwq+++mrkyJHHjh1reZdaGxJCAAAAAABo086ePXv//n1f\nX99evXo9fnXu3LkMw+zcuVOpVLawIV9f382bN1dVVfn7+4eGhq5YsWLBggU9evSYPn26pkJ4\neDiXy508efLMmTO/+OKLkJCQGTNmTJo06ZE4N27cOHHiRG5ubgv78wogIQQAAAAAgDYtIiKC\nEPLOO+888aqLi8vQoUMLCwubHjfw0hYuXHj+/PmgoKCzZ8+uX7/+yJEjEolk8eLFmqu9evU6\nffp0r169oqKi/vnPf0ql0pMnT4aEhDwSJC0tjcfjDR8+vOX9aW0My7K67oMuJSYmRkdHr1q1\nStcdAQAAAACA10FFRYWVldWCBQu+//57XfflOYKDgzFCCAAAAAAAQE1cXJyhoeFnn32m6440\nCxJCAAAAAAAAaiZMmFBfX29nZ6frjjQLEkIAAAAAAIB2CgkhAAAAAABAO4WEEAAAAAAAoJ1C\nQggAAAAAANBOISEEAAAAAGhH8vLyGIYZN27cc2tKJBIXF5fW75GOtZPbfBokhAAAAAAAr4Ok\npKTZs2e7ubkJhUJTU1M/P7+PPvooPz9f1/2CNg0JIQAAAACAfmNZ9pNPPunZs+fu3butra2n\nTJkyduzYxsbGDRs2eHl5/f7777ruILRdBrruAAAAAAAAtMjq1au/+eYbR0fH33//vVevXtry\n3bt3z58//+233z516tSQIUN02ENoszBCCAAAAACgx7Kzs1evXs3n848dO9Y0GySEzJw5c/Pm\nzSqVauHChWq1+hlB1Gr1pk2bOnXqJBAIHB0d/+///q+urq45rcfGxg4bNsze3t7Q0NDOzm7A\ngAHr169vWuHKlSsTJkywtbXl8/n29vbTpk1LTU19JEh8fHxoaKg2yPDhw/fv39+0wt69ewcO\nHGhqaioUCn19fb/66iuZTKa9euPGDYZhZs2alZubO2XKFIlEIhQKe/bseezYsZe7zYiIiHHj\nxrm6ugqFQjMzs8DAwAMHDjStoG0xMzPz7bfftra25nA433//PcMwISEhj0RjWdbLy0skElVW\nVjbnLX3FMEIIAAAAAKDHdu7cqVQqZ8yY4ePj8/jVuXPnrlu37v79++fOnXvGIOHChQu3b9/u\n7OwcHh7OMMyhQ4eSkpJUKtWzm96zZ8/MmTNtbW3Hjh1rbW1dWlp69+7dyMjIjz76SFMhIiJi\nwYIFlpaWo0ePtra2zsrKOnDgQFRU1J9//tm7d29NnR9++GHx4sU8Hi8kJMTDw6OkpCQpKWnL\nli2hoaGaCh9//PH69eutra2nTZtmZGQUExPz6aefHj9+/NSpUzweT9uZ3Nzcnj17Ojg4hIaG\nlpSUREVFjRkz5uzZswMHDnzR25w/f36vXr2GDBliY2NTUlISHR0dGhr69ddff/zxx02r5ebm\n9u7dWyKRjBw5UiqV9u/fX5OF5ubmOjo6aqvFxcWlp6fPnDnT3Nz82e+nbrDtW0JCwhdffKHr\nXgAAAAAAvKQ33niDEPLLL788rcI777xDCFm9erXmaW5uLiFk7Nix2gpxcXGEkK5du9bV1WlK\npFJpt27dCCHOzs7PaLpfv35cLjc/P79pYUVFheZBSkoKj8cbMWJEfX299urNmzeNjY39/Py0\nT7lcroWFRUpKStMgubm5mgfnz58nhLi6upaUlGhKFApFUFAQIWTt2rWakuvXr2tSm88++0yt\nVmsKf/rpJ0LImDFjXuI2Hz582PSpVCrt0aOHUCjU3pq2xfDwcKVSqa25c+dOQsiXX37Z9OWa\nzPby5ctPfR91JygoCFNGAQAAAAD0WGFhISHEycnpaRU0lwoKCp5WYdeuXYSQlStXGhkZaUpE\nItGaNWua0zqXyzUw+J9Zh9pxsC1btigUiuXLl0ul0rL/sLe3f/PNN2/dupWTk0MI2bp1q0ql\nWrlyZadOnZoG6dChg+bBjz/+SAj54osvrKysNCUGBgbffvstwzCRkZGP3OaXX37JMIzm6dSp\nU8VicUJCwkvcpmZ8j2XZ6urq4uLimpqat956q6Gh4cKFC02rSSSSr7/+msvlakvCwsIsLCwi\nIyO1o46asUpfX9++ffs+563UESSEAAAAAAB6jGVZQog2EXqaZ1TQjHcNGjSoaeEjT59o8uTJ\ncrm8S5cu4eHhv//+e1FRUdOrV65cIYQEBgZa/a/Dhw+T/+Sx8fHxhBDNiN8TJScnE0Iemeza\nqVMnOzu7rKysqqoqbWG3bt2apqYMw3To0KHpsr3m3+b169fHjh0rFovNzMxsbW3t7OxWrFhB\nCHnkDA9/f3+RSNS0RCgUzpo1Kz8/PyYmRlOyc+dOuVy+YMGCp92gzmENIQAAAACAHrOzs0tN\nTc3Jyenfv/8TKzx8+FBT7WkRqqurDQwMLCwsmhYaGxtrR9KeJjw83Nzc/Pvvv9+6dev3339P\nCOnbt+/69es1PSkvLyeEHDlyRCgUPv5azZCgJqNzcHB4Rt8IIba2to+U29nZFRQUVFdXm5mZ\naUq0D7QMDAyarg9s5m0mJycPGDBAIBAsXLiwa9euYrGYy+WePn3622+/bbqTDSHE3t7+8Q4v\nXLjwu+++27ZtW0hICMuyERERRkZG06ZNe9oN6hwSQgAAAAAAPTZgwIC4uLgTJ05MmTLl8atq\ntfr06dOEkKeli4QQsVick5NTUVHRNFmqq6uTSqUSieTZrU+dOnXq1Kk1NTVXrlyJiorasWNH\nUFDQ3bt3HR0dxWIxIcTW1rZnz55Pe7kmi8vPz/fw8Hha3wghRUVFzs7OTcs1A4yaq83UzNvc\nuHFjQ0PDkSNHhg4dqi28du3a4wGfOOjq4eExdOjQ48eP5+TkpKWlZWZmzp0719TUtPn9fMUw\nZRQAAAAAQI/NmjWLy+Xu3bv37t27j1/dsWNHdnZ2x44dAwMDnxZBs7GKZvsWrUeePpupqemI\nESO2bt26ZMmS2traM2fOEEL69OlDCNm7d+8zXqipExsb++y+nT17tmnh/fv3CwsLXV1dHx8V\nfIZm3mZ2dra2Y1qaO2qmRYsWqdXqyMjIbdu2EULmz5/f/Ne+ekgIAQAAAAD0mJub2/Lly+Vy\neVBQUGJiYtNLP/3003vvvcflcrds2cLhPPWT/8yZMwkhK1eulEqlmpL6+vrPP//8uU2fOnVK\nqVQ2LSkrKyOEaFbWhYeHGxgYbN68+ZFsqq6ubt++fZrHixYt4nK5K1eufORwwry8PM2DOXPm\nEEJWr16tmYBKCFEqlUuWLGFZdu7cuc/t4Uvcppubm+bWtCW//vrrCyWEY8aM6dChw/bt248c\nORIQEPCMAdK2AFNGAQAAAAD0mybJ2bhxY+/evXv37t2lSxe5XB4fH5+eni4UCn/77TfN0RRP\nM2TIkHnz5kVERPj4+EyYMEFzQJ+9vf1zx98mT55sYGAQGBjo7OzM5XKvXr0aFxfXpUuX0aNH\nE0J8fHy2bds2f/78oUOHDh8+vFu3biqVKjU19cyZMy4uLmFhYYQQX1/fzZs3h4eH+/v7h4SE\neHp6lpeXJyUlmZiYaE6JGDRo0Icffrhx48YuXbpMnDhRJBLFxMSkpKQMHDhQe9phMzXzNsPD\nw3/99dfJkyeHhYU5OzvfuHHj2LFjkyZNeuRs+mfgcrnvvvvuF198Qdr88CChlRCGh4e/UP2l\nS5e6uLhQaRoAAAAAoJ3jcDjffvttWFjY999/f/78+evXr/N4PBcXlyVLlnzwwQfaIxye4Ycf\nfujUqdMPP/ywefNmKyurSZMmrV69+rmf2NesWXPixImkpKTo6Ggej+fs7LxmzZrFixdrd5GZ\nM2dOQEDAxo0bz549GxcXZ2RkZG9vP336dE02qLFw4UI/P78NGzacPXs2KipKIpH4+flpzk7U\n+PbbbwMCArZs2bJ7926FQuHh4bFmzZolS5bw+fwXfaOac5u9evU6ffr0F198ERUVRQjp0aPH\nyZMnCwoKmp8Qam78iy++MDExeeLCzjaF0WxT29Ioz9vl9hFXrlx5ZFauriQmJkZHR69atUrX\nHQEAAAAAgNdEbGxscHDwggULtm7dquu+PEtwcDC1KaNRUVHP2LlISyaTNecrCgAAAAAAAD31\nzTffEEIWL16s6448H7WEUCwWP3dTWkJIY2MjrRYBAAAAAADajuTk5OPHj8fHx589ezYsLMzH\nx0fXPXo+OgnhlStXOnfu3JyahoaGV65c0Yu3BgAAAAAAoPkuX768YsUKMzOzyZMnb9myRdfd\naRY6CWHzFwQyDNNGVg8CAAAAAABQFB4e/qLbbeocziEEAAAAAABop1rlHEKWZU+fPn316tWK\nigq1Wt300qZNm1qjRQAAAAAAAHhR9BPC2traoKCgS5cuPfEqEkIAAAAAAIA2gv6U0S+//PLK\nlSvr1q1LSUkhhERHR587d2748OE9e/bMzs6m3hwAAAAAAAC8HPoJ4R9//BEaGvrpp5+6uroS\nQiwtLQcNGnTs2DGWZf/9739Tbw4AAAAAAABeDv2EMD8/f+DAgYQQDodDCFEoFIQQLpf79ttv\nHzhwgHpzAAAAAAAA8HLoJ4RGRkaaJJDP5wsEgoKCAk25qalpUVER9eYAAAAAAADg5dBPCN3c\n3O7fv6953LVr171797Isq1Qq9+3b16FDB+rNAQAAAAAAwMuhnxAOHz784MGDmkHCd955Jyoq\nysPDw9PT888//5w9ezb15gAAAAAAAODl0E8Ily1b9ueff2qOH3znnXc2bNggEAiMjY1Xrly5\nbNky6s0BAAAAAADAy6F/DqFYLBaLxdqnS5YsWbJkCfVWAAAAAAAAoIXojxACAAAAAACAXqA/\nQqilVqtra2tZlm1aaGZm1notAgAAAAAAQPPRTwjVavW2bdv+9a9/PXjwQC6XP3L1kfwQAAAA\nAAAAdIV+QrhmzZovv/zS2tp6zJgxEomEenwAAAAAAACggn5CGBERERAQcOHCBZFIRD04AAAA\nAAAA0EJ/U5ni4uIpU6YgGwQAAAAAAGjj6CeEHh4e1dXV1MMCAAAAAAAAXfQTwg8++GDPnj01\nNTXUIwMAAAAAAABFdNYQRkVFaR9bW1s7Ojr6+fktXLjQ3d3dwOB/mhg3bhyVFgEAAAAAAKCF\n6CSEb7311uOFy5Yte7ywmcdO3L9//+OPP2ZZdu3atb6+vtpytVodFRV14sSJ0tJSiUQyfPjw\n8ePHczic5lcAAAAAAAAADToJ4YEDB6jE0VCr1Vu3bjU0NGxsbHzkUmRkZHR0dL9+/UJCQlJS\nUvbs2VNWVrZgwYLmVwAAAAAAAAANOgnhxIkTpVKpkZERlWgxMTHFxcXBwcGHDh1qWp6bmxsT\nExMYGLhkyRJCyKhRo3g8XmxsbFBQkLOzc3MqAAAAAAAAgBa1uZRWVlbjxo3bs2dPZWVlS+JU\nVlb+8ssv06ZNE4vFj1y6cOECy7JjxozRloSEhLAse/78+WZWAAAAAAAAAC1qCeFHH32UkZEx\nc+ZMGxubESNGbNu2rbi4+CXiREZG2tjYBAUFPX4pIyODy+W6u7trS1xdXfl8fmZmZjMrAAAA\nAAAAgBadKaOEkFWrVq1atSo9Pf3gwYOHDh1asGDBokWL+vXrN378+PHjxzdzxubNmzcvXrz4\nj3/844nbwFRUVIjFYi6Xqy1hGMbc3Ly8vLyZFTT+9re/5eTkaB47ODhYWVm96M0CAAAAAAC8\nBihvv+np6bls2bKEhISHDx9u3LiRw+EsXbrUxcWlR48e69atS01NfcZrlUrlDz/8EBgY2Llz\n5ydWkMlkPB7vkUI+ny+TyZpZQUMqldb+x+P71gAAAAAAALQTrXUeg6Oj4/vvv3/u3LmioqLt\n27dLJJKVK1d26tSpc+fO0dHRT3zJoUOHKisrZ8+e/bSYhoaGCoXikUK5XG5oaNjMCho7duw4\n8x8LFy584XsDAAAAAAB4LbT6AX1WVlbz5s07fvx4aWnpTz/95O3tfe/evcer1dTU7N+/f+jQ\noY2NjYWFhYWFhbW1tYSQ8vLywsJCzemFFhYW1dXVKpVK+yqWZSsrKy0tLTVPn1sBAAAAAAAA\ntKitIXwusVg8bdq0adOmPfFqTU2NXC4/cuTIkSNHmpZv3LiRELJ//36BQODu7p6UlPTgwQNP\nT0/N1aysLLlcrt1F5rkVAAAAAAAAQOvVJYTPZmlp+cknnzQtSUxMPHPmzOTJk52cnPh8PiFk\n4MCB+/fvP3r06Icffqipc/ToUYZhBg4cqHn63AoAAAAAAACgRT8hFAgETyxnGEYoFDo7O48Y\nMWLp0qUSiaTpVaFQ2L9//6YlJSUlhBAfHx9fX19NiZOTU3BwcExMjEKh8PHxSUlJuXDhwsiR\nI11cXJpZAQAAAAAAALToJ4SjR4++d+9eSkqKo6Ojl5cXIeT+/ft5eXmdO3fu0KFDWlra119/\n/fPPP1+9etXBweFFg8+bN8/S0vLkyZNXr161tLScPn36+PHjX6gCAAAAAAAAaDCa/VoounTp\nUlBQ0NatW6dMmcIwDCGEZdmff/558eLFJ06c6Nu376+//jp9+vTZs2dHRkbSbfolJCYmRkdH\nr1q1StcdAQAAAAAAeKWCg4PpjxAuW7Zs1qxZU6dO1ZYwDDN9+vSEhIRPP/307NmzU6ZMOXPm\nzIkTJ6g3DQAAAAAAAM1H/9iJ5ORkPz+/x8v9/PySkpI0j/v06VNcXEy9aQAAAAAAAGg++gkh\nj8e7cePG4+XXr1/n8XiaxzKZzMjIiHrTAAAAAAAA0Hz0E8Lg4OAffvhhx44d2gPiVSpVRETE\ntm3bRo0apSlJSEjAzp8AAAAAAAC6RX8N4fr16+Pj4995551ly5Z5enqyLJuRkVFWVubu7v7N\nN98QQhobGx8+fDhlyhTqTQMAAAAAAEDz0U8IHRwcrl+/vmHDhsOHD9+6dYsQ4ubmtnDhwqVL\nl5qamhJCBAJBXFwc9XZfMzdv3nz48KGue/ECOByOdgQYAAAAAAD0Av2EkBAiFotXr169evXq\n1gjeTiiVSrlcTj1sampqVVVVjx49DAwo/9NzOPSnHwMAAAAAQKtqlYQQWq579+7du3enHvbc\nuXMFBQXjxo0zNDSkHhwAAAAAAPQLtYSwsbGxOdUEAgGtFgEAAAAAAKAlqCWEQqGwOdVYlqXV\nIgAAAAAAALQEzSmjAoGgT58+XC6XYkwAAAAAAABoJdQSQnd398zMzLS0tFmzZs2ZM8fd3Z1W\nZAAAAAAAAGgN1HaGTE9PP3PmzJAhQ7777jtPT8833njjl19+aWhooBUfAAAAAAAA6KKWEDIM\nM2TIkJ9//rmgoODf//53dXX1tGnT7O3tFy9enJycTKsVAAAAAAAAoIX+2XFmZmaLFi26du3a\n9evXp02b9ttvv3Xv3n3Dhg3UGwIAAAAAAICWaMXDxD08PPz9/TWLCevq6lqvIQAAAAAAAHgJ\nrXIw/aVLl3bs2LF//36pVNq3b9/IyMiwsLDWaAigJXJzczMyMnTdixfTu3dvkUik614AAAAA\nwGuCZkJYVFS0Z8+eH3/88f79+9bW1gsWLJg7d26nTp0oNgFAUX19fVFREfWw+fn5xcXFXl5e\nxsbG1IOrVCrqMQEAAACg3aKWEI4dO/bYsWMsyw4fPnzt2rUhISE8Ho9WcIDW0LFjx44dO1IP\ne/PmzZSUlDfffNPa2pp6cAAAAAAAiqglhEeOHBEIBOPGjXNwcLhy5cqVK1eeWA27ywAAAAAA\nALQRNKeMNjY27t2799l1kBACAAAAAAC0EdQSwsTERFqhAAAAAAAA4BWglhD26NGDVigAAAAA\nAAB4BVrxHEIAAAAAAABoy+gkhLt27Wrm9v0qlWrXrl2lpaVU2gUAAAAAAICXRichnD17dmpq\nanNqKhSK2bNnZ2ZmUmkXAAAAAAAAXhq1NYQpKSkCgeC51eRyOa0WAQAAAAAAoCWoJYSLFy+m\nFQoAAAAAAABeAToJ4ebNm1+ovqurK5V2AQAAAAAA4KXRSQjDw8OpxAEAAAAAAIBXBsdOAAAA\nAAAAtFNICAEAAAAAANopJIQAAAAAAADtFBJCAAAAAACAdgoJIQAAAAAAQDuFhBAAAAAAAKCd\nasWEUKVStV5wAAAAAAAAaCHKCWFFRcWXX37ZvXt3Y2NjAwMDY2Pj7t27r1y5srKykm5DAAAA\nAAAA0EJ0DqbXuHnz5ogRI4qLiwkhJiYmDg4ONTU1ycnJycnJERERx48f9/X1paH0a3cAACAA\nSURBVNgcAAAAAAAAtAS1EcKGhoYJEyaUlpZ++OGHGRkZNTU1eXl5NTU1aWlpH3zwQWFh4cSJ\nE2UyGa3mAAAAAAAAoIWoJYT79u3LzMzcvHnzt99+6+7uri339PT87rvvNm3alJaWduDAAVrN\nAQAAAAAAQAtRSwiPHDni4uKyYMGCJ14NDw93cnI6fPgwreYAAAAAAACghaglhLdu3XrzzTc5\nnCcH5HA4Q4cOvXHjBq3mAAAAAAAAoIWoJYTFxcXOzs7PqODk5FRSUkKrOQAAAAAAAGghagmh\nVCoVCoXPqGBkZFRbW0urOQAAAAAAAGghagkhy7JU6gAAAAAAAMCrQfMcwgMHDqSmpj7t6u3b\ntym2BS8NaTkAAAAAAGjQTAgTEhISEhIoBgSKioqK7t69e+nSpbKyMiMjI09PT29v76dtAgQA\nAAAAAO0BtYQwMTGRViigLiMjY/Pmzfb29tXV1TKZLCMj49KlS0FBQYGBgcgJAQAAAADaLWoJ\nYY8ePVoYIS8v7+zZs9euXSssLDQwMHB0dBw3blzv3r2b1lGr1VFRUSdOnCgtLZVIJMOHDx8/\nfnzTlOa5FdqhhoaG5ORkLy8vCwsLqVQql8utrKysrKxiYmI6dOjg6emp6w4CAAAAAIButKFM\naf/+/YcOHTIzMwsODg4MDCwoKFi7du1vv/3WtE5kZOSuXbtcXV3nzp3r6em5Z8+e7du3v1CF\ndig/Pz85OdnCwqJpIY/Hs7Ozy8nJ0VWvAAAAAABA52iuIXycTCa7d+9eTU2Nn5+fmZnZsysH\nBgbOnTtXLBZrnk6ePPmDDz44cODA2LFjRSIRISQ3NzcmJiYwMHDJkiWEkFGjRvF4vNjY2KCg\nIM0RiM+t0D497UQQoVAolUpffX8AAAAAAKCNoDlCGBsbGxYWNn369PPnzxNCTp486e7u3q1b\nt8DAQBsbmzVr1jz75d27d9dmg4QQY2PjPn36KJXKoqIiTcmFCxdYlh0zZoy2TkhICMuymuaa\nU6F94vF4SqXy8XKlUsnj8V59fwAAAAAAoI2gNkJ47ty5UaNGaY402L9/f0xMzPjx40Ui0dix\nY+Vy+YULFz7//HNvb++JEyc2P2ZNTQ0hxNzcXPM0IyODy+W6u7trK7i6uvL5/MzMzGZWaJ9s\nbGxqampkMpmhoWHT8tLS0v79++uqVwAAAAAAoHPURgi/++47IyOjo0eP3r59u0ePHtOnT3d2\ndk5LS4uKijp27NitW7fEYvGWLVuaHzA/P//SpUsBAQHahLCiokIsFnO5XG0dhmHMzc3Ly8ub\nWUFDKpXW/IdMJnv5e9YTlpaWkyZNunfvXn19vaZErVY/ePCgW7dunTt31m3fXjMqlSozM/PO\nnTspKSm3bt0qLi7WdY8AAAAAAJ6F2gjhtWvXwsLCRo8eTQhZtWrVsGHDPv30U+26QVdX18mT\nJ+/du7eZ0err6//xj3/weLwFCxZoC2Uy2eNTHPl8vjape24Fjblz52ZkZGged+zY0cPDo5m9\n0l99+/bl8XhZWVlpaWn19fVqtXr06NF9+/Z94tpCeDmNjY1xcXF//vmnTCarqKhQKBTR0dFT\npkzp2bMnwzC67h0AAAAAwBNQSwiLioq0czXd3NwIIU5OTk0rODs7V1dXNydUY2PjqlWriouL\nV65caWtrqy03NDRsaGh4pLJcLhcIBM2soNGnTx8XFxfNY4FAoJnm+nrjcrm9e/f28/Pj8XgF\nBQWhoaE2Nja67tTr5vLly1euXOnWrVtubi75z3Tlffv2mZmZeXl56bp3AAAAAABPQC0hbLpD\nCZ/PJ4QYGPxPcAMDg+akXjKZbPXq1RkZGZ9//nmXLl2aXrKwsMjJyVGpVNpJoSzLVlZW+vj4\nNLOCxgcffKB9nJiYGB0d/UJ3qr+EQqFEIpHL5c/d8RVeVE1NTVRUVPfu3ZseeikQCBwdHdPS\n0pAQAgAAAEDb1IbOISSEyOXyNWvWpKSkfPLJJ/7+/o9cdXd3V6lUDx480JZkZWXJ5XLtyORz\nKwC0kqqqKoFAoPkqpCmxWFxbW/vEXV4BAAAAAHSO5jmEBw4cSE1NJYRoNi/ZvHlzVFSU9urt\n27ef/XKFQrFu3brbt29//PHHvXr1erzCwIED9+/ff/To0Q8//FBTcvToUYZhBg4c2MwKADqB\nNYQAAAAA0DbRTAgTEhISEhK0T0+ePPlCL9+2bVtycrKXl1dubu6+ffu05YMGDbKzsyOEODk5\nBQcHx8TEKBQKHx+flJSUCxcujBw5Ursg8LkVAFqJubl5Y2Pj42d7VFVVeXl5Nd35FgAAAACg\n7aCWECYmJrYwgmaP/rS0tLS0tKblbm5umoSQEDJv3jxLS8uTJ09evXrV0tJy+vTp48ePb1r5\nuRUAWoOJicmECRNOnTrl7e2tLayvr8/NzR0zZowOOwYAAAAA8AzUEsIePXq0MMLq1aufW4fD\n4UycOPEZp9s/twJAK+nTp49MJjt+/LhcLq+oqMjIyJDJZLNmzWoP55oAAAAAgJ6iOWUUoD0z\nNDQcNmyYt7f3pUuX7t+/P3jwYF9fX0tLS133CwAAAADgqWgmhLGxsRwOZ8SIEYSQkpKSOXPm\nNL3q5+e3bt06is0BtDUMwzg5OVVWVhJCOnfujGwQAAAAANo4agnhzZs3R40atXXrVs3T+vr6\nmJiYphViYmImTJjQvXt3Wi0CAAAAAABAS1A7h3DHjh1WVlazZ89uWrhz587CwsLCwsLc3Fxz\nc/Pdu3fTag4AAAAAAABaiNoI4dmzZ4cNG/bIwdxmZma2traax2PGjDl//jyt5gAAAAAAAKCF\nqI0QZmVleXp6PqOCi4tLVlYWreYAAAAAAACghaiNEDY2NvJ4PO1TZ2fn2tpaoVCoLRGJRA0N\nDbSaAwAAAAAAgBailhBaWFjk5+drnzIMY2xs3LRCXl4eNl0EAAAAAABoO6hNGe3WrduJEyfU\navUTr6rV6hMnTnTr1o1WcwAAAAAAANBC1BLCsLCwzMzM77777olXv/vuu/T09NDQUFrNAQAA\nAAAAQAtRSwinTZvWvXv3pUuXzpkzJykpSalUEkKUSmVSUtKcOXOWLl3ao0ePqVOn0moOAAAA\nAAAAWojaGkIej3f48OExY8bs3Llz586dDMOIRKL6+nqWZQkhAQEBhw8fbrrrDAAAAAAAAOgW\ntRFCQoiDg8PVq1cjIyNHjBhhb2/PMIy9vf2IESN27NgRHx9vb29PsS0AAAAAAABoIWojhBo8\nHm/u3Llz58594tXr169jXxkAAAAAAIA2guYI4dNUV1dv3bq1e/fuAQEBr6A5AAAAAAAAaA7K\nI4SPuHjxYmRk5IEDB+rr642MjCZNmtSqzQEAAAAAAEDztUpCWFpaumfPnsjIyNTUVELIiBEj\n5s+fP3LkSKFQ2BrNAQAAAAAAwEugOWVUrVafPHkyNDS0Q4cOS5cuFYlEK1asIIQsWLDgrbfe\nQjYIAAAAAADQplAbIfz73//+448/5uTkWFlZLVq0aPbs2X5+ftnZ2WvXrqXVBAAAPE4ulycm\nJuq6Fy/GycnJ0dFR170AAAAAegnhl19+6eHhcejQodGjR+O8QQCAV0atVj98+JB62IaGhvT0\ndEtLSwcHB+rBxWIxEkIAAIC2gFpCKJFIMjIyli9fnpaWNn36dJw6CACEEJVK1dDQoOtevBiB\nQGBg0LobbtFlaGg4ZswY6mGrqqoYhnF3d2+NDaL5fD71mAAAAPASqH3oyc/P/+OPPyIiIj79\n9NMVK1aMGDFCM2uUVnwA0EelpaVxcXHUw8rl8vr6eqFQaGhoSD34gAED9GvwimEYY2Nj6mEV\nCoVAIBCJRK0RHAAAANoIagkhn88PCwsLCwt78ODBjh07du3aNWnSJCMjI0JIQUEBrVYAQL8I\nBAInJyfqYQsLC7Ozs729vTt06EA9uEgkoh4TAAAAoG2iPy3Kzc1t7dq1f//732NiYiIiImJj\nYxcvXrxhw4aJEydOmjSpZ8+e1FsEgDbLzMysf//+1MNmZ2crFIqAgABPT0/qwQEAAADaD5rH\nTjTF5XJDQkKOHj2ak5OzevVqlmXXr1/fq1evVmoOmklQk+lYdlrXvQAAAAAAgDah1TdOcHBw\n+Oyzz1asWHH69OmIiIjWbg6ezajqrlHlRV33AgAAAOC1VVdXV1FRoetevBg7OzscE9BuvaKd\n9BiGGTZs2LBhw15Nc9CULH6r8sF5o7A9hPs/P+fyG7/KEn80mYcBQwCA57t48aJCodB1L16A\ntbV1ly5ddN0LgPaoqKioNY6Hrampqa2ttbS0FAgE1IMHBQWZmZlRDwt6QZ+2VoeXw+sU0nh+\nY90vocZT92sL5dd/kf4+1yhsjw47BgCgR0pKSmQyGd2YLMtev37d2NjYy8uLbmSCsz0AdMfa\n2ro1ds24f/9+enq6t7e3lZUV9eDYUK09Q0L4+uOIHUwWXqjb/kbdnnEM15MQorzzu/zQXKOJ\nO/h+obruHcALU6lUVVVVZWVlVVVVKpWKy+XqukfQLowfP556TLVazTCMlZXV0KFDqQcHAF0x\nNTU1NTWlHrahoaGmpsbFxcXOzo56cGjPkBC2UerKHLa+jGJAYcimhkMLJLIbaoVMfmiO8M3P\nudbeqvxr9FpguA70T68GeEROTs61a9eOHj1aVlZ27dq1kJAQf39/Nzc3XffrdcOybG1tbUVF\nRVVVlVKpNDDAHwsAAIDXE/7Gt1F1O0aoSu9TD6udP9Rw4vOGE5/TDW7+NUs3IMAjcnNzN27c\n6Orq6u/vn5GR4erqmpeXd+7cuQ8//NDZ2VnXvXt9lJWVXb169ciRIwUFBRcvXqysrOzcuTNW\nowG8HjKv5Reml1MPW5RZ8SA5v98kX+qRCSH9w/wYpjUCAwAhSAjbLK6Nj7q+xb+vWcIqG//7\nVK0kmqcMl/CE2mKGyyOclk66YxhM2/tLTVHD7Z1lb76p6368jm7evOns7GxjY1NaWkoI0cy1\nU6vV169fd3JyYvB5gYbq6uq4uLjMzMyAgAA+n29ra1tWVrZjx47Zs2f7+rbKR712Kzs7+8GD\nB0lJSebm5iKRqGPHjpaWlrrulI41NDSoVCpd9+IFcDgcvVt5lXj03rmfbrRS8Kwbha0Rtn+o\nL8FveIBWg4SwjTKa/jutUNdPpJdmVw7umy3dNyOHO4Rfk+ngIuJaupV33RJ/NCPsSyQuFKhV\n6oZamZGZkBAirZTV5Mm1l2rL600s9ezjQtsklUpPnDjx+DJ9KyurM2fODBkyRCwW66Rjr5lb\nt26lpqZ6eHhIpVJNiZmZWceOHVNSUjw9PVtja7v26erVq/v27bOxsamqqpLL5WfOnMnNze3d\nu7eLi4uuu6ZLly9fLikpoR62traWZdnWWNMlFouDg4Oph21Vpl4cr3HmVEJVPZBVZjR26G/C\nM+LknK2RValcR4gNBJyy2w3SEoXLUGpvOEsI0kGA1oOEsI26du5WXmYRlVA1RQ31Zw4FPPg1\n3W5J/u0sL4MH540+809bVnw+qJB8dPjHk1RaYThMyCw9O1YkIyn/9plMKqHKcqtv/5nZfXRH\nU4nRg3t5aiV7akuySCTKvVucdjV3yMwADpdDpaFh83oamwufX+91pFAoGIbRnJLEqokqyVrt\nSAghHA6Hw+HI5fLnvB6ap7i42Nra+pFCU1PTpKSkvn37Ojk56aRXr5nc3Ny9e/f6+fkZGhrm\n5eWZmpq6u7uXlJQkJiba2NgIhe30Z5wQYm1t3RpfOly+fFkul/v4+FCPrI//WB49Ogjt6KRX\nrJok7MwuvlY7+COvh1eqCCGeg+yy/qyoL60bvLSjWQdqbw6Hg3wQoBUhIWyjzv98K+0MnYSw\nk33K5D6/Hoh/+1aepLdbOuvMHNtQeFEwa97gH/wrN+9bO4VKKxyu/iWED28XndyWQDFg/MG7\n2scXf7qjfXw6MolWE/0m+bbbhFAoFPbp3bexsVEgELAKwpYIVY0sIUQulysVKiMjI1138HXA\nsqxCoXjiFjI8Hg9ZNy1ZWVk2NjYCgYBl/7v0WiKRJCcnd+3atTWOoNAXrTEtuba2NiMjo7Gx\n0dfXtzUGCfWOl5cXxf9jgwezuz+OvfKvHEOesJHUVycxhTfqPto31aGjhFYTANDakBC2UX1H\nd7V1fPRL+pdjpubdZN24/r4GpQ84PA4hxIDPMfXwuGX9L2uLq4O8/ai0wuHq37d3/iM87b1o\n/sW6/PvtW6czTe2FpRk1Xd5wvn8hLyi8j1s3e4pNmNsaU4ymX6RlsitrC8WD67sMdG9anpmc\nxznvVp1fL/LE1NyWYhhGKBRWVFQ8siyKZdnGxka9WyvVZtXV1T3xKwwjI6Pa2tpX35/XVWNj\nY3x8/KFDhwoKCpRK5d27d0NCQvr164f/yVTI6hUqhYoQMmnFkN++PH39RBoh5NaZB4sjxpvb\nGtdXNxJChCaGDAb3QN8UZ1XauNKZVq0vkBC2UX3G+vYZ29IvSmvK6o9tvlyh7EQIMTImPoPd\nFGmX1Sxj7Wzu4mPXICc5JJjISNdhHj6D2+Ou/Wa2xsYSmnOT3HraRW+6fHrHNUJI6vncOf8a\n5TPElWJ8QgiP135/Zi0cTEcs6nX8+4RbqnSRDZcQQ6lUejc+o+aMUd+JXew88W00HY6OjgkJ\nCebm5oQQdYq5UsQQQoqLiwcMGGBjY6Pr3r0muFzuE7dOUalUOOGDFrVaffbs2UuXLgUEBAgE\nAoVC0a1bt4sXLzY2NgYFBeH80hYqya5cOXQH+9jm4g3Vsg2hv2mfDpkREPrlG6+0Z6+vsrKy\nrKysrKwsFxcXExMTY+P2+wWxRk2p9NafdBb+NKVWqfeu/DPkwwGtMSGrY18nK2cz6mFbDn94\n2hOW3MwLeFDiaUhzyEqPpaenJycntzCISq6O/6pYJVc3LTQR1tQ2mEYsOqotsego8JlOYf/A\n0aNHm5iYtDzOK1NVXHcn7gGtaGYSU59A1ztnswx8DAiRqzJNau6xrt3sHTvaXtx7i1Yr3v2d\nJY7td38aHx+fwsLCK1eumJubqwtF0tLG7OzswsLCSZMm4TM0LVZWVhcvXvwrwW40YEUMIUSl\nUlVVVVlZWem4c6+Lhw8fnjp1KiAggMPhKB4KVA2GvF48Ly+v8+fPe3p6duzYUdcd1G/WLuZr\nzr+rVrEpKSl//BElzLerTFUSNTEwYkz61/v16jxo0CA+n28qwWAsBSqV6sqVKwcOHGhsbKys\nrCwqKsrJyfH19W3npwFl3yv4ZQWdjTAed3jDhdYIG7o6cIjzo3vjtQVICNuo68fTsm9RWENo\naPTX0YM1pdI757IYrrBCyjN4WGUo4nv1cdRcSk/IS0/Ia2FDHC4zdsnAFgZ5xUQika2tbcvj\njFpnpVL+9TXpw4SKivNXZ/WN/OrE3/u+6yb+z5J6npDDN6Lw46Z3n8iLMspb4/d11S3p8jHr\nNp34SCEXpV3JTbuSSzH4u1vGttuEkFWzXwzaMX554LhxNqmpqQ+YAqFQ2KtXD7cOXj++c3r0\n+/0Cgtrv8jaKvL29u3btmpmZ2aFDB9Udi0Z7VtFFkZ6eHhwcbGdnp+vevSYK84rMzSw4HA4h\nxFpWxlUpCOnMMIzEUpL/sBAJYctZ2JvW1tYWVD40rehQmaM0MFUrqzimznzpVc4N/o2O/m7d\nunXTdR9fE9euXTt69Gi3bt1KSkpyc3M7depUXV0dERHx/vvvu7pSnoikR0ysDWntl6tSqB+e\nrRWYGdh2F1VkS8tvKYxduHZdTcvuNNTkyp0Gm/BEdLYGNHdpo1+RICFso+6ez7q073YrBVfK\nVNk3C7Nv0jwsyIDH1buEUGJmLfSgtMFAfRFTciPxjsu9mHs9AsQGXJVvoFvS7tzZ3wx1YM6z\nHUMJQ+dXiSFfzzb9t3Ixn/TZkJbHObvnek1pra1pQWG1AyGEy8qMDesEPLmSY0oIsTEpKK2z\nFYiNhr3To+Vt2evbXggKmfI2vWkzPcd0+unjE4Om+Lt07pLIlNoaOgjKrLZ/EWNiIVIpVMnH\n7lNpxc5LYufRfs/cuxn7wL9jDz6fHxcXJ2swaqiQXrtWPnbsWCuuU0ZivmevDrru4Ovg8s60\nikxDVxeWY8D4md8SEmkxeYNVs2Vx3EsJ6W8MG6zrDr4OCguL4nemqwuN/OZIbv5aSAhxHmac\nf66h4qw4PSAbCSEVjY2NDx488PT0NDQ01Baampo6OTmlpKS054TQ0cN+5oq3aEWrLpbuWBBr\nKDXzH9Lhz1t3XH3tzc3M80rvL9gxxt6b2l+rNjvRFwlhGzV0To8eo7yphCrJrjz0j3Ndh3n0\nnehz+8yDe5eyQz9/o/hBxR9fn/cf6dnnLTrzDfRx1fiV3+8cWBNHJZSDed78wd8X3x6jlPUr\nSi8jNuTGqQwDjqr2p0kVpsX/OlmlVNMZ2Vt5eq5+LXQuza6k9SaLhVVz+206dntMfEY/AU9N\nCFGzRN6o7O6cNLb7wX+e+rC8yIpKW+b2pjYu+vQmN9TIIt47+vx6LyJuz1+zqW8dzr11OJcQ\nUlVU9+P/xdCKP/qD/qPe60sr2qsRtztZ0aikEur6ifSSrMr+Yb797Udd4N4U8a17u/jlHW84\ndPhIQFDHrOsFVFqxcbfoOtSDSih9NHrAtfiy3Ls/D+ky9a8Pc6ya3D9Y6cZeH/QGh5B5uu2e\nDhU/qKgspLN30dnfb8hzDD1HmSrqVKyCMISty1PYdBU1VMji/53j55FDpRVCSMd+zu32XPqK\niorExMQePR79utPCwqKmpkYul/P5fJ10TOcMDAwsLCxoRbOwsFiyd/J3U/aV5VYSQgpTqjLL\nSj/4KdTJp10snkdC2EbZeljaUvr6vFEqD/5b3+Hv9iKElORUZd8q9O7v7N3f2aWr3dU/Urz7\nO1NpRR9Zu5oHBNOZNVRb7vhTfMOMfrucOlsV1jgQQnoEe/Q2/FqkLIs8t9hneCdaZygJjPTs\n977ITEDv/5hzXNUno7qu53JIWm1/QoixlcCdSRrX/eCl6sVWfj1oLb0ysWyjMzqeRmDMn7p2\nON2YObeLL/9+W61Uc3kcG1eLQVP9uQZ0Rrk1nHz170/ssc1X6iobKAY8FZGoeSCvkp/491+H\n0yQevZd49B6V+N1HddS7hPB0ZFJxVgWVUGK5JNhrCzeFTfhu4FAvDuFxEjcVeYuvjQ/Yl/Tg\ng+uUprKLrY1Hv9+PSqhX5uxP18/uuU4vHpMWVUkI6Wx/r6//xR0H52sv/HPGAVptbElfQtpr\nRqhWqzUznwkhihpieFlMOhNCiKZQrVY/47XQHKmXcspyqwkhVVVV5r4GacdLCOGUPah1fcM8\n+ezdh3eKCSEmlqKuw/Ts1+kLQUL4+vMf7ql93PTXqbOfrbMfhRV0+stnsBut7VVl9YrKgqFi\n9YRue8Z5d5lKUklYz92q4nKTd6/Nf8h19m2/77NTF5v390yiFe3h3UH7Pqh6u3vkYH8Pcp2E\nzawyv3foUPKUQas+HNu3/R6YzhfyBrxN4fyY/X8/c/vMf6eeGgp5DbUylVItq5efjvwrdTEw\nNFi6b7KRmZ5NXabi3e9DVEpqn71YNXsqIjHvXkltRQNfxFUryMApXf3edH/+K5vNRKJ/h3Pe\nPpOZdpXWkmDhfZvZM/rtYpUsK+OwDONplDy+275DSZNu5NgQQmcbKjsPS71LCP3e9DC3pbQ5\nmaw4O/12sdREIBCIK+qEgnqnN424XG5JYd5AP1OhwyA6rRCid9lgekJewuEUKqFkjbL6BJPU\n7HIOh2MoLV46+PvNJ78q4VfKZDI+Izh45zyVVggho/7Wz8ymjU5obFUJh+/l3y9VKBRFRUV8\nPp/D5ahVhGFI4e2q7KR4a2trQ0NDEwskhPAa8X3D3cpZn+bCtarGc+vlST+2PA4rqyOEFRJS\nTwjhiQQZkYRLlPeiGSNJ7fe9zQipPkoIl8cYUPgMbTTtd66NPu0qpnwY33huPY1AMkWjrCQp\nP6iPCc/Kh3P9W0KIRcpGAzvfYf3ul0aMqEh24IsMCY032bDfYp57e9wnfdBUf48eDprHDbWy\nqA0XGMKyhPF7w8Oj51/lhkZ8kbg9ZoOEENa8Qa1s6ZTRynxpwZ2/RsBsu5pUlFXXVjTIG1Re\ng+wZE8XthFRCCGGI5wA7vqilf6BZIz3bg4oQMmVlP3ldS4dhHyTnH910Sa1i8ysd9yVMDuv1\nW16lI8OoJ/XcG31z7P3CTkJ+A8OQYe/26jKopeuvDAx5LYzw6nUa4NxpAJ2JG/KknbWlX//I\nH81z7MkrbiRKhYmzqrQod4HbWStevXj+Uiqt6KPCjHJae18bGUq9LB6mJosIIR3MVdxOyopb\nSkKUHEbt65h0eV+tmqUzfWPw9G7tMyGc8c1IQkhsbOzt2+XyW0aFSdI+HpeT83obWxk7DzFw\ndrEcN24co29fSbwoJITti5mNcfv8aX8iVc5lVUlqKwVn1Uq2lsI+sY9Q1eTrV0JYdesY984h\nWtHcJYTIiSr/r6cMYVWFt8SEiK0IeZiqoNRKg6GNlV4lhDWl0k/6bG2NyO8P3/jHtQlxe/67\npJAWfVxDeOfOHZlM1sIgxTfq8y/XaZ8qG9Uh3f7ILnPNSDUoSC/VFDIcppoUG9m0NNNwcnLq\n0EHP9qdRRfgbc1o6ZdSPEL9R/1PiIvnr8Jtx3Q6O63bwr9JCQva1sCmiUAvJ+vqWRtFb/B6z\nReWZcy9tvmkdUFrGlUllFmKTENVl08YSk9lndd07XQoY6elCaRIWt/KuICb4+M2gayJ/jlRG\nCDHq3qCoUo63ivZ2KwyesIYY0FnmYK1Xi+fpamxsPHYsVlLmVXa7waYXG2L3R5GpV3G2IYnj\nPXA+GxgYSHGxYtuEhBDaL2Hwel7ATJoR1crG8xvUFRlsYy0hhB8wg+c96rkveiE8Jz37DM16\nDMvPpHZCoIao/qG46iaHqNWEU2PaRWpMZ96vlpXXWLoBWxuXx6G46t2K9MetUAAAIABJREFU\nn3Y7xYJjwLVwMBHyGiyt1fUicXletadHPSuylqnozEI0s9a/b6Z69+79xNPkX0x/QhYTpq6I\nFUkyk0oPfXHZwri8VmGZXcKfsn6whYQQVs0a0tn9WCTSs9WwhBDVYwedt3Fqon/jBqrS++oq\nakf1GLgN5ldk+aesrJT05RGBW802UpsjGr1BVZJK8StXnseb+jVr1NhCZGxB6wfQRmF7NOjH\nMbw7ygLDjoQQCwPr/taRPp6F5uEXOJbtd5dRiuRVhVPlx4+mm/vNcS97UEII4fCI7xzL+7vz\nQq3/lBVMJBZ6tpH+i0JCCO0XR+LBl9CbEa5S1P0SyjZUiCZE1O+fZTR1v3TPWwZ2fob936PW\nhB6y8h5o5U3z16g8aZf00HzRxIj63+eahO3mHnrXfvC8dv4mG5kJPz08nUooVqXO/0jib9/N\n/5vjtfV1NSs/9B5q/+4H8+7s/tH69oqGgdudx9JpSB/tWXSmvrqRSqiwzt/UNooPXggVmIoI\nIWoVK6tT/PbuvnmB2+9X9rySN4ZKKz5D3MK+fJNKqFemKOx4RQWdTWVYNUnek2tTc2mc7y8F\nik5EqbQXZZzJHHOnfmifBS4cHp3swsjISO/WiMsu/1t2+d/Uw5oXniKEsA9LCCHS36ZQDv6V\niuhh7t1yteX1snoFEfQiY/a+yb6dkFFFCOlHIjq75ZMJsRX1ElJfbWwuFBjr2YZzVGRdL/z3\n3IPPr9cMDKsa78Of3WfLzl8W1TWKyGhSc58tScmd0XubWs1snH5Vzdyk0tDUtcPb5nG+SAgB\naFAp6n4JVRXfNXk3Tl2ZRQjheY0wmvGHdM9bhJB2nq5QpMkGjcJ287xG1v8+18BtkNGMKOme\ncQRvMiUMl1Pe5zfP9LmyI/PJm38t/lRmne+Q8bdav/8z7TVet917bRy+MyvM77upA/aeyH6X\nw2F4fK6NrXKC1/byWrMrD4cTmvu56pmePXvSCnXoq3OOssRRXX8znvQj+0c0aSgznf3dsN3j\nDB8alp53mfHNCFoN6Z2q8mKusKVzChi1kicvJ88b0VUbiJQ8ChvYsGqW0aslsY2XNsvjt7Qw\nCMuyVbklhPw1McGAw+3jfpEQ4tfhurTGSB0RqClv4BmK7SjsSy8K+8mgA4WzfF8ZniFX4iim\nFS22YH4Qf9ucAVt/vvkOIcTITPa293a1mjmYEW7hRG0OjqFRG111jIQQgAJF5hl1SarJu3Ec\nsYMmISSanHD6Qen+Wfze86jsKNPOqStzpH8sMJ7yG89nPNtQpSnkeQ03mn5I+tN4A483uTad\nddtDXVGpVFlZWbSiGQW4V7jvMo2ZJi0vJ4RlqlNqItc1BCyWdX1HJi0uzyim0oqlpaW5uZ6t\nV6E1DEsI2fruH+W9fu1ctMjvzT9zrgm8O1oO4/3IiP0T7i8c2M9Wc0oQtFD/gAf8mt1GYbv4\nXd8mf0QTza+LmX8M2v1WQw9/QkbquoM6I1cx4gY6P8jPxVHW85U01ljq2+ig6uEVKjNmTZ/0\n2YFh1MaG/3OSpKqktOVtsZXZRK8Swg7eFsv2jqYVra6u7lycieDGupl9fyBqMrHXbyqGl9Zl\nxfufDae4gJDht9HNnxmW1bcJ+1QlJiZGR0evWrVK1x2B14cy+2LdzlFmq6p13ZHXkLq2kGNi\nRwhhG6qqVpqLP83hmDkRQtS1RRxjG/1aYUJRfXlu/g8UJhkyaiWX/WtrHg6rMG7IZVgVIaSR\nbynj/fXnUE0YNZfCtxsG3iGuE/7e8jivUsORv6nlLT6HkGVZlfyvx4p6RfpJVWMjw+EYmFhy\n3QYTzSAIwzBcChPADOx8Dfv/reVx9JQscQcjMOP7TiCE3F09lTSUdll3khCiSD+tKrolGPih\nrjuoM6yinihbuj3Sf6kU0gNzVKWphj3myG/t53kOlSVEGE0/ZOAQQK0JQhihnn1/pCpJVeUl\nUgx4Jy6Te3+PrVkRjzQShnu3wMdu+DSnLtYUm+B1GsUI9WnrFHlipPT3ebruxYsRDFoiHLVB\n1714VHBw8Os2QqhWq6Oiok6cOFFaWiqRSIYPHz5+/HjtgZ4ArwDHwo3fbZque/F60mSDhBCG\nJ+Q6dGcE4v+U690qHpq4jeWSGjrLG55IKC8TyssoBy36//buPK6pK20c+LlJICECIYIIIogg\nCFZwQZHIIi5VcOvU0fqzThUX7DiWVrStls1aLVDHeUVbl4qtrVhx7dQBRJEBXMAKGAgiIgho\nk7AZCItICAn398edN28GFSGEe0l4vn/MB29C+vh45uQ8955FO/umkEmWcxjh2j8Dmo4hhKOu\nluquwjPa/WQFx3YoF4TM6RtUPztMtVE+/89MLQOneQZO8ygKalDADNjIQEv7nRDLJSRlJh/e\nUJRfRzS60aL9iMFqS/iz8cY0hu3QfdbdzrBrNNRaEZv7a/GIR4dcHdpv1Gzy53730DL2LSz8\n3+eznr77pZOn1nYStsZMB+l0xtdhsBFNGyHjXUh99rOqn8fUywfsv/+oKeYg3VBN3wrCEydO\nJCcnz5w5c+nSpSUlJadOnZJIJH/961+pjgsMITTTUew/HaY6Cn3HYJp+nE91EIOFoYVD15xI\n7X5mV9Mf8sIzCKMhjEYb4WzoukS7c7YYY320+GnkYE7fgMv7PfkN78I72/7zo6JD+TQHV3Qg\nhGjDLOg2Hv95yo3RMAN2/xNOH+Xez0/QG0yvTXhnv5/ugpd0/H5MWVts8mEmjWOjumi0YC9S\ndrad/QvnszIKY6MW/2p5YuR1rXwUDetaPu3cGMvKQ5f/amTY7j8bJR7Fx41cs2bmT9fO0S5+\nrbVt2yJS1tq4jNDWp5FAMf5PNR8UavEDMXmrefomeWfnsKaHUu5kE6W0Yf7JrmFaW0CIELKx\nsTHS4sdpj14VhEKhMCUlZdasWdu3b0cILVq0yMDAIDU1NTAwcMwY7ZzBCgAAgw3GNDVaoM3p\nl4qqm89/XGi04KuOnMNG83a1p3/Z1SIetvyEdu6P6iz2n49r8dO6ntc9Pz6HYe+N8C66jYe8\n6DzGYA5bdQbRdewevU6gmWtvQ2mghjljk+H0dZhh94ceRgu/YfnvoCSkQcJ2guX8D7XzgNSs\ns2B8q1jAOebxF+u2ypsIoZmrJxgbez7odHl78m7T2X9V0rSzLM3EXMcOqmlraxMItDY7hqF8\nMb0ytg1h2VZ/W9QUmmfyp0nNycZJ7+c6RnQYam0m7bBhwzgcrW2Eo0V6VRDeunULx/ElS/5v\nLc3SpUszMjJu3rz5wQdDd6t0AADoPaIaZM2NYPnv7Mg5jJmOMtmU2Xp8dtvFjVATagtRDdLM\n7Ii9iDEjs/8kOfF9qAmBLmEwMcQkfqQNH8sYNUX1CsbWpdVoWjd2svXYydZa+jA/hD4ZhRBC\nqOCfVVgOmrd5irW1NUJ+CG1bqqX/hi4yNTX19vbWzmcpZMMu/z/cxLR9SYIf3QBVhM70nYVM\n/8K8+rdZ1f94sexXXEurKy0sLLTyOVqnVwXh48eP6XS6o6Oj6srYsWMNDQ0rKioojAoAAHQG\njj//+R3W/K/Ut9ygWTgZB//7+fE58vsXDd3fozA6vdH2y/+jcccaf3AJMf53MG1maxL879bj\ns2VZ37DmRlAbHgAaYDjMYjjMojqKwaKzs7OjQ3s79/yvLvORIi7PuK3t+fPnWv9wNputW5tu\nMJlMOzs7rXwU3t7U7uhjNH8vxjLFFbImhEaNGkW3cETBSe3XIrmWZjSudv5Dg5ZeFYSNjY0c\nDodO/7+jajAM43K5DQ0N6m/7/fffVf9Hqq+vJzVEAAAYzDCM83nFy7f26SPGm25/OGj3y9Y5\nw/58nMYdg/57K1Ead4zpR7kDsW8NAIBkT58+zcvT5i6jhGfPnj1r97fLzDQ21v7eJIGBgWZm\nZlr/WJ2AGZmxlx76z88IU/0vohsaLfyGwsBIo1cFYUdHh4FB95k2hoaG3W7SxMXFPX78mPh5\n/Pjx48bB0gIAAPgP9WqQYTeDZmb7n+ss3dsXdNCiWTj938+mo2jG/9kmFxs2SGcTAQD6xNTU\ndCCGlwM6ZGUymQP34bqEwTRef4U23IHqOEilVwUhk8lsb+++jZhcLmex/uvUrPfff18qlRI/\nv3jxora2lqT4AABApwz7y0WqQ9B/7OU/UB0CAEDLLC0tLS21eUggIJPB+ECqQyCbXhWEw4cP\nf/r0qVKpVM0axXFcKpVOnDhR/W1Ll/7fElziYHpSowQAAAAAAACAwUGXFo++kaOjo1KprKys\nVF2pqqqSy+Xq28wAAAAAAAAAACDoVUHo6+uLYVhSUpLqSlJSEoZhvr5aO7UTAAAAAAAAAPSG\nXk0ZtbOzW7hwYUpKSmdn58SJE0tKSm7duhUQEGBvb091aAAAAAAAAAAw6OhVQYgQCg4ONjc3\nT0tLu3v3rrm5+QcffLBs2TKqgwIAAAAAAACAwUjfCkIajbZ8+fLly5dTHQgAAAAAAAAADHZ6\ntYYQAAAAAAAAAEDv6dsTQg3cvXv3b3/7G9VRAAAAAAAAAACpmpqaMBzHqQ6DSh0dHRKJhOoo\nAAAAAAAAAIACQ70gBAAAAAAAAIAhC9YQAgAAAAAAAMAQBQUhAAAAAAAAAAxRUBACAAAAAAAA\nwBAFBSEAAAAAAAAADFFQEAIAAAAAAADAEAUFIQAAAAAAAAAMUVAQAgAAAAAAMHgpFIq2tjaq\nowB6CwpCAAAAAAAABimlUhkbGxsREfH8+XOqYwH6CQpCAAAAAAAABikMw4yMjCoqKiIjI6Em\nBAMBCsIhobS0FMdx4meRSLRr166WlhZqQwJAM9CYSQBJJgEkmQSQZKAfaDRaaGjorFmzoCYE\nA4T+5ZdfUh0DGFh8Pj8qKqq6utrLy0ssFoeHh1dVVbW3t0+fPp3q0ADoG2jMJIAkkwCSTAJI\nMtAnGIZ5eXnV1NQUFBQUFhb6+PgYGhpSHRTQHwyqAwADzsnJacyYMVlZWTKZ7NGjR1Kp1N3d\nff369VTHpbckEsmpU6fKysosLS2XLFkCgw8tgsZMAkgyCSDJJIAkk6ytre3SpUt5eXkdHR1O\nTk4rVqywt7enOii9QjwnRAjduHEjMjJyz549xsbGVAelh4bmKA5TzaYAeqy1tTUiIqKqqgoh\n5O7uHhkZyWQyqQ5KPzU1NYWGhjY0NKiuBAYGfvjhhzQaTM/WDmjMJIAkkwCSTAJIMmmqq6uj\noqLq6+sRQkZGRu3t7QwG4+OPP/b396c6ND0hlUpPnTolEAgwDHv27BlCyNHREWpCrRuyozg9\n/+sBQltbW1NTE/Ezl8uFaQYD59SpUw0NDY6OjlFRUdu3b7ewsEhNTY2Li4M7L9oCjZkEkGQS\nQJJJAEkmh0wm2717d319vaOj46FDh86dO7dgwQKFQnHgwAGhUEh1dPpAIpFs27bt3//+N41G\n8/f3X758uaWlJawnHAhDdhQHawiHBENDw+LiYgsLC2Nj48LCwtraWi8vLwzDqI5LDx05csTU\n1HT//v1jxoyxt7f39/fn8/kCgQByri3QmEkASSYBJJkEkGRyXLp0KScnZ+zYsbGxsRYWFlev\nXj137hxCaOPGjZ6enlRHpw8OHjxYVlbm4uKyb98+Dw+PSZMmBQQEiMVigUAA6wm1a8iO4qAg\n1H9SqVQmk82bN8/f39/Pz6+wsLCgoKBby757966pqSnMpem/X3/9dfHixZMmTSL+yGKxvL29\nh0hvQgJozCSAJJMAkkwCSDJpfvzxx8bGxq+++srCwuLatWtHjx7FcXzjxo1Lly5FCKWlpdnY\n2DAYsGmFhpRK5cGDB7u6unbv3m1ubk5cpNPpPB4vPz+/oqICakItGrKjOCgI9VljY+PBgwcP\nHz58+/btmTNncjgcJpPp7e2t+l709PSk0WiZmZn79+/Pz8+fO3cudNkakEqlJ06cOH36dH5+\nfktLy8SJE8ePH696dej0JgMKGjMJIMkkgCSTAJJMsvPnzxsbG69ZsyYtLe3IkSPq1WBra2tU\nVFRZWRksJtSYQqE4e/Ysg8HYtGmT+nUajcZise7cuSOVSqEm7A8YxSEoCPVYTU3Njh07ysrK\nTE1NFy9e7OjoyGazEULq34sFBQXFxcVnz57FcXzhwoWTJ0+mOmrdI5VKt23bVlxc3NzcXF1d\n3d7e3tzc/Pbbb6uvP1bvTcaOHWtra0thwLoIGjMJIMkkgCSTAJJMvtzc3JqaGkNDw+PHj6tX\ngwih48ePl5eXe3p6Tp06ldogdRedTs/KymppaeHxeGZmZuovNTc3Z2ZmTp8+vbi42MrKaty4\ncVQFqbtgFEeAglA/yeXysLCwuro6FxeX6OhoDw8P4huRwGQyfX19y8vLS0pKnjx5QqPRgoKC\nVqxYQWHAuuvYsWMlJSUODg4fffTRlClTysrKqqurGxoaPD091e8hEb2JlZXV7NmzKYxWF0Fj\nJgEkmQSQZBJAkimhVCpzcnIKCgoQQurV4LVr186ePctisbZv367+DwH6SqFQFBYWCoVCf39/\n9ULl8uXL5eXlX3755cSJE+EZrGZgFEeAYyf0U2pq6tGjR62srOLi4lS9sEAgEAgEFhYWCxYs\noNPpOI5nZ2cLhUIejweHBWlAIpGYm5sHBQUZGBgcOnSIyHNjY2N4eLhYLJ43b15ISIhezisg\nGTRmEkCSSQBJJgEkmQRdXV04jtPpdPUrO3fuLC0ttbGx+frrr4cPHy6TyS5cuHDx4kUcxz/7\n7DNfX18KA9YDSqXy888/Ly8v9/Dw+OSTT4jnhKmpqceOHeNwOCdPnlT/5wC9BKM4dTBpXj89\nevQIIbRo0SKifYtEoiNHjhQXF9PpdKVSmZ2dvXfvXgzDfHx8qI5UV4nF4rCwMA8PDzqdHhAQ\noBp5DB8+PDo6OiwsLD09HSE0pHqTAQKNmQSQZBJAkkkASR5QEonkhx9+yMvL6+zsHD16dEBA\nwKJFi2g0Go1GCw8P37VrV2Vl5fr16y0tLRsbG+VyOYZh69atg2pQA8TTGtX4gU6nR0VF7dq1\n6969exs3bnR0dJRKpbW1tQihNWvWQDWoARjFdQPnEOqn0aNHI4QEAoFQKDxz5szWrVtxHI+L\niztz5oyVldX9+/fLy8upjlG3sdlsNpudnp4ukUi6LePmcrnR0dE2Njbp6enffvstPITvJ2jM\nJIAkkwCSTAJI8sCRSqWfffZZdna2XC7HcVwoFMbHx4eFhbW2tiKEOBxObGzs8uXLTUxMamtr\nOzs73d3dY2Nj3333XaoD1zHPnj3bs2fPsmXLVq1adfToUdUxg0SG33nnHQzDHj58WFtby2az\nN2/ePG/ePGoD1lEwiusGnhDqp8WLF+fl5eXn5+fn55uYmKxfvz4wMBDDMNU0j66uLqpj1G1E\nfxEWFiYWizMzMxctWqR+i071anp6upeXFxzE1B/QmEkASSYBJJkEkOSBc/LkyYaGBhcXl82b\nN9vb25eXl584caKkpGT37t3R0dGGhoYsFmvNmjUffPBBa2urkZGRgYEB1SHrHqlU+vnnnzc0\nNCCEXrx4kZqaWlBQ8NVXX1lZWSGEWCzWhg0bVq9eXVVVheO4g4MDi8WiOmRdBaO4bmANoZ5o\na2u7dOlSXl5eR0eHk5PTihUrbG1t7927p1QqJ02apHoUnpSUFB8fz+Vyf/zxR5hj0H9SqZTo\nTV4511wqlebk5CxatIiq8HTRyy3Z3t5eqVRCY9YiSDI5oFsmASSZBMRSqzVr1rBYrEOHDhkZ\nGRHXOzs7d+/eXVRUtHz58jVr1lAbpH747rvv0tLSnJycNm/ebGxsfP78+fT0dAsLi+joaKIm\nBNoFozgVKAj1QXV1dVRUVH19PULIyMiovb2dwWB8/PHH6ltO4Th+6dKlhIQEWOGtmVeOodGb\nehPQJ71pyQgac/9AkskB3TIJIMkkUC214vP58+fPf//999VflUgkwcHBhoaGCQkJcAhefxBV\nd3BwcFdX16FDh4yNjYnriYmJiYmJUBNqxSsHcjCKI8CxEzpPJpPt3Lmzrq7O0dFx9+7dwcHB\njY2N5eXlv//+u4+PD4fDQQgVFBR89913169fxzAsKCgoICCA6qh1THV19Y4dO/Ly8pqbm5VK\nZUVFxfXr10eOHGlvb29kZOTt7Z2XlycQCCQSSbd9ikHv9aYlI2jM/QNJJgd0yySAJJNDqVTe\nvHlTIBC0t7dPnDjRzc1N/VU2m/37778/e/bM09PT3NycqiB1nVgs3rFjh1AorKurmzdvnoeH\nh+olIuG5ubl37tyZMWOGqlAEffW6gZyrqyuM4hBsKqMHLl++XFNTM3bs2JiYGHt7+6tXr6al\npSGENmzYQByd2dTUdPTo0fv371tZWe3evXvZsmVUh6xjZDLZ7t276+vrHR0dDx06dO7cuQUL\nFigUigMHDgiFQjRU1x9r3RtbMoLG3G+QZHJAt0wCSDI5VF9wCKGbN28qFAr1V3Ecb2lpQbA4\ns39UG5zU19erZuSqrFq1atWqVRKJJCwsjNhZFPRVzwM5GMUhhBAOdFxoaOiSJUuIFcZXr15d\nunTpkiVLLl++TLx67dq19vb2Z8+eZWdnE2cHgb46e/bskiVLPv744/b2dhzHU1NTuyWZ0NjY\n+Ne//nXJkiV3796lKFLd1puWjOM4NOb+gCSTA7plEkCSyaT6gvvHP/6hVCpV15OTk5csWbJy\n5UqZTEZheHpAleFPPvlEoVC8/IYzZ84sWbLkt99+Iz82PdCbgdwQH8XBE0Kd19zcbGlpaW9v\nn5aWduTIERzHN27cuHTpUoRQa2vr8ePHY2NjLSwsZs6cOTQfgvff3bt3EUKhoaEsFuvatWtH\njx5VT3JaWppMJkP/exv1ww8/HAq7UQ2E3rRkhBA05v6AJJMDumUSQJIHVFdXl1KpVP1R9Qgl\nKytrx44dt2/fvn//fnx8/PHjxxFCa9euZTKZ1AWrD1QZrqysPHz4MP7SQ6pVq1ZFR0e/8847\nlISn63ozkBviozgoCHWSSCSqrKwkfraysmppabl8+TLRg6jaN0Lop59+ksvlqplgQDO9HEMj\nhLhc7hDZjUqLVI0ZWvLAgSSTALplEkCSSSCRSL755pv33ntv2bJlW7ZsSUpKIqaDqiqWR48e\n7du3Lzw8PCkpycTEJCQkJDAwkOqodQyO40VFRSkpKfn5+arC+40TFydOnEh6pHqilwO5oTyK\ng01ldE9TU9POnTuvX7/u6enJ4XCUSmVOTk5BQQFCSP0b8dq1a2fPnmWxWNu3b1dtvQ00kJub\nW1NTY2hoePz48W7DjuPHj5eXl3t6ek6dOpXaIHWUemMeNmwYtOSBAEkmAXTLJIAkk0AqlX76\n6aePHj0iqpSWlhY+n19UVDRjxgwmk6naRK21tXXGjBnh4eF/+ctfnJycqI5ax9TX1+/atevi\nxYv37t27cePGrVu3nJ2diS15YJu6AQIDuTeCJ4S6JyEhQSKR2NvbW1paIoTmzZvn4uKCELKx\nsfHx8UEIyWSyhISEI0eOIIRCQkIsLCyoDVhXlJaWqm7IiUSiXbt2EWvlZ82aJZPJfvjhh26d\nyLVr165fv85isWAKh8bUGzO05AECSSYBdMskgCSTQHX6/MGDBy9fvrx//34XFxfi9Hm5XI7U\nnmLdvXv3119/hUMd+6q5uXnnzp3l5eVcLnf58uVLliypq6sLDw/n8/nEG2CDE429bhSHYCDX\nC3AOoS4hjqkJCgoyNDRUPxy2ubl5165dlZWVNBrN0tKysbFRLpcTu2y/++671MasK/h8/p49\ne3x9fUNDQ8VicXh4uFQqDQwM3Lx5c1dX186dO0tLS21sbL7++uvhw4fLZLILFy5cvHgRh4Ot\nNPXKxgwtWbsgySSAbpkEkGQS9On0eTi6TWNffvkln893dXUNDw83NTVNTU09duwYjuOGhoZh\nYWGqh1SqDEdERAzNJW191cMoDiEEA7k3gimjOkP9mJqAgIBJkyapXmKxWP7+/jiOi0SihoaG\nrq4ud3f3bdu2QfvuPWNjYz6fX1BQ8OTJk/Pnz0ulUnd3961btzIYDAzDPD09BQLBH3/88a9/\n/SsjI+OXX365f/8+hmHr1q1bsGAB1bHrntc1ZmjJWgRJJgF0yySAJJOg2zl46nPn6HS6u7t7\ncnJyZWXlO++8QzwShJmNb6RQKLq6umi0/5qIV1paeurUKQsLi5iYGFNT06tXrxLV4Jw5cx4/\nfpyTkzNu3Dhra2v0vxkeOXLk7NmzKfob6JgeRnEIIRjIvRGD6gBAb6mOqUEIvTxJg8VirVmz\n5oMPPmhtbTUyMjIwMKAiRh1mYmKyZ8+eiIiI33//HSHk7u4eGRmp2jaNw+HExsaeP3/++vXr\ntbW1GIa5u7uvXr3a1dWV0qh1VQ+NGVqytkCSSQDdMgkgySRQT/LLLCwsxowZU1lZ+eTJE2dn\nZ+IiMbMxLCwsJydn+fLlo0aNIjHewU6hUBCblHzxxRfqjfb+/fsIoeDgYBMTkzt37qjvddnR\n0ZGdnU2klCjIh/IGJxroeRSHYCD3JrCGUGeoHw6bkZGhvh+0CoZhpqam8I2omba2tqamJuJn\nLpdraGio/iox7Dh16tTp06cvXry4d+9e6EQ09sbGDC25/yDJJIBumQSQZBJodvo88Vt79+6F\narAbhULR2tqam5sbExOj3mL//Oc/L1261NPTs6Wl5dChQziOr1q1iljPZmNjw+VylUpldHQ0\nnD6vmZ5HcQgGcj2CKaO6RDVJQyQSPXv2bMaMGTBJQ4sMDQ2Li4stLCyMjY0LCwtra2u9vLy6\nZRjDMCaTCcvo+w8aMwkgySSAJJMAkkwCVZKrq6vr6urUk3zlypVbt26x2ex169YRE/DUf2v4\n8OFUxDuoMRgMX1/f4uJigUBQVVXl7e1NzB3FMGzq1Kk0Gi0lJSUvL2/KlCkhISHEr5w+fZrF\nYm3evHnUqFFeXl6Uhq+rejOKQzCQew0oCHWMqssuKiqCiftaJJXBJlA/AAAgAElEQVRKZTLZ\nvHnz/P39/fz8CgsLCwoKuvUmd+/eNTU1heN3tQUaMwkgySSAJJMAkkwCVZLv379fUFDAZrOb\nm5v/9a9/JSYmIoQ2btxIbOsKeuN1NSEhIyOjoqLivffec3BwQAilpKRcu3bNxcVl5cqVcNig\nZmAU109QEA5qCoUiIyMjKSkpNze3paVl9OjRDAYDFnNrV2Nj48GDBw8fPnz79u2ZM2dyOBwm\nk+nt7a3qTTw9PWk0WmZm5v79+/Pz8+fOndvtFil4o1e2ZAQ7E2gVJJkEkGRywHcfCdra2s6e\nPXvixInffvuN2H3RzMxMleSqqqrs7OyMjIyysjJTU9NNmzbBxht91UNN2NLScvfuXalUOmLE\niOTk5MTERAzDNm/eTBypAvoERnFaAcdODF41NTV79+4VCoWqK5aWlp999tn48eMRbPqsJTU1\nNWFhYQ0NDRwOZ+nSpbNnz1YdXdXa2hoZGVlZWens7Dxq1KisrCyE0KpVq1atWkVlxDqo55aM\noDFrAySZBJBkcsB3Hwmqq6ujoqLq6+sRQkZGRu3t7QwG4+OPP/b390dqSZ4xY8batWutrKxg\nAK0xmUy2a9euhw8fenp6qvaYUSqVu3btKioqUr0tKCho2bJl1IWpq2AUpy3whHCQIo4uramp\nsba2Xr58uaenZ0dHR1VV1Y0bN9566y1LS0v1e6Xjxo0j1oKDPpHL5WFhYXV1dS4uLtHR0R4e\nHmw2W/Uqk8n09fUtLy8vKSl58uQJjUYLCgpasWIFhQHroje2ZPTfT1egMWsAkkwCSDI54LuP\nBDKZbOfOnXV1dY6Ojrt37w4ODm5sbCwvL//99999fHw4HI4qyQ8fPuzo6HjlQizQS698Tkij\n0Xx8fBgMRmdnp4ODQ3Bw8Jw5c6iOVPfAKE6LoCCknkKh+P7778eMGTNs2DDVxZMnTwoEAmdn\n57///e9ubm7Ozs5z5841MDDg8/l5eXlvv/02k8mEY2r6KS0tLSMjw8rKKjY21tTUlLgoEAjS\n0tLEYrGDgwOTyZw9e7adnZ2dnV1wcDCPx6M24EFO45aM4MylXoMkkwCSTA747qPKpUuXcnJy\nxo4dGxsba2FhcfXq1XPnziGENm7cqDoDHSboatEra0I6nT5x4sS3337bz8+POHsQ9BWM4rQI\nCkKKdXV17du3LzMz88GDBwsWLFB1uHFxcXK5PDw8XH1C+YQJE8RicVlZGY1GIw7nNTIyUh0K\nBPoqJSWlqqpq5cqVbm5uCCGRSBQbG3vu3LlHjx7l5eWVlJTMmTMHwzA7Ozs3NzczMzOq4x3U\n+tmSETTmXoAkkwCSTA747qPQjz/+2NjY+NVXX1lYWFy7dk39NDyEUFpamo2NDSza7I+urq5u\np9L3vMcM0AyM4rQImiPFLl++fOfOHWNjY/W1EDiOP3/+HCFkZ2fX7f0LFy5ECPH5fJLj1Bsi\nkejx48fEz6NHj0YICQQCoVB45syZrVu34jgeFxd35swZKyur+/fvl5eXUxqsLoGWTAJIMgkg\nyeSAPFOoubnZ0tLS3t4+LS3tyJEj6tVga2vr8ePHiUPVkdr5hDk5OTU1NZRGPRgplcpuO3FI\nJJJvvvnmvffeW7Zs2ZYtW5KSklSHN7JYrN27d7u6ur58PiHoPRjFDRAoCCn273//GyG0detW\nBwcHkUj0+++/I4QwDCPmD7zclFksFkLoxYsXpEeqD2QyWXh4+D//+U/ij4sXL3Z1dc3Pz9+y\nZUtKSsr69eujo6MdHBxYLBax7LvbIbygB9CSSQBJJgEkmRyQ54FWWlqqqlVEItGuXbuIw+UR\nQlZWVi0tLZcvXz58+LB6NYgQ+umnn+Ryua2trepz4PT511EoFDExMd9++60qz1Kp9LPPPsvO\nzpbL5TiOC4XC+Pj4sLCw1tZW4g3qNWFOTg51sesqGMUNHCgIKUasfzUwMBCJROHh4d988w2x\n69T8+fMRQj/88INcLld//40bNxBCY8eOpSJYncdisSwsLO7cudPc3Ez8MTo6OiIi4osvvoiP\nj1+4cCFxozo5OVksFnO5XCcnJ6pD1hnQkkkASSYBJJkckOcBxefzv/jiiwMHDuA4TmS4oKDg\nl19+IV6dNWuWTCb74YcfulWD165du379OovFeuedd9Q/jcvljhs3juy/w6DX1tYmFovT09NV\nNeHJkycbGhpcXFwOHjx4+fLl/fv3u7i4lJSU7N69W9WeiZrw448/9vX1pTR8nQSjuIEDawgp\nxuVyb968mZ+fn5WVJZVK3dzcli1bxmAwnJyc+Hz+48ePHzx44O7uPmzYMBzHU1JSzpw5g2FY\nSEiIal9d0CdMJjM7O9vExGTChAkIIRqNZmNjY2tra2BggBDCcfzSpUs//fQTQigkJMTe3p7S\nYHUJtGQSQJJJAEkmB+R5QBkbG/P5/IKCgidPnpw/f14qlbq7u2/dupU4PWLs2LGFhYUSicTG\nxmbdunVGRkYymSwxMfHnn39GCIWGhrq6ulL9N9ABLBar2xrLo0ePmpmZ7du3b8SIERiGmZub\n+/v7l5aWlpSUdHV1qZYZMxgM4jx6oAEYxQ0QOIeQeqdOnbp48SJCyMXFZc+ePcRWdQih5ubm\nXbt2VVZW0mg0Ozu75uZmqVSKEFq3bt27775LZcS6TKFQbNiwwcDAID4+vtv6+IKCgosXL96/\nfx/DsLVr18KJQH0FLZkEkGQSQJLJAXkeUK2trREREVVVVQghd3f3yMhIVYbRfyfZ0tKysbFR\nLpdjGBYUFARJ7hP1gzH5fP78+fPff/999TdIJJLg4GBDQ8OEhARDQ0Oq4tQbMIobIPCEkGLV\n1dXx8fEymQwh1NHRMW3aNC6XS7zEYrH8/f3lcnlVVVVDQ4NMJhs+fPhHH320YMECSkPWbTQa\nTSaT3b17lzioVHW9qakpJiamsrLSysrq888/h93M+wpaMgkgySSAJJMD8jzQpFJpcnIykWEX\nFxcfHx/10TORZGJCaUNDQ1dXl7u7+7Zt22AeY1+p78Xa3t4+ceJEYsdLFTab/fvvvz979szT\n09Pc3JyqOPUGjOIGCDwhpNiLFy+ioqJYLNbkyZNPnTplYmKyZ8+ebnMJZDKZUCg0MDAYM2YM\nbPrcJyKRSCgUzpgxQ31/56ampvXr10+ZMiUyMlL9zRKJpKysjMfjQZI1AC2ZBJBkEkCSyQF5\nHmhyuTw6Orqzs7Otra2ystLf3z80NPTlNOI43traamRkRMy4A5pRPSccNWrUd999R0zNJeA4\nvmHDBolEsm/fPhcXFwqD1EUwiiMNPCGkmIGBgY+Pj7+/v7u7O3EbKTs7e8qUKap7pQghBoNh\nbm5uZmYGTbxPmpqaPvvss+vXr2dkZCgUCltbW2K2BovFqq6uzsnJmTt3rvqByGw229bWFpKs\nGWjJJIAkkwCSTA7I84CSSqUymWzevHn+/v5+fn6FhYUFBQW1tbVeXl6qZN69e9fU1JTFYjGZ\nTGJLRtAn1dXVdDqdKKRVzwmrq6vr6upmzJihyvOVK1du3brFZrPXrVunXiiCN4JRHJmgIKQM\n8WwWwzADAwOij3BxcXnd9yLQAIvFmj59OoZhxBGlycnJz549s7Ky4nA4I0aMuHbtGpPJVC3y\nBv0HLZkEkGQSQJLJAXkeCI2NjQcPHjx8+PDt27dnzpzJ4XCYTKa3t7eqJvT09KTRaJmZmfv3\n78/Pz587dy5UKRqor6/fsWNHbm6uj49Pt5rw/v37BQUFbDa7ubn5X//6V2JiIkJo48aN8Hiw\nr2AURyYoCCnw7Nmz//mf/4mLi/vtt9+ePXvm6uqqWmcM34vaIpVK29rarKysPDw8Fi9ebGlp\nWVdXl5+ff+XKlZKSEjs7u7q6uqKioqVLl6rPQwDaAi2ZBJBkEkCSyQF51oqampodO3aUlZWZ\nmpouXrzY0dGRON5DvSYsKCgoLi4+e/YsjuMLFy6cPHky1VHrJBaLVVZWVlhYWFRU9HJNWFVV\nlZ2dnZGRQfxbbNq0CVbA9hWM4kgGBSHZpFLpp59++vjxYxzHOzs7Hz9+nJ2dPX36dGNjY+IN\n8L3YT+r3R2fMmGFsbMxgMMaNGxcQEDBlypTOzk4+n09sdN7e3j5mzBg7OzuqQ9ZP0JL7TyQS\n1dfXDx8+/HVvgCT3HyR5kIA895NcLg8LC6urq3NxcYmOjvbw8CCqQQKTyfT19S0vLy8pKXny\n5AmNRgsKClqxYgWFAes0Go3G4/GEQuHrasLW1tYZM2aEh4f/5S9/gdPw+gRGcZSAgpBsP/zw\nQ3FxsZOTU0RExJ///Of29vaioqI7d+4QjZ54j+p70crKCo4D6pPX3R8lWFhY8Hi8gIAAExOT\n6urqtra25ubmuXPnUhiwfoOW3B8ymSw0NLSxsdHb27uHt0GS+wOSPKhAnvsjLS0tIyPDysoq\nNjbW1NSUuCgQCNLS0sRisYODA5PJnD17tp2dnZ2dXXBwMI/HozZgXffGmvDhw4dTpkyxtbWl\nOlJdAqM4qsAuo+SRSCTm5ubBwcFdXV2HDh1SlX+JiYmJiYkWFhbR0dFWVlaq9z969Gj8+PEU\nBauT5HL51q1bRSKRi4vLF1980fMNZhzHjxw5cu3atbi4ODgi9nUUCkVHR4f6om0NQEvW2Pbt\n26uqqk6ePMnhcHp+JyRZY5DkwQbyrJm4uLiMjIwNGza88847CCGRSHTkyJHi4mI6na5UKt3c\n3Pbu3Qv7bfRHW1vby9+GSqXy73//e05OjrOz81dffaWqXqRSaU5OzqJFi0gPU4fBKI5C8IRQ\n+xQKRVdXV7c5zWKxeMeOHUKhsK6ubt68eR4eHqqXiCNrcnNzuz0ntLCwIDNsPfDG+6Pq/ygY\nhnG53LS0NBqNNm3aNIpCHtSUSmVsbGxKSoqPj09/jtOFlqwxJpOZnZ1tYmIyYcKEnt8JSdYY\nJHmwgTxrRiQSCQQCOp3u4OCQkpJy4MCB4cOHh4eHBwUF3b59u7Kyctq0aXAOnsZEItH27dsZ\nDEa3uxXEc0I+n19eXt7tOaGzszNFweoqGMVRCBZiaplCoYiNjY2NjVUqlerX2Ww2m81OT0+v\nr683MjLq9lurVq1atWqVRCIJCwurra0lMV698ujRI4TQokWLiFt0IpEoLCwsMjLyn//857Fj\nx6Kioro9DzcxMUEIPXz4kJJoBz8Mw4yMjCoqKiIjI58/f051OEORj48Pl8u9evUqTOUYOJBk\noB8WL17s6uqan5+/ZcuWlJSU9evXR0dHOzg4sFgs4lSJrq4uqmPUSSKRqLKyUqlUKpXK+Pj4\npKSkbm+g0+nEasyysrKoqKgXL15QEaY+gFEchaAg1DKFQtHa2lpSUtKtruNyudHR0TY2Ngih\nrKysbuUiUqsJ7969S164+mX06NEIIYFAIBQKz5w5s3XrVhzH4+Lizpw5Y2Vldf/+/fLyctWb\nu7q6fvrpJ4SQ+jRdoI5Go4WGhs6aNQtqQqowGIyAgID6+vp79+5RHYvegiQD/cBisaKjoyMi\nIr744ov4+PiFCxcSE0STk5PFYjGXy4WtTTTQ1NQUFRUVGRlJo9G+/vprU1PTV9aExFRST0/P\nsrKy27dvUxGpPoBRHIVgyqiWMRgMX19fHo9na2tbV1dnZGSkesCtWmf8xx9/NDQ0eHp6dpvN\n7+bm5ubm5ufnR0Xg+sDBwaG4uLioqOjKlStPnz5du3btX//61+HDhzMYjNTU1NbW1nnz5qkm\nIz1+/Pinn34yMjL6/PPPVTMTQDcYhnl5edXU1BQUFBQWFvZz7ijomUgkevDggY2NjXrPYGtr\nm5SU9Pz581mzZlEYm96AJJNDddAu1YEMLTQazcbGxtbWlpi1iOP4pUuXiEFzSEiIvb09teHp\novj4+OLi4vHjxy9cuNDc3NzDwyM7O/vOnTvGxsbqc0cvXLhQUVERExPj7Ow8e/ZsCgPWaTCK\noxAUhNrHYDA4HA6xUVJJSYm3t/fLNaFAIJBIJC/XhJaWllSErCcYDMacOXOcnJy8vb2Dg4Mn\nTJiguj+alZXF5XLXr1+v+rcwNzd3cHAIDAwcO3YspVEPdr2vCcViMXTKGmtqavrss8+uX7+e\nkZGhUChsbW2JPLNYrOrq6pycnLlz5/Zzdx8ASdY6pVKJYZj6F1kPB+2qg+5ioBUUFHz33XfX\nr1/HMCwoKCggIIDqiHSMRCIxMjI6cuQIh8OJiYlhsVgIITMzM1VN2NXV5ebmhmFYUlLShQsX\nLCwsVq5cCUcg9AeM4igEBeFAMTAwyM/PFwgEVVVVfaoJQX/06f6ojY0NrLDvmVQqPX78eHx8\nvEQiefHihVQqfV1NmJWVFRUVNWzYMNgeUAMikej58+fz58/HMOzRo0d5eXnJycnPnj2zsrLi\ncDgjRoy4du0ak8mcNGkS1ZHqMEiy1hFr5gUCgeqL7I0H7RKguxhoTU1NMTExlZWVVlZWn3/+\nOTyz6iv1jQADAgLUuwWiJrxz5869e/euXLmSnJxMzBHdtGkTVCb9B6M4qkBBOFCIuaPFxcVQ\nE1IF7o/2k0Qi+fTTTx88eGBsbOzv7z9hwgSJRCISiV5ZE967d6+wsHD8+PHErrmg95qamnbu\n3Hn9+vV58+bNmTNn8eLFlpaWdXV1+fn5V65cKSkpsbOzq6urKyoqWrp0abfti0EvQZIHQmtr\n6z//+U/1L7LeHLSLoLsYeCwWi8fjubq6bt682dramupwdI9Sqbx586ZAIGhvb586dWq3UzHN\nzMy8vb2rqqqEQuGLFy8MDQ03bNiwYMECqqLVVzCKIxMUhAOolzXhuHHjiM1mgBbB/dH+O3jw\nYFlZmYuLy759+zw8PCZNmhQQECAWiwUCwcs14YQJEyZNmjRnzhwKA9ZR6mtUGAwGg8EYN25c\nQEDAlClTOjs7+Xx+VlaWVCptb28fM2YMzEfSDCR5ILBYrG43N+Pj442MjPbt22dlZWVsbDxj\nxgz0qkOVoLsgAZvNtrW1hdvNmlEN0lpbWxsbGxcsWNDtPtGwYcPmzp3r7e09Y8aM9evXw60N\nrYNRHMmgINQmHMfv37+fn5/f0tIycuRIGo32xppw5MiR0MoHAtwf7SelUnnw4MGurq7du3er\npmTQ6XQej5efn19RUfFyTThixAiKgtVVr1yjomJhYcHj8QICAkxMTKqrq9va2pqbm+fOnUtV\ntDoKkjyguk146f1Bu9BdgEFO1bZFItGzZ89mzJjxcnXN4XCsra2ZTCYlEeo3GMWRDApCramv\nr9+1a9fFixfv3bt348aNW7duOTs7m5ub91wTwrmlAwfuj/aHQqE4e/Ysg8HYtGmT+nUajcZi\nse7cudPDekLwMoVC0d7erp6rHtaoqGOxWBMmTFiyZIlUKiWG1Fwul6yodQwkmRLqNWFbW5un\np6eLi4v6G15XE4KelZaWmpubE19hIpHoH//4h4eHB9QeZFK17aKiIljgQz4YxZEJVkpoR3Nz\n886dO8vLy7lc7vLly5csWVJXVxceHs7n8xFCLBZr9+7drq6uubm5MTExLx9CCMBgY2hoaG1t\nrVAonjx50u0lYqw8ffr0ioqK7OxsCoLTNUqlMjY2NiIiQv0sRzabzWaz09PTGxoaiGOje4Bh\n2Pz58xFCaWlpAxurzoIkUwgO2tU6Pp//xRdfHDhwAMdxkUgUHh5eUFDwyy+/UB2XnsNxvNvR\n56q2nZ6e/u2333Z7FQC9AU8ItSM2NraiosLV1TUmJsbT07O+vj4vL0+hUOTk5IwbN87a2lr9\nOaGdnd2YMWOoDhmAN1AoFIWFhUKh0N/fX335xOXLl8vLy7/88suJEyf6+/tTF6Auyc/P73Zu\nxxvXqHTT2dmZlJSkUCgCAwPJilrHQJIpBAftapexsTGfzy8oKHjy5Mn58+elUqm7u/vWrVsZ\nDAbVoemDPh2XAhsBgqEACkItKC0tPXXqlIWFRUxMjKmp6dWrV48dO4bj+Jw5cx4/ftytJrS2\ntoZFg0AnODs78/n80tLSx48fT548mVh8lZqampiYaGZm9v7778PeG730urMce7NGhdDV1XX4\n8GGhUOjq6urr60tu+LoBkkw5OGhXi5hMpre3d0FBQXFxsUwmc3d3j4yM7GG+KJzr2HsaHJcC\nGwECvQcFoRZkZmYWFRV98sknjo6Od+7ciYuLw3F848aNa9eu/eOPP548eaJeEzo4OFAdr46R\nSCTHjh37+eefc3NzjY2NoSMmDY1G8/LyEggEJSUlKSkp9+7du3DhQlZWFkJo06ZN48aNozpA\nXfLGcqXnNSqPHz/+6aefjIyMPv/8cxj2vQ4kmXLwLEWLpFJpcnKyTCZDCLm4uPj4+LwumXCu\nY59odlwKbASoMRjF6QQoCDUnEokkEgmXy3V1dX3x4sXixYufP38eGRkpl8tXrVq1fPlyhNCT\nJ0+qq6tlMll2drafnx8spu+rpqam7du3P3z4sLW1tba29ubNm01NTR4eHi9/L8L90YHAYrH8\n/f3lcnlFRUVtbe3z58/ZbPbGjRvhwCUNvLFc6WEMbW5u7uDgEBgYCAcf9wySTDmoCTWmVCrz\n8/NHjRpFZMzQ0LC4uNjCwsLY2LiwsLC2ttbLy+uVyYRzHftE4+NSYCNADcAoTldAQagh1THH\nnp6eZmZmU6dOpdFoKSkpeXl5U6ZMCQkJId52+vRpFou1efPmUaNGeXl5URuzLjp+/PiDBw8c\nHR1DQkKmTZtWXl5eVFT08vci3B/tq97vX8dgMKZOnbp06dJp06bNmzdv3bp13Y7oBb0hlUqP\nHz8eHx8vkUhevHjRbY/W3oyhbWxsVOd/gFeCJA8SML9OA1lZWdHR0ampqarGSafTZ86c6e/v\n7+fnV1hYWFBQ0O277+7du6ampkwmE8517CuNj0sBfQWjOF0BBaGGuh1zTFzMyMioqKh47733\niHmhKSkp165dc3FxWbly5cSJEymNV1cdOXLE1NR0//79Y8aMsbe39/f35/P5AoGgW28C90f7\nhM/nR0VFVVdXe3l5icXi8PDwqqqq9vb26dOnv+5XGAzGiBEjRowYAVsaaEAikXz66acPHjww\nNjb29/efMGGCRCIRiUSvK1dgDK0BSPKgAvPrek+pVB47diwhIaGtrY3H4/3pT39SP/qVTqcT\n6wlVNaGnpyeNRsvMzNy/f39+fv7cuXOJ/pnav4XOgeNSyAGjOF0BBWGf9XDMcUtLy927d6VS\n6YgRI5KTkxMTEzEM27x5M6yk19ivv/66ePFi1elhxEyPl3sTuD/aJ7B/HckOHjxYVlbm4uKy\nb98+Dw+PSZMmBQQEiMVigUDwcrkCY2jNQJIHG5hf10sHDx5MT09nsVihoaGrV68ePnz4y+9R\nrwmJnWbOnj2L4/jChQsnT55Mfsz6QX0X4ubm5rfffrvbLsSqmtDS0rJbuQh6CUZxugIKwr7p\n+ZjjMWPGPHz4sKSkJCsrq6ysDCEUFBQ0a9YsioLVVVKp9MSJE6dPn87Pz29paZk4caL6FILX\n9SZwf7T3+rp/HegPpVJ58ODBrq6u3bt3q9/45/F4+fn5FRUV3coVGENrAJIMdNSdO3cSEhIY\nDMbevXvVpyy+jMlk+vr6lpeXl5SUPHnyhEajBQUFrVixgrRQ9YlUKm1ra2Oz2XBcykCAUZwu\ngoKwb5RK5c2bNwUCQXt7+9SpU7stpqLRaD4+PgwGo7Oz08HBITg4GO529JVUKt22bVtxcXFz\nc3N1dXV7e/vL9+3Ue5OxY8fa2tpSGLCO6v3+daCfFArF2bNnGQzGpk2b1K/TaDQWi3Xnzp1u\nS92ABiDJWtf7ZcagP44ePVpfX79y5cqXH1kLhcKHDx/K5XIul0tcMTQ0nD17tp2dnZ2dXXBw\nMI/HIz1endfY2Hjw4MHDhw/fvn2bmAgKx6VoF4zidBQUhH3zxmOO6XT6xIkT3377bT8/P2tr\na6ri1F3Hjh0rKSlxcHD46KOPpkyZUlZWVl1d/fJ9O6I3sbKygnlfmun9/nWgn+h0elZWVktL\nC4/HMzMzU3+pubk5MzNz+vTpxcXFVlZWcJKHxiDJ2qXBMmOgmR9//FEul2/YsEF9pmhpaWls\nbGxCQsKtW7euXr1aVlY2ffp04l4GhmF2dnZubm7d2jnojZqamh07dpSVlZmami5evNjR0ZHN\nZiPYGlerYBSno6Ag7LPeH3MM+oRYnHns2DFi/bG9vb2Dg8OsWbNe10ezWCwnJycKA9ZRxFQZ\nExOTXu5fR220+kGhUBQWFgqFQn9/f/VbSJcvXy4vL//yyy8nTpzo7+9PXYD6AJKsRbDMmDQZ\nGRktLS3Ozs6Ojo4IIZlMdvLkySNHjjQ0NNjY2BB7IwmFwsePH8OEo36Sy+VhYWF1dXUuLi7R\n0dEeHh5ENUiAmrD/YBSn06Ag1EQvjzkGvadanFlfXx8YGKhanAl9tBZ1myrD4XB6uX8d1YHr\nPGdnZz6fX1pa+vjx48mTJxM7UaWmpiYmJpqZmb3//vt2dnZUx6jzIMla1KdlxnB6WD/du3ev\nqKgIx/GHDx/GxcUVFhZyOJwtW7Z89NFHfn5+PB4vPT29urr6rbfeGjlyJNXB6rC0tLSMjAwr\nK6vY2FhVixUIBGlpaWKx2MHBgc1mwy7EGoNRnK6DglBD0MS1S7U488WLF9OnT1dffwyp1orX\nTZVBsH/dwKPRaF5eXgKBoKSkJCUl5d69excuXMjKykIIbdq0CSYxagUkWbt6ucwYTg/rJycn\np8bGxkePHhUVFRHbE/j5+UVGRqr2tORwOPfv36+rq3N0dIQk90dKSkpVVdXKlSuJvUNFIlFs\nbOy5c+cePXqUl5dXUlIyZ84c2IVYYzCK03VQEGoOmrgW9bz7M5we1k89T5VBsH/dwGOxWP7+\n/nK5vKKiora29vnz52w2e+PGjQsWLKA6NP0BSe4PpVKZn58/atQo4ousl8uM4fSwfsIwzNPT\nc/z48RwOZ9q0aR9++GFgYKD6cVYKheLUqVMymSwwMHD06NCPFa0AABNYSURBVNEUhqrrRCKR\nQCCg0+kODg4pKSkHDhwYPnx4eHh4UFDQ7du3Kysrp02bZm5uDrsQawZGcboOw3Gc6hh0m1Qq\nDQsLE4vFERERnp6eVIej21TJnDdvXkhISLfBh1QqzcnJWbRoEVXh6QSFQoEQ6jbPMzU19ejR\no1ZWVnFxcapSUCAQCAQCCwuLBQsW0Ol0hBCO49nZ2UKhkMfj2dvbkx77kCCTyaqqqnAcd3Bw\nUB/2AS2CJPdVVlbW6dOn6+vr1fteuVyOEOro6IiMjKysrPT39w8NDVVfZuzq6mpqalpSUjJh\nwgQqo9driYmJiYmJXC73xIkTBgYGVIejw2Qy2a5dux4+fIgQMjExWb16dWBgIIZhOI7/7W9/\nE4vF+/btg8MG+wlGcboLCkItgCauRT33JqBnCoUiNjYWIfTFF18QNR4hLi4uIyNjw4YN77zz\nDkJIJBIdOXKkuLiYTqcrlUo3N7e9e/dCqgEYgpRK5ffff3/16lWEEI/HW7FixcvTa1tbW1U1\n4SeffEKn0zMzMw8ePGhra7t//37YemrgpKamHjt2DMfxsLAwLy8vqsPReUql8t69e0qlctKk\nSap7o0lJSfHx8Vwu98cff1T/3gSagVGcjoIpo0ihULS3t6sfTiUSiSQSierknzeCCQZaBBNx\n+0Mul1+7dq2iomLmzJnq2zz0cqoMhZHrkP73GAAMHgcPHkxPT2exWKGhoatXr1Y//EAFlhmT\nr6Oj4/vvvz979ixCaO3atfPnz6c6In1Ao9FsbGxsbW2JZ604jl+6dOmnn35CCIWEhMC8GK2A\nUZyOGupPCIknKg0NDXv27DE2NkYINTU1bdu2raOjIzY2Fs7KpArcYdKYTCarr6+3s7Orq6uz\nsLAg7nfCVBltgR4D6JM7d+7ExMQwGIzo6Og39gBtbW0xMTFFRUUIIRqNtnbt2nfffZeUMIcW\npVJ55cqVCxcuNDU1MZnMkJAQPz8/qoPSQwUFBRcvXrx//z6GYWvXrl22bBnVEekVGMXpnCG9\noTwxtsvNzTU2NpZIJMTwLiEhQSKRuLm5WVpaUh3g0MXlcqOjo8PCwtLT0728vGBxZu+xWCw7\nO7uampqdO3c6OTkRc0dZLFZ0dPTLU2WSk5PFYjGXy4WzgHoDegzSlJaWjh8/nhhDiESi+Pj4\n7du3w9kGWpeUlIQQWrFixcvVoFAoFIvFlpaWDg4OxJVhw4bt2bMHlhkPNDqdXltb29TUxOPx\n1qxZA9tvDISmpqajR4/W1tZaWVn97W9/gwfdWgejOJ0zdJ8Qqo/t9u7d6+DgIJFIzM3Ng4KC\nDA0NDx06ZGRkRHWMQx0sztSY6pGgp6dnt/WEBGKqTEJCAo7jn332ma+vLyVx6hDoMUjD5/P3\n7Nnj6+sbGhoqFovDw8OlUmlgYODmzZupDk3frF69urW19cCBA8Sp6ITS0tITJ06UlZURf/Tw\n8Pj000+HDRtGUYxDlFgshlKwr0QikVwuV93C6JlEIikrK+PxePDwauDAKE6HDNE1hC+P7VRH\natbV1QUEBKiO1AQag8WZFGIwGL6+vsXFxQKBoKqqytvbW30D6IKCgu++++769esYhgUFBQUE\nBFAYqk6AHoNMxsbGfD6/oKDgyZMn58+fl0ql7u7uW7du7bZ3Lui/jIyMlpYWZ2dnoiCUyWQn\nT548cuRIQ0ODjY3NhAkTJBKJUCh8/PjxnDlzqA52aIHn4W/UbYzR1NS0c+fO69eve3p6cjic\nN/46m822tbWFanBAwShOhwzFglA1tjMwMIiJiSG+CFVHara3t0+dOtXV1fWVvysWi6Gb7g0i\nySkpKT4+PkR/3dfOGvTT62rCpqammJiYyspKKyurzz//HI7ffSONewzoLjRDbGFCbF4ik8nc\n3d0jIyNft5UlJLmf7t27V1RUhOP4w4cP4+LiCgsLORzOli1bPvroIz8/Px6Pl56eXl1d/dZb\nb40cOZLqYAH4j5fHGPHx8cXFxePHj1+4cCHcPAKgr2hvfot+UY3tEEKdnZ3Z2dnEdWK6MzFD\nIyMjQ6lUvvy7WVlZW7ZsIRZdgB6oklxXVyeRSIiLxFIre3t7WGpFGhaLtXv3bldX19zc3JiY\nGKJVm5mZRUdH79y58/vvv4eFE2+kcY8B3UWfKJXK3Nxc1RKGtra2pqYm4mcul6s+0UAdJLmf\nFi5cOH/+fJlMdvr06VOnTjU0NPj5+X333Xf+/v7EG2xtbYmbHU+fPqUyUADUdBtjSCQSHMfz\n8/NHjhwZEREB56AAoIGh9YRQfd7XBx98UFxcXFxc3NnZSUz3Um2VKxKJnj17NmPGjG5zCe7d\nu1dYWDh+/Hg3NzeK/gY6oNvkurFjx0okEiMjoyNHjnA4nJiYGDgneoAoFIqMjIykpKTc3NyW\nlpbRo0czGIxXPieEqTK91J8eA7qL3svKyoqOjk5NTVXtUW5oaFhcXGxhYWFsbFxYWFhbW+vl\n5fVyi4Uk9xOGYZ6enuPHj+dwONOmTfvwww8DAwPVu2iFQnHq1CmZTBYYGDh69GgKQwWA0G2M\nYWhoCLP3B0hpaam5ublqc69//OMfHh4eUG/rqyFUEHbrRHg8npOTU3Z29itHeEVFRS8fnzJh\nwoRJkybBUooewFIrqtTU1ISFhV2/fr2qqqqysjI3N/fGjRvjx4+3sLDoeT0heJ1+9hjQXfSG\nUqk8duxYQkJCW1sbj8f705/+RJyHSafTZ86c6e/v7+fnRxx/160mvHv3rqmp6ZQpUyDJ/Wdt\nbT116tSJEye+PJn/3Llz+fn5XC73ww8/hDO7AeVeHmPA7P0Bwufzo6Kiqqurvby8iM29qqqq\n2tvbp0+fTnVoYEAMoYIwLS3tt99+U3UiCCFra+seRnivPFJzxIgRlP0FBj1YnEmV5ubmnTt3\n1tTUWFtbL1++3NPTs6Ojo6qq6saNG2+99ZalpaV6TWhnZzdmzBiqQ9YB/e8xoLt4ox5ORafT\n6XQ6Xf1I9NraWk9PTxqNlpmZuX///vz8/Llz51pbW1MYv35LTU0lzuzetm0bdBqAcq8cY6h6\n4NbW1sbGxgULFnS745mVlRUVFTVs2LDx48dTFLhO6uvmXjCK03VDqCB0dHSUy+Xr1q1T35JY\ng5oQvJL6Uquuri4TE5NuyXxdZ42gv+63kydPCgQCZ2fnv//9725ubs7OznPnzjUwMODz+Xl5\neW+//TaTySRqQmtra9hFppegxxhod+7cSUhIYDAYe/fu9fDweN3b1GtCYqeZs2fP4ji+cOFC\nWAQ7QDo6Or7//vuzZ88ihNauXTt//nyqIwJD3evGGAhm7w+MPm3uBaM4PTCECkIMwyZPnvzy\nmQdvHOGNGzcOjgPqGSzOpFZcXJxcLg8PD1ffsGfChAlisbisrIxGoxH/EAwGo5cHNAEEPcbA\nO3r0aH19/cqVK1++SSEUCh8+fCiXy4n8M5lMX1/f8vLykpKSJ0+e0Gi0oKCgFStWUBG1nlMq\nlSkpKbGxsQ8ePGAymaGhoYGBgVQHBYa6nscYCGbva4lSqczPzx81ahSRPalUmpycLJPJEEIu\nLi4+Pj6vu9cJozg9MIQKwh70MMIbOXIkPFHpGSzOpBaO46dOnUIIBQcHd1vkY2Zmlp6eLpPJ\n4KRB7YIeQyt+/PFHuVy+YcMG9ZmipaWlsbGxCQkJt27dunr1allZ2fTp0w0NDQ0NDWfPnm1n\nZ2dnZxccHMzj8SiMXI/RaLSbN28WFRXxeLwdO3bA8A5QrjdjDASz9/tN4829EIzi9AIUhP/x\nuhEeHKn5RrA4k1oYht24caO1tXXKlCndjvRobW29evUqk8lcsmQJVeHpK+gx+q+vp6JjGGZn\nZ+fm5mZmZkZ17PrMw8PDz89v4cKFsCIIDAa9HGMgmL2vqX5u7kXMI4VRnK6DgvD/vK6LAT2D\npVaUk8vlhYWFT58+nT17tvpDwt9++620tNTNzc3X15fC8PQV9Bj9B6eiD05QCoLBo/djDASz\n9zXS/829XrfTDNAhUBD+F1UX4+bmBlNlegmWWpFJIpEcO3bs559/JubPEAl0cnLi8/mPHz9+\n8OCBu7v7sGHDcBxPSUk5c+YMhmEhISEWFhZUB66foMfoDycnp8bGxkePHhUVFREbEfv5+UVG\nRrq4uBBv4HA49+/fr6urc3R0hL0KABia+jTGQDB7v49gcy9AwHAcpzqGQYfYvp/qKPQEn8//\n+uuvOzs7ly9fvmbNGuKiVCrNyclZtGgRtbHpnKamptDQ0IaGBtWVwMDADz/8kEajNTc379q1\nq7Kykkaj2dnZNTc3S6VShNC6deveffdd6kIeEqDH6A9iZ3NjY+OZM2fa2tqqv6RQKNavX9/U\n1BQeHj5jxgyqIgQADFqvHGOA3gsLCysuLl61atWqVau6vSQUCsVisaWlperZbFtbW0xMTFFR\nEUKIRqOtXbsWBhh6AwpCMOCgv9aWQ4cOpaenOzo6rl69uq2t7eeff5ZIJP7+/qGhoRiGyWSy\nX3755erVqx0dHQih4cOHb9iwASaLAt2VmJiYmJjI5XJPnDhhYGBAdTgAgMEIxhj9sXr16tbW\n1gMHDhBruQmlpaUnTpwoKysj/ujh4fHpp58OGzYMIYTjeHZ2tlAo5PF49vb2lMQMBgIUhIAM\n0F9rxdq1aw0MDA4dOsRmsxFCzc3NERERT58+VdWECCGZTCYUCg0MDMaMGQNLNIHuSk1NPXbs\nGI7jYWFhXl5eVIcDABi8YIyhsS1btgiFwpCQkLfffhshJJPJEhISkpOTcRy3sbEZPXp0YWFh\nR0fHpEmT9uzZQ3WwYADBGkJABlhqpRW//vrr4sWLVSslWCyWt7c3n88XCASqvb8YDIa5ubmZ\nmRlUg0BHwanoAIA+gTFGf8DmXgDBE0JAJlhqpQGpVHr69OmysrIRI0ZUVVW9++67S5cuVX/D\nK58TAqCLlErllStXLly40NTUxGQyQ0JC/Pz8qA4KAKAbYIyhARzHDx8+nJaWRvwRwzBfX9/g\n4GAOh6N6T2RkpEAgCA4OhiOs9BhsFAvIAz11X0ml0m3bthG7yDx9+hQhlJmZuWjRIvWzJTgc\nzt69eyMiIrKysng8HhzYDXQXnU6vra1tamri8Xhr1qyBXYgBAL0HYwwNYBj20UcfzZw5s4fN\nvYjhR7eDjoGegSeEAAxeBw4cyMzMdHBwWL16dUtLy6lTp6RS6bx580JCQro9CWxubs7JyQkM\nDKQqVAC0RSwWQykIAACDAWzuNURAQQjAYCSRSMzNzYOCgtR3kWlsbAwPDxeLxa+sCQEAAAAA\ntAU29xo6YFMZAAYdsVi8Y8cOoVBYX18fGBjY7bzdvLw8gUAgkUg8PT2hJgQAAACAdsHmXkMN\nrCEEYNBhs9lsNjs9PR0hZGhoqP4Sl8uNjo4OCwsjXoXnhAAAAADQFtjca2iiUR0AAKA7ouoj\nllFlZmYqlcpXvpqenp6Xl0dRjAAAAADQN+qbe8XFxUE1OETAGkIABimpVBoWFva6FYNSqTQn\nJ2fRokVUhQcAAAAAvQSbew01UBACMHj1XBMCAAAAAADQTzBlFIDBS3126Lfffgu3bwAAAAAA\ngHZBQQjAoAY1IQAAAAAAGDhQEAIw2MEuMgAAAAAAYIDAGkIAdAPsIgMAAAAAALQOCkIAyKBQ\nKDo6OoYNG6Z+USQSyeVyBwcHqqICAAAAAABDHEwZBWDAKRSK2NjYiIiI58+fqy42NTVFRUVF\nRkYKhUIKYwMAAAAAAEMZFIQADCyiGszNza2rq5NIJKrrCQkJEonE3t7e0tKSwvAAAAAAAMBQ\nBgUhAANIVQ0aGxvv3bvX3t4eISSRSHAcz8/PHzlyZEREBJPJpDpMAAAAAAAwRDGoDgAAvdWt\nGiTWCorF4rCwMA8PDxqNNn/+fCMjI6rDBAAAAAAAQxc8IQRgQKiqQQMDgz179qh2jmGz2Ww2\nOz09vaGhgU6nv/J3xWIxiZECAAAAAIChCwpCALRPVQ0ihDo7O7Ozs1UvqQ4VRAhlZGQolcpu\nv5uVlbVly5akpCQyAwYAAAAAAEMTFIQAaJn6TNENGzYYGBhcvHjx1KlTqjeoasI//vjj22+/\n7Xb0S0NDQ1dXl/p+pAAAAAAAAAwQ+pdffkl1DADoj27rBnk8npOTU3Z2dnFxcWdn56RJk4i3\nGRkZeXt75+XlFRUVSSQST09PDMOIlyZMmDBp0qQ5c+ZQ95cAAAAAAABDBRSEAGhTWlrab7/9\npr6LjLW1dc81oUAg6FYTjhgxgrK/AAAAAAAAGEqgIARAmxwdHeVy+bp161S7yCCNakIAAAAA\nAABIAAUhANqEYdjkyZO5XG63672pCceNG0dsNgMAAAAAAAA5oCAEgCQ914QjR46cPXs2tREC\nAAAAAIChBuu2wyEAYEDx+fyvv/66s7Nz+fLla9asoTocAAAAAAAwpMETQgBI9brnhAAAAAAA\nAJAPziEEgGxTp04NDw83MDAwMDCgOhYAAAAAADCkwZRRAKhRU1NjbW1NdRQAAAAAAGBIg4IQ\nAAAAAAAAAIYomDIKAAAAAAAAAEMUFIQAAAAAAAAAMERBQQgAAAAAAAAAQxQUhAAAAAAAAAAw\nREFBCAAAAAAAAABDFBSEAAAAAAAAADBE/X806XeWDHRkOgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAAFoCAIAAADIFpV9AAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdeXxM9/7H8e+ZLfseWyxJhNoiqKWKCC0i9l0tufai9FK0VbVEFfcW1VsX\nraWWaquo2l2qtvBDkNiaxhIaEbEmksiemfP7Y9q5uaoEZ3KyvJ6P+3j0zPd85/t9T3uP8Zlz\nzvdIsiwLAAAAAEDpo1E7AAAAAABAHRSEAAAAAFBKURACAAAAQClFQQgAAAAApRQFIQAAAACU\nUhSEAAAAAFBK6dQOoLKkpKTIyEi1UwAAAACACkp7QRgbG7t8+fIWLVqoHQQAAAAACtXGjRtL\ne0EohKhZs+bbb7+tdgoAAAAAKFS7d+/mHkIAAAAAKKUoCAEAAACglCpyl4zeu3fvu+++i4yM\nTElJcXFxqVOnzpgxY+zs7Mx7TSbTli1b9uzZc/fuXU9Pz3bt2vXo0UOj+W9Z+9QOAAAAAACz\nolUpxcXFjRs3Ljw8vHbt2j169HjllVdu3LiRkZFh6bBixYrVq1f7+voOGzasevXqa9euXbZs\nWf4RntoBAAAAAAruxo0bkiR169ZN7SBWUYTOEJpMpnnz5jk5Oc2cObNcuXJ/7hAfH79z586g\noKCJEycKITp27KjX63fv3h0SEuLt7V2QDgAAAADUcurUqcWLFx86dCgxMVGv1/v4+AQHB48f\nP75ixYpqRyu9itAZwlOnTl2/fn3QoEHlypXLzMzMycl5pEN4eLgsy507d7a0dOnSRZblw4cP\nF7ADAAAAgMIny/L777/fuHHjNWvWlC1btn///l27ds3Kypo/f/5LL720adMmtQM+SdmyZcPD\nw+fOnat2EKsoQmcIT58+LUmSvb39uHHjrl27JklS7dq1R4wYUbVqVXOHK1euaLVaPz8/y1t8\nfX0NBkNsbGwBOwAAAAAofLNmzfrkk08qV668adOmJk2aWNrXrFkzcuTIN95446effmrdurWK\nCZ/AYDCU4OeWF6EzhDdv3tRqtXPmzPHy8nr33XcHDRp07dq1KVOm3Lp1y9whKSnJxcVFq9Va\n3iJJkpub2/379wvYwezvf/971z+sWrXK+p8MAAAAKL1+++23WbNmGQyGXbt25a8GhRCDBg1a\ntGiR0WgcPXq0yWTKv+v48eN9+vTx8vKysbGpUKFCu3btNmzYkL/DsWPHevbsWb58eYPB4OXl\nNXDgwJiYmPwdli9f3q1bN19fXzs7O1dX16CgoI0bN+bvcObMGUmSBg8eHB8f379/f09PTzs7\nu8aNG+/atSt/t8feQ/jUwYuLIlQQZmZm5uXl1alT5/333w8MDOzRo8fkyZMzMjJ++OEHc4fs\n7Gy9Xv/IuwwGQ3Z2dgE7mKWnp6f9ISsryzqfBgAAAIAQQqxatSovL++NN97w9/f/895hw4b5\n+PhcvHjx0KFDlsYvvviiefPm27Zta9GixcSJEzt27Hjnzp0lS5ZYOixfvrxFixbh4eEdOnSY\nMGFCYGDgxo0bGzVqdOLECUufkSNH3rp1q3Xr1uPHj+/Zs2dMTEyfPn0++eSTRwLEx8c3btz4\n4sWLffr06dixY1RUVOfOncPDw5/8oQo4eNFXhC4ZtbGxEULkP1Ncv359Nze3CxcuWDpkZmY+\n8q6cnBxbW9sCdjBbuXKlZfvkyZM7duxQ6BMAAAAAeNSRI0eEEMHBwY/dq9Fo2rRps2LFiqNH\nj5prgXPnzo0dO9bV1fXIkSO1atWy9Lxx44Z549dffx0zZkzbtm1//PFHywPqzp0717x58zff\nfPPs2bPmlri4uMqVK1venpGRERQUFBYWNmLECDc3N0v7/v37p06d+tFHH0mSJIRYt25daGjo\nvHnzAgMDn/ChCjh40VeEzhB6eHgIIR751+fq6vrw4UPztru7e0pKitFotOyVZTk5Odn8xoJ0\nAAAAAFDIEhMThRBVqlT5qw7mXTdv3jS/XLp0qdFoDAsLy18NCiEqVapk3liyZElubu6UKVPS\n09Pv/cHLy+v1118/d+5cXFycuZu5YJNlOSUl5fbt26mpqd27d8/MzHzk7F+VKlVmzJhhrgaF\nEAMGDHBxcYmIiHjyhyrg4EVfETpDWL169YMHD967d8/SIsvy/fv3XV1dzS/9/PxOnTp19erV\n6tWrm1uuXbuWk5NjWUXmqR0AAAAAFDJZloUQlorrr1g6HD9+XAgREhLyVz2PHTsmhAgKCnrs\n3sTERPMz56KiosLCwg4cOJCWlpa/Q0JCQv6XDRo00On+WxZJklSpUqXLly8/OW0BBy/6ilBB\n+Oqrr65ateo///lPy5YtNRqNEOLIkSOpqamvvfaauUNgYOCGDRu2b98+YcIEc8v27dslSbKc\nzH1qBwAAAACFrEKFCjExMXFxcc2bN39sh+vXr5u7mV8+ePBACPGEhxOa14zctm2b5XrR/Mzn\nFSMjI1u0aGFrazt69Oh69eqZ157ct2/fggULHllhxHL+yUKn0+W/6vDPCj540VeECkJPT883\n3nhj3bp1U6ZMadq06d27d3fv3u3p6dmzZ09zhypVqnTo0GHnzp25ubn+/v7R0dHh4eHt27f3\n8fEpYAcAAAAAhaxFixYHDhzYs2dP//79/7zXZDLt27dPCGEpF80VWkJCQrVq1R47oIuLixCi\nfPnyjRs3/qtJP/3008zMzG3btrVp08bSePr06Rf4HIU0eCErQvcQCiH69Onz9ttvp6enf/31\n1wcPHgwMDJw3b575v7fZiBEj/va3v8XGxq5cufLSpUuhoaEjR47MP8JTOwAAAAAoTIMHD9Zq\ntevXr//ll1/+vHflypW//fZbjRo1LJeANm3aVAixe/fuvxrQ3GH9+vVPmPS3336z9LTYv3//\nM6cv9MELm1y6RURETJ8+Xe0UAAAAQEk2bdo0IUTlypUjIiLyt69du9bGxkar1f7888+WxnPn\nzmm1Wnd3919//TV/5/j4ePPG+fPndTqdXq/P/y5ZltPS0tavX2/eDg0NFUJs3rzZsvebb74x\nV0ALFy40t0RFRQkhBg0a9EjaevXqabXa/PMKIbp27WppKcjgsizPnTs3ODh4586dT/vXo5qQ\nkJAidMkoAAAAgBIpLCwsPT39008/feWVV1555ZU6derk5OQcP3788uXLdnZ23333nWXdECFE\n3bp1Fy1aNHbs2Pr163fp0qV69er3798/deqUk5PTgQMHhBD+/v5ffvnlyJEj27Rp065duwYN\nGhiNxpiYmP379/v4+PTt21cIMXbs2G+//bZfv359+/b19vY+c+bMrl27evfurcjj4ws4+Jkz\nZ/bs2dO9e/cXn9F6KAgBAAAAWJdGo1mwYEHfvn0XL158+PDhqKgovV7v4+MzceLE8ePHW54n\nYTF69OiAgID58+cfPHhwy5Ytnp6eAQEBw4cPt3QYOnToyy+//Omnnx48ePDAgQMODg5eXl6h\noaHmalAI0aRJk3379k2fPn3Lli1CiEaNGu3du/fmzZuKFIQFHPzSpUt6vb5du3YvPqP1SLIs\nq51BTeYH08+cOVPtIAAAAABKjqSkpDJlyowaNWrx4sVqZ/lLHTp0KFqLygAAAABACXDgwAEb\nG5upU6eqHeQpKAgBAAAAQGE9e/bMyMiwPFyxyKIgBAAAAIBSioIQAAAAAEopCkIAAAAAKKUo\nCAEAAACglKIgBAAAAIBSioIQAAAAQIF07dpVkqRFixb9edfx48d1Ot1LL72Unp5e+MHw3CgI\nAQAAABTIihUrypUr995770VHR+dvT09PHzhwoCRJ69atc3BwUCsengMFIQAAAIACKVOmzKpV\nq7KysgYMGJCTk2NpHz9+fGxs7PTp05s0aaJiPDwHCkIAAAAABRUSEjJmzJgzZ85MnTrV3LJt\n27YVK1Y0a9ZsypQp5pb169cHBgY6Ozvb2dnVrVv3H//4R3Z2tmWEHTt2SJIUFhb2yMiurq7V\nqlWzvDxz5owkSYMHD46Pj+/fv7+np6ednV3jxo137dr1yBuNRuOCBQtq1qxpa2tbuXLl8ePH\nP3z40NPT08fH58mfZffu3W3btvXy8rKxsalQoUKLFi3mzZuXv8OxY8d69uxZvnx5g8Hg5eU1\ncODAmJiYRwY5fvx4nz59LIO0a9duw4YNT563SKEgBAAAAPAM5s2bV6tWrQULFhw8ePDOnTvD\nhw93cnL6+uuvtVqtEOK9997r16/fpUuXBg4cOHbsWKPR+MEHHwQHB+fm5j7HXPHx8Y0bN754\n8WKfPn06duwYFRXVuXPn8PDw/H3efPPNSZMmZWdnjx07tl+/fjt27AgJCTEajU8eee3atR06\ndLhw4UKXLl3ef//9bt26aTSaFStWWDosX768RYsW4eHhHTp0mDBhQmBg4MaNGxs1anTixAlL\nny+++KJ58+bbtm1r0aLFxIkTO3bseOfOnSVLljzHJ1WNXLpFRERMnz5d7RQAAABAcRIVFWUw\nGCpXrhwcHCyE+Oqrr8zthw8fFkL4+vreuXPH3JKbmxsSEiKEmD17trll+/btQogZM2Y8MqaL\ni4ufn1/+KcwFy9SpU00mk7nx66+/FkJ07tzZ0m3fvn1CiHr16j18+NDckpGR0ahRIyGEt7f3\nEz5Cs2bNtFptQkJC/sakpCTzRnR0tF6vDw4OzsjIsOw9e/aso6NjQECA5aVWq3V3d4+Ojs4/\nSHx8/BPmLVJCQkI4QwgAAADg2dSvX3/WrFnx8fF79uzp0aPHkCFDzO1fffWVEGL69OllypQx\nt+h0ugULFkiSlP/kW8FVqVJlxowZkiSZXw4YMMDFxSUiIsLSYe3atUKImTNnWhazsbOz+/jj\njwsyuFar1el0+Vvc3NzMG0uWLMnNzZ0yZUp6evq9P3h5eb3++uvnzp2Li4sTQixdutRoNIaF\nhdWqVSv/IJUqVXqOT6oWCkIAAAAAz2zSpEnly5cXQsyfP9/SGBkZKYRo3bp1/p61atWqUKHC\ntWvXHjx48KyzNGjQIH/NJklSpUqVkpOTLS3mE4mBgYH539WiRYunjtyvX7+cnJw6deqMHTt2\n06ZNt27dyr/32LFjQoigoKAy/2vr1q1CiMTERCHE8ePHhRDm85/Fl+7pXQAAAADgf2k0Ghsb\nGyGEnZ2dpTElJUUIYS4U86tQocLNmzdTUlJcXV2faZY/99fpdPnvD0xNTdXpdO7u7vn7ODg4\nPPXpF2PHjnVzc1u8ePHSpUsXL14shHj11VfnzZvXvHlzIcT9+/eFENu2bcv/6SzMpwTN9W3F\nihWf6RMVNRSEAAAAAJTh4uIihLh165a3t3f+dvMpNfNejUYjhMjLy8vfITc3Nz093dPT81ln\ndHZ2jouLS0pKyl8TpqenF2S0AQMGDBgwIDU19dixY1u2bFm5cmVISMgvv/xSuXJlc9Ty5cs3\nbtz4r95uLlYTEhLyL45a7HDJKAAAAABlNGjQQAhx8ODB/I0XL15MTEz09fU1V1Dm+/Ti4+Pz\n94mKinqkRCyg+vXrCyGOHDmSv/GRl0/m7OwcHBy8dOnSiRMnpqWl7d+/XwjRtGlTIcT69euf\n8EZzn927dz9H7KKDghAAAACAMoYOHSqEmDVrlvmSSyFEXl7exIkTZVkeNmyYuaVu3bq2trZb\nt2613LaXkpIyYcKE55vxb3/7mxAiLCwsIyPD3JKVlTV9+vSnvvGnn356pAS9d++eEMLe3l4I\nMXbsWJ1Ot2jRInN9aPHw4cPvv//evP3WW29ptdqwsLBHHk5448YNy/bq1as/++yzO3fuPMdH\nKxxcMgoAAABAGS1btpwwYcKnn35ap06dXr162dvb79y5Mzo6OjAw8N133zX3cXR0HD169MKF\nC+vXr9+5c+ecnJyffvqpYcOGzs7OzzFjmzZtBg0atGbNGn9//549e0qS9OOPP5YvX97V1dV8\nbepf6devn06nCwoK8vb21mq1J06cOHDgQJ06dTp16iSE8Pf3//LLL0eOHNmmTZt27do1aNDA\naDTGxMTs37/fx8enb9++Qoi6desuWrRo7Nix9evX79KlS/Xq1e/fv3/q1CknJ6cDBw6YZ/n4\n449jY2NbtGhRtmzZ5/h0hYCCEAAAAIBiFixY8PLLLy9ZsmTNmjW5ubnVqlX7+OOPJ06caDAY\nLH3mzZvn7Oy8evXqNWvWeHl5DRs2bNq0ac9dMq1cubJOnTrLly///PPPy5Qp07Nnz7CwsLJl\nyz5yH+MjPv744z179pw6dWrHjh16vd7b2/vjjz8eM2aMZRWZoUOHvvzyy59++unBgwcPHDjg\n4ODg5eUVGhpqrgbNRo8eHRAQMH/+/IMHD27ZssXT0zMgIGD48OHP90FUIcmyrHYGNZ08eXLH\njh0zZ85UOwgAAAAAZZw9e7Z+/fpvvPHGd999p3aWIq1Dhw7cQwgAAACgGDPf+2eRkZFhvjy1\ne/fuKiUqTrhkFAAAAEAxFhYWdvDgwVatWpUvX/7mzZu7du2Ki4sLCQnp3bu32tGKAQpCAAAA\nAMVY+/btL126tGnTpuTkZJ1OV6NGjbFjx44bN06SJLWjFQMUhAAAAACKsU6dOpmXBsVz4B5C\nAAAAACilKAgBAAAAoJSiIAQAAACAUkqZewjHjh37TP0nTZrk4+OjyNQAAAAAgOejTEG4ePHi\nZ+o/cOBACkIAAAAAUJdiq4xu2bKlefPmT+2WnZ1dqVIlpSYFAAAAADw3xQpCFxcXT0/Pp3bL\nyspSakYAAAAAwItQpiA8duxY7dq1C9LTxsbm2LFj/v7+iswLAAAAAHhuyhSETZs2LWBPSZIK\n3hkAAAAAYD08dgIAAAAASinF7iHMT5blffv2nThxIikpyWQy5d/12WefWWNGAAAAAMCzUr4g\nTEtLCwkJOXr06GP3UhACAAAAQBGh/CWjM2bMOHbs2Jw5c6Kjo4UQO3bsOHToULt27Ro3bvzb\nb78pPh0AAAAA4PkoXxD++OOPffr0+eCDD3x9fYUQHh4eLVu23LVrlyzL//73vxWfDgAAAADw\nfJQvCBMSEgIDA4UQGo1GCJGbmyuE0Gq1b7zxxsaNGxWfDgAAAADwfJQvCB0cHMxFoMFgsLW1\nvXnzprnd2dn51q1bik8HAAAAAHg+yheEVatWvXjxonm7Xr1669evl2U5Ly/v+++/r1SpkuLT\nAQAAAACej/IFYbt27X744QfzScLhw4dv2bKlWrVq1atX//nnn4cMGaL4dAAAAACA56N8QTh5\n8uSff/7Z/PjB4cOHz58/39bW1tHRMSwsbPLkyYpPBwAAAAB4Pso/h9DFxcXFxcXycuLEiRMn\nTlR8FgAAAADAC1L+DCEAAAAAoFhQ/gyhhclkSktLk2U5f6Orq6v1ZgQAAAAAFJzyBaHJZPry\nyy8///zzq1ev5uTkPLL3kfoQAAAAAKAW5QvCjz/+eMaMGWXLlu3cubOnp6fi4wMAAAAAFKF8\nQbh8+fKXX345PDzc3t5e8cEBAAAAAEpRflGZ27dv9+/fn2oQAAAAAIo45c8QVqtWLSUl5QUH\nuXjx4nvvvSfL8uzZs+vWrWtpN5lMW7Zs2bNnz927dz09Pdu1a9ejRw+NRlPwDgAAAAAAM+Ur\npfHjx69duzY1NfW5RzCZTEuXLrWxsfnzrhUrVqxevdrX13fYsGHVq1dfu3btsmXLnqkDAAAA\nAMBMmTOEW7ZssWyXLVu2cuXKAQEBo0eP9vPz0+n+Z4pu3bo9dbSdO3fevn27Q4cOmzdvzt8e\nHx+/c+fOoKAg85PuO3bsqNfrd+/eHRIS4u3tXZAOAAAAAAALZQrC7t27/7lx8uTJf2586mMn\nkpOTv/nmm9DQ0D8/siI8PFyW5c6dO1taunTpsn///sOHD4eGhhakAwAAAADAQpmCcOPGjYqM\nI4RYsWJFuXLlQkJCtm7d+siuK1euaLVaPz8/S4uvr6/BYIiNjS1gBwAAAACAhTIFYa9evdLT\n0x0cHF5wnLNnzx45cmTu3LmPXQYmKSnJxcVFq9VaWiRJcnNzu3//fgE7mM2ePTshIcG87eLi\nYjAYXjA2AAAAABRHiq0yWqZMGfOSnp07d3Zzc3uOEfLy8r744ougoKDatWs/tkN2drZer3+k\n0WAwZGdnF7CD2fnz569cuWLerlGjRrVq1Z4jLQAAAAAUd4oVhO++++4PP/wwaNAgvV7funXr\nHj16dOvWrVy5cgUfYfPmzcnJyUOGDPmrDjY2NpmZmY805uTk2NraFrCD2cqVK41Go3n73Llz\nP/30U8FDAgAAAECJodhjJ2bOnHnhwoVLly599NFHycnJo0aN8vLyCgwMXLhwYVxc3FPfnpqa\numHDhjZt2mRlZSUmJiYmJqalpQkh7t+/n5iYaF6Kxt3dPSUlxVLLCSFkWU5OTvbw8DC/fGoH\nMwcHB+c/PPbhFgAAAABQGij8HMLq1atPnjw5IiLi+vXrn376qUajmTRpko+PT6NGjebMmRMT\nE/NXb0xNTc3Jydm2bdvIP2zatEkI8emnn44cOdJ8zaefn5/RaLx69arlXdeuXcvJybGsIvPU\nDgAAAAAAC+UfTG9WuXLlcePGHTp06NatW8uWLfP09AwLC6tVq1bt2rV37Njx5/4eHh7v/6/X\nXntNCNGvX7/333/fvO5LYGCgJEnbt2+3vGv79u2SJAUGBppfPrUDAAAAAMBCsXsI/0qZMmVG\njBgxYsSIlJSU7du3b968+ddff+3UqdMj3ezs7Jo3b56/5c6dO0IIf3//unXrmluqVKnSoUOH\nnTt35ubm+vv7R0dHh4eHt2/f3sfHp4AdAAAAAAAWVi8ILVxcXAYOHDhw4MAXGWTEiBEeHh57\n9+49ceKEh4dHaGhojx49nqkDAAAAAMBMMq/XUmqdPHlyx44dM2fOVDsIAAAAABSqDh06KH+G\n8JFnPFhIkmRnZ+ft7R0cHDxp0iRPT0/FpwYAAAAAFJzyi8p06tTJz88vOzu7bNmyLVq0aNGi\nRZkyZbKzs6tWrdq4ceMHDx7885//rF+/fkJCguJTAwAAAAAKTvmC8J133omPj1+3bl1cXNy+\nffv27dt3/fr1tWvXxsfHh4WFXbt27ZtvvklMTJwxY4biUwMAAAAACk75S0YnT548ePDgAQMG\nWFokSQoNDY2IiPjggw8OHjzYv3///fv379mzR/GpAQAAAAAFp/wZwsjIyICAgD+3BwQEnDp1\nyrzdtGnT27dvKz41AAAAAKDglC8I9Xr9mTNn/tweFRWl1+vN29nZ2Q4ODopPDQAAAAAoOOUL\nwg4dOnzxxRcrV640Go3mFqPRuHz58i+//LJjx47mloiICB4WDwAAAADqUv4ewnnz5h0/fnz4\n8OGTJ0+uXr26LMtXrly5d++en5/fJ598IoTIysq6fv16//79FZ8aAAAAAFBwyheEFStWjIqK\nmj9//tatW8+dOyeEqFq16ujRoydNmuTs7CyEsLW1PXDggOLzAgAAAACeifIFoRDCxcVl1qxZ\ns2bNssbgAAAAAABFKH8PIQAAAACgWFDsDGFWVlZButna2io1IwAAAADgRShWENrZ2RWkmyzL\nSs0IAAAAAHgRSt5DaGtr27RpU61Wq+CYAAAAAAArUawg9PPzi42NvXTp0uDBg4cOHern56fU\nyAAAAAAAa1BsUZnLly/v37+/devWCxcurF69+muvvfbNN99kZmYqNT4AAAAAQFmKFYSSJLVu\n3XrdunU3b97897//nZKSMnDgQC8vrzFjxkRGRio1CwAAAABAKco/dsLV1fWtt946ffp0VFTU\nwIEDv/vuu4YNG86fP1/xiQAAAAAAL8IqD6Y3q1atWv369Y8fP37q1KmHDx9abyIAeFam1JvZ\nRz9XOwWegc7vNf1L7dROAQBASWOVgvDo0aMrV67csGFDenr6q6++umLFir59+1pjIgB4PvLD\n21kH/6l2CjwDW62eghAAAMUpWRDeunVr7dq1X3311cWLF8uWLTtq1Khhw4bVqlVLwSkAQBEa\nj2qOw39SO4XysnZPzks47TBoq6S3VzuLwrTuvmpHAACgBFKsIOzateuuXbtkWW7Xrt3s2bO7\ndOmi1+uVGhwAlCXZOOmrt1E7hfKyD7kLIfR+rSUbJ7WzAACAYkCxgnDbtm22trbdunWrWLHi\nsWPHjh079thurC4DAAAAAEWEkpeMZmVlrV+//sl9KAgBAAAAoIhQrCA8efKkUkMBAAAAAAqB\nYgVho0aNlBoKAAAAAFAIlH8wPQAAAACgWFCmIFy9evWtW7cK0tNoNK5evfru3buKzAsAAAAA\neG7KFIRDhgyJiYkpSM/c3NwhQ4bExsYqMi8AAAAA4Lkpdg9hdHS0ra3tU7vl5OQoNSMAAAAA\n4EUoVhCOGTNGqaEAAAAAAIVAmYJw0aJFz9Tf19dXkXkB4PncjXvw7bSf1E6hvLbutyvYiKVv\n/pgr26mdRWFNutZ6tae/2ikAAChplCkIx44dq8g4AFA4stJzYo7GqZ1Cec0Cs0Q5cel4fHae\njdpZFOZbv4LaEQAAKIEUu2QUAIqRijXKLIgsgb9kXZu+VggxY+8QG1d3tbMoTG/DFxYAAMrj\n+xVAaaTRSvYuT18Hq9iRJEkIYetsY1cSPx0AAFAcD6YHAAAAgFKKghAAAAAASikKQgAAAAAo\npSgIAQAAAKCUsmJBaDQarTc4AAAAAOAFKbzKaFJS0r/+9a8dO3ZcvHgxPT3dwcGhRo0anTt3\nHjdunJubm7JzAQCAIit9Xe+8hEi1U6CgJFsX53H89wJKIyULwrNnzwYHB9++fVsI4eTkVLFi\nxdTU1MjIyMjIyOXLl//nP/+pW7eugtMBAIAiS85OkzOT1U6hNGOunJMu6e2EzkbtKIqT1Q4A\nQB2KFYSZmZk9e/a8e/fuhAkT3nrrLT8/P3P75cuXlyxZ8q9//atXr17nzp2zsSl5f4ACAIBH\nOQ77j9oRlJf7y5aHa7vbtplm22qy2lkAQBmK3UP4/fffx8bGLlq0aMGCBZZqUAhRvXr1hQsX\nfvbZZ5cuXdq4caNS0wEAAAAAXpBiBeG2bdt8fHxGjRr12L1jx46tUqXK1q1blfC8G5QAACAA\nSURBVJoOAAAAAPCCFCsIz5079/rrr2s0jx9Qo9G0adPmzJkzSk0HAAAAAHhBihWEt2/f9vb2\nfkKHKlWq3LlzR6npAAAAAAAvSLFFZdLT0+3s7J7QwcHBIS0tTanpSryMH0ZkR6xQOwWegcvU\nmxqnCmqnAAAAAJ6BYgWhLD99teKC9IGZxtVbW7Gh2ikUJudlmW7/Itl5aNx91M6iPEmjVzsC\nAAAA8GyUfA7hxo0bY2Ji/mrv+fPnFZyrxLN9fart61PVTqEw471LqfNq6Gt1dOi7Ru0sAAAA\nABQtCCMiIiIiIhQcEADwTOy1Je454AAAwJoUKwhPnjyp1FAAgIIzPbgujLkaDz8hhCSMlnY5\nN9OYeFZXpal60QAAQFGnWEHYqFEjpYYCABRc7i9bM3/+yGnEPm2FepZGOTfj4arOQjY5jTyg\nYjYAAFDEKXnJKACg8Nk0f9uUmpD2ZWunET+ZW+TczIer+8oZ951G7FM3GwAAKOKsWxBmZ2f/\n+uuvqampAQEBrq6uVp0LAEotu5B/CCHSlrfVSjohRO6mAVJOitOIfZKDp9rRAABAkaZkQbh7\n9+7Vq1cbDIYRI0a0bNly7969Q4cOTUhIEEIYDIZp06ZNnfqkZTNv3Lhx8ODB06dPJyYm6nS6\nypUrd+vW7ZVXXsnfx2QybdmyZc+ePXfv3vX09GzXrl2PHj00Gk3BOwBAySGbjInnhGwUQhgC\nessPbzmcWiuEEGkJ9j2/ND2IEw/ihBAaj2qSrYu6SQEAQNGkWEF46NChjh07mp80uGHDhp07\nd/bo0cPe3r5r1645OTnh4eHTpk2rWbNmr169/mqEDRs2HDlypF69eg0aNMjOzj5y5Mjs2bP7\n9evXr18/S58VK1bs2LGjWbNmXbp0iY6OXrt27b1790aNGlXwDgBQYhgTz6YuaiJMeY+0m5Ji\n05a3sby0axtm22ZG4UYDAADFg2IF4cKFCx0cHL777jsfH5+RI0eGhoZ6e3sfPXrUfKXotWvX\nGjRosGTJkicUhEFBQcOGDXNx+f1n7H79+o0fP37jxo1du3a1t7cXQsTHx+/cuTMoKGjixIlC\niI4dO+r1+t27d4eEhHh7exekAwCUJFqvBm5zc83bcm7Gw9Vdci4f1ki5wtbV+c192ooN1Y0H\nAACKPsWupTx9+nTfvn07derk7+8/c+bMW7dujRw50nLfoK+vb79+/aKiop4wQsOGDS3VoBDC\n0dGxadOmeXl5t27dMreEh4fLsty5c2dLny5dusiyfPjw4QJ2AIASyVwNyun30k0eQghd/b+l\nLW9rTDitdi4AAFDUKVYQ3rp1y8/Pz7xdtWpVIUSVKlXyd/D29k5JSXmmMVNTU4UQbm5u5pdX\nrlzRarWWWYQQvr6+BoMhNja2gB0AoOSxVINOI/bJskYIoWs13eaVN6kJAQDAUyl2yWheXp5e\nrzdvGwwGIYRO9z+D63Q68x2GBZSQkHD06NGXX37ZUhAmJSW5uLhotVpLH0mS3Nzc7t+/X8AO\nZsuXL7979655m/VmABR32eEL5fR7Tm/+LNl7WBrt2s+V87LTf3jT+e/UhAAA4C8V0ecQZmRk\nzJ07V6/X518PJjs721JzWhgMhuzs7AJ2MPv555+vXLli3q5Ro0a1atUUTg8Ahci25SSblhMl\nne3/tEqSfeeFclaqSqEAAEDxoGRBuHHjxpiYGCFERkaGEGLRokVbtmyx7D1//nwBx8nKypo5\nc+bt27fDwsLKly9vabexscnMzHykc05Ojq2tbQE7mM2ZM8dSIl69ejUiIqKAwQCgKNLZSH9s\n5sk2+fdIts6FHwcAABQjShaEERER+YurvXv3Pscg2dnZs2bNunLlyrRp0+rUqZN/l7u7e1xc\nnNFotFwUKstycnKyv79/ATuYmW9xNHv48OFzhASAoinb5KR2BAAAUJwoVhCePHnyxQfJycn5\n+OOPo6OjP/jgg/r16z+y18/P79SpU1evXq1evbq55dq1azk5OZZVZJ7aAQAAAABgoVhB2KhR\noxccITc3d86cOefPn3/vvfeaNGny5w6BgYEbNmzYvn37hAkTzC3bt2+XJCkwMLCAHQAAAAAA\nFkVoUZkvv/wyMjLypZdeio+P//777y3tLVu2rFChghCiSpUqHTp02LlzZ25urr+/f3R0dHh4\nePv27X18fMw9n9oBAEo2k9GkdgQAAFCcKFkQ7t69W6PRBAcHCyHu3LkzdOjQ/HsDAgLmzJnz\nhLffvn1bCHHp0qVLly7lb69ataq5IBRCjBgxwsPDY+/evSdOnPDw8AgNDe3Ro0f+zk/tAAAl\nmDGPghAAADwDxQrCs2fPduzYcenSpeaXGRkZO3fuzN9h586dPXv2bNiw4V+NMGvWrKfOotFo\nevXq1atXr+fuAAAlzKF1Z+Kjb/ef1U6jlfK3n9oZc2pbzKgvu6kVDAAAFH2KFYQrV64sU6bM\nkCFD8jeuWrWqffv2Qoi8vLyAgIA1a9Y8oSBEfkkJqQ+TH32ERnEnpd1zFCL9Qdb9C7fVzqK8\nijXLaHUatVOgNKoT5Lv3y4g17+4aNK+DpfHUjpg17+7+2ychKgYDAABFn2IF4cGDB9u2bWsw\nGPI3urq6Wh4k2Llz58OHDys1XYm3a/Gxo98X9MmNxYWH092JweL8gdhNn3ytdhbl/ePYaJey\nDmqnQGnkWdll4vo3Fg74/qt3djQWQghx4efYtdOOhs4Nbty5psrhAABA0aZYQXjt2rWePXs+\noYOPj0/+59Tjyeq09HVwtVM7hdJSrog8Ye9k227kY1aRLe5sHPRqR0Dp5V7R+Z1v+i4c8H0D\nP6MQYv3M/aFzuzTpVlvtXAAAoKhTrCDMysrS6//7F2Jvb++0tDQ7u/+WNPb29pmZJe0aSOtp\n0P6lBu1fUjuFwm6fsRffCQdX2+7vtVQ7C1AS3I178N2MfbJJNr90KedoMspCCI+KLsc2/3Js\n8y/m9le61W7ao45qKQEAQBGmWEHo7u6ekJBgeSlJkqOjY/4ON27c8PDwUGo6AICTh32dlr7G\nXKP5ZcLFuyJJCCE0Wqnmq1Ukze9rzFSqVVathAAAoIhTrCBs0KDBnj17TCaTRvOYdTVMJtOe\nPXsaNGig1HQAAFtHw+tDf1+pK3LXxe2fHa0fqBVC5GTmxP96Z+jCjhotCx0BAIAnUawg7Nu3\n79ChQxcuXDhx4sQ/7124cOHly5enTJmi1HQAAIvIXRdXTdwVOjdYs2eFEGLEv7sueWvvV+/s\npCYEgJLKdP9K7pX9aqfAM9BXe03jUU3tFI+hWEE4cODAxYsXT5o06Zdffnnrrbfq16+v0+ny\n8vLOnDmzZMmSVatWNWrUaMCAAUpNBwAwO/dz7KqJu/72z/aNu9Q6u0cIIVwrOI77us/C/t9/\nO+2ngXOC1Q4IAFBe3vUTGZtHqp0Cz8Ch3zeGkl0Q6vX6rVu3du7cedWqVatWrZIkyd7ePiMj\nQ5ZlIcTLL7+8devW/KvOAAAUYedoGLGoS0Abv/yNnpVd3vm274UDV9VKBQCwKp1voMOADWqn\nUF7Gj6OEJNl3W6p2EOXpqryidoTHU6wgFEJUrFjxxIkTa9eu3bhx44ULF1JSUry8vPz9/fv0\n6RMaGko1CADWUP2VypZtSfpvu2dll1Z/485tQFGyLISQc9LVzgEIjWsVg2sVtVMoL3PHO0LS\nGAJ6qx2kFFGyIBRC6PX6YcOGDRs27LF7o6KiWFcGAKxHZ9CqHQEogeSch5LBvHa6uSB8+Ed7\numRwUC8XACigMBYbSElJWbp0acOGDV9++eVCmA4ASjHp6V0APAs5437KzDK5v2x5pN2YcDpl\nbpW8uGOqpAIApSh8hvARR44cWbFixcaNGzMyMhwcHHr35uQvAAAoTiR7D/vuSx5++4Zjv+8s\njcabUWkrgm0aDdF5v6piNgB4cVYpCO/evbt27doVK1bExMQIIYKDg0eOHNm+fXs7OztrTIfi\nxSBS1Y4AAMAzMDQaIoR4+F0/u+bjhBDyw7tpy9vaNBps13G+2tEA4EUpecmoyWTau3dvnz59\nKlWqNGnSJHt7+w8//FAIMWrUqO7du1MNllpy+r38L3VS1u/tWanCmKNGIgAAno2h0RCH7ksz\njywUQuRe+IFqEECJodgZwo8++uirr76Ki4srU6bMW2+9NWTIkICAgN9++2327NlKTYFiKvWz\neoYmw+3azszfaEq6mvZla9s2M2waD1UrGADAerLSc0x5JrVTvKjc7zqZEk8/0igbc7IiVmZF\nrDS/lGxdDaOj/2eR32JIkiQ7Zxu1UwBQgWIF4YwZM6pVq7Z58+ZOnTrxhAnk5zh4W9rytiI3\nS3j9fhOpKTkubdnrOu9XbRr+Td1sAAArWTR409XIm2qneFGu9k0dbPzN22Wc7nZvuFGvFSaT\nvDeiRezd3x/+mZVnc3/FYvUyKsPexXZB5Fi1UwBQgWIFoaen55UrV6ZMmXLp0qXQ0FAvLy+l\nRkZxp63Y0GnET2nL22p9bgkhNCIn7ctWuiqvOLyxTmisu6wRAEAt3nXLG+xKwA/E3uZ/uOuv\ntXX/6ma6v7dTVHxqrbYBe2yTxl3PbiKEcBKijKoRFWFjXwL+YwF4Hor9dTwhIeHHH39cvnz5\nBx988OGHHwYHB5uvGlVqfBRr5pow5YvXhBDO4pquSneqQQAo2fpMf03tCIox3oxKWz7aptGb\naQ98xbmxNpUDnNtNavXjaMd+3+n9u6udDgBeiGJ/IzcYDH379u3bt+/Vq1dXrly5evXq3r17\nOzg4CCFu3iz2V4zg+WT88GZ2xHLLS/PdFVqRk3P2+5yz3//eqtG5TL6mcamkQj4AAJ5GzkxO\nW/a6TZMRdh3+Kb75/dJQQ6Mhsiw//K6f89gIbQV+/gZQjCn/YPqqVavOnj37+vXrW7dubd26\ntVarHTNmTNWqVd97772TJ08qPh2KMruO813ejzX/z2nUYdmhnBBCFlqbpiMt7S7vXaEaBAAU\nWZKti+PAjXYd/vlIu03joU5vHtB4+KmSCgCUonxBaKbVart06bJ9+/a4uLhZs2bJsjxv3rwm\nTZpYaToUTZKts8a9qsa9qpC06RsGyR51hRApwjfn7IbsE8vMuzRu3mrHBADgr0kaXbXX/9iW\nhBCy9PvtdjrvVyWDg1q5AEAR1ioILSpWrDh16tSrV6/u3bu3d+/e1p4ORZApOS5tWWtdpcZ5\nzWYJIYzCzmnET9knlmXunqx2NAAAnokkhMjTOKkdAwAUU0irekiS1LZt27Zt2xbOdChS0pa3\n0Xk3c+iz5uG5KHOLtmJDxyE7H37VXutV31DvDXXjoXQyPbydc2q12imU56i9K4TIO/55lp29\n2lkUpvNupvMNVDsFAAAlDcs8wuoc+n+r83pZaLT5G3Xerzq/fUqyc1MrFUo5OfVmiTxH7aQT\nQoi8gx/lqZ1EcbavT6UgBABAcRSEsDpdpcb5X5r++H+dxrO6GnEAIYTQuPk6DNigdgrl7V58\n7EbMvcHzQ/Q2Je2Pd23ZWmpHAABYn2xSO0GpU9L+xoCiL0t2VzsCICQ7V0NACbyrOS5L/Hoj\nTlu7p8HBoHYWoASSZSGEyMnIVTsIUGLJ2Wl/PKoMhcTqi8oAAAAUX3k5xgNrIo15JiGEkIUQ\nf9SFQvzfxvOp9zJUSwaUFLmX9hrv/Pr7C1n+40gTxju/5l7aq1qsUoOCEAAA4C8Z80wH1kSu\neHv77zXhHzb/49APcw/lZHK2EHhReb8dSfsiyHjrfP5G463zaV8E5cX9n1qpSg8uGQUAAPhL\nNvb6d77tu7D/91+M2vJ6y99rwq0Lwo98f27cmt6elV3UjYdSK2Lrr6sm7FQ7hTIk4dSxfo16\n/3h15eGRo17LFbI0vcF7I1p+EX2zztY1DrKYr3ZAZQxd2LFxl6J4PzwFIQpbThY/pgIAihO3\n8k7mmvBM1pXgiuL+zdRD28+MW9PbO6C82tFQejm42lbxL6d2CsWcyxvhlPHNiNbLNZIsCzHq\ntWXXHjaKzBlc2b/k3E9o72qrdoTHoyCE1Z3fH1uzubdlzUPL2lG/nU10LuPg7uWsWjIAAJ7o\n0vHrd357YN5u8UbAb5tOiIoi5XZ60IAG8dF34qPvCCEc3e3qt2PdbBS2OkG+dYJ81U7xouT0\nu7mxB/94MSz7tDbv4m4hhF21oMZNhjeWfq8G9X6tJIcyKmUs+SgIYXXbFh49+HXUqC+65W+8\ncODqsjHbhi/qTEEIACiyIrb+aq76zDzM/5DEL4evSn/8VdXexbZe2+pSyTmNARSevPiTWQf/\naXkp52aZN0ypCVmHPrG0SzaO+hohhR2u1KAghNWNW9Prs4Eblo7c0uutyuaWXw5fWzZ2W88P\nggJe91M3GwAATzBwbrBle+uC8MTdh4QQWp3Gxd1x5JKuOoNWvWhASaCv2UFfs4N523jn14fL\nXjPJWiGElH7X8c2fteXrqpqutGCVUVido7v9+HV9Uu883P75/wkh8nKNX47e2nNyUFBoA7Wj\nAQBQIFsXhB9ad6Zhx5pCCK8anrevJn351ta8HKPauYASwlwN6mt3Ncpao6wz1O+Xtuz1R9Yd\nhZVQEMKKkhPTYo7GxRyNu/Hr3Y5/b5Z6O00IkZma3aJP3XJV3c27Lkfc+ON5TgAAFEWb/3Ho\n8Ddnx6/r41LGQQih12vf+bbv7atJK8ftMBlNT307gCezVIP23ZcKIclC2Hf+zFCvb9qy1423\nLqidruTjklFY0c9fnTr2wy+Wl876HCGEEPKJLb+e2Pr740d1Bu0HW0NdyzmqERAAgKd4mJx5\n9qcr477uXaVOuUtRvzea1x1dOuLH+F/usNYo8IKyDy/Q13vDvtOnwnIzriTZd/lcaHTZR/9l\n33O5qulKPgpCWFGvD1v3+rC1ECI7O3v76p/PLrshhBCS5FBRN+Sz9r7VfNSNBwDAUzm62c38\nedif293KO03Z/rfCzwOUPPa9VuR7JQtZEkIISbLvvFClRKULBWERdfbs2evXr6udQhm5ubkR\nuy88OGjrWStVCCF0xjvX73/Uc3nTkd5elSuonU4xbdu2tbUtoo+XAQAoQtIIIYTOlr8+AdaS\nZ9TJgkV7CxV/ohVReXl5OTk5aqdQxi+Hrz04aKuvnaopmyGEMMkm2xZJ4oj7+XX3nEY72dgb\n1A4IAMAz0GhZggFQ0qGvo9wrOtd9zU8IkWfSy/LvBeH5/bFJCaksQ2htFIRFVMOGDRs2bKh2\nCmUcmf2ZVytR/bU6edftRJLQ6bSvBDbKaWCKWBLv+LBCl9BWagcEAACAamwdbZaN2Tb88871\n2lazNJ7Ze3nluB0D5wQ/4Y1QBAUhrK7pexVS01IfaTQ4atw7pr/UmhvxAQAASrVXutc2GU0r\n/r592L86uQshhLhw4OpX43f2nvbaK91rqxyuFKAghNXZ2tneu3/vv6//uNAmJzfHxsZGlUgA\nAAAoOl7t5S+EWDlux6R2QhZi2Zhtvaa2btm/ntq5SgUKwiLql19+uXHjhtoplBEXF3fixIkq\nVarYp9wTTiLPlHvu3LmMjAwHB4cLFy5cunRJ7YDKaNWqFfVtMfIwOfPMnstqp1Deg1sPhRDH\nNl3Q25S0P94r1y7L4v4AUMIkXrl/fPN/H1FWo1kVIYSQRbUmle7fSPnxk8Pm9qY96lSo5qFK\nwtKgpP2NocRIT09PSkpSO4UynJ2dy5UrFxsb+5KjrXASGklz69atO3fuBAUFPXz4UO10ijGZ\neDZxcZKcmPbNh3vVTmEtGz7ar3YE5YWMaUpBCAAlTE5GbkZKluWlbJL/2BL523Mycws5WKlC\nQVhENWnSpEmTJmqnUExqampERET4hm/MLzt16lSnTp2aNWuqmwqlmVsFpwGz26mdAs+gcu2y\nakcAACjMO6C85ce+CweuLhuzTbQVQhKXI+KDBv7PGjOwHgpCFAZnZ+c2bdrUcLYXP6x2d3dv\n1b27RsOa3VCTo5tdizcC1E4BlGQXj11PT85UO4XC0mOTPIVIu5seueui2lkUpjVo67XhL99Q\njbka7DW1tRQRJmTR76M2K/6+/ZF1R2ElFIQoPAaDQQih0WioBgGgxNv26ZGrkTfVTqGw2l6X\n/ZuJ+F/vHvpxu9pZFGbvYrsgcqzaKVBKndsXu/ztbf0+atOsd93rEUII0ax3XVkWK/6+fcS/\nuwS87qd2wBKOghAAACgvaED9knfGyS1dFrdFnZY+7l1aqp1FYboStxIVipGEi3cHzGnXtHud\n/I3N+9TV6jQJMXcpCK2Ngx8AACivSbcS+PSw3F9uPlwrqr9SuW6rknOfP6C6kDFNH9vetEed\nx7ZDWRSEAAAAAIoGSRJCUjtE6UJBCAAAAKBIkAT1YGFjbQ8AAAAAKKUoCAEAAACglKIgBAAA\nAIBSqqTdQ2gymbZs2bJnz567d+96enq2a9euR48ePPUOAAAAAP6spBWEK1as2LFjR7Nmzbp0\n6RIdHb127dp79+6NGjVK7VwAAACAYnKjt2Zsn6B2CuXZ61OFECn/LIHPHrTvvFBfu4vaKR6j\nRBWE8fHxO3fuDAoKmjhxohCiY8eOer1+9+7dISEh3t7eaqcDAAAAlJFw8a7mTrraKZSXm+0m\nhNAbS+BHS46561Mkn89aogrC8PBwWZY7d+5saenSpcv+/fsPHz4cGhqqYjAAAEqbzL3TTHcv\nqp1CYabUBCFEzplvjQmRamdRmsHBofcqtUPgGdzRNF+1ZZLaKfAMhgY181E7w2OVqILwypUr\nWq3Wz++/p5h9fX0NBkNsbKyKqZ5PTuTXeb8dUTuFwnT37woh3KWYjM0j1c6iPLsOn0i2Lmqn\nAICiIu/K/ry4/1M7hVUYE88bE8+rnUJhkp2b6K12CDyLlzu85N/KV+0UeAYGe73aER6vRBWE\nSUlJLi4uWq3W0iJJkpub2/379/N327ZtW3Jysnk7IyOjUCMWWN61w9kRK9ROoTDz2j4OUkL2\niWUqR7EC27ZhFIQAYOEwcKPIy1I7BQpMYgW+Ykan1+pctE/vBzxNiSoIs7Oz9fpHK2+DwZCd\nnZ2/5dtvv71y5Yp5u0aNGtWqVSukfM/Crv0c29YfqJ1CYffiU/4VuqFB8Es9PghSO4vyNA5l\n1Y4AAEWIxtlL7QgAgKcrUQWhjY1NZmbmI405OTm2trb5W8aPH//w4UPz9p07dy5eLIp3OEgO\nZSSHMmqnUJickpyU7pEul9e4V1U7CwAAAICSVRC6u7vHxcUZjUbLVaOyLCcnJ/v7++fv1rRp\nU8v2yZMni2ZBCAAAAADWVqKuF/fz8zMajVevXrW0XLt2LScnJ/8yMwAAAAAAsxJVEAYGBkqS\ntH37dkvL9u3bJUkKDAxUMRUAAAAAFE0l6pLRKlWqdOjQYefOnbm5uf7+/tHR0eHh4e3bt/fx\n8VE7GgAAAAAUOSWqIBRCjBgxwsPDY+/evSdOnPDw8AgNDe3Ro4faoQAAAACgKCppBaFGo+nV\nq1evXr3UDgIAAAAARV2JuocQAAAAAFBwJe0M4XPIzc1NTU1VO8Wjdi46dnbvZbVTKMyYZ8qT\nck7uOf/ryVi1syjv72t6O7rbqZ0CAAAAKChZliVZltWOoabo6Oi5c+eqneIxHtx+mJGSpXYK\nPINyVd21Ok65AwAAoDgp7QUhAAAAAJRanNAAAAAAgFKKghAAAAAASikKQgAAAAAopSgIAQAA\nAKCUoiAEAAAAgFKKghAAAAAASikKQgAAAAAopSgIAQAAAKCUoiAEAAAAgFKKghAAAAAASikK\nQhSGmJgYWZbN2zdu3JgxY0Zqaqq6kYCShEMMsDaOMgAllTYsLEztDCjhIiMjp0+ffvPmzaZN\nmyYkJHz44YfXrl3LzMxs3Lix2tGAkoBDDLA2jjKgcNy7d++LL75Ys2ZNRESEo6NjxYoV1U5U\nKujUDoCSr3r16t7e3gcPHszKyrp48WJycnJAQMDQoUPVzgWUEBxigLVxlAGF4MGDB+++++79\n+/eFEDdv3jxz5kxISMjIkSM1Gi5ptC7Jcv0DYD1paWlTp069du2aECIgIGDatGk2NjZqhwJK\nDg4xwNo4ygBr+/zzz/ft2+fn5zdgwID09PQ1a9bcu3evVatW77zzjiRJaqcryThDiMKQnp7+\n4MED87abm5vBYFA3D1DCcIgB1sZRBljb6dOny5YtO3v2bHt7eyFE/fr1p06devDgQSEENaFV\ncQ8hCoPBYLhw4YKnp6ejo+OZM2du3brVtGlTDmxAKRxigLVxlAHWtnnz5k6dOtWrV8/80tbW\ntnnz5pGRkWfPnuWIsyoKQlhdcnJyVlZWmzZtWrVq1bJlyzNnzkRFRT1yYJ84ccLZ2ZnLb4Dn\nwCEGWBtHGWAlycnJK1asWLdu3alTp1JTU/39/WvUqGHZS01YOCgIYUVJSUn/+te/Fi9efOTI\nkWbNmrm4uNjY2DRv3tzyVdqkSRONRnPgwIH58+efOnXq9ddf1+m4jBkoKA4xwNo4ygDrSU5O\nnjBhwoULF1JSUm7evJmZmZmSktK2bdv8q8jkrwl9fX0rV66sYuCSioIQ1pKYmPj+++9funTJ\n2dm5U6dOfn5+5ivC83+VRkVFXbhwYf369bIsd+jQoX79+mqnBooNDjHA2jjKAKv64osvoqOj\nq1atOnbs2AYNGly6dOnmzZv3799v0qRJ/jOB5pqwfPnyrVu3VjFtCcYqo7CKnJyc8ePH37hx\no2bNmh988IGbm9sjHdLT0+fOnXvu3DkhhEajGTRoUPfu3dVIChRLHGKAtXGUAdZz7949Dw+P\nwYMH6/X6zz//3PxTS1JS0ocffpiQkNCmTZu3336bq0MLDQUhrGL37t1Lly4tX778Z599Zj7I\nhRBnz549e/asp6dncHCwVquVZfno0aPx8fGvvvqqj4+PqnmBYoZDDLA2jjLAShISEqZMmdKw\nYcMzZ8506NChV69ell3JyclTpkyhJixkXOYOq7h48aIQomPHjuYv0Rs3Klm8GwAAIABJREFU\nbixZsuTChQtardZoNB49evTjjz+WJKlFixZqJwWKJQ4xwNo4ygArsbe3t7e337dvnxDikSe4\nuLm5zZkzZ8qUKea91ISFQ/P0LsCzq1SpkhDi7Nmz8fHx33777fjx42VZ/uyzz7799tvy5cuf\nP3/+8uXLamcEijEOMcDaOMoAKzFXfRUrVhRCHDhwwGg0Pnbvvn37Tp48qVLG0oUzhLCKTp06\nnTx58tSpU6dOnXJycho6dGhISIgkSbIsa7VaIYTJZFI7I1CMcYgB1sZRBliP5UxgbGzs4sWL\nHzkTaN77f//3f02aNFExZOnBPYRQQHp6+g8//HDy5Mns7Ozq1av37t3bx8fHaDSePn3aaDTW\nq1fPcvfF9u3bly9f7ubm9tVXX5m/UAEUxJ+PssqVK3OIAUrhiwwofNwxWERQEOJF3bx5c/r0\n6Xfu3BFC2NnZZWZm6nS6v//9761atcrfTZblH3744euvv5Zl+d133w0MDFQnLlAMFeQo4xAD\nnhtfZIC1PfY3F0FNWDRQEOKFZGVljRs3LjEx0c/Pb9y4cT4+PosXL96zZ48kSf/+978tDw+N\nioratGnT+fPnJUkaNGhQjx491I0NFCMFOco4xIDnxhcZYG1P/s2FmlB13EOIF7J169bExERf\nX9+5c+fa2tr+5z//2bt3rxBi2LBhli/RBw8eLF269NatW+XLl3/rrbd4aC/wTJ56lHGIAS+C\nLzLAqrKysmbOnHnnzp1HfnNZuHChn59f5cqV868s2rRpU+4bLHwUhHghJ06cEEK88847tra2\ne/bsWbp0qSzLw4cP79KlixBi7969LVu2dHV1nTNnzqVLl1599VV+9QGeVUGOMg4x4LnxRQZY\nVUF+c2EVGXXx2Am8kJSUlLJly/r4+Ozdu3fJkiX5v0TT0tKWLVv2j3/8Qwjh6enZrFkzvkSB\n51CQo4xDDHhufJEBVvXU31yysrKEEG5ubh07dlQ5a2lFQYjncePGjatXrwohypcvn5qaunXr\n1sWLF+c/vIUQq1evzsnJsfz2A6DgLIeY4CgDrIMvMqBwFPA3F6iIghDP7MGDB9OnT582bVp8\nfHxQUFBWVtbKlSsf+RLds2fPTz/9ZGtr27VrV3XTAsVO/kNMCMFRBiiOLzKg0PCbS9FHQYhn\n9vXXX9+7d8/Hx6ds2bJt2rSpWbOmEKJixYotWrQQQmRlZX399ddLliwRQrz99tuenp4qxwWK\nm/yHmBCCowxQHF9kgLJiYmIsTy64cePGjBkzUlNTzS/5zaXo47ETeAb37t3z8PAYPHiwwWD4\n/PPP7ezshBApKSkzZsy4evWqRqMpW7ZsUlJSTk6OJEmDBw/u3r272pGB4uSxh5jgKAOUwxcZ\noLjIyMhZs2YFBga+8847CQkJH374YXJyckhIyOjRo4UQJpNp8uTJMTExFStWnD17tru7e1ZW\n1saNGzdt2sQjPYsIbVhYmNoZUDwkJCS8//778fHxt2/fbt++fb169czttra2rVq1kmX5xo0b\n9+/fN5lMAQEBEyZM4PAGnslfHWKCowxQCF9kgDU4OjpGRkZGRUX99ttvGzZsSE5ODggIGD9+\nvE6nE0JIktSkSZOzZ89ev35927Zt+/fv/+abb8yP9BwyZEhwcLDa8cEZQhSY5bGhQojBg/+/\nvXsPavLK/wd+EogJAcEohVAUFORaAlIURRQBryB23S2dLuNo0a7jzK5M1a2XcnO7UrTWrait\ni7dVsQNup1U7FWuBanQEFTCQCKhAxTYJ12BAVGII5PvH8/09v3yDpQIJD5f36z+eHJgPf3zm\n5POccz4nvvedvHq9vqOjw8rKisPhMBEgwMj2uylGkGUAg4OJDMBMOjo6kpOT6+rqCCH+/v4p\nKSlcLtdwgEaj+frrr/Pz89vb21kslkgkWrVqlY+PD0Pxwv+BghD6gZ5KXVxcDhw4YGFhwXRE\nAKMKUgzA3JBlAObQ2Ni4fft2tVpNCFmwYMGWLVteekcL3rkMT9gyCv1gZWUVGhpaUlKiUCha\nWlpmz56NG5kATAgpBmBuyDIAcxg3blxFRYW9vb2NjU15eXljY+OcOXN6JxeLxeJyuXgRM9yg\nIITfpNPprly58v333xcXFz958mTy5MmWlpb0VCqTyVQqVXBwMKZSgAHrnWU2NjZIMQBTwUQG\nMATUarVGo1m0aFF4eHhYWFh5eXlZWZlRTXj79m1bW1ujfaQwTGDLKLxcQ0NDWloadQ0axcHB\nYevWrV5eXsRgy82iRYsSEhIwlQIMQB9ZhhQDGDxMZADm9vjx46NHj966dWvixInp6elCoZAQ\n0tHRkZKS8vDhw/Dw8A8++MDCwuLq1asHDhyYMmXKvn37UBMOQ1ghhJdob2/fsWNHQ0ODk5NT\nbGxscHDwixcv6urqrl279sYbbzg4ONCvV6VSKV6vAgxA31nm4uKCFAMYDExkAObW0NCwffv2\n6upqW1vbmJgYd3d3Pp9PCOFyuaGhodQ6YVlZWUVFxdmzZ/V6fXR09IwZM5iOGl4CBeFYp9Pp\njhw54urqam1tTT88efKkVCr19PT87LPPRCKRp6fnwoULORyORCIpKSlZvHgxl8s1nEqnT5/u\n7OzM4H8BMJwNLMvs7OyQYgCvAhMZwNDTarWJiYlNTU3e3t7p6elBQUFUNUjhcrnz58+vqamp\nqqp69OgRm82Oj49/5513GAwY+oCCcEzr6enZu3fv1atXKysrly5dSr8czcjI0Gq1SUlJDg4O\n9GBfX1+lUlldXc1ms6m7m6ip1NHRMSIigpl/AGDYG0yWIcUAfhcmMgBG5OXlXblyRSgU7tmz\nx9bWlnoolUrz8vKUSqWbmxuXy42IiHBxcXFxcVm/fn1ISAizAUMf2EwHAEz67rvvbt68aWNj\nY3h8Qq/XP336lBDi4uJiND46OpoQIpFI6CcCgWD58uVDFS/AyDPILEOKAfQNExkAIx48eEAI\nWb58ObUwqFAoEhMTU1JSzp8/n5mZmZqaqtfrWSzWvHnz4uLipk6dynC40CcUhGPaTz/9RAjZ\ntGmTm5ubQqG4desWIYTFYjk5ORFCampqjMbzeDxCyPPnz4c8UoCRClkGYFZIMYChpFAoamtr\nCSGTJ08mhEilUrlcnp2dvWnTJr1en5GRkZ2dLRQK79692zv7YNhCQTimUS91OByOQqFISkr6\n9NNPZTIZIWTJkiWEkBMnTmi1WsPx165dI4RMmzaNiWABRiRkGYBZIcUAhoxGo0lKSjp//jwh\nJCYmxsfHp7S09G9/+1tubu66devS09Pd3Nx4PB51zWBPTw/T8cKrwhnCMU0gEFy/fr20tFQs\nFqvVapFI9Kc//cnS0tLDw0MikdTW1lZWVvr7+1tbW+v1+tzc3OzsbBaLlZCQYG9vz3TsACMD\nsgzArJBiAEPG0tLyxo0bd+/eXbZsmY2NTWRkpIeHR2ho6Pr16319fak92xcvXhSLxQKBYN26\ndWw2Vp5GBtxDONZlZWV98803hBBvb+9du3bRl8O0t7fv3Lnz4cOHbDbbxcWlvb1drVYTQtau\nXfvHP/6RyYgBRhpkGYBZIcUAhoxYLP7888/XrFkTGxtr9JFer//222/PnDmj1+u3bt06f/58\nRiKEAcAK4ZhWX19/7NgxjUZDCHnx4sXMmTMFAgH1EY/HCw8P12q1dXV1ra2tGo1m4sSJGzdu\nXLp0KaMhA4wwyDIAs0KKAQylyZMn5+Xl1dXVrVixwvDqzrKysi+++CI/P5/FYsXHxy9btozB\nIKG/sEI4pj1//jw1NZXH482YMSMrK2v8+PG7du1yc3MzHKPRaORyOYfDcXV1xaW9AP2FLAMw\nK6QYwBDLycnJyclJTU2dOXMm9aStrW3btm2NjY1CofCvf/0rbp8fcVAQjnXPnz+3sLDgcrnf\nfffdiRMnXjqVAsBgIMsAzAopBmAmCoVCLpfPnj3b8DRgW1vbunXrAgMDU1JS6Icqlaq6ujok\nJATvXEYibBkd6zgcjqWlJSHE29ubz+ffunWrsLAwMDCQ3nIDAANDvW5jsVjIMgCzQooBmENb\nW9vWrVvz8/OvXLmi0+mmTJkybtw4QgiPx6uvry8qKlq4cKG1tTU1mM/nT5kyBdXgCIWCEP4/\nTKUAJtHS0vL5559nZGRcuHChpaXFx8eHmkQJsgzAzJBiAKbC4/FmzZrFYrEePHhQUlJy8eLF\nlpYWoVBoZ2f32muv/fjjj1wuNyAggOkwwQRQEML/gakUYJDUavWHH35YW1ur1+u7urpqa2sL\nCwtnzZplY2NDDUCWAZgVUgxg8NRq9bNnz4RCYVBQUExMjIODQ1NTU2lp6aVLl6qqqlxcXJqa\nmmQy2VtvvYW7JUYBFIRgjJ5KhUKhj48P0+EAjDAnTpyoqKjw8PBITk5+++23Ozs7ZTLZzZs3\nZ8+e3bsmRJYBmANSDGDAHj9+fODAgS+//PLGjRvUzGVpaTl9+vRly5YFBgZ2dXVJJBLq2s/O\nzk5XV1cXFxemQ4bBQlMZeLkHDx54eXkxHQXA8KXT6Qgh1MklikqlmjRp0vr163t6eg4ePEiX\nf1RDNnt7+/T0dKFQSI9HlgGYFVIMoL8aGhoSExNbW1vt7OzeeuutiIgIe3t7ozHt7e35+fmX\nL19ubm728/NLT09nJFQwIawQwsv1zn8AoOl0uj179ty4cSM0NJTaLaNUKrdv3y6Xy5uamhYt\nWhQUFEQPFolEhJDi4mKjdUJkGYBZIcUA+kWr1SYmJjY1NXl7e6enpwcFBfH5/N7DeDyer6/v\nihUr1Go1Na9hY/ZIh12/AAD9ptPpOjo6qqqqGhsbqSd8Pp/P5xcUFDQ3N1tZWRmNj4uLi4uL\nU6lUiYmJ9K8AAAAMHz/99JNCoRAKhf/4xz/oGk8qlWZlZV26dKm7u9twMIvFWrJkCSEkLy+P\ngVjBpCx/fwgAAPxfPB7v448/bm5udnZ2bmpqsre3FwgE6enpiYmJSqVSLBavWLHCwsLC8Ffi\n4uIIITk5Obdv3/7DH/7AUOAAAAAv9+DBA0LI8uXLqYVBhUJx+PDhiooKCwuL7u7uwsLCtLQ0\nw4slxo8fTwi5d+8eUwGDqWCFEABgIHg8nouLS0NDw7Zt23bv3t3d3U3VhM7Ozg8fPvzyyy97\nn9COi4tLT09HNQjQL3q9Hv0OAIbA5MmTCSFSqVQul2dnZ2/atEmv12dkZGRnZwuFwrt379bU\n1NCDe3p6Tp06RQgxPBsPIxRWCEctnU4nFosrKytZLJaPj09YWBiXy2U6KIDRRiAQCIXC4uLi\n3bt3f/TRR/Q6YUFBASEkISHB6JZePz8/hiIFGO66u7vZbLZhyrS0tGRmZkokEi6Xu2DBgtWr\nV9NHcAHA5GJiYkpKSkpLS0tLS8ePH79u3bqoqCgWi6XX66k9Lz09PfTgn3/++fbt23w+f82a\nNcyFDKaBLqOjU0NDQ1pamlwup584ODhs3bq1d781pVLp7Ow8tNEBjCoajWbnzp337t0LDg7+\n6KOPLCws1Go1tXd00aJFvWtCAOiNatRka2tLp4xard6yZUtrays9RigU/vOf/+y9HIGJDMBU\nuru779y5093dHRAQQHeU+f77748dOyYQCP7zn/8YnoYoLi6eMGGCp6cnQ8GCyaDL6CjU3t6+\nY8eOhoYGJyen2NjY4ODgFy9e1NXVXbt27Y033nBwcKBHisXi1NRUa2trNOYGGDBLS8v58+dX\nVFRIpdK6urrQ0FA+nx8aGlpSUiKVSlUqVXBwMGpCgL51dHScP3/eMGVe5UpPgokMwKTYbLaz\ns/OUKVM4HA4hRK/Xf/vtt9TW0ISEhKlTpxoOdnZ2njRpEhNhgomhIByFTp48KZVKPT09P/vs\nM5FI5OnpuXDhQg6HI5FISkpKFi9eTO8dvXPnTnl5uZeXF9UWHwAGpu+acPr06Vi+AOgbj8cz\neo1y7NgxKyurvXv3CoVCGxub2bNnk5dd34KJDMBMysrKvvjii/z8fBaLFR8fv2zZMqYjAnNB\nQTgKZWRkaLXapKQkw8VAX19fpVJZXV3NZrMDAgLohwEBAZGRkQxFCjDy6PX6u3fvlpaWPnny\nxNHRkbqEkPx2Tejo6BgREcFszAAjgpWVlWFN+IpXemIiAzCHtra23bt3P3z4UCgUbtu2DRPZ\n6IYzhKONXq9fuXKlXq//5ptvxo0bZ/hRVVXVjh073NzcMjIymAoPYERrbm7+9NNP6TZrr7/+\n+pYtWwyPT/Q+T8hQpAAjFX0ElxCybt26lStXGg3IycnJycmxt7dPT09He0MA81GpVNXV1SEh\nITj1MOrh2onRhsViOTk5EUIMWwNTeDweIeT58+cMhAUw8lGnc2tqagQCQWxs7IoVK5qampKS\nkiQSCT2Gup/Qx8enuLi4qKiIwWgBRij6+hZCiFgsNroLmxASFxcXFxenUqlu377NRIAAY4W9\nvf3cuXNRDY4F2DI6Cmm12vLy8l9++SUiIsJwgeLChQv3798XiUTz589nMDyAEWrPnj0///yz\nj4/P7t27g4ODm5ubS0pKdDpdUVHR9OnTqRcx5P/tHXVycsIGG4CBofeO/vrrr62trb3bMolE\nIpFIFBYWxlSEAACjCQrCUcjDw0MikdTW1lZWVvr7+1tbW+v1+tzc3OzsbBaLlZCQYG9vz3SM\nACPM/fv3s7Ky7O3td+/ebWtre/ny5czMTL1eHxkZWVtb27smdHNzYzZggBHN6Dxh75rQ8JA8\nAAAMBgrCUYjNZs+ZM0cqlVZXV1+8eLGoqOi///1vYWEhIWTt2rVYHgToF4VCoVKpysvLZTLZ\nBx984O7ufvPmzYyMDL1e/5e//OW999779ddfHz16ZFQTAsAg/W5NCAAAJoGCcHTi8Xjh4eFa\nrbaurq61tVWj0UycOHHjxo1Lly5lOjSAkaStrW3Hjh35+flr1qzhcDgxMTFPnz5NSUnRarVx\ncXGxsbGEkEePHtXX12s0msLCwrCwMMMb0gBgMFATAgyeSqXKzMw8ffp0cXGxjY0NrkGC3tBl\ndJTTaDRyuZzD4bi6umIeBeivQ4cO5efni0Si1NRU6gLPc+fOnTp1KjAw8OOPP6bGbNu2TafT\n/fnPf66rq3v33XcZjRdgFKL7jiYnJwcHBzMdDsBI0tbWtnnz5tbWVvpJVFTUhg0b6DuTKEql\nEoXiWGbJdABgXjwez8PDg+koAEYelUo1adKk0tJSR0fH5ORkqhokhDQ0NBBC6K3Xubm59+/f\nnzt3bnBwML6qApgD1Xe0qKgIKQbQX1lZWa2tre7u7qtWrXr27Nnp06d/+OGHzs7OzZs30+sE\nYrE4IyPj/fffX7FiBbPRAlNQEAIAGFMqlYmJiUFBQWw2e8mSJVZWVvRHXl5eP/744+XLl6ly\n8eLFiywWKyYmhsFoAUY9gUCwfPlypqMAGHnu3Lnj4ODwySef8Pl8QsiMGTOSk5PFYjEhhK4J\nW1tbe3p6nj59ymyowCAUhAAAxvh8Pp/PLygoIIQYXS4fEREhFotlMtnOnTupJ/Hx8X5+fgxE\nCQAA0Keenp5ly5ZR1SAhxM7OLi0tzagmfPvtt318fHx9fZkMFBiFpjIAAMboVhYdHR2PHz9e\nunQpfdyCzWbPmzfP0tKyq6vLzc1t/fr1kZGRzEYLMMzdv39/0qRJ1FqEQqH417/+FRQURG/D\nBgDTUqvVx48f/+qrr0pLS588eeLn5+fl5UV/yuPxQkNDJRKJVCptbGycM2cOi8V67bXXGAwY\nGIeCEADgJeiaUKFQtLS0zJ49mz5uYWFh4efnt3jx4rCwMNwzAdA3iUSSmppaX18/Z84cpVKZ\nlJRUV1fX2dk5a9YspkMDGIXUavWWLVsqKira29vr6+s7Ozvb29sXL15s2EXGsCacNm3alClT\nGAwYhgMUhCMDWgYDDD26JpTJZGh5DzAwNjY2EomkrKzs0aNHX3/9tVqt9vf337Rpk6UlDq0A\nmF5mZmZVVZWbm9vGjRsDAwOrq6vr6+tbW1uNpjCqJhQKhREREQxGC8MErp0YAV6xZTBB12AA\nM6Bb3i9atCghIQE1IUB/dXR0JCcn19XVEUL8/f1TUlL62C+KiQxgYKjm2PHx8RwO5+DBg9S5\nwcePHyclJWEKg75hhXAEOHr0aGVlpbu7e0JCwsyZM2tqamQyGb3tmx4mFotTU1Otra0Nd4oD\nwCDhamyAAeju7i4tLX399ddZLJZarb548aJGoyGEeHt7z5s377eSCBMZwMAolcrt27fL5fLm\n5uaoqKiAgADqOaYweBXGS0wwDNEtg2fOnLlgwYL9+/e7urqKxeL9+/cbLvCiazCAmVDXoDk7\nOxcUFJSUlDAdDsBwJxaLN2zYkJaWdujQIb1eP3HixGnTpolEIjc3t2vXrhlNXoYwkQEMDN0c\nW6VSjRs3zvAjwymMSkmmgoRhCyuEI8C5c+diYmLolz0vbQ9FCPH19Q0ICEDDQwBzoF6yOjo6\n4rgFQB+6u7szMzPPnDnz7NmzkJCQlStXTpo0ycLCYu7cueHh4WFhYeXl5WVlZUabXG7fvm1r\na8vlcjGRAQyMYXPs3l1kDNcJp0+fjl3ZYAQF4TA1gJbBhBB0DQb4LTqdrrOz0/C9qUKhUKlU\nAoHgFf+ClZWVp6eneaIDGCUOHDhQUFDA4/E2b968atWqiRMnUs8tLCwsLCy4XG5oaChdEwYH\nB7PZ7KtXr+7bt6+0tHThwoWWlpaYyAAGhq76fvnll95dZPBaE/qAgnA4QstgANPS6XR79uzJ\nzc2dN28eVRO2tbXt2LEjPz8/ODjYzs6O6QABRoObN2+eOXPG0tIyLS0tKCjopWMMa8KysrKK\nioqzZ8/q9fro6OgZM2YMccAAo0zfJwbxWhN+CwrC4QgtgwFMiKoGi4uLu7q6QkJCJkyYQAg5\nduxYRUWFl5dXdHQ02t8DmMS///3v5ubmd999t/esJJfL7927p9VqBQIBl8udP39+TU1NVVXV\no0eP2Gx2fHz8O++8w0jMAKMMusjAAODaCYbpdLoXL15YW1tTP6JlMIBp0dWgjY1NWlqam5sb\nnWXjxo07ePCglZUV0zECjBKrVq3q6OjYv3+/u7s7/fD+/fvHjx+vrq6mfgwKCvrwww+tra31\nen1hYaFcLg8JCZk6dSozEQOMUrgwCfoFK4RMMtrGhpbBAKbVuxqks6ypqWnZsmV0lgHA4F25\ncuXJkyeenp5UQajRaE6ePHn48OHW1lZnZ2dfX1+VSiWXy2trayMjI1kslouLi0gkohbtAcCE\n0EUG+gUbpRhj+FVVpVLZ2NjQLYMJIS9tGZyYmEh9ipc9AL+LTjEOh7Nr1y43Nzdi0JibEGJh\nYfHSX8S92AADEx0dfeTIkWPHjqnVajabfenSJZVKZWdn9/7774eHhxNC5HL55s2bpVKpTCbz\n9/dnOl6A0Yz66lhUVBQcHMx0LDDcYYWQGUYLF9OmTSNoGQxgOnSKEUJ6enrGjx9PLQYaZtnj\nx4+XLl1qmGUE92IDDIKHh8fjx48fPHggk8mkUmlnZ2dYWFhKSoq3tzc1wM7O7u7du01NTe7u\n7kgxAHNDFxl4RSgIGdB7Gxv9EVoGAwyeYYqtXr26oqKioqKiq6vLqCZUKBQtLS2zZ882zLI7\nd+6Ul5d7eXmJRCLm/gOAEYnFYgUHB3t5ednZ2c2cOXPDhg1RUVE8Ho8eoNPpsrKyNBpNVFTU\n5MmTGQwVAABoaCoz1Ay3se3du9fw5D0NR4EBBqz3CxeJRPLJJ590dXXFxsauWbOGGtZHllVV\nVfn6+jIUPsBolpOTk5OTIxAIjh8/zuFwmA4HAAAIwQrhEPutbWxG0EUGYMDy8vIuXLhguPzu\n5OTk4eFRWFj40nXC3lmGe7EBzOGHH344deoUIWTLli2urq5MhwMAAP8LBeHQ6XsbmxHUhAAD\n4+7urtVq165da7gZu781IQCY0IsXL44cOXL27FlCyHvvvbdkyRKmIwIYMVQqVWZm5unTp6kv\nkGghAeaAgnCIGG1jCwkJ6f311Ai6yAAMAIvFmjFjhkAgMHr+uzUhsgzA5Lq7u3Nzc/fs2VNZ\nWcnlcjdv3hwVFcV0UAAjRltb29///vd79+51dHQ0NjZev369ra0tKCjI6PWlUqm0tbVlKkgY\nBVAQDpFX3MZmBF1kAEyoj5oQWQZgDmw2+/r16zKZLCQkZPv27ejVBNAvR48eraysdHd3T0hI\nmDlzZk1NjUwma2xsnDNnDl0Tojk2DB4KwiHy6tvYjKBlMIAJ/VZNiCwDMJOgoKCwsLDo6Gis\nYAD01+HDh21tbfft2+fq6jp16tTw8HCJRCKVSg1rQjTHhsFDQThE+rWNDQDMB0kHMMRQCgIM\nzLlz52JiYuh5isfjhYaGGtWEvr6+AQEBkZGRzIYKIxoKQubh6ynAEKOTTiQS4ZUqAAAMH2q1\n+vjx41999VVpaemTJ0/8/PwM94K+tCZEc2wYJBSEwwJqQoAh5uTkFBYWFhISwnQgAAAA/0ut\nVm/ZsqWioqK9vb2+vr6zs7O9vX3x4sVsNpseY1gTTps2bcqUKQwGDKMDCsLhAjUhwBAbP348\n0yEAAMBYpNPpOjs7x40bZ/Q8MzOzqqrKzc1t48aNgYGB1dXV9fX1ra2tRhcjUTWhUChEOzQw\nCfbvD4Gh8uabbyYlJXE4HA6Hw3QsAAAAAGB61FVkycnJT58+pR+qVCq9Xl9eXu7g4JCenj5r\n1qyFCxfu37/f2dm5oKDg0KFDer3e8I/Y2dnhEhcwFawQDi/YxgYAAAAwWtEXU3d1dYWEhEyY\nMIEQolQqt2/fLpfLm5ubo6Ki6G1ihpflqlQqo3VCAFPBCuGw4+TkxHQIAAAAAGBidDVIXUw9\ndepU6jmfz+fz+QUFBSqVymgfqUAgSE9P/611QgCTQEEIAAAAAGBeRtWg4cXUdNVHCLl69Wp3\nd7fhLxrWhCUlJUMdN4wBLLxpAAAAAAAwH7oa5HA4e/fudXd37z1UpVM8AAABe0lEQVRGrVYn\nJiYqlcpFixYlJCQY7Q5Vq9VFRUXLly8fqpBhDMEZQgAAAAAAc6GrQUJIT0/P+PHjX9pMvu8T\ng1ZWVp6enkMXNIwlKAgBAAAAAMzCcKfo6tWrKyoq+rhgDF1kgBEoCAEAAAAATM/o3GBISMjv\nXjqNmhCGHgpCAAAAAADTy8vLu3DhgmEXGScnp37VhNOnT6eazQCYDwpCAAAAAADTc3d312q1\na9euNewp+uo1oaOjY0RExBDGC2MUuowCAAAAAAwpiUTyySefdHV1xcbGrlmzhulwYEzDCiEA\nAAAAwJB6lXVCgKGBghAAAAAAYKihJoRhAgUhAAAAAAADUBPCcMBmOgAAAAAAgDHqzTffTEpK\n4nA4HA6H6VhgjEJTGQAAAAAAJjU0NDg5OTEdBYxRKAgBAAAAAADGKGwZBQAAAAAAGKNQEAIA\nAAAAAIxRKAgBAAAAAADGKBSEAAAAAAAAYxQKQgAAAAAAgDEKBSEAAAAAAMAY9T87D9Rx9IUu\nzgAAAABJRU5ErkJggg==", "text/plain": [ "plot without title" ] @@ -1150,22 +1064,26 @@ "output_type": "display_data" }, { - "name": "stderr", - "output_type": "stream", - "text": [ - "Warning message:\n", - "“\u001b[1m\u001b[22mUsing \u001b[32msize\u001b[39m for a discrete variable is not advised.â€\n", - "Warning message:\n", - "“\u001b[1m\u001b[22mRemoved 1 rows containing missing values (`geom_point()`).â€\n", - "Warning message:\n", - "“\u001b[1m\u001b[22mUsing \u001b[32msize\u001b[39m for a discrete variable is not advised.â€\n", - "Warning message:\n", - "“\u001b[1m\u001b[22mRemoved 1 rows containing missing values (`geom_point()`).â€\n" - ] + "data": { + "text/html": [ + "218" + ], + "text/latex": [ + "218" + ], + "text/markdown": [ + "218" + ], + "text/plain": [ + "[1] 218" + ] + }, + "metadata": {}, + "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAAFoCAIAAADIFpV9AAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdd0BT19sH8HOzw95TBAQnqIiouGudoKDiHjhrxdHxq9Y6WitttbV1dVkH\nVmutVakWEcSJVrRuxIWCLNlLkJVJct8/YtO8aEnACwn6/fzT3JPnnPOEtpqHe+45FE3TBAAA\nAAAAAF4/LH0nAAAAAAAAAPqBghAAAAAAAOA1hYIQAAAAAADgNYWCEAAAAAAA4DWFghAAAAAA\nAOA1hYIQAAAAAADgNcXRdwJ6VlZWlpiYqO8sAAAAAAAA9OB1LwjT09N37tzZr18/fScCAAAA\nAADQrCIjI1/3gpAQ0qFDh3feeUffWQAAAAAAADSruLg4PEMIAAAAAADwmjK4O4SlpaW///57\nYmJiRUWFubm5l5fXokWLhEKh6l2lUhkVFXXy5MmSkhIbG5thw4aFhISwWP+WtVoDAAAAAAAA\nQMWwCsLHjx+vXLlSLpf36NHD0dGxurr64cOHIpFIXRBGRETExMT06dMnODg4OTl57969paWl\nYWFh6hG0BgAAAAAAAICKARWESqXym2++MTU1DQ8Pt7e3fz4gJycnNjZ24MCBS5YsIYSMHDmS\ny+XGxcUFBAS4urrqEgAAAAAAAC8pKSmpW7duM2fO3LNnj75zYVJubq6Li8vo0aOjoqL0nUvz\nMaC1lDdu3MjOzp45c6a9vb1YLJbJZHUCEhISaJoOCgpStwQHB9M0feHCBR0DAAAAAABaOolE\nQlEURVFt2rR5/juzjY0NRVGMTJSWlkZR1OTJkxkZrY61a9eqPkVKSkpTjA86MqCC8ObNmxRF\nGRkZvffee5MmTZowYcKKFSsyMjLUAWlpaWw228PDQ93i7u7O4/HS09N1DAAAAAAAeGVkZmb+\n8MMP+s6iMWia3rVrl6pw3blzp77TecbOzi4hIeHLL7/UdyLNyoCWjObn57PZ7HXr1vn6+o4f\nP76kpOTQoUMrV67csmWLg4MDIaSsrMzc3JzNZqu7UBRlaWn55MkT1aXWAJUtW7YUFhaqXgsE\ngib/YAAAAAAATLO2tlYoFF988cXs2bMtLS31nU7DnDp1KjMzc9asWXFxcb/88su6det4PJ6+\nkyI8Hu81PJ/cgO4QisXi2tpaLy+vjz76qH///iEhIcuXLxeJRIcPH1YFSKVSLpdbpxePx5NK\npToGqFy5cuXMPx49etQ0nwYAAAAAoAmZmJisWrWqvLx87dq1WoMPHDjQv39/MzMzoVDYuXPn\nr776SvMbclJSEkVRs2bNSk9Pnzx5sp2dHYvFGjNmTNu2bQkhBw8epP6xb98+zWFzcnKmTp1q\nY2MjFAp79Ohx/PhxHZNX3RWcN2/etGnTSktL//zzzzoB6pTS0tJCQkKsrKzMzMwCAwNTU1MJ\nIQUFBbNmzbK3txcKhf369bt582ad7pcvXx43bpyDgwOPx3Nycpo+ffrDhw/r/7xXrlzJzc2l\nKGrMmDF1Rrty5crEiROdnJz4fL6jo+OwYcMOHTqk+VnGjBnj7u4uFAotLCwGDhwYGRmp48/B\nEBjQHUI+n08IGTRokLrFx8fH0tLy3r176gCxWFynl0wmU9/l0xqg8t1338nlctXrBw8eJCQk\nMPchAAAAAACayTvvvPPjjz/+8MMPixcvdnNz+6+wZcuWffPNN3Z2dtOnTzc2No6NjV2xYsWJ\nEydOnz6teTclJyenV69eNjY2I0aMqKmpCQkJ6d+//9KlS/39/RctWqSK6du3r2Z8jx49nJ2d\nJ06cWFxcHBUVFRQUdP78+f79+9efdlFRUXR0dLt27fr06WNmZrZp06YdO3ZMmjTp+cjs7Oze\nvXt7enpOnTr14cOHcXFxSUlJFy5cGDRokI2Nzbhx47Kzs2NjY4cOHZqRkWFhYaHqtXPnzrCw\nMGtr61GjRtnZ2WVmZkZGRkZFRZ09e7ZXr17/9Xn/a+Xgtm3bFi1axOVyg4ODPT09i4uLb9y4\nsXXr1okTJ6oC5s+f37Nnz0GDBtnb2xcXF8fExEycOHH9+vXLli2r/+dgKGiDsXHjxqCgoLt3\n72o2vvvuu9OnT1e9Dg8PHzNmTG1trfpdpVI5bty4Tz/9VMeA5127dm316tXMfQgAAAAAgKal\nugXi6upK0/T+/fsJIVOmTFG/a21trfklX7W9oru7e3FxsapFLpcHBAQQQtauXatquXXrlqo0\nWLx4seZ3adViukmTJtVJQB3/8ccfK5VKVeOvv/5KCAkKCtKav+ohvXXr1qkufX19KYp69OjR\nC6cIDw9XN7711luEEEtLy/fee08978cff0wI+eqrr1SXycnJXC53+PDhIpFI3fH27dsmJiZd\nunSp//Pm5OQQQkaPHq3Zkc1mW1lZJScna6aXk5Ojfp2dna35Vk1NjZ+fn1AoLCsr0/qj0LuA\ngAADWjKquiVdWlqqbqFp+smTJ+bm5qpLDw8PhUKhuc1MZmamTCZT7yKjNQAAAAAA4FUyefJk\nPz+/AwcO3Lhx44UBP//8MyFk9erVtra2qhYOh7Nx40aKoiIiIjQjbWxs1q9fr7kfR/1at279\n6aefqnc0nTZtmrm5+bVr1+rvRdN0REQEi8WaMWOGqmXWrFmqxueDXV1dV61apb6cNWuW6sWX\nX36pnlfVmJSUpLrcunWrXC5fuXJlTU1N6T+cnJwGDx58586dx48fN+jz/vTTTwqFYs2aNR07\ndtRsb9Wqlfq1i4uL6nNVVFQUFRVVVlaOHTtWLBa3lHWIBlQQ9u7dm8PhnDhxQqlUqlouXrxY\nWVnp6+uruuzfvz9FUceOHVN3OXbsGEVR6rvSWgMAAAAAAF4lFEVt2LCBpumlS5e+MCAxMZH8\n/8eyCCEdO3Z0dHTMzMx8+vSputHHx8fIyEj3qbt168bh/PsAGkVRrVq1Ki8vr79XfHx8enr6\n0KFDnZ2dVS1Tp07l8Xh79uxRP9WlOYVmwabq4uXlJRQK6zTm5uaqLi9fvkwIGThwoO3/d/To\nUUJIQUFBgz7vlStXCCGqG6r/5datW6NHjzY3N7ewsHBwcHB0dFQVsXl5efUPbiAM6BlCGxub\nyZMn79u3b+XKlf7+/iUlJXFxcarFwaqA1q1bBwYGxsbGyuVyb2/v5OTkhISEESNGqBdMaw0A\nAAAAAHjFDBw4MDg4ODo6+tixY5oncqtUVFQQQlSb9mtydHTMz8+vqKhQP3rn5OTUoHnVHdU4\nHI5Coai/144dO4jGvT5CiLW1dVBQ0OHDh48ePTp+/HjNYPVSQfX4/9WoLiZV5wtER0drFo1q\nmjf6dPm8qoJZXbs+LzExsV+/fgKBYMGCBV27dlUdeXDmzJmNGzfW2djSYBlQQUgImThxoqWl\nZXR09K+//ioQCPr37z9jxgzNf+Xz5s2ztrY+derU1atXra2tQ0NDQ0JCNEfQGgAAAAAA8IpZ\nv3798ePHP/roo8DAwDpvqb5LFxYWurq6arar7pVpftNm6jj7epSUlERFRRFCpkyZMmXKlDrv\n7tixo05B2AiqT+Tg4NCjR4/6I3X5vKqiNy8vz9PT84UBmzZtEovF0dHRQ4YMUTc+v+upITOs\ngpAQMnTo0KFDh/7XuywWa/z48fX8h6I1AAAAAADgFdOhQ4e33npr27Ztzz+J161btzt37pw/\nf37mzJnqxpSUlIKCAnd39+fv8mlSLdfUetNPd7/88otMJuvevbuPj0+dt6Kjo8+cOZOZmenu\n7v4yU/j7+9++ffvAgQNaC0IdR0tKSoqLi3vnnXdeGJCVlaUK02yMj49/+ambjQE9QwgAAAAA\nAI0THh5uamr66aef1lmpOGfOHELI559/rlpLSQipra1dsmQJTdNz586tf0zVhqXZ2dlMJamq\nV7du3RrxnPnz5//X1jINsnjxYg6H8/3339epyqqrqw8ePNjQ0RYuXMhms9esWaN5jCHReGSx\nTZs2hJDTp0+r39q/f//zBeFXX301YsQI3c9pbE4oCAEAAAAAWjw7O7tly5YVFRVVV1drtg8Y\nMOCDDz5IT0/38vJavHjxsmXLunbtGhsb279//w8//LD+Mc3MzHr16nXt2rUpU6aEh4d/8cUX\n6hPCG+H8+fMpKSmdO3fu2bPn8+/OnTuXoqjdu3fX1tY2egpCiLe39/bt22maHjJkyIgRI1as\nWLFs2bLg4GAHB4fPP/+8oaN17tz5+++/f/r0qY+Pz8SJE1etWhUWFubn5xcaGqoKWLx4MZvN\nnjJlysyZM1evXh0cHDxjxowJEybUGScpKenkyZOqYy0MjcEtGQUAAAAAgEb44IMPtm3b9vzm\nlhs3bvT19d26desvv/wil8s9PT2/+OKLJUuW8Hg8rWPu27fvf//738mTJw8ePEjTtJubm7e3\nd+PS27lzJyFEdZbg89zc3IYMGXL69Oljx46NHTu2cVOozJkzx9fXd9OmTefPnz937pyxsbGT\nk1NoaOikSZMaMdqCBQu6dOmyYcOG8+fPR0VF2djYdOnSRf0pevbseebMmdWrV6uejfTz8zt1\n6lR+fn5kZKTmIKmpqVwud9iwYS/zuZoIRdO0vnPQp+vXr8fExISHh+s7EQAAAAAAeAWVlZXZ\n2tqGhYX9+OOP+s6lrsDAQCwZBQAAAAAAaCrnzp3j8/kff/yxvhN5MRSEAAAAAAAATWXcuHEi\nkcjR0VHfibwYCkIAAAAAAIDXFApCAAAAAACA1xQKQgAAAAAAgNcUCkIAAAAAAIDXFApCAAAA\nAABokXJzcymKGjNmjL4TacFQEAIAAAAAgN5IJBJKA5vNtrGxGTx48P79+/Wd2muBo+8EAAAA\nAADgdcfj8WbPnk0IkcvlaWlp8fHx8fHxN27c2LRpUz297OzsEhISrK2tmyvNVxAKQgAAAAAA\n0DOhULht2zb15YkTJ0aOHLlly5Z3333Xzc3tv3rxeLx+/fo1R36vLiwZBQAAAAAAwzJixAhf\nX1+apq9fv04ISUpKoihq1qxZ6enpkydPtrOzY7FYV65cef4ZQnVkWlpaSEiIlZWVmZlZYGBg\namoqIaSgoGDWrFn29vZCobBfv343b97UnHTnzp1jxoxxd3cXCoUWFhYDBw6MjIzUDHhhGj/+\n+CNFUcHBwXU+Ak3T7dq1MzIyKi8vb6ofExNwhxAAAAAAAAwOTdOEEIqi1C05OTm9evWysbEZ\nMWJETU2NQCD4r77Z2dm9e/f29PScOnXqw4cP4+LikpKSLly4MGjQIBsbm3HjxmVnZ8fGxg4d\nOjQjI8PCwkLVa/78+T179hw0aJC9vX1xcXFMTMzEiRPXr1+/bNkyzcHrpNG3b98ePXocP348\nJyfHxcVFHXbu3LlHjx7NnDnT0tKS4R8No1AQAgAAAACAYYmLi7t16xZFUT169FA3xsfHL168\neMuWLWw2W9WSm5v7wu7nzp0LDw9fvXq16nLevHkRERE9e/acMWPG5s2bVUXmJ5988sUXX2zf\nvv2jjz5ShT1+/FizohOJRAMHDlyzZs28efM0i7rn01i4cOHs2bN37dq1Zs0addj27dsJIfPn\nz3/Zn0UTw5JRAAAAAADQM7FYHBYWFhYWNnfu3IEDB44cOVKpVL7//vuurq7qGBsbm/Xr16vL\nsHq4urquWrVKfTlr1izViy+//FJ9y1HVmJSUpA5TVYM0TVdUVBQVFVVWVo4dO1YsFickJGgO\n/nwakyZNsrKyioiIUCgUqpbi4uKoqKjOnTv37t27QT+H5oc7hAAAAAAAoGcymUx1S43FYllY\nWLzxxhtz586dNm2aZoyPj4+RkZEuo3Xr1k2zYHN2diaEeHl5CYXCOo2a9xhv3bq1Zs2ac+fO\nVVVVaY6Wl5dXfxpCoXDWrFmbNm2KjY1VPUy4e/dumUwWFhamS7b6hYIQAAAAAAD0zNzc/OnT\np/XHODk56T6a5iWHw/mvRrlcrrpMTEzs16+fQCBYsGBB165dzc3N2Wz2mTNnNm7cKJVKtaax\nYMGCzZs3b9++PTg4mKbpnTt3GhsbT58+XceE9QgFIQAAAAAAtACaG8wwbtOmTWKxODo6esiQ\nIerGOtuQ1pOGp6fnkCFDTpw48fjx49TU1PT09Llz55qZmTVdwkzBM4QAAAAAAPC6y8rKIoT4\n+/trNsbHx+s+wsKFC5VKZUREREvZTkYFBSEAAAAAALzu2rRpQwg5ffq0umX//v0NKgiDgoJa\ntWq1Y8eO6OhoX19fzf1RDRkKQgAAAAAAeN0tXryYzWZPmTJl5syZq1evDg4OnjFjxoQJE3Qf\ngc1mv/3228XFxXK5vKXcHiRMPUO4ePHiBsUvXbrUzc2NkakBAAAAAABeUs+ePc+cObN69eqo\nqChCiJ+f36lTp/Lz8yMjI3UfZM6cOatXrzY1NZ06dWqTZcowiqZpBkZp4POdly9frrM8V1+u\nX78eExMTHh6u70QAAAAAAKBli4uLCwwMDAsL++mnn/Sdi04CAwMZ22U0Kiqqb9++WsOkUmmr\nVq2YmhQAAAAAAMBAfP3114SQRYsW6TuRBmCsIDQ3N7exsdEaJpFImJoRAAAAAABA7xITE0+c\nOHHlypXz589PmjTJ29tb3xk1ADMF4eXLlzt16qRLJJ/Pv3z5csv6GQEAAAAAAPyXv//+e9Wq\nVRYWFlOmTNm6dau+02kYZgpC3R8IpCjKQJ4eBAAAAAAAeHmLFy9u6C6bhgPHTgAAAAAAALym\nGHuGUBNN02fOnLl69WpZWZlSqdR8a8uWLU0xIwAAAAAAADQU8wVhVVVVQEDApUuXXvguCkIA\nAAAAAAADwfyS0U8//fTy5cvr1q1LTk4mhMTExPz111/Dhg3r0aNHVlYW49MBAAAAAABA4zBf\nEP75558TJ05csWKFu7s7IcTa2nrAgAHHjx+nafqHH35gfDoAAAAAAABoHOYLwry8vP79+xNC\nWCwWIUQulxNC2Gz25MmTIyMjGZ8OAAAAAAAAGof5gtDY2FhVBPJ4PIFAkJ+fr2o3MzMrLCxk\nfDoAAAAAAABoHOYLwjZt2qSkpKhed+3a9cCBAzRN19bWHjx4sFWrVoxPBwAAAAAAAI3DfEE4\nbNiww4cPq24SvvXWW1FRUZ6enm3btj179uzs2bMZnw4AAAAAAAAah/mCcPny5WfPnlUdP/jW\nW29t2LBBIBCYmJisWbNm+fLljE8HAAAAAAAAjcP8OYTm5ubm5ubqyyVLlixZsoTxWQAAAAAA\nAOAlMX+HEAAAAAAAAFoE5u8QqimVyqqqKpqmNRstLCyabkYAAAAAAADQHfMFoVKp3L59+3ff\nfZeRkSGTyeq8W6c+BAAAAAAAAH1hviD84osvPv30Uzs7u6CgIBsbG8bHBwAAAAAAAEYwXxDu\n3LnT19c3ISHByMiI8cEBAAAAAACAKcxvKlNUVDR16lRUgwAAAAAAAAaO+YLQ09OzoqKC8WEB\nAAAAAACAWcwXhO+///7evXsrKysZHxkAAAAAAAAYxMwzhFFRUerXdnZ2Li4uXbp0WbBggYeH\nB4fz/6YYM2YMIzMCAAAAAADAS2KmIBw7duzzjcuXL3++UcdjJ1JSUpYtW0bT9Nq1azt37qxu\nVyqVUVFRJ0+eLCkpsbGxGTZsWEhICIvF0j0AAAAAAAAAVJgpCCMjIxkZR0WpVP700098Pl8i\nkdR5KyIiIiYmpk+fPsHBwcnJyXv37i0tLQ0LC9M9oKV4+PBhQUFBM0zk7e1ta2vbDBMBAAAA\nAIChYaYgHD9+fE1NjbGxMSOjxcbGFhUVBQYGHjlyRLM9JycnNjZ24MCBS5YsIYSMHDmSy+XG\nxcUFBAS4urrqEtCCVFZWFhYW6h5P0/Tdu3eNjY09PDwaNJGnp2cDUwMAAAAAgFcEY+cQ2tra\nqtZnBgUFWVpaNnqc8vLy3377LTQ0VCaT1XkrISGBpumgoCB1S3BwcHx8/IULF0JDQ3UJaEG6\nd+/u4+Oje7xCoVAoFPb29m+88UaDJqrzkCcAAAAAALw+GCsGPvzww8OHD8+cOZPL5Q4aNCgk\nJGTMmDH29vYNHSciIsLe3j4gIODo0aN13kpLS2Oz2Zp3wNzd3Xk8Xnp6uo4BLQibzWaz2brH\nKxQKDofD4XB4PF7TZQUAAAAAAK8SxgrC8PDw8PDwR48eHT58+MiRI2FhYQsXLuzTp09ISEhI\nSIiOKzZv37598eLFL7/88oXbwJSVlZmbm2uWSRRFWVpaPnnyRMcAlXfffffx48eq187OzniC\nDgAAAAAAXk8Mb7/Ztm3b5cuXX7t2LTs7e9OmTSwWa+nSpW5ubn5+fuvWrXv48GE9fWtra7dt\n2zZw4MBOnTq9MEAqlXK53DqNPB5PKpXqGKBSU1NT9Y/n960BAAAAAAB4TTTVeQwuLi7vvffe\nX3/9VVhYuGPHDhsbmzVr1nTs2LFTp04xMTEv7HLkyJHy8vLZs2f/15h8Pl8ul9dplMlkfD5f\nxwCVXbt2xf9jwYIFDf5sAAAAAAAAr4QmP6DP1tZ23rx5J06cKCkp+fXXXzt06PDgwYPnwyor\nKw8dOjRkyBCJRFJQUFBQUFBVVUUIefLkSUFBger0Qisrq4qKCoVCoe5F03R5ebm1tbXqUmsA\nAAAAAAAAqDXfDpPm5ubTp0+fPn36C9+trKyUyWTR0dHR0dGa7Zs2bSKEHDp0SCAQeHh43Lhx\nIyMjo23btqp3MzMzZTKZehcZrQEAAAAAAACgZihHDlhbW3/00UeaLdevX4+Pj58yZUrr1q1V\nO2f279//0KFDx44d++CDD1Qxx44doyiqf//+qkutAQAAAAAAAKDGfEEoEAhe2E5RlFAodHV1\nHT58+NKlS21sbDTfFQqFffv21WwpLi4mhHh7e3fu3FnV0rp168DAwNjYWLlc7u3tnZycnJCQ\nMGLECDc3Nx0DAAAAAAAAQI35gnDUqFEPHjxITk52cXFp164dISQlJSU3N7dTp06tWrVKTU1d\nv379vn37rl696uzs3NDB582bZ21tferUqatXr1pbW4eGhoaEhDQoAAAAAAAAAFQo1X4tDLp0\n6VJAQMBPP/00depUiqIIITRN79u3b9GiRSdPnuzdu/f+/ftDQ0Nnz54dERHB7NSNcP369ZiY\nmPDwcH0n8rIUCsWhQ4fs7e3ffPNNfecCAAAAAAAtQGBgIPN3CJcvXz5r1qxp06apWyiKCg0N\nvXbt2ooVK86fPz916tT4+PiTJ08yPjUAAAAAAADojvljJxITE7t06fJ8e5cuXW7cuKF67e/v\nX1RUxPjUAAAAAAAAoDvmC0Iul5uUlPR8+61bt7hcruq1VCo1NjZmfGoAAAAAAADQHfMFYWBg\n4LZt23bt2qU+IF6hUOzcuXP79u0jR45UtVy7dg07fwIAAAAAAOgX888QfvPNN1euXHnrrbeW\nL1/etm1bmqbT0tJKS0s9PDy+/vprQohEIsnOzp46dSrjUwMAAAAAAIDumC8InZ2db926tWHD\nhqNHj965c4cQ0qZNmwULFixdutTMzIwQIhAIzp07x/i8AAAAAAAA0CDMF4SEEHNz888///zz\nzz9visEBAAAAAACAEcw/QwgAAAAAAAAtAmN3CCUSiS5hAoGAqRkBAAAAAADgZTBWEAqFQl3C\naJpmakYAAAAAAAB4GUw+QygQCPz9/dlsNoNjAgAAAAAAQBNhrCD08PBIT09PTU2dNWvWnDlz\nPDw8mBoZAAAAAAAAmgJjm8o8evQoPj5+0KBBmzdvbtu27Ztvvvnbb7+JxWKmxgcAAAAAAABm\nMVYQUhQ1aNCgffv25efn//DDDxUVFdOnT3dyclq0aFFiYiJTswAAAAAAAABTmD92wsLCYuHC\nhTdv3rx169b06dN///337t27b9iwgfGJAAAAAAAA4GU04TmEnp6ePj4+qocJq6urm24iAAAA\nAAAAaAQmdxlVu3Tp0q5duw4dOlRTU9O7d++IiIhJkyY1xUSgSalU4lQPAAAAAADQHZMFYWFh\n4d69e3/++eeUlBQ7O7uwsLC5c+d27NiRwSngeUql8v79+xkZGVeuXLG0tKytre3UqZOLi4u+\n8wIAAAAAAEPHWEE4evTo48eP0zQ9bNiwtWvXBgcHc7lcpgaH/6JUKs+fP3/ixAlnZ2e5XC4S\nie7evRsXFzd//nyU4gAAAAAAUD/GCsLo6GiBQDBmzBhnZ+fLly9fvnz5hWHYXYZZ6enpx48f\n79q1K4vF4nK5AoHA2dnZxMTkzp07Li4uJiYm+k4QAAAAAAAMF5NLRiUSyYEDB+qPQUHIrJyc\nHAcHBw6Ho1Qq1Y3m5uZ37tzx8fFp3769HnMDAAAAAAADx1hBeP36daaGAt2JRCKBQPB8u0Ag\nqKmpaf58AAAAAACgBWGsIPTz82NqKNAdl8utra19vr22tpbH4zV/PgAAAAAA0II04TmE0Awc\nHBxKSkrqnDYhlUqfPn3q4OCgr6wAAAAAAKBFYKYg3LNnT2FhoS6RCoViz549JSUljMwLHTp0\n6NGjR1pamlwuV7VUV1c/ePBg4sSJNjY2+s0NAAAAAAAMHDMF4ezZsx8+fKhLpFwunz17dnp6\nOiPzAp/PHzx4cO/evW/cuJGVlZWSkmJqajp+/Hh/f399pwYAAAAAAIaOsWcIk5OTX7i7SR0y\nmYypGUHF1NR06NChPXv23Ldvn4ODw6hRo/h8vr6TeoGzZ88WFxfrHk/TtFQqZbPZDT3QMiAg\nwMLCooHZAQAAAAC8jhgrCBctWsTUUNAIJiYmVlZWlpaWhlkNEkLMzMxeuP/Nf6murr57966j\no2NDD89gs9kNTA0AAAAA4DXFTEH4/fffNyje3d2dkXmhBenRo0eD4p8+fSqTyTw8PHr27NlE\nKQEAAAAAvOaYKQgXL17MyDgALcjRo0dFIpHu8QqFQi6XczgcDqdh/99NnDgRtz0BAAAAoCkw\ntmQU4HVja2srlUp1jy8pKUlJSfHw8GjVqlWDJqIoqoGpAQAAAADoBAUhQCP16dOnQfG5ubkK\nhaJr166dOnVqopQAAAAAABoEB9MDAAAAAAC8plAQAgAAAAAAvKawZBQAAACgRXODEnoAACAA\nSURBVKJp8iS3ohkmYrEoK2ezZpgIAJofCkIAAACAFolWKj95Y2czTGRqbfT1tYXNMBEANL8m\nLAgVCgX2ygcAAABoMpRvYPsGdSjKKM97WOzWzdHKsQF3/ISmvAYmBgAtBsMFYVlZ2bfffhsT\nE5OSklJTU2NsbNy+ffugoKD33nvP0tKS2bkAAAAAXmcsNjXv+6AGdTm68WLew+KB03z8x3o1\nUVYA0LIwuanM7du3O3Xq9NlnnyUmJrJYLGdnZxaLlZiYGB4e7u3tfffuXQbnAgAAAABdFKaX\nbZsfJaqQ1Gl/WlT9w+zDVU9EeskKAAwEYwWhWCweN25cSUnJBx98kJaWVllZmZubW1lZmZqa\n+v777xcUFIwfP75Bp3gDAAAAwMuzcjKtqZB8OyNSsyYsL6zaNOUAh882thDoMTcA0DvGCsKD\nBw+mp6d///33Gzdu9PDwULe3bdt28+bNW7ZsSU1NjYyMZGo6AAAAANAFT8h9Z/c4gQl/y/RD\nckktIURUIdk89aB9G6u3vgtisXEIGcBrjbE/AqKjo93c3MLCwl747uLFi1u3bn306FGmpgMA\nAAAAHfGE3EURY4VmguvRDwghJ366Yt/Gav7W0Rwe9v8DeN0xtqnMnTt3Bg8ezGK9uMJksVhD\nhgy5cOECU9MBAAAAgFa/rz5TXS5WvTYy54urZYQQmUzB5XN2Lzmuard3twz+oJ/eUgQAvWKs\nICwqKnJ1da0noHXr1sXFxUxNBwAAAABa2bexEhRXq15LamS0kiaEECWxcDDh8p99D7RtbaGv\n9ABA7xgrCGtqaoRCYT0BxsbGVVVVTE0HAAAAAFq9OctX9aK8sGrz1IOWjqYlj8st7E0eXct9\n/9cJxhb1fXkDgNcBY88Q0jTNSAwAAAAAMEtVDdq3sfId0ZYQMmRudyMzwZbQyJqnYn2nBgB6\nxuTB9JGRkQ8fPvyvd3EOIQAAAEDzqy4Xb5560Lm97VvfB8V8+zchhMPjLNw59oc5h7+b+ceS\nA5N5Qq6+cwQAvWGyILx27dq1a9cYHBAapCpXZsaX6zsLRuGOMgAAwEuTS2p9A9oH/a8vm/Pv\n0jC+EXfxz+OObb6okCsJ1o0CvMYYKwivX7/O1FDQOFlnKulyPgnRdx7MSdxabPyWNemp7zwA\nAABaMktH0zEf9le9piiKEEJRhBDCN+KOXzVIj4kBgCFgrCD08/N7yRFyc3PPnz9/8+bNgoIC\nDofj4uIyZsyYXr16acYolcqoqKiTJ0+WlJTY2NgMGzYsJCRE86wLrQGvmNjv/u482KO1lz0h\nhKaJ+iHNy3/cM7IQdB3iqc/k/r87Z9MrS2q0hpU8fmrT2pyiKJFIJK1UZl19clFwhxBSUVwt\nMOHzjbSvaek2op2xhYCBjAEAAAybUkGvD9nXoC6VpSJCSMyWv+N3J+rey9hC8O4vExqWHAC0\nEEwuGX1Jhw4dunjxYteuXbt16yaVSi9evLh27dopU6ZMmTJFHRMRERETE9OnT5/g4ODk5OS9\ne/eWlpaGhYXpHtBSXP0zOe1Grtawx3cKT/x01XtQG2MLgahEnnOj/LdVp/JTS7NuF3gNdL93\nLkPrCAOm+bh0smMiZS3O7rqRejWnob0enMp7cCqvQV3cfRxREAIAwOuBzr5X1IhupTkVJKdC\n93hTa6NGzAIALULTFoRSqfTBgweVlZVdunSxsNByxM3AgQPnzp1rbm6uupwyZcr7778fGRk5\nevRoIyMjQkhOTk5sbOzAgQOXLFlCCBk5ciSXy42LiwsICFAdgag1oAV5dD3n0kFdt+FJOvlI\n9aKssuZixh3V67vx2qtBQkinAe7NUxAOnuvXI7ij1rCap5IzEddtWpm36eUYH3HLopVxj4BO\n539J9HqjjddAd10msnAwfelkAQAAWgAWm/VT+lJ9ZwEALRuTBWFcXNyePXt4PN68efMGDBhw\n6tSpOXPm5OXlEUJ4PN4nn3zy8ccf19O9e/fumpcmJib+/v7R0dGFhYVt2rQhhCQkJNA0HRQU\npI4JDg6Oj4+/cOFCaGioLgEtSOCi3gOm+ugY/Ne+WzdjU6UiGdeIQ9fSY5cN8OzRSse+zXYW\nbZfBHjpG9gjqsGnqwaw7hYQQFoe+8FtS4Lt9RizopbUjAAAAAAA0CGMF4V9//TVy5EjVSYOH\nDh2KjY0NCQkxMjIaPXq0TCZLSEj45JNPOnToMH78eN3HrKysJIRYWlqqLtPS0thstofHv3WF\nu7s7j8dLT0/XMaAFsXI2s3I2qycg/WbenbPPPpeJlZFjW6us24VyUW23Ee0qSmpuHk8hhLDY\n1KCZ3c1sWsYyj+pycVleJSGksrLSc6T51d1ZhLDKHouc/U0FzkrVkhiugOPoaa3nRAEAAAAA\nXhWMFYSbN282Njb+/fff3dzc5s+fHxoa6urqeunSJdVK0czMzG7dum3dulX3gjAvL+/SpUu+\nvr7qgrCsrMzc3JzNZqtjKIqytLR88uSJjgEqNTU1CoVC9VoqlTb2Ezet+/fv5+bW9wxh4Z2q\n7Ovl6suaMpnqRW5WflHxs8cJWCyidHxqZM2rZxwfHx97e/uXzpcBh9edv3LkvkYDixBCaJJ3\nuerg5UuEXCKEcPmctQlv40mGJlJdXd0Ms1AUZWxs3AwTAQC8+mhakd+AvWEaj8VhO3ZtjokA\noNkxVhDevHlz0qRJo0aNIoSEh4cPHTp0xYoV6ucG3d3dp0yZcuDAAR1HE4lEX375JZfL1dwP\nRiqVcrl1N5nk8Xjqok5rgMrcuXPT0tJUr9u3b+/paUBbcapVlFUW55XWE8CyJm4Bz+qi4lvi\nwtsSQgibzyrLrPGaamXi9KwIrJZUVte7J4ukvaGUxDO/CZj5TcClS5fOnj1rx219Z08pXUso\nDrHpKHQewbGwtAgODhYKW+RJSUql8tGjR3fu3Ll165ZUKlUqle3bt3/+v1X9UigUx44da1AX\nqVQqFouNjY0b9FmEQuGYMWMamB0AALwIraj87mW3edcFZWJn8Uljdq8BAMPHWEFYWFioXqup\neuSvdevWmgGurq4VFTrtZyWRSMLDw4uKitasWePg4KBu5/P5YrG4TrBMJhMIBDoGqPj7+7u5\nualeCwQCmjbE488z4ir/PljQ0F4KqZIQcmf3E62Rat7OUle3hs7ThAoLC42kVvd+f2Lrwy++\nIeXZKKty5XknSHrbm/7+/i1ucyBCiFwuP3fu3OnTpwUCQUlJyYMHDx4+fNi3b9/Bgwerdksy\nEBRF1fl/VqusrKzHjx936dLFzq4B+xLxePXdsgYAgAagWPxebzeoR23OdUX+LY7HILZN2wbM\nw8eGbQCvLMYKwtraWvVdAtUXPg7n/w3O4XB0Kb2kUunnn3+elpb2ySefeHl5ab5lZWX1+PFj\nhUKhXhRK03R5ebm3t7eOASrvv/+++vX169djYmIa9Embh4OHdYe+2ouf8oKq4qzyVh1sjS2F\n2feLTCyFVk5mxVnlT4uqXb3t+cbav3k32/LLMxE3ijLLtIY9SCp4kioxdeTKqpWEkNpKysqT\nW/ZQQmdax4iuWlikaB1h5Lt9LOxNGMiYIUlJSefOnevatWtFRcXTp09tbW2dnJxu3LhhYmIy\naJABHQfMYrH69u3boC5WVlYsFsvPz8/FxaWJsgIAgPpQLKOQ7VqjlGWZkgsbhaM2UByB+MQq\nRf4tnt8svu8MWvxUfHyZMOArysiqGZIFAMNkQOcQEkJkMtkXX3yRnJy8YsUKH5+6e2x6eHjc\nuHEjIyOjbdtnv9PKzMyUyWTqO5NaA1qQIXP9hszVvgjkt1WnJn7yZqcBboSQb2dEeg10V/WK\n/e5vKyez3uO9tfRvRnfj03U/h7AqT656oRBRJXfEhBAiY987kU1Itta+b4R2M5yCUKlUZmVl\nubq61nm01d3d/ciRI7169TKom4QAAPBKogTmtRnna34ZYzwzSt1Ii59WRwwjHD7h4W8igNca\nkwVhZGTkw4cPCSEikYgQ8v3330dF/fvnzt27Wk7Vk8vl69atu3v37rJly3r27Pl8QP/+/Q8d\nOnTs2LEPPvhA1XLs2DGKovr3769jwKtn2tphmpcURalejHy3jz7Sqc/UtcOkNTKtYXcS7yVc\n/svDw0MqlT7Y/9Ssi9LDz+nJkye21vZvDBrA5Wl/Vs3OzZKJfJkhEokuXLjQq1fdMzP4fD6X\ny62srERBCAAATY0ysjKdf65qx+CaX0azVHvDyMTVu4YTNtdkznGKI9A2AAC8ypgsCK9du3bt\n2jX15alTpxrUffv27YmJie3atcvJyTl48KC6fcCAAY6OjoSQ1q1bBwYGxsbGyuVyb2/v5OTk\nhISEESNGqB8I1Brwahs8p7utqwHVQnXYu+uUm0M7S8pa8vfff1tZWdEWImKpfCLPz6/Onxo2\nrnVrXQ9XNByqG4NKpVLzDqHKCxsBAACaAmVsa/r22aodgxWljwghkr++Zpk6mMw9gYcDAYCx\ngvD69esvOUJRUREhJDU1NTU1VbO9TZs2qoKQEDJv3jxra+tTp05dvXrV2to6NDQ0JCREM1hr\nwCvM+402+k6BATweb+jQoXZ2dikpKVm+WaYODn5+fp07dzaQszEaSigUDh06NCMjo07+FRUV\nffr0UR+pAgAA0EQk59fT4mfnVHE93pBciyCEKMVlPK/Rkvi1qnaWpRvfP+w/hwCAVxpjBaGf\n38vuevz5559rjWGxWOPHj6/nMEOtAWD4eDxejx492rZtS9N0u3btnl9v2bJ4eXmdO3dO88AM\nkUiUnp7eu3fvOhsvAQAAMI4WP1UXhEQhowihCaEoQksqCOvZX0O0EL+gBHh94fsoGC4Oh6N+\nKrLl8vDwmDt37r179y5evFhUVCSTyfh8/vTp07t06aLv1AAA4NUnDPhS9YKWVFRHDKOMrOmK\nXIproqzINZ4RRXFb5AG/AMAgJgvCuLg4Fos1fPhwQkhxcfGcOXM03+3Spcu6desYnA6gpfD2\n9nZ3d3dxcUlISOjatWufPn3Mzc31nRQAALxGVNUgYXG4XSdLL2wQvLFcenV7zd4xqAkBgLGC\n8Pbt2yNHjvzpp59UlyKRKDY2VjMgNjZ23Lhx3bt3Z2pGgBbE2NjY1dU1Ozvb1dUV1SAAADQn\nWlJZvXMo4fBM5sRJzn1FCCECU9N5Z6p2vFmzd6zJrGOErX0TbwB4VbGYGmjXrl22trazZ8/W\nbNy9e3dBQUFBQUFOTo6lpeUvv/zC1HQAAIx7WlQdv/umvrMAAGAYXV3Esm1nMidOc09RysTO\n9O14SmBGSyr0mNvLo6uLpVd+0ncWAC0YY3cIz58/P3ToUB6Pp9loYWHh4OCgeh0UFHThwgWm\npgMAqF9uWsGuVX82qIukvLYyR55w4mqDetm6Wiz8emqDujSb2syE2uzLgoHL9J0IADQNWik+\nsVKXQJZ5K9WeorUZFwgh8juHlEXJhBCWVRvJhQ1au1M8E8Hgj18u16ZSm5coOfsF33+BvhMB\naKkYKwgzMzPHjRtXT4Cbm5vmOfUAAE1KUi0vvCFqRMcG96ox3KVWiryb8pSTKAgBXlm0UnJ+\nfSP6yR/Eyh/Eao/7B2ViZ1AFoTz1lOzGz0YT91AcgWa7IveGKGaJ6fxzhGJsERzAK4+xglAi\nkXC5/34rcnV1raqq0txq38jISCwWMzUdPE925xDbriPbobO+EwEwCK4dnFYcDdUaJq6S/v7J\naYEpf8LHg/Z+HFucWjl53Ztswo387GzfSV38Q7y0jsA3MqyCUHL2i9rMC8Yzj9bZKEJyfr08\n+ajpwr/1lRgAMI9im7x1ujnm4fC0BzUjjrOvOHZJzS+jjWf8e7NBkXujKmIo338BqkGABmGs\nILSyssrLy1NfUhRlYmKiGZCbm2ttbc3UdPA82bWdnPYBKAgBVLgCTmtve10ilx2e9t3MP6K+\nSeDw2YSQWpki6puLIxb6Byzyb+IcG0ZZ+kh274jWMFpZqyhKrtzkxfObrci5pnz6WHJ+fW36\nOXn6Ob7fbF1uJrAdu3DbBzCRMgA0MYrith2i7yT0gDK2MX07vmrH4JpfRvN6LyaEKPJvVe0a\nzu/xlnAE9rQHaBjGCsJu3bqdPHlSqVSyWC/4rYxSqTx58mS3bt2Ymg5UavZP4XYex+s8/v+1\n0rQo5gO2bTuspwfQhZG54N1fxn8384/SjCpCSPRXlwywGiSEKIrui+OW6x4vObVa9ULdS3p1\nuy4d+T3moCAEAL2gpVXylBM6BvP7vSc585n42Pu0tKrypwFcj0Fsl56yO5G69GUZW3M83nyJ\nTAFeHYwVhJMmTZozZ87mzZuXLFny/LubN29+9OjRypU6PfcMuuO2D6g5MJ0Q8m9NSNOiP8Pk\nydH8+ef1mBg8j6bJ7V2l7T6X6TsRxtRKFTl/VZF++s6jscSV0p//F1srV6gueUZcuVhBCBGa\n8VOv5qRezVG1d+zrOmx+T71lqYHj1lf3tWG0tFp8fJnyaTZRSAlHIBz2OdvJR8e+LDOnxuYI\nAPBSavMSa36b2Li+8gfH5A+O6RjMMm9lvjKncRNBQ9VmXSIKKSpwg8VYQTh9+vQff/xx6dKl\n9+/fX7hwoY+PD4fDqa2tTUpK2rp16+7du/38/KZNm8bUdKDC6z6DcHg1B6YThYwQQmhadHSx\n7H6U6dvxbNv2+s4OCCFEVCExMhcQQmilsiJTKq58VhCKK6UCUz5F6TW5l1NZLM48Xan4SKnv\nRBqJZ8T1fsNdKpKrLp/kVqZdyyWEEJq07dmKw2Wr2t27GUp1RBnb1r82TFFwp/rXcYT+598I\nrVT9yUAJzDX3ZBf0fZff772mzBQAoJEorlEzTcQz0R4EDJHd/YNIK1EQGizGCkIul3v06NGg\noKDdu3fv3r2boigjIyORSETTNCHE19f36NGjmrvOQP0UuTcUZZk6hVJsvn9YzcFZLDMHxdMc\nZVWhcMhqRVGyoihZl94c1z4sc+eXyhX+W3WZaEXf7bM3jfQNaKfZnnEr/4fZh9/9ZbxbV0d9\n5dY4eSmlh9edm7kxoKgsPzk5mRCSmJhIE6UxZfHrRyfmbxtjYinUOoiBYHNYA0OfrWNPu5EX\n9+MVM3tBRaFYYMp/cPHx4p/HGdpuMVqxbdsbjfyGVjwrceUPjsmePiY0oYQWgjdXqffi47j2\n0V+OAAD14Tj5mH+UrmOwouh+zcEZHBd/Rf5NSmjFMrYVjtteZ9/R/55JtzBoLPHpNRTfVDCg\n7spB6ZVtyidpwpHaDzuBZsNYQUgIcXZ2vnr16t69eyMjI+/du1dRUeHk5OTt7T1x4sTQ0FBU\ngw0iOvZ+bdalBnVRPn228kEc84JVu/9FGPCV4I2PGjQR6M7EymjmNwG7P4hVyBX2XY1VjRm3\n8r+f9ceAaT4GVQ0qFXTSyVStYQq54mlh1WcBEUr3MqWMEGJ26UjSX78mUhnWrb0cUv5+TGm7\n6ckVcDq/6cFM0gxJu5H345zDw+b3TDybXFEoHrOyz4lvb/ww57Ch1YTyR6dFR8J0DKYlFbS4\njFBsQtcqy7JEh99mmTrouPMer8sEYcBXL5EpAEBjsbksqza6BCryEmsOzeL3eIvjOVj0x1zT\nBQlVOwaLo99/fo9l0Auu5+DqnwOIUi5449+n36WXfxTHLDWeiYPoDAuTBSEhhMvlzp07d+7c\nuS9899atW9hXRkcUv5lWMlA84+aZ6NXz2Yg9FcXVukSyOayfP4jlCjiEkEMfXJJLlVwe++KB\nOxcP3NGl+1d/h6n6NilFrWLnO7o+ekEIIWVmqn+KrpgSQgipfXQt95FqyWW9zO1Nvvq7OQrC\n6nLx34fuag17WlSdsP92+96t2RwWt+pxkM/Ze2e9vd9wv3jwzrqgvX0nat+219LRtEdwRyZS\n1kYhp8XlugTStRIil1B8E6JU0IRQXCEtq1JW5FJ8E0K0L1OmZTUvnSsAQBNSFN2v2jmY3ytM\nGPClahMaytjW9O2zVTverNk71mROHGnRj2S8Ejju/U3mnqj+OZAoalUt0ms7xTFLjacf4rYb\nrt/coI4m/5ZJCKmoqNi/f39ERERiYqJqBSloZRx6hNRKdQqlafHxZbLkaLaVG8vKXXb/qNHo\n7+vuO/rfsIa+0YSmPLmEr2MwTySveiIihNRKFUITvrGFwa1UYXNYY5cN0Boml8uTk5NlUvmT\nuzJpZa1STlhcYmTNNWlLmZqaeHl5ab1D2Gz33CpLav78+oIukRRF37+Qef9CZgfH3I4d7n/9\n+71/2qt1GaFtz1bNUxByOwRarCnTGia9/rM4+l2TsPMc9wHSi1tkycdM3z5L15RW7RzMsvYw\nCdV+cAUAgKFT1gqHfsbv+45mG2Vsa/p2vOTiFn0l9ZqgJRW06IkukSwzJ+PxETWRc1i27SmK\nkt36zWj092x7L2VZhi7dKaElJbR8uWRBJ01bEF68eDEiIiIyMlIkEhkbG0+YMKFJp3uVUFwj\nostz1apdZB4cM51/TnzsfbZLL2OvsTWHZlE8Y57P1KZP87X2YaSWn/CGib+n38yr00jTRFwl\nFVc9q/bNbIy+urLQEH6PyWKztO6l+fP7MU8KK7Kyis3MzPjmbElFLSGEZhGOMUucRxdV5pMy\nI1cvh3Er32iOjLWxYGevG/9hIzo2tJfcphchkxsxUUPl5+dfvnxZa5iJ6Cmr3aeViSUk8XCr\ngiTr8qJThw8TQriO/zOvelh6+LDWEdzc3Lp3785Axk0g+34RraBduzjoOxEA0Ce2Y1e2Y9dn\nFxRLvR6eMrYVDl+rt7ReD+I/F0iTfm9QF0VeoupFzeG3de/FbR9oMie2QRNB4zRJQVhSUrJ3\n796IiIiHDx8SQoYPHz5//vwRI0YIhVjSzTDRsffl946Yzj/Ptnt2g4LXdTKpldVEzqEEFtwO\ngfpN79X2+yenq59K6gkQmgs69HVVvRZXSbPvFdFKmlCUUztrM5tnK3XZXHbEu1oWas7eGMjh\nsRnJ+SW17+1alFuSU5Ni5SKQixQV2VJCCEWIeWseYdPVuZL2vV0cPWz1neYzAgvzWmcdqhqa\nri1NU0hrKjh2JooyPpE+5dhTtVIzUsGydGMZWWkdgO+sfVkpI1gsFo/H0xom47UlhKjiCkrK\n2WIRm81ms9mEZ11p1Fd7f0I4nOZYPNI4l/+4VytToCAEADVOmwHG0//QdxavE6EVYdf/lwn9\n737XhBD6n0uK9f+X8rLqX9lLGVu/RJbQAEz+ra9UKs+cORMREXH06FGZTObr67tq1aq1a9eG\nhYWNGTOGwYlAjWXpZjL/HNu2g2Yjr/sMim9CWIb7le7VcDc+o7ywqsHdaDo/pTQ/pVT3HjO/\nHkFIkxeEilrlz//T/ns4pVJpwXYoTRNV5ygoFqEJIYTKvVwjdCY2Jq3yU8ryU8puHk+pZwQj\nM/60tcOYSrseLGsPs3dvaA2Ty+UxR4943P3Cmn5SSpydFRm5lv06PYmOJUFewz719fVthlR1\n5ODgEBQU1KAu54T8rMKcMaNGGXKNp9XpnddNbYz8x3rVab9+7OGT3IoRC3rpJSsAMBAUR8Bp\njT8Hmo/RmB+MxvygY7D06g5x9HucdsMIrajNuCAYuEww+OMmTQ8agbGvCJ999tnPP//8+PFj\nW1vbhQsXzp49u0uXLllZWWvX4sZ9ExL0/9+/FxSLop6VDVzvEP0k9DpZGjlFqdD+TGxOctEv\nH57oObqj98hWP02LHf1ZT36tyZGv/hq7bECXIZ66TMQVNMdDd0qFMrHeQu4/O0ppQujqdFJN\nqotuax/B3N6wHlstKiq6ePmarPsyn6xv7SvuEkI6lUbdbR1WoeyQk5NjUAVhI9AsjpzdTId6\nNR17d6ud70Qra5V9Jvx7M/bqn8n7Vp6c++0oPSYGAIagsqTmRmzKm7Na9h/XryRVNWg8/ZA8\nLZ5IK03mxFX/HEAIQU1oaBgrCD/99FNPT88jR46MGjUKJ0zohXDUZpYpllE1HysnM60xNU/F\ne5edGDLXb9R7fbIfZxNCTGwE/Yb7Cs34v6081b53a+cOhrLAksPjbExcrDWssqTm29BIC3d+\nvvkdeSVFX3HiDs0jSmKd78VSsN/ZM56nrXylWAbwxCQhhBC6prTy225GkqqlHCn7HpsQwiEy\nQgghrE65ezrSNJVPPb3F43WbZjT6e/2m+qr6K+rateP3dIm06Wi0b+WpuD0XZdW1tJKkjs4o\nTq6262hy+o+E038kaO3efViHN8fj9EWAV1POg+JTO66hIDQ00us/i6PfM57xJ7f9iPLrsUQq\ntnPrazI7pvrnQIpvyu/3nr4ThH8xVhDa2NikpaWtXLkyNTU1NDTUycmJqZFBR2z7TvpOAeoy\nMhMs2jXO08+5Trv/WC9HT2s7NwPaO4uiiJG59r1PpWL5wFCf4WG9SkpLzkYnXLiSOXp8UHc/\nXyO+8clt14SmAoM6uK9+lJG18ZT9hXnZ0dHRnm6eVtXJbYqOUoSWs4QPWs0sl1CWlpb9+vVj\nW+t0IpZhqiyQlD4QE0Pdz6vgYVnGWe37pqqVPnx2HkZVvpQQUny/uvi+Th2dXHQ6rgMYoci7\nybLrSOmyLxpAYyVfyEr4/fbsTYE84f/7SyczqeCPteeWHpxiOL98fG1RHL7xrGPctkMIIQWP\nSil5tR0hHPcBJnNPKEoasyIJmg5jBWFeXt6ff/65c+fOFStWrFq1avjw4apVo0yND9ASUSxK\nXQ1SFMUWUFzBs2W9rp1b5O1cSwfTEQv9CSF2dnaubq4Ulenp6WlhYUEICfpfX31n10AUxXHv\nb+0gts7jKPLOuJfElrHsrZWFVXzHdoV//M6a2sd/GLdty76tVHS/Mv+64R4qGPjWgD6j6juc\ntiijLPFEqvqysqQmIzGfEOLaxcHS0VTd7jOsraNnfXsPWBjYQuVXW83+qcKRX3M7jdZ3IvAq\nc+1i/+fXT7fO+3PhzrHqxsykgu9n/fHmLF9Ug4bgYlIHEyujnm1VVyz1oOz48QAAIABJREFU\nKbj3Uu0L0zgjeugvM3gOYwUhj8ebNGnSpEmTMjIydu3atWfPngkTJhgbGxNC8vPzmZoFXiu9\nU1ZVmS8nRMtZCC0FxaL6rnIytX119tq1cDTqOs+WxTbQv3dpUZnsrvZ951iE9Kk8KSyKyjTx\ntxSlEUKKue720tuhVISgylx6VfuCRpaZI7djw/Z6aVIXD9wpyigLWfFGnc3bbp9JSzyeMnvT\nSD3l9QK10lpRRX1b9cqltRzOC3ZUomlas10u0TKOAZ78+YoRn/6U7x/GMnUkhNC0kigVqnbp\n1R0cZ192Kz+9ZgctSXWZ6HSE9v3ACCFte7ncjEn5dOjPbl0cJNXSXz6MuxGb0qqDrVym0OUI\nWWtnswHTfF4639fRvfMZlw9rX55RUVSdcSs/fs9N61bmFek9iFJ+9Z1j5YVVWUkFrl0cch6U\naB2he2B734B2TKQMWjC/71ybNm3Wrl372WefxcbG7ty5My4ubtGiRRs2bBg/fvyECRN69MAv\nBKA+tTnXOK38VAcK8RTVbPmzbTwVpaksY9sWfz6pgZZOjUSxKLPWupxioB/KynzRkfm6RKpu\nHnlU/6267FRx4tkI8atFOnTnuA8wqILQw8/52OaLMknt5PAh6sbbp9Mi3j029fOhekzseTeP\npxz56q9GdMy+W5R9t0h9eSP2Yf3xo5f0U93ZhiaiyL9dvf1Nk/nxqppQRRK/VnLuK9Ow8/rL\nC1qe6nLJqe3XGtQlqaCKEHLlyH1CSNbtgqzbBbr0auPrZLAFoVQkryytsW1toe9EXqw4s1z3\nXege3yl8fKeQEIoQHnn0rFdWUkFWkvZ/TU7tbBqfJTQERdPat0l8GXl5ebt37961a1dWVhYh\npKmna6jr16/HxMSEh4frO5FX39mzZ4uLi7UE0fQbD959Ytr5nss8kVjyZsoHV0xG054jLKsf\n+mV8fcd1YZG59l8zBwQEqFYwGprc3NyEhISuXbt26vSKPO354MGDpKSkfv36ubi46DuXF6Al\nFfLUU9rDRE+U1cVsu45KpTLzcpRF9jFq+EYrKyuikCvyE9ku2rcyZ5nYctq88fIJa3XvfMbu\nD47rEqlU0tIaGZvDogmtrKV5Aq5ULOcJODoeaNlzdMdJnw5+uWR1knW7IPVKji6RuQ9KEo+n\n+Aa0S7v/WKmgvXp4Xj2a3PlND3cfR+2dCfHs2apNNzzZ3pQUsup9E5TFD03mn6vaNtAocL3i\nSbrkTLjJ7Jjm+b8DXhlSkTzzVn0ry2SS2pPbrtZKn92FViiU+amltJI2NhdYtzJXh7X2sus+\nqsN/jEEIIUJTvsGeaHrht6Sbx1P/99tEfSfyYrUyhUws1zH4Tnz6b8tPUWxKqaApikz4eJBf\nUH3/XjRxBRwu30DPTJIl/c6y9uC4vAqr2AIDA5v8p+zs7Pzxxx+vWrXqzJkzO3fubOrpwGBZ\nWVmxWCytYZlmmz2vf+BX8mtu5w+F2cJ27drVcks97m0o9phKeYzS5U/uZjtvTS6XN+gXHHKZ\nrHvalzKP72QynU6bUNPlLHJ4HiUw53Vp2G4qyrwnioK/THwm8VS/U+g2tUkyayw2h21kxtcx\nmCtgVT8REyVNE0oqkglMuSYWum7yUWeThqbj1tXRrav2iu76sYfHtlyas2Wkb2D7r2ZFKOTK\n0K9HdB7iseu9mG7D2/YcY0C/YRGJRBJJfYtXmWJiYmJYfzKweSbTI6v3TajePogoa+X3j8ru\nHUY1CI0gl8gfXHpcTwBN0zwhl8199ustaY1M9Vdxba2Ca8RRf9MQ12gZx9rZrHkKQkWtUloj\n0xqWcatAUiXpNMCdECKplilkz1bClxdUPbiYpXnozn9hc9nNs68bh8eu/9eL+aml5/feUn9H\n8vRv9fDiY0JIu14uOQ+Kcx48uz3Qf0rX1t72TZ1tE5El7ee07v1qFISkKZaMvhBFUUOHDh06\n1LBWK0Fz6tatvq0jNCn9/fk7BjmW7qsVCDrZcyTxqwRvrug4+OOOTZpfwx0/flwk0r6ikK2U\nKFgCQkhVRfmE6rvRCafuphdotms1ceJENrvJD6YHQojI1u9Bu8+HaA/Uj479XD8/P6+egJLs\np0c3JNA0qayszMgoFLYyEmUTQgjPlqrlVwvsTWxtbSmK6h7QzjewfTMlzYSacvHcb0f5DGur\n2egzrO28H4JLcyr0ldUL3b9/Py0tTfd4mqafPHnC5XLNzc21R2vo27dv69atG5hdY5Rt6ExV\nZNUXQSvUTwwSQoiyltBKaXkWYXOrIob/00oRtpbvqYIpB4SdDOgBV9CXRiwZVZHWyNOv5+ke\n32xLRpMvZG6d92cjOi7x/ffw98Nfal9d7z/Wa+aGgEZMxDiKIhRF/v2d+T8vFAqlRgzV4p6j\nqdk/mdN2KL/H3P/XSitFR99lWbYWDFymp7wYYKD3YeHVU/PbhNqceh8Tp5WEfvatglbUym7u\nJbRSHLeCEphKr26TXt1GCCGEIiwt/9GazI5h23sxknP9bG1tpVJp/TEc2VOv87OyfFZX2PVx\ntLclmaRdu3YSEwejihSPG8vSu38lstBe51JUS/sjs+WiKEM+xl3rr5kpQjm1tfk/9u47IIpj\nfwD47F4/jn4giCBVQQVUFFBEUYliAV8syVNf7CW+RKPRGMWCxjzk+fMlamKJxBRN1FgSjaCi\nxo5GQOAUEalGjn5wwFGu7++PNZcL6nFY2N1xPn/Bsme+38zwZWd3dkalVMkLKh09rPUKVuuj\nVgIADs6y87Krqip17elob29vYSswvQQLm8vqtIeE5oiY8fTbSQEjvTo5knY5Ozt36MGdXq9P\nSUmxs7Pr6ExyK6v290F9KXSNUra66bk++fcZZbp2qqWyvgqeFbeQF2DrbPnBfrMmd1Q/lP/y\n36t9Ijxdejlc+DrjnfhRP//3KofHmrAi3Jx5hgJLcydcvCCRrdA3rLs5ZzbKWioKZM7e9jJp\ng7pF49HPWXq/hi/idu0hNudKwLmHqcWWX6JWhaq53tQfEQ6f88aCx4/O7l0p+f3nexweW68n\n/pBU9hrqERzz15WP6Zt6QiueORtidRpuv+lNP0wBBMELnvf4EKFv+Xmh5n6yiOEvS6MBIdJJ\nNIWXiJba5/ggoWwklI3mn6+vye+cAeHgwWZtSKCy2+1x4t+iaYc5fuPlKSA4OBjoVIrENbxB\nC0PG/ftVB4nAJOdS8Z53TzzHB5urtM1VWgBEN/PMWgZg8BT/dxJGt39e56qoqCgsLGy0lup1\n+mvXrnl7ezs7m/UCYWfq1q1bt27dzD9fr9fn5eU5ODgEBga+uqheROvMGy0Kcx/DCu8fEOV8\n06rn6HhiIVtXN+JLvdDBzM+692h/RhxVyh7IuvYQo1tznYMn5JgzfCrLq9n73q8jZgdFLwu7\nd7WEzWUFjvLxGtht+ztHLn6XueT7KfRpL49+zmYOcQEAt5MffLfidJDPfQ9R+nnpIv/hnnO3\nj8dZ7b9x05luHss5+uml5/vsqc+un/rsupknj18aNm7xoOf7D70KHL9o0YxfmvdPBDo1AAAQ\nRMuJ9zW5p0QLLrLEzF4NFQ0IkU7CGzBLVyEx82SitV5XngUABjAMs3BgdfEzf4FOVld6XVfx\nBs4BADQd/Kdo6o8AAF31/ZafF/AGzBGM+z+qQ0MYxtLerNvMCoWiWirTyHGBmK1WqnVKYOnE\na6rQsvjApqtQ7ND+om2m9/SjRG5u7ldffeXk5FSnqiQIIjU19dixYwsWLOjduzPu/rxSlq2P\n2Cr6zgl38zJ3tr7yyhZl7vf41OPET3Oa/OfaNaU7pa4QLbyEWzF+OZ/46O/XJs909kELHtIJ\nhk1YET7sX3+b8ymyFXxw4K3L32dSFdTzUTarbyc9YGnkgNBqOeLQiX30GVctxY0CK57v4O43\nj0g46kdqnodHv64uPWnRCR09bM1576C+qqkkq7y7v5Odi5X0frVOq+/u71Rf2VSS/fhgu/9C\np/0xIpplhMqsZw8sh57CN3e1/LIIt+2uqZfqG6XCf/6Icfj6umJzPo6JHDEuHffFRQNCpJMI\nxm0180ztw9Smb8bwIzeo0vcJIj5uvfgpZu1mMflrci8K+lBe/R9QKcw8mdNjdNOP/wQANB+e\nznYJwrgWyvMbzPwsf3gsYNNp9QiEIp79u5pzmzl5/6WkTbU9/mHjFGRx++fClj+wgHldVXVE\ndmKVjavgg70dW2iHDuRy+Z49e3r37m1lZVVbW0sQRPfu3e3s7L766qsNGzbY2dlRHeAL6Vlx\nWEkEA0DT5QTNpLwYr7y0WTT3bItdAAAA4GzR9J+afpjctHeEaOFl3JKmazk+i0alvfR95vCZ\n/cmZh3ododcRAACCAFd/zA58w9umCx0v6V4rLj3FhtERjuP4nw8ERbaC8UvDqIvreShqW26f\nzvMTnuplcfpcXVxts5hcaEWj1mefvR9uu82CVXda9h8WG6fJgLBPhGefCM92T7v0febwGf0G\njPcFABz99JKySU3OPZFcKKwqqhu1kEbLsSgSR+oq7nToI7qafPKLpn0dmFDDG/yecMKX7Z/X\n6dCAEKGXx6PBYSv5I9eq0vdhVl0tF1xS7B3efGwe3caErWc+/ttSCmbSqrR/3ND+ccP8T3DD\n3sfZtPgbgDCCnZ0dq2+tbZ+/TdUTiFnCofUOXRg5p6WkpMTe3r7NW3OWlpb29vYlJSVMHBAq\nLydwekThzoHV1dUqlbJJ0VhfX29jY6POPoRxhZxeE6gOsMM0hRdEc8+w3Yfo5HKCILRaLWDz\nRO8cbz4yW1d6C6dTRofjLijqWk2fo9fp8248+u2b255BLjiOAQCOJ1wRWPKkudV15Y13LxWb\ns5bjrP8bw+Gjq6zO4BPc7d2v/kF1FM/Pwc1myfdTADGp+eicfzxI+Cb132weGwAgl9bNibxo\nra+0XHj5A1t3qsPssOEz+z/1eGCkN6DZ6m24Qw99vck9kPQ6Qq/961udGpDfsrjGa1tgLC4w\nOVkZt/V4sUhfFVSqEDohiKbvJ/AjVvFHxBqO4WIf0fzfmvaOUEsOc/vSaBsAjmcE0So3cQJh\nqBcAAK1SV18K9DqAYbhVV4xn+fg4hmPsdl6Yxtn0XeYEoaFB4wP1tk0nT5708fEBGAAYUKvV\npaWlg0cNHDMmiuronkdTU5NQ+JTfAgsLC4XC3Kf0tEKoFI17R2T7xp24WTxJV1dYdf/Q+vXz\ngvmu93eIZjzPa6KUs1xwsaWl5cbVq0VFRaFNTadPn37I8/f39/eY+iPVobWVc7mkVmrWW5FK\nhSr77OOHAPevPTQcv3fZrLlh72weTaOlmaDG5rLovHtB3YPcivOHzTlT3erELuNN77O5tN7D\nite4dPxeVoX0Pvdtyx+/MefjFt17u0e//WLBvipD3vbXqDt+D72ziKYfNfdUgmg58Z4m52fc\n0Re3dddIfhKM+z/eIMYvCYEGhAidYJj1ijzMou3TMJZDT6vluRiHXuMi0fwLZp6pK89SJEby\nwz5QXvuM/8YnyoufiiZ8yenN4NuZJFwpH1gUD8KSqA7k6ZRK5YMHZq2hYlBQUPDo0aOcnBxL\nS8v2z/6ThYWFt3fH9pZ81UJDQ3k8XlFR0SPNbxorcPt2xcSJE0NCQui1c53ZWCyWTveUKwmd\nTtdp+46+ZEPX/pGX55e9qqnPav4Dvr2V/ZtdWpzv7ioKXDegJyMH7a2trefOncvOzhaLxWlY\nMMu1b3Fx8cWLFxctWtSzJ732OIlc7adStr8pHABA1aRN3VOA4VhDWYu1s6ClQRO20Numm7l/\nidg8Gk1pQShUm53atXSTuWdbAwCAt30OAAAAGeCCnuBbYPLZlUHpHyMBXQeEkLyC++doULTg\nYuuZj1niHtwZPzfvnwgAYPqYkJl/ShF4GY8G2d2CcOvH6/Vh/I5t0kUf5GiQN2COYMxm5bXP\nuH0m4lZdmw7+UzTtMEPHhIRKQT7hxFRye0VOs2GzEGUjxu+kpfDNoVKpcnNzO/SR5uZmCwuL\nkpKSDg0zHB0d6TYgZLFYAwYMCAgI4HA4lZWV06dP7+g2d7Ti4OBQV1fn5uZmvPA6QRB1dXUO\nDuYuYkkreXl5P8t6/cNRF1Ly30rMqou+3KfyWqbb+6fT612GV9Bw9dR25eTk3L5928/PT6lU\nZmj7OHLsunXpwuPxJBKJu7s7j9dJ6/ubo1Fd19zabOIEeYFS1fB4tzSHvtyHlxoBAI1Vra5D\nrcpLqspLAAAA5wFH/3ZGhoRh8zXk9Wbv41lfYmqPTZau0bLxWrv/jorv1SrwNXGCXbenT9FE\nXpaWU0s1906I3r3Ccnh8n4vTc4zF9J+afnwLE9pxA/9JbXgvAg0IEfqy+NcxqkN4UURLrWLv\nCF7Iu4Ixmw3TR3kD5wBC33Twn1aLM1hOfaiNsKO0pWlN+0aL5pxlu4UYH9fcO9F8aJr1qoeY\nyJGq2NqwsLAYPnx4J/yHaPvYjcvl2tjYqFQqCwsLqmN5IZ6enkOGDJFIJB4eHkPxGyxCJ9f1\nKykpCQsL8/Ki11aETV+P1j40eWFH6AGh604QywgCVGMY0LviLYCoBAAPKv0yiEtgO76ox8gN\nV029iMKPjONHfPySo38BZWVlTk5ObbZKs7GxycjICAkJ6d7drE3YOkdkZKRerzdxwq9bUisr\nH78OgAPA4bTqlGoMxzktloTycYIsAXv8uNEYbqqNmPr4GnnZLAWtmDz5xf8dnrKIpywycQLX\ng3YLREOG5RzAG/xemx0mOL1iRLNOURXSy4KqFYK8QpjAVvSvY2zvkW2O84Lnsbr0wu1o+m6x\nCWzXYF7YkqZ9o0VzzxoOavKSmw9OFUR/Tp/RIACAzWY7OTFsbUPkqfD6kuGhgRwOJyUlZaiq\nBmD6jIyM0aNHhwX1weqLAZ12f9I3VRKadhYsAU8d6hH6xwf1gAAA6LRPnvK305tlHY/uFVIq\nlX89BmziEH9el3K5XKXS1AbWne+p76Mam/bJ4zUDCQIc3XTxoaQSAMAVsLk8zqI9/0DrxCAd\nxeoWZDH9iFmnEnpV6hc6Wb7GYbCu8q5FV1ddZY4gMg4zb51e3JZGd16gxBs4969vMBZgPa4G\nHJ83qAno5UF1DUFeJQz/azSI4RjPEuM+flbD7m7WvvY0JHhjIwCgaV8UJ3Q9AID9x6XmlPcF\n0Z/zQt+lOjQETsprnxEl10bP/y0oKOhhogTTa2IXxoqFWNPXkSrXYOGkRKoD/IvVUrN2W716\n9erNmzcHWRT3Lvu2SmujYQmd8Zp0r9XXC5tnzZpFt5fuzMHn82tra8ln0bpMRxVHD3oCAIBa\nrebz21k3q5Ptmv9LQ3WTOWfKKxTN9a0WdgJNqxYAojBNujJkl4ObjekHgwYfHvqnOYuRItDD\nLZ25AWbs96PXNR/+l75RarU4TXM/SY3JLRdcbD46R3lli+XCS7g9vV5MQIQx25j7NtOT0IAQ\nQToLhtvEyQCLptML9RpVyY4O3OISsKytr6wEAPBOL2gWedamHgSpB835IMGz9n6f8ZMrkM4k\njNnedGBS01cR4oUXaywsML3GwQJTJEZifBtB9Daqo3se7u7uJSc/7cW5lN19sWXR8QrcSyvu\nO6AwntVznZubG9XRPY+6TH25sorcAoTQE4QeAADq6+tdOb109SxAp+cW5fkyM1cZJSlqWgAA\nSoUGAKBRgdLcajM/SOjRO4RIByivbtVK0y3fvYbbuD4+hOEWU75pPjK76cd/Wi3JoDQ6pC2c\ngRuBmIAGhAjSieg6GgQAEJoWu+r2X2p/2if1QkWhUFFo7ukY63n+K8jrjMUVvXO86cCkpq9G\nsPBuQK8lR4OiOacNj9yZpUvVhfHcy8c0YxubnMNVmFKpSREFB6ofDSrZwq0fCwSBVAfYYY0P\ntZoScR67wKGrHQBAr9dXVVUVXaoFBXbjJ9PrV/7TK/PbPae5Xrn17R+7jxdIG4r5fL5FUnZN\n/x58J76zveujX1XTPxntHsi8hX8QmuOFLuKFLMAEtn87iuEWb32rbyijKCjkmQrTpdZdRA5u\nNlQH8nKgASGCIAAAwOII/ror+QyETgsM6+ZpVURrPQAEwDBMYAdYf86MwnAMN3X9hwuhWHsa\neRnU6ftUt/ebPIUgtCrDl3pFpaMyH2BAz7XAxT0Ue0eQP8HYPNNLsPD6TeOGLHwpMb8Uukc3\nrd45+gbfv7i4GC/gcoBFeHi4n98CQeYO7aPfWc40GhCqWjQ6Tfu7h83eOjZx8a8113DWP/ga\ndV3ZH5WOwgFEnn72/8Z08bRtaWj/NUK+iIezzJqK2QksbPjDVntdu3bN29u7rq7u7ZCDR7Bl\n1q4+5eXlfeZ4dw9ALycjL5/xMt24jStL/OccUQxv968z0vnO7U337N81alFI+6cyARoQIggC\nAACAw7de/cjMczV5p5sPTOK/sU55/hP+8NWqGztFs5PbrDuKIO1S3zuhLbnaoY9gAAACECqF\nrux2Bz7F5tFqQHgi660AO68+wz3d3d2zf+bYiGzDw8MBAMkPxlg7WAyh02/SnndP5KX+Yf75\nd3YpOUDIeehZ8LAOAPD1B+buU7r613fcetNlb3FNU53D7+s8ukwkv8UAwRISAICujvbCa+vk\nvbrY+YRSGiACOU6vCZxeE6iOAmnrl/9e9Qt39x3858R+4vEt8isHsrhCzqBJDFs33hgaECII\n0jHkaFAQ/Rnba7jy/CeCyDiAsZr2jRbNTUFjwldKLpcXFpo7NZf04MGD2trajIwMFqsD0/bE\nYrGHR2csgcsb9G/c2sXcszVK9f0knbKJwDA2h8/pFY1xzd0inNPT1CZgnc+tT5e97/06/8vo\n3hEe2bXhXAtPAMAvW65eP3zngwNmLD7RidodpLUqVKoWDfk1oSfqyho1Ki0AwNbZkmfxeJI8\nhgErB4s2m1K0wbeg0Yx6NcFqlj0a1vq/NO+15BGcA3BC0//RdoCXKXERteEhCEIJGyfR7gW/\nLPrqH75hf70YfT4xPWn7jcXfTqIwsBeHBoQIgnSArvJu04GJwn/s5A2cq6vJIw8KRn0CCH3T\nvtHWHxdhQrQP0qvS3Nzc0QEhjuPW1tbFxcWmr8Xb0Ov1nTMg5PQcw+k5xpwzieYaRWIkq0vv\n8lYhRmhd7fi60nTRwou4Jb1e5fr1s+vpv94350yeBWf3/F8sxcKmeh92Lp514YtWhcraUZT4\n3q/mfPztDSP7RHi+WLBm8Qnu5tDd1Esy9689LC+sJb/GcIzLZ2tUWoBhXP5fC2xiGOY/3Mv0\nkptCaxotRsrlCx8G/ceycGtIwScp4vcBACyg71uyXaCq2q1+80MbevU6BEFe0M8JV1KP3DXz\n5O0zj/GEHK1Kd//GH6d33tKotDwhZ/fCE+Z8dvp/RvUfQ6OtkgzQgBBBkA7A7b0sF15mu7Wd\nLiUY/SnHJ7Lt2/DIS+Xo6Dh69OhO+A/9taHcK9bY2FhfX9/uaVhrrfDX6QTXquWNr1qOvIcT\nWnnEHv6ZhZovw1vePEwI29/90sbGxsrKqt3TXhxBEARh1tqSPCEHEIRC1kIAoNHpNEBn5WDB\n4uBmftzM017c6T03SjIqO/wxgqgqqTM+cOw/l0x/wqmnrbdtZ7wopau8C3Rq0+fgALjyFTfB\noAjOpaiq/wEAwpqOiXDVdctJw3t4W7eW6MoetvsfYjn3BSZfqEYQhCZEdgKxq7l7SChqW+qr\nmgg9gesxAgBHdxvzJzjwLGi6FQ0aECII0gEYR2gYDWIcC4xvBf5cNZTtGUFVVK8JLpdLLusP\njfLy8qysrHZP8/9jt0rLut11kT4tq1trKwvort9Mw61n9K/9n+bEUkn399r9FwICAnr37v0y\nQm5H16H83l0tTZxQ90BZmdVCfs23wYCQ21SmJghg48VjC/QA6AEAGAbc37AS2Jn6A23t1UlX\nFd0GizjdzLrRIy9S1uYquwQJqu+2WHtzlJVAp9Z3CxOxuLg5H+fbdNIFiWJ3OKFsf9sJXwB8\njb4Va8sAAJG1X4FaoDDvQYL1uipc1P7dCgRBKDdqQfCoBcEmTsi/VWo8+6Psgawkq1yvJ/oM\n97Tp8ngOOY5joxYG23dj5OaEaECIIMhzwm1cbeJq0S1w5Lk5ODgEBra/oibm938aNt8f5wAA\nrJQemF5jExgIANAGHMC0rYFcUwMwkqNjJ12XW1lZOTmZWoKS09Kslf31ULSmtakJqAEAImuh\nqMvjB7MYDpxdHPnWpoZ8nbbbe+TUwUpl+2uEph8vKD5z562EoR4Duuz51+mIKYGeA7scW3Nd\n8UA97bOhAqv2nzk7OqHZ5giC0FSb1y7+mqNB/P2kjrydQStoQIggyAvAUQ1Bnp+9vb29fceG\nAar6QYRO49Kr1ysK6QVl/vDo6kHJc3xQmik3/vZ+cjuzNOft6Oo4rjNGuWaOpQ9du/bvvRP9\nhnQHALDZbLFY7NXD88MDbvs+SGouJXqOcWv3X+g0louutTtl9DG9piV5pUZWjCnKVDa+QqxV\nMOkr8zfOwdEL1QjCEOf2pt1OfmDmyY2ylobqJgAAzsLuXS1xcLPhix5PGf3q3ydNfzZm+ZDe\nQzvjFf2OQhdzCIIgCGPwBr9PdQimdPGyN159zoSaR/XyCoVrL0dZaYPQms9i41XFdS49HUR2\nAnM+biU2d4XVzvHxz9OfPMjhs9/96h+dH4xpLCd/s87TqZsOTCKaqpVvnxJ83V8R9omo+EDr\nyQ9ECy/RbSkjBEFeUFNdq6y0/ZnkAACNSkeuIqNVaXE2jmFY9R/1PCGHxTZrbryqWfNikb4q\naECIIAiCIC/HiFn9R8zq3+5pSdtS/7hbufLYtO7+Tl/OPt5jkOuoBcFXD0qOfXpp4qo3yeds\nzBXxTr/ufeiyo+CTNBpN+0vy6LXKHyYSDY/4cy/UNWgFAGj0gPPWD6qDUxR7R/Ln/mbOcspc\nLo020kAQxISJq4ZNXDWs3dN+++b2r59dX/bDlB6hbrvm/+LZzzmwmacGAAAgAElEQVTq36Hk\nwXd3T/AJ6YxlsV4R2AaEer3+xIkTKSkpNTU1YrF41KhREydOxHGzRu0IgiAI0glYHNbSA2+5\n/X3UNHRaIE/AUTabN5uRxkbMDqI6BFPOnDnT3Nxs+hy2rrWXrCnPZYn67LXGxsa3AMjIyJBU\naHHhdL+6/X/88mMTv/39MydPnszh0HRFQQRBnkNTXct7+yb2+PvAb+ScIK6AXVve6ENVWC8D\nbAPCr7/+OikpafDgwTExMbm5ufv375fJZO+++y7VcSEIgiDIY2PeM9q4BftruYKQN2n6biRM\nHBwcLC3bX4io2mUTuaSvk5MTKMF8evRQWjoBAGqd14gAMGdnenQzGkEgM2FF+N++/7N0h09t\nf3U0moNqQFhaWpqcnDxs2LDly5cDAMaNG8fhcM6cOTNmzJju3Zk9AwdBEASBUszyIdZiC6qj\neI0MGjSoox9R2/44qM9EwO6k/TkRBKG/qEUhVg7wlG6obl9du3aNIIjo6GjDkZiYGIIgrl69\nSmFUCIIgCPIsbr27WHcx54ETQhlu36loNIggiDHP/l3N38ue/qAaEBYWFrJYLC8vL8MRDw8P\nLpdbVFREYVQIgiAIgiAIgiD0BNWU0bq6Omtraxbrr22yMQyztbWtra01Pu33339vamoiv66u\nru7UEBEEQRAEQRAEQWgDqgGhSqV6ckUvLperUqmMj2zbtq2wsJD8umfPnt7e3p0UH4IgCIIg\nCIIgCJ1ANSDk8Xitra1tDqrVaj6fb3xk2rRpcrmc/LqlpaWysrKT4kMQBEEQBEEQBKETqAaE\ndnZ2f/zxh06nM8waJQhCLpf36dPH+LSYmBjD1+np6UlJSZ0aJYIgCIIgCIIgCD1AtaiMl5eX\nTqcrLi42HCkpKVGr1cbLzCAIgiAIgiAIgiAkqAaE4eHhGIadOnXKcOTUqVMYhoWHh5v4FIIg\nCIIgCIIgyOsJqimjbm5uY8eOTU5O1mg0ffr0yc3NvXbtWlRUlLu7O9WhIQiCIAiCIAiC0A5U\nA0IAwPz58+3t7c+dO3fr1i17e/t33nln4sSJVAeFIAiCIAiCIAhCR7ANCHEcnzx58uTJk6kO\nBEEQBEEQBEEQhO6geocQQRAEQRAEQRAEMR9sTwifw61bt/79739THQWCIAiCIAiCIEinqq+v\nxwiCoDoMKqlUKplMRnUUCIIgCIIgCIIgFHjdB4QIgiAIgiAIgiCvLfQOIYIgCIIgCIIgyGsK\nDQgRBEEQBEEQBEFeU2hAiCAIgiAIgiAI8ppCA0IEQRAEQRAEQZDXFBoQIgiCIAiCIAiCvKbQ\ngBBBEARBEARBEOQ1hQaECIIgCEIBrVbb3NxMdRQIgiDI6w4NCBEEQRCks+l0uoSEhLVr1zY1\nNVEdC4IgCPJaQwNCBEEQBOlsGIYJBIKioqJ169ahMSGCIAhCITQgZLy8vDyCIMivpVJpXFxc\nY2MjtSEhbcDXRigjmoMsHSjhOL5s2bJhw4ZBMyZEvY7+4Gsj+DJCEEqwNmzYQHUMyPPLzMxc\nv359eXl5aGhoWVnZmjVrSkpKWltbBw4cSHVoyGPwtRHKiOYgSwdiGIaFhoZWVFRkZWVlZ2cP\nGTKEy+VSHdRzQr2O/uBrI/gyQhCqsKkOAHkhPj4+3bt3v3z5slKpfPDggVwuDwgImDNnDtVx\nvQQymWz//v35+fmOjo7R0dHMre/wtRHKiOYgS8cYNGXBgHxOCAC4cuXKunXrNm3aJBKJqA7q\neUDc65qbm48fP56enq5SqXx8fKZMmeLu7k51UM8DvjaCLyMDaHodCb7SDV9GmOFRO8JQCoVi\n7dq1JSUlAICAgIB169bxeDyqg3pR9fX1y5Ytq62tNRwZM2bMwoULcZyRk5zhayOUEc1Blg4J\nsrIAAJDL5fv375dIJBiG1dTUAAC8vLyYOyaEsteVl5evX7++uroaACAQCFpbW9ls9pIlSyIi\nIqgO7XnA10bwZQSg63XwlW74MgLoHUIINDc319fXk1/b2toyd8aRsf3799fW1np5ea1fv375\n8uVisfjMmTPbtm1j6P0L+NoIZURzkKVDgqwsyGSyDz/88LfffsNxPCIiYvLkyY6Ojox+nxC+\nXqdUKjdu3FhdXe3l5bVjx46ffvpp9OjRWq32888/Ly0tpTq65wFfG8GXEXy9DrLSDWDMCKB3\nCCHA5XJzcnLEYrFIJMrOzq6srAwNDcUwjOq4XsiuXbusrKy2bt3avXt3d3f3iIiIzMxMiUTC\n0OzgayOUEc1Blg4JsrKwffv2/Px8X1/fLVu2BAUFBQYGRkVFlZWVSSQShr5PCF+vO378+I0b\nNzw8PBISEsRi8dmzZ3/66ScAwLx584KDg6mO7nnA10bwZQRfr4OsdAMYMwJoQMh0crlcqVRG\nRkZGREQMHTo0Ozs7KyurTY+8deuWlZUVsyZR/Pzzz+PHjw8MDCS/5fP5YWFhDP19g6+NIMtI\nLpc3NzdbWloOHjwYmoxgaiADmMqCTqfbvn27Xq/fuHGjvb09eZDFYg0aNCgjI6OoqIhxY0Io\ne90333xTV1f3ySefiMXilJSU3bt3EwQxb968mJgYAMC5c+dcXFzYbMasxQBZG8FXukmQ9ToA\nV+kmwZcRQANC5qqrq9u+ffvOnTuvX78+ePBga2trHo8XFhZmKIjBwcE4jl+6dGnr1q0ZGRkj\nR46keQWRy+Vff/31Dz/8kJGR0djY2KdPn549exp+ysTfN/jaCLKMjNMJCQmxtrZmsVjQZARB\nAwEYywJJq9UePnyYzWYvWLDA+DiO43w+/+bNm3K5nCljQvh6ncGRI0dEItGMGTPOnTu3a9cu\n4+tyhUKxfv36/Px8RrzWBVkbwVe6jcHR6+Ar3fBl1AYaEDJSRUXFxx9/nJ+fb2VlNX78eC8v\nL6FQCAAwLohZWVk5OTmHDx8mCGLs2LF9+/alOmpT5HL5hx9+mJOT09DQUF5e3tra2tDQ8MYb\nbxi/oWv8++bh4eHq6kphwO2Cr40gy+hZ6QDoMmJoOgDGsmDAYrEuX77c2Ng4aNAgGxsb4x81\nNDRcunRp4MCBOTk5Tk5O3t7eVAVpDvh6nbG0tLSKigoul7t3717j63IAwN69ewsKCoKDg/v3\n709tkO2CrI3gK91tQNDr4Cvd8GX0JDQgZB61Wh0bG1tVVeXr6xsfHx8UFGSohgAAHo8XHh5e\nUFCQm5v78OFDHMdnzZo1ZcoUCgM2x549e3Jzcz09Pd9///1+/frl5+eXl5fX1tYGBwcb32Uh\nf9+cnJyGDx9OYbTtgq+NIMvIdDoAuowYlw4JsrLQhlarzc7OLi0tjYiIML6qOHnyZEFBwYYN\nG/r06UPz5wBQ9jpjOp3uxo0bWVlZAADj6/KUlJTDhw/z+fzly5e3KR10A1kbwVe6nwRBr4Ov\ndMOX0ZPQthPMc+bMmd27dzs5OW3bts1QFCQSiUQiEYvFo0ePZrFYBEGkpqaWlpYOGjSI5nvX\nyGQye3v7WbNmcTicHTt2kBnV1dWtWbOmrKwsMjJy8eLFjHvyDlkbAegyMicdAABkGTEoHSjL\nQhs6nW7lypUFBQVBQUEffPAB+ZzwzJkze/bssba2/vbbb8lOSGeQ9ToAgF6vJwjC8H9er9ev\nWrUqLy/PxcXlP//5j52dnVKpPHr06LFjxwiC+Oijj8LDw6kNuF2QtRF8pbtNlwMM73XwlW74\nMnoWZsyoRow9ePAAADBu3DiyX0ql0l27duXk5LBYLJ1Ol5qa+umnn2IYNmTIEKojbV9ZWVls\nbGxQUBCLxYqKijLUdzs7u/j4+NjY2AsXLgAAGPf7BlMbkSDLyMx04MuIEelAWRbIe6/GAbNY\nrPXr18fFxd2+fXvevHleXl5yubyyshIAMGPGDPqPBgFcvU4mk+3bty89PV2j0XTr1i0qKmrc\nuHE4jq9ZsyYuLq64uHjOnDmOjo51dXVqtRrDsNmzZ9P5utwApjYCcJXuZ3U55vY6+Eo3fBmZ\ngPYhZJ5u3boBACQSSWlp6cGDB5cuXUoQxLZt2w4ePOjk5HT37t2CggKqYzSXUCgUCoUXLlyQ\nyWRt1k6wtbWNj493cXG5cOHCF198waxH2TC1EQmyjCBLB8CVEWRloaamZtOmTRMnTpw6deru\n3buN9xi0trZOSEiYMGEChmH379+vrKwUCoWLFi2KjIykMGDzQdPr5HL5Rx99lJqaqlarCYIo\nLS1NTEyMjY1VKBRkG02ePNnS0rKyslKj0QQEBCQkJLz55ptUR20WaNqIBE06Jroc+LMyMK7X\nQVa6AYwZmYCeEDLP+PHj09PTMzIyMjIyLC0t58yZM2bMGAzDDLMO9Ho91TGai/yNio2NLSsr\nu3Tp0rhx44zvixt+euHChdDQUAbtwANTG5EgywiydABcGcFUFuRy+cqVK2trawEALS0tZ86c\nycrK+uSTT5ycnMgT+Hz+3Llzp0+fXlJSQhCEp6cnn8+nNOQOgKbXffvtt7W1tb6+vosWLXJ3\ndy8oKPj6669zc3M3btwYHx/P5/NnzJjxzjvvKBQKgUDA4XCojrcDoGkjEjTpmO5yXC6Xib0O\nptJNgi8jE9A7hAzQ3Nx8/Pjx9PR0lUrl4+MzZcoUV1fX27dv63S6wMBAwyPsU6dOJSYm2tra\nfvPNN4yYbmQgl8vJ37enzsaWy+U3btwYN24cVeG168kGcnd31+l0zG2j1yEjpv8SwZdRG0wv\nC6Qvv/zy3LlzPj4+ixYtEolER44cuXDhglgsjo+PN4wJmQK+sgD+fEFoxowZfD5/x44dAoGA\nPK7RaDZu3Hjnzp3JkyfPmDGD2iDNB18bwVfoIOtyT4KjdBuDL6OnQgNCuisvL1+/fn11dTUA\nQCAQtLa2stnsJUuWGK8+RxDE8ePHDxw4QP8XjsEz/mKZ/n2jM3MaCDCqjV7PjBiUDoAxI8jK\nAvjzsm/+/Pl6vX7Hjh0ikYg8fujQoUOHDjFuTAhfWQBGLwhlZmaOGjVq2rRpxj+VyWTz58/n\ncrkHDhyg/26QAMY2gq/QQdblAIylG76MzIS2naA1pVK5atWqqqoqLy+vjRs3zp8/v66urqCg\n4Pfffx8yZIi1tTUAICsr68svvzx//jyGYbNmzYqKiqI6alPKy8s//vjj9PT0hoYGnU5XVFR0\n/vz5Ll26+Pn5hYWFpaenSyQSmUzWZiVf2jKngQCj2uj1zIhB6QAYM4KsLAAAysrKPv7449LS\n0qqqqsjIyKCgIMOP/P39AQBpaWk3b94MCQkxDBTpDL6yQNLpdFevXpVIJK2trX369CGbxkAo\nFP7+++81NTXBwcH29vZUBWkm+NoIvkIH4OpyAMbSDV9G5kOLytDayZMnKyoqPDw8Nm/e7O7u\nfvbs2XPnzgEA5s6dS255WV9fv3v37rt37zo5OW3cuHHixIlUh2yKUqncuHFjdXW1l5fXjh07\nfvrpp9GjR2u12s8//7y0tJSJb+i220CAaW30GmbErHQAdBnBVxaA0VIE1dXVhilhBlOnTp06\ndapMJouNjSWXFaU5+MoCydC7AABXr17VarXGPyUIorGxETDktTT42giyQkeCqcvBV7rhy6hj\nCITGli1bFh0dTS42cPbs2ZiYmOjo6JMnT5I/TUlJaW1trampSU1NJbeyobnDhw9HR0cvWbKk\ntbWVIIgzZ860yYggiLq6unfffTc6OvrWrVvURWoucxqIIAgGtdHrmRGD0iGgywi+skAyxPzB\nBx9otdonTzh48GB0dPSJEyc6P7aOgq8sGDO01P/+9z+dTmc4npSUFB0d/fbbbyuVSgrDMxN8\nbQRZoTMGR5eDr3TDl1GHoAEhrc2ZM2fu3LkEQaSkpLTpl42NjZMmTYqLi6Myvg4y8y9WXV1d\nUlIShXGaD7IGIlBGTABZRvCVBQPDpcP27dufes169+7dzo/qOUDW5XQ6XZshuqGlVqxYce3a\ntTt37uzdu5fM9PTp01TF2SGQtREBV0ZQdjn4Sjd8GXUI2naCdqRSqVqt9vT0BAA4OTkVFBSc\nPHnym2++IQhi3rx5MTEx5GnfffedWq02TAVhhIaGBkdHR3d393Pnzu3atcs4I4VCsXfv3hs3\nbmzYsMHW1pbm6zUZ2giOBoKvy6GMKA22Y6ApCwRB3L17t7S0tEuXLv369WOxWMaLkoOnbV7c\np08fioI1C2SFDjx7K3BDSz148GDLli3kyVZWVjNnznzjjTeojdkE+MoCfBlB1uWMQVO6DeDL\nqEPQojL0Ul9fv2rVqvPnzwcHB1tbW+t0uhs3bmRlZQEAjKthSkrK4cOH+Xz+8uXLDcsu019a\nWlpFRQWXy927d2+b+r53796CgoLg4OD+/ftTG2S7jNvIwsKC6Q0EX5dDGdE/I2NwlIXq6uq4\nuLhjx47dvn37ypUr165d69Gjh729vUAgYOhSBJAVOgCAXC5fsWLFgwcPdDodAKCxsTEzM/PO\nnTshISE8Hs/QUgqFIiQkZM2aNf/61798fHyojvqZ4CsL8GUEWZdrA47SbQy+jDoELSpDLwcO\nHJDJZO7u7o6OjgCAyMhIX19fAICLi8uQIUMAAEql8sCBA7t27QIALF68WCwWUxvwk/Ly8og/\n37WVSqVxcXHkS9IAgGHDhimVyn379rX5TUtJSTl//jyfz58wYQI1QXeEcRsxsYHagKDLtYEy\nomFGcJeFhoaGVatWFRQU2NraTp48OTo6uqqqas2aNZmZmcBoGQlmLUUAWaEDRluBb9++/eTJ\nk1u3bvX19SW3Aler1cCopW7duvXzzz/TfDs7CMpCG/BlBEGXg690w5fRy4KeENKFTCYTCAS7\ndu2ytrbevHkzn88HAGAYFhwcLJFIHj169Ouvv168ePHHH3+8e/cuhmGzZ88ePXo01VG3lZmZ\nuX79+vLy8tDQ0LKysjVr1pSUlLS2tg4cOBAA4OHhkZ2dLZPJXFxcZs+eLRAIlErloUOHvv/+\newDAsmXL/Pz8qM7AlCfbiHENZAyOLmcMZUTPjOAuCwCAhISEoqIiPz+/zZs3BwcHV1dXp6en\na7XaGzdueHt7Ozs7Gz8n9Pb2JtcYpC3ICh34M6Pdu3fb2Nhs2bLFwcEBwzB7e/uIiIi8vLzc\n3Fy9Xh8YGAgAYMQTXTjKgjFYM2J6l4OvdMOX0UuEBoS0YLxpVVRUFFkmSHw+PyIigiAIqVRa\nW1ur1+sDAgI+/PBDeu6+KhKJMjMzs7KyHj58eOTIEblcHhAQsHTpUjabDRhe35/VRsxqIANo\nupwByoi2GUFTFrRarV6vx/G/zazJy8vbv3+/WCzevHmzlZXV2bNn9+zZQxDEiBEjCgsL24wJ\nu3TpMnz4cKriNwdkhQ48sSek8YwvFosVEBCQlJRUXFw8YcIE8vkMnS/QAURlwQDujBjd5aAp\n3QbwZfQSYUyZvgI3uVweGxtbVlYGAJg1a9ZTt9MhCEKhUAgEAg6H0+kBdoBCoVi7dm1JSQkA\nICAgYN26dTwez/gEpVJ55MiR8+fPNzQ0YBjm7+8/ffp0+t93abeNmNJAJJi6HAll1OkBdgAE\nZUGr1SYkJAAAVq9ebTyz6+jRowcOHFi9evWgQYNu3ryZkJBgmG703//+NzU1lcvlxsbGMuXN\nE8gKHfh7Rv/85z+nTZvW5oSlS5cWFxdv3bq1R48ebT4ll8s/++yzrl27dmrEJsFUFkhwZ8T0\nLgdB6W4DvoxeFvQOIS0Y71V68eJF8v3jNjAMs7Kyon81bG5urq+vJ7+2tbXlcrltTuDz+TNm\nzNi/f/8PP/xw7NixTz/9lBG/ae22EVMaiARTlyOhjOgMgrKg1WoVCkVaWtrmzZuN22LSpEkx\nMTHBwcGNjY07duwgCGLq1KnkyycuLi62trY6nS4+Pp4RG9AD6AodeN6twMlPffrpp/S5NCfB\nVBZIcGfE9C4HQeluA76MXhY0ZZQuDHMGpFJpTU1NSEgITeYMdBSXy83JyRGLxSKRKDs7u7Ky\nMjQ09MlcMAzj8Xg0fIXaBGjaiARZOgBlRGMQlAU2mx0eHp6TkyORSEpKSsLCwsi5oxiG9e/f\nH8fx5OTk9PT0fv36LV68mPzIDz/8wOfzFy1a1LVr19DQUErD7wBoep2BIaPy8vKqqirjjE6f\nPn3t2jWhUDh79mxy2pjxp+zs7KiItx0QNxB8GTG9y0FQutuAL6OXBQ0IacRQQe7cuUOreeTm\nk8vlSqUyMjIyIiJi6NCh2dnZWVlZbX7fbt26ZWVl1eYZPVNA0EbGIEsHoIxoCZqy8KwxIeni\nxYtFRUVvvfUWuYtacnJySkqKr6/v22+/TfP9Bp8EQa9rw5DR3bt3s7KyhEJhQ0PDr7/+eujQ\nIQDAvHnzyAUtmQLiBoIvI+Z2OWhKtwF8Gb1EaEBIDa1We/HixVOnTqWlpTU2Nnbr1o28UUTb\nd4vbVVdXt3379p07d16/fn3w4MHW1tY8Hi8sLMzw+xYcHIzj+KVLl7Zu3ZqRkTFy5Mg298bo\nBr42empGzE0HoIxoj+llQavVtra2Gs8pMjEmbGxsvHXrllwud3BwSEpKOnToEIZhixYtItfQ\npy34Cl1zc/Phw4e//vrrEydO5OXlubi42NjYAKOMSkpKUlNTL168mJ+fb2VltWDBApovFwFZ\nWQAwZvTUXsfcLsf00v0k+DJ66dCiMhSoqKj49NNPS0tLDUccHR0/+uijnj17kt8a3kiOjIxc\nvHgx/WtiRUVFbGxsbW2ttbV1TEzM8OHDDRsEKRSKdevWFRcX9+jRo2vXrpcvXwYATJ06derU\nqVRG3B4o28hERoxLB6CMaJ8R08uCTqfbvHlzbW3tpk2bRCKR8Y+USmVcXNz9+/eDg4MNa8zo\ndLq4uLg7d+4YTnvWChn0AV+hKy8vX79+fXV1NQBAIBC0tray2ewlS5ZERESQJxgyCgkJmTlz\nppOTE80v+yArCwDGjEz3OiZ2OUaX7ifBl9GrgJ4QdjZyC+OKigpnZ+fJkycHBwerVKqSkpIr\nV6707t2bvJfMrE2r1Gp1bGxsVVWVr69vfHx8UFCQUCg0/JTH44WHhxcUFOTm5j58+BDH8Vmz\nZk2ZMoXCgNsFXxu1mxGz0gEoI9pnBEdZyMjIyMrKys7OHjJkSLvPCXEcHzJkCJvN1mg0np6e\n8+fPHzFiBIXBtwu+QqdUKletWlVVVeXl5bVx48b58+fX1dUVFBT8/vvvQ4YMsba2BkYZ3b9/\nX6VSPfX1IfqArCwAGDNqt9cxq8vBUbqNwZfRq0Igr4xGo9m1a1dVVZXxwV27dkVHRy9fvry1\ntdVw8OjRo9HR0dOnT29sbDQcrKurS0pK6rxwn9fp06ejo6Pnz5/f3NxsOJidnf39998nJydr\ntVqCIPR6/bVr1w4ePFhSUkJZoE8DXxu9SEY0TIdAGTEhoycxuiwY6HS6rVu3RkdHL126VKFQ\ntPlpa2vrypUro6OjN23aRGZEW/AVuqc6fPhwdHT0kiVLyIzOnDkTExMTHR198uTJNmfW1dW9\n++670dHR27dv1+v1VATbFnxlAb6MnsrMXkfDLvdUcJRuY/Bl9IqgJ4Svil6v37Jly6VLl+7d\nuzd69GjDDaFt27ap1eo1a9YYv1jSq1evsrKy/Px8HMcNu7IKBALjPWpoKzk5uaSk5O233/b3\n9wcASKXShISEn3766cGDB+np6bm5uSNGjMAwzM3Nzd/fn3yXgybga6MXzIhu6QCUERMyeirm\nlgVjGIaFhoZWVFSY/5yQwmifBb5C9yzffPNNXV3dJ598IhaLU1JSdu/eTfy5JyQA4Ny5cy4u\nLvR8QxK+sgBfRs9iZq+jW5d7FjhKtzH4MnpF6PjXCw4nT568efOmSCQyngRPEERTUxMAwM3N\nrc35Y8eOBQBkZmZ2cpzPRyqVFhYWkl9369YNACCRSEpLSw8ePLh06VKCILZt23bw4EEnJ6e7\nd+8WFBRQGuwzwddGKCOUEbUMlYG5ZaENHMeXLVs2bNiwoqKidevWkc1kwOfzN27c6Ofn9+T+\nhPQBd5cz1tDQ4Ojo6O7ufu7cuV27dhlflysUir179yYkJBhONmwWd+PGjYqKCuqiBgDGNoIv\no2cxv9fRqsu1AV/phi+jVw0NCF+V3377DQCwdOlST09PqVT6+++/AwAwDHN2dgYAPNn/+Hw+\nAKClpaXTI+0wpVK5Zs2aX375hfx2/Pjxfn5+GRkZ7733XnJy8pw5c+Lj4z09Pfl8PrnWQpvd\nV+kDvjZCGaGMKGRcGZhbFozJ5fLt27fPmzcvNzcXANDumPDGjRsURWoKZF0uLy+P+HMxPKlU\nGhcXR27zDQBwcnJqbGw8efLkzp07ja/LAQDfffedWq12dXU1/qfosxU4ZG0EoMvoZfU6+nQ5\nY/CVbvgy6gRoQPiqkC+tcjgcqVS6Zs2a//73v+Tqc6NGjQIA7Nu3T61WG59/5coVAICHhwcV\nwXYMn88Xi8U3b95saGggv42Pj1+7du3q1asTExPHjh1L3g5MSkoqKyuztbX18fGhOuSng6+N\nUEYoIwoZVwbmlgUDmUz24Ycf/vbbbziOR0RETJ482dHR0cSYcMmSJeHh4VRFawJMXS4zM3P1\n6tWff/45QRBkOllZWT/++CP502HDhimVyn379rW5Lk9JSTl//jyfz58wYUKbf9DW1tbb27tT\nc3gamNqIBFNGL7fX0aTLGYOsdAMYM+oE6B3CV8XW1vbq1asZGRmXL1+Wy+X+/v4TJ05ks9k+\nPj6ZmZmFhYX37t0LCAiwsLAgCCI5OfngwYMYhi1evNiwGC6d8Xi81NRUS0vLXr16AQBwHHdx\ncXF1deVwOAAAgiCOHz/+3XffAQAWL17s7u5OabDPBF8boYxQRtQyrgwMLQsG27dvz8/P9/X1\n3bJlS1BQUGBgYFRUVFlZmUQieer7hOR+9DQEU5cTiUSZmZlZWVkPHz48cuSIXC4PCAhYunQp\n+Wagh4dHdna2TCZzcXGZPXu2QCBQKpWHDh36/vvvAQDLlh6i7hEAACAASURBVC3z8/OjOoOn\ng6mNSDBlBGuvMwZT6SbBl9GrhvYhfIX2799/7NgxAICvr++mTZt4PB55vKGhIS4urri4GMdx\nNze3hoYGuVwOAJg9e/abb75JZcRm02q1c+fO5XA4iYmJbV6MzsrKOnbs2N27dzEMmzlzJs23\n4YKvjVBGKCMKPasyMKssAAB0Ot1bb72l0Wh27txpPONLp9OtWLGiqKjIy8vryf0JaQumLqdQ\nKNauXVtSUgIACAgIWLdunSEd8PeMHB0d6+rq1Go1hmGzZs2ibUYkmNqIBFNGsPY6A2hKtwF8\nGb1q6Anhq1JeXp6YmKhUKgEAKpVqwIABtra25I/4fH5ERIRarS4pKamtrVUqlXZ2du+///7o\n0aMpDbkDcBxXKpW3bt0it/I0HK+vr9+8eXNxcbGTk9PKlSuHDx9OYZDtgq+NUEYoI2o9tTIw\nqyyQtFrt4cOH2Wz2ggULjI/jOM7n82/evCmXy598TkhPkHU5uVyelJREpuPr6ztkyBDjqz0y\nI3JqX21trV6vDwgI+PDDD+k5m9cAsjYC0GUEZa8zBk3pNoAvo1cNPSF8VVpaWtavX8/n8/v2\n7bt//35LS8tNmza1mVOkVCpLS0s5HE737t3puQAxSSqVlpaWhoSEGC+qXl9fP2fOnH79+q1b\nt874ZJlMlp+fP2jQIDpnRIKpjUgoI5RRZzK/MjCoLBgsXLiwoqJix44dbSYUSSSSdevWDRw4\nMD09/b333qPzVSwJpi4HAFCr1fHx8RqNprm5ubi4OCIiYtmyZU/GTBCEQqEQCATkJDGag6yN\nAHQZQdbr4Cvd8GXU+dATwleFw+EMGTIkIiIiICBAKBT+/vvvqamp/fr1M9wkAwCw2Wx7e3sb\nGxs698v6+vqPPvro/PnzFy9e1Gq1rq6u5B1xPp9fXl5+48aNkSNHWlhYGM4XCoWurq50zsgA\nmjYyQBlRGKqZoMmoQ5WBQWXBQKvVZmdnl5aWRkREGF9knDx5sqCgYMOGDX369ImIiKAuQHNB\n0+UAAHK5XKlURkZGRkREDB06NDs7Oysrq7KyMjQ01BD5rVu3rKys+Hw+j8cjVxGkP5jaiART\nRpD1OvhKN3wZUQINCF8+8qErhmEcDod859jX1/dZBZH++Hz+wIEDMQwjN/FMSkqqqalxcnKy\ntrZ2cHBISUnh8XiG/YsZB442MoYyoj84MoKsMmi12osXL546dSotLa2xsbFbt25+fn6ZmZl5\neXmFhYV9+/Yll8U/c+bMoUOHbGxspk2b9uRearQFQZerq6vbvn37zp07r1+/PnjwYGtrax6P\nFxYWZrg6Dw4OxnH80qVLW7duzcjIGDlyJJkyU0DQRm1AkBGUvQ6y0g1gzIgSaED4MtXU1Hz2\n2Wfbtm07ceJETU2Nn5+f4fUShhZEuVze3Nzs5OQUFBQ0fvx4R0fHqqqqjIyM06dP5+bmurm5\nVVVV3blzJyYmxvgOOkMxtI1MQBnRH0MzgqwyVFRUxMbGnj9/vqSkpLi4OC0t7cqVK35+fuPG\njZNIJLm5ucnJybdv3z569Ojly5cBAAsWLKDbwvHmY2KXq6io+Pjjj/Pz862srMaPH+/l5UXu\namB8dZ6VlZWTk3P48GGCIMaOHdu3b1+qo35+TGwj05iYEZS9DrLSDWDMiCpoQPjSyOXyFStW\nFBYWEgSh0WgKCwtTU1MHDhxoWIaOWQXR+MZYSEiISCRis9ne3t5RUVH9+vXTaDSZmZnkctKt\nra3du3dn0M1yE5jVRlKptLq62s7OzsQ5KCP6Y1ZG8FWGhoaGVatWVVRUODs7T548OTg4WKVS\nlZSUXLlyJSgo6K233lKr1UVFRZWVlU1NTUKhcN68efR/b9A0ZnU5tVodGxtbVVXl6+sbHx8f\nFBREXpeTeDxeeHh4QUFBbm7uw4cPcRyfNWvWlClTKAz4pWBWG5mDWRnB1+vgK93wZUQtNCB8\nafbt25eTk+Pj47N27dpJkya1trbeuXPn5s2bZDclzzEURCcnJzpvTfOsG2MksVg8aNCgqKgo\nS0vL8vLy5ubmhoaGkSNHUhjwS8SUNlIqlcuWLaurqwsLCzN9JsqI/piSEZSV4dtvv5VIJD16\n9Pi///s/f3//Hj16jBw5ksPhZGZmpqenjxkzJjQ0NCYmZsCAAZGRkbNnz6ZzA5mPKV0OAHDu\n3LmLFy86OTklJCRYWVmRByUSyblz58rKyjw9PXk83vDhw93c3Nzc3ObPnz9o0CBqA35ZGNRG\nZmJQRpD1OvhKN3wZUQ6tMvoSyGQye3v7+fPn6/X6HTt2GIZ/hw4dOnTokFgsjo+Pd3JyMpz/\n4MGDnj17UhRs+9Rq9dKlS6VSqa+v7+rVq03fxiMIYteuXSkpKdu2baPJvsxarValUhmvc/Mc\naN5GpOXLl5eUlHz77bfW1tbtnowyoj+aZ8T0yvAs06dPVygUn332WZtZoFu3br169erkyZNn\nzJhBVWyvGs27HGnbtm0XL16cO3fuhAkTAABSqXTXrl05OTksFkun0/n7+3/66acQLxHBiDbq\nEEZkBFOvg690w5cRHaAJtR2j1Wq1Wq3xkbKysuXLl3/xxRcAgDfeeMN4n+KpU6dOnTpVJpPF\nxsZWVlYajtO8FP72229SqdTJyWnDhg2GXzOJRLJ///7Tp0/rdDrjkzEMGzVqFADg3LlzFMT6\nBJ1Ol5CQsHbt2qamphf5d2jeRqTo6GitVnv+/HlzTkYZ0R/NM2J0ZXgWgiDIWvHkbKKxY8cC\nADIzMykIq7PQvMuRunXrBgCQSCSlpaUHDx5cunQpQRDbtm07ePCgk5PT3bt3CwoKqI7xFWJE\nG3UIIzKCqdfBV7rhy4gO6L4aEq1otdqEhAQAwOrVqw3LCguFQqFQeOHCBQCAQCBo85GpU6cC\nAA4dOhQbG9vmOSFtPXjwAAAwbtw48vl7mxtjqampbW6MWVpaAgDu379PVcDGMAwTCARFRUXr\n1q3btGmT8fgcPkOGDPn222/Pnj07adIkptyqNA2+jGDC6MrwLBiGOTs7l5eXFxQU9O7d2/hH\n5LKiLS0tFIWGPDZ+/Pj09PSMjIyMjAxLS8s5c+aMGTMGwzCCIMg/xHq9nuoYEdjA1OvgK93w\nZUQH6AlhB2i1WoVCkZuba/y4z9bWNj4+3sXFBQBw+fLlNncmgNFzwlu3bnVquM+rQzfG9Hr9\nd999BwCgyVgXx/Fly5YNGzaMHBO+4HNCmmOz2VFRUdXV1bdv36Y6lpcDvoxgwujKYAJ583jf\nvn1qtdr4+JUrVwAAHh4e1ISF/InP58fHx69du3b16tWJiYljx44lL/WSkpLKyspsbW19fHyo\njhGBDUy9Dr7SDV9GdICeEHYAn8/fuHFjdXW1i4tLVVWVWCwmbxSRY8LY2Nji4uKdO3cuXry4\nzcONqVOn+vv79+nTh6LAO6ZDN8aKiopu3bolFArp85oNOSYEAFy5cgWm54RSqbS0tDQkJMR4\n6eQxY8YcPXr0zJkzAwYMoDC25wNfRsBoG1KqA3n5mF4ZniUmJiY1NbWgoCAuLm7ZsmWOjo4E\nQSQnJ584cQLDsDfffJPqANsHca8jsVis4OBgw7cEQRw/fvzAgQMAgHnz5tF8H3AoKZXKX375\n5fr16zNnzjRuGphA0+vgK93wZUQHaFGZ51FRUbFq1SofHx/juaNyuTw2NrasrCwyMvLJMSGz\n6HS627dv63S6wMBAw8JNp06dSkxMtLW1/eabb4xLYVpamo2NTY8ePSgK9un0ev3nn39+5coV\nLy8vE2PCsrIy8ukuzdXX13/wwQdyudzR0XHs2LGjRo0yZPT5559fvnw5MTHR0dGR2iA7hOkZ\n6XQ6HMeNf81ramr27NmTmZnJ4/GGDRv2zjvvPLXXMaXLPRXTK4NWq718+fK9e/cwDPPz8xs6\ndCiPxwMANDQ0xMXFFRcX4zju5ubW0NAgl8sBALNnz6b5gPB16HVtZGVlHTt27O7duxiGzZw5\nc+LEiVRH1I5n9bo2GNRGFRUVn3zySVlZGTlkWr58uWHLZQMGpWMOxvW6Npheup8EX0aUQ9tO\nPA8Oh5ORkSGRSEpKSsLCwsjnGwKBICwsLD09XSKRyGSy4OBg5o4JcRx3cXFxdXXlcDjgzxtj\n5DP3xYsXu7u7G5/s4uJib29PRZhPJ5fL9+7dm5iYKJPJWlpa5HJ5dnb2kCFDnvyLdfny5fXr\n11tYWND/HXeZTObh4WFnZ/fgwYP09PSkpKSamhonJydra2sHB4eUlBQejxcYGEh1mB3A6IzI\n14klEonh17zdbUhJDOpyT8XoyvDU3ed79uwpFov5fH5ERIRarS4pKamtrVUqlXZ2du+//z7N\n9xt8TXqdsfr6+s2bNxcXFzs5Oa1cuXL48OFUR9QOE73O+DQGtZFKpVq1alV5ebm3t3d8fPyY\nMWOefFbGoHTMwbhe9yRGl+6ngi8jyqEB4fNgs9nh4eE5OTkQjwkNsrKyvvzyy/Pnz2MYNmvW\nrKioKKojMkUmk61YseLevXsikSgiIqJXr14ymUwqlT51THj79u3s7OyePXv6+/tTFbA56uvr\nV61adevWrUWLFk2fPt3R0bGqqiojI+P06dO5ublubm5VVVV37tyJiYkxnntJZ0zPSKFQ/PLL\nL8a/5uZsQwqY0+XMwazKYGL3+d69ezs6OrLZ7P79+8fExISGho4fP37mzJndu3enOup2vIa9\njs/nDxo0yM/Pb9GiRc7OzlSH0452e53hTAa10YkTJ65fv+7q6rply5ZnLffPoHTMwaxe1y5m\nlW5zwJcRJdCA8DmZMyb09vZm+pQJxt0Y2759e35+vq+v75YtW4KCggIDA6OiosrKyiQSyZNj\nwl69egUGBo4YMYLCgM2RmJiYk5PTs2fPsWPH8vl8b2/vqKiofv36aTSazMzMy5cvy+Xy1tbW\n7t27P7l0Pj0xPSM+n9/m1k9iYqJAINiyZYuTk5NIJAoJCQEApKWltbk6Z0qXaxfjKoPp3eff\neOMNchYfm822t7e3sbGh+b08mUwmEAhet15HEgqFrq6uNG8gkpm9DjCqjRITE+Vy+fvvv9/m\nIYwxBqVjJgb1OtMYV7rbBV9GVEEDQnMRBHH37t2MjIzGxsYuXbrgOG56TNilSxcI+iWzbozp\ndLrt27fr9fqNGzcapgewWKxBgwZlZGQUFRU9OSZ0cHCgKFizkJd9u3btsra23rx5M7kOPkks\nFg8aNCgqKsrS0rK8vLy5ubmhoWHkyJEURmsOaDJqMx2gqqoqMjIyKCjIcAJ5a/zJq3Oadzkz\nMasyAAC2bdumVqvXrFlj/FimV69eZWVl+fn5OI7Tdn7yk8rKyj7++OPS0tLXrdcxTod6HVPa\n6PDhw62trbNmzbKwsGjzo/Pnz9fW1pL3wZmSzuuGcaW7XfBlRBU6Tseioerq6hUrVqxdu/ar\nr7765JNP3nvvvfz8fPDnuqN+fn5paWmbN2827Dlha2s7btw4SkN+acRi8eDBgxlxY0yn02k0\nGjab7erqanycxWJNmDABAEDbvSi0Wm1zc3Obg2VlZcuXL//iiy9wHB81atSTu1wCAKytrSdP\nnpyYmDh69OicnJzi4uJOibd98GX0JMOWMxcuXKiurn7qNqTkljOxsbHGe9XAgUGVAbLd5w2b\n3zK01+Xl5RlWs5NKpXFxcY2NjdSG9CpA1usMyMFtaWlpm+MEQZw7dy4hIYGGf2ERYwwq3WaC\nLyNKoAFh+8jXAAoKCmxtbSdPnhwdHV1VVbVmzRqymj9rTIh0Pi6X6+zsrNVqHz582OZH5KsO\nAwcOLCoqSk1NpSC4Z9PpdAkJCWvXrm3zd9Rw2VdbW2t6hWsMw8i91M6dO/dqYzUPfBk9C3zb\nkMJEKpWSG1qSu88DAIw3pyIxcfd5Rve6zMzM1atXf/755wRBSKXSNWvWZGVl/fjjj1TH9fJB\n1usMIiIiAAAHDhxos2/nyZMnHzx44O7uDsc+TwjyukFTRtuXkJBQVFTk5+e3efPm4ODg6urq\n9PR0rVZ748YNb29vZ2dn47mjbm5u9F+KAGJarTY7O7u0tDQiIsJ4PZKTJ08WFBRs2LChT58+\n5N8zWsnIyMjKymozo9UwKVGhUNTV1Y0ePdrECisajebUqVNarXbMmDGdFbUp8GX0LIakHj16\nVFtb++RSUv7+/v7+/kOHDqUqwtcTQRArVqxIS0uLiopis9lqtTo7O/uPP/4YPny48c2IEydO\n5OXl+fv7h4eHUxhtRzG314lEoszMzKysrIcPHx45ckQulwcEBCxdupTNhnBXZMh6HcnT0zMr\nK6uwsDAnJ8fPz8/KykqpVB45cuSHH37AMGzp0qV03v5bJpPt2bPn+++/T0tLE4lETF/lAUFe\nIjQgbEdeXt7+/fvFYvHmzZutrKzOnj27Z88egiBGjBhRWFjYZkzo7OwMwXuDjNajR4/MzMy8\nvLzCwsK+ffuSN2LPnDlz6NAhGxubadOm0XCREgzDQkNDKyoqTIygpFJpTU1NSEjIUydF6PX6\nnTt3lpaW+vn50eEKA76MTGt3eWE6b6gIKwzDmpubb926heN4QECAj49PZmZmYWHhvXv3AgIC\nLCwsyN3nDx48iGHY4sWL22wDQH8M7XU8Hi8sLCwrKysnJ0epVAYEBKxbt+6p+/KRysrKrKys\nOjPClwi+XgcAwHE8JCREIpHk5+cnJyefPXv20KFDd+7cwTBs9uzZNLzfalBfX798+fL79+8r\nFIrKysqrV6/W19cHBQW1+cVhdJdDkOeGBoTtuHTp0p07dz744AMvL6+bN29u27aNIIh58+bN\nnDnz0aNHDx8+NB4Tenp6Uh3vM70mN8ZwHA8NDZVIJLm5ucnJybdv3z569Ojly5cBAAsWLPD2\n9qY6wKczZwR1586dZ+1lUlhY+N133wkEgpUrV9LkLxl8GZnG3C1nIK4MPXv2vHz5cnZ29rBh\nw6ysrMjKkJ+fn5SUdOPGjZ9++omcPT579mya33TQarUXL148depUWlpaY2Njt27dyOdpDO11\ncrk8KSlJqVQCAHx9fYcMGfKssJm+nZ3h7xETe50JfD6fvPctlUobGhr0er23t/eSJUtofkN8\n79699+7d8/LyWrx48YABAwoKCu7cuVNZWRkaGmrogQzqcvCVbvgyYhY0IHw6qVQqk8lsbW39\n/PxaWlrGjx/f1NS0bt06tVo9derUyZMnAwAePnxYXl6uVCpTU1OHDh1K53nzZt4YA1DcGzPs\nMV1UVFRZWdnU1CQUCufNm0fzPabNGUE967LP3t7e09NzzJgxHh4eVMT+dPBlZBoTr87hu2Ve\nW1vL4/HIqcgsFsve3v7q1as1NTXh4eEM3X3e9M7mjOh1Op0uIyOja9euZGxcLjcnJ0csFotE\nouzs7DZX5MYg2M6Oob2uXWw2OzAw8M0334yKinr77bejo6Ppv8Djrl27rKystm7d2r17d3d3\n94iIiMzMTIlEYtwDmdLl4Cvd8GXEOGhA+BTkrtnnz58PDg62sbHp378/juPJycnp6en9+vVb\nvHgxedoPP/zA5/MXLVrUtWvX0NBQamM2zZwbY4D298by8vLs7e3JgKVS6f/+97+goKCnzjUy\n7DE9YMCAyMjI2bNn+/n5/X979x7V1JU9DvzcPAgPJUJFoSpQEEGKLyLRYAW0PsBHHzN2WK2r\nFcah2lXtqrZr8Our7WpVltOZ6nRqaevUVjpVW8exqyIoqUSLWjQ8kgakgKKFgNhoBKqEJCS/\nP+763d4mEC+K3ntO9ue/hrjWOeVwcvfOOXs/8PEOgNls/vjjjz/55BOTyXT79m2z2TzQCGrU\nqFFMpw0hIG9GXGDXhpSwlHlLS0tubm5JSUloaOjDDz+MEAoPD6+pqamoqIiLi6PPceDVfZ5L\nZ3OBrzqNRrN169aioiLmz1wsFicnJ6elpaWkpFRXV1dVVbksufLy8sDAQJlMRkY7O+xWHXcU\nRfn5+bE7OQnZoUOHFi1axLT6oNvJusSEuCw5wrZuROKMsAMBYR/YXbOZm+4nTpy4ePHin/70\nJ/pcaGFh4bFjx+Li4jIzMxMSEngd751xSYwhYefGKisrN2/e3NraOn36dKPRuGHDhqampu7u\n7qSkpP7+iUQiCQkJCQkJEXi5ApPJ9Prrr9fU1AwZMiQtLS0+Pt5kMrW0tHiIoAT42MdG3oy4\nw6sNKUkpc4TQoUOHqqqqbt++rdFoGhoaYmJihg4dOnbs2GPHjtXX16enp9PfHOLSfR5x7mwu\nzFXX29ubn59fUFBw69YtlUr11FNPsdvDisVi+j4hExMqlUqRSFRaWvruu+9qtdrHH3+c3sP5\nncVgwWjVkcRsNu/evfuLL76gm0gnJCSwY4k+Y0IslhxhWzcicUbYgYDwdzx0ze7s7CwvLzeb\nzSEhIUeOHNm3bx9FUS+99JIwL+674JIYQwgJOTdGcG26nTt31tfXx8XFbd++XaFQTJo0KT09\n3Wg06nS6PiMooT32uSNvRgPi5+c3btw4vkfBCUkpc4RQTEyMWq0eMWLEk08+WVpaeuTIke7u\nbqVS2d3drdVqAwIC4uLi+B7jwHDvbC7AVbdz5061Wu3r67tmzZqlS5cGBwe7v4cdE9KVZvbv\n3+90OhcsWDB58uQHP2ZAErPZvHbtWoPB0NHR0dra2t3d3dHRMXfuXHZ1a/am98gjj7g0MRYs\nwrZuROKMsAMB4W+MRmNubm5zc3N7e3t6ejqzLmkREREXLlyora3VaDR0V/qsrKzU1FSeBntn\nd5EYQwgJNjc20Np0uOjt7d25c6fD4XjrrbfY6XOVSqXVai9evOgeQQntsc8FeTMiDKkpc4SQ\nj49PQEBASUnJY489tnLlyhs3bhQVFX333XdKpbKxsVGn082ZM8e9k7tgOZ3OvXv3IoRycnJc\n+nYOGzZMrVZbLJb09HSeRncHZ8+eLSgokEgk77zzjkKh8PBOmUw2c+bMhoaG2tray5cvi0Si\nrKysZ5555oENFZAqPz+/trY2Kipq1apVU6ZMqa+vb21tdW/TQm96oaGhAs9Lkrd1kzcjrEFA\n+Jve3t5Tp07pdLru7u7ExESXW2cikeixxx6TSCQ2my0qKionJ0fIWQoiE2Pca9NhxG6379+/\nXyKRvPjii+zXRSKRr6/v2bNn3W/fCRzuM+J+VRVH5O0MLS0t5eXlUVFR9K8sOjpaq9X+8MMP\nTz75ZGpq6pQpU2pra9Vqtc1ms9lsnZ2dAr/vzUZR1MmTJ7u6uqZMmeJyFKWrq6u4uFgmky1e\nvJiv4Xn24YcfXrt2LTMz0/0hu7m5+cKFC1arNSgoiH7Fx8dn1qxZ4eHh4eHhOTk5KpXqgY8X\n4M1ut3d3dzOfKfRpr/z8fPoUYmRkZFRUVGpqan+31n19fWNiYngaOyfkbd3kzQh3EBD+5o5d\ns8VicUJCwty5c1NSUgReUIuwxBiNe206jIjFYo1G09nZqVKphg0bxv5RR0dHaWlpUlKSwWAI\nDQ0VbM8MF1jP6C6uquKFsJ3BZrOtX79erVZrtdqIiIjhw4dTFBUREVFYWNjT06NQKIYPHz5/\n/vzg4OC6urqenp7p06fjdfkE387mn376qdVqXb58OfukaF1dXV5eXkFBwffff19cXFxfX5+U\nlEQ/xFMUFR4ePmHCBJdNQ2iIrIzPZVJCru5ot9vz8vIKCwvpPCNz2uvatWsZGRnsY9XCL8nb\nH8K2bkTijHAHAeHvcOyaLWTkJcZoZrPZYrHMmTOHS206foc6UHa7vbq6urm5OS0tjZ2D+Oab\nbxoaGt58882EhAQhd/t1h++MCL6qSuTOIBaLZ86c2dXVVVFRUVJS0tbWFhsbO2bMmKtXr6rV\n6hkzZsjlcoqixo4dO2/evOjo6IULF/I9ZE8sFsvXX3+dn58fEhJCP5Tj29n8xIkTnZ2d48aN\ni46ORghZLJY9e/bs2rXr+vXro0aNogtNNTc3NzY2CvmsjQsiGzhxmZSQqzvS0eC5c+dsNhud\nhWROe92+fTspKYk9ZhxjQvK2bvJmRAYICF1x6ZotWEQmxm7cuLFz584PPvigrKwsOTlZLpdz\nqU3H96gHYNy4cZWVlXV1dY2NjZMnT6ZLGRUVFe3bt2/YsGHPPfdceHg432McGHxnNNCrqrg8\n9hG5M9B8fX2nTZs2derUy5cvV1RUFBcXUxS1ePHi48ePX758mQk2fHx8BLvqaHS/wTNnzty6\ndctqtU6bNk0sFmPd2byiokKv1zudzgsXLuzYsaO6uloul7/88surVq1KSUlRqVRqtbq1tfXR\nRx8dOXIk34PlhIwGTi64TEqw1R2ZaHDIkCHvvPMO3beWfdrL/RQiXtWtydu6yZsRMSAg7AO+\n65KwxBhCqK2tLTc3t76+PjAwcNGiRdHR0f7+/ois2nTMM19tbW1hYWFFRcXXX3+t0WgQQi++\n+KIAz1XeEdYz4n5VFaPHPvJ2BhcPPfTQ3LlzR44cWVtbW15efu7cudGjR//444+RkZFYXDvp\n6elZt25da2vr2LFjt27dmpGRwRwQxbSzeUxMzI0bN3766Se9Xk/fzE9JSdm0aRNT6FUul//4\n44/t7e3R0dHC/wuiEdDAyR2XSQmzuqNLNEi3BKMx29qVK1fcTyFiVN2avK2bvBkRAwLCvmG6\nLklKjCGErFbr+vXr29vb4+Litm7dqlAo6GiQRlJtOuaZ7+LFi1evXv3111/9/f3/8pe/CPyZ\nzwOMZtTb26vVah9++GH6b5z7VVWMHvsI2xn6RFFUVFRUenq63W6vqqpqb29HCNXX1y9cuNDl\nNrgAHT58uKysbMyYMdu3b2dKrTBw7GxOUZRSqYyNjZXL5VOnTl2xYkVGRga7k5Pdbt+7d6/F\nYsnIyBg9ejSPQ+WOgAZO7jhOSmjVHZloUCqVbtu2jT6ZzOb5KQ6X6tbkbd3kzYgYEBD2C9N1\niWNizG63OxwO94e248ePnzhxIjQ0NC8vjzmYp9PpiKX3kAAAGKJJREFUjh8/bjQao6KiZDIZ\nMbXpmGe+qVOnzpkzJzs726XOLXawmJFGo9m6dWtRURHzxCAWi5OTk7lcVcXrsQ/HneEuSKXS\nKVOmzJw5s62tra2t7Yknnpg4cSLfg7qzTz75xGw2r1q1KjIysr/34NjZPCwsLDExMSEhQS6X\nu/zowIEDWq02KChoxYoVLk01BIWwBk60u5uUcDDRIELI4XAMHTrUpU8YDdPMvgvytm7yZkQG\nCAg9wXRd4pUYo3f2srKyGTNmuMSEhYWFTU1NmZmZ9DcwLS0teXl5Bw4c+Omnn86fP19bWzt7\n9mxcatNxJJFIQkJCQkJC8LoG6YFgZ9Tb25ufn19QUHDr1i2VSvXUU0+xuyaKxWIuV1UF/tjn\nAq+d4V4EBgampaVNmzYtJSWF77Fwsn///u7u7qysrICAAJcflZSU0IVYeBnYfVJUVPTZZ58h\nhNauXSvkbzuJrIyP+6TYJ0Wff/55g8FgMBhsNps3xITEbN3kzYgAhAeELq1pEEItLS0mk8n9\nTE5/MF2XGG2CVqv12LFjFy9eTE5OdqnP0dLSotPpxGJxVFRUYWHhe++9FxwcvGHDhqysrLKy\nskuXLk2dOpV5iBcI9yWHBr7qwAOwc+dOtVrt6+u7Zs2apUuXsovjM0i6qkrDaGe4dxj9xZ05\nc8ZkMiUmJro0NHI6nfn5+d9+++3ChQuF2bdzoHp6ej766KP9+/cjhJYtWzZv3jy+R+QJ1pXx\n+/wwQvhPin1vUKVSxcTEnD59mmNMiNFpLxfkbd3kzQh3JAeELq1pEEI3b95ct25dSUmJUql0\nP8FCGFz+2CQSycyZM1Uq1ZgxY9rb2/38/Jg8ZVRUlMFg0Ov1R48evXLlyrJly1auXBkcHCyR\nSIqKirq6uubMmSOoquvuSw552arDxdmzZwsKCiQSyTvvvKNQKDy8k6SrqjRcdgavYrPZtFpt\nc3Pz7Nmz2ecnv/nmG7VaHRUVJdgG9Nz19vYWFhbm5eXV1NTIZLI1a9ZkZGTwPajfENbZvM8P\nI9wnhRA6fvz44cOH2VVkwsLCOMaE2J32ckHe1k3ejLBGbEDo3poGIfTJJ58YDIbY2NgFCxYI\n7QDb/YBLYkwikcjlcrqgaG1tLXN2VCKRzJ49OyYmZsaMGTk5OfHx8fRmceTIEY1GExQU9Oc/\n/1k45SL6XHII/1VXV1f30EMP0f/nW1pa/v73vysUCuyaPbr48MMPr127lpmZ6f580NzcfOHC\nBavVyny/5OPjQ8xVVRouO4P3iIqKqqqqamxsNBgM48ePDwwMtFgsX3311RdffEFR1Kuvvhoa\nGsr3GO+VSCQ6deqUXq9XqVS5ubmCKsVEWGfzPj+McJ8ULTo62mq1Zmdns2uKcowJcTzt5YK8\nrZu8GeGLzIDQvTUNnRjbtWuXXC7ftm0bu9YZ2TBKjEmlUq1Wq9PpmpqamJhQJBKNGjVqzJgx\nUqkUIeR0Ov/73//Sl09Wr17toQDDA9ZnNyQCVl1lZeXmzZtbW1unT59uNBo3bNjQ1NTU3d2d\nlJTE99Duyaeffmq1WpcvX84+KVpXV5eXl1dQUPD9998XFxfX19cnJSXRyXXCrqoiYe8MROYg\nPBOJRNOmTaP7DRYWFhYXF+/bt0+v11MUlZ2dnZaWxvcAB4dCoUhJSVmwYIGguncS1tm8zw8j\nREq5f4qiJk+e7H4anEtMSAYhb913h7wZYYrAgNC9NQ2TGGtvb09PT8drp7j3O2m4JMbos6MG\ng8ElJmRUVVX961//KikpoSgqKysrPT2dr6G66LMbEtarjjFkyJDKysqqqqrLly9/9dVXZrN5\n4sSJr776Ko5fdbKdOHGis7Nz3LhxdLFyi8WyZ8+eXbt20dU74uPjTSZTc3NzY2MjLkVE74Iw\ndwZScxB35OvrSz8PtbS0dHR0OByOsWPHvvLKK4Q9JAkqFETEdTbn0poPu0lx5FUxoQC37ntB\n3oxwRFpA2GdrGiYx1t3dnZiY2Gfte6PRKLQPKuR9d9I8xIQ3b97ctm3bpUuXQkND//rXvwrn\nIam/bkj4rjo2uqoKXU/FYrFMnDhx06ZNHr6rEf6MGBUVFXq93ul0XrhwYceOHdXV1XK5/OWX\nX161alVKSopKpVKr1a2trY8++ujIkSP5HqwXGWgOAqMld0cSiWTSpElPP/10enp6Zmbm4sWL\nXWrMgMFFWGdz7q35MJrUgHhPTAjAoCMqIOyvNQ07MXbjxo358+e7fPWk0Wg2b94cEBDAPkTB\nO1LvpHnWX0zo6+urUqnGjx//0ksvCechyUM3JExXHXJr1G42m48cOWKxWBBCcXFxjz32WH+n\niQQ7I3cxMTE3btz46aef9Ho9HbSnpKRs2rQpLi6OfoNcLv/xxx/b29ujo6OFPx2SDCgHgdGS\n446iKD8/PzJqigoZYZ3NB6U1n9AmdRcgJgTg7pATEHpuTcNsgi0tLb/88su0adPYm2BFRUV1\ndXVsbKxwrrmTeifNhd1uP3HixLfffnvu3LnOzs7Ro0dLJJL+YkJ/f/8xY8YI527DHbshYbfq\nUF+N2n18fAwGw/Dhw4cMGVJdXe2hT7EwZ9QniqKUSmVsbKxcLp86deqKFSsyMjLYf1B2u33v\n3r0WiyUjI2P06NE8DrU/BF+0456DwGjJAUEhrLO5F7bm84CJCSdMmAA7AwAcERIQcmlNw2yC\ner3eZROMj4+fNGmScC4LEXwnja2trW39+vUlJSVNTU2XLl06d+7cyZMnY2Njhw8ffsf7hLzj\n2A0Jo1XXX6N2sVicnJyclpaWkpLCdGlnx4Tl5eWBgYEymUxoM7qjsLCwxMTEhIQE96PXBw4c\n0Gq1QUFBK1asYLcBEAiyL9pxz0Fgt+SAEBAWPt1jaz5hTuoehYWF0Sf/+R5Iv0wmU35+/uef\nf07/4nC8tOmiz/w+34MCA0BIQMixNY2HTTAkJITPCbCQfSeN0dHRsW7dura2trCwsCVLliiV\nyp6enqamppMnTz766KMjRoxgx4Th4eERERF8D/l3uHdDwmLVIY+N2sVisVgsZndpv3r1qlKp\nFIlEpaWl7777rlarffzxxyUSiaBmdNeKioroSrZr164V2sKjDeiiHUbbAo17DgIJ7I8ICB95\nnc3vpTWfYCd174YOHcr3EPp18+bN11577cKFC11dXVevXj116tTNmzcVCoVLWI7R1u0hv89+\nG0Yz8kKEBITcW9MIPDFG5J20Pu3Zs0en040bN+5vf/vbhAkTxo0b9/jjj0ul0srKyvPnz8+d\nO1cmk9ExYVhYmADvuA+oG5LAVx3i3KidHRPSt7z279/vdDoXLFgwefLkBzng+6Snp+ejjz7a\nv38/QmjZsmXz5s3je0R9437RDq9tgcE9B8H3SPsF+XJhIq+z+b205hPspMj28ccf19TUREdH\nr169eurUqQ0NDXq93iXthdHWfcf8Pv02jGbknQgJCAfUmkawiTEi76T1Z8eOHVardcOGDcxm\ngRCKj483Go319fUikYietUQiYX/ICcdAuyEJdtXRuDdql8lkM2fObGhoqK2tvXz5skgkysrK\neuaZZ/gY9WDq7e0tLCzMy8urqamRyWRr1qzJyMjge1C/can0gzhftMNrW3CHaQ6CY74cQcr8\ngSOvs/m9tOYT7KTItmvXrsDAwHfffTciIiIyMjItLa2yslKn07FjQoy2bi75fYTVjLwTIQGh\nBx5iQkElxsi7k+aB0+ncu3cvQignJ8flgtawYcPUarXFYhFOm8GB8hwTCmrVMQbUqN3Hx2fW\nrFnh4eHh4eE5OTlCvqfBnUgkOnXqlF6vV6lUubm5gvrEcq/0gzhftMNoW+gPdjkIjvlyBClz\nPnhVZ3MiJ0WAQ4cOLVq0iPl1+Pr6zpgxwyUmxGjr5pjfx2hG3on8gBD1HxMKKjFG3p00DyiK\nOnnyZFdX15QpU9g7CEKoq6uruLhYJpMtXryYr+HdOw+/O0GtOsZAG7VTFBUeHj5hwgSmGwoB\nFApFSkrKggULhPONTX+VftBALtrhsi14gFcOgmO+HEHKXGCIDJ+InBSOzGbz7t27v/jiC61W\n29nZmZCQwE4D9RkTYrF1Dyi/j8WMvJZXBIQIhz2RsDtpd2S1Wqurq69cuTJr1iz2JnL48OG6\nuroJEybMnDmTx+HdO+EvORfQqB0hJJxQkOah0g8i4qIddxjlIDjmyxGkzIUHu32bCyInhRez\n2bx27VqDwdDR0dHa2trd3d3R0TF37lx2JQh2TPjII4+MGTOGxwG76+joqK6u/uWXX0aMGMEe\nNvH5fe/hLQEhEnxrGsLupLH1WV45JiamsrKysbGxpqZm4sSJAQEBTqezsLDwyy+/pChq9erV\n7pdtsCPwJccGjdoFiGOlH4TtRTsiDfQ8PKTMhYbI8AmjDyMi5efn19bWRkVFrVq1asqUKfX1\n9a2trdevX3fJ5tMxYWhoqKDulTgcji+//DIvL+/kyZMajaasrEyhULCLuBKf3/cSXhQQIhxa\n0/QJxztpjP7KK4vF4unTp+t0uvr6+iNHjpw5c+bAgQOnT59GCGVnZxOzfeCy5Aho1E4e7pV+\nEIYX7QjQZ8oc8uUEIDJ8wuXDCGt2u727u9vHx4d5xWQy+fn55efn01VkIiMjo6KiUlNT+zvh\n5evrGxMTw8fY+2a327dv315cXOxwOEJDQymKMplMOp1u3rx5TOznDfl9b0A5nU6+xwA4qays\n3LJli81mW7JkyQsvvMD3cLj65z//qVaro6Ojly5deuvWrc8//9xkMqWlpa1Zs4aiKIvF8p//\n/Ke4uLinpwchFBwcvHz5cmKiQZLs27dv3759QUFBu3fvlkqlfA/HKyxdurSrq+u9995jmpEi\nhOrq6nbv3l1fX0//p0KheP311wMCAuj/dDqdp0+fbm5uVqlUkZGRD37MXsLhcOzbt+/QoUM2\nmw0hNGrUqM2bN4eFhdE/PXTo0GeffTZ27Ni8vDz2o+GePXv+97//qVSq//u//+Nn3GAg6LJA\nfI8CYIMuDXj9+vW33357yJAhCCGj0bh+/XqFQlFdXb1gwYIlS5YwbzabzevXrzcajXPmzFm9\nerUwb/0wxQ79/f3Xrl2rVCpv3769cePGxsbGN954g31upaOj44033rh06ZJIJAoPD+/o6DCb\nzQih7Ozsp59+mr8ZgAHwrm8IsYbpORbP5ZWlUmliYuITTzwxffr0RYsWLVu2TJh9wL2c8Bu1\nE2mglX4QVhft8HXHlDnky8kg5M7mQGiY2Mlms6lUKnoH7u3tPXXqlE6nu337dlJSEvu2hfAr\nQbBL32/ZsiUhIQEhJJVKxWJxeXl5amrqww8/zLzZ19c3LS3NarU2NTVdv37dYrEEBwevWrVq\n/vz5/M0ADAwEhDjB8RwLl/LKEonkoYceGjZsmNA2RIBLo3ZSkVfph2O7dsF256MfksrLy/39\n/XNzc1euXJmRkVFdXX358uXx48fTT0gikcgbzsMDAGgubcMeeeQR+nUm6uvq6nKvIiPkShAu\nM2IXOzx27NjPP/8sEon+/e9/Hz161Gw2jx8/XiwWSyQSyO9jDQJCzGBxDeAuyivzOFrQJ4E3\navcG5FX64diuXbDd+binzCFfDoCX8BA7IVbUd+XKFfcqMoKtBOFwOMrKyoxGY0BAwPz585n0\nXEVFxaeffmq321tbW+VyeUtLS01NTWVlZWpqKp3ag/w+viAgxI/Az7EQUF4ZIGE3avcShFX6\n4d6uXZjd+QaaMpfJZJAvB4BszLYglUq3bdvGvu/N8Hw6VJjdiUUiUXJyclNT08WLF8+cOaNU\nKgMDA/V6/datW+12e2pq6pYtW5588smkpKQffvihra2tu7vbcylsIHwQEIJBhnV5ZcAmwEbt\nXigsLCwxMTEhIUEul7v86MCBA1qtNigoaMWKFS4dDgSIe7t2YXbnu7uUOeTLASAVEw0ihBwO\nx9ChQ/sr7iD8G4PuXGJCf3//HTt29PT0ZGRkrF69mi6XFRwcHBwcfPbs2fb29j/84Q98Dxnc\nEwgIwaDBvbwycAehoGBhV+mHe7t2JMjufJAyBwAw2EcGnn/+eYPB4LngH+4x4fnz53t7ezMy\nMlauXMkeuc1mO378uEgkgi5HuIOAEAwOo9GYm5vb3Nx87dq1jIwMl2aJeG2CAAgZjpV+Btqu\nXZggZQ4AQG4HyFUqFZci8EKuItMfZtMzGo1SqfSVV15xOaty8ODBhoaGSZMmpaWl8TRGMDhE\nd34LABz4+/v7+/ur1WqTycRuvYUQCgoK2rp166hRo9Rq9fvvvw+tLwG4O729vd9++21OTs6x\nY8dkMtnrr7/+xz/+ke9B/U5HR8cPP/xQVVXV29vLfp2iKLqlW0NDg8s/oW9F3r59+4EN8l5I\nJJJ169YplUqz2fzBBx/Q0aBLypx+zrNarfwNEwBwH6nVapfrxImJiRs2bJBKpQcPHqSTX32i\nH4dWrFihVCof4HjvCbPp2Wy2jRs3Go1G5kelpaVHjx6lKCozM5PHEYJBAd8QgsGBb3llAHAh\n5Eo/Dofjyy+/zMvLO3nypEajKSsrUygU7ApYVqu1urr6ypUrs2bNYn9JePjw4bq6ugkTJuDS\njwFS5gB4uejoaKvVmp2dzS4uxbFZtDCryHjW54F5jUazc+dOp9MJ3XTIAAEhGDSYllcGACPC\nrPRzx17tiKx27czjUXNz89mzZ+nHI/pHpaWlBQUFFEW9+uqrGM0IAMAdRVGTJ08OCgpyeZ1j\nTIgjl5iwt7f3448/djgczz77LNweJAMEhGAw4VheGQC8CCoURNx6tSPi2rVDyhwA4M5LYkKd\nTud0Op999tlnn32W73GBwQEBIRhkUEUGAO/BvVc7Iq5dO6TMAQDuvCEmNBqNEA0ShoIKH+B+\nMJvN69evNxqNc+bMWb16NcSEAJDHQ6/2Dz/88LvvvktJSTEYDGKxODk5OTMzkyk3ZbFYmpub\npVJpREQE7psDuxcZQggekgAACKHKysotW7bYbLYlS5a88MILfA9nMNnt9rNnz8IhCMJAlVFw\nX7Ari54/f57v4QAA7iOpVMq0lUcIVVRUHDt2zGq1lpWVyWSy1tbWr7/+et26dRaLhX4D3YM0\nMjIS92gQsUrwIYgGAQD/H1N3VCqV8j2WQSaRSCAaJA98QwjuI7PZfObMmYULF/I9EADAfcF8\nP8bkgPR6/dtvv93T05OamvrSSy/5+/s3Nja+9dZbHR0dixYtevHFF/ke8n0BKXMAgLu2tja6\n4w4AAgcBIeiX3W7v6ekJCAhgv9jS0mK1WtlnwwAA3owdEz733HO7d+92786n0Wj+8Y9/yOXy\ngoICfkcLAAAAABdwZBT0jX7I27hx46+//sq8ePPmzc2bN2/atKm5uZnHsQEAhAN6tQMAAABY\ng4AQ9IFJ+be3t5tMJub1goICk8kUGRk5YsQIHocHABAU9j06qVS6aNEil8uBJ06cQAjFx8fz\nMz4AAAAA9A8CQuDKpXJgZGQkQshkMjmdTq1WO3LkyI0bN7ILSAAAABMT2my2jRs3Go1G5kel\npaVHjx6lKCozM5PHEQIAAACgTxAQgt/ps4680Wh87bXX3n//fZFING/ePD8/P76HCQAQHPbZ\nUbrrDEKI6dWelZUVFxfH9xgBAAAA4AoCQvAbJhqUSqVvv/02UznG39/f399frVZfv35dLBb3\n+W/ZXwgAALyTS0x48ODBHTt20L3an376ab5HBwAAAIA+iN98802+xwAEgd1e2eFwDB06dNKk\nSfSP/Pz8ZsyYcf78+a6urhs3bsyfP18k+l0qQaPRbN68OSAgIDY2loehAwAEQyQSJScnNzU1\nXbx4UafTOZ1O6M4HAAAACBl8QwgQ+v1J0eXLl0ul0oMHD+7du5d5A9Nk7Oeff37//fddupVc\nv37d4XCw65ECALwW9GoHAAAAMALfEALXe4MqlSomJub06dMGg8Fms7l/T6jX600mk1KpZAoJ\nxsfHT5o0afbs2fxNAgAgIPT3hOHh4QsXLuR7LAAAAADwBAJCgI4fP3748GF2FZmwsDDPMaFO\np3OJCUNCQnibAABAeEQiUUREBN+jAAAAAMAdQEAIUHR0tNVqzc7OZqrIoLuKCQEAAAAAAAB4\ngYAQIIqiJk+eHBQU5PI6l5hw7Nixo0aNeuBDBgAAAAAAAAwCCAiBJ55jwpEjR86aNYvfEQIA\nAAAAAADuGuVSLhIAd5WVlVu2bLHZbEuWLHnhhRf4Hg4AAAAAAABgcMA3hODO+vueEAAAAAAA\nAIA16EMIOElMTNywYYNUKpVKpXyPBQAAAAAAADA44MgoGIC2trawsDC+RwEAAAAAAAAYHBAQ\nAgAAAAAAAICXgiOjAAAAAAAAAOClICAEAAAAAAAAAC8FASEAAAAAAAAAeCkICAEAAAAAAADA\nS0FACAAAAAAAAABeCgJCAAAAAAAAAPBS/w/AvTz/mxwB4wAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAAFoCAIAAADIFpV9AAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdeXxM9/7H8e+ZyUxWkkhEJEiIXEXEUlsrsbSWJvZ9v/aqpdfWlirFtfR3\nS2mrtqLWtraqXYOiwrXFWjQIEdmsiezr5Pz+mN65uSjBSU4y83o++seZ7/nO+b5H++34zFm+\nkizLAgAAAABgeTRqBwAAAAAAqIOCEAAAAAAsFAUhAAAAAFgoCkIAAAAAsFAUhAAAAABgoSgI\nAQAAAMBCWakdQGUJCQlnz55VOwUAAAAAqMDSC8IbN24sX748ICBA7SAAAAAAUKQ2b95s6QWh\nEOK11157//331U4BAAAAAEVq79693EMIAAAAABaKghAAAAAALFSxu2T0wYMHP/7449mzZ5OS\nkhwdHWvWrDlq1ChbW1vj3ry8vG3btoWEhNy/f9/V1bV169ZdunTRaP5b1j63AwAAAADAqHhV\nSlFRUWPGjAkNDa1Ro0aXLl0aNWoUExOTnp5u6rBixYrVq1dXrlx5yJAhvr6+a9eu/fbbb/Mf\n4bkdAAAAAKDgYmJiJEnq1KmT2kEKRTE6Q5iXlzd37txSpUrNmDGjXLlyT3aIjo7evXt3s2bN\nJkyYIIRo27atTqfbu3dvUFCQl5dXQToAAAAAUEtYWNiiRYt+++23+Ph4nU7n7e3dpk2bsWPH\nenp6qh3NchWjM4RhYWG3b98eMGBAuXLlMjIysrOzH+sQGhoqy3L79u1NLR06dJBl+ciRIwXs\nAAAAAKDoybI8ceLEBg0arFmzxs3NrU+fPh07dszMzJw3b97f/va3LVu2qB3wWdzc3EJDQz/7\n7DO1gxSKYnSG8MyZM5Ik2dnZjRkzJjIyUpKkGjVqDBs2rEqVKsYOERERWq3Wx8fH9JbKlSvr\n9fobN24UsAMAAACAojdz5szPP/+8YsWKW7Zsadiwoal9zZo1w4cP79Wr1/79+1u0aKFiwmfQ\n6/VmvG55MTpDGBcXp9Vq58yZ4+Hh8eGHHw4YMCAyMnLy5Ml37twxdkhISHB0dNRqtaa3SJLk\n7Oz88OHDAnYw+sc//tHxP1atWlX4nwwAAACwXLdu3Zo5c6Zer9+zZ0/+alAIMWDAgIULFxoM\nhhEjRuTl5eXfdeLEiR49enh4eFhbW5cvX75169abNm3K3+H48eNdu3Z1d3fX6/UeHh79+vUL\nDw/P32H58uWdOnWqXLmyra2tk5NTs2bNNm/enL/D+fPnJUkaOHBgdHR0nz59XF1dbW1tGzRo\nsGfPnvzdnnoP4XMPXlIUo4IwIyMjNze3Zs2aEydODAwM7NKly6RJk9LT03/66Sdjh6ysLJ1O\n99i79Hp9VlZWATsYpaWlpfxHZmZm4XwaAAAAAEIIsWrVqtzc3F69evn5+T25d8iQId7e3lev\nXv3tt99MjUuXLm3SpMmOHTsCAgImTJjQtm3be/fuLV682NRh+fLlAQEBoaGhwcHB48ePDwwM\n3Lx5c/369U+ePGnqM3z48Dt37rRo0WLs2LFdu3YNDw/v0aPH559//liA6OjoBg0aXL16tUeP\nHm3btj137lz79u1DQ0Of/aEKePDirxhdMmptbS2EyH+muE6dOs7OzpcuXTJ1yMjIeOxd2dnZ\nNjY2BexgtHLlStP26dOnd+3apdAnAAAAAPC4o0ePCiHatGnz1L0ajaZly5YrVqw4duyYsRa4\nePHi6NGjnZycjh49Wr16dVPPmJgY48Yff/wxatSoVq1a/fzzz6YF6i5evNikSZN33333woUL\nxpaoqKiKFSua3p6ent6sWbPp06cPGzbM2dnZ1H7w4MEpU6b885//lCRJCLF+/fr+/fvPnTs3\nMDDwGR+qgAcv/orRGUIXFxchxGN/fE5OTqmpqcbtMmXKJCUlGQwG015ZlhMTE41vLEgHAAAA\nAEUsPj5eCFGpUqW/6mDcFRcXZ3y5ZMkSg8Ewffr0/NWgEKJChQrGjcWLF+fk5EyePDktLe3B\nf3h4eLz99tsXL16MiooydjMWbLIsJyUl3b17Nzk5uXPnzhkZGY+d/atUqdK0adOM1aAQom/f\nvo6OjqdOnXr2hyrgwYu/YnSG0NfX9/Dhww8ePDC1yLL88OFDJycn40sfH5+wsLCbN2/6+voa\nWyIjI7Ozs01PkXluBwAAAABFTJZlIYSp4vorpg4nTpwQQgQFBf1Vz+PHjwshmjVr9tS98fHx\nxjXnzp07N3369EOHDqWkpOTvEBsbm/9l3bp1raz+WxZJklShQoXr168/O20BD178FaOC8I03\n3li1atUvv/zStGlTjUYjhDh69GhycvJbb71l7BAYGLhp06adO3eOHz/e2LJz505Jkkwnc5/b\nAQAAAEARK1++fHh4eFRUVJMmTZ7a4fbt28ZuxpePHj0SQjxjcULjMyN37Nhhul40P+N5xbNn\nzwYEBNjY2IwYMaJ27drGZ08eOHDgiy++eOwJI6bzTyZWVlb5rzp8UsEPXvwVo4LQ1dW1V69e\n69evnzx5cuPGje/fv793715XV9euXbsaO1SqVCk4OHj37t05OTl+fn5XrlwJDQ195513vL29\nC9gBAAAAQBELCAg4dOhQSEhInz59ntybl5d34MABIYSpXDRWaLGxsVWrVn3qAR0dHYUQ7u7u\nDRo0+KtB58+fn5GRsWPHjpYtW5oaz5w58wqfo4gOXsSK0T2EQogePXq8//77aWlp69atO3z4\ncGBg4Ny5c43/vo2GDRv297///caNGytXrrx27Vr//v2HDx+e/wjP7QAAAACgKA0cOFCr1W7Y\nsOHy5ctP7l25cuWtW7eqVatmugS0cePGQoi9e/f+1QGNHTZs2PCMQW/dumXqaXLw4MEXTl/k\nBy9qsmU7derUp59+qnYKAAAAwJxNnTpVCFGxYsVTp07lb1+7dq21tbVWq/31119NjRcvXtRq\ntWXKlPnjjz/yd46OjjZu/P7771ZWVjqdLv+7ZFlOSUnZsGGDcbt///5CiK1bt5r2fv/998YK\naMGCBcaWc+fOCSEGDBjwWNratWtrtdr84wohOnbsaGopyMFlWf7ss8/atGmze/fu5/3xqCYo\nKKgYXTIKAAAAwCxNnz49LS1t/vz5jRo1atSoUc2aNbOzs0+cOHH9+nVbW9sff/zR9NwQIUSt\nWrUWLlw4evToOnXqdOjQwdfX9+HDh2FhYaVKlTp06JAQws/Pb9myZcOHD2/ZsmXr1q3r1q1r\nMBjCw8MPHjzo7e3ds2dPIcTo0aN/+OGH3r179+zZ08vL6/z583v27Onevbsiy8cX8ODnz58P\nCQnp3Lnzq49YeCgIAQAAABQujUbzxRdf9OzZc9GiRUeOHDl37pxOp/P29p4wYcLYsWNN60mY\njBgxwt/ff968eYcPH962bZurq6u/v//QoUNNHQYPHlyvXr358+cfPnz40KFD9vb2Hh4e/fv3\nN1aDQoiGDRseOHDg008/3bZtmxCifv36+/bti4uLU6QgLODBr127ptPpWrdu/eojFh5JlmW1\nM6jJuDD9jBkz1A4CAAAAwHwkJCSULVv2vffeW7RokdpZ/lJwcHDxeqgMAAAAAJiBQ4cOWVtb\nT5kyRe0gz0FBCAAAAAAK69q1a3p6umlxxWKLghAAAAAALBQFIQAAAABYKApCAAAAALBQFIQA\nAAAAYKEoCAEAAAAUdzExMZIkderU6bk9XV1dvb29Cz+RmaAgBAAAAKCasLCwQYMGValSxdbW\ntnTp0v7+/h9++GFsbKzauSwFBSEAAAAAFciyPHHixAYNGqxZs8bNza1Pnz4dO3bMzMycN2/e\n3/72ty1btqgd0CJYqR0AAAAAgCWaOXPm559/XrFixS1btjRs2NDUvmbNmuHDh/fq1Wv//v0t\nWrRQMaEl4AwhAAAAgKJ269atmTNn6vX6PXv25K8GhRADBgxYuHChwWAYMWJEXl7eMw6Sl5f3\n5ZdfVq9e3cbGpmLFiuPGjUtNTS3I6Hv37m3VqpWHh4e1tXX58uUDAgLmzp2bv8Px48e7du3q\n7u6u1+s9PDz69esXHh7+2EFOnDjRo0cP00Fat269adOmgn36YoSCEAAAAEBRW7VqVW5ubq9e\nvfz8/J7cO2TIEG9v76tXr/7222/POMiIESPGjRuXkZExevToXr167dixIygoyGAwPHvotWvX\nBgcHX7p0qUOHDhMnTuzUqZNGo1mxYoWpw/LlywMCAkJDQ4ODg8ePHx8YGLh58+b69eufPHnS\n1Gfp0qVNmjTZsWNHQEDAhAkT2rZte+/evcWLF7/gH4P6uGQUAAAAQFE7evSoEKJNmzZP3avR\naFq2bLlixYpjx4791VWjhw8f/vbbb2vXrn3s2DF7e3shxIwZMwICAh49euTo6PiMoZctW6bV\nas+cOePh4WFqTExMNG788ccfo0aNatWq1c8//2xra2tsvHjxYpMmTd59990LFy4YX44ePdrJ\nyeno0aPVq1c3HSQmJqbgfwLFBGcIAQAAABS1+Ph4IUSlSpX+qoNxV1xc3F91WL16tRBi+vTp\nxmpQCGFnZzdr1qyCjK7Vaq2s/ufcmLOzs3Fj8eLFOTk5kydPTktLe/AfHh4eb7/99sWLF6Oi\nooQQS5YsMRgM06dPz18NCiEqVKhQkNGLFc4QAgAAAChqsiwLISRJena3Z3Q4d+6cEKJp06b5\nGx97+VS9e/f+97//XbNmzZ49ezZv3jwgIMDd3d209/jx40KIZs2aPfW98fHxXl5eJ06cEEIE\nBQU9d6zij4IQAAAAQFErX758eHh4VFRUkyZNntrh9u3bxm5/dYSkpCQrK6syZcrkb3RwcDCd\nMPwro0ePdnZ2XrRo0ZIlSxYtWiSEeOONN+bOnWtM8vDhQyHEjh07TNeL5mc8Jfjo0SMhhKen\n57MHKhEoCAEAAAAUtYCAgEOHDoWEhPTp0+fJvXl5eQcOHBBC/FW5KIRwdHSMiopKSEjIXxOm\npqampaW5uro+e/S+ffv27ds3OTn5+PHj27ZtW7lyZVBQ0OXLlytWrGi8/9Dd3b1BgwZ/9XYn\nJychRGxsbNWqVZ/3QYs77iEEAAAAUNQGDhyo1Wo3bNhw+fLlJ/euXLny1q1b1apV+6tLN4UQ\ndevWFUIcOXIkf+NjL5+tdOnSbdq0WbJkyYQJE1JSUg4ePCiEaNy4sRBiw4YNz3ijsc/evXsL\nPlaxRUEIAAAAoKhVqVJl8uTJ2dnZQUFBp0+fzr9r3bp177//vlarXbx4sUbzlwXLgAEDhBDT\np09PS0sztqSnp0+dOvW5Q+/fvz83Nzd/y4MHD4QQdnZ2QojRo0dbWVktXLjQWB+apKambty4\n0bg9cuRIrVY7ffr0xxYnzP+U0dWrV3/55Zf37t17bh51cckoAAAAABUYa7n58+c3atSoUaNG\nNWvWzM7OPnHixPXr121tbX/88ce33nrrGW9v0aLFsGHDli9f7ufn17VrV0mStm7d6uHhYbye\n8xl69+5tZWXVrFkzLy8vrVZ78uTJQ4cO1axZs127dkIIPz+/ZcuWDR8+vGXLlq1bt65bt67B\nYAgPDz948KC3t3fPnj2FELVq1Vq4cOHo0aPr1KnToUMHX1/fhw8fhoWFlSpV6tChQ8ZRZs2a\ndePGjYCAADc3N4X+wAoFBSEAAAAAFWg0mi+++KJnz56LFi06cuTIuXPndDqdt7f3hAkTxo4d\nW5AlHJYuXVq9evWlS5cuXLiwbNmy3bt3nzlzpre397PfNWvWrJCQkLCwsF27dul0Oi8vr1mz\nZo0aNcr0FJnBgwfXq1dv/vz5hw8fPnTokL29vYeHR//+/Y3VoNGIESP8/f3nzZt3+PDhbdu2\nubq6+vv7Dx069BX+PNQhGZ/3arFOnz69a9euGTNmqB0EAAAAAIpUcHAw9xACAAAAgIWiIAQA\nAAAAC0VBCAAAAAAWioIQAAAAACwUBSEAAAAAWCgKQgAAAACwUBSEAAAAAGChlFmYfvTo0S/U\n/4MPPnjuepEAAAAAgEKlTEG4aNGiF+rfr18/CkIAAAAAUJcyBaEQYtu2bU2aNHlut6ysrAoV\nKig1KAAAAADgpSlWEDo6Orq6uj63W2ZmplIjAgAAAABehTIF4fHjx2vUqFGQntbW1sePH/fz\n81NkXAAAAADAS1OmIGzcuHEBe0qSVPDOAAAAAIDCw7ITAAAAAGChFLuHMD9Zlg8cOHDy5MmE\nhIS8vLz8u7788svCGBEAAAAA8KKULwhTUlKCgoKOHTv21L0UhAAAAABQTCh/yei0adOOHz8+\nZ86cK1euCCF27dr122+/tW7dukGDBrdu3VJ8OAAAAADAy1G+IPz555979Ojx8ccfV65cWQjh\n4uLStGnTPXv2yLL8zTffKD4cAAAAAODlKF8QxsbGBgYGCiE0Go0QIicnRwih1Wp79eq1efNm\nxYcDAAAAALwc5QtCe3t7YxGo1+ttbGzi4uKM7aVLl75z547iwwEAAAAAXo7yBWGVKlWuXr1q\n3K5du/aGDRtkWc7Nzd24cWOFChUUHw4AAAAA8HKULwhbt279008/GU8SDh06dNu2bVWrVvX1\n9f31118HDRqk+HAAAAAAgJejfEE4adKkX3/91bj84NChQ+fNm2djY+Pg4DB9+vRJkyYpPhwA\nAAAA4OUovw6ho6Ojo6Oj6eWECRMmTJig+CgAAAAAgFek/BlCAAAAAECJoPwZQpO8vLyUlBRZ\nlvM3Ojk5Fd6IAAAAAICCU74gzMvLW7Zs2ddff33z5s3s7OzH9j5WHwIAAAAA1KJ8QThr1qxp\n06a5ubm1b9/e1dVV8eMDAAAAABShfEG4fPnyevXqhYaG2tnZKX5wAAAAAIBSlH+ozN27d/v0\n6UM1CAAAAADFnPJnCKtWrZqUlPSKB7l69epHH30ky/Ls2bNr1aplas/Ly9u2bVtISMj9+/dd\nXV1bt27dpUsXjUZT8A4AAAAAACPlK6WxY8euXbs2OTn5pY+Ql5e3ZMkSa2vrJ3etWLFi9erV\nlStXHjJkiK+v79q1a7/99tsX6gAAAAAAMFLmDOG2bdtM225ubhUrVvT39x8xYoSPj4+V1f8M\n0alTp+cebffu3Xfv3g0ODt66dWv+9ujo6N27dzdr1sy40n3btm11Ot3evXuDgoK8vLwK0gEA\nAAAAYKJMQdi5c+cnGydNmvRk43OXnUhMTPz+++/79+//5JIVoaGhsiy3b9/e1NKhQ4eDBw8e\nOXKkf//+BekAAAAAADBRpiDcvHmzIscRQqxYsaJcuXJBQUHbt29/bFdERIRWq/Xx8TG1VK5c\nWa/X37hxo4AdAAAAAAAmyhSE3bp1S0tLs7e3f8XjXLhw4ejRo5999tlTHwOTkJDg6Oio1WpN\nLZIkOTs7P3z4sIAdjGbPnh0bG2vcdnR01Ov1rxgbAAAAAEoixZ4yWrZsWeMjPdu3b+/s7PwS\nR8jNzV26dGmzZs1q1Kjx1A5ZWVk6ne6xRr1en5WVVcAORr///ntERIRxu1q1alWrVn2JtAAA\nAABQ0ilWEH744Yc//fTTgAEDdDpdixYtunTp0qlTp3LlyhX8CFu3bk1MTBw0aNBfdbC2ts7I\nyHisMTs728bGpoAdjFauXGkwGIzbFy9e3L9/f8FDAgAAAIDZUGzZiRkzZly6dOnatWv//Oc/\nExMT33vvPQ8Pj8DAwAULFkRFRT337cnJyZs2bWrZsmVmZmZ8fHx8fHxKSooQ4uHDh/Hx8cZH\n0ZQpUyYpKclUywkhZFlOTEx0cXExvnxuByN7e/vS//HUxS0AAAAAwBIovA6hr6/vpEmTTp06\ndfv27fnz52s0mg8++MDb27t+/fpz5swJDw//qzcmJydnZ2fv2LFj+H9s2bJFCDF//vzhw4cb\nr/n08fExGAw3b940vSsyMjI7O9v0FJnndgAAAAAAmCi/ML1RxYoVx4wZ89tvv925c+fbb791\ndXWdPn169erVa9SosWvXrif7u7i4TPxfb731lhCid+/eEydOND73JTAwUJKknTt3mt61c+dO\nSZICAwONL5/bAQAAAABgotg9hH+lbNmyw4YNGzZsWFJS0s6dO7du3frHH3+0a9fusW62trZN\nmjTJ33Lv3j0hhJ+fX61atYwtlSpVCg4O3r17d05Ojp+f35UrV0JDQ9955x1vb+8CdgAAAAAA\nmBR6QWji6OjYr1+/fv36vcpBhg0b5uLism/fvpMnT7q4uPTv379Lly4v1AEAAAAAYCQZn9di\nsU6fPr1r164ZM2aoHQQAAAAAilRwcLDyZwgfW+PBRJIkW1tbLy+vNm3afPDBB66urooPDQAA\nAAAoOOUfKtOuXTsfH5+srCw3N7eAgICAgICyZctmZWVVqVKlQYMGjx49+te//lWnTp3Y2FjF\nhwYAAAAAFJzyBeG4ceOio6PXr18fFRV14MCBAwcO3L59e+3atdHR0dOnT4+MjPz+++/j4+On\nTZum+NAAAAAAgIJT/pLRSZMmDRw4sG/fvqYWSZL69+9/6tSpjz/++PDhw3369Dl48GBISIji\nQwMAAAAACk75M4Rnz5719/d/st3f3z8sLMy43bhx47t37yo+NAAAAACg4JQvCHU63fnz559s\nP3funE6nM25nZWXZ29srPjQAAAAAoOCULwiDg4OXLl26cuVKg8FgbDEYDMuXL1+2bFnbtm2N\nLadOnWKxeAAAAABQl/L3EM6dO/fEiRNDhw6dNGmSr6+vLMsREREPHjzw8fH5/PPPhRCZmZm3\nb9/u06eP4kMDAAAAAApO+YLQ09Pz3Llz8+bN2759+8WLF4UQVapUGTFixAcffFC6dGkhhI2N\nzaFDhxQfFwAAAADwQpQvCIUQjo6OM2fOnDlzZmEcHAAAAACgCOXvIQQAAAAAlAiKnSHMzMws\nSDcbGxulRgQAAAAAvArFCkJbW9uCdJNlWakRAQAAAACvQsl7CG1sbBo3bqzVahU8JgAAAACg\nkChWEPr4+Ny4cePatWsDBw4cPHiwj4+PUkcGAAAAABQGxR4qc/369YMHD7Zo0WLBggW+vr5v\nvfXW999/n5GRodTxAQAAAADKUqwglCSpRYsW69evj4uL++abb5KSkvr16+fh4TFq1KizZ88q\nNQoAAAAAQCnKLzvh5OQ0cuTIM2fOnDt3rl+/fj/++OPrr78+b948xQcCAAAAALyKQlmY3qhq\n1ap16tQ5ceJEWFhYampq4Q0EAACKm9wbB/PSHqqdAgUlWel1NTqqnQKACgqlIDx27NjKlSs3\nbdqUlpb2xhtvrFixomfPnoUxEAAAKJ4yQqbmRv1b7RQoKMnW2Wl6gtopAKhAyYLwzp07a9eu\n/e67765everm5vbee+8NGTKkevXqCg4BAABKBOs3RuhqdFA7hcLy7l7OOrtOV+0dqyrN1c6i\nMMnKRu0IANShWEHYsWPHPXv2yLLcunXr2bNnd+jQQafTKXVwAABQsujr9lM7gvJyLm/LOrvO\nqkozm+YT1c4CAMpQrCDcsWOHjY1Np06dPD09jx8/fvz48ad24+kyAAAAAFBMKHnJaGZm5oYN\nG57dh4IQAAAAAIoJxQrC06dPK3UoCCHknHSRm6V2CrwAycZRSMqv4wIAAAAUHsUKwvr16yt1\nKAghMnaMyTq1Qu0UeAGOU+I0pcqrnQIAAAB4AYW4DiFehcatus63pdopFCbnpOfe+remVHmt\ne021syhP0lqrHQEAAAB4McoUhKtXr37nnXfc3d2f29NgMKxbt65t27Zly5ZVZGhzZRM4XgSO\nVzuFwgwPriXPrWbl28q+5xq1swAAAAAQytzyNGjQoPDw8IL0zMnJGTRo0I0bNxQZFwAAAADw\n0hS7ZPTKlSs2Ns9f0jQ7O1upEQEAAAAAr0KxgnDUqFFKHQoAAAAAUASUKQgXLlz4Qv0rV66s\nyLgAAAAAgJemTEE4evRoRY4DAAAAACgyrKMNAAAAABaKghAAAAAALBQFIQAAAABYKApCAAAA\nALBQFIQAAAAAYKEUW4cQAAAAQNHIPvd92oZ+aqfAC7Dv/b2+Th+1UzxFIRaEBoNBq9UW3vEB\nAAAAy6QpXV7n21LtFMrLjQwVkmTlHaB2EOVpSrmrHeHpFC4IExISvvrqq127dl29ejUtLc3e\n3r5atWrt27cfM2aMs7OzsmMBAAAAlsnK5y0Hn7fUTqG8pDkVhKRxGLpf7SAWRMmC8MKFC23a\ntLl7964QolSpUp6ensnJyWfPnj179uzy5ct/+eWXWrVqKTiceds2N/TM7nC1UyjM2fbuIH9x\nPuT6L0uWq51FeR/91LeUi53aKQAAAIAXoFhBmJGR0bVr1/v3748fP37kyJE+Pj7G9uvXry9e\nvPirr77q1q3bxYsXra2tlRrRvGVn5KQnZ6mdQmH6nCxhph9NCCHLaicAAAAAXpBiBeHGjRtv\n3LixaNGikSNH5m/39fVdsGBB5cqVx4wZs3nz5n79uPm1QHp8+laPT83tMoC758PEj7NcKjh+\n8eNotbMAAAAAUG7ZiR07dnh7e7/33ntP3Tt69OhKlSpt375dqeEAAAAAAK9IsYLw4sWLb7/9\ntkbz9ANqNJqWLVueP39eqeEAAAAAAK9IsYLw7t27Xl5ez+hQqVKle/fuKTUcAAAAAOAVKVYQ\npqWl2draPqODvb19SkqKUsMBAAAAAF6RYgWhXIBnLBakDwAAAACgaCi5DuHmzZvDw/9y6bzf\nf/9dwbEAAAAAAK9IyYLw1KlTp06dUvCAAAAAAIDCo1hBePr0aaUOBQAAUBzJshBCzuKZCADM\nh2IFYf369ZU6FAAAQPEhp92X7MsaN4UQck76f9ofSHYuQpLUiwYAr0qxh8oAAACYHzntwaM5\nFbPPrX+sPffW0aR/VcmNPqlKKgBQipL3ED4pKyvrjz/+SE5O9vf3d3JyKtSxAAAAFCfZu9r3\nWp+2oZ/Iy5OsHYyNubeOpX4XbNPsQ6tKjdWNBwCvSMmCcO/evatXr9br9cOGDWvatOm+ffsG\nDx4cGxsrhNDr9VOnTp0yZcoz3h4TE3P48OEzZ87Ex8dbWVlVrFixU6dOjRo1ymyrahIAACAA\nSURBVN8nLy9v27ZtISEh9+/fd3V1bd26dZcuXTQaTcE7AAAAvBB9rW5CiLQN/WwaviuEkJPj\nUr8Lsmn2oc3bU9WOBgCvSrGC8Lfffmvbtq1xpcFNmzbt3r27S5cudnZ2HTt2zM7ODg0NnTp1\n6muvvdatW7e/OsKmTZuOHj1au3btunXrZmVlHT16dPbs2b179+7du7epz4oVK3bt2vXmm292\n6NDhypUra9euffDgwXvvvVfwDgAghMhLiMzYO1HtFHgBOr8u+tq91E4By/VnTfhjHyFEzuVt\nNm9NoRoEYB4UKwgXLFhgb2//448/ent7Dx8+vH///l5eXseOHTNeKRoZGVm3bt3Fixc/oyBs\n1qzZkCFDHB0djS979+49duzYzZs3d+zY0c7OTggRHR29e/fuZs2aTZgwQQjRtm1bnU63d+/e\noKAgLy+vgnRAcWAlZaodARBy5qPsi5vVToEXoClbTe0IsEQpSwJybx17rFHOzc7Y92nGvk+N\nLyU7F6dP7/NoGQAllGIF4ZkzZ3r27NmuXTshxIwZM1q1avXxxx+b7husXLly7969N2zY8Iwj\nvP766/lfOjg4NG7ceMeOHXfu3KlSpYoQIjQ0VJbl9u3bm/p06NDh4MGDR44c6d+/f0E6oDjQ\ni2S1IwBC61bDceINtVMoL23jgNxbR0uPuyjp7dXOojDJhhvRoQKHAdvlzCTjtiHmTNrGv8u5\nmUKjtQv6l86v85+ddLZUgwBKLsUKwjt37vj4+Bi3jfVbpUqV8nfw8vJKSkp6oWMmJycLIZyd\nnY0vIyIitFqtaRQhROXKlfV6/Y0bNwrYAapIWRJo0/JTnW+r/I1ybmb6xr/ranXX+3dXKxgs\nWXaO5k6cuZVMQgi7LK1WiLh4O1lnbp/Osaze0U7tELA8kp2LZOcihMi9dSxtyxB9zU5ZFzbo\nqr2THvKJvX1Z/et/VzsgALwqxQrC3NxcnU5n3Nbr9UIIK6v/ObiVlZXxDsMCio2NPXbsWL16\n9UwFYUJCgqOjo1arNfWRJMnZ2fnhw4cF7GC0fPny+/fvG7d53kwR0Nfqlramo/2A7UL8+a9S\nzs1MW9s579Ftu47fqJsNFutuZOJnHdepnUJ5gwPjq5YTX/TakJVrrXYWhQWNatxhfIDaKfAC\n9n176n7UI7VTKMNZvtzA8EmkpnvKJe96Qly7ap0ofVh709DLWy7FaFqqnU4Zeltd9ykt1E4B\nQAWFu+zES0tPT//ss890Ol3+58FkZWWZak4TvV6flZVVwA5Gv/76a0REhHG7WrVqVatWVTg9\n/pd1wBihs0lb3UHT5DMhhBBy2vrueQm3HIYflBzcVA4HS+XgbBvQy1/tFMqzeqAVQjTsVEO2\nMrczhF7+7mpHwIu5sD/i5tk4tVMowE6f/lHwnEPhzQ+F1/Lz/L3eGyLu6v3dFxyvVuzZvcGC\nIwdz4h55qp1RAXaONhSEJUtCXPKt8/Fqp1BepcxcWdKc3XNV7SDK865TvoxHabVTPIWSBeHm\nzZvDw8OFEOnp6UKIhQsXbtu2zbT3999/L+BxMjMzZ8yYcffu3enTp7u7//dvANbW1hkZGY91\nzs7OtrGxKWAHozlz5phKxJs3b546daqAwfDSrBsNF0LI2/8hhCglovIe5DoMP6gpVV7tXLBc\nzuVL9Z3dWu0UyrsyVieE6Dypqa2zi9pZYOne/aZDTrZB7RRKkGVxP/Att3pvCRG36ztxa22l\nWu4zvxomhJAejBgxykdobZ57jOKPuyBLnIjTsavG71Y7hfImtcuUZWn5+zvVDqK8wQvalulg\n7gXhqVOn8hdX+/bte4mDZGVlzZw5MyIiYurUqTVr1sy/q0yZMlFRUQaDwXRRqCzLiYmJfn5+\nBexgZLzF0Sg1NfUlQqKAso5+mROe739V9u4i+bZOpEqlyqZv/M99Fxqdfc81kn1ZVRICAAqJ\nYzkHtSMop9Kfp84SS9sIIaxsbF0rOgohRMU3VQwFC1explvnj5qqnUJ50h9CCMksP1qFGsX0\nyjjFCsLTp0+/+kGys7NnzZp15cqVjz/+uE6dOo/t9fHxCQsLu3nzpq+vr7ElMjIyOzvb9BSZ\n53ZAEdNWbCjn/ud63TxD9t0ISQghZE0ZH23Z14zNks5Osi6OP5YAAPA4SQghcjVmVOuixCpf\n1aV8VTO8GCR6nCQk0Xp4Q7WDWBDFCsL69eu/4hFycnLmzJnz+++/f/TRRw0bPuU/gsDAwE2b\nNu3cuXP8+PHGlp07d0qSFBgYWMAOKGJWXm9aeb0phBCG7NR1XYWQhRDporx0/keH/j/pXmur\ncj4AAADAshWjh8osW7bs7Nmzf/vb36Kjozdu3Ghqb9q0afny5YUQlSpVCg4O3r17d05Ojp+f\n35UrV0JDQ9955x1vb29jz+d2gDoM2anruuY9uJ7z1lL9tqBM4Vo26KPUdV2pCQEAAAB1KVkQ\n7t27V6PRtGnTRghx7969wYMH59/r7+8/Z86cZ7z97t27Qohr165du3Ytf3uVKlWMBaEQYtiw\nYS4uLvv27Tt58qSLi0v//v27dOmSv/NzO6Dopa7rmpdw0+G93zIioo0t1gFjhRBp67s7DDvw\n5ylEAAAAAEVOsYLwwoULbdu2XbJkifFlenr67t3/8+Cj3bt3d+3a9fXXX/+rI8ycOfO5o2g0\nmm7dunXr1u2lO6DoWXkH6Lut0DiUEyLa1GgdMFayd5WszOHJbAAAAEAJpdiy7CtXrixbtuyg\nQYPyN65atSo+Pj4+Pj46OtrZ2XnNmjVKDYcSxKb5RI1DuSfb9XX7aT3rFX0eAAAAFE86bbZO\nk/X8flCOYmcIDx8+3KpVK71en7/RycnJtJBg+/btjxw5otRwKLkyZFe1IwAAAKC4kHMzJa1e\nSBohhEYyyKZVMeU82ZDNBWWFTbEzhJGRkabFHp7K29s7MjJSqeFQchnyWPsWAAAAf0rfPCR1\nfXdhyPmfVkNO6vpu6VuGqhTKgihWEGZmZup0OtNLLy+vlJSU9u3bm1rs7OwyMjKUGg4lV05m\nrtoRAAAAUFzYBv/LEH8xdW1nYVq/2pCT+n0Pw51LtkH/UjWaRVCsICxTpkxsbKzppSRJDg4O\nWq3W1BITE+PiYoarZ+K5Vv5jV/SVe481ynnyT3MOX/6Nk8YAAAAWTeNYodTwQ4b7V43LVktC\npH7fw3D3cql3D2kcPdVOZ/4UKwjr1q0bEhKSl5f31L15eXkhISF169ZVajiUIM4epb7qvyl/\nTSjnyesmhYTtCi9XpYyKwQAAAFAcmGpCK02uVpNDNViUFHuoTM+ePQcPHrxgwYIJEyY8uXfB\nggXXr1+fPHmyUsOhBOkyqZnWSrOg78ZBn75WQQghxNqJv1wJvTVufQ/Xio4qhwMAAIBKsi9u\nTt86/L+v5TxJ5ElCyKn3khfUMjXbdf1WX4tV5QqLYgVhv379Fi1a9MEHH1y+fHnkyJF16tSx\nsrLKzc09f/784sWLV61aVb9+/b59+yo1HEqWjh8ECiF+nhvyfqDISM26cubWuPU93KtyCTEA\nAIDl0lVvV2rY/j9f5OWm//JxbsRhWQgr91p2bT8X2j/XL9C41VAtogVQrCDU6XTbt29v3779\nqlWrVq1aJUmSnZ1denq6LMtCiHr16m3fvj3/U2dgCU5t/+P6qf8uRl/a1V4IkZtlqNrA89dV\nZ4yNGq2m0weBtqWt1YkIAAAAlUg6W63n60IIYchJ/aFnXmJ0bp5OFkKbcifj19kO/X8SVvwV\nsdApdg+hEMLT0/PkyZMrVqxo06aNh4eHJEkeHh5t2rRZuXLliRMnPDw8FBwLJYKNg97O0ebP\nf0rbyAbZ2K630Zna7Z1sNFZK/ncIAACAksSQk/pDT0P876WGH5KFJAvpv8+YyWWR+kKn2BlC\nI51ON2TIkCFDhjx177lz53iujEXxf9vH/20fIYScJ6+d+EtGarYQQm9rdeFAxJg13b383dUO\nCADAC5PzZLUjAGYlfdd4YzWocTQ+buLPZ8ykLGuevudDuw5fqxvP7BXFmZmkpKQlS5a8/vrr\n9erVK4LhUNwYq8Erobe6TGwqhLC20zfrW+erAZujLt5ROxoAAC9AzhNCiJyMnOd1BPACrBsM\nKTUi9M9qUJaFLISxJhxx1Lr+YHWzWYLCLQiPHj06cOBADw+PkSNHXr16tXv37oU6HIqn7z/Z\nF34sasKGXs4epY0tHT8IbNKj1sJBW+KvP1A3G2BmtBJ/TwUUlpGctWzE9qS7qY+1Z6XnrJqw\nJz7ioSqpAHNyK75sYpKtcVsWkixLxu3EJNuoO27q5bIUhVIQ3r9//4svvqhevXpgYOCaNWsC\nAwO3bt16//79TZs2FcZwKOZ0Nlbjfujp5u2cv7Hrx81bv9swNSFDrVSAWbLRJKkdATA31va6\nvLy8+X035q8Js9JzFg3deuf6Qyc3BxWzAebhwv6IL3puuB/1SAiRlWuTlWsjhLgf9Whejx8v\n7I9QO535U7IgzMvL27dvX48ePSpUqPDBBx/Y2dl98sknQoj33nuvc+fOtra2Co6FEqTntLcf\nqwaNWg9v6NuoYtHnAcxMzqWtWccWPtluiAnL2PNR0ecBzIxGq3l3UcfyVV3m99mYlZYthMiT\n5cXDfs5IyfrH2m48JRt4dZ0/alrtzUoL+mw01oRCiHu3Euf33lC1QQXj0mUoVIo9VOaf//zn\nd999FxUVVbZs2ZEjRw4aNMjf3//WrVuzZ89WagiLcurUqRs3bqidQjGyLN+9ezc7KuJda5Ga\nnjxr1ixPT08bGxu1cympU6dO/OoBVUil3DM2/l3OTrVp8bGpMTfmdOqK1tZNxqgYDDAbWivN\nsG86LB+94/TOsAo1Rfz1h+lpmWPXdbd34n/7gAIkjfT3f72zduIvC/psfK++EEIs6LOxaoMK\ng+a31WgltdOZP8UKwmnTplWtWnXr1q3t2rVjvcFXV7p0aXd3M3kIpyzLFy9ePHHiRGUbrXAX\nuYbciIiI3Nzc2rVrOzk5qZ1OMVqtVu0IsFBWXm86DAlJ/S5I5BmMLfKdi6mbulk3HGbbarqq\n0YASb//y0/duJRq3HZxtM6PyhBDZGTkVXnPdNjfU2G7joO8yqbnE31qBF5eRkmV6ymDDjtWT\n7qXKQsiycKvs/GY3v2snbht3efm725bibHxhUawgdHV1jYiImDx58rVr1/r378+qg6/otdde\ne+2119ROoYzw8PA9e/a0bdtWio8WCUKv17d5u01MTIwkSU2bNqWOAl6dlXcTh8F7U78LstYI\nIUTWxq42DYfaBn+udi6gxLMrbWPn+Of1LIbcvEwhhBCyLKzt9Nb2emO7bSlrqkHg5Vw7Eb1l\n9iHTS0NOnqgvhBD3bz36Yep+U3u3KS1qt6xa9PEshGIFYWxs7M8//7x8+fKPP/74k08+adOm\njfGqUaWOj5IrMjKyQoUKOp0uN1+jp6fnkSNHGjRo4OnpqVoyoITLS72bFfqlEH8uiaar0UE+\n94MQQuNcWUiajL2T/mz3bWVV9W3VUgIlWZOetYwb2Rk5i4f97GRjJYSwLWUddjRq3A89ncrx\nRBngldRuVbV2qz8rvXu3Ehf02Wja9Y813ct6mc+lZMWZYg+V0ev1PXv2PHDgQERExMSJE8+f\nP9+9e3fjwoNxcXFKjYKSKCUlxc7O7rFGSZLs7e1TUlJUiQSYCUOunPlIzkg0/iNy/vPYXjnP\n1ChnJMq5WaqmBEo8YzWYlpTZoF01IUS5KmXK+7os6LPx0RNrUQB4OcZqsGqDCpIkJEk89owZ\nFCrll52oUqXK7Nmzb9++vX379hYtWmi12lGjRlWpUuWjjz46ffq04sOh+LOysjIYDE+25+bm\nWlkpdo4asEAaR0+7zkvsuiyz67LMutHwnJuHs/PshRDywwiNY0Vju12XZbrXgtVOCpRguTmG\nRUO2pidljl3XQ2etE0JoJDF0YXv3qmUW9N2YmpCudkCgxDNVg4PmtzW2/P1f71R7g5qwiBTW\nwvRarbZDhw47d+6MioqaOXOmLMtz585t2LBhIQ2H4qxs2bIJCQmPNWZlZaWlpZUtW1aVSICZ\nMcSeTVnRyrrBkPTcUkIIfY+Nmb99nvnrLLVzAeYgN8vgVtl5zLoe9k7/fTi2lU477JsOtVpU\nyUjJVjEbYB52f/3v6gHegxf895mikkb6++fvvNbEa/fCf6ubzRIU+vkZT0/PKVOmfPLJJwcO\nHFi+fHlhD2c20tLSsrLM5Cqv8uXLly9fPjIy0jUnQwghy3JCQsL169eDgoIMBsOTtWIJ5eTk\npNEU1i8swDNkRZ7KWN3G+s2Rtm1myyHrhBBShUYOg3alfheck6st1ebj5x4BwDPYOOj7zm79\nP02SJISw0mm7fdJCnUyAeRn4Rdsnn8xkrAllWY1AFqaILtiTJKlVq1atWrUqmuHMwOXLl81p\nHcKMjIz79+9HXrvS3U9kZmXu3LmzcePGDx8+DAkJUTuaYliHEGq5sDnk4a2WgWM+yd+o9W56\nUpplt2V3IAUhoBxJI4QQelvudwCU9L/VoJT/NY/wLQL8H62YcnNzk8xrBtSrV+/BxbPi5j7H\n0o4fDf6oVKlSaidSGPdDQi31xk5eNnL7qV4bxn3f09giy2LTP38N26sfu/5HdbMB5sm8vqCB\nYoXpVfT4K2wx5e3t7e3trXYKhd211Ymbwt7e/o233lI7C2A+rPTa4Ys7Lhu5fUHfjd2qlnK2\nubNz/tGwkNix63t4VnNVOx0sV+6Ng3lpD9VOoTD9o7NCCNvsG9kXN6udRWGSlV5Xo6PaKQCo\ngIIQAEo8U02YkSmJUuLC/oix6wdQDUJdGSFTc6PM7WkQpYUQQrimhqR9bz63PBhJts5O083k\nrn4AL4SCEABKqugr9/6v07o8w3/vuG8YKIQQ6Y8yZwWvNjW2ff+NdmObFHk6WDrrN0boanRQ\nO4XC4q8/PPHz5ZrNKv+tUUW1syhMsrJ5ficA5oiCEABKqgrV3T7e/vc8Q54QQpbFgeWnpRQh\nhHD2KNXjnx3snf98ypFbZWcVQ8Ji6ev2UzuC8pJzIo5c3VamQ6B/80ZqZwEAZfCUfAAoqSRJ\nVKhetpJfuYo1y53cejn8+G0ra60Qwq2y86aZB53KOVTyK1fJr5yNvV7tpAAAoJiiIASAkk2W\nxeZ/Hjy9K3zs+h7GpxP3/6yNayWnBX03Jt9PUzsdAAAo1rhktJiSc9JFrpksTG8iZScLITQi\nV85IVDuL8iQbxz8XqAKK1uG1Z0/vCh/3fQ+Pv7k+EEIIodVr3/2mw5LhP6/4x87xP/ZSOR8A\nACjGKAiLqYwdY7JOrVA7hcJ0QgghPDW/PZpeRuUohcBxSpymVHm1U8AS1Wnj6/+2j0sFx/yN\nOhurEd92jrv6QK1UAACgRKAgLKY0btV1vi3VTqGw7Iycm2fjHN0cyvu6qJ1FeZLWWu0IsFDO\n7qVM21K+BX111lZe/u5qJAIAACUGBWExZRM4XgSOVzuFwu5GJq78cmXjzjUHDA1SOwtgnqz0\nWrUjAACAkoRbngAAAADAQlEQAgAAAICFoiAEAAAAAAtFQQgAAAAAFoqCEAAAAAAsFE8ZBQAA\nyou6eCcjJUvtFAqL/eO+EOJ+1KPwY1FqZ1GY1krj26ii2inwAi4ciNgy65DaKZQ3tLYsy2Jq\n8+VqB1Fe9ylv+bf0UTvFU1AQAgAA5W2aefDm2Ti1UxSKY5t+P7bpd7VTKMzO0eaLs6PVToEX\nYMg2pCeb228u4s8FdSWz/Gi5OQa1IzwdBSEAAFBeo041qjaooHYKFJTehr8TljC1XzfUmJ+m\ndgrlZR7KE0KabY4fTVc9V+0IT8fkBwAAymvat47aEQBzZog7l7F3ktopCotZfjSNU0VtuRpq\np3gKCsJiav3kkGMbze1yFKMTP18+8fNltVMo7/+Oj3B0s1c7BQAAsAhWVd92GLpf7RR4AVp3\nP7UjPB0FYTHl4ulYya+c2inwArQ6ntkLAACKiKaUu6aUu9opYA4oCIupoFGNg0Y1VjsFAAAA\nAHPGOQ0AAAAAsFCcIQRgkfIMclay2iGUp5EMQgiR+UjOMLvf+6xsJJ2t2iEAADA3FIQALJHh\nzsXkr+qpnUJ55fRCCJH5ZdVMtZMozubtKbatZ6qdAgAAc0NBCMASSdaldL4t1U6hvOjLd9Me\nZf6tcUWN1tzOEGrL+KgdAQAAM0RBCMASaVyqmuXTuvcP2PzH0agF3/zDxl6vdhYAAFACmNtP\nyAAAAACAAqIgBAAAAAALRUEIAAAAABbK3O4hzMvL27ZtW0hIyP37911dXVu3bt2lSxeNhroX\nAAAAAB5nbpXSihUrVq9eXbly5SFDhvj6+q5du/bbb79VOxQAAAAAFEdmdYYwOjp69+7dzZo1\nmzBhghCibdu2Op1u7969QUFBXl5eaqcDAAAAgOLFrM4QhoaGyrLcvn17U0uHDh1kWT5y5IiK\nqQAAAACgeDKrgjAiIkKr1fr4/Hfx4sqVK+v1+hs3bqiYCgAAAACKJ7O6ZDQhIcHR0VGr1Zpa\nJElydnZ++PBh/m47duxITEw0bqenpxdpRAAAAAAoNsyqIMzKytLpdI816vX6rKys/C0//PBD\nRESEcbtatWpVq1YtonwAAAAAUJyYVUFobW2dkZHxWGN2draNjU3+lrFjx6amphq37927d/Xq\n1SLKB6DYSH6QfuKnS2qnUN7DmGQhxMHvzljptc/tXLJUqedRtUEFtVMAAGBuzKogLFOmTFRU\nlMFgMF01KstyYmKin59f/m6NGzc2bZ8+fZqCELBASfdSf/7cbB83tfPLY2pHUF7QqMYUhAAA\nKM6sCkIfH5+wsLCbN2/6+voaWyIjI7Ozs/M/ZgYAhBCuFRyHLWz//H4oNtyruqgdAQAAM2RW\nBWFgYOCmTZt27tw5fvx4Y8vOnTslSQoMDFQ3GIDixra0db3gamqnAAAAUJlZFYSVKlUKDg7e\nvXt3Tk6On5/flStXQkND33nnHW9vb7WjAQAAAECxY1YFoRBi2LBhLi4u+/btO3nypIuLS//+\n/bt06aJ2KAAAAAAojsytINRoNN26devWrZvaQQAAAACguNOoHQAAAAAAoA5zO0P4EnJycpKT\nk9VOAQAAAABFSpZlSZZltWOo6cqVK5999pnaKQAAAABABZZeEAIAAACAxeIeQgAAAACwUBSE\nAAAAAGChKAgBAAAAwEJREAIAAACAhaIgBAAAAAALRUEIAAAAABaKghAAAAAALBQFIQAAAABY\nKApCAAAAALBQFIQAAAAAYKEoCFEUwsPDZVk2bsfExEybNi05OVndSIA5YYoBhY1ZBsBcaadP\nn652Bpi5s2fPfvrpp3FxcY0bN46Njf3kk08iIyMzMjIaNGigdjTAHDDFgMLGLAOKxoMHD5Yu\nXbpmzZpTp045ODh4enqqncgiWKkdAObP19fXy8vr8OHDmZmZV69eTUxM9Pf3Hzx4sNq5ADPB\nFAMKG7MMKAKPHj368MMPHz58KISIi4s7f/58UFDQ8OHDNRouaSxckun6B6DwpKSkTJkyJTIy\nUgjh7+8/depUa2trtUMB5oMpBhQ2ZhlQ2L7++usDBw74+Pj07ds3LS1tzZo1Dx48aN68+bhx\n4yRJUjudOeMMIYpCWlrao0ePjNvOzs56vV7dPICZYYoBhY1ZBhS2M2fOuLm5zZ49287OTghR\np06dKVOmHD58WAhBTViouIcQRUGv11+6dMnV1dXBweH8+fN37txp3LgxExtQClMMKGzMMqCw\nbd26tV27drVr1za+tLGxadKkydmzZy9cuMCMK1QUhCh0iYmJmZmZLVu2bN68edOmTc+fP3/u\n3LnHJvbJkydLly7N5TfAS2CKAYWNWQYUksTExBUrVqxfvz4sLCw5OdnPz69atWqmvdSERYOC\nEIUoISHhq6++WrRo0dGjR998801HR0dra+smTZqYvkobNmyo0WgOHTo0b968sLCwt99+28qK\ny5iBgmKKAYWNWQYUnsTExPHjx1+6dCkpKSkuLi4jIyMpKalVq1b5nyKTvyasXLlyxYoVVQxs\nrigIUVji4+MnTpx47dq10qVLt2vXzsfHx3hFeP6v0nPnzl26dGnDhg2yLAcHB9epU0ft1ECJ\nwRQDChuzDChUS5cuvXLlSpUqVUaPHl23bt1r167FxcU9fPiwYcOG+c8EGmtCd3f3Fi1aqJjW\njPGUURSK7OzssWPHxsTEvPbaax9//LGzs/NjHdLS0j777LOLFy8KITQazYABAzp37qxGUqBE\nYooBhY1ZBhSeBw8euLi4DBw4UKfTff3118afWhISEj755JPY2NiWLVu+//77XB1aZCgIUSj2\n7t27ZMkSd3f3L7/80jjJhRAXLly4cOGCq6trmzZttFqtLMvHjh2Ljo5+4403vL29Vc0LlDBM\nMaCwMcuAQhIbGzt58uTXX3/9/PnzwcHB3bp1M+1KTEycPHkyNWER4zJ3FIqrV68KIdq2bWv8\nEo2JiVm8ePGlS5e0Wq3BYDh27NisWbMkSQoICFA7KVAiMcWAwsYsAwqJnZ2dnZ3dgQMHhBCP\nreDi7Ow8Z86cyZMnG/dSExYNzfO7AC+uQoUKQogLFy5ER0f/8MMPY8eOlWX5yy+//OGHH9zd\n3X///ffr16+rnREowZhiQGFjlgGFxFj1eXp6CiEOHTpkMBieuvfAgQOnT59WKaNl4QwhCkW7\ndu1Onz4dFhYWFhZWqlSpwYMHBwUFSZIky7JWqxVC5OXlqZ0RKMGYYkBhY5YBhcd0JvDGjRuL\nFi167Eygce+///3vhg0bqhjScnAPIRSQlpb2008/nT59Oisry9fXt3v37t7e3gaD4cyZMwaD\noXbt2qa7L3bu3Ll8+XJnZ+fvvvvO+IUKoCCenGUVK1ZkigFK4YsMKHrcMVhMUBDiVcXFxX36\n6af37t0TQtja2mZkZFhZWf3jH/9o3rx5/m6yLP/000/r1q2TZfnDDz8MUvbhJgAAIABJREFU\nDAxUJy5QAhVkljHFgJfGFxlQ2J76m4ugJiweKAjxSjIzM8eMGRMfH+/j4zNmzBhvb+9FixaF\nhIRIkvTNN9+YFg89d+7cli1bfv/9d0mSBgwY0KVLF3VjAyVIQWYZUwx4aXyRAYXt2b+5UBOq\njnsI8Uq2b98eHx9fuXLlzz77zMbG5pdfftm3b58QYsiQIaYv0UePHi1ZsuTOnTvu7u4jR45k\n0V7ghTx3ljHFgFfBFxlQqDIzM2fMmHHv3r3HfnNZsGCBj49PxYoV8z9ZtHHjxtw3WPQoCPFK\nTp48KYQYN26cjY1NSEjIkiVLZFkeOnRohw4dhBD79u1r2rSpk5PTnDlzrl279sYbb/CrD/Ci\nCjLLmGLAS+OLDChUBfnNhafIqItlJ/BKkpKS3NzcvL299+3bt3jx4vxfoikpKd9+++3//d//\nCSFcXV3ffPNNvkSBl1CQWcYUA14aX2RAoXruby6ZmZlCCGdn57Zt26qc1VJREOJlxMTE3Lx5\nUwjh7u6enJy8ffv2RYsW5Z/eQojVq1dnZ2ebfvsBUHCmKSaYZUDh4IsMKBoF/M0FKqIgxAt7\n9OjRp59+OnXq1Ojo6GbNmmVmZq5cufKxL9GQkJD9+/fb2Nh07NhR3bRAiZN/igkhmGWA4vgi\nA4oMv7kUfxSEeGHr1q178OCBt7e3m5tby5YtX3vtNSGEp6dnQECAECIzM3PdunWLFy8WQrz/\n/vuurq4qxwVKmvxTTAjBLAMUxxcZoKzw8HDTygUxMTHTpk1LTk42vuQ3l+KPZSfwAh48eODi\n4jJw4EC9Xv/111/b2toKIZKSkqZNm3bz5k2NRuPm5paQkJCdnS1J0sCBAzt37qx2ZKAkeeoU\nE8wyQDl8kQGKO3v27MyZMwMDA8eNGxcbG/vJJ58kJiYGBQWNGDFCCJGXlzdp0qTw8HBPT8/Z\ns2eXKVMmMzNz8+bNW7ZsYUnPYkI7ffp0tTOgZIiNjZ04cWJ0dPTdu3ffeeed2rVrG9ttbGya\nN28uy3JMTMzDhw/z8vL8/f3Hjx/P9AZeyF9NMcEsAxTCFxlQGBwcHM6ePXvu3Llbt25t2rQp\nMTHR399/7NixVlZWQghJkho2bHjhwoXbt2/v2LHj4MGD33//vXFJz0GDBrVp00bt+OAMIQrM\ntGyoEGLgwIFPrskry3JKSoqtra1Op1MjIFCyPXeKCWYZ8Gr4IgMKSUpKypQpUyIjI4UQ/v7+\nU6dOtba2zt8hMzNz06ZN+/fvT0pKkiSpVq1affv2rV69ukp58T8oCPECTF+llSpV+uqrr7Ra\nrdqJALPCFAMKG7MMKAx37tyZOHFiYmKiEKJZs2bjx49/6hot/OZSPHHJKF6Ara1tkyZNTp8+\nHRMTc//+/UaNGrEiE6AgphhQ2JhlQGHQ6/WXLl1ydXV1cHA4f/78nTt3Gjdu/OTkkiTJ2tqa\nH2KKGwpC/KXc3NyDBw/u3Lnz1KlTycnJFSpUsLKyMn2VXrx48cGDBw0bNuSrFHhpT84yBwcH\nphigFL7IgCKQmJiYmZnZsmXL5s2bN23a9Pz58+fOnXusJjx58mTp0qUfu44UxQSXjOLp4uPj\nZ82aZVwGzcjNze3DDz+sVq2ayHfJTcuWLd9//32+SoGX8IxZxhQDXh1fZEBhS0hI+Pbbb0+c\nOFGmTJk5c+a4u7sLIVJSUqZOnXrz5s3mzZv/f3t3H9TklfYP/CQQE8KbUQqhCGh4p0SkIIoo\nFXwDxK67pdNlHC3adZzZlam69aWAuF0pWutW1NbFqqtiB9ydVu2sWAtUoyNYAQNBQAUqtklA\nIBgQFQyB+/njfn73L0+wVCHh5uX7+Y87B+bij2tOrvucc53333/fwsLi8uXL+/fvd3V13bt3\nL2rCEQgrhPAcHR0d27Zta2pqcnZ2jo+PDw0NffbsWUNDw5UrV1577TVHR0fm9apCocDrVYBB\nGDjL3NzckGIAQ4GJDMDcmpqatm7dWltba2dnFxcX5+HhIRQKCSF8Pj88PJxeJywvL6+qqjp9\n+jRFUbGxsTNmzGA7angOFITjnV6vP3z4sLu7u7W1NfPw+PHjCoXC29v7008/lUql3t7eCxYs\n4PF4crm8tLR00aJFfD7fcCr19PR0cXFh8b8AGMkGl2X29vZIMYAXgYkMYPjpdLrk5OTm5mZf\nX9+MjIzg4GC6GqTx+fx58+bV1dXV1NTcv3+fy+UmJia+/fbbLAYMA0BBOK719fXt2bPn8uXL\n1dXVS5YsYV6OZmZm6nS6lJQUR0dHZrC/v79ara6treVyufTdTfRU6uTkFBkZyc4/ADDiDSXL\nkGIAvwkTGQAr8vPzL126JBaLd+/ebWdnRz9UKBT5+flqtVoikfD5/MjISDc3Nzc3t7Vr14aF\nhbEbMAyAy3YAwKZvv/32+vXrNjY2hscnKIp6/PgxIcTNzc1ofGxsLCFELpczT0Qi0dKlS4cr\nXoDRZ4hZhhQDGBgmMgBW3L17lxCydOlSemFQpVIlJydv37797NmzWVlZaWlpFEVxOJy5c+cm\nJCRMnTqV5XBhQCgIx7UffviBELJhwwaJRKJSqX788UdCCIfDcXZ2JoTU1dUZjRcIBISQp0+f\nDnukAKMVsgzArJBiAMNJpVLV19cTQqZMmUIIUSgUSqUyJydnw4YNFEVlZmbm5OSIxeJbt271\nzz4YsVAQjmv0Sx0ej6dSqVJSUj755JPKykpCyOLFiwkhx44d0+l0huOvXLlCCJk2bRobwQKM\nSsgyALNCigEMm+7u7pSUlLNnzxJC4uLi/Pz8ysrK/vKXv+Tl5a1ZsyYjI0MikQgEAvqawb6+\nPrbjhReFM4Tjmkgkunr1allZmUwm02q1Uqn0D3/4g6WlpZeXl1wur6+vr66unj59urW1NUVR\neXl5OTk5HA4nKSnJwcGB7dgBRgdkGYBZIcUAho2lpeW1a9du3boVHR1tY2MTFRXl5eUVHh6+\ndu1af39/es/2+fPnZTKZSCRas2YNl4uVp9EB9xCOd9nZ2V9//TUhxNfXd+fOnczlMB0dHTt2\n7Lh37x6Xy3Vzc+vo6NBqtYSQ1atX//73v2czYoDRBlkGYFZIMYBhI5PJPvvss1WrVsXHxxt9\nRFHUN998c+rUKYqiNm/ePG/ePFYihEHACuG41tjYeOTIke7ubkLIs2fPQkJCRCIR/ZFAIJg/\nf75Op2toaGhra+vu7p40adL69euXLFnCasgAowyyDMCskGIAw2nKlCn5+fkNDQ3Lli0zvLqz\nvLz8888/Lygo4HA4iYmJ0dHRLAYJLwsrhOPa06dP09LSBALBjBkzsrOzbW1td+7cKZFIDMd0\nd3crlUoej+fu7o5LewFeFrIMwKyQYgDDLDc3Nzc3Ny0tLSQkhH7S3t6+ZcuWBw8eiMXiP//5\nz7h9ftRBQTjePX361MLCgs/nf/vtt8eOHXvuVAoAQ4EsAzArpBiAmahUKqVSOWvWLMPTgO3t\n7WvWrAkKCtq+fTvzUKPR1NbWhoWF4Z3LaIQto+Mdj8eztLQkhPj6+gqFwh9//LGoqCgoKIjZ\ncgMAg0O/buNwOMgyALNCigGYQ3t7++bNmwsKCi5duqTX611dXSdMmEAIEQgEjY2NxcXFCxYs\nsLa2pgcLhUJXV1dUg6MUCkL4/zCVAphEa2vrZ599lpmZee7cudbWVj8/P3oSJcgyADNDigGY\nikAgmDlzJofDuXv3bmlp6fnz51tbW8Visb29/SuvvPL999/z+fzAwEC2wwQTQEEI/wemUoAh\n0mq1H3zwQX19PUVRPT099fX1RUVFM2fOtLGxoQcgywDMCikGMHRarfbJkydisTg4ODguLs7R\n0bG5ubmsrOzChQs1NTVubm7Nzc2VlZVvvvkm7pYYA1AQgjFmKhWLxX5+fmyHAzDKHDt2rKqq\nysvLKzU19a233urq6qqsrLx+/fqsWbP614TIMgBzQIoBDNrDhw/379//xRdfXLt2jZ65LC0t\nPT09o6Ojg4KCenp65HI5fe1nV1eXu7u7m5sb2yHDUKGpDDzf3bt3fXx82I4CYOTS6/WEEPrk\nEk2j0UyePHnt2rV9fX0HDhxgyj+6IZuDg0NGRoZYLGbGI8sAzAopBvCympqakpOT29ra7O3t\n33zzzcjISAcHB6MxHR0dBQUFFy9ebGlpCQgIyMjIYCVUMCGsEMLz9c9/AGDo9frdu3dfu3Yt\nPDyc3i2jVqu3bt2qVCqbm5sXLlwYHBzMDJZKpYSQkpISo3VCZBmAWSHFAF6KTqdLTk5ubm72\n9fXNyMgIDg4WCoX9hwkEAn9//2XLlmm1Wnpew8bs0Q67fgEAXpper+/s7KypqXnw4AH9RCgU\nCoXCwsLClpYWKysro/EJCQkJCQkajSY5OZn5FQAAgJHjhx9+UKlUYrH4b3/7G1PjKRSK7Ozs\nCxcu9Pb2Gg7mcDiLFy8mhOTn57MQK5iU5W8PAQCA/0sgEHz00UctLS0uLi7Nzc0ODg4ikSgj\nIyM5OVmtVstksmXLlllYWBj+SkJCAiEkNzf3xo0bv/vd71gKHAAA4Pnu3r1LCFm6dCm9MKhS\nqQ4dOlRVVWVhYdHb21tUVJSenm54sYStrS0h5Pbt22wFDKaCFUIAgMEQCARubm5NTU1btmzZ\ntWtXb28vXRO6uLjcu3fviy++6H9COyEhISMjA9UgwEuhKAr9DgCGwZQpUwghCoVCqVTm5ORs\n2LCBoqjMzMycnByxWHzr1q26ujpmcF9f34kTJwghhmfjYZTCCuGYpdfrZTJZdXU1h8Px8/OL\niIjg8/lsBwUw1ohEIrFYXFJSsmvXrg8//JBZJywsLCSEJCUlGd3SGxAQwFKkACNdb28vl8s1\nTJnW1tasrCy5XM7n8994442VK1cyR3ABwOTi4uJKS0vLysrKyspsbW3XrFkTExPD4XAoiqL3\nvPT19TGDf/rppxs3bgiFwlWrVrEXMpgGuoyOTU1NTenp6Uqlknni6Oi4efPm/v3W1Gq1i4vL\n8EYHMKZ0d3fv2LHj9u3boaGhH374oYWFhVarpfeOLly4sH9NCAD90Y2a7OzsmJTRarWbNm1q\na2tjxojF4r///e/9lyMwkQGYSm9v782bN3t7ewMDA5mOMv/973+PHDkiEon+9a9/GZ6GKCkp\nmThxore3N0vBgsmgy+gY1NHRsW3btqamJmdn5/j4+NDQ0GfPnjU0NFy5cuW1115zdHRkRspk\nsrS0NGtrazTmBhg0S0vLefPmVVVVKRSKhoaG8PBwoVAYHh5eWlqqUCg0Gk1oaChqQoCBdXZ2\nnj171jBlXuRKT4KJDMCkuFyui4uLq6srj8cjhFAU9c0339BbQ5OSkqZOnWo42MXFZfLkyWyE\nCSaGgnAMOn78uEKh8Pb2/vTTT6VSqbe394IFC3g8nlwuLy0tXbRoEbN39ObNmxUVFT4+PnRb\nfAAYnIFrQk9PTyxfAAxMIBAYvUY5cuSIlZXVnj17xGKxjY3NrFmzyPOub8FEBmAm5eXln3/+\neUFBAYfDSUxMjI6OZjsiMBcUhGNQZmamTqdLSUkxXAz09/dXq9W1tbVcLjcwMJB5GBgYGBUV\nxVKkAKMPRVG3bt0qKyt79OiRk5MTfQkh+fWa0MnJKTIykt2YAUYFKysrw5rwBa/0xEQGYA7t\n7e27du26d++eWCzesmULJrKxDWcIxxqKopYvX05R1Ndffz1hwgTDj2pqarZt2yaRSDIzM9kK\nD2BUa2lp+eSTT5g2a6+++uqmTZsMj0/0P0/IUqQAoxVzBJcQsmbNmuXLlxsNyM3Nzc3NdXBw\nyMjIQHtDAPPRaDS1tbVhYWE49TDm4dqJsYbD4Tg7OxNCDFsD0wQCASHk6dOnLIQFMPrRp3Pr\n6upEIlF8fPyyZcuam5tTUlLkcjkzhr6f0M/Pr6SkpLi4mMVoAUYp5voWQohMJjO6C5sQkpCQ\nkJCQoNFobty4wUaAAOOFg4PDnDlzUA2OB9gyOgbpdLqKioqff/45MjLScIHi3Llzd+7ckUql\n8+bNYzE8gFFq9+7dP/30k5+f365du0JDQ1taWkpLS/V6fXFxsaenJ/0ihvy/vaPOzs7YYAMw\nOMze0V9++aWtra1/WyapVCqVSiMiItiKEABgLEFBOAZ5eXnJ5fL6+vrq6urp06dbW1tTFJWX\nl5eTk8PhcJKSkhwcHNiOEWCUuXPnTnZ2toODw65du+zs7C5evJiVlUVRVFRUVH19ff+aUCKR\nsBswwKhmdJ6wf01oeEgeAACGAgXhGMTlcmfPnq1QKGpra8+fP19cXPzvf/+7qKiIELJ69Wos\nDwK8FJVKpdFoKioqKisr33//fQ8Pj+vXr2dmZlIU9ac//endd9/95Zdf7t+/b1QTAsAQ/WZN\nCAAAJoGCcGwSCATz58/X6XQNDQ1tbW3d3d2TJk1av379kiVL2A4NYDRpb2/ftm1bQUHBqlWr\neDxeXFzc48ePt2/frtPpEhIS4uPjCSH3799vbGzs7u4uKiqKiIgwvCENAIYCNSHA0Gk0mqys\nrJMnT5aUlNjY2OAaJOgPXUbHuO7ubqVSyePx3N3dMY8CvKyDBw8WFBRIpdK0tDT6As8zZ86c\nOHEiKCjoo48+osds2bJFr9f/8Y9/bGhoeOedd1iNF2AMYvqOpqamhoaGsh0OwGjS3t6+cePG\ntrY25klMTMy6deuYO5NoarUaheJ4Zsl2AGBeAoHAy8uL7SgARh+NRjN58uSysjInJ6fU1FS6\nGiSENDU1EUKYrdd5eXl37tyZM2dOaGgovqoCmAPdd7S4uBgpBvCysrOz29raPDw8VqxY8eTJ\nk5MnT3733XddXV0bN25k1glkMllmZuZ77723bNkydqMFtqAgBAAwplark5OTg4ODuVzu4sWL\nraysmI98fHy+//77ixcv0uXi+fPnORxOXFwci9ECjHkikWjp0qVsRwEw+ty8edPR0fHjjz8W\nCoWEkBkzZqSmpspkMkIIUxO2tbX19fU9fvyY3VCBRSgIAQCMCYVCoVBYWFhICDG6XD4yMlIm\nk1VWVu7YsYN+kpiYGBAQwEKUAAAAA+rr64uOjqarQUKIvb19enq6UU341ltv+fn5+fv7sxko\nsApNZQAAjDGtLDo7Ox8+fLhkyRLmuAWXy507d66lpWVPT49EIlm7dm1UVBS70QKMcHfu3Jk8\neTK9FqFSqf7xj38EBwcz27ABwLS0Wu3Ro0e/+uqrsrKyR48eBQQE+Pj4MJ8KBILw8HC5XK5Q\nKB48eDB79mwOh/PKK6+wGDCwDgUhAMBzMDWhSqVqbW2dNWsWc9zCwsIiICBg0aJFERERuGcC\nYGByuTwtLa2xsXH27NlqtTolJaWhoaGrq2vmzJlshwYwBmm12k2bNlVVVXV0dDQ2NnZ1dXV0\ndCxatMiwi4xhTTht2jRXV1cWA4aRAAXh6ICWwQDDj6kJKysr0fIeYHBsbGzkcnl5efn9+/f/\n85//aLXa6dOnb9iwwdISh1YATC8rK6umpkYikaxfvz4oKKi2traxsbGtrc1oCqNrQrFYHBkZ\nyWK0MELg2olR4AVbBhN0DQYwA6bl/cKFC5OSklATAryszs7O1NTUhoYGQsj06dO3b98+wH5R\nTGQAg0M3x05MTOTxeAcOHKDPDT58+DAlJQVTGAwMK4SjwJdfflldXe3h4ZGUlBQSElJXV1dZ\nWcls+2aGyWSytLQ0a2trw53iADBEuBobYBB6e3vLyspeffVVDoej1WrPnz/f3d1NCPH19Z07\nd+6vJREmMoDBUavVW7duVSqVLS0tMTExgYGB9HNMYfAijJeYYARiWgaHhIS88cYb+/btc3d3\nl8lk+/btM1zgRddgADOhr0FzcXEpLCwsLS1lOxyAkU4mk61bty49Pf3gwYMURU2aNGnatGlS\nqVQikVy5csVo8jKEiQxgcJjm2BqNZsKECYYfGU5hdEqyFSSMWFghHAXOnDkTFxfHvOx5bnso\nQoi/v39gYCAaHgKYA/2S1cnJCcctAAbQ29ublZV16tSpJ0+ehIWFLV++fPLkyRYWFnPmzJk/\nf35ERERFRUV5ebnRJpcbN27Y2dnx+XxMZACDY9gcu38XGcN1Qk9PT+zKBiMoCEeoQbQMJoSg\nazDAr9Hr9V1dXYbvTVUqlUajEYlEL/gXrKysvL29zRMdwBixf//+wsJCgUCwcePGFStWTJo0\niX5uYWFhYWHB5/PDw8OZmjA0NJTL5V6+fHnv3r1lZWULFiywtLTERAYwOEzV9/PPP/fvIoPX\nmjAAFIQjEVoGA5iWXq/fvXt3Xl7e3Llz6Zqwvb1927ZtBQUFoaGh9vb2bAcIMBZcv3791KlT\nlpaW6enpwcHBzx1jWBOWl5dXVVWdPn2aoqjY2NgZM2YMc8AAY8zAJwbxWhN+DQrCkQgtgwFM\niK4GS0pKenp6wsLCJk6cSAg5cuRIVVWVj49PbGws2t8DmMQ///nPlpaWd955p/+spFQqb9++\nrdPpRCIRn8+fN29eXV1dTU3N/fv3uVxuYmLi22+/zUrMAGMMusjAIODaCZbp9fpnz55ZW1vT\nP6JlMIBpMdWgjY1Nenq6RCJhsmzChAkHDhywsrJiO0aAMWLFihWdnZ379u3z8PBgHt65c+fo\n0aO1tbX0j8HBwR988IG1tTVFUUVFRUqlMiwsbOrUqexEDDBG4cIkeClYIWST0TY2tAwGMK3+\n1SCTZc3NzdHR0UyWAcDQXbp06dGjR97e3nRB2N3dffz48UOHDrW1tbm4uPj7+2s0GqVSWV9f\nHxUVxeFw3NzcpFIpvWgPACaELjLwUrBRijWGX1U1Go2NjQ3TMpgQ8tyWwcnJyfSneNkD8JuY\nFOPxeDt37pRIJMSgMTchxMLC4rm/iHuxAQYnNjb28OHDR44c0Wq1XC73woULGo3G3t7+vffe\nmz9/PiFEqVRu3LhRoVBUVlZOnz6d7XgBxjL6q2NxcXFoaCjbscBIhxVCdhgtXEybNo2gZTCA\n6TApRgjp6+uztbWlFwMNs+zhw4dLliwxzDKCe7EBhsDLy+vhw4d3796trKxUKBRdXV0RERHb\nt2/39fWlB9jb29+6dau5udnDwwMpBmBu6CIDLwgFIQv6b2NjPkLLYIChM0yxlStXVlVVVVVV\n9fT0GNWEKpWqtbV11qxZhll28+bNiooKHx8fqVTK3n8AMCpxOJzQ0FAfHx97e/uQkJB169bF\nxMQIBAJmgF6vz87O7u7ujomJmTJlCouhAgAAA01lhpvhNrY9e/YYnrxn4CgwwKD1f+Eil8s/\n/vjjnp6e+Pj4VatW0cMGyLKamhp/f3+WwgcYy3Jzc3Nzc0Ui0dGjR3k8HtvhAAAAIVghHGa/\nto3NCLrIAAxafn7+uXPnDJffnZ2dvby8ioqKnrtO2D/LcC82gDl89913J06cIIRs2rTJ3d2d\n7XAAAOB/oSAcPgNvYzOCmhBgcDw8PHQ63erVqw03Y79sTQgAJvTs2bPDhw+fPn2aEPLuu+8u\nXryY7YgARg2NRpOVlXXy5En6CyRaSIA5oCAcJkbb2MLCwvp/PTWCLjIAg8DhcGbMmCESiYye\n/2ZNiCwDMLne3t68vLzdu3dXV1fz+fyNGzfGxMSwHRTAqNHe3v7Xv/719u3bnZ2dDx48uHr1\nant7e3BwsNHrS7VabWdnx1aQMAagIBwmL7iNzQi6yACY0AA1IbIMwBy4XO7Vq1crKyvDwsK2\nbt2KXk0AL+XLL7+srq728PBISkoKCQmpq6urrKx88ODB7NmzmZoQzbFh6FAQDpMX38ZmBC2D\nAUzo12pCZBmAmQQHB0dERMTGxmIFA+BlHTp0yM7Obu/eve7u7lOnTp0/f75cLlcoFIY1IZpj\nw9ChIBwmL7WNDQDMB0kHMMxQCgIMzpkzZ+Li4ph5SiAQhIeHG9WE/v7+gYGBUVFR7IYKoxoK\nQvbh6ynAMGOSTiqV4pUqAACMHFqt9ujRo1999VVZWdmjR48CAgIM94I+tyZEc2wYIhSEIwJq\nQoBh5uzsHBERERYWxnYgAAAA/0ur1W7atKmqqqqjo6OxsbGrq6ujo2PRokVcLpcZY1gTTps2\nzdXVlcWAYWxAQThSoCYEGGa2trZshwAAAOORXq/v6uqaMGGC0fOsrKyamhqJRLJ+/fqgoKDa\n2trGxsa2tjaji5HomlAsFqMdGpgE97eHwHB5/fXXU1JSeDwej8djOxYAAAAAMD36KrLU1NTH\njx8zDzUaDUVRFRUVjo6OGRkZM2fOXLBgwb59+1xcXAoLCw8ePEhRlOEfsbe3xyUuYCpYIRxZ\nsI0NAAAAYKxiLqbu6ekJCwubOHEiIUStVm/dulWpVLa0tMTExDDbxAwvy9VoNEbrhACmghXC\nEcfZ2ZntEAAAAADAxJhqkL6YeurUqfRzoVAoFAoLCws1Go3RPlKRSJSRkfFr64QAJoGCEAAA\nAADAvIyqQcOLqZmqjxBy+fLl3t5ew180rAlLS0uHO24YBzh40wAAAAAAYD5MNcjj8fbs2ePh\n4dF/jFarTU5OVqvVCxcuTEpKMtodqtVqi4uLly5dOlwhwziCM4QAAAAAAObCVIOEkL6+Pltb\n2+c2kx/4xKCVlZW3t/fwBQ3jCQpCAAAAAACzMNwpunLlyqqqqgEuGEMXGWAFCkIAAAAAANMz\nOjcYFhb2m5dOoyaE4YeCEAAAAADA9PLz88+dO2fYRcbZ2fmlakJPT0+62QyA+aAgBAAAAAAw\nPQ8PD51Ot3r1asOeoi9eEzo5OUVGRg5jvDBOocsoAAAAAMCwksvlH3/8cU9PT3x8/KpVq9gO\nB8Y1rBACAAAAAAyrF1knBBgeKAgBAAAAAIYbakIYIVAQAgAAAACwADUhjARctgMAAAAAABin\nXn/99ZSUFB6Px+Px2I4Fxik0lQEAAAAAYFNTU5OzszPbUcA4hYIQAAAAAABgnMKWUQAAAAAA\ngHEKBSEAAAAAAMA4hYIQAAAAAABgnEJBCAAAAAAAME6hIAQAAADxhoiMAAAAFElEQVQAABin\nUBACAAAAAACMU/8DgCTcxnt5LvcAAAAASUVORK5CYII=", "text/plain": [ "plot without title" ] @@ -1177,32 +1095,119 @@ } }, "output_type": "display_data" - }, + } + ], + "source": [ + "IPCC_Table$DIFF_CCI_IPCC <- IPCC_Table$CCI_mean - IPCC_Table$AGB\n", + "IPCC_Table$SD_CCI_IPCC <- sqrt((IPCC_Table$CCI_stdev)^2 + (IPCC_Table$Uncertainty)^2)\n", + "IPCC_Table$IN_AGB_CI_CCI <- 1\n", + "IPCC_Table$IN_AGB_CI_CCI[abs(IPCC_Table$DIFF_CCI_IPCC) > 2*IPCC_Table$SD_CCI_IPCC] = 0\n", + "IPCC_Table$Tval_CCI_IPCC <- IPCC_Table$DIFF_CCI_IPCC/IPCC_Table$SD_CCI_IPCC # plot the t-values \n", + "\n", + "SUBSET <- 'Continent'\n", + "SUBSET_AGE <- 'AGE'\n", + "for (i in 1:nrow(unique(IPCC_Table[SUBSET]))){\n", + " if (i==7) { for (f in 1:nrow(unique(IPCC_Table[SUBSET_AGE]))){\n", + " WIDTH <- c(2.8,4,3.5,4,2.8,3.3,2)\n", + " HEIGHT <- c(3.1,3.1,3.1,3.1,3.1,3.1,3.1)\n", + " W <- WIDTH[i]\n", + " H <- HEIGHT[i]\n", + " # if (as.character(unique(IPCC_Table[SUBSET])[i,1])==\"Oceania\") {ll = 1.5}\n", + " # else{ll = 1}\n", + " IPCC_Table_SUBSET <- IPCC_Table[(IPCC_Table[SUBSET] == as.character(unique(IPCC_Table[SUBSET])[i,1])) & (IPCC_Table[SUBSET_AGE] == as.character(unique(IPCC_Table[SUBSET_AGE])[f,1])),]\n", + " IPCC_Table_SUBSET$GEZ_CODE <- as.numeric(IPCC_Table_SUBSET$GEZ_CODE)\n", + " IPCC_Table_SUBSET <- IPCC_Table_SUBSET %>% group_by(AGE) %>% arrange(GEZ_CODE, .by_group=TRUE) %>% arrange(desc(AGB), .by_group=TRUE) #arrange(desc(region_mean), .by_group=TRUE) #%>% group_by(GEZ_CODE)\n", + " IPCC_Table_SUBSET$AGE[IPCC_Table_SUBSET$AGE== 'Sec_gt20'] = 'Old secondary'\n", + " IPCC_Table_SUBSET$AGE[IPCC_Table_SUBSET$AGE == 'Sec_lt20'] = 'Young secondary'\n", + " IPCC_Table_SUBSET$'IPCC' = 'Tier 1 estimates'\n", + " CONT <- gsub(\"_\",\" \",as.character(unique(IPCC_Table[SUBSET])[i,1]))\n", + " AGEY <- as.character(unique(IPCC_Table[SUBSET_AGE])[f,1])\n", + " # if (CONT == \"Oceania\") {CONT <- \"Oc.\"}\n", + " if (CONT == \"Oceania\" & AGEY == \"Primary\") {AGEY <- \"Primary\"}\n", + " if (CONT == \"Oceania\" & AGEY == \"Old secondary\") {AGEY <- \"Old sec.\"}\n", + " if (CONT == \"Oceania\" & AGEY == \"Young secondary\") {AGEY <- \"Young sec.\"}\n", + " p <- ggplot() +\n", + " ggtitle(paste0(CONT,\",\\n\",AGEY)) +\n", + " geom_point(data=IPCC_Table_SUBSET, aes(x=1:nrow(IPCC_Table_SUBSET), y=AGB, color=\"black\", size=IPCC),alpha=0.35,color=\"black\") + \n", + " geom_errorbar(data=IPCC_Table_SUBSET, aes(x=1:nrow(IPCC_Table_SUBSET), ymin=AGB-Uncertainty, ymax=AGB+Uncertainty, color=\"black\",alpha=IPCC),alpha=0.35,color=\"black\", width=0.5) +\n", + " geom_point(data=IPCC_Table_SUBSET, aes(x=1:nrow(IPCC_Table_SUBSET), y=region_mean), size=2, shape=8, color=\"darkorchid4\") + \n", + " # geom_errorbar(data=IPCC_Table_SUBSET, aes(x=1:nrow(IPCC_Table_SUBSET), ymin=region_mean-region_stderr, ymax=region_mean+region_stderr), width=0.5,color=\"darkorchid4\") +\n", + " geom_errorbar(data=IPCC_Table_SUBSET, aes(x=1:nrow(IPCC_Table_SUBSET), ymin=region_mean-GEDI_SD, ymax=region_mean+GEDI_SD), width=0.5,color=\"darkorchid4\") +\n", + " geom_point(data=IPCC_Table_SUBSET, aes(x=1:nrow(IPCC_Table_SUBSET), y=CCI_mean), size=2, shape=8,color=\"darkorange2\") + \n", + " # geom_errorbar(data=IPCC_Table_SUBSET, aes(x=1:nrow(IPCC_Table_SUBSET), ymin=CCI_mean-CCI_stdev, ymax=CCI_mean+CCI_stdev), width=0.5, color=\"darkorange2\") +\n", + " geom_errorbar(data=IPCC_Table_SUBSET, aes(x=1:nrow(IPCC_Table_SUBSET), ymin=CCI_mean-CCI_SD, ymax=CCI_mean+CCI_SD), width=0.5, color=\"darkorange2\") +\n", + " theme_bw() +\n", + " coord_cartesian(ylim=c(0,600)) +\n", + " # ylim(0, 600) +\n", + " ylab(\"AGBD [Mg/ha]\") +\n", + " scale_x_continuous(breaks=1:nrow(IPCC_Table_SUBSET) , labels=IPCC_Table_SUBSET$GEZ_NAME) +\n", + " # xlab(\"Various ecozones in different continents, displayed in groups of forest age classes\") +\n", + " # theme(legend.position=\"bottom\") +\n", + " # guides(color = guide_legend(override.aes = list(size=4),title = \"Space-lidar estimates\")) +\n", + " # scale_color_brewer(palette=\"Dark2\") +\n", + " theme(\n", + " legend.position=\"none\",\n", + " text=element_text(size=13),\n", + " legend.text=element_text(size=13),\n", + " legend.title=element_text(size=13),\n", + " axis.title.y=element_text(size=11),\n", + " axis.title.x=element_blank(),\n", + " axis.ticks.x=element_blank(),\n", + " panel.grid.major = element_blank(), \n", + " panel.grid.minor = element_blank(),\n", + " panel.background = element_blank(),\n", + " axis.text.x=element_text(angle=45,hjust=1, vjust=1,size=11.75),\n", + " plot.margin = margin(t=-1.4,r=0,b=0,l=0.5, unit = \"cm\"),\n", + " plot.title=element_text(hjust=0.95, vjust=-1.8, margin=margin(t=40,b=-20),size=12),\n", + " ) \n", + " \n", + " # options(repr.plot.width=12, repr.plot.height=5)\n", + " print(p)\n", + " ggsave(p, file=paste0(\"/projects/my-public-bucket/Data/Harris_et_al_PAPER/_PLOTS/\",as.character(unique(IPCC_Table[SUBSET])[i,1]),\"_\",as.character(unique(IPCC_Table[SUBSET_AGE])[f,1]),\"_age_classes.png\"), width=W, height=H)\n", + " }\n", + "}}\n", + "nrow(IPCC_Table)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "73140caf-9527-4b42-938b-74e99bfab0fd", + "metadata": {}, + "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ + "Warning message in geom_errorbarh(aes(xmin = AGB - Uncertainty, xmax = AGB + Uncertainty), :\n", + "“\u001b[1m\u001b[22mIgnoring unknown parameters: `width`â€\n", "Warning message:\n", - "“\u001b[1m\u001b[22mUsing \u001b[32msize\u001b[39m for a discrete variable is not advised.â€\n", + "“\u001b[1m\u001b[22mRemoved 80 rows containing missing values (`geom_point()`).â€\n", + "Warning message:\n", + "“\u001b[1m\u001b[22mRemoved 93 rows containing missing values (`geom_errorbarh()`).â€\n", "Warning message:\n", - "“\u001b[1m\u001b[22mRemoved 2 rows containing missing values (`geom_point()`).â€\n", + "“\u001b[1m\u001b[22mRemoved 80 rows containing missing values (`geom_point()`).â€\n", "Warning message:\n", - "“\u001b[1m\u001b[22mUsing \u001b[32msize\u001b[39m for a discrete variable is not advised.â€\n", + "“\u001b[1m\u001b[22mRemoved 93 rows containing missing values (`geom_errorbarh()`).â€\n", + "Warning message in geom_errorbarh(aes(xmin = AGB - Uncertainty, xmax = AGB + Uncertainty), :\n", + "“\u001b[1m\u001b[22mIgnoring unknown parameters: `width`â€\n", + "Warning message:\n", + "“\u001b[1m\u001b[22mRemoved 80 rows containing missing values (`geom_point()`).â€\n", "Warning message:\n", - "“\u001b[1m\u001b[22mRemoved 2 rows containing missing values (`geom_point()`).â€\n" + "“\u001b[1m\u001b[22mRemoved 93 rows containing missing values (`geom_errorbarh()`).â€\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAAFoCAIAAADIFpV9AAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdd0BTV/sH8HOzSAAJe8oGF4iCOCvy2uIABbc4cOvPRVur1rrqeB0drr7V\nusA6a1WqIoKIWqXaOhABtSIiiIjIXmEmIcnvj9umKSoEvBjQ7+ev5NznnvPc4MjDveccSqFQ\nEAAAAAAAAHj/sDSdAAAAAAAAAGgGCkIAAAAAAID3FApCAAAAAACA9xQKQgAAAAAAgPcUCkIA\nAAAAAID3FApCAAAAAACA9xRH0wloWHFxcUJCgqazAAAAAAAA0ID3vSBMT08PCQnp27evphMB\nAAAAAAB4q8LCwt73gpAQ0qFDh48//ljTWQAAAAAAALxV0dHRmEMIAAAAAADwnmpxdwgLCwt/\n/vnnhISEsrIyoVDo4uIyf/58gUBAH5XL5eHh4TExMQUFBcbGxgMHDhw5ciSL9U9Z22AAAAAA\nAAAA0FpWQZiZmbl8+XKpVNq9e3cLC4uKioqUlJSqqiplQRgaGhoZGdmnT5+AgIDk5ORDhw4V\nFhbOmTNH2UODAQAAAAAAAEBrQQWhXC7ftGlTmzZt1q5da2Zm9nJAVlZWVFSUt7f3okWLCCFD\nhgzhcrnR0dG+vr62trbqBAAAAAAAwBtKSkpyd3efMmXKgQMHNJ0Lk54/f25tbT1s2LDw8HBN\n5/L2tKBnKePj4589ezZlyhQzM7Pq6mqJRFIn4Nq1awqFwt/fX9kSEBCgUCiuXr2qZgAAAAAA\nQGtXU1NDURRFUQ4ODi9/ZzY2NqYoipGB0tLSKIoaN24cI73VsWHDBvoqHj161Bz9g5paUEF4\n584diqK0tbU//fTTwMDAMWPGLFu27MmTJ8qAtLQ0Npvt6OiobLG3t+fxeOnp6WoGAAAAAAC8\nMzIyMnbs2KHpLJpCoVDs27ePLlxDQkI0nc5fTE1Nr1279tVXX2k6kbeqBT0y+uLFCzabvXHj\nRg8Pj9GjRxcUFJw4cWL58uXfffedubk5IaS4uFgoFLLZbOUpFEUZGBgUFRXRbxsMoH333Xe5\nubn0az6f3+wXBgAAAADANCMjI5lMtn79+mnTphkYGGg6nca5cOFCRkbG1KlTo6OjDx48uHHj\nRh6Pp+mkCI/Hew/3J29Bdwirq6tra2tdXFy++OILLy+vkSNHLl26tKqq6uTJk3SAWCzmcrl1\nzuLxeGKxWM0A2s2bNy/97fHjx81zNQAAAAAAzUhXV3fFihUlJSUbNmxoMPjYsWNeXl56enoC\ngaBz585ff/216jfkpKQkiqKmTp2anp4+btw4U1NTFos1fPhwZ2dnQsjx48epvx05ckS126ys\nrAkTJhgbGwsEgu7du587d07N5Om7grNmzZo4cWJhYeHp06frBChTSktLGzlypKGhoZ6enp+f\nX2pqKiEkJydn6tSpZmZmAoGgb9++d+7cqXP6jRs3Ro0aZW5uzuPxLC0tg4KCUlJS6r/emzdv\nPn/+nKKo4cOH1+nt5s2bY8eOtbS01NLSsrCwGDhw4IkTJ1SvZfjw4fb29gKBQF9f39vbOyws\nTM3PoSVoQXcItbS0CCH9+/dXtnTt2tXAwODPP/9UBlRXV9c5SyKRKO/yNRhA+/7776VSKf36\n4cOH165dY+4iAAAAAADeko8//viHH37YsWNHcHCwnZ3d68KWLFmyadMmU1PToKAgHR2dqKio\nZcuWnT9//uLFi6p3U7Kysnr27GlsbDx48ODKysqRI0d6eXktXry4V69e8+fPp2M++OAD1fju\n3btbWVmNHTs2Pz8/PDzc398/NjbWy8ur/rTz8vIiIiLatWvXp08fPT29rVu37t27NzAw8OXI\nZ8+e9e7d28nJacKECSkpKdHR0UlJSVevXu3fv7+xsfGoUaOePXsWFRU1YMCAJ0+e6Ovr02eF\nhITMmTPHyMho6NChpqamGRkZYWFh4eHhv/76a8+ePV93va97cnD37t3z58/ncrkBAQFOTk75\n+fnx8fE7d+4cO3YsHTB79uwePXr079/fzMwsPz8/MjJy7Nix33zzzZIlS+r/HFoKRYuxZcsW\nf3//+/fvqzZ+8sknQUFB9Ou1a9cOHz68trZWeVQul48aNWr16tVqBrwsLi5u1apVzF0EAAAA\nAEDzom+B2NraKhSKo0ePEkLGjx+vPGpkZKT6JZ9eXtHe3j4/P59ukUqlvr6+hJANGzbQLYmJ\niXRpEBwcrPpdmn6YLjAwsE4CyviVK1fK5XK68fDhw4QQf3//BvOnJ+lt3LiRfuvh4UFR1OPH\nj185xNq1a5WNM2fOJIQYGBh8+umnynFXrlxJCPn666/pt8nJyVwud9CgQVVVVcoT7969q6ur\n6+bmVv/1ZmVlEUKGDRumeiKbzTY0NExOTlZNLysrS/n62bNnqocqKys9PT0FAkFxcXGDH4XG\n+fr6tqBHRulb0oWFhcoWhUJRVFQkFArpt46OjjKZTHWZmYyMDIlEolxFpsEAAAAAAIB3ybhx\n4zw9PY8dOxYfH//KgB9//JEQsmrVKhMTE7qFw+Fs2bKFoqjQ0FDVSGNj42+++UZ1PY762djY\nrF69Wrmi6cSJE4VCYVxcXP1nKRSK0NBQFos1efJkumXq1Kl048vBtra2K1asUL6dOnUq/eKr\nr75Sjks3JiUl0W937twplUqXL19eWVlZ+DdLS8uPPvro3r17mZmZjbreXbt2yWSyNWvWdOzY\nUbW9bdu2ytfW1tb0dZWVleXl5YlEohEjRlRXV7eW5xBbUEHYu3dvDodz/vx5uVxOt/z+++8i\nkcjDw4N+6+XlRVHU2bNnlaecPXuWoijlXekGAwAAAAAA3iUURW3evFmhUCxevPiVAQkJCeTf\n07IIIR07drSwsMjIyCgtLVU2du3aVVtbW/2h3d3dOZx/JqBRFNW2bduSkpL6z7p8+XJ6evqA\nAQOsrKzolgkTJvB4vAMHDihndakOoVqw0ae4uLgIBII6jc+fP6ff3rhxgxDi7e1t8m9nzpwh\nhOTk5DTqem/evEkIoW+ovk5iYuKwYcOEQqG+vr65ubmFhQVdxGZnZ9ffeQvRguYQGhsbjxs3\n7siRI8uXL+/Vq1dBQUF0dDT9cDAdYGNj4+fnFxUVJZVKXV1dk5OTr127NnjwYOUD0w0GAAAA\nAAC8Y7y9vQMCAiIiIs6ePau6IzetrKyMEEIv2q/KwsLixYsXZWVlyql3lpaWjRpXeaISh8OR\nyWT1n7V3716icq+PEGJkZOTv73/y5MkzZ86MHj1aNVj5qKCy/9c1KotJen+BiIgI1aJRSfVG\nnzrXSxfMytr1ZQkJCX379uXz+XPnzu3SpQu95cGlS5e2bNlSZ2HLFqsFFYSEkLFjxxoYGERE\nRBw+fJjP53t5eU2ePFn1Rz5r1iwjI6MLFy7cunXLyMho0qRJI0eOVO2hwQAAAAAAgHfMN998\nc+7cuS+++MLPz6/OIfq7dG5urq2trWo7fa9M9Zs2U9vZ16OgoCA8PJwQMn78+PHjx9c5unfv\n3joFYRPQV2Rubt69e/f6I9W5Xrrozc7OdnJyemXA1q1bq6urIyIifHx8lI0vr3rakrWsgpAQ\nMmDAgAEDBrzuKIvFGj16dD1/UBoMAAAAAAB4x3To0GHmzJm7d+9+eSaeu7v7vXv3YmNjp0yZ\nomx89OhRTk6Ovb39y3f5VNGPazZ40099Bw8elEgk3bp169q1a51DERERly5dysjIsLe3f5Mh\nevXqdffu3WPHjjVYEKrZW1JSUnR09Mcff/zKgKdPn9Jhqo2XL19+86HfmhY0hxAAAAAAAJpm\n7dq1bdq0Wb16dZ0nFadPn04IWbduHf0sJSGktrZ20aJFCoVixowZ9fdJL1j67NkzppKk69Wd\nO3eGvmT27NmvW1qmUYKDgzkczvbt2+tUZRUVFcePH29sb/PmzWOz2WvWrFHdxpCoTFl0cHAg\nhFy8eFF56OjRoy8XhF9//fXgwYPV36fxbUJBCAAAAADQ6pmami5ZsiQvL6+iokK1vV+/fgsX\nLkxPT3dxcQkODl6yZEmXLl2ioqK8vLw+//zz+vvU09Pr2bNnXFzc+PHj165du379euUO4U0Q\nGxv76NGjzp079+jR4+WjM2bMoChq//79tbW1TR6CEOLq6rpnzx6FQuHj4zN48OBly5YtWbIk\nICDA3Nx83bp1je2tc+fO27dvLy0t7dq169ixY1esWDFnzhxPT89JkybRAcHBwWw2e/z48VOm\nTFm1alVAQMDkyZPHjBlTp5+kpKSYmBh6W4uWpsU9MgoAAAAAAE2wcOHC3bt3v7y45ZYtWzw8\nPHbu3Hnw4EGpVOrk5LR+/fpFixbxeLwG+zxy5Mhnn30WExNz/PhxhUJhZ2fn6uratPRCQkII\nIfRegi+zs7Pz8fG5ePHi2bNnR4wY0bQhaNOnT/fw8Ni6dWtsbOyVK1d0dHQsLS0nTZoUGBjY\nhN7mzp3r5ua2efPm2NjY8PBwY2NjNzc35VX06NHj0qVLq1atoudGenp6Xrhw4cWLF2FhYaqd\npKamcrncgQMHvsl1NRNKoVBoOgdNun37dmRk5Nq1azWdCAAAAAAAvIOKi4tNTEzmzJnzww8/\naDqXuvz8/PDIKAAAAAAAQHO5cuWKlpbWypUrNZ3Iq6EgBAAAAAAAaC6jRo2qqqqysLDQdCKv\nhoIQAAAAAADgPYWCEAAAAAAA4D2FghAAAAAAAOA9hYIQAAAAAADgPYWCEAAAAAAA3nfGxsZ2\ndnaazkIDUBACAAAAALxtw4YNoyhq+/btLx+6efMmh8Np165dZWXl208M3jcoCAEAAAAA3rbQ\n0FAzM7MlS5YkJyertldWVgYFBVEUdeTIER0dHU2lB+8PFIQAAAAAAG+biYnJ/v37a2pqJk6c\nKJFIlO0LFixIT09ftWpVjx49NJgevD9QEAIAAAAAaICvr+/8+fOTkpJWrlxJt0RERISGhvbp\n02f58uV0y7Fjx7y8vPT09AQCQefOnb/++muxWKzsITIykqKoNWvW1OlZX1/fyclJ+TYpKYmi\nqKlTp2ZlZU2YMMHY2FggEHTv3v3cuXN1TpTJZFu2bOnQoQOfz7e2tl6wYEFFRYU6k+uio6MH\nDBhgaWmppaVlYWHRt2/fTZs2qQbcuHFj1KhR5ubmPB7P0tIyKCgoJSWlTic3b94cO3asspOB\nAweeOHFCNaD+T0P9y5TL5d99913Hjh3py/zss88qKipevqiQkJDhw4fb29sLBAJ9fX1vb++w\nsDDVAOWI6enp48aNMzU1ZbFYP/zwA0VRAQEBdXpTKBTt2rXT1tYuKSmp/8N8yziaTgAAAAAA\n4D21adOmy5cvb9myxc/Pr1OnTjNnzmzTps3hw4fZbDYhZMmSJZs2bTI1NQ0KCtLR0YmKilq2\nbNn58+cvXrzI5XIbO1ZWVlb37t2trKzGjh2bn58fHh7u7+8fGxvr5eWljPm///u/H3/80c7O\nLjg4mMVinTp16s6dOzKZrP6eDx06NGXKFHNz82HDhpmamhYUFDx48CA0NPTzzz+nA0JCQubM\nmWNkZDR06FBTU9OMjIywsLDw8PBff/21Z8+edMzu3bvnz5/P5XIDAgKcnJzy8/Pj4+N37tw5\nduxYOkDNT0Ody5w7d+7evXttbW2Dg4Mpijp16lR8fPzLlzl79uwePXr079/fzMwsPz8/MjJy\n7Nix33zzzZIlS+p8sD179jQ2Nh48eHBlZeUHH3xAV6FZWVnW1tbKsCtXrjx+/HjKlCkGBgZq\n/sjeEsX7LS4ubtWqVZrOAgAAAADeU4mJiTwez9raetCgQYSQH3/8kW6/evUqIcTe3j4/P59u\nkUqlvr6+hJANGzbQLWfPniWErF69uk6fQqHQ0dFRdQj6m//KlSvlcjndePjwYUKIv7+/MuzS\npUuEkC5dulRUVNAtVVVVnp6ehBBbW9t6LqFPnz5sNjs7O1u1sbi4mH6RnJzM5XIHDRpUVVWl\nPHr37l1dXV03NzflWzabbWhomJycrNpJVlaW+p+Gmpd55cqVOpdZWVnp7u7+8mU+e/ZM9W1l\nZaWnp6dAIFBemnLE4ODg2tpaZeT+/ftf/rnQle3169df+zlqgq+vLwpCFIQAAAAAoEnffPMN\nXVeMHDlS2Th16lRCyP79+1Ujk5OTKYqyt7en3zaqILSxsZFKpcpGuVwuFArNzMyULZMnTyaE\nhIeHq3Z1/vx5dQpCHo+Xl5f3yqPBwcGEkN9++63g34YNG0YIefr0qUKhmDNnDiHk+++/f90Q\n6nwaal7mlClTCCGnT59W7SoqKup1lymXy0tLS3Nzc3NycjZs2EAIOXPmjOqIxsbGlZWVqqdU\nVVUZGhpaWVkpq8S8vDwej9e5c+fXXaCm+Pr6Yg4hAAAAAIAmLV682NzcnBCyefNmZWNCQgIh\npH///qqRHTt2tLCwyMjIKC0tbewo7u7uHM4/88Uoimrbtq3qfDa6vFF9tJIQ0rdv3wZ7Hj9+\nvEQicXFxCQ4O/uWXX3Jzc1WP3rhxgxDi7e1t8m9nzpwhhOTk5BBCbt68SQih7/i9kvqfhpqX\n2a9fP9Wu6rxVRg4bNkwoFOrr65ubm1tYWKxYsYIQkp2drRrWtWtXbW1t1RaBQDB16tTs7Gy6\nziSE7N+/XyKR0HVvS4M5hAAAAAAAmsRisbS0tAghAoFA2VhWVkYIoQtFVRYWFi9evCgrK9PX\n12/UKC/Hczgc1YlzIpGIw+EYGhqqxujo6DS4+0VwcLCBgcEPP/ywa9euH374gRDSu3fvTZs2\nffDBB4SQoqIiQkhERITq1Sl17NiREEJXdFZWVq8bQv1Po8HLLCsre/kydXV161xmQkJC3759\n+Xz+3Llzu3TpIhQK2Wz2pUuXtmzZorqSDSHE0tLy5YTnzp27bdu2PXv2BAQEKBSKkJAQHR2d\noKCg112gBqEgBAAAAABocYRCISEkNzfX1tZWtZ2+pUYfZbFYhJDa2lrVAKlUWllZaWxs3NgR\n9fT0MjMzi4uLVYulyspKdXqbOHHixIkTRSLRjRs3wsPD9+3b5+vr++DBA2trazpVc3Pz7t27\nv+50uorLzs5WXRxVlTqfhpqEQuHLl1lRUVHnMrdu3VpdXR0REeHj46NsvHPnzssdUhT1cqOT\nk5OPj8/58+czMzNTU1PT09NnzJihp6enfp5vDR4ZBQAAAABocehlTmJjY1UbHz16lJOTY29v\nT1dQ9HqVWVlZqjGJiYl1SkQ1de3alRDy+++/qzbWeVs/PT29QYMG7dq1a9GiReXl5ZcvXyaE\n9OrVixBy7Nixek6kY6Kjo18XoM6noSa6K3qVGqU6bwkhT58+VSamRF+RmubNmyeXy0NDQ/fs\n2UMImT17tvrnvk0oCAEAAAAAWpzp06cTQtatW0c/ckkIqa2tXbRokUKhmDFjBt3SuXNnPp9/\n5swZ5bS9srKyhQsXNm1EelGZNWvWVFVV0S01NTWrVq1q8MSLFy/WKUELCwsJIfTMuuDgYA6H\ns3379jrVVEVFxfHjx+nX8+bNY7PZa9asqbM54fPnz+kX6nwaaqIXlVmzZk1lZSXdUlVV9eWX\nX9YJc3BwoC9N2XL06NFGFYT+/v5t27bdu3dvRESEh4dHPTdINQuPjAIAAAAAtDj9+vVbuHDh\n1q1bXVxcRo8era2tHRUVlZyc7OXlpdzfT1dXl56r1rVrV39/f4lEcvHixW7dujXt0UQfH58p\nU6YcPHjQ1dV11KhRFEWdPn3a3NxcX1+ffjb1dcaPH8/hcLy9vW1tbdls9q1bt65cueLi4jJ0\n6FBCiKur6549e2bPnu3j4zNw4EB3d3eZTJaSknL58mU7O7vAwEBCSOfOnbdv3x4cHNy1a9eA\ngABnZ+eioqL4+Pg2bdrQu0So82moqX///rNmzQoJCVFe5qlTpywtLevcZgwODj569Oj48eMD\nAwNtbW2TkpLOnTs3ZsyYOnvT14PNZv/f//0fXVG32NuDhKmCkF5MVn2LFy+2s7NjZGgAAAAA\ngHfSli1bPDw8du7cefDgQalU6uTktH79+kWLFvF4PGXMpk2b9PT0Dhw4cPDgQUtLyxkzZnz5\n5ZempqZNG3Hfvn0uLi4hISHff/+9iYnJqFGj1qxZY2pqWmfmXh3r16+PiYmJj4+PjIzkcrm2\ntrbr16+fP3++chWZ6dOne3h4bN26NTY29sqVKzo6OpaWlpMmTaKrQdrcuXPd3Nw2b94cGxsb\nHh5ubGzs5uY2c+bMRn0aatq9e3fHjh137969fft2ExOTMWPGrFu3rk550qNHj0uXLq1atSo8\nPJwQ4unpeeHChRcvXqhfENIXvmrVqjZt2kyYMKGxSb41lEKhYKCXV82krMeNGzfqPI+rKbdv\n346MjFy7dq2mEwEAAAAAaHHu3r3btWvXcePG/fzzz5rOpfWJjo728/ObM2fOrl27NJ3Lq/n5\n+TH2yGh4eDi9sGz9xGJx27ZtmRoUAAAAAACYUlhYqLrSZlVVFf1A5ogRIzSXVCv27bffEkLm\nz5+v6UTqw1hBKBQK1VnctqamhqkRAQAAAACAQWvWrImNjf3Pf/5jbm7+4sWLc+fOZWZm+vr6\njhkzRtOptSYJCQnnz5+/efNmbGxsYGCgq6urpjOqDzMF4Y0bNzp16qROpJaW1o0bN1r4hwIA\nAAAA8B4aPHhwamrqL7/8UlJSwuFw2rdvHxwc/OmnnzZ2gth77vr16ytWrNDX1x8/fvzOnTs1\nnU4DmJlD2HphDiEAAAAAALyf/Pz8sA8hAAAAAADAe6pZ9iFUKBSXLl26detWcXGxXC5XPfTd\nd981x4gAAAAAAADQWMwXhOXl5b6+vn/88ccrj6IgBAAAAAAAaCGYf2R09erVN27c2LhxY3Jy\nMiEkMjLyt99+GzhwYPfu3Z8+fcr4cAAAAAAAANA0zBeEp0+fHjt27LJly+zt7QkhRkZG/fr1\nO3funEKh2LFjB+PDAQAAAAAAQNMwXxBmZ2d7eXkRQlgsFiFEKpUSQths9rhx48LCwhgfDgAA\nAAAAAJqG+YJQR0eHLgJ5PB6fz3/x4gXdrqenl5uby/hwAAAAAAAA0DTMF4QODg6PHj2iX3fp\n0uXYsWMKhaK2tvb48eNt27ZlfDgAAAAAAABoGuYLwoEDB548eZK+SThz5szw8HAnJydnZ+df\nf/112rRpjA8HAAAAAAAATcN8Qbh06dJff/2V3n5w5syZmzdv5vP5urq6a9asWbp0KePDAQAA\nAAAAQNMwvw+hUCgUCoXKt4sWLVq0aBHjowAAAAAAAMAbYv4OIQAAAAAAALQKzN8hVJLL5eXl\n5QqFQrVRX1+/+UZ8l9y5c+fp06dqBisUCplMxmKx6K0+1OTv78/j8ZqSHAAAAAAAvBOYLwjl\ncvmePXu+//77J0+eSCSSOkfr1IfwOvTESzWDKysr79y5Y25u3qFDB/WHoCiqSakBAAAAAMA7\ngvmCcP369atXrzY1NfX39zc2Nma8//eEi4uLi4uLmsFlZWVisdjBwaFnz57NmhUAAAAAALxL\nmC8IQ0JCPDw8rl27pq2tzXjnAAAAAAAAwBTmF5XJy8ubMGECqkEAAAAAAIAWjvmC0MnJqays\njPFuAQAAAAAAgFnMF4QLFiw4dOiQSCRivGcAAAAAAABgEDNzCMPDw5WvTU1Nra2t3dzc5s6d\n6+joyOH8a4jhw4czMiIAAAAAAAC8IWYKwhEjRrzcuHTp0pcb1dx24tGjR0uWLFEoFBs2bOjc\nubOyXS6Xh4eHx8TEFBQUGBsbDxw4cOTIkaqb7zUYAAAAAAAAADRmCsKwsDBG+qHJ5fJdu3Zp\naWnV1NTUORQaGhoZGdmnT5+AgIDk5ORDhw4VFhbOmTNH/QAAAAAAAACgMVMQjh49urKyUkdH\nh5HeoqKi8vLy/Pz8Tp06pdqelZUVFRXl7e29aNEiQsiQIUO4XG50dLSvr6+tra06AQAAAAAA\nAKDE2LOUJiYmw4cPP3ToUElJyZv0U1JS8tNPPwUFBQmFwjqHrl27plAo/P39lS0BAQEKheLq\n1atqBgAAAAAAAIASYwXh559/npaWNmXKFDMzs0GDBu3ZsycvL68J/YSGhpqZmfn6+r58KC0t\njc1mOzo6Klvs7e15PF56erqaAQAAAAAAAKDEzCOjhJC1a9euXbv28ePHJ0+ePHXq1Jw5c+bN\nm9enT5+RI0eOHDlSzSc27969+/vvv3/11VevXAamuLhYKBSy2WxlC0VRBgYGRUVFagbQPvnk\nk8zMTPq1lZWViYlJYy8WAAAAAADgHcDw8pvOzs5Lly6Ni4t79uzZ1q1bWSzW4sWL7ezsPD09\nN27cmJKSUs+5tbW1u3fv9vb27tSp0ysDxGIxl8ut08jj8cRisZoBtMrKyvK/vbxuDQAAAAAA\nwHuiufZjsLa2/vTTT3/77bfc3Ny9e/caGxuvWbOmY8eOnTp1ioyMfOUpp06dKikpmTZt2uv6\n1NLSkkqldRolEomWlpaaAbR9+/Zd/tvcuXMbfW0AAAAAAADvhGbfoM/ExGTWrFnnz58vKCg4\nfPhwhw4dHj58+HKYSCQ6ceKEj49PTU1NTk5OTk5OeXk5IaSoqCgnJ4fevdDQ0LCsrEwmkynP\nUigUJSUlRkZG9NsGAwAAAAAAAECJsTmEDRIKhUFBQUFBQa88KhKJJBJJRERERESEavvWrVsJ\nISdOnODz+Y6OjvHx8U+ePHF2dqaPZmRkSCQS5SoyDQYAAAAAAACA0tsrCOtnZGT0xRdfqLbc\nvn378uXL48ePt7Gx4fF4hBAvL68TJ06cPXt24cKFdMzZs2cpivLy8qLfNhgAAAAAAAAASswX\nhHw+/5XtFEUJBAJbW9tBgwYtXrzY2NhY9ahAIPjggw9UW/Lz8wkhrq6unTt3pltsbGz8/Pyi\noqKkUqmrq2tycvK1a9cGDx5sZ2enZgAAAAAAAAAoMV8QDh069OHDh8nJydbW1u3atSOEPHr0\n6Pnz5506dWrbtm1qauo333xz5MiRW7duWVlZNbbzWbNmGRkZXbhw4datW0ZGRqyp5wAAACAA\nSURBVJMmTRo5cmSjAgAAAAAAAIBG0eu1MOiPP/7w9fXdtWvXhAkTKIoihCgUiiNHjsyfPz8m\nJqZ3795Hjx6dNGnStGnTQkNDmR26CW7fvh0ZGbl27VpNJ/JGysrKzp075+Dg0LNnT03nAgAA\nAAAArYOfnx/zdwiXLl06derUiRMnKlsoipo0aVJcXNyyZctiY2MnTJhw+fLlmJgYxocGAAAA\nAAAA9TG/7URCQoKbm9vL7W5ubvHx8fTrXr165eXlMT40AAAAAAAAqI/5gpDL5SYlJb3cnpiY\nyOVy6ddisVhHR4fxoQEAAAAAAEB9zBeEfn5+u3fv3rdvn3KDeJlMFhISsmfPniFDhtAtcXFx\nWPkTAAAAAABAs5ifQ7hp06abN2/OnDlz6dKlzs7OCoUiLS2tsLDQ0dHx22+/JYTU1NQ8e/Zs\nwoQJjA8NAAAAAAAA6mO+ILSyskpMTNy8efOZM2fu3btHCHFwcJg7d+7ixYv19PQIIXw+/8qV\nK4yPCwAAAAAAAI3CfEFICBEKhevWrVu3bl1zdA4AAAAAAACMYH4OIQAAAAAAALQKjN0hrKmp\nUSeMz+czNSIAAAAAAAC8CcYKQoFAoE6YQqFgakQAAAAAAAB4E0zOIeTz+b169WKz2Qz2CQAA\nAAAAAM2EsYLQ0dExPT09NTV16tSp06dPd3R0ZKpnAAAAAAAAaA6MLSrz+PHjy5cv9+/ff9u2\nbc7Ozh9++OFPP/1UXV3NVP8AAAAAAADALMYKQoqi+vfvf+TIkRcvXuzYsaOsrCwoKMjS0nL+\n/PkJCQlMjQIAAAAAAABMYX7bCX19/Xnz5t25cycxMTEoKOjnn3/u1q3b5s2bGR8IAAAAAAAA\n3kQz7kPo5OTUtWtXejJhRUVF8w0EAAAAAAAATcDkKqNKf/zxx759+06cOFFZWdm7d+/Q0NDA\nwMDmGAgAAAAAAACajMmCMDc399ChQz/++OOjR49MTU3nzJkzY8aMjh07MjgEAAAAAAAAMIWx\ngnDYsGHnzp1TKBQDBw7csGFDQEAAl8tlqnMAAAAAAABgHGMFYUREBJ/PHz58uJWV1Y0bN27c\nuPHKMKwuAwAAAAAA0EIw+choTU3NsWPH6o9BQQgAAAAAANBCMFYQ3r59m6muAAAAAAAA4C1g\nrCD09PRkqisAAAAAAAB4C5pxH0IAAAAAAABoyZgpCA8cOJCbm6tOpEwmO3DgQEFBASPjAgAA\nAAAAQJMxUxBOmzYtJSVFnUipVDpt2rT09HRGxgUAAAAAAIAmY2wOYXJyMp/PbzBMIpEwNSIA\nAAAAAAC8CcYKwvnz5zPVFQAAAAAAALwFzBSE27dvb1S8vb09I+MCAAAAAABAkzFTEAYHBzPS\nDwAAAAAAALw12HYCAAAAAADgPYWCEAAAAAAA4D2FghAAAAAAAOA9hYIQAAAAAADgPYWCEAAA\nAAAA4D2FghAAAAAAAOA91YwFoUwma77OAQAAAAAA4A0xXBAWFxevXr26W7duurq6HA5HV1e3\nW7dua9asKSkpYXYgAAAAAAAAeEPMbExPu3v37qBBg/Ly8gghbdq0sbKyEolECQkJCQkJISEh\n58+f79y5M4PDAQAAAAAAwJtg7A5hdXX1qFGjCgoKFi5cmJaWJhKJnj9/LhKJUlNTFyxYkJOT\nM3r0aLFYzNRwAAAAAAAA8IYYKwiPHz+enp6+ffv2LVu2ODo6KtudnZ23bdv23XffpaamhoWF\nMTUcAAAAAAAAvCHGCsKIiAg7O7s5c+a88mhwcLCNjc2ZM2eYGg4AAAAAAADeEGMF4b179z76\n6CMW69UdslgsHx+fpKQkpoYDAAAAAACAN8RYQZiXl2dra1tPgI2NTX5+PlPDAQAAAAAAwBti\nrCCsrKwUCAT1BOjo6JSXlzM1HAAAAAAAALwhxgpChULBSAwAAAAAAAC8HUzuQxgWFpaSkvK6\no/fv32dwLFBSKBQikaioqMjAwEAikfB4PE1nBAAAAAAArQOTBWFcXFxcXByDHUKDioqKbt68\nefbs2ezs7D/++EMkEnXo0KFz584URWk6NQAAAAAAaOkYKwhv377NVFegJpFIdPny5fT0dA8P\nDy6Xa2pqWlJScujQoYkTJ7q7u2s6OwAAAAAAaOkYKwg9PT3fsIfnz5/HxsbeuXMnJyeHw+FY\nW1sPHz68Z8+eqjFyuTw8PDwmJqagoMDY2HjgwIEjR45U3euiwYB3yf379x8+fOjs7FxVVUW3\n6OnptW/f/tGjR+3bt9fW1tZsegAAAAAA0MK1oErpxIkTp06d0tfX9/Pz8/b2fvHixYYNG37+\n+WfVmNDQ0AMHDtjb28+YMcPZ2fnQoUN79+5tVMC7JC8vz8TEpE6jrq5uYmJiXl6eRlICAAAA\nAIBWhMk5hC8Ti8UPHz4UiURubm76+vr1B3t7e8+YMUMoFNJvx48fv2DBgrCwsGHDhtE3u7Ky\nsqKiory9vRctWkQIGTJkCJfLjY6O9vX1pbdAbDDgHSORSLhc7svtXC5XIpG8/XwAAAAAAKB1\nYfIOYXR0dGBg4KRJk65evUoIuXDhgqOjo7u7u7e3t5mZ2fr16+s/vVu3bspqkBCiq6vbq1ev\n2tra3NxcuuXatWsKhcLf318ZExAQoFAo6OHUCXjH6OjoVFdXv9xeU1Ojo6Pz9vMBAAAAAIDW\nhbE7hL/99tuQIUPonQZPnDgRFRU1cuRIbW3tYcOGSSSSa9euffnllx06dBg9erT6fYpEIkKI\ngYEB/TYtLY3NZjs6OioD7O3teTxeenq6mgHvGBsbm+vXrxsaGqo25uXl9e7d28zMTFNZAQAA\nAABAa8HYHcJt27bp6OicPXv2/v37np6ekyZNsrW1TU1NDQ8PP3fu3L1794RC4c6dO9XvkN5H\nwcPDQ1kQFhcXC4VCNputjKEoysDAoKioSM0AWmVlpehvYrG46desaZ06derXr9+ff/5ZUlIi\nlUqrq6szMzOfPHnSvXv3Vz5KCgAAAAAAoIqxO4R37twJDAwcOnQoIWTt2rUDBgxYtmyZct6g\nvb39+PHjjx07pmZvVVVVX331FZfLnTNnjrJRLBa/XOfweDxlUddgAG3GjBlpaWn06/bt2zs5\nOamZVUvD5XJ9fHzMzMwePXqUmZmpq6vbo0cPV1dXU1NTTacGAAAAAACtAGMFYW5urvJZTQcH\nB0KIjY2NaoCtrW1ZWZk6XdXU1KxduzYvL2/NmjXm5ubKdi0trZenzEkkEj6fr2YArVevXnZ2\ndvRrPp9PP+baSnG5XA8PD0dHR5lM5uTk1KtXL01nBAAAAAAArQZjBWFtba3y7hyPxyOEcDj/\n6pzD4ahTeonF4nXr1qWlpX355ZcuLi6qhwwNDTMzM2UymfKhUIVCUVJS4urqqmYAbcGCBcrX\nt2/fjoyMbNSVtkxsNpuiKE1nAdAsRAWVN089aNYhnHq0dXC3bNYhAAAAAFqg5t12orEkEsn6\n9euTk5OXLVvWtWvXOkcdHR3j4+OfPHni7OxMt2RkZEgkEuWdyQYDAKA1KsktP/1t864VPGxR\nXxSEAAAA8B5isiAMCwtLSUkhhFRVVRFCtm/fHh4erjx6//79+k+XSqUbN268f//+kiVLevTo\n8XKAl5fXiRMnzp49u3DhQrrl7NmzFEV5eXmpGQAArZGJjf6s7f4Nx/0t8vvrOY+Lpm8bwuao\nu26WZTvjJqUGAAAA0LoxWRDGxcXFxcUp3164cKFRp+/ZsychIaFdu3ZZWVnHjx9Xtvfr18/C\nwoIQYmNj4+fnFxUVJZVKXV1dk5OTr127NnjwYOWEwAYDAKA10hbyPfzaqx8feySJkCL3we04\nPHbD0QAAAADvMcYKwtu3b79hD3l5eYSQ1NTU1NRU1XYHBwe6ICSEzJo1y8jI6MKFC7du3TIy\nMpo0adLIkSNVgxsMAAAAAAAAABpjBaGnp+cb9rBu3boGY1gs1ujRo+vZ3b7BAAAAAAAAAKC1\nrEVlQCl807U7USlqBsvl8qqqqkRuUaTWPfWHWH52sqCNVpOyAwAAAACAdwGTBWF0dDSLxRo0\naBAhJD8/f/r06apH3dzcNm7cyOBw7zZJtbRKJFYzWC6T11TKpByFTLsxY7Ti/RcBAAAAAIAB\njBWEd+/eHTJkyK5du+i3VVVVUVFRqgFRUVGjRo3q1q0bUyO+28au+nDsqg/VDE5NfLpt9C8O\nH5gu3BfUrFkBAAAAAMC7RN012Ru0b98+ExOTadOmqTbu378/JycnJycnKyvLwMDg4MGDTA0H\nAAAAAAAAb4ixO4SxsbEDBgzg8Xiqjfr6+ubm5vRrf3//q1ebd2vp95m+dgmLmGg6i3/Jy8u7\nfPmy+vFisVihUPD5fPVP8fT0dHZ2bnxqAAAAAABACIMFYUZGxqhRo+oJsLOzU92nHpg13Ssk\nSTFJ01n8C5fLNTQ0VD8+Pj6+qqqqX79+6p+ipYVFcQAAAAAAmo6xgrCmpobL5Srf2tralpeX\nCwQCZYu2tnZ1dTVTwwEhRHxzF6/rBIovJIRQLDlLJqPbpclnWCbt2SYdNJodMTQ0pFcYUpNC\noRCJRI06BeCVyvIrNJ0CAAAAQOvAWEFoaGiYnZ2tfEtRlK6urmrA8+fPjYyMmBoOCCGSxKOS\nOwd1Z8SoNorjQqvOBLeZeYFouiB8N1y5ckUikTRf//r6+j179my+/t8f+U9LCCGmdgaEELns\nnyV0ayokzx/mO3Vvq7HMAAAAAFowxgpCd3f3mJgYuVzOYr1ioRq5XB4TE+Pu7s7UcO+8mmtb\nax9F1x9DsbmyvAdlX9no63UkApG74rRo60VZQQrHvHPNr+saHEJn8mmKp9tg2HuutLS0pqZG\nzWB6/SQnJyf1n5Vls9lNTQ3+5c/YjHPbbyw4MrZtx38m09ZUSL6fGqYjFKAgBAAAAHglxgrC\nwMDA6dOnb9u2bdGiRS8f3bZt2+PHj5cvX87UcO88ef5D6eNLagZza24RFjEgz2R5hBBS++Ku\nWqfJpE3N7j0yYsQI9YMfPnyYlJTUt29fa2vr5ksJXunDqR6igsptE49/cnA03VJTIdn5f6dk\nUvm0rX6azQ0A3j0SieSPP/5o1iGsrKzatWvXrEMAABAGC8KgoKAffvhh8eLFDx48mDdvXteu\nXTkcTm1tbVJS0s6dO/fv3+/p6Tlx4kSmhnvnCQL+J/D79nVHZbn3arMT/3pTK66I/R+7OocQ\nouU5nWXRmW6muAKe60jCeu2PmOLrM5kxgKYN/9yLEPL9lF94Ai4h5IdZJ1kU67OfAvm6vIZO\nBQBoHLlcnpubq378s2fPSktL27dvr/5yaG3atGlSagAAjcNYQcjlcs+cOePv779///79+/dT\nFKWtrV1VVaVQKAghHh4eZ86cUV11BupHcbUJV/t1R2vTf5MkR/zzXkEvJ0PVZt8hOX/dHqQ4\nPJ7rSEpg0Kx5AmicXCZ/nlJAFIQQ4uHbTlRQefP0A0KIpEo2fu1/6LmFhBBja6G2sBGbmgAA\n1IPP59e/uHodN2/ezMzM9PPzU7/Mw5wCAHg7GCsICSFWVla3bt06dOhQWFjYn3/+WVZWZmlp\n6erqOnbs2EmTJqEabBRJwuHap7/XE8Bp260gs9TISk9RksoWFxJC5Ao2JcrmdRhSWiTl6/D4\nurzqmJX19CDw30a9vuYEaC2yHuRvn/aL4u91ZBQKQv8eqji7bNecf7a6GTy354BZ3TWSIQCz\nrl27Vlpa2nz9CwQCHx+f5uv/nVFn7+X6cblcDofD4/EadRYAwFvAZEFICOFyuTNmzJgxY8Yr\njyYmJmJdGTXVZlwVx4XWH6NHiFTlcRUWVauoLBTfOUjv9SFuaAiB79f13IQEaC1s3cw33wmm\nX1eXi7dP+yUruaBWXEuxqU8OjrbtbK7Z9AAYJ5VK1V/9uLCwMC0tzc7Oztxc3b8LHA7D3w0A\nAKAlexv/6JeVlR09ejQ0NDQhIUGhUDR8AhDC/3ClVq859cdUJfwiubY5vnS8w8hR3Ogpf4oG\nOg4MoK59YWCuYzQplOLp1H86paXHXL4MkMvlsr+3UgRoAroapAglNNEpel7WN7DL/yaHfXpo\nDGpCeMd8+OGH6gdnZmZev37dw8Ojffv2zZcSAAC0Xs1bEP7++++hoaFhYWFVVVU6Ojpjxoxp\n1uHeJSwDW2JgW3+M4vhkrbE/J66vub2jZJwdp7DUIOa/BZP/e9qqZKlclMPrEvh2Un1zaWlp\njx49+v333+k/Jw4ODp06dXrl/iXQBPfu3Xv8+LGawQqFQiaTURTVqLkrvr6+2trNeLdZJBLd\nuHGj/hhptez6jgyKUH0+tr+8sZAQIuhcZf1MuGXCz30+tjOwbSA9Z2dnBwcHxjIGAAAAaCWa\npSAsKCg4dOhQaGhoSkoKIWTQoEGzZ88ePHiwQCBojuHeQ3lPirNTCkiHUySfeAdJI7b9TuxI\nRZG4b6AbW0f4WGcXySbconTX/zhQLErTyTYgISHhyJEjNjY2YrFYKpVmZmZeu3bN39/fy8uL\nolp68q0Cm81Wf8qKRCKJj483Njbu1KmT+kM0909KJpNVVFTUH/PkQolcJveYZVFTWyUWiwmh\nysvLbT7SqamqSTr2vPt8y/pPl0qbfReWNQN+zHtS3Hz9W7Yz/jJ6avP1DwAAAO8kJgtCuVx+\n6dKl0NDQM2fOSCQSDw+PFStWbNiwYc6cOcOHD2dwILge9mdC9CPlW3G1NCHDM7fMMvdK+p+x\nT+hGDo9t62ahZ9yiZwkWFxcfOHCgS5cu2traubm5MpnM2NhYKBSGh4fb2tra2jZwjxTU4eLi\n4uLiomZwdXW1RCKxtrbu27dvs2bVKAYGBg2u5icfLieEsNgsQsiNTdsry8XDhw/n8blkFJGK\na7lamp8TZelspKXdwNpaylRFhZWluRWGFm10jbQJIVKxjKvVwD1bE9sWt5FMdblYS5tL/1AA\nAJqDSCTKz89v1iEsLS2b9SkYAI1j7EvSf//73x9//DEzM9PExGTevHnTpk1zc3N7+vTphg0b\nmBoClEZ80W/EF/3o1wnnHv248NyVFB+ugGNroRf846gGv3S2HFlZWQYGBnX+neVyuaampllZ\nWa2rIJRKpcXFxYWFhaWlpZaWllgu/C1TrTo4Wv+qQFpCNUgI+b+dw+oPyH9ass73wORvBncP\n6HhhT9zpb68OmNX9P1M8bp5+8NPyC6svTDe2Fr6dVF8n6vvrkf+73qxDrIyaYtXBpPn6r6io\niImJab7+CSHt27d3dXVt1iEAQKmwsPD27dvqx2dlZbHZbEvLBh4bUeXt7Y2CEN5tjH1PWr16\ntZOT06lTp4YOHYodJt6ahHOP9i86N3But+jv4wztdKQ1tTumn2xFNWF1dTWf/4qt4fh8flVV\n1dvPp8lSU1Pv3bsXERFRWlqamJjo7+/v6elpbW2t6bwIISQvo6TkhUjNYLFYXPBnNaesNIXK\nVH8IR0+rFlJ00bjarbIaN7UzmLbFb/+ic3LZP4tvxUem/LT8wuRvfTVeDRJCark1Ru0a+FYk\nrZRzBCyKRRRyRXFaNZtH6dsJCCEysYJQhM1r4OliqULdxTObhqKoRi36/+DBg6Kiol69eql/\nFn4ZBPA2GRsbd+/eiC2FiouLtbS0GnWKvn6Le/4CgFmMfYczNjZOS0tbvnx5amrqpEmTGvWr\nF2ia+MiUg59HT/5msNBaEP19HItFfXxg1HeTwnbOOj0/dARP0ApqQh6P98q5W1KptBXt1PT4\n8eOdO3c6Ozu7ubllZma2a9fu6dOnsbGxS5cutbCw0HR25Pef717aF9+oUx6S4sskRf34DVf/\nz9CqZS1a2wKlp6eLxQ1sB8O3IwM+czu87LxDTzNCyL0/HqVezfFZ0EXHUZ6cnFz/uVpaWo6O\njoyl+yodP2rLaltZf8yd0OzqEmmPedYKSv7r8icsbXnPedbF6VW39zx3GWXWtmcDZa2hlbp7\ndjeNjo6Ov7+/+vFCoTA7O3vIkCGv/NUVAGicnp6enl4j/gO6e/cun893cnJqvpQAWh3GCsLs\n7OzTp0+HhIQsW7ZsxYoVgwYNop8aZap/eNmpr3+jny5LTXxKt+joCxYcHvP95F+SYh73GN6I\nRUE0xcLCoqSkRCqVqt5VVigUBQUFLaGUUodcLr93756jo6OhoWF2djYhhKIoc3Pz2trau3fv\ntoSraN/bhsVpYBJXTlqRibU+R4tdKar+4+f7fCG33zh3QkjJCxFXwNU1aGA5KEEbLcbSfXel\npKSIRK+9VVtbLa+t+evGoMNgvbTIHEJIypVsB1/9EnnOrdgcQgiHT3EEr/1RCoXC5i4I27Vr\n165du/pjBvlId846nfKTaOaOIb+SJ3w+v5Olx44VJ4cEf+A7v1ezpgcAAABNwFhByOPxAgMD\nAwMDnzx5sm/fvgMHDowZM0ZHR4cQ8uLFC6ZGAVUbf5/9cqOOvmBZxKS3n8zLMu/lHv3yYoNh\ngnLnuGsvtLS0xDX6crnenTt5YrFYR8fmZMotioqr/9xBs3t4+Gl4Z63i4uKrV6/27NmzTruJ\niUlJSYlYLNbS0nCx5NrfwbV/Axsq/G9yWPqd7E8PjSkrKf/j5/vahlojlvS7ezEtdP+dWdsD\n3Hyat8x4T3h4eNSzlumuCVGlOXVvvinkJD2qND3qr7eG1m1mH/J9XQ8t5KY6T8CdFzJi56zT\ne+aeJYTIpIod004OnN0D1SAAAEDLxPy0HwcHhw0bNvz3v/+NiooKCQmJjo6eP3/+5s2bR48e\nPWbMmEY9tA2NwtNpQZO4CCE1lZJnf+apF8upIjL6T2OlqJYQdllxTRmpafC08iLNzzOUSqUc\nDuflfRe4XO7169eHDh2q8YJQHXN2D98589S2icfHf+VDt/x55cm+TyPHfPkhqkGm1H+7+L+X\nZknFtfTrxJjHR1dckMsVLDY1brVPt6F//daDq8Xh8lvWX3NVZXkVOWlF9Guf6d1Ob75GCKku\nlvQa5Wrf1SLlj0xCCKEop+5WHC5m2QEAALQUzfXdgs1mBwQEBAQEZGdn79+/f9++fZs2bdq0\naZNCoWj4ZGgSnnbL+qbYvrfNrvTF9cc8e5DH43PNHQ0lEsniHj/UVsi3/jmfz+eLCqtyHhe2\n723zdlJ9Ezo6OlKptLa2lsP51+dfXV3dt2/f1rIumZY2d17oyJ0zTx1adN6/a3haZY+982tG\nr+zfb0IXTaf2vuDy/yr24iNTjq2+1N7b6uGV5y4+NifWX+Zpc3uOaAVPgN+OTPntcKLyrbha\nQghRKEjqjWePb2XRjRRFzd493Kq9sWZSBAAAgJc0ewlhZWW1cuXKFStWXLp0KSQkpLmHg9Yl\n5ffMC3tvLzgytm1HExZFEUL4fH5ZXsW2oBMO7patoiDU09Pz9fVNSkqys7NTNioUiqysrAED\nBrT89Qbzn5Y8T86nZFW1RMuye5vnx3Js7J6+KGlr1d1VqqhOjLxHKA6Lx3Pt78BuaCIivLm/\nVor61jftfkbW9RRTJ/1eQ932LzpHCGn5NaHPDE+fGZ706/Q72dunnSSEcHgsgZC/4PAYHf0G\nZqICAACARrylb3gURQ0YMODEiRNvZzhoLQbO7tF3nNu2iccz7+fSLaLCqv9NDjO2Fk5YP0Cz\nuamvZ8+eTk5Ojx8/Li8vl0qlpaWlDx8+dHd39/Dw0HRqDUs49+j0t1f1fx304vDiq/vviyv+\nemrxeVJRzLbINhcGZxxaF77pamluuWbzfB/kZZQc/Dx62tYh3f078BSipUPXcRSVHn7tp2zy\nPbI8pjCrTNMJqiv9TvaOaSf/M6UrIURgwNUR8r+bFFZZWq3pvAA0SqHgyPC3AABaopb1kCG8\nh4Z/7kUI+X7KL/Tea99NPG5opTdn93AOr6XfW1MyNDQcNGiQhYVFQkJCcXGxhYVF586d3dzc\nWsU69YPn9Ro8r1fqFe2e56cbOPOO/+JFCCFsYmQomdLnR5m2qe/GXSN1W9MWTGKxuLa2lhBS\nUVFhyDfQdDr/2DvvTFF2fRtCcljiD7o8jtl9K2b3LXFR5ocfyBNPpzy8epgQ8kHX1P2f/FIr\nr2/ZGBNb/ZnfN2JDhWZCV4MDZ/foO7FzzM44QpG5e0fsnHnqf5PCPj08Vke/FfylAGgOurm/\n90jfTcgYTScCAMxQVBUThZzSeRcmQaAgBM2QVEufJPy1/GyHPjZFz8vio1KIgmhpc/tP8Ui7\n/Zw+1LaTaYN7HrQEenp6ffv2NTIyMjIy6tevXwvZkl596TWG2ZI5Q2v3Dh8sIzVEW7d6ovUP\nxQXCX3QGzMovdtB0QVicLYreebPBMHrDkvLy8uIsEYvwVo76zs7eztTUVHVTk9fpOtDZxdue\niWRfqzinvP67fG34pd69DrbJTo1JHqLFqiaEVJRVlZQV+rpEuFnc3nPdulJS315bb+F3KFVl\nNVWiBrZS/HnVJa8JXczddS+cuUwIqa4SX730h+/CHhFf34jZdbNfkHv9p+ub62LJGYbJZe5P\ntlCuuzWdx79UVVXVswsLIwwNDZt16d3qcvGR5Rfqj9Gm8vlUSbG8PSFEv/qpR5vqI0sucTgc\nNpGYcRJf1NZdnrqOTn3tPgjszFjGAMComsvrFdIa7RE7NZ0IA1AQgmZk3s/7acU//5XKZQp3\nmzuGOkXxuSOPrb6kbPcL7t17tKsmEmwiFqvFTbSTPoqWPbtVf0ybG3cNn1RlOnu6C2LkHNZH\nujG12vqppTY9SpPI1W9r0s3rP12r7wJK0IxFY3lx1e/H7qkfzyI8QojieZuM50UZpEidU4ys\n9Jq7IFx6OqjBmJykHl2PDhN2qr2v7U0KieMUrkvl2Y7i22Tcqf9uHdis6anjysGEyP9dbzAs\nO6WA/D1hvFZETn0WT0g8ISQj8cXF0Pj6z10ZNcWqg8kbZ8qAkpKShw8fXr9+PT8/38DAwNnZ\nubm3eWSYTErYXEIIkYnNRHeKakrqtmtUVlZWQkKC+vFFRUUcDkcoFKp/oCdJEwAAIABJREFU\nio+Pj4lJM/5ZqpXIEs49qj+mo2Xy+J6Hj96cnJLT0a1tuayT/N6FdA5bOuWD/XxudeSvDfyz\nqWsg+ICgIHz3yWrlO6afbNYh2ve2GTy3gV9AgDqkKedYQiu2RRdCiEJeS+R/TbSR5T2QF6Vz\nOwVoNLumQ0EImuHco+262FkKSQVhccpL5d9NPG4sKDLRzZdm187dO9zW1VRRU0YJWtDzfq1X\nTcyXtdl36o9xIcSlAyGEEAVhcwghhCfJ62NxgRBCHl6qftjAEBzngRy7Pm+e6utYOBktO9PA\n7prFxcX79+9v3749l8tNT0+vqKhwc3MjhKSnpw8aNMjJyan+0/XNdBlL9w3EZ4mLjOb5lu3l\nEgkhxL3qkqP4TlSbGWbPa/3cNJ0cITauZn3HNZBHeXn5n3/+aWRkRFFUXlopT5dlaCGsqanR\n1ta2tbVtcJklnZbxREBWVtb169cfP35cWFhYXl6elJR04cKFUaNG9enT5+U9ZlogueiFaFN7\n3akRHMf+CrmCEFIrlhNCZC8Sy0MGtJl1kW3ZwK3a5mZoaNipUyPWSTp//rxQKGzUKc29yLOO\nvmBd7KwGw6hkj8m8z+WDf/z1QDohZM6egTYpn5IKlmzEr+u+NKv/XL5us28u+vOqS0/v5jRf\n/1o6vIVHA5uv/3eDQq74a2OeZtPGqHWsed7yyXLuVh4LajPrItuqm2pj+d6P+B98jIIQoCmq\nY76UPLm+O2aKoZUZq5wihHiN77Jj6oklM34VaIl1Z5zXdILvgtTCLpziwtcdZVMyNkv212uW\n3ECniM2SUYRUiHUqatoow6QyXj07xliL9Q0Zy/cVeAKujWsD35xK7+Xp2wgMbLUJIdrFlVrc\nQl1LLkVR5mwDmU5Vg6e/BaL/echFL153VCGTELnMs0bMZrMpIneuukkIaV95TcbSGiIKkcXu\nKbnJJywWxX7tF0SWvrXex7ebJfW/df7QsfOHDdwli42NFbUVWFsbyWQycVyiltC0XSc7QkhS\nUlKfmT4NVuYtgUQiiYuLy8nJcXR0lEqlMpnM0tLS3Nz85MmTFhYWDg4Omk6Q3Dz9QJRfWX+M\nWZsZbUP8Hptvziy3HEjI3bNPChOOtM8JLmrjF3dWSkhcPefydXn9JnZlNOW6TExMGnX77uHD\nh4aGhl26tKCNcFhsythajTuW1sFiQ0F1+HQz7f8QObF8EMyuLdSdH8tq08CTF29H/tMStXcM\nbgpBm1awE6/GcXjsLQnB6sf/+FnUg98yPvspsG1Hdf8SsfEoPkP4/ZcpJJXlez/SnfnXY26y\nnLvlIT48j0l8n9Waze1NoCBsoR7HPc97UqxmcF5WESFElFPdqMfqeo10adZJRwpptaK8gd87\n1jpPzL1wJrDj11afnL6yrJrHkQRMM+9Uerwm9UHtsEPaxU/qP53SNqb49c2qAkJIZYdPEp8O\nrj9GJpNVlz0dbf+/rHInLUqUVtK+p/WNh7mdHtSM19Nr+BOeZmTHTK5vQCqVKucKusrvtuU+\nTiODCCEcDkcikWg0tb/I8x8qamvqj+FThMj/eUsRBUdeQwjhUoSIxYSQespyuaRFrARbXl6u\no6NDvx6ldTFD5lJLOhNCdHR0ystbRIYNev78+a1bt9zd/3UPTUtLy9LSMiMjoyUUhLGHEjPv\n5TYU1bZvuwEDpJ/dujWJfEBy/7jdt/vxW5meUXc9CLla/5mGlnrNXRA21rNYUY0Dm2j+uel/\nyEW5FSEf1hOgkFYR5d7LPG03nRhCCMktVuiale/4++E9Do9ivfYJXm67gQL/7xjK99U+PdSI\nRW4e/JaxY/rJoZ/2GfJJMz4S0lj3LqVHbW/4UXalkpISFot1b+9h9U8Z8+WHTp5WjU+tEbSF\nDSy4lfO48ElizgdjOxNCWBwWIYSvy9MW8qvKan47kjR4Xq/W8OzCO0IwaD0hpCJ0IKf9IEpW\nWx7iw3MP0vbfpum83ggKwhbqVviDP47fb9QpeY/KVGflNcjDt12zFoQVjy7XHh7aYJiZNiGE\nVO707GFNCCFlm9qZEEK0CDk/rKyhG4Ryn6+NBnzxxpm+4/pN6NLg/vKKivzS3f8pk1ntyPSY\nzj2RoV0h6LTCW+trX+++ggFr3kqab8qg7J5F1Z+EOBJCKCJnUX99D9OqyrYpekLIEI1mRwgh\ngmHfK6rq+y2PVCqNjo5u27atWeV9YWUaWyGVUVyRtkOOjlt2drafnx+HU9+/2C1koTOzkhs5\nEh1CDAkhLIWMQ/01wcJU+lRb9JgQDT+pqI6KigplTauq5dS0k6aKZA2tyPIk4UXuE26FsFdQ\nn0OEkAm9j9S0ca3ONBkx8M/2vW3q/+7IahlrwUprarn8v/7Mlz+X8vl//T5FLpMrFETzO6NW\nF8v+n73zDmyqevv4c7OT7jbd0D0ZZRRaoAUKVCijoAgooshWfggyHMhGfQERZchQlgrKRkUo\n0ILsslo7oJbSbfdO0zRNmnHv+0cwhkKTVGjv4Hz+Kjcn7ffhOefc+9xzzvNUmdpP/yS4Bm8o\nNbcxxmrvLdQZGRlSqbklbcoy6wGgqKgoMdHIu6nHYLPZ/fr1+4/izKNR0vQfFjmlxSZezxmi\nlJlIptUBaNX4ic8vS6saR73XX3+xSarc+tZxgSUv5n/t+5/8gqC6811T/IpWPyZw0Bq8X9ao\n1OnHAADYXFXSXlXS3kfX2TzAWp2dBENXCCLffz5ynysoIKQo4S939QpxNbOxQqHIyMgQi8Xe\n3m3IisETtm9egToZt57Vx3gbggAMAwxwJyKHRzRiQGiBV4kFaTCe7iPjcBqsHJ6b3hca2fej\nufaenlN/XSWRNWw7HxES0fPNj7HSIY37R7LFfrxeprOhkI6DJfdl4pfb5TYNrlH6i3x5SUTd\nDq7LOPJ0/Qs/zMRxIwGADd63+eZ6K3XRJbvpL9Xt/sP+naj6H9Rqsd3INZbR9KjM6Sa961B1\nL038qQL791imXX1atOogECYmBIrA4XB0lUtaoNFojMfkHYZF0keE2sSW0R486BEEIAfAAAA4\nLLWlPDXaPxUA4C9Tf4DFgYkfPA+lrZKbXHr/Up7xNkmnsyxsBZ16ODQ0SOtKZA118u3vH7a1\ntsu8/LeNk2VAPxPJnAe90cOhUxuS0LQVzN5bNP47422KMipvn8wY/GZ32/JDTeV/A6Hl87S8\nvnNuXoGGWvkYU+tsbOc2nJn8b1RXV1dUmFxtfkRZUT0AlJeX2xaZGxCak+T5GRkwsfuAiW1I\nvTO/29cCa+6XN+e3n6T2oFMXp/k/TPhm2gn9qnOzXLVt2gmekDN3zytoefC5oKnJJeStHrFp\nFa2a0KrNbIvX5rT593cIlLi3IZ7EP6yTf1gnMxtLpdIaQb6Pj0t4OAXyTvxDo8bv22OtHiX3\nc86ePnAvBkSLPXBsULkR9x5dJOBM6ss38yJa+yXj/UK7Pi+5Lzai0Zs4Hv2Aw7e0JJo4HJFI\nxOVywSvC6r07GN/K9PcpgE3Ym/nVFWHXlt5QNGo0GhzHm8szI6u2qjtFdn7rR7LVmUtf+VmN\nOvmU8G252goAytQ2v/HfeqX5AFd2GoAeAaHt1GNlO4aHPlh113/loyuS1NC/N1cEvdM96n/k\najMTR0dHmUxmuAlZR21tbVhYGFmqDOH4DMIlha1+rG0mtBq1Wi2XN3JwTMiSYUAAYAqtpZqN\niSxEPC4PY7GB0+o6YAck9Cq6X5HwnbFzjDokZQ0lmVUAMKHvibK6zjfPsABKAUBSLjOZCqX7\nEJ/2DQi5Qn74HONt/MOhCE+s/mOGyBu/UTE+xCpBFLEEv72ypGj22O1b+e0pz0z69eun1WrN\nbHwL0nOP3XJxdI2NNb39RwctkjDRBZ/ebrqY0NrZEgAOr75oYSOYt/9VgUW7Jx96QRAOXcbv\n+bo5LfGabPmv/2NZOgFgeEOp6OUdbGezHkhZdu2bz/w/gwJCRHvRyUm+eF7r22kIQqodqzsS\nhRGEUJ7KU5UCQWg5to1W/QndmQoC+o2w7oe1+kusAykWD2qU3lVnACLJ1tFmOD6D9T9rWAIt\n51E6MrZTMEmKHoNQN+FmbM3y7DmkWrVk8N2v/+Z4CrTNY+q3azr3cR23Fi9PM/ldzNqd9BwP\n2uqH7Mxj2NvnfEvVuWk3QAaWlpZ+IcP4bq/DsUl41EKWPcmn1wiNEtQK420seJjdlAMNh94M\nfbBKqsb4ytw+mj+qA6b7v7KCUEiMfxcAML41sEhOfuDo6Dhu3LiLFy8GBATorhAEUVJS0rVr\n1zZluWw/LGecNfLp/kVxlfl19fX19tzCt0K+u104oL9P4pWHQyL9bpy8P6O4MdjW1tbKQTT/\n+wkdJvhJ+o4N9utr4qWnLP/694dvNWe42XjxBVylUNRk6c5TNalDX+FERPbmOgQY/7qzT7vm\nujILQq0Ix9bI3NSbf50e4PU3WMHxXzzdml9/ucs+y4bhAOQnJBQK27ApVSAQAACuxiwtKZGW\n+QUB1+LXD99rlj/arBj+cpdrh9MBQNHQ3Gd00LWfHt3gvHq6BoTTqQZy474Y4ditbMdAsoX8\nCya0M8wd2hra8nT5qQW80GlAaEGtxCydmk4tsJyVwOlMiTeG/w0UECLaCwtOtbhyf1u/xdbU\n20jOmdlYxO7d1t/fVqqqqnAcN90OAABkpZmBZYcKKxeYv0mGx+PZ25P/1GJIsu8n7q7UeoOl\nLU6SfRdlTktdPjsvyAMMQAWc4iuN282qvCQY9IFw9Jf/XeLzgO0YaLOiHACGBoKHPQ8Or46O\njvbu2gcAYKW5e7raFWXCCuXVr0w24+hOEGJgLwBvkACAa/Yexfo9JkJJAACweu8up3PfZxX6\nzERERLBYrJMnT9bV1TU1NWEYNnTo0AEDBlhZ0WDBfNCUnlVFNZdPbHm784lc7YCEB1H9fRJT\nCsP4ng6Tu+//qWJ8r1FLnDuRXOzRykFkMg9+0YWtM72Lkvqv+HO/DGyBwDECJwbPwvoUrGSV\nT+s0eFvHSP3PlGZVsx4c5NWUKUb90lmW05SWDU5Q9Fdlr2XvKTndiBNzG8eH27tZWdpTuh6A\nQta8dvj+Wdti/fp2IggCAHT3xLqyhm+mnZiybkR7Z1t5ESAIori4uLVPVQpN0rm/tOpHjyK4\nVneihtBotPev5+qb1dXWCVxb3cprYWHh4ED+IRtCXo1ZPJp8NCVJhKwcHAMBgFBIML4VsGgQ\nlegqTPB6vyWK3dz0+wLQ5ZjBNY37YlrUoqAXNPivR9AUtmtPy1kXTDQicOWVjdqK+6IxX6my\n44n6Iv7gDxXnl4FaKRy1EeObeAfJdgp6bnJbITExUak0dvTcUlEcVH4o3WOemmOprc72B0hN\nTc3KyRepqroV7U7zel/FMfYE6ejoGB0d/bxVPxM4RrlpgVCayJ/x7ODy6vb+E21DYFtmFyGi\n2H5dXNLqI8vzwnjenQ6Dx+MNHjy4R48eCefiqkvyxkx6u3PnziwW2VlMzMOvj7tTp2avO0eK\nrYee/PUlvp0SAHhi7OzFcNHrrDecT2A933cM9CRbpjGuHEg9vSWRTYx6K+zbnrXr0vHZAAA4\nCJure/21q1Di++t5L/aX29/99mWTy4xkISmXffHqz2olzsLexvdcBICQTgAAygbV0aVXATAW\n9j7+48HBb/V6fc0wkrUaRWjFHzajzzfTT0S85/N3QTEAlJSU/HLo9+RdZd493X16mZvsgArU\n1dXl5eVptVqlUvvnn3/6+fnZ2JC/axcACIJITEw00sB9DAuABQBaJZH+fTWLR2gVoJApCRuO\n59BHmcAJkBj5JZ6engMGkJ0bVquWbvAWxqzjRyx47HJ5umxPtMXE/dzgWLKkmU/znT38PtNb\nvEEWjtwALE7z7e9Er+4mS9gzQrknPwRjwET2XH8ToY4ifjlel2c9/y7LzlNbk41rm3nBY7je\ngxr3jVClHrR862THSDVC165dn5peQg+mDbS6cGJQ2ea64ftY3tbwK/Tv35/dVGl/fonKOTS4\n9wAjyaag/UsnMwO2ey9BlFnpZAmFRJV2WAVcQqvh4XJu0Ci2k1l7/LgBI55N4/OGI7jnOS+8\n9Xz0pMDr/RYmtDWnJS4t0WQnqDEuxuJwOGxu8BiMa1ZXZ7t0ezaNzxNbW9tgIrOP8hdn54/o\nEg3qsLB3u+36XtwBV1sPnsBNDQACZ3D3sDxxpO/wNzsPd/MnW6AJwl/p4tPb7c6dOxfy3h2H\n7Z0+cI9MJhTyFDMjdzVYBVxijxq5MjQoKMg9iOR1TiPYuVpt+2shjuNnz55NT7unvGNTXeH4\nsCKIxcH8X7Msanz43nvvUaGEiTmEvxZ4//79q1uy7ftgAKBtxq98ma21aIr5cAyLTZtxkZ2d\nvX37drFYjON8XK09ffp0ly5dwsPDPT3JfzmCYZg5NTZVcs2vK+9Y21jyrZS1WYp+0/ySfipw\ncXEJm2x6RFMi9GVzLab+Kv9xHBAE/59Mm4+K+PV6kxtk7sFUchG9vF3/c3VRPaZu9gCAf2pR\n0BcUECLIhN93Jj9iAcvysaLhmMDacvYFvK6ALFWG6A8RGYEIutL4fazbtf+Jxu+SAQS6WMj2\nvcvxHSie/LMbHfY/UB+WTSfhyA0mm+E1ObLdQ7jdXy1p4AkqbncevbTp+HRej9d5Pd/oAJEv\nAtzgMdxg0/dsdc4F+Y/jeDFf1F7bp+wU5YkVaYuTLN+5zLKiwGKCpllbmWG8CV6XTzQ3sl1D\nAIDfVMLVyonyVC2PRzQ3aIrumnzPhVm6sGzadxPdkTV/GC9Uq9Xg+SmuOFvTLNfIU3DNQE59\nHge3VhFsbfz3LtlpCVy+sanJykE0Y3P7VmpR3d3bnNT6mQICt1U3DVIqG7RSXMl2FtW4WmgA\nslRagUhWNJm3TZx/iFvMa7oqepRE9WkIx2zieJK8JFJZWXnpj8uiHG95hVrLdjl7L9YtQph7\nXO4c45aXl0eXgDA1NVXuWOo51PnvPxoAQFnMdggQ2gxkpaT+2amzOy3Sxkgkku3btwcHB9va\n2pYTJRiOBQZ6V1RU3LlzRywWP7XMTEeCYZjJ88m6ChM29tbz9o7/ZsZeV/f7PQeO6x/dZ/v0\nk84uziPn0aPsBNf/JYu3T8l/fJT6G6/Nazq3lNfrTdGYr01nlqce+VVB+D8BId1BT6sIMjFM\nkoEJ7fSp7TCeJdulDVmk2w9CKQXC9BlCi9cPyg9Nlh+dCgCyvcM4br1FL28nms0oWcbi0CWN\nJ8XRRYMc/5csJuwj9s8FAG7IaxZatfz4DGDzed1fJVvgi4IuGhTGrGeF/w+u7SMwluVbJxsP\nvtr43RAqxIR4fVHDtjZUv9CtQCm/HaDfOK4wdcZZELVUOHL9fxFnNoXp5WYUpgdQs6T5KgD2\n//2+plnDh+pmABYAkZdsog6evZv18xHaOuUXD1tLbxlvwwMQA4BBMlQBRyEABQBAbY3JzJiV\ndy67kx0QSurqtSliuVwTMsMh9adyAHDsyRdYcQvPNRS6VFI/c/CPH5zLTS5pbGwkCAsMk+ui\nb1xDyEpVsiNYXvODO5vKrR0sPzo5hcWm9NN8dlaOvb2Dra0tAACBAQ4A4OjomJ6WHhgQ1KMn\nhTK0t0Z+apmti+WMLWNwTOPAzhrW87ei+ve6xPi+9/2rxz+/HDM3HGOR7AJVygFt9UNzWnK7\nvtJ09gMgQP7bPI5rD4wrUiS0Xv3PAOGI/3s2jc+Bn5cnsLns11YPwzCoZvdTazUAQBBwct1l\neb3y7S9Hki3wP4ICQgRVEAxcRLaEpyBdKyZwY1tGnwSXFKkkRaq/fjOnMSa0s13TvoemioqK\nKivNLdrb3Nycl5fX2NjI5/PN/xMhISFtat8eqLPiuMGxopd3GO7R5YVOBQxTpx+mQkCYl5fX\n3GxudeOioqLS0tLc3FzjR1gN4fP5vr6+/1Xdc0N5ca1w5AZ+xAK1+p+6TGyexZvH5T9NVP15\nwMytv+1HfR2WUTXIZDN7YbmbZV5RQ7CTRaGQI39Y28fD+iEOWGF9N5wwcd8UZdn3aedHgqW/\nmlUalCCI/Pz8lOTUS8sLwz5wjhgW7uvry2aTnMRVR73rmw+zTOyIVjVpCAIXCZu7OKewAAfA\nlBp+VlWvZiWLw2Nz+CYMCXIn/2xe1h+lmnpW3/+J+db/qu0UaalQKP46Ug0kjwbTRE3tFRDh\n/vPPP/v5+eHNWEG8FAcCA8yll0jkxM3Pzx8yapC7pxvFo0EAuLDpXpPCgvB/7AwHriEUt2z/\nqErvsZcGAWGQV5lP7LW/Mjtl5+bV1tSAA/z00081qtL+gU7zJ53FsDeMrJZ3DIrzy3CpiZdN\nLcE1muK7mmLTFWh0UCEgjJ7ZZ/OUoxqVZsrnw3VXCAKOf3Yp6fcHC39utdYa9UEBIQJhDExg\nQ6ibWv0Y1xjUUSTgUeiIPZYpC8OMpNFnWYifg0qj1NbW5ubmmm4HAAA4jtvY2BAEYf5XAKBL\nly6kB4T8yIVPvc7r/Rav91sdLOapZGVlNTSYmx1HLpcDQHFxcW1trZlfsbGxoUJAaDX3xpMX\nMY7ActrpjhfzJLjQ8VT6RHNa9up0MybwRIPSSsiR23LLa+ROh1PmqrSm+/nQ3lTJModhmK+v\nL4fDaVysHDC0rzkb4DuMHtOnw/Tpxtvkp5a5iBvVP49QO47Iu5Mj43fu7VszIFDVPOKYBkQu\nvtTKz/xUIl/rcTX7DEvoCvDYXYDrLx/zmlkJkMnFM8SlU1fHv5t7ScplOYca+WJMU0rwHIni\nG41d37QnnBt7jQwQi9v9Lvbs9Jrc+fzn9Q+PSwInPjoFjWuJB0fr1FLoOZ78HX9aDb59homk\nCRbs6uF2Bxokl9OKproQIgCwKPL6a9ft0K7fZTT3uH3OxNcD+3vEzG3fLsfrO0trpMiTVg1a\ndUON3MpBBKpGTemfhFaDYcAWB7BsPeRSJV/I5fA5wG1DHZTnTur57N3zfjenZeLR+4lH7+t+\nvnHknu6Hz0f9YPKLMzaP7juWEgW9WoACQgTCGDara4w3KMqo3DTp8NyvQt3uva2x8GEV/8H2\nHgTN0r8cthxel/p/1+eYTK3e3gQGBrb3ofk2VbLqABodetc1c6l2Oqd3797/Lpq1Azxeu9cm\nlkqlUqnUzMYajaaAE6TROlkXFZn/J1xdXc2v2vIfEHe2+SrlvVY/1qrVWXHKBrlGg1vYvKLO\ntWbd2Q0Azp35ohGr1rAF9VWNdi5WnE59WPbUKs1iHIEdJVYF24qXl0r23QiORz+b138qTOnN\ns7Cye/do474YfvwkhxnnyVZnFk7OjmNfib1y5UpgYCCL++j1YV1dXUVFRfeeFKuj2wpsNtuK\na5f4Y7Gdp8gigJirWHO0fDanp3fGwdrQWWFUK5vUGp0DXC2jbjTc4Dw8Xh/ufUuBCx8cETZV\na4SRdZ393chWBwROZCX+bbJZnujdWYO/HeV8IOXvUAAQySrfDP32YZn/L8mjCcLE1zvgUUT4\n0hrjDbQafONL+7t1kw93/Jzff179ld3aXoutsr4qF768fa/zop9f8+lNsi+sHERBEWY9L6kU\n6qKMSq0GJwhgc1geXZ34Fmbdgq0dST6w2hooIEQgjFGaVa3VmDhDOHp6J/7Zl2udQxWuC92K\n/6gL/Y44NcUma8qriw5IymWScmMnCfkibntXTxaJRC9aLtMmK78qu3Y/BNVWXF0pkFLl2Sgu\nLr5//76ZjXEcL9D2EklFEqPp1FswcuTIR+d8yACXFCrOftwklSsamgknCzbnny1YKqny4lpZ\nbZNWrVW4WPHD55C+9/VFQH58Bsd7kMXE/cBiW7rxBGIRJrCxnHm+cd8I5aXPhaM2ki3QLCIi\nIrRa7blz5xQaKxZYZ2dnhw/pHRMT4+zsbPrLFKC5SZ2zJ9He21XQt15bI7QVSfhYE+bXiBXW\nl5yQVMdWOgfSYGbz9/UOjeyRY11QdRY6+/0tb7bMKdPYRTd17xvu5UF+5RIOF9v6q4k4pLq6\nOj7+ekXncQEVJzt5lnG1yvdGbZeJPFQevV4bUt6/f3/jX2fZtvtC7oMbf9eWmHhjOHy80Ltg\nUXpxBOb7th+xO6dArFSt6FuwZvK4mWXZNWXZJl7BR77evpt7/fp2ev9Aq1tIMq8VHllzkcAf\nvdmxshdJKmQAYGUvlNU2yWqbAABjYROWDwkZRv5unbaCAkIEwhjbpp1oqJYbaWAlbJg75JvC\nGp8T56IdrK4sGg5fvfEbizV+asR+cfLUL7+cp9EaW+7wDXX/4Njk560agWgXnJ2d21R9oVev\nXm39E+SuNrPE/tYfPrQi4Oiai5ln0xe+8rMGL+OyVKCS3ZTNu3HXfdGh12w6UyB7+4uB5Vu/\nYAJr3akvfQJCTGBj9c5VgjCZU6bd0ai09y6atbXegfAY0+e1hPS7DaAK9Yj04HlKH2pSHppO\nvyH2tPXoSnLcyCEa3+r1FTZg0V1u5Ilvz0IANDQ0hPr5TQ6T8OPe4aheAqB0QHj717+Of3Z5\nYo899mqLinsT1Co1AAABSqm67jTPqXTN9ROb4jJfn7F5dNfB5C37q5XynycZbyICeAUDKAEA\n4AMABoCrHBof9G98AFUgz99s/Oscn8FW71x5Pmpb4frh9NTz2UYasDHt0tjPUot6n00bRly6\nuGIs/BmXlV/t+8B52tQB+37ciudVmaif0d4Boay2qTSr1aLEKoWqb+w/5a8JeHC9UFLZCEBY\nO4i6DfHRH+HUqrVG1nvdAsTUXCREASECYYzwl7soZK0mAsE1OB+vqsRiizu95qWWNubXAgCG\ngXdfvwcOXwZgR8JfDiRYIiOVmhw9SVsMoRFardb8nYoAIJPJGhsb6+rqzI9eRCKRQCAw3e7F\nxtHR0dGRupXfzEGjVpUXmn4Qj5goClfsLMvH+Rw7sagytX5cX4v1/gvXKZRFxTkmvmtl52gr\ndnk+cplLbm5uenq6+e35Uq5U0fTwZBuK0w4ePLhdj7cpZM175re4RS02AAAgAElEQVT5ZOyN\nfQ9vgFmZGAFg0JSeHp+SHBCyLexs3klo3D8yajCfP2UKJO0ICPAfGciTH5wrHPsVv3sUufJM\n0nO4v62zFbuxm3/i6wHht35MiAEAwMCrq/jNyCNcmVQy4Nt3LN28e5G/cZTuDJzco8tAr9Y+\nldU2yesVmdovlQ6BEYHq5DMPAQDDsG5RPs4+oUl4hO9osS/XityHotykEjPPEBpSlFlVlFll\nZmN0hhCBoCXjlw5u7SOCgA/77JDXKwBCAB4AgIMVEIDhODy8VfQQIBH6AuR7hriYmRIQ0RpS\nqTQ+Pt789sXFxQqFIiEhwfwCWSEhIV270uNID+JZUJRlWu41b90SA9t/9h33sjoOAA53P4S7\nH5r8nrTLDNu39/13iS8GLBarTadeichP2roLvE2r2f8BgQVvyv8NN799fn5+bW1t9+7dzX/3\n5OLn8J+kPWc4XhGWM8417h/p5lQGAJ2sCuUHPxeO/pLffx7Z0kwjsOAFDfAA8FCFXG7+KjLK\nuaJZDhwORNl9Q5SX2n10y1FMgfPmXIHFlGPGmxAEkZyc3FCWE6q8KMUtLbUS4PAUfJfrTcED\nIgeazBTAsm333DnBkcY0/LQs/uHNIgAOQB4AAAZNzRYKjVCaW1uRp8udVsbhc5b++iZf1I7H\nyI3j7GM//J0wk82yEv8uz63rMyawNKsa1+KeIa7Jpx+IPWy7DvI2merVlRqD+klQQIhAGOOX\nDVeNrBCGRPvqd5NXFUoK0oi9V9/FgR3Y38PO9VF1QRYb+3l5Qmu/wdHTdvgc07PPC45AIDBZ\ntNeQNjXWQYtEeYhnh2dh2+TW6mEbtVJTkVVvI6q34DeW17sRBMtaKLUWNpTUdQYAG6HUWigt\nrvOwchTaure658eiMyVqqFIcHx8fupRlbw2ugNOmDWzsW3JuoSJ8TLCVFYVqz8pPLcCr/mr1\nY63mn+zZwLLzdCrZDRgegu/F7LxVqYdUqYcAADA2cFp9gic4QuvpZ56z6MfBqx6qi0zUtMS1\n+NWfUtX1QyJ9/pBLNQBgYcu/ljXEYt22yNd7mKzgx/Ub2r4BFcbihZjOfuzH60Qcis3F/DNw\nvxFE3BnL/42Sfhvp5OoxfB6XT35qt7hvbuUmlRhpIPZ4tPrXUCNvLmn4Ov4jFhuzwNRugWL9\n29tv3zVWssvIAb/ngluA+JWPTNQlitt2s6604eOTb7gHOR5be0mt0kz5v+HDZoRumXKUxcHG\nLRnYrgrbD6YFhDiO//bbb/Hx8dXV1WKxePjw4ePHj2/v14QIBnPnt0zjZwgfByuo9gGAh7fM\nTavoG+qOAkKTiESiHj16kK0CwQT4Yi/n928aaSCWq3ANDgDWWuLwqgvc3J96d75z5N6CeXte\ncfZ1AIAuAEIrPuk1oBGI54Ii+Ue2ytxyOP9A4LX5eG2+eY3bfaQornyh+vN7k83CRQAiACVY\n6GrHKBoHeZ4AAIUZ25AFL60WRq95JpXPDF5XIPh1Eh4Ug3u8Y339IFaPiX17KTofcr86V/Xr\nHO7rB8mVBwClWdXm5Eo1BNcSstqmhzfbkImadHz7dOo9KrDFQp+rn8PiI5Nri9twtoVqMC0g\n3Lt375kzZwYMGDB27NjMzMwDBw7U1NS8++67ZOtC0JUFP0wwmWU0PSE3Yc/dlz8cZO9mvXve\nqY9OTrl/Ke/CnqSXPxzkH2YifRmJWyMQCMSTCCx4AIBriR8+OFuYXtFJHJhVLusR7bfr3VOL\nfp7k6o9WkhGM4m/hOI4qr7VPMcAxeHQHFEC9A+RigBPAkoFrA7jrrhPAIqDV1+44m2/3fBU/\nAdcrQluW3OrHOE6omzQqLZvDwlgY0VhJqBQAgPEtMQsxrsUJHDhcFvAsoPUjBhy33u2hvE3g\nsnJezynCkesjMVamNJ13++RLL71kb2+PB11WXPwUCFyXfolE5uwYa7JN8pmsHz88N3ZZf7tg\nzsEZ14cs6uIZ5PbrsjudujjN3DqGzaHB+k3QgH/XitlcFo4/0uzsbefs3d6dvR1hVEBYXFwc\nFxc3ePDgJUuWAMDo0aO5XO65c+dGjhzZ3nXYEEzFPchECo2ijMoLe5Pm7BjbfahvRV4dAHTu\n6uTd09XGyfLk+iv/d438OoQIBKJN6KLBvOTSRYde+27ub/ce2HzxwyCugLN5yjEUEyIYxo2s\nWHNWdQKcH7454MfT98eN6XHqtz8njO55Kutht0sPok1+UWjF77XueQhtHV7YTF7YTNPttOrG\nQ69pS1MzCq1UWlFo12Ku7xDRq3tIj6PMhOM5gOM5QPczAf8m3mXZ+1hM+oEsVW1Cq8EPrbww\n8H8BcX8ecSh00GqFqampiZkX+82KTNtT+dfVAtpVaxi9YID+3BDdYVRAeP36dYIgYmNj9VfG\njh176dKla9euvfXWWyQKQzCYTsGOK89Pc/RomRdr8Js9gyI8UTSIQNCOyz+mFKSWLTnyur37\nozwmGAavrYnWavC9C86sPDeNVHUIxPPklY8HNdUrjbfhVV21S1op67oy/JWp2OnTUUumyrWT\nhgne7v9q18aABca/y6LIms8/0aDVO5fV701sBgvLdy43fjek6eRsKsSEOI7HxcWZ3/7v7EZe\n82DL8+fNP4/q7u7euzfJ65xsDmvOoZf27N3To0cPgUBQzSp3cXGx9ux8LzslasUg2kWDACCw\nbENmLIrDqIAwNzeXzWb7+v7bpby9vXk8Xl5eq9shEIhnhMVm6aNBkTXfyctOf2aV1psHEIgX\nlsjXQ/q/2lVk81gqSAyDNz4fLq1qJEsVAtEemKxzSCil0s/eEY7dbNfvXQCQnAGvHq5s996a\nbk6s/aNchrzC8YrsEKXPRNOp97Tl963mXmfZdAIADAO2OMByzqXG74YoLqwRDv+UbIGgUqnM\nb+zqFQBeAW36lkaj+S+y2kJjY6NJPalpqQ4ODhqNprGx0SaAg/Oam5rULi4uR48d9fXztbY2\nkUvY3t7++elFPAajAsK6ujobGxs2m62/gmGYnZ1dbW2tYbPbt283Nj66qVdVmVs5BIEwibWj\nxdo/zNi4gkAgSKKqULJ6WJtrQnwUttP8xiPeDX/5Q7ommkMgWoAJbKw/zGbZdm5xneM90Pqj\nbJaFEymq2gqv15uCl9awrFwNL7IdA63+l0g01bb2rQ6DxWK9+uqrZKt4Vk6dOpWbm2ukAY7j\nf/31l0aj4XA4OI4rlUrudS6XywWAioqKrVu32tqaKEK4evXq56kYYQCjAsLm5mZdxzKEx+M1\nNz9WNmDLli36LhsYGOjn59dB+hAIBAJBKjwhNyiifY+Uk1tYGYF47hhGg2y3npjFo2O0LeIr\nKsPx/vcdjUbLVWOPdvqx7L3B3pskUUyDzWYbLsk8CcsAAOBwOGw2W/czi8Uy+XVEu8KogJDP\n5ysUihYXVSpViyKwb7zxhkQi0f3c1NRUUVHRQfoQCAQCQSq2zpbtXckKgWAw1vOTyJbwrJzN\nHMe35seabohoGy+//LLJjanx8fHZ2dkuLi6GF1UqVVpa2gcffGBpadmeAhHGYFRAaG9v//ff\nf2u1Wv07BoIgJBJJt27dDJuNHftvYtykpKQzZ9q3ZCoCgUAgEAgEggpocC4HRytRz58Wqy9P\npWfPnomJiY6OjhYWFrorWq02Ly9v8uTJLaJERAfDqIDQ19c3OTk5Pz/f399fd6WgoEClUhmm\nmaELzc3NarXazMZyuVypVCoUCv3ZSHOwsLDAWq+6g0AgEAgEAkFxsm8XXf053fz2WhWhlGr2\nzD9t/ldGvBtmMvsOwhx8fX2nTp26f/9+Ozs7oVCoVqslEsnIkSPDw8PJlvaiw6iAcODAgceO\nHTt9+vTixYt1V06fPo1h2MCB9Dvfn56ebn5yVKVSmZ2dXV1dXV5ebv6fePXVV3k85iTMRSAQ\nCAQC8aJRUyxNOfuwTV/RaLVt+kr/8V2haxtlIVqhZ8+ea9asKS0tlclkQqFQLBZ36tQJrU+Q\nDqMCQg8Pj1GjRsXFxanV6m7dumVmZl6/fj0mJsbLy4tsaW3G3t7e/BVCAAgICGjrn9BXR0Ag\nEAgEAoGgI2HjuvQc7m9++9OnT/P5/OHDh5v/Fb4Fenv+PLG3t0cFJKgGowJCAJg9e7aDg0NC\nQsKdO3ccHBzeeuut8ePHky3qv+Dn54fSnyIQCATiSZKTk2UymZmNKysrMzMz1Wp1WVmZmV/h\n8/kDBgz4r+oQiA6Fw2NzeG04E8gRsrgCdotCowjECw7TAkIWizVhwoQJEyaQLQSBQCAQiHah\ntra2rq7OzMYajcbDwwMAzE+pLRKJ/qMyBAKBQNAQpgWECAQCgUAwm6FDhxIE0X6/H53nQSAQ\niBcKrF1vKtQnKSlp5cqVPj4+ZAtBIBAIBALBWKRSqUKhcHR0RNW3yaWqqorFYonFYrKFIBBU\nIS0t7UUPCJubm2tqashWgUAgEAgEgsk0NzdrtVqBQIAyupFLU1MThmFCoZBsIQgEhXjRA0IE\nAoFAIBAIBAKBeGFBr6kQCAQCgUAgEAgE4gUFBYQIBAKBQCAQCAQC8YKCAkIEAoFAIBAIBAKB\neEFBASECgUAgEAgEAoFAvKCggBCBQCAQCAQCgUAgXlBQQIhAIBAIBAKBQCAQLygoIEQgngMa\njUYul5OtAoFAPDfQoEYgEAjECwIKCBGIZ0Wr1W7YsGHFihWNjY1ka0EgEM8BNKgRCAQC8eKA\nAkIE4lnBMEwoFObl5a1cuRI9PiIQDAANagQCgUC8OKCAkN5kZWURBKH7uaSkZPXq1Q0NDeRK\naisMMIHFYi1atGjw4MG0fnxkgCOYAXIEFWDGoGYADBgODDABQR1Qd6ICjPQCe82aNWRrQPxH\nUlJSVq1aVVZW1q9fv9LS0uXLlxcUFCgUir59+5ItzVwYYIIODMP69etXXl6empqalpYWGRnJ\n4/HIFtUGGOMIuoMcQR3oPqgZAAOGAwNMQFAH1J2oAFO9wCFbAOK/4+/v7+npeeXKFaVS+fDh\nQ4lEEhISMmPGDLJ1tQEGmKBHt6QAAFevXl25cuVnn31maWlJtihzYZIjAKCmpubAgQPZ2dlO\nTk6xsbE0mqaZ5Aj6ekEPrQe1Hvo6ggHDgQEmGCKXy0+ePJmUlNTc3Ozv7z9x4kQvLy+yRbUN\nWpvApO6E5iWqgekXPRF0RCaTrVixoqCgAABCQkJWrlzJ5/PJFtU2GGACAEgkkgMHDqSnp2MY\nVl1dDQC+vr70enxkhiMAoL6+ftGiRbW1tforI0eOfOedd1gseuyQZ4Yj6O4FYMSgBvo7ggHD\ngQEm6CgrK1u1alVVVRUACIVChULB4XAWLFgQFRVFtjRzYYAJzOhOaF6iIPT4r0e0hlwur6+v\n1/1sZ2dHxx1NDDChpqZm8eLFf/zxB4vFioqKmjBhgpOTE+2OHjHAEToOHDhQW1vr6+u7atWq\nJUuWiMXic+fObdmyhS4vv5jhCLp7gRmDGujvCAYMBwaYAABKpXLt2rVVVVW+vr7btm07evTo\niBEjNBrN5s2bi4uLyVZnFgwwAZjSndC8REHQGUJ6w+PxMjIyxGKxpaVlWlpaRUVFv379MAwj\nW1cbYIAJW7duzc7ODgoK2rhxY2hoaI8ePWJiYkpLS9PT02l09IgBjtCxc+dOa2vrTZs2eXp6\nenl5RUVFpaSkpKen08UiZjiC7l5gxqAG+juCAcOBASYAwMmTJ2/evOnt7b1hwwaxWHz+/Pmj\nR48CwKxZs8LCwshWZxYMMAGY0p3QvERBUEBIYyQSiVKpjI6OjoqKGjRoUFpaWmpqaot+eefO\nHWtra8quZTPABK1Wu3XrVhzH165d6+DgoLvIZrP79++fnJycl5dHi8dHBjhCzy+//DJmzJge\nPXro/ikQCCIiIuhys2GMI2jtBWYMah20dgQDhgMDTNCxf//+urq6Tz/9VCwWx8fH79q1iyCI\nWbNmjR07FgASEhLc3d05HEqnpaC7CRKJRC6XW1lZDRgwgO7dCc1LFAQFhLSkrq5u69atO3bs\nuHHjxoABA2xsbPh8fkREhL5fhoWFsVisy5cvb9q0KTk5ediwYVSb5hhggg6NRnPkyBEOhzNn\nzhzD6ywWSyAQ3Lp1SyKRUPnxkRmOkEgke/fu/emnn5KTkxsaGrp16xYYGKj/lBY3GwY4ggFe\n0EH3Qc0ARzBgODDABEOOHTtmaWk5derUhISEnTt3GoZSMpls1apV2dnZFD+JR18TDPtSeHi4\njY0Nm82mXXdC8xLFQQEh/SgvL//444+zs7Otra3HjBnj6+srEokAwLBfpqamZmRkHDlyhCCI\nUaNG9ezZk2zVj8EAE/Sw2ewrV640NDT079/f1tbW8COpVHr58uW+fftmZGS4uLj4+fmRJbI1\nmOEIiUSyePHijIwMqVRaVlamUCikUulLL71keDzd8Gbj7e3duXNnEgU/CQMcwQAv6KH1oGaA\nIxgwHBhgQgvu3r1bXl7O4/F2795tGEoBwO7du3NycsLCwnr37k2uSOPQ1ITW+hLQqjuheYn6\noICQZqhUqmXLllVWVgYFBa1bty40NFQ/NQAAn88fOHBgTk5OZmZmYWEhi8WaNm3axIkTSRT8\nJAwwoQUajSYtLa24uDgqKspwdjt16lROTs6aNWu6detGwfeOjHHEt99+m5mZ6ePj89577/Xq\n1Ss7O7usrKy2tjYsLMzwFaPuZuPi4jJkyBAS1T4JMxxBdy+0gKaDGujvCAYMBwaY8CRarfbm\nzZupqakAYBhKxcfHHzlyRCAQLFmyxNBMCkJHE4z3JaBPd0LzEvVBZSdoxrlz53bt2uXi4rJl\nyxZ9d0xPT09PTxeLxSNGjGCz2QRBJCYmFhcX9+/fn4IFdhhgQgu0Wu1HH32Uk5MTGhr6/vvv\n65YUzp079+2339rY2Hz//fdsNptsjU+BAY6oqalxcHCYNm0al8vdtm2bzoq6urrly5eXlpZG\nR0fPnz+fgttOWkB3RzDDCy2g46BmhiPoPhyAESYAAI7jBEHo+zmO40uXLs3KynJ3d/+///s/\ne3t7pVJ5/PjxEydOEATx4YcfDhw4kFzBT8IAE8zpSwBA5e6E5iW6QJu9rQgdDx8+BIDRo0fr\nemRJScnOnTszMjLYbLZWq01MTPz8888xDIuMjCRbaaswwATdaxT9FMZms1etWrV69eo///xz\n1qxZvr6+EomkoqICAKZOnUrBB0cddHdEaWnpsmXLQkND2Wx2TEyMfo62t7dft27dsmXLLl68\nCADUv9nQ2hGM8QLdBzVjHEHr4aCD7ibU1NTs27cvKSlJrVZ36tQpJiZm9OjRLBZr+fLlq1ev\nzs/PnzFjhpOTU11dnUqlwjBs+vTpVAulGGCCDjP7EmW7E5qXaATaMkozSkpK0tPT2Wy2j49P\nXFzc5s2b7e3tly9fPm3atBs3buTn5/fp00efFo+a0NqE6urqr7/+esuWLb/99lt1dXVwcLAu\nq4RAIIiKilKpVHl5eRUVFY2NjSKRaNasWSNGjCBbcqvQ2hEAoNVqr127lp6e3tTU1LdvX8Pj\n6UKhMCIiIikpKT09vaampsWmFKpBa0cwwAvMGNQMcIQOWg8HHbQ2QSKRfPDBBw8fPtRqtQDQ\n0NCQkpJy79698PBwa2vrqKgogiBKSkpqa2txHA8JCVm8eDHVQikGmKCH1n0J0LxEK9CWUZqh\nVCpXr1794MEDALCyspoyZcrIkSMxDCMI4n//+19paenGjRuDgoLIlmkM+pqgOxVdW1urv+Li\n4vLpp5+6uLjoryiVyoKCAoIgfHx8BAIBGTLNhb6O0CORSJYtW1ZaWurr67tp06YW6zb6T1es\nWEHlMlN0dwStvcCkQU1rR+ih+3AAmpvw9ddfX7lyJSgoaO7cuV5eXjk5OXv37s3KygoICFi3\nbp3uXQlBEDKZTCgUcrlcsvU+BQaYoIfWfUkHmpfoAgoIKY1cLj958mRSUlJzc7O/v//EiRO9\nvLy0Wu2ff/6p1Wp79OihX38/ffr0nj177Ozs9u/fT7XtTE9a0blzZ3qZoGP79u0JCQn+/v5z\n5861tLQ8duzYxYsXxWLxunXrDB8fqQkz+tKT6G8nTz2KIJFIbt68OXr0aLLkPQkjHUE7L+ih\n9aB+Ejo6ggE3CAaYAP+c9Zo6dapAINi2bZtQKNRdV6vVa9euvXfv3oQJE6ZOnUquSOMwwARm\n9KUWoHmJFqCAkLqUlZWtWrWqqqoKAIRCoUKh4HA4CxYsaJHajiCIkydPHjx4kJqnos2xguIm\nwD+3mdmzZ+M4vm3bNktLS931w4cPHz58mPqPj8zoS08NpcDUzYZSMNgRNPKCDroPamCEIxhw\ng2CACWBw1islJWX48OFvvPGG4ac1NTWzZ8/m8XgHDx6kZu1NYIQJzOhLaF6iKegMIUVRKpVL\nly6trKz09fVdu3bt7Nmz6+rqcnJybt++HRkZaWNjo2uWmpq6ffv2CxcuYBg2bdq0mJgYcmW3\nwBwrKG4CAJSWln788cfFxcWVlZXR0dGhoaH6j7p37w4Ad+/evXXrVnh4uP6ZklIwoy+VlZV9\n/PHHSUlJUqlUq9Xm5eVduHDB2dnZy8uLLkcRmO2I4OBgWnhBB90HNTDCEQy4QTDABB36s14K\nhaJbt266UaBHJBLdvn27uro6LCyMsgel6G4CM/oSmpfoC8t0EwQZnDp1qry83Nvbe/369V5e\nXufPn09ISACAmTNn6ot11tfX79q16/79+y4uLmvXrh0/fjypkp+CSSuobwIAiEQikUh08eLF\nqqoq/RYUPZMnT548eXJNTc2yZct0SQipBgP6klKpXLt2bVVVla+v77Zt244ePTpixAiNRrN5\n8+bi4mIAsLOzW7dunbu7+8WLF7/55htqbnxgvCNo4QUddB/UzHAEA24QDDBBh77PAMC1a9c0\nGo3hpwRBNDQ0AACO4+ToMwO6m8CAvoTmJXpDICjJokWLYmNjdZkMzp8/P3bs2NjY2FOnTuk+\njY+PVygUBEFUV1cnJibqiu1QEHOsoLgJOurq6t59993Y2Nj3339fo9E82eDQoUOxsbG//fZb\nx2szCQP60pEjR2JjYxcsWKCTeu7cuRZW6NC76c6dOyQpNcYL4giKe0EPrQc1MxzBgBsEA0ww\nRN9nvvrqK61Wq79+5syZ2NjY1157TalUkijPHOhrAgP6EpqXaA0KCCnKjBkzZs6cSRBEfHx8\ni+7Y0NDw6quvrl69mkx95sEMK3ToZ7GtW7c+dRa4f/9+x6syBwZ4wcxQiiCIurq6M2fOkKXT\nOC+OI6jsBUPoO6iZ4QgGjAi6m6DValu8DdEPig8++OD69ev37t3bvXu3zrSzZ8+SpdMIDDBB\nB937EoHmJZqDtoxSi5KSkvz8fABwcXFpaGg4derUjh07CIKYNWvW2LFjdW1++OEHlUql32NG\nNfQmAG2tIAji3r17cXFxycnJukJGYMamxG7dunW4UmMwoC/pkUqlTk5OXl5eCQkJO3fuNLRC\nJpPt3r17w4YNupZ2dnZUS1b2AjqCgl5gxqDWQ19HMOAGwQATAKCmpuaLL76YNGnS+PHj582b\nd/r0ad1eSv2gePjw4caNG5cvX3769GkrK6v58+ePHDmSbNWPwQATmNGX9KB5idagpDIUor6+\nfunSpRcuXAgLC7OwsLh582ZqaioAGHbH+Pj4I0eOCASCJUuW6PPeUgdDE2xsbLRaLe2sqKqq\nWr169YkTJ/7888+rV69ev349ICBAdwadLslLgBF9yZC7d++Wl5fzeLzdu3e3mKB3796dk5MT\nFhbWu3dvckU+FeQIKsCMQW0ITR3BgBsEA0wAo6Xb+Xy+flDIZLLw8PDly5e/+eab/v7+ZKt+\nDAaYwIy+ZAial2gNWiGkEAcPHqypqfHy8nJycoqOjtbVuHR3d4+MjAQApVJ58ODBnTt3AsD8\n+fPFYjHJcp+GoQkAQDsrpFLp0qVLc3Jy7OzsJkyYEBsbW1lZuXz58pSUFF0DupyKpmNfysrK\n0v9/lpSUrF69WpcDAAAGDx6sVCr37dvX4h4THx9/4cIFgUAwbtw4ckSbAjmCdOg7qBnmCKD/\nDQIYYQIAfP/997W1tUFBQVu3bj116tSmTZuCgoIyMzPXrl2rUqnAYFDcuXPnl19+oWCBNQaY\nQNO+hOYlijjiuYNWCClBTU2NUCjcuXOnjY3N+vXrBQIBhmFhYWHp6elFRUW///77pUuXfv75\n5/v372MYNn369BEjRpAtuSVPmgAAtLNiw4YNeXl5wcHB69evDwsLq6qqSkpK0mg0N2/e9PPz\nc3V1hceXFPz8/HQ5zagDTftSSkrKqlWrysrK+vXrV1paunz58oKCAoVC0bdvXwDw9vZOS0ur\nqalxd3efPn26UChUKpWHDx/+8ccfAWDRokXBwcFkW9AS5AiKQNNBzTBHMOAGwQAT4B8rdu3a\nZWtru3HjRkdHRwzDHBwcoqKisrKyMjMzcRzv0aMHUHjxnDEm0LEvoXmJIo5oD1BASD6GFbFi\nYmJ0ExkACASCqKgogiBKSkpqa2txHA8JCVm8eDEFy1+2ZgJQ1QqNRoPjOIv12Ap5VlbWgQMH\nxGLx+vXrra2tz58//+233xIEMXTo0Nzc3CcfH52dnYcMGUKSBU+Hvn3J0tIyJSUlNTW1sLDw\n2LFjEokkJCRk4cKFHA4HaDhBI0d0PAwb1PR1xJPQ7gbxJAwwAZ4ov2m4eY/NZoeEhJw5cyY/\nP3/cuHG69TQKBlQMM4F2fQnNSyQKbm84ZAtA/FsRCwBa7GoQCARTp0596623ZDKZUCjkcrkk\naTSBEROAelZoNBrdyeZPPvnEUO39+/cBYPbs2VZWVrdu3dq1a5d+20Nzc3NiYuK6deuWLVum\nuwNR8FQ00LkvWVlZffbZZytWrLh9+zYAhISErFy5ks/n6xvY2Nhs2LDh2LFjFy5cqKiowDAs\nJCRkypQpVHvjqAM5ooNh3qCmqSOeCr1uEE+FASbA41Y8idA1ZZUAACAASURBVFgs9vT0zM/P\nLywsDAgI0F3UbbxctmzZzZs3J0yY4Obm1oF6nwLDTKBdX0LzEoNBK4TkY3j6ua6ubsSIES1e\ncmMYxufzKbgDXo9JE4BKVqhUqvj4+PT09IKCgoiICL3U4ODgpqamMWPGNDY2rly5UqVSTZ48\necKECQBQWFhYVlamVCoTExMHDRpkaWlJqgWtQuu+JJFIzpw5o1QqASAoKCgyMrLFq1wOh9Oj\nR49XXnllzJgxU6ZMeemllxwdHUkSawLkiA6GkYOajo54KvS6QTwVBpgAT1gRExNjaAVBEMeP\nH29qaoqOjjY8JaX7Vv/+/T09PclQ/RjMM4F2fQnNS0wFBYSUQN8vS0pKqqurw8PDSd/V0FZo\nZAKHwxk4cGBGRkaLx0cMw3r37s1iseLi4pKSknr16jV//nzdV3766SeBQDB37lw3N7d+/fqR\nKt8ENHJEC3g8XkZGhlgstrS0TEtLq6io6Nev35Pi6TJBI0d0JIwc1HR0RGvQdzjoYYAJYGBF\nWVlZZWWloRVnz569fv26SCSaPn26bgeg4bfs7e3J0PsUmGQCHfsSmpeYCgoIqYK+X967d48i\nO93bCo1MaO3xUcelS5fy8vImTZrk4+MDAHFxcfHx8UFBQa+99hpl65IZQiNH6JFIJEqlMjo6\nOioqatCgQWlpaampqS3uNHfu3LG2tjbcnUJxkCM6EoYNavo6ojXoOBxawAATwMCK+/fvp6am\nikQiqVT6+++/Hz58GABmzZqlS7FIZZhkAr36EpqXGAwKCElAo9FcunTp9OnTd+/ebWho6NSp\nk+5VFgVPPxvhqVZQ2QSNRqNQKHg8nu6fRh4fGxoa7ty5I5FIHB0dz5w5c/jwYQzD5s6dq0tJ\nTCkY0Jfq6uq2bt26Y8eOGzduDBgwwMbGhs/nR0RE6O80YWFhLBbr8uXLmzZtSk5OHjZsWItX\nv1QAOYIKMGNQM8ARDBgOQMN73JPI5fIjR47s3bv3t99+y8rKcnd3t7W1BQNHFBQUJCYmXrp0\nKTs729raes6cOVTL/MEAE4ARfYkB8xIwwhHtB0admksvCOXl5Z9//nlxcbH+ipOT04cffhgY\nGKj7p0QiWbZsWWlpaXR09Pz586nZL41bQUETtFrt+vXra2trP/vsM8PDQkqlcvXq1Q8ePAgL\nC9Ono9BqtatXr753756+2bRp08aPH0+CbqMwoC+Vl5cvW7astrbWxsZm7NixQ4YM0R/8kMlk\nK1euzM/PDwgIcHNzu3LlCgBMnjx58uTJZCp+GsgRlILug5rujmDAcAAa3uOepKysbNWqVVVV\nVQAgFAoVCgWHw1mwYEFUVJSugd6K8PDwt99+28XFhWpP8AwwARjRlxgwLwEjHNGuoBXCDkVX\nIrm8vNzV1XXChAlhYWHNzc0FBQVXr17t2rWr7l01BStitcCkFdQ0ITk5OTU1NS0tLTIy0vg6\nIYvFioyM5HA4arXax8dn9uzZQ4cOJVf8kzCgL6lUqmXLllVWVgYFBa1bty40NFQkEuk/5fP5\nAwcOzMnJyczMLCwsZLFY06ZNmzhxIomCnwpyBNWg76BmgCMYMByAtvc4Q5RK5dKlSysrK319\nfdeuXTt79uy6urqcnJzbt29HRkba2NiAgSMePHjQ3Nz81JNgJMIAE4ARfYkB8xIwwhHtDoFo\nH9Rq9c6dOysrKw0v7ty5MzY2dsmSJQqFQn/x+PHjsbGxU6ZMaWho0F+sq6s7c+ZMx8lthWex\ngiIm6NFqtZs2bYqNjV24cKFMJjP8SKFQfPTRR7GxsZ999plGoyFLYWswoy89ydmzZ2NjY2fP\nni2Xy/UX09LSfvzxx7i4OJ0jcBy/fv36oUOHCgoKSBP6D8gRFHGEOVB8UD8VejmCGcOBSfc4\nQ44cORIbG7tgwQKdCefOnRs7dmxsbOypU6datKyrq3v33XdjY2O3bt2K4zgZYp8O7Uxgal+i\n17xEMNcR7Q1aIWwXcBzfuHHj5cuX//rrrxEjRuhfWW3ZskWlUi1fvtzw4EqXLl1KS0uzs7NZ\nLJa+MqZQKNRX0SGLZ7SCCiYYgmFYv379ysvLzVwnJFetHmb0pacSFxdXUFDw2muvde/eHQBK\nSko2bNhw9OjRhw8fJiUlZWZmDh06FMMwDw+P7t27686NkAhyBEUc8VRwHG9RlZ7Kg7o1aOQI\nZgwHht3jDNm/f39dXd2nn34qFovj4+MNK3ACQEJCgru7O8UPdtLLBAb3JRrNS8BoR7Q3VL9B\n0pRTp07dunXL0tLScCMyQRCNjY0A4OHh0aL9qFGjACAlJaWDdRqHGVYYwmKxFi1aNHjw4Ly8\nvJUrV+oM0SEQCNauXRscHHz37t3169drtVoSdRrCPC+UlJTk5uYCQKdOnQAgPT29uLj40KFD\nCxcuJAhiy5Ythw4dcnFxuX//fk5ODtli/wU5ggpotVri8XPvNTU1X3zxxaRJk8aPHz9v3rzT\np0/jOK77iLKD2hC9F4BWjmDGcGCGFU9FKpU6OTl5eXklJCTs3LnTMJSSyWS7d+/esGGDvrGu\ndLu7u/vNmzfLy8vJU/0Y9DKBYX2JpvMSMM4RHQkKCNuFP/74AwAWLlzo4+NTUlJy+/ZtAMAw\nzNXVFQCeHDwCgQAAmpqaOlypMZhhhR6JRLJ169ZZs2ZlZmYCgPGY8ObNm+QpfQyGeUGpVC5f\nvvzXX38FgDFjxgQHBycnJ8+bNy8uLm7GjBnr1q3z8fERCAS6RCD6J3sqgBxBOhqNZv369d98\n840+JpRIJB9++GFiYqJKpSIIori4eM+ePcuWLZPJZLoG1BzUegy9APRxBDBlONDdiqysLP1Y\nKCkpWb16dUNDg+6fLi4uDQ0Np06d2rFjh2EoBQA//PCDSqXq3Lmz4a/SBVSff/65m5tbR5oA\nrVtBIxOA/n3JEPrOS8AsR3QwKCBsF3QnbrlcbklJyfLly7/44gtddrvhw4cDwL59+1QqlWH7\nq1evAoC3tzcZYluFGVboqKmpWbx48R9//MFisaKioiZMmODk5NRaTLhgwYKBAweSqNYQJnkB\nAAQCgVgsvnXrllQqFQgE69atW7FixSeffLJnz55Ro0bp3uedOXOmtLTUzs7O39+fbL3/ghxB\nOnK5vLS09OLFi/qY8Pvvv6+trQ0KCtq6deupU6c2bdoUFBSUmZm5du1avTsoOKj1GHpB909a\nOAKYMhxobUVKSsonn3yyefNmgiB0+lNTU3/++Wfdp4MHD1Yqlfv27WsRSsXHx1+4cEEgEIwb\nN67FL7Szs/Pz8+tQG4xaQRcTdNC6L7WAvvMSMMsRHQw6Q9gu2NnZXbt2LTk5+cqVKxKJpHv3\n7uPHj+dwOP7+/ikpKbm5uX/99VdISIiFhQVBEHFxcYcOHcIwbP78+fpMvlSAGVbo2Lp1a3Z2\ndlBQ0MaNG0NDQ3v06BETE1NaWpqenv7keUJd6WqKwCQv6ODz+YmJiVZWVl26dGGxWO7u7p07\nd+ZyuQBAEMTJkyd/+OEHAJg/f76Xlxe5Ug1BjiAdgUDQ4qTQrl27bG1tN27c6OjoiGGYg4ND\nVFRUVlZWZmYmjuP642pUG9SGGHoBAGjhCGDKcKC1FZaWlikpKampqYWFhceOHZNIJCEhIQsX\nLtQdq/P29k5LS6upqXF3d58+fbpQKFQqlYcPH/7xxx8BYNGiRcHBwWRbAGDUCrqYoIPWfelJ\naDovAeMc0ZGgOoTtxYEDB06cOAEAQUFBn332GZ/P112XSqWrV6/Oz89nsVgeHh5SqVQikQDA\n9OnTX3nlFTIVPw1mWKHVaidNmqRWq3fs2GG4yUSr1X7wwQd5eXm+vr4t6hNSCmZ4QY9Go5k5\ncyaXy92zZ4/h0f/U1NQTJ07cv38fw7C3336bgjXikCOogGG1qJSUlOHDh7/xxhuGDWpqambP\nns3j8Q4ePKh/0UNZWvMCUN4RzBgOtLZCJpOtWLGioKAAAEJCQlauXKnXD4+b4OTkVFdXp1Kp\nMAybNm0adUwAo1bQxQQdtO5LLaDvvATMckRHglYI24WysrI9e/YolUoAaG5u7tOnj52dne4j\ngUAQFRWlUqkKCgpqa2uVSqW9vf177703YsQIUiU/BWZYAQAajebIkSMcDmfOnDmG11kslkAg\nuHXrlkQiabFOSB0Y4wU9LBZLqVTeuXNHV8dWd7G+vn79+vX5+fkuLi4fffTRkCFDyBX5JMgR\nFMEwo6BCoejWrZsu950ekUh0+/bt6urqsLAwBwcHsnSayVO9AJR3BDOGA92tkEgkZ86c0ekP\nCgqKjIw0fHbXmaDbillbW4vjeEhIyOLFi6m2d9qIFXQxAejfl1pA03kJGOeIjgStELYLTU1N\nq1atEggEPXv2PHDggJWV1WeffdZiz5JSqSwuLuZyuZ6enhTJ8twCZlih45133ikvL9+2bVuL\nvQ3p6ekrV67s27dvUlLSvHnzKDgv0N0LJSUlxcXF4eHhhkn/6+vrZ8yY0atXr5UrV+ov1tTU\nZGdn9+/fn2om6ECOoBT6dUI3N7ft27frtsnpIAhi5syZNTU1GzduDAoKIlHkk5jvBaC2I+g+\nHHTQ3QqVSrVu3Tq1Wi2Xy/Pz86OiohYtWvSkSIIgZDKZUCjU7fejGuZYQXETgOZ9iTHzEtDc\nEeSCVgjbBS6XGxkZGRUVFRISontdnZiY2KtXL/2LCgDgcDgODg62traU7Y7MsEKHRqNJS0sr\nLi6OiooynPJOnTqVk5OzZs2abt26RUVFkSewVWjthfr6+g8//PDChQuXLl3SaDSdO3fWrcEK\nBIKysrKbN28OGzbMwsJC11gkEnXu3JlqJuhBjiCdsrIyNputeyLUrxOWlZVVVlaGh4frBZ89\ne/b69esikWj69OmGgSLptMkLQGFHAM2Hgx5aWyGRSJRKZXR0dFRU1KBBg9LS0lJTUysqKvr1\n66eXeufOHWtra4FAwOfzdQkhqYb5VlhbW1PTBB307UtMmpeAzo4gHRQQthdcLlf3LBIUFNRa\np6Q+NLVCo9FcunTp9OnTd+/ebWho6NSpU3BwcEpKSlZWVm5ubs+ePXWJhs+dO3f48GFbW9s3\n3njjyeo01IGmXgAAgUDQt29fDMN0FWzPnDlTXV3t4uJiY2Pj6OgYHx/P5/P1mT8oi24bBYZh\nyBEkUlVV9fHHH9+9ezcyMrJFTHj//v3U1FSRSCSVSn///ffDhw8DwKxZs6i2PMgALxhC3+Fg\nCB2tqKur27p1644dO27cuDFgwAAbGxs+nx8REaGPpsLCwlgs1uXLlzdt2pScnDxs2DBKvRnR\nwQwrDKFjXwLGzUtAW0eQDgoIOwJmdEq6WFFeXr5s2bILFy4UFBTk5+ffvXv36tWrwcHBo0eP\nTk9Pz8zMjIuL+/PPP48fP37lyhUAmDNnDlmJqv8DdPECAEgkErlc7uLiEhoaOmbMGCcnp8rK\nyuTk5LNnz2ZmZnp4eFRWVt67d2/s2LGGa7aUorq6+uuvv96yZctvv/1WXV0dHBysP2WKHNHB\nCASC7OzstLS0e/fuPRkTFhQUJCYmXrp0KTs729raes6cOVTb/s0ML7QGjYaDEWhhRXl5+ccf\nf6zr52PGjPH19dXl2TeMplJTUzMyMo4cOUIQxKhRo3r27Em26pYwwwoj0KIvAdPnJaCPI6gA\nCgg7COp3ypKSkqqqKnt7eyNtqG+FVCpdunRpeXm5q6vrhAkTwsLCmpubCwoKrl69GhoaOmnS\nJJVKlZeXV1FR0djYKBKJZs2aRbUHR5NQ3wuGr37Dw8MtLS05HI6fn19MTEyvXr3UanVKSoou\nJbRCofD09KTm8qxEIvnggw9yc3MJglCr1bm5uYmJiX379tVno0WO6EhYLFb//v2Li4tbiwll\nMll4ePjy5cvffPNNStXFYpIXjED94WAOFLdCpVItW7assrIyKCho3bp1oaGhujhKB5/PHzhw\nYE5OTmZmZmFhIYvFmjZt2sSJE0kU/FQYYAUDnpdekHkJKO8I6oACwo5D3yldXFwoVT8HAJRK\n5aJFi+rq6iIiIoy3pLIVAPD999+np6cHBAR8+eWX3bt3DwgIGDZsGJfLTUlJSUpKGjlyZL9+\n/caOHdunT5/o6Ojp06dT0ARzoLIXWnv1q0MsFvfv3z8mJsbKyqqsrEwul0ul0mHDhpEouDX2\n7duXkZHh7++/YsWKV199VaFQ3Lt379atW7p7p64NckRHYjImfPDgQa9evQxLy5AO87xgBCoP\nB/OhshUJCQmXLl1ycXHZsGGDtbW17mJ6enpCQkJpaamPjw+fzx8yZIiHh4eHh8fs2bP79+9P\nruCnQncrGPC89ELNS0BhR1AKlGW0o3n48GFgYCDZKp7CkiVLCgoKvv/+exsbG5ONKWvFlClT\nZDLZ119/3WIX6KZNm65duzZhwoSpU6eSpe25Q0EvqFSqhQsXlpSUBAUFffLJJ8ZfxREEsXPn\nzvj4+C1btlCqbnhNTY2Dg8Ps2bNxHN+2bZs+/Dt8+PDhw4fFYvG6detcXFz07ZEj2gm5XG6Y\nzECHVqv98ssvb968GRAQ8Omnn+qfYyQSyc2bN0ePHt3hMluFjl7QaDTNzc1P/rebDwWHw3+A\nmlZs2bLl0qVLM2fOHDduHACUlJTs3LkzIyODzWZrtdru3bt//vnn1M+TwQAraP28RMd56blA\nNUdQDbRC2NGIxWKyJTwdPp+fmJhoZWXVpUsXk42paQVBEAcOHACA2bNnt0hHZmtre/HiRaVS\nGRMTQ5K65w8FvWDy1a/hOQQMw+zs7BISElgsVp8+fUgRrNFocBw3VFVaWvrxxx8XFxdXVlZG\nR0eHhobqP9LVu7t7926LdULkiPagpKRkyZIlHA6nxS1ct06YkpKSk5PTYp0wICCAJLFPh3Ze\n0Gq1GzZsiIuLe5airBQcDv8BalpRUlKSnp7OZrN9fHzi4uI2b95sb2+/fPnyadOm3bjx/+3d\ne1RTV7448H3ygADKS0EQecgbBFGQlw/ANyja6Yy9LNvVEaZV6x3paNulVtS2txVYTmfE61QZ\n6WhHvD6q07FLEBRGwYIUCIEgIPIQLAmIBsNDJYSE/P4495d7mkAI1OHsk3w//xVwrZ3unLP3\ndz++35KHDx8uWrQI/9qbBvApGD1fYtx76VXBrSNwg3XKJjCVli5deubMmfz8/N/85jeYL86N\nhSAIR0fHzs7O5ubmefPmUX9FphV9+fIlTU0zFg8ePEAIrV+/nty30Vj6LS0t1Vj6nT59OkLo\n/v37tLRWoVCkp6cjhD7++GP1CoK5ubm5uXlhYSFCyMzMTOOfbN68GSF04cKF/fv3a+wTYoVZ\nHaFBJBLJ5XKyqVlZWQihDRs2UP+AzWa/8cYbqampTU1Nhw4dou4TYoVxvUAQhJmZWWtr68GD\nBz///HP1kgfARHx8fGVlJZ/P5/P506dP/93vfhcXF0cQhEqlIt9gIyMjdLdxfAbwKRg9X2Lc\newlMDUZmDQL/DhwOJzY29smTJ1VVVXS3ZfLWrFmDEPrb3/4ml8upPy8uLkYIzZ07l55mGY05\nc+YghIRCYUdHx/nz53ft2qVSqTIyMs6fP+/g4HDv3r3m5mb1H4+MjHzzzTcIIbrCKoVCMTAw\n0NDQ8PjxY/UPbWxsUlNTnZycEEJFRUVKpVLjX23evHnz5s0SiaS8vHxKmzsRzOoIqt7e3kOH\nDh08eJDFYh0+fNjS0jIrK+vatWsaf0aeaQwLC2tqaiopKaGjpeNjXC+wWKzdu3dHR0eTMeHz\n58/pagkYFY/HS01NPXDgwMcff5yVlbVu3Tpy4p6TkyMWi21sbLBKpzQWA/gUjJ4vMe69BKYG\n7BAaKZFI1NHRER4eTj0bEBcXd/ny5by8POYeDNi4cWNpaWlzc/Mnn3yye/due3t7lUqVm5t7\n9epVgiBef/11uhs4CnWZO7ob8gpMaOm3tbW1vLzc3NycroudPB7vs88+e/LkiZOTU3d398yZ\nM8lGkjHh/v37Hz58+NVXXyUnJ2v0zubNmwMDAwMCAmhptj6Y1RFU2dnZEokkMDDQ3t7e1NT0\n8OHDKSkp2vuE5BLPzp076+vrx03tQBcm9gIZEyKEiouLmb5PKJPJ/vnPf5aUlGzZsiUsLIzu\n5rwabDab+llUKtU//vGP7OxshNC7776Lc+l2KmZ9CgObLzHxvaRmSPMl3EBSmQlTKBRFRUX1\n9fUEQfj5+UVFRZmammr/mVgsJjcZMNTb2/uHP/xBKpXa29uvW7duzZo16iH/6NGjRUVFWVlZ\n9vb29DZyXGN1RF9f3yeffPLw4UMWi+Xi4tLX1yeVShFCSUlJ9AaESqWSxWJRX2RPnz7NzMwU\nCASmpqbR0dFvv/32qHMvnL9L2pRKZVVVlVKpDAoKUh/ku3btWlZWlo2NzenTp6mDfUVFhbW1\nNe1Xv7q6uvbt2+fl5UU9OyqVSvfv3y8Wi1etWqUdE+KPcR1B5vJJTEw0MTH57//+b/V53UeP\nHqWkpPT39yckJLz55psEQZCfYubMmadPn6axwfpgXC+QRkZGjh49Wlxc7OHhMVZMiPl7qaur\n67/+67/EYjEZe3z44YfatyIx/wjjqq6uvnLlyr179wiC2LJly69//Wu6WzQZmH8Kw5gvaWDi\ne8kg50tYgaQyEzNq0XMfHx+Nu6pFRUWHDh2ysLDAMKORSCR6/vz5mjVrCIJ48OBBZWVlTk7O\n06dPHRwcrKys7Ozsbty4YWpqGhQURHdLddHRETweLyYmRi6Xt7W19fT0yGQyW1vbnTt30ltv\nkLyuJhQKw8LCyNBi3DJ3JJy/S6NisVhOTk7Ozs5kqg9y6Zc8c5KcnOzm5kb9YycnJxySB3C5\nXD6fLxQK29ralixZQi4Dq4sZCIVCiUSi7jimYFZHUHP5xMbGUt8/1tbWISEhZWVlVVVV169f\nz8nJIc+Ibtu2Df9D4MzqBYSQVCo9depUVlaWRCJ5+fKlVCqtqanRzjGD+XtpaGho3759nZ2d\nnp6eqampcXFx2ptOmH+EcfX29qalpT18+NDBwWHPnj3Lly+nu0WTgf+nkEgkc+fOtbW1Ze58\nSRsT30sGOV/CCgSEE6Cj6Pm8efOoS0RVVVU1NTU+Pj5kWkJ89Pb27tu3r6CgYNWqVStWrIiP\nj7e3t+/u7ubz+devX29oaHBxcenu7q6trd24cSP1dARWxu0IDocTHBy8cePGiIiI+Pj4LVu2\nuLq60tvmgYGBf/7zn9TQQp8ydwjj75I+qqur//KXvxQUFBAEkZiYiG2KVw6Hs2zZsrq6OgOL\nCdXw7wilUnnnzh2hUDg4OBgcHKxRKsra2nrJkiVtbW0dHR0vX740MTF555136F3imQT8e0Ei\nkXz00Uf19fXTpk2LiYnx9/eXSCQikUg7JsT8vXT16tWSkhJnZ+cjR46MlVUf848wLh6PFxkZ\n6efnt2PHDkdHR7qbM0mYfwpyylReXr5jx4633nqLifOlceH/XkL6lQVGzH+o6QVHRifg5MmT\neXl53t7eX3zxBZm1EiF05cqVs2fPWlpanjx5kszFRGpoaNAnH/EUO378eEFBQWBg4KFDh6gn\nXRsbG69fv15aWjo8PMxisUZGRvbs2bN06VIam6rDhDoCHxpHEPUvc4fnd2lcvb29e/bsefz4\nsYODw3/+538uWLCA7haNQyaTffLJJ/fv3w8LCxv17OiBAweYeBOJKR2h/v/s4uJy7NixUe8R\n/fTTTz09PZ6enng+4zowohfS0tLKysp8fX0/++wz8siuXC4/evRoaWmp9tlRnN9Lu3fvbm1t\n3b9/f0REhI4/w/kjAByMOmVi1nxJN/zfSxMtCwwP9aTBDuEEZGRkyOXylJQU6magv7+/WCxu\nampisVjUYwN2dnZ0tHFMEonEzMzsxIkTVlZWaWlp6jiKNHPmzMjIyNjY2OnTp3d2dr548aKv\nr2/lypV0tVa3CXUEPjS2m/Qvc4fbd0lPOC/9qlSqe/fu8fn8/v7+WbNmkYu7uvcJZ82aheFx\nJn3g3BFU6gdEJBI9ffo0PDxcez/WysrK0dFx1GvbmMO/F5RK5bFjx0ZGRj777DP1CTE2mx0Z\nGcnn81tbWzX2CXF+L128eHFwcDAxMZHMRktVUFDQ09ND3jLC+SMAeumYMjFrvqQb5u+lSZQF\nhod60iAg1BeDip4rFIrBwUHq8R4d93OoeDyev7//hg0bpFIp+YyNddiGRgzqCG3UmPDFixdh\nYWG+vr7UPxjrHcdQ5ubmzs7OuB2zfPLkySeffHLlypWqqqri4uIffvjB29ubnAHriAlpv1L/\nS+DZEdrUD0htbS2jz+iOCvNeUCgUFy9e5HA427Zto/6cxWLxeLyysrKx7hNi6O7duxKJJDg4\nWGOOq1KpMjMzr127tn79ehw+RWNj44wZM8ivhEgk+tOf/hQSEsLE9Q7m0p4vIf2mTIyYL+kD\n5/eS+iqBMcyXaMfUQ89Tjyx6jhCiVmghYVX0XKlUpqenHzhwgFpCSl1ru6enZ9yEzgRBkNX8\nbt68+e9t60SIRCKy4A9TOmIshlHmjrnIC6jNzc02NjabNm3asGFDd3d3SkqKQCAg/4CsReHn\n51dRUZGWlqbdQeAVUqlUGtcW1A9IYWHh8ePH4VLDlDExMXF0dFQoFO3t7Rq/Ime6oaGhra2t\npaWlNDRugmJiYhBC2dnZGgVpv//++wcPHri5ueEwdxQIBB9//PHRo0dVKpVIJEpJSamurv6f\n//kfuttlREadL6GJTJnwnC8ZDJgvTSXYIZwAuVxeU1Pz6NGj5cuXU98RV69ebWxsDAwMXLZs\nGY3NU+Pz+dXV1dSlXPW6+8DAwLNnz9auXav7AvTw8PC1a9cUCkVcXNxUtVoXlUr10UcfVVRU\nxMbGcjgcpnTEWNTdQV6I0t4GCQwMDAwMjIqKoquFBiw9Pb21tdXPzy8tLS0sLOzJkyeVlZUK\nheLu3buenp7kWgN1n9DFxYX2jEQGQKlUEgShUXPliXFnpAAAIABJREFUz3/+c0ZGxtWrV58+\nfern56depDeYXD6Mo1AoampqOjo6YmJiqGPE999/39zc/OmnnwYEBJCxFubc3d2rq6tbWlrq\n6ur8/PwsLS1lMtm333577tw5giB27dqFQ5XtadOmCQSC6urq9vb2b7/9ViqVzp8/f9euXRwO\nIwtESySSzMzMv//97xUVFdOmTWNK6n/t+RKa4JQJt/mSgYH50pSBgHACvLy8BAJBS0tLfX39\n/PnzLSwsyKLn58+fJwgiOTlZo/gELQiCiIiI6OrqGism1HE/hzQyMvLVV191dHT4+flhElkR\nBPHixYvy8nIWizV//nxGdIRu4055GVfXiBEaGxvPnj07c+bMtLQ0S0vL/Pz8zMxMlUq1YsWK\nlpYW7ZjQ0dGRofcGsTKJmivUB8TT05Mpk0um8/b2FggEjY2NLS0tCxYsIM9c5OXlXbhwwdra\n+s0333RxcaG7jXphsVjh4eFCobCpqSk3Nzc/P//ChQu1tbUEQSQlJWES05qami5ZsqS6urqu\nrk4mk82fP//gwYM6zouKxWJLS8upbKH+ent7P/zww/v37w8MDDx+/PjOnTu9vb0hISEa4xpu\nH2Gs+RLSe8qE4XzJ8MB8aWpAQDgBLBYrIiKCHGNycnLu3r176dIl8vxMUlISPu+CcWNC3fdz\nWlpavvnmGzMzsz179uDz7vbx8SkqKqqpqYmOjra0tGRER+jGoG0Qhi79art9+3Ztbe0f/vAH\nDw+PsrKyjIwMlUr17rvvbtmy5aeffmpvb9eICd3d3elu8s8wtCMmV3MF21w+DO0FfajHuIaG\nhtzc3KqqqsuXLxcVFSGEtm3b5unpSXcDJ4DH45HfHJFI1NfXNzIy4unp+f7772P1dZJKpTk5\nOTKZDCHk6+u7dOnSsUYBzAusnTp1qr6+3sPDIzk5edGiRc3NzbW1tY8fP46IiFB/Ijw/gj4x\noY4pEz7zJcN4LykUilu3bl27dq2ioqK/v3/OnDnkhjmD5kvMBQHhxOBZ9FzbuDGhjodqxowZ\n7u7ucXFxtBd97unpMTU1JY9qsNnsGTNm3Llz5+nTp8uWLWNKR+jGiHccQ5d+NYhEIolEsnjx\n4pcvX8bHxz9//vzgwYNyuXzz5s2bNm1CCLW3t3d2dspkstLS0qioKByuGGlgbkfweDyN73lW\nVpaZmdmRI0ccHBymTZsWHh6ORssNgGEuHz17AWHZEfpQv1pbW1sfP378/Plzc3Pzd999l1mv\nVhKHwwkKCnr99ddjY2MTEhI2bNhAex5FpVLJ5/Nnz55NfmFMTEzq6upmzpw5bdq0mpoajQiK\nCvMCaydOnLC0tPzyyy9dXV3d3NxiYmIEAoFQKKR+Imw/gj4x4VhjNCbzJcN4L3V1de3fv7+g\noKCtre3hw4cVFRXFxcU+Pj7kmS9GzJcYDQLCCcOw6LkGqVR66tSprKwsiUTy8uVLjdRw+jxU\nTk5O6rTjdBGJRHv37i0oKHBwcJg9ezZCyMXFpb6+vqqqytfX19HREf+O0Af+R+OYu/SrRhYX\nLigoCA8PX758OYvFys3NraysXLhwYXJyMvk3586d4/F4O3bsmD17tu7aZXRhdEdMuuYKbvTp\nBYRfR0wom6X61bpo0aJVq1YlJSX5+flNbXtfJYIgzMzMcMgpWlRUlJqampeXpx552Wz24sWL\nY2JioqKiampqqqurNb5L5eXllpaWpqam/v7+QUFBK1asoPcjjOW7776Lj49XZ+Mk14A0YkI8\nP4Lu+RLSY8qEw3yJoe8lKjLfW1dXl6Oj46ZNm8LCwoaGhtra2oqLi+fNm0ceCsV/vsRoEBBO\nEofDmTFjhrW1NW5LFBKJ5KOPPqqvr582bVpMTIy/v79EIhGJRGPFhNg+VN999111dfXLly+L\nioqam5u9vLymT5/u6el548aNpqam2NhYde04PDtCf9gejSMxeumXlJWVVVdX5+Pjs27dOvL8\nya1bt1pbW//jP/6DPBSam5t748YNX1/fhISEgIAAuts7OqZ3hGHUXNGnFxBmHSEQCA4dOtTZ\n2RkRESEWi1NSUtra2gYHB0NDQ3X8Kw6HY2dnZ2dnx9AcJ1hRKpWZmZnZ2dkvXryIjIz81a9+\nRa30yGazyfuE6pgwLCyMxWLdvn37yy+/5PP5K1euJLuD3k+hQSqVfv311+fOnSMLugYEBFDD\njFFjQtw+gj7zJcSEKRMT30sazpw5IxQKvb29//jHPwYGBnp7e69cuZLL5QoEgsrKytWrV5ML\nWJjPlxgNAkJDc+zYsaamJl9f3yNHjoSEhAQFBcXGxorFYqFQqB0T4vxQeXl5FRYW2tvbv/ba\na7dv387JyRkcHAwLCxscHOTz+RYWFhqzSUbD8GicGnOXftHYxYX7+/vLy8ulUqmdnV1OTs6F\nCxcIgtixYwfOd9MZ3REkau6+vr6+1atXa+TuU8eE9vb2eD7g+vQCQgirjjCwbJZMdOzYscLC\nQh6Pt3v37rfeesvW1lb7b6gxIZlp5uLFiyqVat26dQsWLJj6NusmlUo/+OCDurq6vr6+zs7O\nwcFB7Sea+nTMnTvX2dmZxgaPSs/5EsJ+ysTE95KGjIwMuVyekpJCHYX9/f3FYnFTUxOLxVJ/\nOpznS4wGAaFBUSqVx44dGxkZ+eyzz6gLkJGRkXw+v7W1VSMmxPmhMjExsbCwKCgoWLp06Xvv\nvffs2bO8vLx//etfYWFhLS0tQqFw1apVZmZmdDfTMBnA0i/SWVzY1dX1/v37DQ0NRUVFTU1N\nCKHExMTo6Gj6Gjs6w+gIhJBUKn3x4oW5uTkTc4hPohcQQvh0xESzWYJXq6ysLDs7m8PhfPHF\nF9Rj0tpMTU2XLVvW3Nzc0NDQ3t7OYrESExPfeOONKWuq/jIzMxsaGtzd3Xfu3Llw4cKmpqbO\nzk7tJ5p8OhwcHDCMoyY0X0L4TZmY/l6iUqlUZ8+eRQht3bpVo/CjtbV1YWGhTCaLjY2lqXXG\nAgJCg6JQKC5evMjhcLZt20b9OYvF4vF4ZWVl2ufjsSISicrLy93d3ck3l4eHB5/P//HHH197\n7bXo6OiFCxc2NDQUFhYODw8PDw/39/djctdrQvdz8GcYS78IIaVSeefOHaFQODg4GBwcTL0H\nxWKxli5dyuFwhoeH3d3dt27diuGiqWF0xLNnz44dO/bVV1+VlJSQB0GZlUPcMHpB/2yW4JU7\nefLkkydPEhIStIOijo6O+/fvy+VyGxsb8icmJibLly93cXFxcXHZunVrZGTklLf3ZxQKxeDg\nIHXCQB67yMzMJM8ourm5ubu7R0dHj/VE83g8Ly8vOto+DkbPlwzjvaRGEERxcfHAwMDChQs1\n3v8DAwP5+fmmpqYbNmygq3lGwtgDQsNI1KvGZrOLior6+/sjIyOtra2pv+rr67t9+3ZoaGhd\nXZ2DgwOGCcSHh4f3799fWFjI5/NdXV1nzpxJEISrq2tubu7Q0FBISMjMmTPXrl1ra2vb2Ng4\nNDQUERGBwzn4yd3PwZkBLP2SdBcXZrPZAQEBq1evjoqKoj334KgMoCO6urr27t3b1NRkaWkZ\nHx/v4eFhbm6OGJUvzgB6AU0kmyW29Bms8cygePr0ablc/s4771BPijY2Nqanp2dnZ//www/5\n+flNTU2hoaFk4EEQhIuLS2BgoMYgPvXICqK5ubnqoEh97OLJkydxcXHUU3xMeaLVGD1fMoz3\nEpVcLq+pqXn06NHy5cupm4RXr15tbGwMDAxkSkUx5jLqgNAwEvVqUCgUNTU1HR0dMTEx1Onv\n999/39zc/OmnnwYEBGBSllcDm81etmzZwMBAVVVVQUFBV1eXj4+Ps7Pz48ePCwsLlyxZYmVl\nRRCEp6fnmjVrPDw81q9fT3eTETKs+zkGs/SrpmdxYdwYRkfI5fL9+/d3d3f7+vqmpqaGhISQ\n0SAJ/xmkYfQCQkgqlcpkslWrVumTzZLepo5Fn8Ea2wyKt27d6u/v9/b29vDwQAjJZLIzZ86c\nOHGip6fHycmJTGTS0dHR0tKC1TkFMhqsqKgYHh5Wh0zqYxcvX74MDQ2l/q/G/4nWxsT5ksG8\nl2Qy2eXLlzMzM+3s7JycnLy8vAQCQUtLS319/fz58y0sLFQqVW5u7vnz5wmCSE5OJotPgH8f\now4IDSBRrzZvb2+BQNDY2NjS0rJgwQIyi0ZeXt6FCxesra3ffPNNFxcXuts4Jh6PFx4evmjR\novb29qqqqvz8fIIgNmzYcPPmzfb2dvVgaWJigs+nmND9HJxXFgxp6ZdKn+LCWDGYjrh58+at\nW7ccHBzS09PVX3uhUHjz5k2xWOzu7m5ubo5t7j7D6AXqed3FixdbWVnpk82S7laPQp/BGucM\nilVVVbW1tSqV6v79+xkZGTU1NVZWVr///e937twZFRUVGRlZWFjY2dk5b968WbNm0d1YhCjR\n4LRp07744gt1kT3deaHwz8apgXHzJcN4L6H/X3Lw7t27L168kMvl4eHhXC43IiJCKBQ2NTXl\n5OTcvXv30qVLpaWlCKGkpCTYHpwCRh0QGkCiXm0sFot8qBoaGnJzc6uqqi5fvlxUVIQQ2rZt\nG4YnH7TNmDFj9erVs2bNamhoKC8vr6iomDNnzr1799zc3PA8BK/n/RzMVxYMbOmXilntN5iO\nyM3NbWtrS0hIIN+cIpEoPT390qVLDx48qKysbGhoWLFiBba5+wygF8Y6r8usbJYkfQZrbDMo\nenl5PXv27MGDB7W1teSV5qioqIMHD6rz6FpZWd27d6+7u9vDwwOH0UEjGiRr86ipv/+PHj3S\nPqOI7RM9KsbNlwzgvYQQGhoa2rdvX2dnp6enZ2pqalxcHHlGlMfjxcTEyOXytra2np4emUxm\na2u7c+fOtWvX0t1ko2DUAaEBJOodlfqham1tffz48fPnz83Nzd99910GPVQEQbi7u8fGxioU\niurq6u7uboRQU1PT+vXrNfLUTz2lUsnn82fPnq1+2+p5PwfzlQUDW/rVwKDB0mA6QiQSCYVC\nNpvt7u6em5t79OhRW1vblJSUxMTEkpKShw8fLlq0aMaMGbjl7iMxvRd0n9dlUDZLkp6DNZ4Z\nFAmCCAsL8/HxsbKyWrRo0fbt2+Pi4tQlcBBCCoXi7NmzMpksLi5uzpw5NDYVUaJBLpeblpZG\nHnPVoPt1iucTPRZmzZeY/l4iXb16taSkxNnZ+ciRI+p0SiQOhxMcHLxx48aIiIj4+PgtW7a4\nurrS1U5jY3QBoSEl6tVB/VAtWrRo1apVSUlJ1BSLTMHlchcuXLhs2bKurq6urq6NGzfOnz+f\n3iYVFRWlpqbm5eVRR0E2m7148eJx7+csXLgQ85UFQ1r61caUwRIZSke4u7vX1dXV1tZev379\n0aNHW7Zsee+992xtbTkcTl5e3sDAwKpVq3C+FsKUXlAoFCMjIxorZeOe1zU1NcUqm6W2yQ3W\n2HJ0dAwODg4ICLCystL41aVLl/h8vo2Nzfbt2zVy7k8xdTSIEBoZGZk+fTq1Wg8Vg5bYxsWs\n+RJT3ks6ZGVlSaXSnTt3urm5jfoHHA5nxowZ1tbWzP1SMZFxBYQGlqh3XBwOx87Ozs7ODs9r\nIXqytLSMiYkJDw+ntzSZUqnMzMzMzs5+8eJFZGTkr371K3XlIoQQm81ms9nj3s/BM5sllSEt\n/WpjxGBJMoCO4HA4K1as8PLyWrJkydatW/39/cmPkJOTU1RUZGNj87vf/Y72DX/d8O8FcgZf\nUlKyZMkS6v9Mfc7r4pPNUpvxDNZ5eXnffPMNQuiDDz6gdzOEelL07bffrqurq6urGx4eNoaY\nEDFqvoT/e0m3ixcvDg4OJiYmWlhYaPyqoKCATLZES8OMnHEFhIaXqNd4aJwrmHrHjh0rLCzk\n8Xi7d+9+6623qAnEqZh4P0cDtsO8dkUshJBIJJJIJPp/PfAfLNWw7Qj9sVgsJycnZ2dnLpeL\nEFKpVP/4xz/I6W9ycvJYy8NYwbwX5HL5jRs3WltbFy9eTE1Yped5XRpbThr1oUbGMVgPDQ39\n9a9/vXjxIkJoy5Yta9asobExGvcGIyMjvby8SktL9Y8JaT928UoGCKbA/L2k2927dyUSSXBw\nsMYSuUqlyszMvHbt2vr16zGs/WjwDDYg1Hg1GEyiXkCLsrKy7OxsDofzxRdfhISE6P5jxt3P\n0YbhYKNdEQsh1Nvbu2/fvoKCgrCwMO2DWAYAw46YtOrq6r/85S8FBQUEQSQmJsbGxtLdIn3h\n3AscDmfZsmWRkZHOzs7d3d1mZmbkHhojzuuO+lAbw2CtVCpzc3PT09Pr6+tNTU13794dFxdH\nb5Nu3rx59epVahYZR0dH/WNC2o9dGOEAgfN7Sbfh4WE+n9/R0bFixQrqGenvv/++sLDQ3d0d\natDTwjADQo1XA3MT9TY2Ns6YMYNslUgk+tOf/hQSEoJtqSgDdvLkySdPniQkJGiPeR0dHffv\n35fL5dQ1SBMTE8zv54wLt6Vf7YpYCKGsrKy6ujofH59169bhf85ncrDqiEnr7e1NS0t7+PCh\ng4PDnj17GLefg3MvcDgcKysrMqdoQ0MDeXYU//O6oz7UzB2sJ4TFYt25c6e2tjYyMnLv3r04\npBnz8PCQy+VJSUnUnKL6x4T0Hrsw2gEC5/eSDu7u7tXV1S0tLXV1dX5+fpaWljKZ7Ntvvz13\n7hxBELt27XJwcKC7jcbIAANC7VcDQxP1CgSCQ4cOdXZ2RkREiMXilJSUtra2wcHB0NBQups2\nAYYR054+fVoul7/zzjvUk6KNjY3p6enZ2dk//PBDfn5+U1NTaGioem0S5/s5esJq6VejIha5\njXDixAkrK6u0tDRqyj7Dg0lHaNP/OBaPx4uMjPTz89uxYwf+N2lHhW0vkLhcLp/PFwqFbW1t\nZEyI83ndscrcMXSwnoSQkJCoqKh169ZhUpmWIIgFCxZoP8t6xoQ0MvIBAvP30qhYLFZ4eDhZ\ncjA3Nzc/P//ChQu1tbUEQSQlJcXExNDdQCNlaAHhqK8GhibqnTZtmkAgqK6ubm9v//bbb6VS\n6fz583ft2sWghS7DiGkRQrdu3erv7/f29iZzcMtksjNnzpw4cYK8/ezv7y+RSDo6OlpaWrBK\nIqp9p4JxN+5GrYil3kbo7u6OjY3FcI7yytHeEUjr6zTR41jm5ubOzs6MnsTj0AtjIc+O1tXV\nUWNC9W+xOq+ro8wdQwfrycEkFBwXzjEhDBAI7/fSWHg8HhnBikSivr6+kZERT0/P999/n0Fh\nreExqIBQn2GGQYl6yfQkZGISmUw2f/78gwcP6thbE4vFuA0wE4ppMWw/VVVVVW1trUqlun//\nfkZGRk1NjZWV1e9///udO3dGRUVFRkYWFhZ2dnbOmzdv1qxZdDcWodHuVDDuQsVYFbHU2wiD\ng4PBwcGjpgjH/OvEONpfJ4M/jsU4Y8WEWJ3XHbfMHRMHa4OHZ0wIAwSjcTicoKCg119/PTY2\nNiEhYcOGDQw9PGIwDCcg1H+YwTlRr0bRc6lUmpOTI5PJEEK+vr5Lly4da329qKjo0KFDFhYW\n1DM2tNM/psWz/WpeXl7Pnj178OBBbW0tOcxERUUdPHjQ19eX/AMrK6t79+51d3d7eHjg8BFG\nvVPBrBm8jopY1G2EZ8+erV27VuM2FOZfJ8bR+DopFAojOY7FOKPGhPic19WzzB0jBmtjg1tM\nCAOEYSAIwszMDHKK4sBAAsJXMszQTrvouYmJSV1d3cyZM6dNm1ZTU6Oj/G5VVVVNTY2Pjw8O\n19Op9IxpsW0/iSCIsLAwHx8fKyurRYsWbd++PS4ujjoPVigUZ8+elclkcXFxc+bMobGpaLSD\n04y7UDFuRSz1sywSiZ4+fRoeHk79XmH1dWL6NVqNr5OJiYlRHcfClkKhuHXr1rVr1yoqKvr7\n++fMmUOu8owaE+JwXndCZe4wH6yNkzomDAwMpPfVakgDBACYMISA0ACGmbGKnrPZ7MWLF8fE\nxERFRanLnVNjwvLycktLS1NTU39//6CgIKwusJH0jGmxbT+Vo6NjcHBwQECA9nnLS5cu8fl8\nGxub7du3U9MoTz3tg9OMu1ChZ0Us9bNcW1ur8Szj83Vi+jVa7a8T049jSSSSzMzMv//97+SH\nYug9tK6urv379xcUFLS1tT18+LCioqK4uNjHx4esJKH7PiEtJlHmDs/B2sg5OjqSVyRobIMh\nDRBqY63vADBlGB8Q/sJhBpOL6TqKnrPZbDabTS13/vjx47CwMBaLdfv27S+//JLP569cuZLD\n4djZ2dH4Ecaif0yLZ/v1kZeXR+bu++CDD1xdXWlsyagHpxk3g9e/IpaOKSMmX6eJpobCqiNG\n/Tox+jhWb2/vhx9+eP/+/YGBgcePH9+5c6e3tzckJEQ70sCqIzT09fXt27evq6vL0dFx06ZN\nYWFhQ0NDbW1txcXF8+bNs7e3Rz+PCV1cXOh9L6HJlrnDcLAG06dPp7cBhjRAkHSv71Dh/F4C\nTMf4gPCXDDOYXEzXs+g5NSYkb+VdvHhRpVKtW7duwYIFU9ngidI/pqW7pRM2NDT017/+9eLF\niwihLVu2rFmzhsbGjHVwmnEz+AlVxMJ8G2FCqaGw6gh9rugw7jjWqVOn6uvrPTw8kpOTFy1a\n1NzcXFtbq31sAauO0HbmzBmhUOjt7f3HP/4xMDDQ29t75cqVXC5XIBBUVlauXr2a/IKRMaGj\noyMOw9yky9xhNVgDHBjSAIH0W98h4fxegh1OA8D4gPCXDDOYXEzXv+i5qanpsmXLmpubGxoa\n2tvbWSxWYmLiG2+8QUerJ4O5Ma02pVKZm5ubnp5eX19vamq6e/fuuLg4Gtuj++A0s2bwE62I\nhds2wqRTQ+HTEfpf0WHEcSy1EydOWFpafvnll66urm5ubjExMQKBQCgUasSE+HTEqDIyMuRy\neUpKCnWy6O/vLxaLm5qaWCyWups4HA51ZKTRLylzh89gDXDA9AFCg57rOwjj95KeO5ywvYk5\nxgeEzK2mqjahoucmJibLly93cXFxcXHZunUrvUf5J4HpMa0ai8W6c+dObW1tZGTk3r178blh\nP9bBaYbO4DXoHvJx2Eb4JamhMOmIiV7Rwfw4FtV3330XHx+v/gg8Hm/JkiXaMSEmHTEqlUp1\n9uxZhNDWrVs1ritbW1sXFhbKZDJ6ywxOFIMGa4A5/AcIbfqv7+D5XtJzhxPn7U1AYnxAqANT\nhpmJFj0nCMLFxSUwMJCsJcA4TI9p1UJCQqKiotatW0f7opeeB6eZOIPXpmPIp3cb4ZenhkJ4\ndMQruaKDD6lU+vXXX587d47P5/f39wcEBFBnJGPFhDh0xKgIgiguLh4YGFi4cCF1BokQGhgY\nyM/PNzU13bBhA13NmxymDNYAf9gOEKOa6PoOhu8lPXc4sd3eBGqGHBAi5gwzjCt6/gsxPaZV\noz0UJOl/cJoRM/hx4flcv5LUUDS2X23SV3QwPI4llUo/+OCDurq6vr6+zs7OwcHBvr6+1atX\nU6/RUmPCuXPnOjs709hgfcjl8pqamkePHi1fvpw6ibx69WpjY2NgYOCyZctobN7k4PlQAybC\n87vU19dXU1Pz9OlTe3t79fvHANZ39NzhxHN7E1AZeECIcH01UDGu6DnAzYQOTmM+g9cTPhWx\nSIaUGmpyV3TwPI6VmZnZ0NDg7u6+c+fOhQsXNjU1dXZ29vT0aCyFkDGhg4MDhh9Bu06Gl5eX\nQCBoaWmpr6+fP3++hYWFSqXKzc09f/48QRDJycnayQkZAbeHGjAXVt+lkZGR8+fPp6enFxcX\nFxUVlZSUhISEqJO1Mnp9Z0I7nBhubwIqww8IEWavBm3MKnoOmEVHTIjnDF5/OFTEUjOS1FA4\nH8dSKBSDg4MmJibkf0okEjMzs8zMTDKLjJubm7u7e3R09Fjb4zwez8vLi6a2j2nUOhmhoaGR\nkZFCobCpqSknJ+fu3buXLl0qLS1FCCUlJeE8fRwXVg81YDRMvksKheLIkSP5+fkjIyMODg4E\nQUgkEqFQuGbNGjKCYsT6zqjbm8ggdjiBmlEEhAibV4MOjCh6DphorJiQ9hn8L0d7RSw140kN\nheeZCzIRTm5u7tKlS01MTMRi8d69ezs6Op48eRIXF8esS49UY9XJiImJWb58uVwub2tr6+np\nkclktra2O3fuXLt2Ld1N/qXweagB09H+XSLfS+Xl5ebm5nv37n3vvffi4uJqamra29v9/Pxm\nz56NEGKxWBEREdiu7+je3kQM3+EEVMYSECIMXg2Tg0/Rc8BceE7iDYlRpYbC7eukTos6PDwc\nGRlpbW2tVCrv3LkjFApfvnwZGhpKPWnPrJhQR52MpUuXBgcHb9y4MSIiIj4+fsuWLTBAAIAP\narrmw4cPBwQEIIS4XC6bzS4vL4+OjiYDQoQQj8eLiYnBcH1n3O1NxJAdTqAPIwoIGQerouej\n0qcUKVSewQTmB6cNgFGlhsLn66RRJGPu3LmIEvUNDAxoZ5Fh0DXacetkcLncGTNmWFtb4xzW\nAmBsNN5L1ARdN27c+Omnn1gs1t/+9rfr169LpVI/Pz9TU1Pc1nf02d5E2O9wAv1BQIgj3Iqe\nj0qfUqRQeQYr+B+cZi4jTA2Fw9dJx6xLHfU9evRIO4sMztdoJ1cnAwCAj5GRkZKSErFYbGFh\nsXbtWvWyeFVV1enTpxUKRWdnp5WVlUgkqq+vFwgE0dHRHA6Hw+Fgsr6j//YmwniHE0wIBIQ4\nwqro+aj0LEUKlWdww9CD0/gzztRQ9H6d1FMWLpeblpZGHtal0n06FM9rtAZZJwMAY8NisRYv\nXtzW1tba2nr37t2wsDBLS8va2trU1FSFQhEdHX348OHXXnstNDT0xx9/7OrqGhwc1JGeeopN\ndHuTzWZzOBzcdjjBREFAiCl8ip6PSs9SpFB5BhgVSA01ZdRTFoTQyMjI9OnTR73KyKwbg8gg\n6mQAAJBWTGhubp6RkTE0NBQXF5ecnEzmQ7Y+IDMpAAAG9klEQVS1tbW1tS0rK+vu7v71r39N\nd5P/1+S2NxFC+OxwgkmAgBBfeIaCJD1LkSKoPAMApIZ61agL2G+//XZdXZ2O9DZMiQkNo04G\nAECNGhNWVlYqlcq4uLj33nuP+iAPDw/fvHmTxWLhU3yI0dubYNIgIAQTNqFSpAAYM/xTQzGO\nxnGmyMjIcVOe4p9FxmDqZAAAqNTBlVgs5nK577//vsb5kStXrjQ3NwcFBcXExNDUxlEwd3sT\nTBpr/D8Bxqqvr+/HH3+srq5WKpXUnxME4ejoiBBqbm7W+CfkpamXL19OWSMBwJNSqbx27drW\nrVtv3Lhhamr60Ucf/eY3v6G7UYagsLBQ43JLcHBwSkoKl8u9cuUKuValzcbGJjU1dfv27WFh\nYVPbXr2Ym5ubm5sXFhZKJBJysqVGttzJyamwsPD48eMqlYquRgIAJoHD4ezbty8sLGx4ePjA\ngQNisVj9q9u3b1+/fp0giISEBBpbOCp1s6VS6VdffUVGgxrbm+Timlwup6+Z4JWBHUIwCihF\nCsAvhH9qKIby8PCQy+VJSUnUVAf6lEbEM4sMyWDqZAAAtI16CLOoqOjYsWMqlQrb8gwM3d4E\nkwMBIdAEpUgBeCUwTw3FUARBLFiwwMbGRuPn+sSEOGNunQwAwLg0YkKlUnnq1KmRkZHNmzfj\nc3tQm7rZHR0dZWVlZChL/ur27dvZ2dkEQezatQumfAYAAkLwM1CKFIBXCELBqWQwMSGD6mQA\nAPREjQmFQqFKpdq8efPmzZvpbtc4GLq9CSYKAkLwf6AUKQCA0Qw7JgQAMBr1ECYjokESQ7c3\nwYQQcEMdkHSUIj158uS//vWvqKiouro6Npu9ePHihIQEdeYDmUzW0dHB5XJdXV1h7gIAoJ1A\nIDh8+PDw8PCmTZt++9vf0t2cCZNKpfv37xeLxatWrUpOTob3KgCGRKFQlJWVMW5jjVr9FSHE\noIAW6AOyjAJNXC6XLCtPqqqqunHjhlwuLykpMTU17ezsvHz58r59+2QyGfkHZDksNzc3mLUA\nAHCgzjvK5XLpbstkUDOLVlZW0t0cAMCrxOFwGBcNIkreUQTRoCGCHULwf9TLP+rpSG1t7eef\nfz40NBQdHb1jxw5zc/OWlpbPPvusr68vPj5+27ZtdDcZAABG19XVRRbIYSipVHr37t3169fT\n3RAAAPhfDN3eBOOCgBD8DDUmfPPNN7/++mvt4jNFRUV//vOfrayssrOz6W0tAADgSaFQDA0N\nWVhYqH8iEonkcjn1ND4AAACAAzgyCn4GSpECAMAvRK6sHThw4Pnz5+RPent7Dx06dPDgwY6O\nDnrbBgAAAGiAgBBooh4T53K58fHxGpcDb926hRDy9/enp30AAIAx9TmL7u5uiURC/jA7O1si\nkbi5udnb29PbPAAAAEADBIRgFOqYcHh4+MCBA2KxWP2r27dvX79+nSCIhIQEGlsIAAAY0kjX\n7ObmJpFIVCoVn8+fNWvWgQMHqCm7AAAAABxAQAhGRz07SiZARwipS5EmJib6+vrS3UYAAMCI\ndvEesVj84YcfHj9+nMVirVmzxszMjO42AgAAAJogIARj0ogJr1y5kpGRQZYiff311+luHQAA\nYEQdDXK53M8//5xMHmNubm5ubl5YWNjT08Nms0f9h9QjGAAAAMDUY3/66ad0twHgi8ViLV68\nuK2trbW1VSgUqlQqKD4DAAAaqCWbR0ZGpk+fHhQUhBAyMzNbsmRJZWXlwMDAs2fP1q5dy2L9\nbB22qKjo0KFDFhYWPj4+9DQdAACA0YMdQjAOKEUKAAA6UE+KvvPOO1wu98qVK2fPniV/qy7r\n+tNPPx0/flyj1FNPT8/IyIg6GSkAAAAw9WCHEIyP3Cd0cXGBEskAAEClcW8wMjLSy8urtLS0\nrq5ueHhYY5+wtrZWIpGEhYWpUzf7+/sHBQWtWLGC1g8BAADAqEFACPTCYrFcXV3pbgUAAODl\n5s2bV69eVWeRQQg5OjrqiAmFQqFGTGhnZ0fnBwAAAGD0ICAEAAAAJsnDw0MulyclJZHRIGmi\nMSEAAABAIwgIAQAAgEkiCGLBggU2NjYaPx83JvT09HRycqKjyQAAAMDPQEAIAAAAvHo6YsJZ\ns2YtX76c7gYCAAAACCFEaGQ8AwAAAMCrIhAIDh8+PDw8vGnTpt/+9rd0NwcAAADQBDuEAAAA\nwL/LqPuEAAAAAD6gDiEAAADwbxQcHJySksLlcrlcLt1tAQAAADTBkVEAAADg366rq8vR0ZHu\nVgAAAACaICAEAAAAAAAAACMFR0YBAAAAAAAAwEhBQAgAAAAAAAAARgoCQgAAAAAAAAAwUhAQ\nAgAAAAAAAICRgoAQAAAAAAAAAIwUBIQAAAAAAAAAYKT+HzfakgPcMv/9AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhwAAAIcCAIAAAAynOArAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdeUBU5foH8O85s7DvyqIoIopripZJ1xLNMhXcs81QSLup5c2umZVmVqaZ\naf2EQqybazdcMpXMfQE3MG+KiqCyuQKyw7DMds7vj9FxHEYYYGYOA8/nr5lz3jPzxcyHs7zP\ny/A8D0IIIcQUWKEDEEIIaTmoqBBCCDEZKiqEEEJMhooKIYQQk6GiQgghxGSoqBBCCDEZcV5e\nXqMPtrOzc3FxMWEaQgghVo1pysFTp05dv369iZKY0rVr106dOiV0CkIIaXXEQgcwi7S0tHPn\nzg0ePFjoIIQQ0opER0eLAUyZMuU///lPQw+WSCRmiGQyPXr0mDBhgtApCCGkFfnpp5/EABiG\nEYtb5ikLIcQq1NTU2NraCp2CmAA7bNiwXr16NeLIRh9ICCG6OI574YUXIiIi5HK50FlIU4kP\nHTrUuCMbfSAhhOiKiopKTEx0dna2sbEROgtpKpqnQggRUnZ29sKFC11cXGJiYoTOQkyAbqUQ\nQgTDcVxkZKRMJtu4caOvr6/QcYgJ1FVUCgsLi4qKlEpl7V29e/c2WyRCSGsRFRWVkJAQFhYW\nHh4udBZiGgaKSk1NzbJly9avX3/jxo1HHUZLexFCmqioqGjhwoVubm6xsbFCZyEmo19U5HL5\n0KFDk5KSAEgkEqVS6ebmVl5erlarAYjFYurLQggxCQ8Pj127dpWVlbVr107oLMRk9G/UR0dH\nJyUlDRkyJDc396WXXgJQXFxcXV194sSJMWPG8Dy/aNGiwsJCIaISQlqaZ599dvz48UKnIKak\nX1S2bt3KMMxPP/3k7e2t3SiRSAYNGrRr165Zs2bNmTPn4MGDlg1JCCHEOugXlbS0ND8/v4CA\nAAAMwwDQXPjSWL58uaOj47fffmvJiIQQQqyFflGRy+Vt27bVvNZMRCotLdXutbOz69mz59mz\nZy2WjxBCiBXRv1Hv7e1dUlKiee3j4wMgLS3t6aef1g4oKCgoKytr0HcsWLDg4sWLHh4e69at\n09uVkpISFxeXmZnJsmzPnj3Dw8P9/f0bMYYQYhXy8/NdXV1p5nwLpn+mEhAQkJuby3EcgIED\nBwKIjo7WvAUQHx+flZXVsWNH479g//79aWlpIpGo9q7k5ORFixZdv349JCQkODj44sWLH3zw\nQUZGRkPHEEKsAsdxL7300uOPP04P+7Rg+kVl+PDhlZWVp0+f1rz28/PbsmXLU089NXfu3Fdf\nfVXTTH7y5MlGfnpxcfG6desmTpxY+xcThUIRExNjZ2e3atWqt99+e86cOV988YVSqdRt1WDM\nGEKItYiOjk5MTOzUqVObNm2EzkLMRb+oTJgwYeLEibdv3wYglUrj4uLc3NzOnDmzatWquLg4\nlUo1YsSIjz/+2MhPj4mJcXNz0zyarOfcuXPFxcXPP/+89jGz7t27P/nkk9euXbt+/brxYwgh\nViE7O3vBggUuLi5r1qwROgsxI/17KoGBgdu3b9e+DQ4Ovnbt2tatW69cuWJjYxMSEjJy5EjN\nU2H1On78eHJy8pdffmlwOa/U1FQAffv21d0YFBSUlJSUmprq5+dn5BhCSPOn7fG1YcMG6vHV\nstXfUNLDw2PmzJkN/dyKioq1a9c+99xzjz32mMEBubm5uP8sgJbmjESzy8gxut+obR5jsF8Z\nIUQo0dHRCQkJoaGhU6ZMEToLMS9zdSn+8ccfAURGRj5qQFVVFQB7e3vdjZq3lZWVxo/RCg0N\n1YwHEBQUNGDAgKb9BIQQ01AoFN98842bm9vatWuFzkLMzixF5e+//z527NjcuXOdnJzqHmnM\nlTQjr7YNHTpUu2ycVCo15hBCiAVIpdIzZ85cvnyZeny1BgaKCs/zu3bt2rNnT0ZGhkwmM9iQ\nuI75j0ql8vvvv+/fv39ISEgdX6w94XB1ddVu1JxqODg4GD9G67PPPtO+3r17d+3rY4QQoXh7\ne+t2fiItmH5RqaqqGj169JEjRxr9iTKZrKCgoKCgYMyYMXqfPGbMmI4dO0ZHR+P+nZLc3Nz2\n7dtrx+jdRDFmDCGEkOZDv6h8/vnnR44ckUgkr7zyytNPP+3t7c2yDVty2MbG5vnnn9fbePTo\nUZFINHjwYA8PD82WXr167dy5MyUl5YknntAOS0lJ0ewyfgwhhJDmQ7+obN26FcCvv/46ceLE\nxn2ivb397Nmz9TaePHnSzs5Od3u/fv3c3d0PHjwYGhqqOS9OT08/c+ZM165dtc8KGzOGEEJI\n86FfVG7duuXh4dHoimI8qVQ6Y8aMZcuWzZ07d9CgQUql8sSJE2KxWPfxZWPGEEKaoZycHLVa\nrel3TloV/aLi4eFhsbUdg4ODP//887i4uGPHjjEM07t37/Dw8M6dOzd0DCGkWeE4burUqWfP\nnv3777+7desmdBxiUfpFZfjw4f/973+Lioq0Nz9MIi4uzuD2vn376k2Yb9wYQkjzERUVlZiY\nGBoaShWlFdK/Cb948WJHR8c5c+aoVCpBAhFCrFp2dvbChQupx1erJU5KStLb9NVXX82ZM+fc\nuXMzZ87s1q2bo6Nj7cOCg4MtEo8QYk20Pb42btxIPb5aJ/FTTz1lcEdqauo777zzqMMMzogk\nhLRyUVFRCQkJYWFh4eHhQmchwhDTs7mEEJPgef6PP/5wc3OLjY0VOgsRjDgnJ0foDISQloBh\nmH379qWnp1OPr9asYbPlCSGkDiKRiLpdtHIsgLCwsJ9++unu3btChyGEEGLdWAB79ux58803\nfXx8nn766W+++ebatWtCpyKEEGKVWADHjx+fO3du586dT548OW/evMDAwF69ei1YsOCvv/6i\np7wIIYQYj9EtG5cuXdq1a9fOnTv/97//aba3b99+zJgx48aNGzp0qMGl5psnzXoqb731ltBB\nCGnhMjIyzp07N2nSJKGDkGZh1KhRjMFzkVu3bmmqS0JCgma9dxcXl1GjRo0bN27kyJH1ruco\nOCoqhFgAx3FDhw5NTEw8cuTI0KFDhY5DhDdq1CjDT3/5+vq+/fbbBw8eLCgo+OWXXyZNmsRx\n3K+//vryyy+3adNm5MiRsbGxtLQiIa2cpsdXWFgYVRSiZfhMpTa5XH748OFdu3bt3r07Ly8P\nAMMwHMeZOV4j0ZkKIeaWnZ3dp08fsVh88eJF6shCNB55plKbjY3NqFGjYmNj79y5c+rUqQ8+\n+CAwMNCs4QghzRbHcRERETKZbPXq1VRRiK4GT35kGOapp55avnx5enq6OQIRQpo/7YUv6vFF\n9NCMekJIgxUWFrZp04Z6fJHa9BfpGjduXN0HiEQiZ2fnzp07h4SEDB482GzBCCHN1xdffDF3\n7lxXV1ehg5BmR7+o7Nq1y/iD+/Xr99///rd79+4mjUQIsQJUUYhB+kUlJibm5s2bK1askEql\nYWFhffv2dXJyqqioOH/+/B9//KFUKufNm+fu7p6enr5jx45z584NGzbs/Pnzbdu2FSQ9IYSQ\nZkW/qIwZM+bxxx9/8sknt2/f7u3trbsrNzd34sSJ69at+/vvv729vb/++uuxY8ceP37822+/\nXbp0qQUzE0IIaab0b9R/+umnRUVFW7du1asoAHx8fLZt21ZQULB48WIAbm5umzZtYll2z549\nlslKCCGkmdMvKnv37u3Tp8+j1thp3759nz59tFXEz8+vd+/e2dnZ5s1ICBFaRkbG3Llzq6qq\nhA5Cmjv9olJQUFD3HHue53VXXvHw8FAoFGaJRghpHjiOmzZt2qpVq+Lj44XOQpo7/aLi5eV1\n4cKFGzduGBx9/fr1Cxcu6F4Zu3XrFt2lJ6Rl0051fPnll4XOQpo7/aIybtw4lUo1ceLE2nUl\nJydn/PjxarV67Nixmi3l5eU5OTmdOnWyQFBCiCCys7MXLlzo4uISExMjdBZiBfSf/lq0aNHu\n3bvPnj3btWvX559/vm/fvs7OzuXl5SkpKQcPHlQoFH5+fosWLdIM3rx5s1KpfPbZZy0emxBi\nCRzHRUZGymSyjRs3Uo8vYgz9otKmTZvExMSIiIijR4/u2bNH78muoUOHbtiwoU2bNpq3oaGh\ngwcP7tChg4XCEkIsKyoqKiEhITQ0lHp8ESPpFxUAHTt2PHLkSHJy8t69e69cuVJRUeHk5NSt\nW7eRI0cOHDhQd6Sfn5+lchJCBODv79+9e/e1a9cKHYRYDQNFRWPgwIF6JYQQ0tqMGTMmLCyM\nZanzLDEW/V0hhNSFKgppEPrrQgghxGTEABrRZphW6CKEEFKbGMCVK1eEjkEIIaQleHCjvkeP\nHpMnT/by8hIwDSFEWNnZ2eHh4dHR0UFBQUJnIVZJDGDQoEEnT55MS0tbvHjxyJEjIyMjw8LC\nJBKJ0NkIIRalmep48uTJixcvUlEhjcMCOHHixNWrVz/++GNvb+/4+PgJEya0a9duzpw558+f\nFzoeIcRyaKojaTpGtycxx3GHDh1av37977//XlNTA6Bv376RkZGTJ0/WzqK3Crt3787NzX3r\nrbeEDkKI1cjOzu7Tp49IJLp06RJ1ZCGNM2rUqIceKWZZdvjw4f/973/z8vLWrFkzcODAlJSU\nOXPmtGvXbsKECUeOHBEqKCHErLQ9vqKioqiikKYwPE/FxcXlrbfeSkpKSktLmz9/vru7+++/\n/05rBhPSUv3www8JCQlhYWF04Ys00SPbtABQq9U5OTk5OTllZWUWC0QIsbzQ0NAjR45ER0cL\nHaQ+CgWkUqFDkLoYLirp6enr16/ftGnTnTt3ALRt23bGjBnTp0+3bDZCiIX4+/vv2LFD6BRG\nyM8HtUVv3h4qKqWlpXFxcevXr09OTgYgkUjGjBkTGRkZGhpKTxgTQgiplxiAWq0+ePDg+vXr\nd+3apXnoq0+fPhEREa+//jotFUwIIcR4YgAdO3bUXOby8PCYPn16ZGRk//79hQ5GCCHE+ogB\naCpK9+7dR48eLZVKd+zYUe/V1SVLllgiHSHEbBQKhZRuehNTe3BPJT093fjew1RUCLFqmZmZ\nISEh33zzzSuvvCJ0FtKiiAGEhoYKHYMQYjkcx02bNu327dtKpVLoLKSlEQP4448/hI5BCLEc\n6vFFzIdWfiSkdcnOzl64cKGLi8uaNWuEzkJaoLpm1BNCWhhtj6+NGzdSjy9iDnSmQkgrsmnT\nJurxRcyK7d2798KFCxtxZKMPJIQI5dVXX/38889jY2OFDkJaLDY1NfXWrVuNOLLRBxJChCKV\nSj/55JN27doJHYS0WGIA1dXVeXl5QichhBBi9cQAtm7dunXrVqGTEEIIsXp0o54QYiVkMlRX\no6ICOougk+ZGzNN/HkJatNu3b7dv317oFE2jUCAjAzIZAJSWwt4eXbrA1lboWMQAOlMhpCXL\nzMzs1q3b+++/L3SQpsnMvFdRNKqqkJFB5yvNExUVQlosTY+vysrKvn37Cp2lCTSXvPRUVaG8\nXIg0pB40o54Qi1OpkJtrge/5++zZkb17vzN27ItDhuDmTQt8o1nI5Ya35+dTXWkAT0/Y2Fjg\ne6ioEGJxYrEFFlrPzs4eOmWKSCS6dOkSrLojS00NiosNbPfxgZOTxdOQelBRIaQFalE9vmxt\n4eaGkpKHNjo5wdFRoECkLlRUCGmBjh49mpiY2HJ6fPn7g2EenK+4uNzbQpofKiqEtEDDhg3b\nt29f7969hQ5iImIxunSBQoGbN+Hra5l7A6RxqKgQ0jINHz5c6AimJpVCKqWK0szRI8WEEEJM\nRv9MRa1Wnz9/PikpKT8/v6KiwsXFxcvL66mnnurTpw/LUgUihBBSlwdFhef5tWvXfvnllzcN\nPc/u7+//ySefREZGWjAbIYQQK3Pv5EOtVr/22mszZszQVBSRSOTl5RUQEODp6ak5QcnOzn7j\njTciIyM5jhMyLyHkEZKSkhQKhdApSGt3r6gsX748Li4OwLBhw/7888/S0tK8vLyMjIz8/PzS\n0tL4+PghQ4YAWL9+/XfffSdgXEKIQRkZGc8991wLvDlPrA0LoKysbMmSJQAWLFhw6NChkSNH\nOurMKnJycgoLCzty5MiHH34IYNGiRRW1+/AQQoTDcdz06dMrKyunTZsmdBbS2rEAtmzZUl1d\n/cwzz3zxxRePGscwzNKlSwcNGlRZWbllyxYLJiSE1CMqKiohIaHlTHUk1owFkJCQAODdd99l\n6pyhyjDMu+++qx1PCGkOsrOzFy5c6OLiEhMTI3QWQiAGcP78eQAhISH1jtbcWdGMJ4QIrkX1\n+CItAgsgPz/fxcWlTZs29Y5u27atk5NTfn6++YMRQup35cqVlJQU677wpVCgqkroEMRkxAAq\nKiq8vLyMPMDFxaWgoMCckQghxurRo8elS5dEIpHQQZpAqYRcDnt7oXMQ0xADUCgUxs+WF4lE\n8ketmUMIsTirX3+etCzUeYUQQojJ3GvTUlRUNGPGDGMOKCoqMmceQgghVuxeUZHJZLGxscJG\nIYSQevj4CJ2A1EMMIDQ0VOgYhBBj7dy5MygoqFOnTkIHEYKYloBq7sQA/vjjD6FjkPv4c2D6\nCR2CNF8ZGRmvv/66h4dHRkaGRCIROg4h+qjsNzPqvRBTUSGGaXt8xcTEUEUhzRM9/UWI1aAe\nX6T5q/9MpaSk5MKFCwUFBQEBAf360S/RhAiDenwRq/CgqPz555/79++Xy+U9evSIjIx0dnYG\nsHz58i+++KKyslIzpl+/flu2bOnataswYQlprajHF7EW94pKRETEhg0btFu/+eab5OTkHTt2\naNZQ0Tp37tzzzz9/8eJFJycni8YkpHUrKiqqqqpqaRe+VCrcvo3SUvA8ysrQvj2kUqEzkaZi\nAWzfvl1TUTp37vzCCy+0b9/+1q1bS5Ys+fLLL11dXdesWZOWlnb58uXVq1c7OTldv379hx9+\nEDo2Ia1L27ZtT506tWnTJqGDmI5ajcuXkZ8PuRwKBQoKcOkSaDlk6ycGsG7dOgDTp0+PjY1l\nWbampmbChAk//vijSqX69ddfX3nlFc3QHj16ODg4TJs2LT4+fv78+UKmJqT1EYvFrq6uQqcw\nndxc1NQ8tEWlws2bCAgQKBAxDYbneR8fn7y8vPz8fE9PT83WM2fODBw4UCQS1dTUiHVmG8nl\ncjs7Ozc3t2berGX37t25ublvvfWW0EEaTrUU4o+FDkHMieNQWip0iGbg9m1UV+tvlEjg5ydE\nmmbGyQnW+cj4qFGjxAAKCwvd3d21FQVA9+7dAfj4+Igfnr9qY2Pj6elZWFho4aCEtBwMAxsb\noUM0Awbb9dMfjobRbeObITEAlUqld+Nd8+iXjaH/ura2tmq1uu4Praio2L59e1paWn5+vkwm\nc3Nz69y584svvhgYGKg3MiUlJS4uLjMzk2XZnj17hoeH+/v7N2IMIVaDYeDgIHSIZsDdHTKZ\n/kY3N/rDsXZmqYfFxcU7d+6UyWQBAQHBwcEeHh7Jycnz5s07duyY7rDk5ORFixZdv349JCQk\nODj44sWLH3zwQUZGRkPHENIirVu3bufOnUKnMBsvL+g9RGprC3pa2vqZpU2Lj4/PL7/84ujo\nqN2Snp7+0UcfrV+/XrPKPQCFQhETE2NnZ7dq1Spvb28AI0aM+PDDD2NiYlauXGn8GEJapIyM\njNmzZ0ul0pCQEDc3N6HjmAHDoHt3FBSguBhqNdzd4eVl1Zd9iEZd66kUFBTU3mjMLXqpVCp9\n+Hnz7t27+/r6Xr9+XalUanoWnTt3rri4eOzYsZpqoRnz5JNPJiUlXb9+3c/Pz8gxhLQ8uj2+\nWmZF0WAYeHrCwQFyOdzdhU5DTKOu9VTKy8tNtcjKzZs3c3Nz27Vrp+2Cl5qaCqBv3766w4KC\ngpKSklJTUzUFw5gxhLQ81OOLWC8zrqeSn5//22+/cRxXWFh44cIFkUike96Tm5sLwOfhJXc0\nZySaXUaOIaSFoR5fxKqZcT2V0tLSffv2aV47Ojr++9//DgoK0u6tqqoCYG9vr3uI5q221Zgx\nY7Q+/fRTuVyueS2VStu3b2+6H4UQC6EeX8TamXE9lW7duu3evVupVObm5u7YseOLL76YPn36\n6NGjdccwDFPv5xgzBsDRo0c1RQhAUFAQFRVijZRKZd++fV1cXOjCF7FSZl+kSyKRdOzYcc6c\nOQUFBT///PPAgQM1syy1Jxy6nSc0VcHh/oPqxozRiouL43le8zoxMbG8vNx8PxQhZmJjY/N/\n//d/9U4FI6TZqquopKen197YuXNnaaM6ifbq1evixYtXr17VFBXNnZLc3FzdUwq9myjGjNFq\n166d9rWDgwMVFWK9RAZnmxNiDe49Fb5mzZoRI0YsWbJEd18PQ7766qvGfVN+fj50/m/p1asX\ngJSUFN0xmreaXUaOIYQQ0nywAEpLS+fPn3/06FFtQ+I6LF++vKysrO4xFy9evHv3ru6WU6dO\nJSYmSqVSbTHo16+fu7v7wYMH8/LyNFvS09PPnDnTtWtX7bPCxowhhBDSfIgBbN26tby8PDIy\nskuXLnq7vb29//rrL+3bL7/8cs2aNXFxcXU3AD516tSff/7ZsWNHT09PhmFu3759+/ZthmFm\nzJih6SoGQCqVzpgxY9myZXPnzh00aJBSqTxx4oRYLJ45c6b2c4wZQwghpPkQA9i7dy+A119/\nvfZukUik+1zjtGnT1qxZc/DgwbqLytChQ1UqVWpq6qVLl5RKpaur6+DBg0ePHt2tWzfdYcHB\nwZ9//nlcXNyxY8cYhundu3d4eHjnzp0bOoYQq/b9999nZWUtWbLEzs5O6CyENBXD83znzp1z\ncnIqKyv1/k4zDKNZBVK7heM4e3v7du3aZWVlWTxqA9B6KsRaZGdn9+nTRyQSXbp0qZVOTFGp\noFZTx/uW4d56Kvn5+a6urrV/S/Lz89N7yIplWXd394KCAstlJKTloqmOACAWQ2z2uQ3EYsQA\nlEqlwfPunJyc2hvVarWC1pEmxBQ0Pb5CQ0NpqiNpMVgA7u7upaWl2h4ndVAoFMXFxR4eHuYP\nRkgLp+3xtWbNGqGzEGIyLIDAwEC1Wn369Ol6RyclJalUqtoLOBJCGoTn+YiICJlMtnr16tZ7\n4Yu0RCyAYcOGAfj+++/rHR0VFQXg2WefNXcsQlo2hmHeeeediIiIKVOmCJ2FEFNiAUybNk0q\nlW7fvr3u1VNiY2O3b99uY2Mzffp0S8UjpMWaNGnSunXrhE5BiImxAHx9fT/88EMAM2bMCA8P\nP3/+vN6g8+fPh4eHa1ZDWbBggW6XLUIIIUTr3pN8n376aXZ29qZNmzZv3rx582Z3d3d/f39H\nR0eZTJadnV1cXKwZFhERsXDhQuHSEkIIadbuFRWWZTdu3Dho0KAvvvji9u3bxcXF2kKi4evr\nu2jRojfffFOIkIQQQqzDQ3OO3nrrrcjIyISEhOPHj9++fbu8vNzZ2dnX1/fpp58OCQlpXMd7\nQogGx3E8z1Nbe9Ky6U9klUqlzz///PPPPy9IGkJasO+//z4uLm7z5s3+/v5CZyHEXNiGHnDu\n3Ll//etf5ohCSAuWnZ398ccfp6amSiQSobMQYkbGFpWioqLVq1f369evf//+mtkqhBAjaXt8\n0VRH0uLV08dNrVYfOHBg3bp1u3bt0rb86tu3r/mDEdJyREdHa3p80VRH0uI9sqhcu3Zt/fr1\nGzZsuH37tmaLh4fHa6+9FhkZ2a9fP0vFI8TqZWdnL1iwgHp8kVZCv6hUVlZu27bt559/Pn78\n+L0RYrFKpWrTps3t27fpATBCGurtt9+WyWTr16+nC1+kNXhQVE6ePPnzzz9v3bpVJpNptjz2\n2GNTp059/fXXvb29RSIRVRRCGiEqKmr9+vVTp04VOgghliAG8NVXX61bt+7q1auaTW3atHn1\n1VcjIiL69+8vaDZCWoKAgIAvvvhC6BSEWIgYwEcffQRAIpGMGjVq6tSpYWFh9NQjIYSQRnjw\nSLFUKnV1dXVxcRHT0p6EEEIahQXw8ccf+/r6VlZWbtiwYdiwYZ06dVqwYMGVK1eEzkYIIcTK\nsAC+/PLL69ev7927d9KkSTY2Njdu3Fi6dGn37t2Dg4NjYmJKSkqEDkmINeE4rqCgQOgUhAjj\n3uUvlmVHjBixdevWO3furF69OigoCEBycvKsWbN8fHwAqNVqlUolZFJCrER0dHSPHj2OHTsm\ndBBCBKDfpsXd3X327Nnnzp07d+7c7NmzPTw85HI5gMLCwvbt28+dO/fSpUtC5CTEOmimOqrV\n6i5dugidhRABPLL3V1BQ0OrVq+/cubNly5YRI0awLHv37t1Vq1Y99thjAwYMsGREQqwFx3ER\nERHU44u0ZvU0lJRKpS+99NLevXtv3LixZMkSzS9fZ8+etUg2QqxMVFRUYmJiWFhYeHi40FkI\nEYaxXYrbt2+/YMGCa9euJSQk0NxgQmrLzs5euHChq6trTEyM0FkIEUyDp6QMHjx48ODB5ohC\niFVbsmSJTCbbsGEDXfgirRnNcyTENH744YdnnnmGmtuTVq7BKz8SQgyysbGJiIgQOgUhAqOi\nQgghxGSoqBBCCDEZKiqEEEJMhooKIY3EcVxycrLQKQhpXqioENJI0dHRTz311Nq1a4UOQkgz\nQkWFkMbQ9PhycXEZNWqU0FkIaUbE48aNa8RhO3fuNHkUQqyFtsfXxo0baaojIbrEu3btEjoD\nIVaGenwR8iji2n2Kbty4sWLFCp7nQ0NDe/bs6eXllZ+ff/ny5T179jAMM2/evI4dOwqSlZDm\ngHp8EVIH8YwZM3Tf37lzp1+/fv369YuLi+vcubPuroyMjFdeeeXnn3/++++/LRuSkGbkt99+\nox5fhDyK/o36RYsWFRcX//bbb3oVBUCXLl127NhRWFj46aefWioeIc3O+++/n5SURD2+CDFI\nv6js27evT58+HTp0MDi6Y8eOffr02bdvn/mDEdJ8DRw4UOgIhDRT+kWloKCA5/k6DuB5/u7d\nu+aMRAghxFrpFxUvL68LFy5kZ2cbHJ2VlXXx4kUfHx/zByOEEGJ99IvKhAkT1BJ0MgUAACAA\nSURBVGr1+PHjL126pLfr4sWL48aNU6vVEyZMsFQ8Qggh1kR/ka5PPvlk9+7dKSkpffr0efbZ\nZ7WPFKemph49epTn+YCAgE8++USQrIQIguO49evXh4eHSyQSobMQ0tzpFxUPD4/ExMTIyMhD\nhw4dPnz48OHDunuHDx++bt06Nzc3CyYkRGDR0dHvvvtuamrqypUrhc5CSHNnYDlhX1/fgwcP\n/vXXX3/++Wd6enpFRYWTk1P37t1DQ0OfeOIJy0ckREDaHl/vvfee0FkIsQKPXKN+wIABAwYM\nsGQUQpobjuMiIyOpxxchxqurSzHHccXFxbdu3bJYGkKalaioqISEhNDQUOrxRYiRDBcVTbM8\nZ2dnDw8P3YmQX331VURERGFhoaXiESIYTY8vFxeXNWvWCJ2FEKthoKh88803Q4YM2bNnT2Vl\npd4uZ2fnDRs2xMfHWyQbIUJKTU1lWXb16tV04YsQ4+kXlYSEhHnz5tnY2Hz22WcZGRl6DY7G\njx8PgIoKaQ3CwsKuXr1KPb4IaRD9G/WrVq0CEBMTExERAYBhGN29Pj4+7du3v3LliqXiESIk\nLy8voSMQYmX0z1ROnTrl7u6uqSgG+fj43Llzx7yhCCGEWCf9olJWVubn51fHARzH1dTUmDMS\nIYQQa6VfVNzc3G7cuPGo0SqV6urVq97e3mZORQghxCrpF5UBAwYUFRUdOHDA4OhffvlFJpP9\n4x//MH8wQiyN47gPP/zw5s2bQgchxIrpF5Xp06cD+Oc//1l7zeCDBw/+61//AvDmm29aJhwh\nlhQdHb18+fIPPvhA6CCEWDH9p7/GjRs3adKkbdu2DRw4MDg4uKCgAMD8+fNPnDhx6tQpAG+8\n8caQIUMsH5QQs9L2+FqxYoXQWQixYgZ6f23evNnb2/uHH344ceKEZsvXX38NgGXZt99+W/PM\nMSEtCfX4IsRUDBQVqVS6evXq9957b8eOHSkpKSUlJY6Ojo899tiLL74YGBho+YiEmBv1+CLE\nVB7Zpdjf33/u3LmWjEKIIKjHFyEmpH+jfsaMGRs2bKjjgFWrVs2YMcOckQixKLlcHhgYSD2+\nCDEJ/aISGxt79OjROg7YvXt3bGysOSMRYlHdu3dPTk6mHl+EmERd66kYxHGcXkMwQqydWPzI\n68CEkAZpcFG5deuWk5OTOaIQQgixdmIAWVlZWVlZ2k25ubmHDh2qPbSqqurw4cPZ2dk0o54Q\nQohBYgAbN2787LPPtJsOHDjwqDYtGu+8847ZcxFCCLFCYgCenp69evXSvE9NTXV1dW3fvr3e\nOIZh7O3tu3btGh4e/sILL1g6JiGmw3Hca6+99vrrr4eFhQmdhZCWRgxg1qxZs2bN0rxnGGbs\n2LHr168XMhQh5hQdHb1ly5bKykoqKoSYnP5DL+vWrevSpYsgUQixAG2Pr5iYGKGzENIC6ReV\nOtZ8JMTaUY8vQsytrsfzCwsLi4qKlEpl7V29e/c2WyRCzIV6fBFibgaKSk1NzbJly9avX1/H\nEpA8z5szFSGmRz2+CLEA/aIil8uHDh2alJQEQCKRKJVKNze38vJytVoNQCwWu7i4CBCTkCZr\n27btlClTgoOD6cIXIeajP6M+Ojo6KSlpyJAhubm5L730EoDi4uLq6uoTJ06MGTOG5/lFixYV\nFhYKEZWQJnF0dPz+++/pwhchZqVfVLZu3cowzE8//eTt7a3dKJFIBg0atGvXrlmzZs2ZM+fg\nwYOWDUkIIcQ66BeVtLQ0Pz+/gIAAAJrGkZoLXxrLly93dHT89ttvLRmREEKItdAvKnK5vG3b\ntprXNjY2AEpLS7V77ezsevbsefbsWYvlI4QQYkX0i4q3t3dJSYnmtY+PD4C0tDTdAQUFBWVl\nZZYJR0gT6Z5nE0IsQL+oBAQE5ObmchwHYODAgQCio6M1bwHEx8dnZWV17NjRwikJeYh6lTGj\nOI4bPnz4hx9+qFKpTPClNTUm+BBCWjr9R4qHDx9+9OjR06dPDxo0aPjw4X5+flu2bMnOzn76\n6afv3Lmzfft2AJMnTxYiKiH38Ub9+x4VFXXkyBE7OzvTrMFVUIAOHUzwOYS0aPr/s02YMOHs\n2bO3b98GIJVK4+LiRo0adebMmTNnzmgGjBgx4uOPP7Z0TEIaqMVMdeRkYO0AkdA5CDGOflEJ\nDAzUnI5oBAcHX7t2bevWrVeuXLGxsQkJCRk5ciQtJ2xRvBo8wNI/Kg3Qknp8qfPBtANjJ3QO\nQoxT/2UBDw+PmTNnWiAKMaz4GpTV8O4ndI7mhE+te7+mx1dYWBhNdSTEwhq8Rj0hwuPL69h5\n586dBQsWuLm5xcbGWiwRIUTDFDcwCbEcObhzQCn4LDCdDY5o165dbGysWCxu166dhcMRQgwX\nlaNHj8bHx2dkZMhkMu3zxLqOHTtm3lyE1Madgeod8DcBQDEI7DhIvgNsag+kBxQJEYp+Uamu\nrn755Zfj4+MFSUMMq7yLqgLYtxU6h6D4Qqimgy94sIXbCZUHxEvM/L088vNx9y7kcpSWwtsb\nbS30H4KrgDIVqgKosiDyhqQ7GImhcWo1VCrYGCiuhFieflFZtGhRfHy8WCweN27cwIEDPT09\nWZbuuwhNXgZ5WWsvKtzuhyqKhnoTxAsBWzN+782byMu797q6GtnZUCph/gtrXDmqjwBqAOAU\n4MqhLoDdEEO3QVUqlJdbrNQRUjf9ovLrr78C+O2338aMGSNEHmI23CFwyUKHaALutKGtCqg+\nAxzN9aUqFZgC+Dy8UQ0ovGCqX7ZEs8C41d6sSAFUgM7T+1wJlNmQBJjmawkxE/2iUlBQ4O3t\n3cSKUlFRcerUqdOnT9+4caOkpMTNza1///6vvPJKmzZt9EampKTExcVlZmayLNuzZ8/w8HB/\nf/9GjCH1Y58D+5zQIZpA9TlK1VB4PryVgXg2XyWuLpfb2EgZmHoGVU0NKgw9aVbqCqnURN+h\nBO7W3spUQaxTK3m1nbrGSXUTTO2rXEoW1TaQmyiOxYnagDHnqSaxMP2i4uvr2/TrXdu2bdu5\nc6ejo2NgYGC3bt2ysrIOHDiQlJS0YsUKTZNKjeTk5KVLlzo4OISEhCiVypMnT37wwQfLli3r\n0qVLg8YQo/C5QK3LR1aEKYZdDmzy9LeLs3mJ/c8b1gCYNn2ajWlvLVRVgzO0JJ27p8nuYXAB\ngIFbJVwGeN2OZbwIACMB61BrqIIHp0Lt7daC5vW2LAbatKxcuTIzM1OzpErjdOzYcf78+cHB\nwSKRCADHcf/5z3/i4+M3btw4f/58zRiFQhETE2NnZ7dq1SrNgmAjRoz48MMPY2JiVq5cafwY\nYrRi8NeFztAEnAziUgPbxdn7Dp9MvLjx8ccft/PJN/GXuqihuA69ByDFYnhzMFVfCbaLwQfY\nGEcD5UzUDqzupTK5HDduoKwMPI+aXHToAGdn06QipLH0i8qCBQvi4+Nff/31LVu2NLob8XPP\nPXSZhWXZqVOn/vnnn7pd9M+dO1dcXDx27FjtEpPdu3d/8sknk5KSrl+/7ufnZ+QYYiymF5he\nQodoCkdwe/S3Mf7ZNwa9/OpMkchm1XdxYE3dkYUFPEqQkQGev7+FRWAgRGb/t5tXGNqq20hT\npUJaGhT3x1VW4upVdO8OR7PdYSLECPpFxdXVNTExcfLkyd26dQsNDe3SpYujob+jCxcubNjX\n3KfdkpqaCqBv3766w4KCgpKSklJTUzUFw5gxLV9VAcqvg2Vh49KqHwBjh4IdDe6hh905dnlk\nZOSzvZ5f/N4XnqW+CkNnMk3mBkk/VFejpga2trCxxw1LXK/hKgxsVN0Er10gpqIaMi/9Ef+T\nw8PKiorYD6yT0CGI6RiY/BgXF/fXX3/V1NT89ttvjzqsoUXl9OnTcrm8f//+2i25ubm4vw6Y\nluaMRLPLyDFaV69e1a7IpLtapXW7sAFZ+wEg7xyuxqP7BASOFTqTKRQWQqls+GGLwIWCvwz+\nLpjOYAedPpUV7OfXo0ePfoPdAf2/EiZWVgYXF0Bm3m+5j3HVqR/3sW4Qe9x/wxdCVF1rBAsP\ng+c4zZjMYn+oRvP2NtnlzdZHv6hs2rTp3XffBeDt7d23b1+TzFMpKSn58ccfHR0dX3rpJe3G\nqqoqAPb29rojNW8rKyuNH6M1ffp0zXgAQUFBAwYMaGJs4eUcuVdRNDglLm+Bix+8goTLZCJu\nbg8uKDVMKBAK1SqIZ1ZVVU19fwLHcae+/NISszQUCkvOBeHvQpWlv9HmMUD7BKVMhupaRUUk\nogkrJkAVpQn0i4rmBvj777+/dOlSicTg/N2Gqaqq+uyzz8rKyhYsWFD7kWJjuugb2Wl/zJgx\nivvXlw22lrE+148a2JhztCUUFVETryCpIBbbOzvv2b8/KyvL2zLN7VkWJlnsyzjS3uDKoNZ5\nXk/aCyJvnRFt2uD+yt8PeHhYMmSDVFxHxm8oTod9G3gFo9MosM00KWkS/f+qV69edXR0XL58\nuUkm0ldXV3/66afZ2dn//ve/n3jiCd1d2hMOV1dX7UbNqYaDg4PxY7Tef/997evdu3fXvj5m\nfeSGZkgoyiyeo/nq1q1bt27dhE5hHiLYDoY6D4orELlD7AdW7+EANzd4eSFf54E3R0c018Vj\nSq8iaTE4JQDIS1ByDcVpeOIDmHxmERGcfuVwcnIyyVQVADU1NZ999tnVq1dnz54dEhKit1dz\np0Tvn369myjGjGnJHGrdhgXg4G1gI2mhRN4Q+0LSpVZF0fDzQ48e8PKCiwu6dEHPniab529q\nF9feqyhad88iz5o7PJBH0T9TGTJkyK5duyoqKpycmvRAhlwu//zzzy9fvjxz5ky9J4w1evXq\ntXPnzpSUFN0zmJSUFM0u48e0ZN3GoeDSQ1tENugaJlAaYholV1BT3IDxvBpMfh2/0TtBaYvq\nahQ33xkqagUqDE2Runm0sXfWrFmbPpBY70xVI+gXlcWLF+/Zs2fevHk//PBDo89XFArFkiVL\nLl269Oabb44cOdLgmH79+rm7ux88eDA0NFTzQFd6evqZM2e6du2qfVbYmDEtWZueeOIdpKyD\nshIAHDzR9w04NdPrG8RINq5gTXCzUoeCR6UaBvqHNRecAmCAWvVD6gR7Q2fjLVuLv5Ok//OV\nlZV99dVX77//fnJy8ltvvfWoeSrBwcF1fOimTZtSUlJcXV0zMzO/++473V3vvvuu5sa7VCqd\nMWPGsmXL5s6dO2jQIKVSeeLECbFYrLt0sTFjrIyyGpKGrDbu+w/YuuJ2Etr2hs8Aeijlxo0b\ndnZ2bQX5B7RDB5N8jOn/GZXzKFeheT/z5dYNJen6G9sPhovhhdaIFWP4h88/jXzUiq/zrPW7\n7747cuSIwV2///67SOfJH22zSIZhNM0iO3fW/1tmzBg9mhv1b731ljE/iyWp9n8kfmFZnSOW\nQvzxQ1uK0pF/AT794dba251xHDd06NC0tLSM9Dec3b8SOk6zoVBAJoO7u9A56iK7jVMfQVUN\n/v6VvA7D8NgMgVMRkxs1apT+mYpJLivNmTNnzpw5xozs27ev3oT5xo0hrUFUVFRiYmJYWJgz\ndbjSJZU284oCwLE9Bv8fsnej8CIc28E7GD5PCZ2JmId+UcnJyREiBmmg6kzYdgLTivq7Zmdn\nL1y40MXFJSYmBmL9CU+k+bN1Q4+pQocg5tfS7xm1VDXXYdux9TQN5zguMjJSJpNt3LjRt7lO\nxSCEwNDapIQ0O1FRUQkJCWFhYeHh4UJnIYTURfzHH38A8PX1DQoKAqB5W6+wMJotQSyE47iN\nGze6ubnFxsYKnYUQUg/x6NGjAUyePHnz5s0ANG/rVffTX8TEHL1b80R6lmVPnDhx6dKldu3a\nCZ2FEFIP8eOPPw5A+5Cu5i1pXqROkFrZIhmmZWdn1xLaThPSCojPnj2r+17vLSGEEGI8ulFP\nCCHEZPSLyowZMzZs2FDHAatWrZoxgybCEkIIMUC/qMTGxh49amhtqPt2795ND+EQc8vMzExM\nTBQ6BSGkwRp8+YvjOCP7gxHSOBzHvfHGG0OHDv3rr7+EzkIIaZgGF5Vbt241cakVQuqm6fE1\natQoeuLLQrgaVNCCWcQ0xACysrKysrK0m3Jzcw8dOlR7aFVV1eHDh7Ozs//xj39YLiBpZR7q\n8UUsgOegvAtFHrgasLZCpyFWTwxg48aNn332mXbTgQMHDhw4UMcx77zzjtlzkVaJenxZWk0O\nCn+DshAAKs7CJQRuw2jheNIUYgCenp7a1XlTU1NdXV3bt2+vN45hGHt7+65du4aHh7/wwguW\njkkAAOrEFaLB84ROYUbU48ui1OXI3wSu6t5bXoXSwxA5wJm60pPGEwOYNWvWrFmzNO8Zhhk7\nduz69euFDEUega9uyOLmDVVdjIKL6Bhixq+oT2pqKvX4spyKvx5UFK3SY1RUSFPot75ft25d\nly6tfYXBVkeWiwsbUJAKXo2ru9HrNfgI061n7dq1ixcvph5fFqIsMbBRXQ5e3aqW6iGmpV9U\nIiIihIhBhKOQ4eRSVBfdeyvLRfJKDHwXPgMFiUMVxXLEhh7jFDlQRSFNof9I8Y0bN7Zv356S\nkqLdwnHc0qVLO3XqJJVKBw0adO7cOcsmJGaWtf9BRdHKrutJDWGozwIN7I3NK80TpaVw7A9G\nqr/RKViIKKTl0D9TiY6OXrFixbZt27TLwq9YsWLBggWa16dOnRo2bBg1IbcQtRzX/kDe/8Cp\nUZIBBy9WWYLUXwHNyo+5pmndlvu/Wpt4lN2690WmJZKg+4uNPFZ9AqL+DXswKX8TvN9o5Ne1\nBpK2aDsJhb8/uLPi2B+uzwqaiVg9/aJy9OhRGxsb7RpcKpVq5cqVAFasWDFkyJCvv/5627Zt\nK1eu1GwkZqSW49gnqLh17235TTh4cSIntterAFByBK7PgJGY4IuUlZDdeXgTA4c20HxRs6CG\n6jDUZ6HcDPFQMB2MPY5XmDNVi+DQG3YBqL6GqlS4PgdJW6EDEaun/6vurVu3fH19bW3vzYFK\nTk4uKCgYMmTI+++//8QTT/z444+2trZ1z2IhxuBvnqlnxNXdDyqKRmU+itJNH8XX0FRWJwvN\nEcnMzPz6669VKtUjR/ClqH4R8nfB/Q+KZagaDdVvlsnWWrB2sOsKaTuqKMQk9M9UioqK/P39\ntW9PnjwJYMyYMZq3Li4ugYGBGRkZFssnPIUMZTmm+jCGq0HBJQDcpV9FtvYGRqgrIboEALkG\n2l4xqkrN4ZDdgTIVjP5/vkbq+AxuHH/w1rkjbJzufdGDLc6m+S4dmh5fiYmJgYGB48aNMzxI\n8Tk43VIqh3wJ2CCwASbP03qxdnAR8lFy0pLo/6skkUjKysq0b48fPw7g6aef1m5xcHBQq9WW\nCUcAADzAm3flmw7PwD0QhWmQ5cPncbgHPFRRzCY6OjoxMTE0NPSRFQVyqGqfFtdAvR/sLPOG\nI4Q0in5RCQgIuHz58p07d9q1a1daWnrkyBFHR8d+/fppB+Tl5Xl5eVk2pKCkjmjb21QfxrO2\nmk/TvtCncgDLQrUX3YtRchtgoFaA5yG2AcAo5HDZDwA2prtRr+EC+HBQ20CcCWSCvQmnh2+0\nmPr2RFlZmbr652+X+06b9gQUj7pFVwMY+g1GdRR8df3fYXMOisqmhLQCjBsk9DACaUb0i8qY\nMWMuXrw4atSoKVOm7Ny5s6qqavLkyWLxvWGFhYU5OTnPPPOMxXO2JmxPSHvCswaXF0B2B4oq\n8GrYOMO+LVdexvabCwCVRyAx0Y16g6oT4THYXB8OcBw3dtKzCQm3N2zY4OQxpY6BUO0FX+uJ\nZ8nLEBvxFJl8DdxpQTlCLEr/V925c+cGBgampKTMnTv3+PHjbm5uixcv1u7dvXs3z/ODB5vx\nnxtyj9gWQ5ag23g4eMLWDV1HY+hSrvCK0LFMIzo6OiEhITQ0dMqUOioKABbSf9faFgjxaLNF\nI4Q0if6Zipub25kzZ3788cf09PSOHTtOnz5dd0rK5cuXhw0bpn3gmJgedxfKS5D0BgCxHXq8\nBFaC6pLm9ICvCTg4OHTo0GHt2rX1DxVPAFRQRIMvAMQQD4X0Y8DG/BkJIY1h4PEhFxeX999/\n3+Dob775xsx5Wj2eBww8X8tX5KpPf88XXFXtns32e511tHwyU5o2bVp4eLhUWms6t0HilyB+\nCYplkP6bygkhzVxdd3o5jisuLr5161YdY4gF8BW5ipXd1Ee/RFWx+nS08odg7kaS0KGaytiK\n8oAdYLZ7SIQQEzFcVBITE8PCwpydnT08PDp0eDCB+auvvoqIiCgsLLRUvFZPUYHSHP7y71A8\n1KKcyzjEF10TKpQwpDPM+1w1IcQUDFz++uabbz744AOeN9C8z9nZecOGDSEhIZGRkebPZm2U\nVXxFXj1jqkv54qyHXuhRlIG5BYkzAGTsw9+x4FQMGKlnR3VFsbrq/hSiapk6ZYuo31QTxr/H\nxplxaGP6jzUBWumWECugX1QSEhLmzZtna2v70UcfTZ48+fPPP9+4caN27/jx499+++34+Hgq\nKrXxVUVcxqF6xpTkaMZoX+hT3QSSIb6D0hycXwcAIglEYnAqxsYONeXgeAB8RSnY1Hq/rhEY\nr17NtagQQqyAflFZtWoVgJiYGM3CKgzzUFNYHx+f9u3bX7nSQh5sNS3GpYPoyX/WPYYvydaM\n0b7QJ08FMxHSIOybDUdXAJDYwcEFvBxlJWpZCc/JATBtvNkB77CdhpjyB+CqIc+FXWdTfuZ9\nmZmZH3744XfffVd7pWpCSEuiX1ROnTrl7u5ex1JdPj4+rav3V9kNXN5mqg9ji1JxeqXuC33q\nq8CvEB1G3vn7W5SortBMLBc5uUOtAsBUVrI5Rwx1rW8CTg5lEWzaAUDFTdzUaT7WbSzcG78e\nqLbH15gxY2jxeUJaNv2iUlZW1rt3XV1JOI6rqakxZ6RmxqUjnpprqg/jygvZp+bqvtAnvwHm\nVUiDUJqN7MMAIJLAzgm8HPIadUUxr5QDEAV05+19RE/ONFUwAFCVoTINLsEAcCsRviab4hoV\nFaXp8UUVhZAWz8Dkxxs3bjxqtEqlunr1qre3t5lTWSW+8Kr67M91j+GyE1T7PtR9oU99EqiA\nyBOycpQVAAArRkURoIa8hlfd68DFlxTwZVv44uum/AE4OZRFbNd8tudYE35qdnb2woULXVxc\n1qxZY8KPJYQ0T/pFZcCAAXv27Dlw4MDw4cNrj/7ll19kMpm2Ez7RxbQJFI/4qu4xqv0fiV9Y\npvtCn/xdMJGQBgFAahxOfQNwcHABV6O6cRX3H8kT9XwCbV9iu5m0W4numYqJcBwXGRkpk8k2\nbtzo62uhNVoIIQLSf/B/+vTpAP75z3/+/fffersOHjz4r3/9C8Cbb75pmXCtXa9XMOUwHpvM\nO3orC2+pK4of7LJ3Y7sMFS6ZsaKiohISEsLCwujCFyGthP6Zyrhx4yZNmrRt27aBAwcGBwcX\nFBQAmD9//okTJ06dOgXgjTfeGDJkiOWDtlI2LnDrzLAqkc+T/OFv+bKbsHEW9Xud9ewFxjwz\nAYuvoOACqvJRXQTvAU1cAvKZZ54JCQmJjY01VTpCSDNnYPLj5s2bvb29f/jhhxMnTmi2fP31\n1wBYln377bc1zxwTC2Mfe1E64D3FDwOls5IB4M5/zPI1pZm4e38ZldIMlGagcxg8ejT68/r3\n73/s2DGTRCOEWAUDRUUqla5evfq9997bsWNHSkpKSUmJo6PjY4899uKLLwYGBlo+InmANWef\nEnkpynKAh1tyXT8Ity5gqekWIcQoj1zk3N/ff+5ckz1KS5qpynyo7z8gXpoOrlbRUstRcBF2\nHvfeShwfvCaEkFqoQ1/rxorqH6PbVcGY8YSQVuyRZyrExKqK1Zd38jknuZRf2V7jhU5zn10b\n2N3v9MVUoex/UD48QGyPtn3ANKCWcBzHmvUyHSGkGaP/+S2ByzqmWNVN9ds0Lue4Mu41xbe9\nUFVc/2Eazn5w61D/sKaouYmbq3F3MyRy/V3+Ix6qKOrjdX9SRkZGr169Dh0yUadL9f/A55rm\nowghFkFFxfxqylRxr/GVDxah4Yuz1Gm7YWhxAQOk9pA4aF4yYjvTx1OVIW8jFPkAIFHBSQap\nEmJbtOmNXlPhGvDQYPVfBj9Dg+O4adOmpaen5+aaqBLwd8BXmOajCCEWQUXF7LjMw3xFrX9k\nK/L4/EsN/Simw0DTZNJVngy1zgpgEhUcK2GjhP9I2Hs26JM0Pb4emuqovIsak/aSIYQ0b3RP\npbHk5aqjS40ZyOemqNVQqyB9eHl1VcJXjEut61ra3l9ainJxnxcAQHaR9WBQtB8AlMUoPgLG\nFE/6Vl42sJEtv/dF+vGqIDK0HSgrK+MK9n67cMS0aVMfHKsuB6eAJP3eW0YM92EmyEwIaa6o\nqDSWjXO9nb40uJwT1Rf2KRQPFxWGEY9ayTjVas2p2/tLoygdFVcAwPExrui/7BMvAID8Ftyf\nBWvfpB9Bg1egrNb60Gp7eLxgYLAiFVID2zmOGzNhaGJi4saNG506vaj5XFSmorIAUMLGE45B\nAFP7wLqoT0N9GFwqxOPAdm/YsaRBeCVqsmFHs9CICdDlL7Nj/Qax/s/obWTaP2GgotRH/Mw8\nE4XS4dQPTK3fLWx8GvQZP/74Y2Ji4ujRo+9f+OKRvwl3f0FlKqqvomArcteCVxv9eWrUzELN\nG1Dth3IDqsdDQX0cGqayQRcdeRUU9EAEMQ0qKubHMOIXlrKdh0IkAQCpg2jox2zAkMZ8lL27\nSZMBAGx80SbsoStpjn1g27FBn/Hqq6/Onj37QXP78mRUpT00oiYHpUeN/TjlWqgfHqz8UX8L\nqZOsNS2kR5qVB7+ichx38uTJK1euODs7DxkyxNPT8E3ar7/+uqqqavHixRYKaHXu/g3P/vob\nbZxFA6bbDNqv2jNHHLYarEi1/yMhwj2C8wDYdUZlKuS34PwUbLxx5xS4bUks6gAAIABJREFU\nagMjOd7gdmdHyervlgO4t7fK0DMIVRfhMsioPMq94GvdLlLEw0anLT8jAiPVH0MIEdq9onLt\n2rWJEydevHhR81YikcycOXPZsmX29vpX7b/++uuioiIqKo+kkD1yF3+I7XYTqu8AsJ1SoTC0\nnDB3FfgVisMPtoiL4FAM7m8onAGAq0HNTUgKUJoIiSdsTLRgmkIJdQ2YKlRnoRoQlaL0tKF4\nN8Eaiq2HvwObWsuDMsUoNeJYAGoJ0KnW4QWo1jlcLIJtfUXF5hwUlUZ9Y0siGgzRAKFDkNZL\nDKCiomL48OE5OTkA7OzsAFRXV69evfrw4cN79uzx8/MTNmLLIR7J5SSy3eYC4HIKNS/0aZcT\n1qpIR+UVOPWHtAMU+chdA84DuN+Ay9EXXi+bIJsUsH14OWF3Q8sJK1ZB+u/6P60oHuWn9Dc6\n9IH7q0aFqZkK9Rn9jZIpkDbw9E6+Bu4zGnYIIaRpWADff/99Tk6Oq6vrjh07KioqKioqtm7d\n2qFDh9TU1MGDB2dlZQkdktxXsBOc4qEtsguoTHvEaOG4DoXI6aEtrA3cDT1OZpDk3QevlR7g\nJWDcIJnWmCQVNHeSEIsSA9ixYweAFStWjB9/ryfVpEmTnn322YkTJyYkJISEhBw9erRLly5C\nxrQKymKoSsAVozpTbw+LfLFtJaozGXtGs1f7otaHiMHchfr+LlU5So5BXoC8VNi2Q81NA4dU\nnANrirsL6kooC++l0vsp7DrXfiC4pKTEzc3N8EeJHOHzFkr2ofoawMO2M9xGQGz0Uwai/rBd\nA8VycNngHMAGwPYjMA2bialNCSen+oe1ILwKZamozEFRMpx7QOIsdCDSyrAA0tPTAUyaNEl3\nh4eHx4EDB8aNG3fr1q0hQ4ZkZNDTJBanlqEwHvJccAqoK1F5DTCus4v5ZWRk+Pv7a1ZvM0zi\nAc/J8H4DbV+G11RIvRr2BaIQ2P4BfhpUz6DmJSgdGna4UonMTFTKkJeHCxdQWGsiTgulLEPG\nD7i9E9W3kLcPGdEoSxU6E2llxACqq6vt7OxcXFz09kml0q1bt77yyis7duwICQk5duxY165d\nhQhpJSTukLiDvQ27AL09HCpVNQWwC+CreM1e7Qt9rAqMJ6QBAJC/FZwcajXUXF3f6xRk+KMa\nSlUGddW9jzL0U2hpenyVlZX5+DRsOksDcHLkrgV7HioXVFai7ARch8JtuFHH8jyuXkVlJTTn\nUTU1yMoCw8Cj5a8Ec/t3KEoevOWUuLMb9h3ofIVYDgvAw8Ojurq6vLy89m6JRBIXFzd+/Pg7\nd+4MGTLk2rVrFk/YsqgVqr0fKFYEqE98q4wdzGUermuw3NDFrgerm/AA4NALDj1NHLI+Bnp8\nPYrUF3bdGvMdxX9CceehLaVHDV8wrK2oCJW1Hvq6caMxMayKSmZgziOnuNeQwTBejbJE5G9A\n+UkUbofK6ObZhDyCGEBQUND+/ftPnTo1YsSI2iMkEsmWLVtefPHF3bt3DxkypKqqqvYYYhSe\n4y7+xpfe+/+eyznO/fScJHIvG2jgjx2AgYnuAGw6ooYBcxu27eHQB84mfXi0nEH5TQCoEOOm\noZKm7lQmu8Rdv/7tv/89bdo0w2OaTF4EVZE3+NFg5eBF4O//OeRUQmzENyrkUDoBQNlgqHVu\nqCTeeGjBMetUrfRUczYGd6kNzSwCUJYKZdkjPq4yFSoe6HH//WU49TdN+x/rx0rR1tAjkKRu\nYgCjR4/ev3//r7/+arCoAJBIJNu2bXvxxRfj4+MtG8+aKfIhO6d5KeYLGJcC/sr/iQL9AX/d\nUXxmLNrovFdLgAsQ5QEAKwHDw0YEjgVz/24KKwKjAGsDG2+oS1BywGSBOTnERbApAQDuJhx0\nzly502CfAgD1pT1/7FRIboaFhTl5m+t3fxsH2LgkAjwYNXjmQd8HiSfse9R5KABAJrv30Jft\nTdTotOz09m4BRcUBj7xJwnOwYcHXulbq3ANSD9bAxUPZORRs1d9oexk+/2x6TtJqiQGMHz9+\n9uzZcXFxS5Ys6dDB8HpQUql0+/btVFfqwBdlcJlHUHINd9L1dqmKbqmK77Dym9y1YwYOdBrM\nSO/fiFadA+wgrgEAnkFpNiMvZzsEQioFALsA+EQg6xBEmXAbZuLfKFU681SqHp6novob4hEA\nrl7aOXn2prCwsPnLDU2yMaHqa1DcAS8CAJU7RBVglHDqD5eQ+o+1q8bdVHAcpEWo7HVvo5sb\nPFr4HUEGgDvyH/41w6ETPAIe0cyzJtvQxuvgOTDUwIk0khhAu3bt0tLSlEqlU50PX2rqysGD\nB3kjV5dqZRgnb7bLc8hzhveT+vts0znmKqOwxbVaJxYMK+r6PCT3y4PiFJiBkNy/TcI/h/wj\n4Ith7wPHPnDq1+Bevw34AViwhq+rAGooY6DaF+h/c8NPzzw3fKa5Mmi5j0LeT/deq+zBVkHq\nDKfgOo+5z84OHTvius7tBVtbdOpk8ozNkEcwwKLwBFQysGK4PAav5+o4PTNUORgz/hUjrcG9\nq9Xduhl1N1UqlYaGhpozjzWTOjLujqi6BffO+rvKZXxpKdszWH36e709bOehjFfvB+/lLmB8\nIdX9BDUqrsCtP2zNvKiwyAlO/Qzt4KE6CHWB5s2UV6qBuVA7QmTO6812AfCKQNFeqO4CEqh8\nwD4FNWtsB1RPTzg7I/80HBzg5QUPjxZw4csoDDwGwmMg8vbDa3h9P7RdZ1Qk62+0DaA+s6Qp\n6v/bc/z48X379lkgSovHdgxmOv1Ddwvj5C2e+NOjxhumkEGWB1UNOKUpwxlWDtXHqOkGvtbt\ncfmnZp80U1UCRTnAg+fBy1FyF+np4Op8ulqXrS2kUri6ok2b1lJRdDBiI35oh8dg//Cjg6wt\nPMaaLRRpFepfpCsyMjIzM5MueTUar1LI71xV5Gdx8iq202B2+FLu4nYu64io3xTRwBmw1Z8e\nVJf033BtN9RK+Hvj2CfoMx2efZqaj8sCd1Z/o801qHKhXgc+DbwUEOkP4POg/A+YOqY/MBBP\nevTe+lSloWLX/d95eEiK4XISJc/i7l14N6SHZvv2jc/Q8jHwmoyKs6i6BGUh7HrCdTBENKWF\nNAmt/GheFWf/yF0zU1l0C0DRrpW+Tw90fGEZ6x+i2v+RKGR+wz4r5wjSf3vwtqYYZ777f/bO\nPE6uqszfz7lbbb3vne6ks5MNCKtAWIKsgkBAZEYUwVEHhmEcRhEdcfCnDjKOyOgYRcZRI4oC\nyiaLDIiSECAJgUAgC9k73Z1eq9fa73J+f3RVL9XV6ap0d0KT+3zyx72nzjn3VKf7vvee932/\nL+fejZFH8zq696L7KZ5L5UmIlA1oa8MeszSWRBmR59jnwRY4NVCT9JbLEb8q2kKE92ATO2PX\nfbJjKEYmr3Dvu1ipQoRWMU4AYaH10NFB9s83fVXwfqo9FQhQ8H67ZSvkn0rgWPo2ZBUE4eIy\nFq5RmTQSrfaB5xPv/rrktLmQVE4TgXhiy0qjeq5SBp1pm4pxnDeR3fAbxOND2iW+KL2vYbew\nWAAIgaeTAoEdJ/hNpI106L9Zxf5K46/wlSadrYrMxelqQxTyAApsRBdKBxCN4vOKETulPpTM\nxeoHyWJn3rIx1AwvQuQ1DW6vOR6EiXBwDJRCtCHRBEKHk0ad3fMe+vup5oop6DxMG3F5JTA0\nkVFkCil2cZkEXKMyaRiVrc+usXds95UOEVIMEO36k3HOp2juwts1YswC7EaYjjpcPNHsQBjs\nawBJYR6WxKOiCKQk5oAvfZrCEvw5am0B0xcSeBP175Kn9iNY/7x7j338KR2//kXxlZcOWZLI\nx/u7DO83udP8OlWn4x2pS7n/37FTWfHROjytKDGis6m5hhF6QplJHCC2jcA8vHVHYTmv0CYC\nGaMuXFwmGdeojEGs/p2eNQ/mMKCvgfxn+w9Db79gtjX01g96uQMlflNtjxl1suUd0ZLpSd7Z\ngogght9l7R6ETtvuwKzKvGPm0Qf+IU/34QDO8Off/CqmnZ7DmvuRnfSZKKlIXLlAJhb+5Pst\npy8uWjgnjhrG0ZF+9M+jfxIxyTpaeSfQszZ57ASSm2++Y7OyKE6C9t8R2Q7Q8gvUAir+Bu+I\nkLz3MaFd5I1PFrzc3cpyOUKMbVSO8iJd3rpjvdf9Rw4DGtdQm4y1NTsae9qGiTHllQYS5cdX\nXvMVe+PP1ZMzFQgxf4K4CG34S0CsHsVP6w5a/5xhiG4Sn4QncVH4xDNLN7/z9IdO1RcssBER\ntDL4KMYXJv5aIym+kGgjiX0AjgepE1oCARwHZaxttc6nkhalH7uXtt9Scytq3uStd2IJ14/X\nqCju46LLEWLsX70XXzyo6KHLANHdRHZhNRBMajBVXnKuN2+YKqIvQN4xyzG3iwILMz3xHsB2\noAk5PFzY6UAalAWIGugWPokhBj0WQqIM98YHzMyTj0EfTgtKcmBPT8++XVsvvXDOZ//udLT1\naNeiXknip7lPm5nOrbz3O7p3svP3VJ7CMZ/AM/T1TOh0n4k5Dd8e7Hx6T8X2Q3Ts6C+ZGFDH\nGcQOE95MwRmZBri4uEwk6UblpptuOv3006+//vrRBtx77707duz46U8n7ObywcE3B98comso\nTb6p6KUoe+KtD9zuxMKA0IyaDy0NXHs74Gx8STk5UyXE+LOIY4eVEwbCW1HzUct452GKS4mC\nPsQNbuURHbL9lV9L7d8mkxSyiv5KIbuwW9COA6SUD//6Z60Nlddcc02+90Q65qKcCz3YtagT\nEE8Vbaf9eUoKKTkZgAgH/kDdxcOfryMRZCVSxy7ASX0wZvSXEyWcydkjTcJHOhLs/Rj95eIy\nwaQblfvvvz8Wix3EqPzxj39cvXq1a1SypOQjNxec/rGe1Q8m2vaWXv4vyls/G9d0vjkwPPtP\nL6X2M7RuonsPhp+ieVSeOJj2VlqaQwCujJLYiucm4O233vrGypXLly8/8aKLAKxGtHKARAtG\n+bi+AgCb76N3RJVqUcXMjww5b2qCOFoXtn/wF9Xvp/ygC5AW8cb0Vz2gZAl5E7DycTHmxp2L\ny9Qn551Xx3HE0ZefPB60osrA8edr+981Kmdb45zLM42yE+h8BhwQ+OZQfjl6MTM+zIwPZ+iv\njozVHQV5APt51L2oWxDHLz355BdXry4qKkLr/w2xkgdO6iCFFaV+rNDiEdciuD1DPn7DmuGv\nVZ2ziR9A8WKVDr6plJezeXAB3hJq0sViNIpPpful4W3FFBzn+hlcXA4DOf+ZNTY2Hlx30mVy\n0WaiVSOCVP8d/glKF7cfwPoGxJEeEhejXIG+ctGilICHsxs7iP01lNkQSxuqeplxQc4X3P0E\n1oi6PAUzh09lFbBrHXQRm4XjBaiooHZYumVmLd2i83ES9K1LqsB7ain72OhamYdOdCO+kyd4\nTidBz7uE99G5gYJFaIcntkBoeGYcliu5fPDRgD179uzZM7gZ0dzc/Oc/Z4gyikQiL7744t69\ne884w3V4Hl6cFhQTWULndrb+mngIr8N7D1N7HuXHj3dyuQnrK0gV6QEVx4A/Ys1Fuw3Aepz4\nN2BgN8mDdhXKgoHRQqCPXj++Py9T0dPbq06l8aX0xmnLhk8VsyhSUTXsPPQiioqydUgIldLL\nKD6P5p9R8Un00knS3Y21jEwRGhfxdup/jdkHEG2k9S9Mv3q8YWBZIXS8s8bu5uKSBRrwwAMP\nfPOb3xxoev75559//mCln2655ZZJX5fLUJx2Ql288zCtm5EWhZUIiWOy/y/4KwnkooU1EvsR\nHA+ODyTCQfqRNvwW7TZkC/FvDbEoQJz4l/H9McvbdKwZK0T+gvT2hTfQvZNQ02DLzEspH4hO\nkJK9e+nowBNCi2CHqavL2cWt+FE86GVj98wRaWJuw2rC6SL6V4yFqOP7H0jNS+OjSYvSjxOn\n8XHm3YI6sbbLxWUy0YCKiorFi5O1jLZs2VJUVFQzQoZPCOH3++fNm3fddddddFGmsCWXyaP9\nXbavRWtggQ37KJ+HXyVPQwriW/HMHNfk9l9AoMRAgkzuKDlBrLtw3kPpHjHgXcyvILJKa9cD\nqDoMupIMtC/3t595D00v0fBXCmZSfQali4cMa2qio2Pw1DTZtYtjj01WKjuySOKvpeoASJxO\nYq/gPR112ngnjncQa01vtCOEdlO4JNMAF5f3JRpw880333zzzf3nQogrrrhi1apVR3JRHyS6\ndhBu0cLtQu+lcY3i99O4Bhg4SMcuhF2oQ0r5Rlro7qJkAcEZtEgAey5egeVBCrzFROZnmCd7\nrCCyA3in6Z1Fx0VUtd9NIdC+ivlbnNczDFFvQFmUoX0EZhgrhDFEMia0i/C+5LEBZTMIVGM1\n0zo03LdFQ04HUAtRElhFSI2GBHk5GpXQh5hon4TTh51KPbJMov0vFk+hj1uzxuzN3N79FrGW\n8U7+gcRTRtHSsbu5HGbSHfW//OUv5849DJu4Rw3F8ymeb1mb48G4p/ZsZ8uflNqzgYGDdOKP\nIuYO5qlEn0b/DQUesKkO8UorvSZlFyAF0oMU2PnIQ9oN17aivwogu5F98bijU2326Kon5fuO\nfhMi2McRTu5e2X1zZKIYFNQKGClclgE1hrCG+eS94B2ihea38RQNd7pIiZoKBxAOisBOgI0h\n8WVdQsaOYnXiMxFvo+ahF0+UW8XRkSmXv2OjpMLr1MJMspi5ICs88oB/ZAR42SKMkdpo70vU\nSsSEVrh2mYqkG5UbbrjhSCzjg0vGN5Xu/WrvDp6/NUN/WQ8/Sf5pyhBWIwA2SKSCtwLV4cDj\naAJbAYHmpa0kwzxD8RYy+7z0RtuHfR6As1Varz76+94/bdjyo5WGN6ABKDPwfQsg/kXyHukf\noRSXYAUwbkHL1lFhtmCH8Yz+FN/dTPl09LS9tC3NWBaA0YzjxyoAQXU1FdndXGN7af/DsBb/\n/ImqPSV3YaZ25hJRjJS3Q5+PGHfEsq+NzuFvhoE5+LIqyvq+4OCVEFyOEg72d9DR0REMBk0z\nw+PhkiXuLm92ZHxTqcVu2qJdeHeG/vF/Rnwm+abS/RXMAwC2H2xklB1hAhrx+RQrRAtxFCpP\nZMYIg5Ebp/73PStv/eqWr3yxuKiwPJk+Ytye/NDzHcRMrD8iW4S3FFGD97Ic5vYgTcTo4WFq\nEUreiA61xTQ2AuhhbA0SaBq1xYyIIsuEpPMRPMNdQfY6lAUTcntW62AXEgSDVSjVcpRcaq2N\nRumHwUvHa9gRFIOipVR+GDHxsdAuLpNIBqMSi8XuvvvuVatW7d+/f7RhbiHIw4HTlqExT8PW\nkxotikZZyrrL/YhSGP3+PQp79zZ//Zv7Cgs9X/pCJTgos9G/gDpgqLwYXxgUkUzcO7HhudOW\nZWqtrsayaE25rb1eZs9GH9uk9LxD4aI+rJHBBRDbPyFGRSnCWELi3cEW4cUzekmXnBAKZWdS\ndiYt/0fVhZMUCO3iMrmkG5V4PH7uueeuW7cO0HXdNM3i4uLe3l7btgFN0wqzrGbhkhEtl8Ly\nSgn2iHiguEDzgIXQmHHeYN0U52WUMxC5+Vccx/nMZz4TCoUf+NX/lE9TsX6F935EbU6TTDxC\nMGMG1dU0dFE8i6LZWRaZj7VRuGgUKRQxPo/HEPRjUMuxmohvxTgObSYiq1eoHBCaa1Fcpirp\nf4ErV65ct27d8uXLm5ubr7nmGqCzszMaja5du/byyy+XUt55550dQ8M9XXJBqd2RQ29fpo2m\n/OMwQHXI78beOs71HDhwoKmp6aOXnnrd1T8n8Z/IFiIXkLgrg4jK4UfXKSjA78/SoiRR8zAy\nhff65k3UugClBONYRAB93sRbFBeXKU26UXnkkUeEEP/7v/9bNURgXNf1ZcuWPfnkkzfffPOt\nt976wgsvHN5FHq14luP/JEJHiaIkQMcqRPpRHZAoDqF36Bsh854LtbW1b2969Jc/iSB7BlvN\n32D+aryLnxC83twsSj/lH08XZSlajmf6RC1qAMfVEnNxGUH6n8W2bdvq6urmzJkD9AtH2rat\npnQJv/vd765ateq//uu/Lrggd72noxOrGzusyE5VjxJvQviINwHCQ/9BOgkF0YVMfaQtJ3AC\nsdUo+bRvQ9sHIJzBN4nO/8OoAHCiiI5DqJvr54/+gjxM0MKIeLLVfBD9hgy9tY/mOv8wEgk0\nbdLFeo0qar9Iz6uENuBbRN5x+MaXyjMKlvuO4uIyggw+lfKUtLjH4wG6u7tLS5O1Y30+36JF\nizZu3Hg4lzi1STRjW4KwopmYXQIDswtAF8mDNCwFER6RBVIB+Xj+zPQW8kLYCopEpOxKvBnF\nh2xEbIbc0wScdxE2gJTI1GuBPEDi+zlPNQLdh6pCInUesfDdimfy45nUAkouJr6P8qsn/Vou\nLi5DSDcqVVVVXV3JO1p1dTWwbdu2M888c6BDe3t7T08PLlmSCJJ/gi2kGe0hbwlCxeoEhE7/\nQTq2ggjB8I/sCA5YxxA0kOXYGoo9aFScBXjrcDYh6hBj5ayMxFuC/cvUiUw6iJUZGF/KeaoR\nmFGsEEZ16rynfYIlGD+glLmSrS5TlnSjMmfOnA0bNjiOoyjKhz70IWDlypVnnHGGoijAU089\ntWfPnmxS7p977rnt27fv2rWroaFBSnn//ff3m6g03n777Yceemj37t2KoixatOi6666bNSs9\nfimbPlMF6XSLglMAp/dPSsEpGXrEH0PMxjh2WKNVjvCjzmTPdykpH2ZRAN8c8k/A3oeyAFGX\n+6LqiD2CDAODPjb9s7nPM8k0NlI7SliapHsz3W8TayXRQekZ+CfegXJYcRUkXaYu6bvbF154\nYTgcfu211/qP6+rqHn744dNPP/1LX/rSJz7xiauuugr45Cc/Oea8v/jFL/7yl7+Ew+GDFF9Z\nv379nXfeWV9ff84555x22mnvvPPO7bffvmvXrlz7TCkcFB+KD5vkQfo/iWKkNxoL0esILAQP\nMMyiCJ3AIhQfioriGWXOYf8e/N1jr67bNKSlDs8PEdVIFdubTEzRJmHXKBolHKa7m0zptJmR\nJnLscsgtz9P0BOG92BF6t7P3F/RuH9dKXVxcDpn0N5Wrrrpq48aNTU1NgGEYDz300CWXXLJh\nw4YNGzb0d7j44ou/9rWvjTnvV7/61VmzZhUXF//Hf/zHq6++OrJDIpG47777fD7fvffe2x9p\ndvHFF3/1q1+97777vv/972ffZ0rgmbHYUztC/z1XhELeAohD6j4rVMovQyvKfo7du3ffeOON\nXq+3vr4+EEhlSqrL8P8fsdcIryX/nxCTUIRt717a25PHjY3MmDFGVeDoDjqfJdEKAu8sSkdN\n44+1ElyX3tj8FPnz3UwPF5cjQLpRmT9//h/+MKibdNppp+3cufORRx557733PB7POeec85GP\nfCSbcsInnnjiwTts2rSps7PziiuuGIhdXrBgwamnnrpu3br6+vq6uros+0wJhKIOSg8OIunZ\nR2HWW3l2F+XDn9y1EvJyKNLlOM5nP/vZcDj8k5/8ZNCiJNGRM7ALRlqU0Bsdju8Qq5Ikgtgx\nZLCLoA1D/D0HeqktGNVjb3bQvQlZARXJFuVVxDIy6fiGdmdotCJ0rkd35mSne3mIJDroPdRM\nIaMMb8XY3VxcphxjR9qXlpb+wz/8w4RfeMuWLcDxxw+7Jy5dunTdunVbtmzpNxjZ9JlayPZu\nBrRCJIQaczAqwaeRwzeOzHZ61lOUUeokAytXrly9evWll1766U9/OsPHjpOUcRyO4TPtQ1XJ\ndUyEhm524E+M+CxI8ShFSIJryWtPb7QaKa4c2VcdJd5NK0B3eplMfV/Fi36o82s56+m4uEwN\njlj6VnNzM6kAswH630j6P8qyz/sds4u+TclcvESjEphL8y8BdRq0rMLsonm4f0h6YQ0iU0pj\nbN8wb0o/PWuI9mfpN0MP+OitwMnwKmlZ1uXztSv+9OOa2lq2PZtprQpONeHVaa2GkyCUixDA\nEDwaMoBqhzN8pjYS2jnKuCieEXt6eiOh0Miu3moKRtQQECpeAxIOofSvczAMm/wRxm90imbg\nO+To6DjEx+51KPiPcWsDuxxBxjYq69atW7t2bTwenz9//iWXXDJi2+QQiUQigN8/7Dmz/zQc\nDmffZ4AvfvGLsViyDkdhYeHMmTMnZJ3jRQ3gnZl8nPbNsdd8U1tyD+Bs/Z56zOW0baRseAxY\n4m3EieiZSmA1/BgZS2/01FF6MYD9JMqJiOlk2qlyHOfTn/rU+vXr77nnnrpjzszQA4h30Pss\n0/5mxHUbmH6I0VTxRqwQ+da7RCLpn5VWMWNG5mGN92KOeFNJLGfeOSP7Cgi10/bSkBaVumth\nNjT/lOqPH9rKsyG0icAJkze9i8uURAOam5t//vOfe73e2267behn8Xj8E5/4xOOPPz7QUlNT\n89hjj5166qkTdfls3DPZ9AE2btwYSd25li5d+n4xKoqBXoyassS2jTQIN0sL9BKEH314Zokj\nEXnpjf3kLcwgypJ/fLKzYqAUjJanEgmFLFGw8LhlV14zeqxwohcmp17vtGmkBeypKpUZ9rKS\n5B1P15/TG41R+5efg28aXW8TaSB/LqWn4TloEICLi8vkoQHPPPPMv/3bv1177bVpn91+++39\nFkVRlKKios7Ozqampssuu2zHjh3j1yoeeOEoKhrc6Oi3CgMvQ9n0GeCZZ54ZEOR/4YUX3qeq\nl4EK5PBSiIATRCkde2zpJcTqMTsBPG3EK8g/kcBiALkT+1FkC+r1iAyvKnl5eY888sjAm9wo\nlBO5MNsvkhMlJcyYQVMTtg3g9TJz5sHy6guXE2sg+t6QlrOIHCxYIG8eefNofZHKcRaXcXFx\nGR8K8NJLLwH9msQDtLS03HfffcB1113X3d0dDAZff/316urqtra2n/3sZ+O/cL+nJM01kuZE\nyabPAPn5+QUp9Cxqb7yPiD415MTKsMfVj+pn+hcovQTPNISk4mo5QtP0AAAgAElEQVQqPgYO\n1m0kzka+hn0PidOwfzvadbzeI1eZr6qKE05g2jQWLODYYykoOFhnoVJ1A1Wfwb+YgjOY9o+U\nXHK4Furi4jIuFGDz5s1CiOXLlw/94PHHHzdNs6am5n/+53/6ExhPPvnku+66C3j22Yxu3txY\nvHgx8Pbbbw9t7D/t/yjLPlMM6Qw5lsNOzc103Uz8FXq/RdctmO+OHI3QKVpG/kkIjcAxAPb9\n2A8O6RHG+hryrclZfY7EYlpkiGtEUfB48HiyFR72zSewhPxT8Bzp+i4uLi5ZowCtra0VFRVp\nO1pr164FVqxYMfTx9m//9m+FENu2bRv/hU844YSSkpIXXnihpaWlv2X79u0bNmyYN2/eQKxw\nNn2mBomw9dxXE98ukw0bzJ8uc3Y8R9dONv2Q5g1s/hnRDqx6er6BtS/Z39pDz53YDWPPbP96\nRFN8uJlxcXFxOXxoQGdnZ+UIr+kbb7wBpL2++Hy+srKyzs5MSojDeeqpp3bv3g30S6qsWrXK\n5/MB119/fXFxMWAYxk033XT33Xd/6UtfWrZsmWmaa9eu1TRtaE5MNn2mBOZjn3PefghQZxSQ\n147nl2JGmIpU9KrsIfo8RhuAGsJzINke+0c8H8ownXYA/1bs/8TRkZlKPjsvEb4zZzFgxaQw\nhDUi8yLQi/w7xATU4h0XjoOUh1JexcXF5TCiAYFAoLW1tV9Esr+1p6dnx44dwCmnpIseapqW\nTTjW5s2b169fP3DaLyYGXH311f1GBTjttNO+9a1vPfTQQy+99JIQYsmSJdddd93s2bOHzpNN\nn/c5sunNfosCOPst2aEpFUX23p3KpZ8THj9A8R6sTjQNwHOAeColUJtB4I4MM4bXEVlFwe0o\nfuyfDaq2DFJI5+d/+swz4XD41ltvHSiHMwbxMD3NlI9QCw03UJJ7SHEwSGcnXRJHwylM1lAp\nKTmUYiptbTQ1YZq0tlJURF0dxuREqbm4uIwbDTjmmGM2bNjw3HPPXXJJ0h36/PPPSylramrS\ndpkSiURHR8fQopCjcccdme6GIzj++OPTEuYPrc+kEO+mffOon5pR+53HM7THu/EMcZXb+2VU\nVSqTj/kiLyFKEiitakGV0/4gqgbQaoFEOADCRvYlx4o9KKehKurJxw27hNWD2kn3rQgFWZmp\n9K+0lDtOmr2lL5KIhYLZphZN4JvKzp30F1CIeujr4N0GFi1C08jSvA2lq4v61A9ESrq6iMdZ\ntCijcfLV5Dy9i4vLxKIBl1566YYNG77yla8cd9xxtbW1LS0t3/72t4EVK1ak9X7jjTdM01y4\ncOERWOnhx1NE7Yhc7QGko1YNz9fp2knrG0SDGAWULqDiBBSN8P9zGmeZ7zzd30UxfDLoVcpn\n2/VvGOf8gyioAijch+OjaAeAp4V4ymbn34xnOULgHZ5e3vpbrLWU34PiJ3EmMl39yhHXP/Kz\n4k9+9dcPPPBAoPC6bL/vRL2pdHTQNVxyKxajoYFDK1jQ2ppeeSwSIRjMqEdZMG7RThcXl3Gi\nAbfccsuPf/zjd999d9asWTU1NU1NTZZleTyeW2+9Na33Y489BpxxhltCCISCb8hDfftmmlYD\n6B6cOB1v48SZcxm2V8w9D38JkU4ARSAEiibyK0TJzKSHwONBXEjRPGLP41FJzCC8GG02fSfR\n1y9M0v+oLrHDqHmES3FOwm5B6Miv4awGgT1w59W2bJ2zcFri2Z/85CNnncW+fdl+I8siHB7W\n33FIJIhGiURy8NAMqeGmGpa3IAIQDB6CO0SGLZHIJPrQ2soISYUMhKcT35ehXVEmxDeT54Es\nYikmF00jU6UiF5cjhQaUlJQ8++yzV155ZUNDQ319PeD1en/+85+nFeOKRqMPPPAAMLBL5pLE\nsWj46+Bp//2qczsVJyAQ3iL96lXmQ58gkboPGgH91E8N3tc0H7UXovnwXoz5NQqPp+oitBHb\nTTJBz1qKPkzry7CW8k+heKAWayPWL+jslzAJdHSd97MHf3/5WWeddv75+HOpLhyPE4sNDonF\n6OjAcQB6etB1KiuTjp+DM0ShSzrCNlW9v+RUTovpH94nBE6GDwwjq9nMaOZuRUUT4pUJ7SAw\nxauBubhMOMl7xEknnfTee+89//zze/bsKSoquvjii0dmFwaDwbvuuktV1ZHe+6OOaAehpsHT\nRB92JiHCtjfxeNF3K2UzjM8+Lfe/btf/VF36z+qMUyieT9duenZScSLedfS8TOmF6AtwpqOd\nncGipGFIRL9TQaDdifp5yj6OcpGjfOHqa69YvXr1319/ffExuXhB+t0V4TBlZSgKlsU77yQt\nSj+mSU8P2ex82vaA0pdjqWbU4y2IUFBARc5S77L7AD4/ncPtiqIwfTq+LIoj2h2HcFEXF5fx\nMPjg6fP5rrjiioN0ra2t/dznPjf5S5oKGAUUDHlmj/fAaxm6+crwJfBUolaLgjpRfYrT+5x6\nwqfprcdXircEGad0IeH1GcYeHDF0M0oi30VGoAFZf9VVV1VVVS1ZsiSH2fr62LuXfhGXTZuo\nqUHXM9Rn7OsjHh97H6yyko4OotHBFlUdVTtyTKqqiXUN6lEqCnV1WVkUFxeXI8ERk76f2qgG\n6pD9E08RvlKiwWF9FI3SxZhPYuTlVJwxMx0dREPEDfoaCJeinULfAVDAxnkK2Yi8GBxFPPiF\nK07+wpXfo7eXhuz2+22b9nZSsmnYNvv3j3rXbmzMauOooABFIRZTPY5HtygpGSz7mAvCctBU\nFi+mu5uWFkpKKCrKOf/GxcXlMKIBoVBICJFl4Okrr7ximmZaUqQLsz/K9oewh5TImPFhPIVk\nXY59DMrKkAX07KFoOq0v43mdwusROta3sX8CEJmP0YLWCw+g/w7mZKtX39AwaFEGsDNVhheC\nurqs3Cr9xGL2/r64U24canUPuSOYvG5xMeHwwYSNXVxc3h9oQH5+fmlpaZqs74oVKwoKCvo9\n80O54oorgsGgHHkbOsrxV3Dc52h7m87tFM2mZCH+Ibv5MoyMoAyJgnUeQ1w5bIbEvRhfPNgl\nOrvpSr2p6KfT1wwCG/g0gFmCGkaJA4i9hMqzfVPpylRxN5HAMEgMdxT5/eRUG82y1GjCI2OD\nIVKKQo2bS+Li8kFm1KfOJ598srQ0Cz12lwE0P9NOxzEzZLfYbdj1eJaL8j64F08P1m6Ubfgb\nsdagvIORh+zAisJm5C+xMrmXC228jXjqCG/F04nWBGD/LyQgzajMJrR9DCXgAQK9GcJzVZWy\nMnp6ko6Wng9TdCo1NblF4sZittkXd8oNN0TKxeWowfWpHFZkez58kXg9/mdQ/5XIWorPIr6K\nxDTEq3juwG5DfAZtaWpABGcb6kkAMoG5lsCHEa/BX9DuAJCvSfsNIcAsQ1hJo6JcRviT2WYs\neiPs2Tos0AuYPh2jmnJwHOrrWTzzUBI7DMP2FBIdu6OLi8sHhtyFmFyyJFbPiBwL7fxLR+0f\n78nUGsXJpIFPBCwA9Ws/+knkymu6TTN1LVGF+vc5rNPvZ+bMYQIq5eWD+XSKgqYdYqqgokj1\nENNBnE5ir2A3E19PYmsmeTMXF5f3Je6byqQR2ZW5EIhcB9UAQlBzVo6TOiT+CWsX2k7iv0b9\n2N7919/xDVNVLekAAuUctG8jSiCLhPMBysooKqK9nc5OZs8+4gG7dgex1QCiBCeK04HTgXcq\niYi6uBy9uG8qhx355qGPdV7Bfhr6S0OajvnQZz5zYSgU/dGPfmF4T0S7B/0hxLxDmVnTKCjA\n4zniFgVIpGqMOfFSafsBux2n90guycXFJUvcN5XDi3Qwu4ntwDEBpEnXamLriJbhbaLxUcps\nRt1q6sBZj6NZBy5HD6LEX/xrYo4nduUXZ3/izOusJi/GrMH/z668/u2xHIhr9BQwUkf4EKYa\nHIuIY+3NZYiDk9oIdMKDbiGrLaDkau96FjFKaeYJQU/k+NUOipKPUjZhs7m4HClco3IY6dqJ\n80dEGH0j4R7CLSi9OG34Ihh5qEHs/yHRgmajDOybRZG7sRrBwf4znm7UmFr5fyihvrDZGIku\nu4RrPu6o+T8m7zW0N1FTA40Q+XlZrUq9HvIAIjZOlJFxZ3YsQ2MWWCGi9dgxjJno2UWiATgg\nMsj5K/64OtYy9v2JmR8Z2tB4aCvPEnsXYy4pB/SJm8rF5ciRNCrhcPimm25K+2y0xsOxrqlF\nIoQx1h080ceeZyirRknQV0f+XlpmUdyE14OQxKbh3U5sAUWv0jaHubclR8kgzu+Qb+M8h4T4\nYrReocbxtlx5dcNfXkr86ueFeVV3oP4N3bvxLcdzUXJgTwMFuUbySgyTkSmwHitD41h0vErb\nX5EWQPtGSk+n8rxsx6rl2G0jGossMdYyEnGG9fH2HsLKs8dRGHNJLi5HG0mjEovF7r///rTP\nMja6DNKzHhkH6NlLYSpr3N5LNwCxerpWE1eJrgeH8B48FnY5joXqwarGF0eNYxYgQArMCqQg\nOhO7i/ZnEP3/NWHsDdADJ4IgUY4VwCrAzvvVD2a+9bb10UsK6S1ArCFWht1JdA1GBf6Jrivi\nYO3HakF40apRx0psD+2m9YXBU2nTsRZPOUXHjT5mCJ4Tif4VJz64EajPQeSscezi4nIESBbp\nOtLLmJpotXS+BxBRUFJuh4HjmEIiRjQPJQIOcZWEilOMcLC8JDTiHpxShA7gGCiAIFGCLQi2\noOQByBZkMRQCGH0IiWpi2/h3184P187PR/8KynIA3sI7F2MJGbwi48Mh+hecHpAgsHajzcJz\n4sFGdG3M3JilUREBfBdi7sJuRClBq0GthsZDWXuWSJvm1+jdixagfCmFbqSZi8uhogFPP/30\nkV7G1CRQQ6AGoOXnlKVUivsayJ8OEKvHO4PEarQTQRLeTcgk0IKwSeSj9xKpIdAEPgDbj9GM\nJ4hUkSqKjXIOYhHOWpx3EDaAVDDL0DuxClEV1GWIWfAmzpsA+juIfTilAA4EerGy92MQ2jU3\nvK+GhMm+9MqPsqXQSkuhaUGtR8kfdbZoU4bGeDutf85+RQBOF4qAbtgCiQq2D37kraZwcW6z\njYYVYd3/ozflct/xO+b/DXOvnpjJXVyONlxH/URgzUP7bPI4vIbiswESLxJYjtOHcgtYaO/S\ntouydahxQtMJ7KftNGavxVQQNpYfGccTRGo4BkofzqsY3wIv9rakUUEhXo3WS6IcpRXtv6Uz\nJFoovgnqECXJ054m8nJQ2QrMJlAVoaWFEQ/p5to+05dun9RpeE4Y/efRQ+/W9Eb/NCpGr86c\nEXMHxjEDHuwJKKuVka2/GrQo/ex4mJLFlBwdVbNdXCaWpFGxbds0TSGEZ3Rd8Xg8LqXUdV1V\nJ3qD5WjAyGf2pYTewOgAEILaGGoT1jSERB1Z4yuG8yzK+fBTiI/4NGG3PuWEPjPYEC9H8w5u\nffXkkals2MFIaPQVJpXExOAd3IlliEGQvQeLpi2pgzbkcD2B4rk5B+A6XThhlHHXDTg4LZlK\n4TS/6hoVF5dDIWlUPv7xjz/++OP/8i//cu+9947W9etf//o999xz1VVXPfroo4dreVMKuQf7\ndwQasF4GMOqxX0N5E2clSOghfwb+XqxOtF0ELOJPoobw1qPGkCIpRSJM1JR7xvoFyvMoVbAL\nAEfqzUJYGO2IhFr6TbVyD3iTnRPNaEUMpHL09mYrKDmAaRIKUTwdcQrqGQPNIthrRwv7j7tb\n6WoBUMtQRgRoDSVhEtqD02+hNPJmEd4De3JbkRNEqWf0xJ10Orfy3oNDzsNnjh39JbEz5bKk\nT5WJcD3dLdmu7f3A7BXobriayySjAZs2bXr88cdnzZr13e9+9yBd77777ieeeOKxxx576623\nli5depCeRyliNtodRP6IJw4QSRDqQfFhd6PlYUxDq8M+gO2QqEHrI66ihbDyAaSKiCa3v6Sa\n0oW8BFGHsw0ZBqe5RWhOsS9fz/MU43MQJvIEtPOTV7c3odWhpra/Ik0UZ7H9JbyD20rxMD3N\nlHSkSZap0/NoS5q8okqKKlECeM9PhaeNjnTo3YIdpvgUxCG93Jrb0OfnEHnw3oMc88kh511N\nFI9dAbP1TUIjqgTULmfWZWMNfDGHOGkXl6MEDVi1ahVw22236frB8q80Tfvyl7984403rlq1\n6gc/+MHhWd8UJB/fh4k3EtoEKnkCS6DuxtbwlkEbIohpoIbQw2ih5GO47UMNoYeQGlJBSSCm\noUxD9iEjMKOra/OGt6zlyxTdH0ZRERKp4azB6kxeVjTilGClAm+9PViFYy9WPRNljPhjMb3Y\n68fcgh1EqKjVGEvGtiiAUDCKsfRDtCiAcMIkdHyT5U3pZ+Gnef2uYS2BamZcMGp/xyL4Cj1b\nMLuJHqDibPx1k7pAF5ephAasWbMGuPzyy8fsfdlll9144439/V0yI1VEHh1/QYrkM7YVwJqN\nGiOqoSfQVPqqUHbhVKCEMQsAYtPw7sTjIGLIPPTLUL+OKEUGsZ52lI9c+Td127bLPW9N83jj\nRPJR+xAS/aaUSXAIr0abjZ66vUUbKJuwMiZqKWqOPvYJQVgREr5+o2IfQJ02KVcpX8pJt/Pe\n7wg1ouqUn8jC61G9o/SWNDxCaGfyLLyHvXuo+xR5cyZlbS4uUw4N2LNnTyAQqK3NJKk7nOrq\n6oKCgj17ctwa/4DR9yZyuBS73Ujv60OONxA/kDw1S5AqgO3F3A8l2AZ4SFQQrwSZNCqOD6eS\n6D+jP4lxHtqnh07/o5W/W/1y7D//vTrgV3E8SAME2seSFqVvI13PYYcBjCrKrsQzYxK//uGh\nq4v9++kOsH0f+QHq6uyugFqdg3/F6UHEs+1eeQqVp2AnUDTEQUVW+94btCgDHHia+V/IYW0u\nLh9gNCASiZSUlIzZtZ9AIJBWePiowzcrWdRd2kgTQGnFk3JgKK14ahFqUqJEjSTVrPrvOGoE\npQ8s1DCOB3Q8tcgIYgaBctQupIPj4KQqW8lYV2fwnv/8Tt30wps/XwMCBOSjHo/n3wAiW+kY\nEjeRaKHlV9R84VC+l2zH3kz8v0CiLsO4FVE99PPwPhLB3KY0u7DjWLkq+8RitPRAoXRUIcoR\n8F7QUnxaVDn4jVv20PVG8tjpQ9i1IlPGzHjo3Z6h0ewm+BrKqIGTRwsFC1Fd4YOjHg0oKirq\n7Oy0LEvTxtgpt207GAwWFxcflrW9X9FSX9/sILILwAkS3ZVs7D82yok3A1j5yU2wfoVEKx9F\nAR2rAARmHnoplEEh8ShiB04edBNPvffIyN7Nmz552fxrrsoP6IlkvC9RxJykg73rxfTlORF6\nX4Fjc/tSMkj8a8gzkB0A1h+xX8X3BGKwpLSnAj0LN81QYi3YYQK5JqjvaqQ03RCZdrE+Oz+j\nUZGS5ldpXU/4AKEuZpxP0XzsIIoVFGMpyuRKvJ3Qrgzt/tmoR71Rcc2qC/1GZc6cOevXr1+/\nfv2yZcsO3vv1119PJBJz5rj7xwDoZRSdDRAieTBwnH8S+/8LJ4rRhlkIAt1L3zQSNQC2h7iF\nHSA+PVnSRvrQZkMvCMhDsVIxT/rS2gumfeLEqkqN1n6HjY3jocNGXQ0QL4ERNj4SRW4nlssu\npdOIcxZ2Pg03DzaK55J6yXolauAQEmUViaNhhHIcJrrxpxfNVK1mNdydsXvHZuy9lFVQVgHQ\ntwG/JFCMcMgQ1zU+ymagjViFno/PBHNiL3WoFBWRP7ragYvLJKMB55133vr163/4wx+OaVR+\n+MMf9vc/HEub0qgBCk5BzcPej16JE0Im8HYQeAO9BSsfPUp0BoFt2PkAViH+JtRupIqjojoo\nl6AsQ4YV66GqGfsBULB9qGHMMvQgnq+DRtdfsCPpV/fWYc5i8IUygHbJwbb8pSR0OXYnfSdS\n8mci8/DvBFAW4Ht8PD8GsxErhJFrxEBXF7H05BHbKVdri0d+iZ49bFiV3rhnI2f+A0bBVrzT\n1fIcr35QNHBaaH95sEX1MeuzUDr6GBeXowkN+PznP/+9733v97///cqVK2+55ZbRut53330P\nPfSQYRif//znD+MKpyDhLXT+mUQ7iodACLMVBIqFo4JAKNg6moUaRkicVJiR0oNIIA1QEBHk\nHxBnoZyM/RzsT/aRBoRxvCBQzwAVA3rWpi+g6AoiKuqAR0Qfw4m8YwclzmA9j3h10qg4OtC1\ng1iOrpQBEkHsGKGuHId1TSeYfklLydOUDN+j/a30FsCM0PAS/mlVVidKGfrEvlr7CBxPpJFY\nO/7p5M+lc0fOcxTMJFA9djcXlymHBsycOfP222+/6667/umf/mnt2rW33XbbSSedJETyz1dK\n+eabb95zzz0PPfQQ8K//+q8zZkz94KJJwmlH+RPdLSj9qe4OwsTTBgLhoPUgLBw/mg8ZRliY\nhf03bvQgiXKElRSU7H99SfwO5TzsPJz+MAqB40UKHB2mIWYCFNQQtwlvTi5AaJRcjPd07AZE\ndi8I7e309GAspfil9I+6FxPAU4hyqBJxqsCO4M/VsVFRREMffX0DDY5RbnbpSi9qRbpqi2cU\nN48vD19hxExADMNCzUEIbWz8lRQfR+cGSk49xBk016Ht8gElebf41re+VV9f/5vf/Obhhx9+\n+OGHi4uL58yZk5eXFwqFdu/e3dWVfNS84YYbvvGNbxy51R4JzGDS5X4Q7FZC7yaPe/IxUkGp\nwgRJvAqpgYLjwfGi9uKUoRpY+Wi9WIUICQKpIcxhGfWiEPV4HBVnDs4bWMXYhWg9JGqxqgZf\nH9QL8Z1MdAdaEd4ZmH6CQWKxkQ/7memP5eu4DMeHk0dPlOhcFJtEFe0XYbT7NYUc/fMDJGyc\nAN6hw/Oyq0dZW0k4j2BQoiX2FdsRn8cXJw4N6B70IUrK2rmevU8nqzMP4A1QXI2nsjfRH4In\n8U6Cmn1sryuS7+KSTtKoKIry61//+qyzzvr2t7/d2NjY1dW1ceOwmhjTp0+/8847P/e5zx2J\nRR5RZAfWyzhR7N5R+2gholsApCTQgkjVwhUOQqJ3goFtoIaRKnYBUiLLkBKrGKmCJFaTfJtR\nYkglGrd8PsCH+SoEwUYWyUSBDM+X8bk4VSghlKHxUR7s2QgPioQwQFwQyi6SN6YlX4yar0Ik\n0I/H8dJxDnYeCPZHUA49/0JJIGzs1O4dEqnYBxuQRsIvwwp2QvUMqmM6DViRAelioWvlJ36c\n4JbBQUJQMQMBdu/85JA+Eu8y4RixSZn2SKGWoVYd6UW4TH2G7Wv8/d///Q033LB69eqXX365\nsbGxr6+voKCgtrb2zDPPXL58+cFFXD6wGMdgHIO0kikpGTnwKqVnAEiL7T/Am3Iy6z3oncQr\nQKDYWH582zBasPLJ24v04EiitRg9GAeQXkQMxGsvB274bPz7382/9LL/RcwmfhtOA4DeJLxN\nQnsU6+/xtOL5x2FrCG/GU42W2htqbqY6uz37YJDGgQJYAqMTIQnPQzExDBaMS4EkGVJ8yC4N\nm8ifM9SrF1Xo85LHKpTPQp9Jy3p6dlJYRWUVhh9A9TfYfbMAtQR9Vvok48dqnpRpc0NB+Mbu\n5eJy2EjfLDcM44ILLrjggtGVj45OhHZQuSt9UB64bAtqyjEtEujdaN2gIBwcHaMNtRetG6UP\n+lBBCIijJJAOwrJMVdWdlfdMW7Zspkw8h2zDPpAKLxaIKI4KD2PlI4frVVmG03vzoPZirzdb\nHUZZAgniA+r6lSCJFwIUVXJQKeKx6YF4hoLzWSKtDBYFcPrS58wvIv8iWouoWIq5Pal44MRL\nAaGiFB/6Gg6Cak3KtLmho40theHicvhwi3RNBGoz1iPJY2UhThN2KjVDMXEMpA9AmCg20oMd\nQKb2pqQCfmQcqSOV5gNKQ1OkZvouf+XHENVYe7D3pS6jYPtRQ5hleI9Hm8dQYvuU0kdQU8rm\neV1kn6M6XdLbSziMaaJGkQ6JTzBtGvnjfQY2dWQIbRyP8+buwR/VANpMtExRCKFXqVmAWkF8\nM04nSqBRVRcbx6FkqxeR49r2jOurubh8IHGNykTgFKEuSh5bKpXXE95KaDPemYjHyb+WxD6s\ndvJmYd+F40HaiFTRFKmA6I/7ag8mDjQrjlROO02gHIf1KNZmJ16jePvFRiRWMWoIx4t64ZCI\n4X4CKDNQU9tfZvOIDgelBPJNenooegts9GPG8eOYSDxLib0yrEUtH+PZXCnBtxy7BcVCd5/i\nXVwOLxpw00035Trspz/96SQsZsoivYPxu97v4WzHB6Ier0W8CfEShoXShehGmAiJbg/WLFFC\nIMCJJxKW5dTUiKXHC3Awb0FGwIdZhT8GqZor8QqEjf17xPDQWiUBpw2qqthkG1I8SAInAJny\nPo4cahXeszC3YXcifGg16Auzk27MlNTi4uIy2WjA/fffn+sw16gk6XyPA68QC9K+meL51J5N\n+OphNerNveifx4li7iTvSqyXcGwSAfRUEoZdBBKtb9166fHaM2cYHt0LJo6J9EqzxA4uU/J3\nYZZhlhBKvQ/1aJRdSt6QUmnR1xl/IIXsRvaCRDYhJjSzYxyoFagVJLZgLHLthIvL+x0NuPTS\nS4/0MqYmndvZ/VTy2IrRvploB/mZNlxUD543MUMwB7ET1RySSJ/oz2o850wtGtd9Hh2p4BQn\nhZDVqFL4LgjMErSuZKJ7P5G70c9BSRWwEo3YJZDKqfP14FyCkkuZdXMV5jbM5wDMX2LciH7z\nWGNcXFxchqEBTz/99JFextRk/1/TW0IH0EY4t/tjmORpcDKyDTuOGUFLhR1b+SAQJlL1GQqO\ngSyEpdjrAMxCGZqH/wDh+fj2Eh3uF/bOx5dMxcDegloDRQCOTaiFgiKUTg6OEkhKy1r/h/kr\nODH1QYLEjxDz0KZqHKBSjBg9s8jFxWWScB31OdLXQOgAgG1iZlLfjbTRvB4g0pKUD5YJ4m04\nEZwWLLAD2DqJ1D6OVQQCx4A5iBZkAHEqShXmbgA7IITALEfk+2IAACAASURBVEFq2HnI4f9f\n8S5ES/I40YcMEg8TDBKJALzXQH4+JSWI0feMvDNRKoDB6LWhWA9NXaMi9KQAtIuLy+HENSqj\nI+uxf5Pe6Enlcksb++0MaRRGHsVBAH8D9l709xAP4tORPaj12K/jbEUZVLXCygcFJQ57ECYU\nIUBdgq3jvCNsn5Bx8rei9aIH8RwYdq08gZrSMlSbUYvojmAkGKjpnqik8zpmzhw6KFyPtwI1\n7YVKZiq8lrHRxcXFZXRcozI6og7tjoN1iD9Kz/CaJYpGyUK8FwNEXkRNOeoVH3Y92nKce5Ft\nMMSomKWgoHcCqBZODCrw3IEG9hsyusbuLFfK/JhlxO4lPMRHUnA6nssHT6OvE6+gvnXEKtuo\nqWGIGkK8HaNohFER02GECck5fux9xsHyVV1cXCYF969uHMy8iO2/Jd6TPBUqtWdjDqTqRbD+\nHRqwvwOnwyKQyPcgCjqYjsPOXc4xtWJIRJMGYL8CFmioJ6HNRtmFdgqFkqaXiM/FMREqehXx\nBTSnlC4TCUKJUV8smprwDNbk80qUThgowiIlVVXonyWWVvXAg/E+knoThxDbVuQW/nFxOdy4\nRmUcGHks+TuCW2l7i+K5FM3DX07jGgDZgL0K63WUMpx6nPVQg/x3nP1IgaOC+tYmKx6XjVpv\nbW3qfuloSIGIkrgL8gDhxNTCLhJrQBLYhO897DBSIXwM9huUXYV3Lrt309mJ3ottDkZ/DaWq\nCq934CzWhF6Cmi48fALGnfBS8kyUY3wNZSnvG/T5Y/dxcXE54rhGZXwoGuXHEe9m2hnD2q1/\nxRaEFqHYxKtQohhBtHaEFxSUWHeP/PAlbV//av6N187GtlFiAMJCajhe9C8h8gBpd9lde5SS\nCjoehXISQ+oLWt20PYjyKToPGuKVnz/MorQQaQBJwQK0tJqz2rkYx+I5CRy0q6bi74bXLb/o\n4nKkmXo3jiOP3AL9+u0xZBeAZwtONPmpZwtOhMRG1LlofSgWjgagWADCASlh82br3HOMj3/M\nl++tQNmNMFOf2qgLIYgMAtLqc8IxOn6EHekv+zUMJ05nOwdRjvT7mZOUCJaSA0/QvRmgZzOt\nL1B1McUnpg1QEbXgTNFfjLqLj/QKXFyOeqbkveMIIxvABJAdyG0AejNOKrRXb8ZpRiro7agR\nEpWYJQCJchSL8DHEpzuWPLlUrrqDQkcQLESEEQNVRhQoRWwEcBwFDI9Fd//Wj4oc6VjoRBcA\nwkK1UCMAioIQ6DpalPrX+vtZvZQUUXL2kKG9OFsGsydRy0koxAUoiIZhFykrw+cKrLu4uIyN\nBnz0ox9dsWLF5ZdfXlFRcaTXMxWIBiEBIFoR+wFEL2aq2oroxUzgGAiJ1DDa0Tugv16ViX+n\nlCLUla+atXlegQpOOSKGUCAGfkQCUYltkDBxHBSkIYQnCGD7sQvSFxOfi60AKFGklrQ6gQBA\nQaqzlk/Bsr0/INGTrnJScgrVl6ROEgm6uigLgYM6xeO+XFxcjhAa8MwzzzzzzDM33njj6aef\nvmLFiiuuuGLevHljjjx6CXwyvSW4htqzhx2HryZWiNGCmkhWoTc68dbjeHu7xbN/3b1k8b5j\nl2hQTPt/U7yZ2IfofMEpvrT9jfVE59GXfH2QSDuha0VbR1mKgnEc3RHo98cIUFEUysoIhweN\nCgBmXwbdrNAeWv+cOrFVYnkETj6EH8lItHxKPzQhM7m4uEwlNODll19+4oknnnzyyVdeeeWV\nV1758pe/vGjRohUrVqxYseLkk08WB8nHdulHdtP5XPLYbqAzgnUK9gES1QgbqQAkqklUIkWh\nIj5+gaNpNr0g5hJ/mf0JnD+iBZXWP1QufpPwbKykArFE2nGPVrQV4aRfVOj45qGHiUbp7cVx\nADSNwkIMg97eNKNiCOxI+hy+GgIzUye2TSzG9Ktc1UYXF5dDRgPOPPPMM88885577nn33Xef\nfPLJJ5544o033ti6det3vvOdmpqayy+/fMWKFeeee+5RWk44G8QQZ0VkDSVnIz9My7dQd2EX\nEpmDUNEM4ho4SEOzCjEOoCxD6gRTtXaNFhJVGK2E52OVp6Z2ZDSALMdXD4608oQWAkHeCXim\nIXQs0KEUolE0LZnkaIEMUzJMKEyp5MCjw1ateplzDgyYnkQCp8u1KC4uLuNhmDrSkiVL7rjj\njtdff33//v0rV648//zz29ra7rvvvosuuqi8vPzaa6995JFH+vr6RpvLZRBh4DmXou9gCEqO\nofx4Ai8T2E5gB4Ht+PeRtw3fM8imwSH/v737jo+iWv8H/pnZ2d2UTe+FhNA7pEgRMNSfhgCi\nVwktN6IIQS7GHyhwDShwUdRb9HvBrxRBrhelqAgowpUiARTCVYqgQjCGAGmk92yZme8fJyzL\n7ibZJJuCed4v/8ieOTNzdo/sszPnzHPYGLvDLShqjGUyIIkCRHdDwWCoCiVJgiofbm7wDoO7\nN9zc7v7n7w9vkxKF+ZQwt34IiIHizkOQah+EzIDSYoyGEEKaw/rsr+Dg4AULFixYsKC0tPTA\ngQN79+49dOjQjh07duzYoVKpxowZwwb2AwIas7Zgh5MPcQhKh0LVH3IaxAhwWgCQBRhcoPWF\nrITW52510QUAqrtBdDaWceAUSr0s87LOWyrvx8kcFF1h4KFSQlCjHtZuWnoOhkckbqfApRuc\nOtE1CSHE/hrI4+rm5sYuUPLz8w8cODB37lxPT89Dhw4lJiYGBbWXRZzaKcVZOAjwvABfJXyy\n4fk1vA/A+wC8DsL9JHz2wfsA3E/erS8UAoDLD1CVsX6RZYUkqgw1al1RF11pkCgKssYZYQ/C\nwyKLpc04BZSuULpRRCGEtAhbn1NRq9UTJkyYMGHChg0bzpw5wwb2W7Rl94Pq2nRbinzIdx7s\nMP7t6AHkgKuRpNzP91yO6T1TqTIAgMxDdIJQCiig94BeWTvGLgbBoEDOOHAhotab09eA10t6\nFSBJqOScKqWyAKnKU9QB2hAoHRr4PVDmJjiD92y5904IIVY0+uFHjuOGDRs2bNiwN998syUa\ndD+RCyGeBgDhGsQ7Ty8a/5ayIZ4BV3r+3Laffz7s63Vq5Ai2lwCDG9S5kFTQ+UGng04HrRaq\nXOgD4HMSqmi+oJMhGxxvUEDmhHJJ5wlAcM0H31vRIxRlN+CkaeD2181SeNKACSGktdET9c3A\nBUOYCgDaExDuzP4y/i3lQXhCr/1q6Z+P3Myumjvbqza5i8zDoIFaBABDEPSTEBwEUUTOLnSZ\nAd0tcGN5n0Hiecg6cIpqTp0vVYUAUA67KFcUNr/VzqEWee8JIcROaG28FiRJUlZ2dnV19fKl\nzn7+osV2Nfg7C9oLAvzyakfXZWi/h6wzqchBFQk+oDELztdN7WOSmoUQQuyKrlSaSq6C4ePa\nvx0yoL+zAqNbUe3f0vkzJ+d1CypOXhY24eHquztyEoQyyAIUoyBch8Mu6F3BcZAuQv8+pOtS\nxX7e6Xu+CwBwnB6KGl3a/5cKgdDWfHuEENIUFFSainOovfcFQPsdhDup7zWAXAL9rtLijHmJ\nP3+x5ZEhfR+Syr68u6OshM4LjjchTEPFWegmgPcGx0HPQfkk9LcNN2IM2bVPRHKcllOVARCz\nIYVxcrWLVAxUOkOnqCc3MQBUqlAMzhGcRWpjQghpORRUmowHd2ckXHa6+7d0AzVxkEsqKgzO\nDkoPx1BnQZCqegF3HmmUBBjcIfHg0lDjD507HFzBcTD4QXCFPkCq9pD1tUeTeR1bGFKWIFVy\nYo0jKoFqB4h8A0FFK6ASvGC3oFKYJuf8IKlducAHOGdfmo9MCLGOgoq96V6BXAIgKFA49rWz\nk5ACxX6oRkA8WltBUkHrD+c0SMdRMRqVYQhyAy9AlwYVoL0AKVy8XVuX40ROqJJ14H0g6yUe\nt+UKCF6FnIdfA10nVyHYPktWyRKOv2q4ur92TEhwwIMvCn2erD+mEUI6KAoqtpGLIOfUuVXI\nhPQTAEAH8ayx2MmJh94ATgZM9uVk8DqAB2QgB+I3yNsDn8cgF0C6AkAIgv43iGUmjydykPKh\nuw2lL/Q/QfYD3wlCU4dYqvKgdr+br6VB57eIxogCwFCDE2sMXj05vwENz/JwDG6wCiHkd4WC\nim3kCkg369zKFdRulbXAvY+7czWABNkkx7AsgzNABmSA10EohpSF0r1wLqtNBcZDPRQ1RyGL\nAGQotJABg8kCjxJ0P0HhA87agvQNKrgIn3A4+jRc01CJ3IP4cZvlvDVc2SvZElQIIR2NACAx\nMbGxu23YsKEFGtOO8SHgQ+rcqneC8BAkyAZA3Anpt7ubDBrwWiiehfgBpBsAu/3lC0U5KrtD\n54eygXB0RDUHdQD4sdAdAafQX2cRBZDBKSpqDyVDlgQAsiRAz/26Ryq6bZEP36hCA43B6paS\ndGSehsrFYoMoQ+sIjcF4iVR6Cfoy6KpkXgHp3siS/V8p9X+sH9++usUovHrQEA4h9w0BwMaN\nGxu7W4cIKoYilJ1tuBpq11CRqx0NtwOAFyH9YrJNAtzAd5UqVwElkNk6xApwMkQ1OBGSA7gw\nAMjlgTRgCsBBl6a4M1QPCArXtNq/de4K1zSIDrxzdogbH9K5niYZOKd8Tu0I9d01HMsycPs8\nnL0AEY5K+D0AtYfpLhyq9XwnQeELABXpyCwBgKI8ySdYcf3yPSEkNJofkkSXuYQQcwKA2NjY\ntm5GuyR4wvMRm2qKl+DZX5ak+a/OnTt37uCogdC9C/F78MFQuEL5BrhAAIAE7UroTqDSD9Vd\nABmqPBSPgdMvULqKrq4F/30O4hEgTCzylYoAAAotpyqSqwMAgBd5p1tSRSjvlCVpvYUANedc\nd5PKyqC/J01LVS5yzphsL0LhdQSPMRlcEYEaDsW1r6qza//o/YBSr0fnvndDiKBGp26Ku0tG\nth1eBZ+HGq5GCGk1AoAvv/yywXqkPj79Aaxfv37Lli0FBQV79+6Fwwbo1kGVCHELYPza5sG5\ng3cFZzFK7jlRofzabxyg/QKct1TtW/0NIIJTVfGaW2JRAAAoRKVvuj4nVOlzQ1Zp1EMbyv3V\n6Z6gcuollOWZ13IvQ4/pd17oRBRXwK82UpVeQmUGIMPRhRNL5FtpBoMeANxCuFEvCgERjfqA\nCCEdBd3BsI+MjIzk5GQ3N7f169c3XFvpA004qn6Gzh+8E3ynwbkfdF8bqpH+ySQgEApIZRDz\nAM6RUwXL1eBUkEUF79hVqoTCNYT3ckB6vacoc8O9+SQrrM0zyD1jMoegdo362leyAWVFkPSA\nDHBcrwfUBh2UrvCOQtkvKPvFytFMqT3QeULDnwQh5HeGgoodSJI0e/bsioqKDz/8MDi4wVm0\nShj6wncqIKL4MJT94Fy7Mo3giJ5xX4DzhsoXgKyFIUcp5XnybtD9dM+VCpw0qqjGXalknUBN\nkXktz77oOfPOi3uvVABUPoSbn95d2V7tg9CZULo19P4IIR2YeVARRfHChQtnzpzJy8srLy93\nc3Pz8/MbNmzYgAEDeJ6mkFq3bt26lJSUiRMnxsfHN1xbVkBi83m5+hN6cmoIAQqDTqG/ar7J\nkA1FPhQ2TAs2ChqF9D0WhfUOSDiHoftClKfBUAa1NzQ9wNH/AoSQet0NKrIsb9q06bXXXrt5\n08qNkrCwsBUrVsyePbsV23Z/yMjIWL58uZub28b/2WTIMNlg6AeBh9QHnMPd5xgNAyBqoA1F\nNQAOVcHQOkMHcIBhAATA8CDgZewW2QDx9p2MxTIvVQUCkGr8IKkM6ZArUKdiDe6d8dtlMIRi\nlN+ofckp4DcYLmrcbbOBR5UjJ0Bh8iS+wgHuA5rwqRBCOqjaby9RFGfNmrVz5072UqFQeHt7\nazSa8vLygoICSZIyMjKefvrpEydObNmyhS5ZTDk5OY0bN+6xxx4LDA2Qa0w26G9CKUO8BX7A\n3aBS/Rv051EaBKcu0DihtBDVnvAFOECfCSWguwquP5S11WUd5EqIbICdk3l1sQjwylKR8+Hd\nwOb+WifWwGJrlwSU/Iqsb+ASAp8Ii+cf9TJKddA0+ZMghJA7QeXNN99kEWXs2LGLFy8eOXKk\nRlP77VJeXp6SkvL3v//9+PHj27Zt69+//6JFi9qsve2Pn5/f559/zv6+Z46v2BcKDmIZeLE2\nqGRnQ38NTrcg5iPzZ7i7wqcakgHOAAfoSqECVAYoAu/eFRPAOYN3hVQGQIaiGgAUNZwgKTqh\nvinFagOsbfUYiPK8Op6o18nQirA5fQshhFjiAZSWlq5ZswZAcnLykSNHYmJijBEFgIuLy8SJ\nE48dO7Zs2TIAr7zySnl5eVs1936iiIRpJuGyMty6dU+F0lKUlZnvxTmAdzcrUz8ATnlPiaon\n+KZeUjh41rFIl0IB53rCFCGENIwHsGvXrurq6pEjR/7lL3+pqx7Hca+//vrw4cMrKyt37drV\nii38vSi0thJwdbWVQgu8Oxz/H5Q9wamg7AZlDwidm94Q3yiorc7gUiigoZtfhJBmEQCkpKQA\nSEpK4rj6kixxHJeUlPTtt9+mpKTMmTOnlRrYnlVXo6CggTpyILhCoArs8q6iP2oCofMFABmo\n9kJZNnJz4egIp1AINyF1A393ogQnQlEN3AQHqPwcxAIoegAWlzf2UpmJsp8gVkHtC88HaCl7\nQkijCQAuXLgAIDo6usHao0aNMtYncHREp04N1BEPgB8OzgsAcnKguQSnKzB4QO8NDlDdht4b\nkoTKSnj8gIDHIf56d0FJQNZC1INnJ5F1aCiENcft48hPufPiJxSlIuwZqDxb8IyEkN8fHkBe\nXp6bm5u3t3eDtX18fFxcXPLyLNJ9dCSSJE2YMOGf//ynLMsN1zby94dSWV8Fvd76LbJWUZ1t\nElEAyDBUIWtfWzWHEHK/EgCUl5f7+fnZuIObm1t+fn5LNqm9W7du3cGDB3mef/7558236XTm\ngUHyB1ci6fWGGh4qPxQMhaIrKkOgVwNAVT/IdyLN7QeAErj0A3fbuLcsQiq7k0lFlqQSV/Hq\nbcgO8G5oOeFywZga0halP977mgOAqhuozm3Ecl5tgIPKfFoDIaQtCQB0Op3tj54oFAqtVtuS\nTWrXjI86Wk/+r1TC5965umI+eBd9oVfVbQ4ADB4wlELrhVKLsXKtCrwnRDUUdy8ZZT2kEihY\n/JANUlEJr/BGTQXKhXofxgeKHWDTJIA7J6/jGqnqN/DtPKi0XWpL7wfb7NSEtFuU+6sRGs7x\nxXEQ7v1IORG8Qu2vUPsDAHQXoDuLyp4ocUBp6T01/b6F93iof4DwsLFM1sJwA8ru7AXEa9mK\nHr1QlgcnLwj1DqPfrEAnj/oq3EvhjIpfzQuVbvAaBtASWXWgiQyEWKr9BiwsLLRx/cfCtrvv\n3+ZYjq/Y2FibcnzVSQDXHWHu+Pln6HR3i11c4OyM1lhN0QrXntB0RcW9mY8DYymiEEIapzao\nVFRUNGH9xw7l+vXrycnJHh4emzZtssPhVCoMGID8fOTnw9UVXl5wbNPBAQ6d4lBwCqU/QayE\ngx98ouEc1pYtIoTcj2jlR1t16tRp1apVAQEBgYGB9jkiz8PPD3o9goLAcUAP+xy2yc1Rwnc0\nfEe3bSsIIfc3WvnRVgqFYvHixW3dCkIIadco3zAhhBC7oaBCCCHEbngAFRUVlZWVNu7w7bff\nHj9+vAVbRAgh5L4lAHBxcfHy8iq4NzfilClTXF1dP/zwQ7MdHn300cLCwsZlKGmeixcv7ty5\nMz09nef5Pn36xMfHh4W10rSkyspKZ8oGTwghNqvz9te+ffu++uqr1myKVampqa+88kpmZmZ0\ndPTQoUMvXbq0ZMmSX3+1eE6vBbAcX1OnTq22LUF9+6KyumQKIYS0rHY9pqLT6d577z1HR8d/\n/OMfCxYseOGFF/7yl7/o9fr33nuvFc6+bt26EydOVFVVOTreh09O25zMjRBC7KhdB5Xz588X\nFRWNHz/e358lOUGvXr0GDx587dq1zMzMFj11Azm+CCGEWNOug8pPP/0EYODAgaaFgwYNMm5q\nIcYcX+vWrbOe46uNWCw0TAgh7Uu7TiiZk5MDICAgwLSQXbWwTaa+//57SWI54tHM5Px2yvFl\nfxwNlBBC2rd2HVSqqqoAODk5mRayl5ZzoBctWsTqAxg0aNADDzzQtJOWlJSsWLHCbjm+oKak\njISQjqNdBxWG42z6Uk5MTNTr9ezv5qRSdnd3/89//nP79m375PhSzG7e7uDvJrDnoQoEAHVQ\n+17khBDScdUGlcrKSsvU93UVtka7AJhclLi73x1MYJcjlo+PzJgxw/j3/v37Le+P2W7YsGFN\n3tcGobZX5QSTJbs4AU69AEAdYv9GEUKIPdQGlZqaGsvU91YLWxMbTcnJyQkKCjIWWh1oua8E\nNVyFEELuT+069X3fvn337t178eLFqKgoY+HFixfZprZrFyGEEOvader78PBwT0/Pw4cPx8bG\nsklfV65cOXv2bPfu3UNDG3ETiRBCSOto1wP1KpUqMTFx7dq1ixcvHj58uF6vP3XqlCAI8+fP\nt++JsrOz3dzcKM0XIYQ0U7t++BHA0KFDV69eHRIScvz48e+++65fv35vvfVWt27d7HgKSZKm\nT58+cODAvLw8Ox62TrwIB4fWOBEhhLS6+q5Urly5YlnYpUsXVesmKxw4cKDZQ/X2xXJ8xcbG\n+rVOvixBDyfX1jgRIYS0utqgsmHDhr17944YMWL58uXGbb1797bcYdWqVa+88korta7lUY4v\nQgixIx5ASUnJ0qVLv/nmm2nTpjW4w5tvvllaWtryDWsN7TbHFyGE3Kd4ALt37y4rK5s5c6bl\nWIW/v/9NE4mJiVVVVTt37myLptpfu83xRQgh9ykewMGDBwHMmjXLcrNCoQg28cwzzwA4fPhw\nK7eyJej1+nXr1tkvx5fN+B6tejpCCGlFAoCLFy9yHGdLbpKIiAi1Wn3u3LmWb1iLUyqVZ8+e\nvXz5sn1yfNlOmNiqpyOEkFYkAMjLy3N3d7dc3zA0NNQsGwrP856ens1MLN9+eHp6PvTQQ23d\nCkII+f0QAOj1eqsr5l6/ft2yUBRFnU7X0s0ihBByP+IBeHp6lpSUaLXaBmvrdLqioiIvL6+W\nbxghhJD7Dw+gR48eoiiePn26wdpnzpwxGAw9etBQMyGEECt4AGPHjgXw7rvvNlh73bp1AMaM\nGdPSzWohGRkZLbq4PSGEdHA8gGeeeUalUn366af1r56ycePGTz/9VK1Wz5kzp7WaZ0/sUcfI\nyMjLly+3dVtMqNWwbWlLQghp/3gAwcHBy5YtA5CYmBgfH3/hwgWzShcuXIiPj2erQCYnJ7f2\nHFw7Wb9+fUpKyrhx4/r169fWbTHh49PWLSCEELvhZFkGIEnSU0899e9//5uVenp6hoWFaTSa\nioqKjIyMoqIiVv7UU09t3brVxkXj29CRI0fYnTojURSNS0YqFIr6dxdFEUCD1ZpCLgfnUm+N\nMoDSTdpElmVJktBCPUXsShRFjuN4vr2nRe/g2L+p5vaUbGLDhg2mC/eaCg4O3rRpk9wxDB48\nOD4+vq1bQRpQWVkZGRn53HPPtXVDSANycnIiIyOXLVvW1g0hDUhLS4uMjHzttdeac5B7Ut/P\nmzdv9uzZKSkpJ0+ezMrKKisrc3V1DQ4OHjFiRHR0dCtnvCeEEHLfMV9PRaVSjR8/fvz48W3S\nGkIIIfc1usVJCCHEbhQrV65s6za0O2q1Oioqip7xbP+cnJyioqK6du3a1g0h9eE4zsXFJSoq\nqnPnzm3dFlIfnufd3d0jIyM7derU5IPUzv4ihBBCmo9ufxFCCLEbCiqEEELsxnz2Vwd38eLF\nnTt3pqen8zzfp0+f+Pj4sLCwtm5UB1JeXv7dd9+dPn36xo0bxcXFHh4eERER06ZN8/b2Nqtp\nS09Rb7aa5OTkS5cueXl5ffDBB2abqKfaA0mSDh48ePTo0Vu3bvE8HxgYOGrUqMmTJ5vWsVdP\n0ZjKXampqa+//rqzs/Pw4cP1ev23334LYO3atd26dWvrpnUUW7du3bt3r0aj6dGjh6Oj42+/\n/ZaTk+Pq6vrXv/7VdL04W3qKerPV/Oc//9m4caMsy+7u7mZBhXqqPdDpdGvWrLlw4YKXl1fP\nnj1lWc7OzlYoFO+8846xjj17yh6PYf4eaLXahISEuLi4nJwcVvLLL788+uijixYtatuGdSiH\nDx8+deqUwWBgL0VR3LRp06RJk9544w1jHVt6inqz1RQWFsbFxW3fvj0uLu6pp54y3UQ91U5s\n3rx50qRJH3zwgfFflizL5eXlxr/t21M0plLr/PnzRUVF48eP9/f3ZyW9evUaPHjwtWvXMjMz\n27ZtHce4ceOGDx9uzOXF83xCQoJCofjll1+MdWzpKerNVvPee+95eHhMnTrVchP1VHtQUlJy\n4MCBnj17sn9KxnKNRmP82749RUGlFltnZeDAgaaFgwYNMm4ibUK4w1hiS09Rb7aOkydPpqam\nPvfcc0ql0nIr9VR7kJqaKori2LFjWXTZsWPHsWPHKisrTevYt6dooL6WMYexaSGLyWwTaROn\nT5/WarURERHGElt6inqzFZSXl2/atGncuHH9+/e3WoF6qj1IT08HUFxcnJiYWF1dzQo1Gs3S\npUuNEcK+PUVXKrWqqqoAODk5mRayl2ZRnbSa4uLizZs3azQa07srtvQU9WYr2Lx5M4DZs2fX\nVYF6qj0oKysDsGvXrqFDh77//vsfffTR/PnztVrt2rVrS0tLWR379hQFlXu0/6ViOo6qqqpV\nq1aVlpYuWrTIckqxLT1Fvdlyzp07d/z48Tlz5ri41L8+EPVUG5NlGUBgYGBSUpKvr6+Li0tM\nTMzkyZOrqqqOHTtmWtNePUVBpZbVkMuCs7Ozc9u0qQOrrq5+9dVXMzIyXnjhhaioKNNNtvQU\n9WaL0uv17777bkRERHR0dD3VqKfaA/YJh4eHm667MPOpyAAAEp9JREFUxf5N/fbbb6Z17NVT\nNKZSi90rzMnJMV2mzOptRNLSampqVq1alZaWtnDhQsuvLVt6inqzRVVUVOTn5+fn55s9PVdV\nVTV58uSQkJD169eDeqp9YKu/W71tpdPp2Ev79hRdqdTq27cvgIsXL5oWspdsE2kdWq129erV\nP//8c2Ji4rhx4ywr2NJT1JstSq1Wj7cgCAIrf/DBB1k16qn2oF+/fgBu3rxpWshe+vr6spf2\n7Sm6UqkVHh7u6el5+PDh2NhYNqXhypUrZ8+e7d69e2hoaFu3rqNgj/5evnz52WefjYmJsVrH\nlp6i3mxRTk5OCxcuNCv89ttvHR0dTcupp9qDXr16hYaGpqamXrt2rXv37gCqqqo+/fRTAMbw\nb9+eojQtd505c2bt2rUajYYlITh16pQsy2+88Qali2g1W7Zs2bdvn7u7u+kcYiYpKck4SGhL\nT1FvtrJp06Y5OjqapWmhnmoPrl69mpycDGDIkCFOTk7nzp3Lz8+PiYmZP3++sY4de4qCyj2M\n6dI4jmPp0rp06dLWjepA3nnnHbMZKUaff/656fPAtvQU9WZrshpUQD3VPvz2228fffTRzz//\nrNPpgoKCYmJiHnnkEbOpXPbqKQoqhBBC7IYG6gkhhNgNBRVCCCF2Q0GFEEKI3VBQIYQQYjcU\nVAghhNgNBRVCCCF2Q0GF3K+ioqI4jvvyyy/buiGkFmeCZQdpPzp37sxx3JkzZ+x72HHjxpm+\n69zcXPse/35EQeX3bOLEiRzHJSYmWhYaKRQKDw+PYcOGvfHGGxUVFVaPc+PGjRUrVjz44IN+\nfn4qlcrDwyMyMnLx4sVmiYCaXB9ASUkJZ7O9e/c252Npmtzc3O3btyclJQ0fPtzZ2ZnjOHd3\n9yYfLTk5mb2XN954o8HK2dnZq1evHjVqVGBgoFqtdnFx6dq165NPPrl161bjkhhGZv3LcZxK\npQoMDJw0adLnn39ueXCz+g4ODr6+vv3794+Pj9+8eTNbjaNRpk6dmpCQMGXKFKtnCQ4OFkXR\n6o7Dhw9ndXr16tXYk1o6deoUx3GTJk1q/qHq8fDDDyckJPzxj39s0bPcZ2Ty+xUbGwtg3rx5\nloUajSY0NDQ0NDQoKMiYE7tr1643b940rSxJ0quvvqpSqVgFhULh4+NjmvH08ccfNxgMTa5v\nVFpa6mWB7eLq6mpW/tVXX8myvGLFipkzZ54/f75lPjxzb7/9ttm/HTc3t6YdShTF4OBgdpAe\nPXrUU1OSpNWrV6vValaZ53lPT0/TYObq6rphwwbTXcz6NzQ01MPDw1j/6aefNjuFWf3g4GDT\nJVKcnJzeeustURRteV9sl5ycHMtN7CzMwYMHLSukpaUZK/Ts2dOW09Vv8eLFADZv3sxesvxU\np0+fbv6RLen1+nree0dDQeX3rJ6gYlpYU1Ozfv16tsz4hAkTTCs/9dRT7F/LE088cfLkSb1e\nz8pv3rz57rvvhoWFAaiurm5y/XoYlz61+h3U+rZs2TJ27NilS5d+8sknf//735sTVA4ePAjA\n2dmZfeYsh5JVxs9zypQpR48eNX50lZWVhw4dio+PVyqVDz/8sOkuVjs9Nzf3mWeeYYdiIbn+\n+rdv3/7kk09GjBjBdpk1a5Yt76vBoMIuQeLi4iwrvPzyywB69+5tr6DSrVs3nufz8vLYSwoq\nrYaCyu+ZjUGFYSnnOI67ffs2K2HrxQJYt26d1ePrdLoXXnihpqamafXr196CiqkdO3Y0J6g8\n+eSTABISEh599FGrVw/Mpk2b2Cewfv36ug6Vlpa2evVq05K6+lcURZam6fnnn7elvizLkiSx\n/ysAbNy4scH31WBQeemll7y8vBwcHIqLi83aFhwcLAjCmjVr7BJULl26BGD48OHGEgoqrYbG\nVEitRx55BIAsy7/++isAvV6/evVqAHFxcX/605+s7qJUKt9++212c6ax9ZuvroH6ffv2TZo0\nyd/fX6VS+fr6Tpky5cSJE2Z1jMO2V65ciY+PDwoKEgShrmbbV1FR0f79+wH88Y9/TEhIALB7\n927L9dh1Oh37PGfMmLFgwYK6jta9e/cVK1bYcl6e51nmc61Wa2NTOY5bs2bN2LFjAbz22muS\nJNm4Y11UKtX06dNramp27txpWn7kyJFbt27FxMT4+flZ3bGgoOD5558PDQ1Vq9WdOnVKTEzM\nzc3dsGEDx3FmgzfMvn37AFjddP369YSEhICAALVa3a1bt5dfftn488UoLS3tzTffHDNmTOfO\nnR0cHNzc3IYNG/b222/b/tF1ZBRUSC2zr4zjx4+zlXxefPFFW3ZvbP2WoNPp4uLipkyZ8uWX\nX+r1+n79+hkMhn379o0aNepvf/ubZf2zZ89GRUVt374dgLu7e/O/NG3x0UcfabXakJCQ0aNH\nT5w40dvbu6Ki4pNPPjGrlpKScuvWLdjv89RqtZcvX8adW0y2Y4MTN27cOH/+fPObMXv2bADb\ntm0zLWQv2SZLN2/ejIqKWrduXVZWVt++fX19fbds2RIREcE+H6vYVA52IWjq4sWL4eHhH3/8\nsaurq0ajSU9PX7t27aOPPirfm1f35ZdfXrZs2enTpxUKxYABAzw8PFJTUxctWjRu3DiKKw2i\noEJqHTp0CADHcez37KlTpwCwiVu27N7Y+i3hpZde2r17d0hIyMGDBwsLC8+dO1dUVLR161a1\nWr1kyRLL65UlS5aMHj06MzMzKyuroKCAXRm0tK1btwKYNWsWx3FKpXL69OnGQlPs8/T09AwP\nD2/mGcvLy//73/8+8cQTWVlZgYGBxnEaG40cOZItOmCX+bgREREDBgxITU29cuUKKyktLf38\n88+9vb0nTpxodZeEhITMzMzw8PD09PRz58798MMP169f79y581tvvWW1flZW1g8//NCnTx/2\nf7KpF154ITY2Njc39+rVq4WFhbt27RIE4fDhw+za0ejJJ588fvx4RUVFenr62bNnr1+/fuXK\nlZEjR546dWrt2rXN/gx+5yioEFRVVf3zn/9kv+UfeeQRb29vAOxnYNeuXc0WXahLY+vbXUZG\nxrvvvisIwmeffcZu5TGzZ8/+85//LMuy5XdQ586dP/vss5CQEPaSvfEWdeHChQsXLgAwTkJl\nX/EnT568du2aaU32ebKpDU2wceNG4yxhV1fXwYMHHzp0aN68eWfPnnVzc2vUoTQaDftk8vLy\nmtYYM+wtGy9Wdu7cWVNTM3PmTDZtwUxqauo333yjUqn27NljXGEwKCjos88+s1ofwN69e2VZ\ntnrvq0uXLtu2bTNOLJw6deq0adMAmN1EjYuLi46ONl2/p0ePHrt37wZguWAMMUNBpYPavn17\ncHBwcHCwv7+/RqNJSkrS6/VhYWEbNmxgFdgDChqNxsYDNra+3e3Zs0cUxaFDh0ZFRZltmjlz\nJoDjx4+b3eCaM2eOcfZz62BXJEOGDOnZsycriYiI6N+/PyzuCNXzebIBIVPGX/1Grq6uXe8I\nDg5WKBTsTqDVR1UaxJpRXl7ehH0tzZo1S6lU/vvf/2YPrLCv6bqun9hMufHjx3fu3Nm0PCAg\noK4rG3bvy2pQee655wThnjXUR44cCYCNI5rS6XRffvnlihUrnn322fj4+FmzZr344otKpfLG\njRsFBQW2vM0Oi9ao76AqKyvZ4DD7JdurV69JkyYtXLjQ1dWVVWAPK9T1OKSlxta3O/ZkZX5+\nvuXXE7tjXllZWVJS4unpaSwfOHBgKzYQOp3u448/BsDG540SEhJefPHFf/3rX6tXrzb+OmYd\nYfXzDAgIMBgMAERRrOsR7unTpxt/HwAwGAy7du1asGDBwoULKysrly5d2qiWs3DS2Eucuvj4\n+MTExOzfv//w4cOdO3dOTU0dOHDgoEGDrFa+evUq6uipQYMGsasHU6WlpSkpKUFBQZa/LQAY\nY7kRW27d7HM+c+bMtGnTMjMzrTapsLCwFS5q718UVDqoefPmmX7pWGJP56Wnp8uybMsdrcbW\nt7vi4mIAV69eZV9DVlVVVZkGFdOn/FrB3r17CwsLVSpVXFycafnMmTOXLVuWlZX19ddfx8TE\nsMKgoCAAGRkZlsc5ffo0++PWrVudOnWy5dSCIMycObO8vHz+/Plr1qyZO3eu6ROR9SsvL2e/\nzeuamtUEs2fP3r9//7Zt29j1R11D9LgTz4y/dUxZ7b4DBw7o9frJkydb/Z/Q8sqPPflrOlBf\nWFgYGxtbVFQ0derUP/3pT71793Z3d2fXN56ensXFxcYJxMQquv1FrGO3BYqLi8+dO9cS9e2O\nfV8sWbKknhn0xufY2wS7z6PT6by8vExvXhmvPEzv17PPs6ioqJ7cNo01atQoABUVFT/++KPt\ne504cYLdNhw2bJi9WhIbG+vj47Nv375t27YplUp2f9IqFjmsZouxejuunntfNtq9e3dRUdHg\nwYN37NgxcuRIb29vFlH0en0TktZ0QBRUiHXR0dHsK5g9PW73+nbHRibYpKl2iF2IAPD29vaz\nwG6n7Nu3r7CwkNWPjo5mFyv/+Mc/7NUG4+/x/Px82/diDQgLCxswYIC9WsICSU1NTV5eHptX\nXVdNdsPKamS1LNRqtYcOHXJzcxs9enST28audEeMGGFMX8ScPXu2rqxlxBQFFWKdSqViT9Xt\n2LGjrhtlBoNhyZIlbOZ+Y+vb3R/+8Aee57/77rujR4+2xPGbadu2bZIk+fr65uTk5FrIysry\n8vLS6XQfffQRq2/8PD/88MMtW7bYpQ3GT6Zr16621Jdlefny5ceOHQOwfPlysy/ZZpozZ87Y\nsWPHjh1b/zOn7H7g4cOHb9y4YVqem5tr+dzr0aNHy8vLJ0yYUNfEMFuwh3Ozs7PNyuuawUzM\nUFAhdZo7d+6sWbMAzJ8/f8aMGampqcZfarm5uZs2berdu/df//pX4+/fxta3r549e7Inz594\n4ont27ezG0pMTk7O//7v/9qSD7jlsMlds2bNMpt9xKhUqhkzZuDeO2Dz5s2Lj48HMGfOnOnT\np586dcp4N1+SpO+///61116z8exarfbDDz9kOVcGDRrU4LMvBQUFn332WXR0NDtFQkLC008/\nbeO5bNS3b98jR44cOXJkzJgx9VQbMmTI6NGjdTrdH/7wB2Ncyc7OfuKJJ3Q6nVnleh6kt91D\nDz0E4NNPP/3iiy9YSXV1dVJS0oEDB6z2HTHXoklgSNtqVO4vq0RRTE5ONv7uU6vVgYGBprOA\nHnvsMdOsw42tX48Gc3+xpyy/+OILY4lerzcO+bq4uERGRj7wwAPsJhKAhIQEY80mZILKzs42\npklmN/o5jjOWxMfH17NvSkoKa8OPP/5YVx3jWNS5c+eMhaIovvLKK8Z5z0ql0s/PjyXAZyWO\njo4rV67UarXGXSyzFPv7+xtHrYODg69cuWJ6XrP6nTp1Mu0vZ2fnv/3tb/bKUpycnFz/EVj6\nOLPcX5mZmay/BEGIiIiIjIxUKpX+/v4sB+Xjjz/OqkmSxHLzlJWVWR65rh5nkSMyMtJYIknS\n+PHj2Xvp0qXL0KFDWXe/88477AGXS5cumR2Ecn+ZoisVUh+e59esWZOWlvbyyy8PGTLExcWF\npZsMDw9PSko6d+7cnj17TJ8Ra2x9+xIEYevWrceOHZs+fbqHh8fly5fT0tJcXV0fe+yxLVu2\nWM3UYjtRFAvvYEPEsiwbS+ofwmXXH5GRkWzgx6rw8HA2cdb06Xqe51etWpWenr5y5cqRI0d6\nenoWFRWVlpYGBARMmTJl/fr1WVlZpmsNGFVUVGTecfv2bZa96vXXX//pp58sp9Wa1s/Ly1Mq\nlX379p05c+bmzZtzcnIWL15s3xtfjRUSEvL9998vXLgwICDg8uXLubm5CQkJP/zwA5vIZ5wY\ndubMmdzc3DFjxjRzUh/Hcfv371++fDlbCeLatWvDhg07ePBgUlKSHd5MB8DJLXMvghDS0bDr\noZycHPbwR0t79tln33///dWrV7PBp6VLl7711lsbNmyYN29eK5zdlMFgYFfnrfbe2zO6UiGE\n2FNAQADX8ssJl5SU7NmzB0B0dDQr2bdvH8dxkydPbtHzmmHLCTdnXsDvD407EULswzRTgB0f\nCcrMzDxw4EB8fLzxvtaNGzcSEhKKiooGDRrEHugBYJmrphU8/PDDpu/U0dGx9dvQ3tDtL0JI\nu3b58uX+/fsrlcqwsLCgoKCioqLLly+Loujv73/06NE+ffq0dQPJPRQrV65s6zYQQkid1Gq1\nIAharTYvLy8tLa20tLR79+6zZ8/+17/+1eQszqTl0JUKIYQQu6GBekIIIXZDQYUQQojdUFAh\nhBBiNxRUCCGE2A0FFUIIIXZDQYUQQojdUFAhhBBiNxRUCCGE2A0FFUIIIXZDQYUQQojd/B9s\n1/3OzQWOuwAAAABJRU5ErkJggg==", "text/plain": [ "plot without title" ] }, "metadata": { "image/png": { - "height": 180, - "width": 600 + "height": 270, + "width": 270 } }, "output_type": "display_data" @@ -1212,26 +1217,24 @@ "output_type": "stream", "text": [ "Warning message:\n", - "“\u001b[1m\u001b[22mUsing \u001b[32msize\u001b[39m for a discrete variable is not advised.â€\n", - "Warning message:\n", - "“\u001b[1m\u001b[22mRemoved 3 rows containing missing values (`geom_point()`).â€\n", + "“\u001b[1m\u001b[22mRemoved 80 rows containing missing values (`geom_point()`).â€\n", "Warning message:\n", - "“\u001b[1m\u001b[22mUsing \u001b[32msize\u001b[39m for a discrete variable is not advised.â€\n", + "“\u001b[1m\u001b[22mRemoved 93 rows containing missing values (`geom_errorbarh()`).â€\n", "Warning message:\n", - "“\u001b[1m\u001b[22mRemoved 3 rows containing missing values (`geom_point()`).â€\n" + "“\u001b[1m\u001b[22mRemoved 80 rows containing missing values (`geom_point()`).â€\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAAFoCAIAAADIFpV9AAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdd0AU1/o38DNbYJdelt6LBQUUBLEhMVYs2MEaW7w2UjXGklheS5oaf/Ha\nMZYYYySJiGJPxEpREU1EQBCRXgQpC2yd94/x7t2LAosOLsj389fumWfmPIOFffacOYeiaZoA\nAAAAAABA+8PRdgIAAAAAAACgHSgIAQAAAAAA2ikUhAAAAAAAAO0UCkIAAAAAAIB2CgUhAAAA\nAABAO4WCEAAAAAAAoJ3iaTsBLSsrK0tKStJ2Fq9LoVCUl5cLBAIDAwNt5wIAAAAAAG1Gey8I\nMzMz9+7d269fP20n8lokEklmZqaJiYmtra22cwEAAAAAgLYhMjKyvReEhJDOnTt/8MEH2s7i\ntVRUVJw+fdrV1TUgIEDbuQAAAAAAQNtw5swZPEMIAAAAAADQTrW6EcLS0tJffvklKSmpoqLC\n2Ni4a9euixYtEgqFzFGlUhkVFXXu3LmSkhKRSDRkyJBx48ZxOP8ta5sMAAAAAAAAAEbrKgiz\ns7NXrFghk8n8/f1tbGyqq6tTU1NrampUBWFERMSpU6f69OkTEhKSkpJy6NCh0tLS+fPnq67Q\nZAAAAAAAAAAwWlFBqFQqv/vuO0NDw7Vr11pZWb0YkJOTExMTExQUtHjxYkLIiBEj+Hz+mTNn\ngoODnZycNAkAAAAAAIDXlJyc7OPjM2PGjAMHDmg7Fzbl5uY6ODiMHj06KipK27m8Oa1oLuWt\nW7eePHkyY8YMKyur2tpaqVRaL+Dq1as0TY8aNUrVEhISQtP0lStXNAwAAAAAAGjr6urqKIqi\nKMrV1fXFz8wikYiiKFY6ysjIoChq0qRJrFytng0bNjB3kZaW1hLXBw21ooLw9u3bFEXp6el9\n9NFHYWFhEydOXL58+aNHj1QBGRkZXC7Xzc1N1eLi4qKjo5OZmalhAAAAAADAWyMrK+vf//63\ntrN4FTRN79u3jylc9+7dq+10nrO0tLx69epXX32l7UTeqFY0ZTQ/P5/L5W7cuNHX13fChAkl\nJSXHjh1bsWLF1q1bra2tCSFlZWXGxsZcLld1CkVRpqamT58+Zd42GcDYunVrYWEh81ogELT4\njQEAAAAAsM3c3FyhUKxfv37WrFmmpqbaTqd5zp8/n5WVNXPmzDNnzhw8eHDjxo06OjraToro\n6Oi09f3JX0ErGiGsra2Vy+Vdu3b9/PPPAwMDx40bt2zZspqamt9//50JkEgkfD6/3lk6OjoS\niUTDAEZ8fPzF/3j48GHL3A0AAAAAQAsyMDBYuXJleXn5hg0bmgw+evRoYGCgkZGRUCj08vL6\n+uuv1T8hJycnUxQ1c+bMzMzMSZMmWVpacjicMWPGdOjQgRDy66+/Uv9x+PBh9cvm5ORMmTJF\nJBIJhUJ/f//Tp09rmDwzKjh37typU6eWlpYeP368XoAqpYyMjHHjxpmZmRkZGQ0fPjw9PZ0Q\nUlBQMHPmTCsrK6FQ2K9fv9u3b9c7PS4ubvz48dbW1jo6Ora2ttOmTUtNTW38fuPj43NzcymK\nGjNmTL2rxcfHh4aG2tra6urq2tjYDBky5NixY+r3MmbMGBcXF6FQaGJiEhQUFBkZqeHPoTVo\nRSOEurq6hJABAwaoWrp3725qavrPP/+oAmpra+udJZVKVaN8TQYwfvjhB5lMxrx+8ODB1atX\n2bsJAAAAAIA35IMPPti+ffu///3v8PBwZ2fnhsKWLl363XffWVpaTps2TV9fPyYmZvny5WfP\nnr1w4YL6aEpOTk5AQIBIJBo2bJhYLB43blxgYOCSJUt69eq1aNEiJqZv377q8f7+/nZ2dqGh\nocXFxVFRUaNGjYqNjQ0MDGw87aKioujo6I4dO/bp08fIyGjLli179uwJCwt7MfLJkye9e/d2\nd3efMmVKamrqmTNnkpOTr1y5MmDAAJFINH78+CdPnsTExAwePPjRo0cmJibMWXv37p0/f765\nufnIkSMtLS2zsrIiIyOjoqL+/PPPgICAhu63oZmDu3btWrRoEZ/PDwkJcXd3Ly4uvnXr1o4d\nO0JDQ5mAefPm9ezZc8CAAVZWVsXFxadOnQoNDf3mm2+WLl3a+M+htaBbjc2bN48aNervv/9W\nb/zwww+nTZvGvF67du2YMWPkcrnqqFKpHD9+/OrVqzUMeFFiYuKqVavYuwntePbs2ZEjR+Lj\n47WdCAAAAAC0OGYIxMnJiabpI0eOEEImT56sOmpubq7+IZ9ZXtHFxaW4uJhpkclkwcHBhJAN\nGzYwLXfu3GFKg/DwcPXP0sxkurCwsHoJqOK/+OILpVLJNP7000+EkFGjRjWZP/OQ3saNG5m3\nvr6+FEU9fPjwpV2sXbtW1fj+++8TQkxNTT/66CNVv1988QUh5Ouvv2bepqSk8Pn8oUOH1tTU\nqE68e/eugYGBt7d34/ebk5NDCBk9erT6iVwu18zMLCUlRT29nJwc1esnT56oHxKLxX5+fkKh\nsKysrMkfhdYFBwe3oimjzJB0aWmpqoWm6adPnxobGzNv3dzcFAqF+jIzWVlZUqlUtYpMkwEA\nAAAAAG+TSZMm+fn5HT169NatWy8N+PHHHwkhq1atsrCwYFp4PN7mzZspioqIiFCPFIlE33zz\njfp6HI1zdHRcvXq1akXTqVOnGhsbJyYmNn4WTdMREREcDue9995jWmbOnMk0vhjs5OS0cuVK\n1duZM2cyL7766itVv0xjcnIy83bHjh0ymWzFihVisbj0P2xtbQcOHHjv3r3s7Oxm3e/OnTsV\nCsWaNWs8PDzU2+3t7VWvHRwcmPuqqKgoKiqqrKwcO3ZsbW1tW5mH2IoKwt69e/N4vLNnzyqV\nSqbl2rVrlZWVvr6+zNvAwECKok6ePKk65eTJkxRFqUalmwwAAAAAAHibUBS1adMmmqaXLFny\n0oCkpCTyv49lEUI8PDxsbGyysrKePXumauzevbuenp7mXfv4+PB4/30AjaIoe3v78vLyxs/6\n66+/MjMzBw8ebGdnx7RMmTJFR0fnwIEDqqe61LtQL9iYU7p27SoUCus15ubmMm/j4uIIIUFB\nQRb/68SJE4SQgoKCZt1vfHw8IYQZUG3InTt3Ro8ebWxsbGJiYm1tbWNjwxSxeXl5jV+8lWhF\nzxCKRKJJkyYdPnx4xYoVvXr1KikpOXPmDDM5mAlwdHQcPnx4TEyMTCbz9PRMSUm5evXqsGHD\nVBOmmwwAAAAAAHjLBAUFhYSEREdHnzx5Un1HbkZFRQUhhFm0X52NjU1+fn5FRYXq0TtbW9tm\n9as6UYXH4ykUisbP2rNnD1Eb6yOEmJubjxo16vfffz9x4sSECRPUg1VTBVXXb6hRVUwy+wtE\nR0erF40q6gN9mtwvUzCratcXJSUl9evXTyAQLFiwoFu3bsyWBxcvXty8eXO9hS1brVZUEBJC\nQkNDTU1No6Ojf/rpJ4FAEBgY+N5776n/kc+dO9fc3Pz8+fMJCQnm5ubTp08fN26c+hWaDAAA\ngHarpqampSfwuLi4dOzYsUW7AAB40TfffHP69OnPP/98+PDh9Q4xn6ULCwudnJzU25mxMvVP\n2mxtZ9+IkpKSqKgoQsjkyZMnT55c7+iePXvqFYSvgLkja2trf3//xiM1uV+m6M3Ly3N3d39p\nwJYtW2pra6OjowcNGqRqfHHV09asdRWEhJDBgwcPHjy4oaMcDmfChAmN/EVpMgAAANothUJR\nVlameXxmZmZFRYWXl9eLexo15MXv4AEA3oDOnTu///77u3btevFJPB8fn3v37sXGxs6YMUPV\nmJaWVlBQ4OLi8uIonzpmumaTg36aO3jwoFQq7dGjR/fu3esdio6OvnjxYlZWlouLy+t00atX\nr7t37x49erTJglDDqyUnJ585c+aDDz54acDjx4+ZMPXGv/766/W7fmNaXUEIAADQQgwNDV/8\nQroRV65cycvLGzt2bENrkQMAtB5r1679+eefV69eXW+m4uzZsw8ePLhu3bqRI0cyC5DK5fLF\nixfTND1nzpzGr8nEP3nyhK0kmXp1x44dPXv2rHfoyy+/XL9+fUREhCbbKjYiPDx8375927Zt\nGzFixLvvvqtqr66ujomJeenmFo1YuHDh3r1716xZM3jw4M6dO6vac3NzmXVlXF1dr1+/fuHC\nhbFjxzKHjhw58mJB+PXXX8fGxn744YcvDuFqXStaVAYAAAAAAF6NpaXl0qVLi4qKqqur1dv7\n9+//6aefZmZmdu3aNTw8fOnSpd26dYuJiQkMDPzss88av6aRkVFAQEBiYuLkyZPXrl27fv16\n1Q7hryA2NjYtLc3Ly+vFapAQMmfOHIqi9u/fL5fLX7kLQoinp+fu3btpmh40aNCwYcOWL1++\ndOnSkJAQa2vrdevWNfdqXl5e27Zte/bsWffu3UNDQ1euXDl//nw/P7/p06czAeHh4Vwud/Lk\nyTNmzFi1alVISMh77703ceLEetdJTk4+d+4cs61Fa4MRQgAAAACAt8Gnn366a9euFxe33Lx5\ns6+v744dOw4ePCiTydzd3devX7948WIdHZ0mr3n48OFPPvnk3Llzv/76K03Tzs7Onp6er5be\n3r17CSHMXoIvcnZ2HjRo0IULF06ePKkabXs1s2fP9vX13bJlS2xs7KVLl/T19W1tbadPn97c\n4UHGggULvL29N23aFBsbGxUVJRKJvL29VXfRs2fPixcvrlq1ink20s/P7/z58/n5+ZGRkeoX\nSU9P5/P5Q4YMeZ37aiEUTdPazkGbbt68eerUqbVr12o7kddSUVFx+vRpV1fXgIAAbecCAPD2\nwJRRAAB4fWVlZRYWFvPnz9++fbu2c6lv+PDhmDIKAAAAAADQUi5duqSrq/vFF19oO5GXQ0EI\nAAAAAADQUsaPH19TU2NjY6PtRF4OBSEAAAAAAEA7hYIQAAAAAACgnUJBCAAAAAAA0E6hIAQA\nAAAAAGinUBACAAAAALQjubm5FEWNGTOmyUiRSOTs7NzyGWlZO7nNhqAgBAAAAAB4G9y6dWvW\nrFmurq5CodDIyMjb2/uzzz57cZ96AHUoCAEAAAAA2jaapj///HN/f/+DBw9aWlpOmTJl9OjR\ndXV1mzZt6tix42+//abtBKH14mk7AQAAAAAAeC3r1q379ttvHRwcfvvtt549e6raDx48OG/e\nvEmTJl24cGHAgAFazBBaLYwQAgAAAAC0YY8fP163bp2Ojs7p06fVq0FCyIwZM7Zt26ZQKBYs\nWKBUKhu5iFKp3Lp1q4eHh0AgcHBw+OSTT6qrqzXp/cyZM4MHD7a1tdXV1bWxsenXr993332n\nHhAXFzd+/Hhra2sdHR1bW9tp06alpqbWu0h8fHxoaKjqIkOGDDl27Jh6wNGjRwMDA42MjIRC\noZeX19dffy2RSFRHk5OTKYqaOXNmTk7OlClTRCKRUCj09/c/ffr0q93m3r17x4wZ4+LiIhQK\nTUxMgoKCIiMj1QNUPWZmZk6aNMnS0pLD4Wzfvp2iqJCQkHpXo2m6Y8eOenp65eXlmvxI3zCM\nEAIAAAAAtGH79++Xy+Xvvfeep6fni0fnzJmzcePGtLS0y5cvNzJIuGDBgj179jg5OYWHh1MU\n9ccff9y6dUuhUDTe9aFDh2bMmGFtbT169GhLS8uSkpL79+9HRER89tlnTMDevXvnz59vbm4+\ncuRIS0vLrKysyMjIqKioP//8MyAggInZtWvXokWL+Hx+SEiIu7t7cXHxrVu3duzYERoaygQs\nXbr0u+++s7S0nDZtmr6+fkxMzPLly8+ePXvhwgU+n69KJicnx9/f387OLjQ0tLi4OCoqatSo\nUbGxsYGBgc29zXnz5vXs2XPAgAFWVlbFxcWnTp0KDQ395ptvli5dqh6Wk5MTEBAgEomGDRsm\nFov79u3LVKE5OTkODg6qsEuXLj18+HDGjBmmpqaN/zy1g27fEhMTV61ape0sXtezZ8+OHDkS\nHx+v7UQAAN4qly9fPnLkSG1trbYTAQBozLvvvksI+fnnnxsKeP/99wkh69atY97m5OQQQkaP\nHq0KuHTpEiGkW7du1dXVTItYLPbx8SGEODk5NdJ1nz59uFxuXl6eemNZWRnzIiUlhc/nDx06\ntKamRnX07t27BgYG3t7eqrdcLtfMzCwlJUX9Ijk5OcyLK1euEEJcXFyKi4uZFplMFhwcTAjZ\nsGED03Lnzh2mtPniiy+USiXT+NNPPxFCRo0a9Qq3+eTJE/W3YrHYz89PKBSqbk3VY3h4uFwu\nV0Xu37+fELJ69Wr105nK9saNGw3+HLUnODgYU0YBAAAAANqwgoICQoijo2NDAcyh/Pz8hgIO\nHDhACFmzZo2+vj7Toqent379ek1653K5PN7/zDpUjYPt2LFDJpOtWLFCLBaX/oetre3AgQPv\n3buXnZ1NCNm5c6dCoVizZo2Hh4f6Rezt7ZkXP/74IyFk1apVFhYWTAuPx9u8eTNFUREREfVu\nc/Xq1RRFMW+nTp1qbGycmJj4CrfJjO/RNF1RUVFUVFRZWTl27Nja2tqrV6+qh4lEom+++YbL\n5apawsLCzMzMIiIiVKOOzFill5dX7969m/hRagkKQgAAAACANoymaUKIqhBqSCMBzHhX//79\n1RvrvX2pyZMnS6XSrl27hoeH//bbb4WFhepH4+LiCCFBQUEW/+vEiRPkP3VsfHw8IYQZ8Xup\npKQkQki9ya4eHh42NjZZWVnPnj1TNfr4+KiXphRF2dvbqz+2p/lt3rlzZ/To0cbGxiYmJtbW\n1jY2NitXriSE1NvDo3v37np6euotQqFw5syZeXl5MTExTMv+/fulUun8+fMbukGtwzOEAAAA\nAABtmI2NTWpqanZ2dt++fV8a8OTJEyasoStUVFTweDwzMzP1RgMDA9VIWkPCw8NNTU23b9++\nc+fO7du3E0J69+793XffMZk8ffqUEBIdHS0UCl88lxkSZCo6Ozu7RnIjhFhbW9drt7Gxyc/P\nr6ioMDExYVpUL1R4PJ7684Ea3mZSUlK/fv0EAsGCBQu6detmbGzM5XIvXry4efNm9ZVsCCG2\ntrYvJrxgwYLvv/9+9+7dISEhNE3v3btXX19/2rRpDd2g1qEgBAAAAABow/r163fp0qVz585N\nmTLlxaNKpfLixYuEkIbKRUKIsbFxdnZ2WVmZerFUXV0tFotFIlHjvU+dOnXq1KmVlZVxcXFR\nUVH79u0LDg6+f/++g4ODsbExIcTa2trf37+h05kqLi8vz93dvaHcCCGFhYVOTk7q7cwAI3NU\nQxre5pYtW2pra6OjowcNGqRqvH379osXfOmgq7u7+6BBg86ePZudnZ2enp6ZmTlnzhwjIyPN\n83zDMGUUAAAAAKANmzlzJpfLPXr06P379188um/fvsePH3fq1CkoKKihKzALqzDLt6jUe9s4\nIyOjoUOH7ty5c/HixVVVVX/99RchpFevXoSQo0ePNnIiE3PmzJnGc4uNjVVvTEtLKygocHFx\neXFUsBEa3ubjx49Viakwd6ShhQsXKpXKiIiI3bt3E0LmzZun+blvHgpCAAAAAIA2zNXVdcWK\nFVKpNDg4+ObNm+qHfvrppw8++IDL5e7YsYPDafCT/4wZMwgha9asEYvFTEtNTc2XX37ZZNcX\nLlyQy+XqLaWlpYQQ5sm68PBwHo+3bdu2etVUdXX1r7/+yrxeuHAhl8tds2ZNvc0Jc3NzmRez\nZ88mhKxbt46ZgEoIkcvlixcvpml6zpw5TWb4Crfp6urK3Jqq5ciRI80qCEeNGmVvb79nz57o\n6GhfX99GBkhbA0wZBQAAAABo25giZ8uWLQEBAQEBAV27dpVKpfHx8Q8fPhQKhb/88guzNUVD\nBgwYMHfu3L1793p6eo4fP57ZoM/W1rbJ8bfJkyfzeLygoCAnJycul5uQkHDp0qWuXbuOHDmS\nEOLp6bl79+558+YNGjRoyJAhPj4+CoUiNTX1r7/+cnZ2DgsLI4R4eXlt27YtPDy8e/fuISEh\nHTp0ePr06a1btwwNDZldIvr37//pp59u2bKla9euEyZM0NPTi4mJSUlJCQwMVO12qCENbzM8\nPPzIkSOTJ08OCwtzcnJKTk4+ffr0xIkT6+1N3wgul/uvf/1r1apVpNUPDxK2CsLw8PBmxS9Z\nssTZ2ZmVrgEAAAAA2jkOh7N58+awsLDt27dfuXLlzp07fD7f2dl58eLFH3/8sWoLh0bs2rXL\nw8Nj165d27Zts7CwmDhx4rp165r8xL5+/fpz587dunXr1KlTfD7fyclp/fr1ixYtUq0iM3v2\nbF9f3y1btsTGxl66dElfX9/W1nb69OlMNchYsGCBt7f3pk2bYmNjo6KiRCKRt7c3s3ciY/Pm\nzb6+vjt27Dh48KBMJnN3d1+/fv3ixYt1dHSa+4PS5DZ79ux58eLFVatWRUVFEUL8/PzOnz+f\nn5+veUHI3PiqVasMDQ1f+mBnq0Ixy9S+7lWaWuW2nri4uHqzcrXl5s2bp06dWrt2rbYTeS0V\nFRWnT592dXUNCAjQdi4AAG+PK1eu5OXljR07ViAQaDsXAABoS86cOTN8+PD58+fv3LlT27k0\nZvjw4axNGY2Kimpk5SIViUSiyVcUAAAAAAAAbdS3335LCFm0aJG2E2kaawWhsbFxk4vSEkLq\n6urY6hEAAAAAAKD1SEpKOnv2bHx8fGxsbFhYmKenp7Yzaho7BWFcXFyXLl00idTV1Y2Li2sT\nPxoAAAAAAADN3bhxY+XKlSYmJpMnT96xY4e209EIOwWh5g8EUhTVSp4eBAAAAAAAYFF4eHhz\nl9vUOuxDCAAAAAAA0E61yD6ENE1fvHgxISGhrKxMqVSqH9q6dWtL9AgAAAAAAADNxX5BWFVV\nFRwcfP369ZceRUEIAAAAAADQSrA/ZXT16tVxcXEbN25MSUkhhJw6dery5ctDhgzx9/d//Pgx\n690BAAAAAADAq2G/IDx+/HhoaOjy5ctdXFwIIebm5v379z99+jRN0//+979Z7w4AAAAAAABe\nDfsFYV5eXmBgICGEw+EQQmQyGSGEy+VOmjQpMjKS9e4AAAAAAADg1bBfEOrr6zNFoI6OjkAg\nyM/PZ9qNjIwKCwtZ7w4AAAAAAABeDfsFoaura1paGvO6W7duR48epWlaLpf/+uuv9vb2rHcH\nAAAAAAAAr4b9gnDIkCG///47M0j4/vvvR0VFubu7d+jQ4c8//5w1axbr3QEAAAAAAMCrYb8g\nXLZs2Z9//slsP/j+++9v2rRJIBAYGBisWbNm2bJlrHcHAAAAAAAAr4b9fQiNjY2NjY1Vbxcv\nXrx48WLWewEAAAAAAIDXxP4IIQAAAAAAALQJ7I8QqiiVyqqqKpqm1RtNTExarkcAAAAAAADQ\nHPsFoVKp3L179w8//PDo0SOpVFrvaL36EAAAAAAAALSF/YJw/fr1q1evtrS0HDVqlEgkYv36\nAAAAAAAAwAr2C8K9e/f6+vpevXpVT0+P9YsDAAAAAAAAW9hfVKaoqGjKlCmoBgEAAAAAAFo5\n9gtCd3f3iooK1i8LAAAAAAAA7GK/IPz4448PHTpUWVnJ+pUBAAAAAACARew8QxgVFaV6bWlp\n6eDg4O3tvWDBAjc3Nx7vf7oYM2YMKz0CAAAAAADAa2KnIBw7duyLjcuWLXuxUcNtJ9LS0pYu\nXUrT9IYNG7y8vFTtSqUyKirq3LlzJSUlIpFoyJAh48aN43A4mgcAAAAAAAAAg52CMDIykpXr\nMJRK5c6dO3V1devq6uodioiIOHXqVJ8+fUJCQlJSUg4dOlRaWjp//nzNAwAAAAAAAIDBTkE4\nYcIEsVisr6/PytViYmKKioqGDx/+xx9/qLfn5OTExMQEBQUtXryYEDJixAg+n3/mzJng4GAn\nJydNAgAAAAAAAECFtbmUFhYWY8aMOXToUHl5+etcp7y8/Oeff542bZqxsXG9Q1evXqVpetSo\nUaqWkJAQmqavXLmiYQAAAAAAAACosFYQfvbZZxkZGTNmzLCysho6dOju3buLiope4ToRERFW\nVlbBwcEvHsrIyOByuW5ubqoWFxcXHR2dzMxMDQMAAAAAAABAhZ0po4SQtWvXrl279uHDh7//\n/vsff/wxf/78hQsX9unTZ9y4cePGjdNwxubdu3evXbv21VdfvXQZmLKyMmNjYy6Xq2qhKMrU\n1PTp06caBjA+/PDD7Oxs5rWdnZ2FhUVzbxYAAAAAAOAtwPLymx06dFi2bFliYuKTJ0+2bNnC\n4XCWLFni7Ozs5+e3cePG1NTURs6Vy+W7du0KCgrq0qXLSwMkEgmfz6/XqKOjI5FINAxgiMXi\nqv94cd0aAAAAAACAdqKl9mNwcHD46KOPLl++XFhYuGfPHpFItGbNGg8Pjy5dupw6deqlp/zx\nxx/l5eWzZs1q6Jq6uroymaxeo1Qq1dXV1TCAsW/fvr/+Y8GCBc2+NwAAAAAAgLdCi2/QZ2Fh\nMXfu3LNnz5aUlPz000+dO3d+8ODBi2GVlZXHjh0bNGhQXV1dQUFBQUFBVVUVIeTp06cFBQXM\n7oVmZmYVFRUKhUJ1Fk3T5eXl5ubmzNsmAwAAAAAAAECFtWcIm2RsbDxt2rRp06a99GhlZaVU\nKo2Ojo6OjlZv37JlCyHk2LFjAoHAzc3t1q1bjx496tChA3M0KytLKpWqVpFpMgAAAAAAAABU\n3lxB2Dhzc/PPP/9cveXmzZt//fXX5MmTHR0ddXR0CCGBgYHHjh07efLkp59+ysScPHmSoqjA\nwEDmbZMBAAAAAAAAoMJ+QSgQCF7aTlGUUCh0cnIaOnTokiVLRCKR+lGhUNi3b1/1luLiYkKI\np6enl5cX0+Lo6Dh8+PCYmBiZTObp6ZmSknL16tVhw4Y5OztrGAAAAAAAAAAq7BeEI0eOfPDg\nQUpKioODQ8eOHQkhaWlpubm5Xbp0sbe3T09P/+abbw4fPpyQkGBnZ9fci8+dO9fc3Pz8+fMJ\nCQnm5ubTp08fN25cswIAAAAAAACAwX5B+MknnwQHBx8+fHjKlCkURRFCaJo+fMpDD8wAACAA\nSURBVPjwokWLIiIievfufeTIkenTp69evToiIqKR64wdO3bs2LH1GjkczoQJEyZMmNDQWU0G\nAAAAAAAAAIP9gnDZsmUzZ86cOnWqqoWiqOnTpycmJi5fvjw2NnbKlCl//fXXuXPnWO8aAKDV\nkslkzILJLYSiqBc3YgUAAABoHPsFYVJS0owZM15s9/b23r9/P/O6V69ehw4dYr3r9kypVGo7\nBQBozPnz5ysrKzUMVigUMpmMz+dzuVwNTzE2Nh4+fPirZgcAAADtFPsFIZ/PT05OfrH9zp07\nqm+vJRKJvr4+6123QzKZ7O+//05LS4uPj8/OzhaLxZ6enpaWltrOCwDqE4lEenp6Ggbn5eU9\nevTIw8PD2tpaw1PwnyoAAAC8AvYLwuHDh+/atcvHx2fmzJnMd9sKheLHH3/cvXv35MmTmZjE\nxESs/Pn6ZDLZxYsXr1y5YmZmJpPJqqqqEhMTo6KilixZ4ujoqO3sAOB/BAQEaB6ckZHB5XID\nAgJcXV1bLiUAAAAA9gvC7777Lj4+/v3331+2bFmHDh1oms7IyCgtLXVzc/v2228JIXV1dU+e\nPJkyZQrrXbc39+/fv3LliqenJ/Mj1dPTc3JyEggEN2/etLGxwdNEAAAAAADQOPYLQjs7uzt3\n7mzatOnEiRP37t0jhLi6ui5YsGDJkiVGRkaEEIFAcOnSJdb7bYdycnJsbW05HI56o5WVVVxc\nXEBAgL29vbYSAwAAAACANoH9gpAQYmxsvG7dunXr1rXExUFFLBYLhcIX2wUCgVgsfvP5AAAA\nAABA28JpOgRaKx0dHZlM9mK7TCbT0dF58/kAAAAAAEDbwtoIYV1dnSZhAoGArR7Bysrqn3/+\nMTExUW+srq728fGxsrLSVlYAAAAAANBWsFYQvnTu4otadF/m9sbLy6ugoCAjI8PMzIxpqays\nfPjw4dSpUzVf3R4AAAAAANotNp8hFAgEvXr10nwbZXhNRkZG77zzjlAoPHnyZF5eXmlpaadO\nnaZPn+7t7a3t1N4eiYmJL52XyxZDQ0P8eQEAAACAtrBWELq5uWVmZqanp8+cOXP27Nlubm5s\nXRkaIRKJhg8f7uXldeLECXd394EDB+LpQXbl5eVpOB2aEFJaWlpcXGxvb88sqKsJCwuLV00N\nAAAAAOB1sVYQPnz4MDY2dt++fd9///1XX331zjvvzJkzZ9y4cRpOJYVXRlGUsbGxSCQyMzND\nNci6IUOGaD7POS0t7d69e71799Z8zw+MqAMAAACAFrFWEFIUNWDAgAEDBjx79uzIkSP79u2b\nNm2aiYnJlClT5syZ4+vry1ZHAG+Svr6+5sF6enoCgUBfX9/AwKDlUgIAAAAAYAv7206YmJgs\nXLjw9u3bd+7cmTZt2i+//NKjR49Nmzax3hEAAAAAAAC8jhbch9Dd3b179+7Mw4TV1dUt1xEA\nAAAAAAC8AjZXGVW5fv36vn37jh07JhaLe/fuHRERERYW1hIdAQAAAAAAwCtjsyAsLCw8dOjQ\njz/+mJaWZmlpOX/+/Dlz5nh4eLDYBQAAAAAAALCFtYJw9OjRp0+fpml6yJAhGzZsCAkJ4fP5\nbF0cAAAAAAAAWMdaQRgdHS0QCMaMGWNnZxcXFxcXF/fSMKwuAwAAAAAA0EqwOWW0rq7u6NGj\njcegIAQAAAAAAGglWCsIb968ydalAAAAAAAA4A1grSD08/Nj61IAAAAAAADwBrTgPoQAAAAA\nAADQmrEzQnjgwIFhw4ZZW1s3GalQKH766acRI0ZYWFiw0jUANC4/P7+kpKRFu/Dw8NDR0WnR\nLgAAAACgJbBTEM6aNevSpUuaFIQymWzWrFlxcXEoCAHejKKiotTUVA2D5XJ5dna2gYGBlZWV\n5l24u7ujIAQAAABoi1h7hjAlJUUgEDQZJpVK2eoRADTh7u5uY2OjYXBdXV11dbWdnV3Pnj01\n70KTf/sAAAAA0AqxVhAuWrSIrUvB26GsrKyl15718PBwdHRs0S7eAoaGhoaGhhoG19bWmpiY\nmJmZaTLgDwAAAABtHTsF4bZt25oV7+Liwkq/0JrJZLKysjLN4x88eFBXV+fj46P5KRKJpPl5\nAQAAAADAc+wUhOHh4axcB94mVlZWkydP1jz+7NmzlZWVoaGhLZcSAAAAAACow7YTAAAAAAAA\n7RQKQgAAAAAAgHYKBSEAAAAAAEA7hYIQAAAAAACgnUJBCAAAAAAA0E6hIAQAAAAAAGinWrAg\nVCgULXdxAAAAAAAAeE0sF4RlZWWrV6/u0aOHgYEBj8czMDDo0aPHmjVrysvL2e0IAAAAAAAA\nXhM7G9Mz7t69O3To0KKiIkKIoaGhnZ1dZWVlUlJSUlLS3r17z5496+XlxWJ3AAAAAAAA8DpY\nGyGsra0dP358SUnJp59+mpGRUVlZmZubW1lZmZ6e/vHHHxcUFEyYMEEikbDVHQAAAAAAALwm\n1grCX3/9NTMzc9u2bZs3b3Zzc1O1d+jQ4fvvv9+6dWt6enpkZCRb3QEAAAAAAMBrYq0gjI6O\ndnZ2nj9//kuPhoeHOzo6njhxgq3uAAAAAAAA4DWxVhDeu3dv4MCBHM7LL8jhcAYNGpScnMxW\ndwAAAAAAAPCaWCsIi4qKnJycGglwdHQsLi5mqzsAAAAAAAB4TawVhGKxWCgUNhKgr69fVVXF\nVncAAAAAAADwmlgrCGmaZiUGAAAAAAAA3gw29yGMjIxMTU1t6Ojff//NYl8AAAAAAADwmtgs\nCBMTExMTE1m8IAAAAAAAALQc1grCmzdvsnUpAAAAAAAAeANYKwj9/Pxe8wq5ubmxsbG3b98u\nKCjg8XgODg5jxowJCAhQj1EqlVFRUefOnSspKRGJREOGDBk3bpz6XhdNBkArVFhYmJaWFhcX\nJxaLRSKRm5tb4yvWAgAAAAAAK1pRpXTs2LE//vjDxMRk+PDhQUFB+fn5GzZs+OWXX9RjIiIi\nDhw44OLiMmfOnA4dOhw6dGjPnj3NCoDWJi0t7auvvrpx40ZZWVlFRcXt27e3bt1669YtbecF\nAAAAAPD2Y/MZwhdJJJIHDx5UVlZ6e3ubmJg0HhwUFDRnzhxjY2Pm7eTJkz/++OPIyMjRo0fr\n6ekRQnJycmJiYoKCghYvXkwIGTFiBJ/PP3PmTHBwMDOg1GQAtDZVVVXJycmdO3c2MTGpqKjg\ncDj29vbm5uaHDx+2s7OzsbHRdoIAAAAAAG8zNkcIz5w5ExYWNn369CtXrhBCzp8/7+bm5uPj\nExQUZGVltX79+sZP79Gjh6oaJIQYGBj06tVLLpcXFhYyLVevXqVpetSoUaqYkJAQmqaZ7jQJ\ngNYmOzv7n3/+qfdlgVAotLS0zMrK0lZWAAAAAADtBGsjhJcvXx4xYgSz0+CxY8diYmLGjRun\np6c3evRoqVR69erVL7/8snPnzhMmTND8mpWVlYQQU1NT5m1GRgaXy3Vzc1MFuLi46OjoZGZm\nahgArU11dTUz/FuPnp5edXX1m88HAAAAAKBdYa0g/P777/X19X/55RdnZ+d58+ZNnz7dycnp\n+vXrzOBPVlaWj4/Pjh07NC8I8/Lyrl+/7uvrqyoIy8rKjI2NuVyuKoaiKFNT06dPn2oYwBCL\nxQqFgnktkUhe9Y6BBTweT/VnoU6hUPB4LTufGQCaSyqVSqXSFu1CT08Py4ABAAC8Sax95r59\n+3ZYWNjIkSMJIWvXrh08ePDy5ctVUwFdXFwmT5589OhRDa9WU1Pz1Vdf8fn8+fPnqxolEgmf\nz68XqaOjoyrqmgxgzJkzJyMjg3ndqVMnd3d3DbMC1llaWpaXlyuVynofAUtLSy0tLbWV1auR\nSCTFxcVFRUUlJSXW1tYv/lUEaOvS09P//vtvDYNpmq6oqODz+fr6+pp3ERwc3OQD5wAAAMAi\n1grCwsJC1VxNV1dXQoijo6N6gJOTU0VFhSaXqqurW7t2bVFR0Zo1a6ytrVXturq6tbW19YKl\nUqlAINAwgNGrVy9nZ2fmtUAgYKa5tnWSSgWt1HYSzefg4DB48OAbN26oynKFQvH48eOAgICO\nHTtqN7dmuX///j///HPu3LmysrL79+8PGzbM19fXxcVF23k1A03TGRkZDx8+vHnzZk5ODpfL\n9fDwwEdzUGdqaqr5N2hyufzPP/8UiUTN+tJNV1f3lVIDAACAV8RaQSiXy1VDIjo6OoSQelP+\neDyeJqWXRCJZt25dRkbGl19+2bVrV/VDZmZm2dnZCoVCNSmUpuny8nJPT08NAxgff/yx6vXN\nmzdPnTrVrDttnf7eX2o405z01nYezURRVFBQEJ/Pj46OLiwslMlkFEUNGTKkb9++zN+iNuHB\ngwf79u3r2LFjly5dsrOzO3XqlJeXd+XKlc8++8ze3l7b2WmEpumrV6+eOHHCwsKioqKCpumL\nFy/m5OT07dvXzs5O29lBa2FnZ6f53weZTPb48WNra2t/f/8WzQqaVPCw1KaDSNtZAABAK9W6\nHtWQSqXr169PSUn5/PPPu3fvXu+om5ubQqF49OiRqiUrK0sqlapGJpsMeMtcP/Z3nfj58zy0\ngijkz4cI71/OKsoq115ezSMUCgcOHLhmzZphw4YFBQWtXLkyODhYfb3ZVk6hUNy/f9/NzU09\nZwsLC0dHx3v37mkxsWZ5+PBhdHR0t27dbGxs9PT0jI2N3d3dc3NzExISZDKZtrMDgFcnk8jX\nBR8oy6vUdiIAANBKsbluR2RkZGpqKiGkpqaGELJt27aoqCjV0SafPJHJZBs3bvz777+XLl3a\ns2fPFwMCAwOPHTt28uTJTz/9lGk5efIkRVGBgYEaBrxlrh+7F/fbP+H7x6s3xv3+z5EvLnxw\nYIKVi6m2EnsFpqamNjY2+vr6FhYW2s6lecrLy69du/bi31hzc/OKioq6urp6M5Zbp8ePH9va\n2vL5fPUlQ2xsbOLi4nr06KH1bTwlEklOTk6LdmFubq5avwqgrZPUyK7+cnfADF8uj6NU0DRN\nFAolIYSmyeWf7viN7GRg9pLlnQEAoH1isyBMTExMTExUvT1//nyzTt+9e3dSUlLHjh1zcnJ+\n/fVXVXv//v2ZDcodHR2HDx8eExMjk8k8PT1TUlKuXr06bNgw1QOBTQa0IYUZT58VNbHvwtB5\nAVHfXfl2/M9DFvZQyujyJ+I/vr781/7bQ/7VUylXpl7Pbvz0DgEOXF7rGiJui2QyGZfLpSiq\nXjuPx7tx44b6rpitWSvf/0MsFt+8eVPz+NLSUolEYmtr++KfS0O8vb1REMJbQ6lQXjmc/Cgp\nf87/jVQ10jQ5uupC8vmH3Yd20GJuAADQ2rBWEDbr49pLFRUVEULS09PT09PV211dXZmCkBAy\nd+5cc3Pz8+fPJyQkmJubT58+fdy4cerBTQa0FRd/vHX9V01X8zv4yXlCSPLvTwh5Qgg5syP+\nzI74Js/anBSuZ9wGBq9aOQMDA5lMJpPJ6i0rWltbGxgYKBQKtZVYs3C53Jfu/yGXy1vD/h/6\n+vrNeg7txo0bZWVlfn5+mm9gYG5u/kqpAWhBnViqlDexjNj83WN2zj2+Z0FU6OqBhJCaSsnP\nK8/dPZ+xYM8YHQGvpqKukXMpDiU0xOo+AADtBWsf9fz8/F7zCuvWrWsyhsPhTJgwoZHNDJsM\naCu69nfRN2mwlqguqxWXP19PVSFXPLyVK6mWEUIcvaxMrQyZdopLWTiZNjJAwtfV/gf9t4Ch\noeGIESNu3ryp/qgqTdNPnjwJDg5W3xWzNbO0tLx7966ZmZl6o0Qiqaqqag2TeHV1dZu1UmV2\ndjafz3d3d8eOdvBW2jrtWPa9Qk0iS3Mr7v31iBDy9eifmJbvJv7S5FlmtkYbrv7rdTIEAIA2\nBCVBK+UzrKPPsAb3XTi19Xrug2LVWx0BX1ItoziUUkGXF1YxjVweZ8q6wYbmeFCkxQUEBFRX\nV9+7d0+hUNTV1ZWVleXn5/fu3dvX11fbqWmqS5cuOTk5T548EYmeL0UokUjS0tImTpxYr0oE\nAK1z7mbTyAieuLxWJn0+4K+QK5/mVijlSopDmdsZ83Sff0XF5XEa+e2AXxwAAO0KmwXhmTNn\nOBzO0KFDCSHFxcWzZ89WP+rt7b1x40YWu3u7HV5xTvMpowxaSeemFKu3LO25o5F4TBlli4mJ\nybBhw+zt7W/fvl1ZWenk5OTl5eXp6dmGds4wNjbu379/XFzcpUuX8vLynj17VlZWFhoaGhAQ\noO3UAKC+7kM61Dyrv+muyuXDybX5/11TlMuhlIRwOBShablEzjTqCgSBk7wbuoKOkN/QIQAA\nePuwVhDevXt3xIgRO3fuZN7W1NTExMSoB8TExIwfP75Hjx5s9fh2M7czdvS0ajJMXF5bll9p\namv4rLBaz0xXWq2gKGLhbMrhNL2WBoeL2XSs0dfXDwgIMDIyMjU17devn4ODg7YzajZra+uQ\nkJDu3bsfP37c3t5+6NChbWjzD4B2Jeq7KxpOGVVRyJWluRWqt6U5FXs/ONlQMKaMAgC0K6wV\nhPv27bOwsJg1a5Z64/79+4cNG0YIkcvl3t7eBw8eREGooeBFvYIX9Wo8Ju73f46svDB768gO\ngTZrB+33n+Yy6r1B/zcjksfnfnBggq4evuKF5uFyudbW1jY2Nra2tqgGAVqtd97zqSwWNx5D\n0+TexYy8tJLeEzxjD93pP7V70uk0Ywt9vxCPJr8xFBi0mdkNAADw+lgrCGNjYwcPHlxvjpyJ\niYm1tTXzetSoUVeuXGGrOyCEnNkeP/v/RvoM7VBRUTGm6+Ea6XtCoxEfHZy4Y+4f9/7M9B/V\nWdsJAgAA+yr0csuMyhoJoGmSEf3s6cNa7/dFdYb5hBCxRV7X943v7Su9fuaWR5gp1WhNqKen\nR0h3lpMGAIDWirWCMCsra/z48Y0EODs7q+9TD69vbcx4Svh85zR7o+wn8mJCiNBI99OfRlE8\nPBwIAPB2MjIyajyg7plMnPc08BM3QxtBQW4RIUQqlTp0dDRZbJKwK5svNTCybWxXCYEAv0EA\nANoR1grCuro69X3YnJycqqqq1Ddh09PTq61t8CF4eAUV33US9F8seOdzQghXlzIQ6RJClGVZ\nVXsGCAf/P50e72k7QQAAYF/v3r2bjBkd9vzFw9TMBHK8R48eAe/4EkLGTGrR1AAAoO1hrSA0\nMzPLy8tTvaUoysDAQD0gNzcXWz+zy+C9P6r3BROlnPQI5wk5QhMdZXl21d6BPIcAHZ8p2s6u\nPaqrkv598GnfPrS2EwEAeI4v4DkEGhqYta5Bv+zs7NTU1BbtomfPnqampi3aBQDA24G1gtDH\nx+fcuXNKpfKlO0Erlcpz5875+Piw1R0QQnjO/QzmnKneF0zq6gghPOmzqj0DePb++pN/Jhzs\nMPnmSGpkzBI+Nc+k5Q/rlEq6XjsAgLZQFHEZaqTagbCVYLZs1Tz+5s2benp6Xbt21fwUuVze\n/LwAANoj1sqGsLCw2bNnf//994sXL37x6Pfff//w4cMVK1aw1d1br+b3uZLECE2jL6/XI0Tv\nztdKQqRlWdJ7xzQ5yWRNmeoRRHhlj+8W/DDzt48OTnTytlZvv3cxM+Kjkxuu/AtbPAMA1NOp\nU6dOnTppHk9RlJmZ2ZAhQ1ouJQCAdou1gnDatGnbt29fsmTJ/fv3Fy5c2L17dx6PJ5fLk5OT\nd+zYsX//fj8/v6lTp7LV3VuPVsg4ps4NHq0ppSXVTVyCojjGdoRq8I+YVsqb3qwQmuLczead\n6T7/917kBwcmqBrvX86K+PDk+BXvoBp8w8rKytLS0hISEsrKyqytrd3c3BwdHbWd1Kuora2t\nrKysq6vTdiIAwI7M23l/HUiau22UthMBAKiPtYKQz+efOHFi1KhR+/fv379/P0VRenp6NTU1\nNE0TQnx9fU+cOKG+6gw0juLyleWPX+sSNK18lttYF5hWqoG81BKFXNl4TPchHSpLxP/3XmSP\nCa4cSnn7+MPYvX8PnOXn0t3myT9FjZ+rq8e3cjVjL992LTs7Oz4+Pj09vbi4uLq6OiEhITo6\nesqUKf7+/tpOrRkKCgpu37597NixkpKSGzduhIaG+vn5WVlZaTsvAGg2mUQurZXrmwgIIeWF\nVfnppapDFUXVxlYGDZ8KAPDmsFkS2NnZJSQkHDp0KDIy8p9//qmoqLC1tfX09AwNDZ0+fTqq\nwWYRvPuFbq/5TYYpKwtqjs+jzTrV5t2VOAwweXJG12+mjv9sTbqgdJtYuBwIIT/M/K2ypIkN\noFXuH0v4ImTT+h1rlTTn3O6Ec7sTmjzFrYfdkmOTXy9HIISQ2traxMTEoqIid3d3ZmDN0dHR\n0tLy559/trGxsbe313aCGikoKPjqq68cHR27e3buUZh4x27A/fv3xWJxUFAQakKANifxxINT\nW69/ciTM0vl/HtA4/u2Vm9EPNl6bp63EAADUsTxGxOfz58yZM2fOnJcevXPnDtaV0RDH1ImY\nOjUeoyzPrjk8kefUTz58h/L7rmKRv/2Qj6v3BVNGtoJ3V76ZPN96nfs4ScTSho4+uP6YUkqs\njQpyyx0JITp8iYBfx+XQFMUhhDiZP3pS5iIwFLj52jV0BZFDqyvLH1+o1HunmvTTdh7NlJOT\nk5SU5O3trd4oFAqtra0fPXrUVgrC27dvOzo62tnZPctK9+anpcjlVo4ujx8/NjQ0DA4O1nZ2\nzaZUKplJIgDtU5+JXtn3CjdPOvrJ4VCOvNLB8AEhJHrLtau/3P1Q7SmDNuTuhYyu77jw+K1r\njSIAeE1vYtJgRUXFkSNHIiIikpKS8OGARVV73uU59tYPO1RR9fx5Qp5zP4NZJ6v3j+RaduF7\njtVuem+H1BvZjY8QWhsXzwncfiJp3O3Hz+cl0jRRKJQDu57v635105nl1WX03YsZDZ3u1qPB\nWvFNopU0xXn+SGn5Q0lFx9oX21u5qqoqfX39F9v19fWrqqrefD6voCztZrfYSYpOy2sIoRWE\nEEIrCSGkk3Gd158TKzrdMHb1bvwKrYRSqbx//35mZmZCQoKpqalCoejSpYudXav4q6658vLy\n1NTUuLi44uJiMzOzDh06uLq6ajupV6KU+z1cT3fdr+083jbSWlnsoTtNhpnbG5vbGX0z7ueB\ngU8CbY5sneb36E5+34le6fE56fE5jZ/r0MXSI9CZnXRZsjc8+vPj0xy6WGo7EQBgU8sWhNeu\nXYuIiIiMjKypqdHX1584cWKLdtfe6Icd5Dn2Jpz/+aKO5/qOYXgix0D7/1mLxeLs7GzN4588\neVJdXZ2SkqL5KTY2Ni29zVTwwl7SWlnjMVk19mM5y/g8hdi0ByHEsbuFu/xYv07X0223D/3Y\ns/FzTVrHMyRrBv8YNN3n3Zm+6o01FXU/zPit17iu77zXBgb2eTyeQqF4sV2hUHC5bePL7HK5\n5d+Z/r2ojUmdV5T/p9GoJqtHxjeJWf7d5ObG2sxOU0qlMjY29uzZszY2NhKJRCwWJycnnzp1\nauHChc1aVVK7cnNzb9y4kZaW9vTp06qqqqSkpHPnzo0fP75Pnz4U1Ta+IqElVdVSkpycnPp3\n0gRxyh/no/PLarp3724s5FK6htrO7m1Q9Ux8/Nsrjce4WmQ6mmdnpb5LCMn5p6hjF0Va3BNC\nyN9R5/u6XYtObuJ72y5D7bVeEEpqZL+u/XPs0v7MGmk0TZhv9hVy5R9fXw6c5G3tji2mAdq8\nFikIS0pKDh06FBERwWw7O3To0Hnz5g0bNkwoFLZEd+0Wz/m/s/rkXD2lzvPSgmvVRUsZ/Y/q\n6uq7d+9qHi+VSjkcTrNO4fP5LV0QalIL3b9s8cuaB1MCDpa6mJFHZPrEO7w71w7GzR+3Ndil\nu02LpseWSWsH7Zx3XC6RB77nxbTUVNT933uROkJ+7wlN1LSthEgkqqioeLH8e/r0qYWFhbay\nahZrZ9H3Rr6cR5yeZGOV/lRCiKmiwDd1/+3H/hf0/QY7tI3FhzIzM0+fPt2tWzeKoh49eiQU\nCu3t7Q0MDJKTkx0cHPT02sC6u1KpNCEhIT8/393dXS6XKxQKOzs7Gxub33//3cbGpk2MEyor\n8iq+db/r+snl3OeboYrF4mvXrkmzrvlnfWs0/zLXtg18y9PK6ejxPCc2+GSvrEaZdrpELNHv\n1/Gyno749L3/Li4qMiyZ239XaoEHIcTMVWjbo8EHB1y9tf8bhK/LfVZUvXXasY8Ph6rWzVbI\nlXvDo/PTS4ctCNBuetB2VW7qrD/1V65NN20nAoSwWxAqlcqLFy9GREScOHFCKpX6+vquXLly\nw4YN8+fPHzNmDIsdwYviOqxzsXDXdhb/w9TUdMCAAZrHZ8TnVxbX+A5oxl0YGbX4A3jV+0fQ\nkgYnHNKyOlltHfWofHyQAVfoYPEoghCim7SDK3IP7Xuyes+xZ+7mHB1diqfb0BU4Zq76oQda\nInOV+OP3//7rUZNhTt42UZuvxUfdry2Xp14o/DIygqIod3/7Q5+fbfLcyWsHGphp+YO+ra3t\n0KFDr1271qFDB6aFpunc3Nxu3bp5eHhoNzdGxu+H5eJnjccMdyFFOXaZhW4DrA4SLhn4bG9G\nsVuRgeMIZyo7cl/j5/INTN3GaX9rnydPnlhbW9cbsDUxMUlOTvbx8enYsaMWc9NQXl5eQkJC\nvSfedXV1bW1ts7Ky2kRByDG2e9Jpkef97xQuH6VLbUgF0dPT62Cq7Ja2MddpgheqQVbIOf9E\nNrGOdFGl9b4r82b330NRdM5TJ0KIuWHJ3P670os6Rd0ZTwgpe1Rb9qi2odPNdLRfEHK4nIV7\nxu5ZFL1l8tGPD4cRQpQK5d7w6IKHTz/9ZRK2VoJmkeck8uz9CUURQpTiErr2+WwYRUkqx8gO\nkxe0iLWC8P/9v//3448/ZmdnW1hYLFy4cNasWd7e3o8fP96wYQNbXUAjaIqj7RTq09HRsba2\nbjruP25mZRY+Kh/+r2ac8gbI087SdGPbTnAIsTEmpJYoVb/TaaWiJN2APcAh5AAAIABJREFU\nEANDQhflvmQWoxqq4C4hB1hK9uXyHpQknU7TMLgg/SkhpPzx88cm755/qMlZ45cFvVpuLKIo\nKigoiMvlnjx5srS0tLa29tatW++8806fPn1ayaiUacIsDiVvPMaKECL671s+V+Jhk+JBUkgN\nIfebuL6C5pNWUBDW1NS8dDKInp6eWKzpgr3a1fqfR6UlVUTZ2N8lqVSawfUot5zY/fEPdSah\nhBBLySO/R1HZosGRqfpflOQYGDQ6WZ3iUIJWNEO5srLy6dOnNE3X1ta2nqlGfAGv3yRNHuv1\njkk3G+H0tY1lGZenmP/unvRCj8eWy/uGNX0j7n4t/uTtrvlRDxMb26FKRVIjW9Fvl1JBfzfx\nF1pJC/R11gUfaPIsgYHOhiv/et0sG/X48ePbt2+3aBd9+/Zt1ucZeDmFrHr/CB2fqXojvydq\nc+9l6efFh8boz4jmdxikxezaOdYKwtWrV7u7u//xxx8jR47EDhNACKl6WvMwoYkn5hOO3xc/\nqxsww5fiUIUZT58VVTOly61TqU/zKofO69n46Q5drSycTFjL+GUEQ9fT0mpNIuVZV2XZcZRS\nTjg8fofBXDuNvoPnGLX46pchn/YLXtSroaNndyZc+/We6q1cqpDVyQkhAkNd1X/XPD73gwMT\nzO0aHI8VGjY4BPomCQSCQYMGde/e/fTp08XFxZMmTbK1teVwWst3JQU1rgKqoqGjPErKoZ5/\ne8ChlHq6YorQhFBiqb5S+fwWFDRXQes0dIU6pamooWNvEJ/Pl8le8titVCrV0Wkw+VaFx+PJ\n5S8pt+RyOY/XKrZvrd4zUJ57s/GYd//zok/5z4SQwKqjhBC3klPLBES+aU/jQ9UcE0fj5c14\nArzlVFdXx8XFnTx58vHjxzo6OnFxcZMmTfL3928NHzN0arOHy4dqFOpKCCGuOs+/1PFxSPAh\nY0gT3w4RQggvrx8hV185Q01U1VYQXoPfW8rrlErF87UAKS5hXisVSp4uR/XPnKIIX6/B57QV\nVIPLdLOFw+E06/+WGzdu6Ojo+Pn5aX5KW3lyuLXj8g3n/lm1dyCR1emN3cm0MdWgMPhrVIPa\nxdrvNpFIlJGRsWLFivT09OnTp9va2rJ1ZWij8tNL935wUpPIzKR81etHH/z3dZOnT1ozMGh6\ny859EgxYrklY7YXVioK7Ff2/MYldLAneRZ0L53cJ0WQnyTcg7o/7d86mN3RUJlGIHJ4X1Uql\nsjjr+fwNgR7fUPR8kISiyO9fXW7kF+KsLSOMRK1iFI4QIhKJ7Ozs+Hx+q6oGCSGn8r4syW5i\nyighxNowd4rvv29m9erpEnfjYT8f59u/3l2QX+nY9IluZq3hcU9ra+urV6/W2zVRIpFUVla2\nla0ULSwsqqqqZDJZvaqjrKysZ88mvqV6MyhdY66owdn1yme5tLyuiUtw+dyGdzaihC37bLaG\npFLpn3/+mZyczHx219fX79Chw8mTJyUSSbOeR2gpb2DV9EbHgVnBF/AaKedU1SDjeeFIE4qj\nViJxCF/IJQ38guAJWnxNL0dHR0fHpv+HVJFKpQKBYMSIES2XEjSEa+P9vCYkhBAiz71Vd36V\nMPhr3b4fajcxYK0gzMvLO378+N69e5cvX75y5cqhQ4cys0bZuj60OdauZlM3DGkyrKai7mLE\nLVNbw+LHzyRiadd3XNLjct6d5Wtu3/SEJbcereJ7h9oLqyXXthrMOVec/5QQIncaoD/9N/FP\nEwghraEmLHlcnnq92V/2Pyuqflak0dAoIUQuafFPLW+BZcenNRmjyE9++kNQUlZPwYgPScpY\n40lf3Pl903u9dpmF/8W1b8b32VrUuXNnPz+/f/75x8HBgWkRi8UPHz4MDQ0ViVrDEGbTLCws\nRo8effHiRdUTjzRN5+XldenSpZU8j0pLKhSlDW5moxGFrJErcEya8fG65aSnp8fHx3t5eamK\nD6FQ6OHhER0d3blzZxsbLT9fxxF1MFlT1nhMbaWktlpioltSfTCktM6EW1VkbEILuk/SHby+\nMPOpTYem/kU0/Pw5WwSUvqyyvKGjHMLj/OdzoqRGRghFCM3hUgqJUldfR/XnImt4JjVX2TYW\neYbXV3thjSI/ucHDSjmteD5czDV3l9z6kSjktac/54g6SB+ckj44RQghFIfiCRrpwmBGFJsZ\ngxrWCkIdHZ2wsLCwsLBHjx7t27fvwIEDEydOZB7DyM/Pb/J0ePsYWxlo9nwF8Q/x+H7Kr3KZ\nghCSeSvvkyOhzt20/yS9huQ5iUw1yHPsRfJjmEZ+5xH6k38WH52m4zmO0vYWII1PGWXUVUl2\nLTzB43GnbRr8/fRfPIbY+fbq9uMnp4bOCxjwv3tRvFQrmTLa1ikrcst+6H8rq2fXlYerylNI\nCjF3MnRYeej2xsm+/x4oWpnGMWwDD7EIBIKBAwfq6emdPHkyOztbIBB07dp1woQJvr5N/0Vq\nPfr27UtR1PHjx8vKysRiMUVR7777bu/evd/AQlaaEI75N11X2XhMWVnZxaPbh+jG5+h6udTd\nThf0dKu7fVnmHzAuvMmhWorf2GeyN6aoqMjCwqLebD0+n29iYlJYWKj1gpBQVJNDqXpCIuA+\nrNozhtdxWGGulVXlfu7U3yVHRhOewHbkljeTZuPm72p6zT9mTdGCh0+nbh2wddzxsV8HpJ8p\nKcku//hwmLHlS562hfZJejNCWZHXvHNoWlmSpiz5/+zdeUAU1R8A8Dez93KfgiggIIIiHghe\nmJgoeECpaGnljeWvNI/KWzNLTS2PSssjTUs8SxRUEG/BA+QSETlVLoFlF1hg75nfH0PbirC7\nHjCH7/MXzM7K9+u892bezJv3jJ3mAGo7r/91CDc3t+++++6bb76JjY3ds2fPuXPnPv300y1b\ntkREREycONHf3/+1/0WIjvJTSg9+dQ7HmoajYBqMeMrEFbD3fR6j3W3M54MGjOtBTojGYXfy\nt1j25PkJGDg+4y1WllNhYgYOn83hG6jpOyP/4Qm5n/0+AUPUCIqweazeIV3n7h6/6+N/HLva\n9B1Nm+XjaK3qKYi9NzF403rnHh2yrjYtyOni6wCWR8UuWx4mArY0mYDN3Nw8JCSkX79+UVFR\njo6OY8aM4fMp0cEwHpfLDQoK6tWr1/nz50tLSydMmODs7EydBS3ZnQ2PXLV5nDTaLO2x/fjf\nUtkb7e4eeez43sCP3368z9TajC7v6iiVyhZf2mztPVUKwqrzpb8FcbqFCifssTjxHb+GjTj4\nmkVekO4JBihbMHoT2QEahmlwYoWJRVHvyzApAIDFRiN/Dtv18akd044vinrfxJJmtRtqI4LQ\n9RrjunaYuEiZeRwAAFgsll13TrdRrQ05htpNW70fz2KxwsPDw8PDS0tL9+/fv2/fvs2bN2/e\nvBlvhzH3EB108rYbt2QormmawDMlJkdcXg9w3Lqj+dvT/VBWU9vg4d/mc668KgTR9vpwnpXY\ntDsXabpqpEJv0EgjPw7oNtCZJ+TIZP8N/vQOdFl85H2hBTzZt5MO3TrNjP13bQmEg+EoQNkA\nABdfhxmxv5MZ2UsxNze3sbGxtramXW9Qy8rKysnJCQDg6OhInd6gMbD6ivrfRwneWtxr+Or5\nGSkg6s9p06b5Dn1Hdadnw1/vmS1IY9l5kR2jYSYmJjJZC0syyGSyFqeBpSCNKI/be4pg9PcA\nQQFoWtKd1bGPWWSC/OpmsqMzikqhZnFYi6Let+xgKitvGhvK4bHn/vbu0a8v1lTUww4hROD2\nnWrMbqrc+IbrW4Vjf5AlrBWO3tx4bgneWC0ctwvAmXtI1eYzLjg5Oa1cubKwsDA+Pn7ixIlt\n/ecguuCbcPuEdO07ulvf0d1Kcqpykp4ILfgoitSLZannc3uNbPrI3I4eZ30Cxre647ESUG8J\nEIN8h7s3LV8NAMIGKKepXXbp6WDn3LbzuEItYtvY7yn4jm1Bibk9INpBhbam06L5wWsQBCFW\nmDA1NUVRlDfgE9PIBNSy1elkKMXFxaWiokKpfGaayrq6Oh8fH+0bqhTH6TZKMGZz+dOKCxcu\n3MvKkslkMTExd+/exex8TCYfJjs6o/CEnMifwiw7NF+nhMNjf7ghxKkbPV4MhihCO6coMYsM\nauNmFnlRmXWy8Z+57TFLE9S6dppBG0GQESNGjBgxon3+HEQFD28+2fbhsRf9VtWTmqonNZ91\nM+rlinaYZfQN1HOarYubDdlRvBJ5raqhnB4jylrD5rFcIlxYbPrdXIAoAWWx3YKIHxEWR4Py\ncU7Tqnds18FkBfWinJ2dx40bFx0d3alTJ4VCwWKxSkpKSktLIyMjKfIypzEKCwu3b9/u5OSk\nUHaolgcoysoyMzMrKyuDg4OpsHjGi/IcZ2nViU43aiEK0agaDo1vNqcoy9HXLDJBuieY4z2G\n4x1GYnRvOEosqQQxEt+E6+xjYOqCOlFjXVW9vasVV8CprahXKTW2nS3UKk1lkYRvwrVufeE7\ngpkNVZY6YBIWD0FQeo/ceHJHUpxeCxaQHQcEUQCOci723NNbYEd2IC8MQZDAwEA7O7vCwsLC\nwkITE5PevXu///77dHk8CABQKpWpqakeHh62trZ5cvnDeryvtbWDg8PVq1ednJzoOBN7hz5C\nNpdOw6chCmFxLJYWISbN2yKWYy+LL3MRHk3ekmco2CGE2oqLr8Oy6I/071OYVsYTcJy87AAA\nZ7YmPi0UR/4UBgCQPJWW5lT5BLm1R6AQI2Qk5CsaVAHveAMAcAwH/76iXpJdmXWlMPR/BuZZ\nhSAGwxC6XsEjCOLl5eXl5VVbW2ttbU27cUbl5eW3b99uNsUuiqIdO3YsLi6mUYdQo9E8ePDg\n/v37ycnJtbW1SqXS29tbIBCQHRdEM7q9QXYnf8Ssaa5giqx9+qKw6nwc07DsmDDxHuwQQmRy\n6/PfQoJsLovNaRogZ+VgZuUA7xVBL4DLY++dd0YpU+kudlKcXbn9o+NDJtPmqguCoBYhCILQ\ncM6JxsbGFidV4vP5DQ0N7R/Py1EqlRcvXrxy5YpQKByH/33lUdjfJSV+fn7Dhw+n0dhdAEBJ\nSUl+fn5ycjKXyzU3N/f09DS4BAvUdkxnnSc7hFclT/wJqOXC8b+RHchrADuEEFUMG1ym9n5C\ndhQQXXkPcf3k13d/mxutUTdNXVuSXblj2skB47u/88UQcmN7Y4nz5GZspeH9IMgQq/oHPD49\n5sLRxeVyW1whQ6VS8Xi0Wb41My35+vXrvr6+dXV13RuL88xRQZce9+/fNxVwRoSOJTs6Y6Wn\npx84cMDR0VEsFrNYrBs3bpw4cWLu3LleXjSYcReiDsWdvahFJ063UAAAALh2LhxVXgJWnc8b\n8AmJsb0K2CGESIVj2jk58cp0pCoHaF/80vkIesM9vPtoz/9OG7MnygNH1iQgbBzHwMZ3/2Tz\n0Fun7906fc/gFwdN6T7+c3oszkYjJdfqOaoaAKeXhl6Za+VZlaYHADPJDuTFdOjQobGxsaGh\nodk6GZWVlf369SMrqheCyWpcTw0fZDtdij5zRu5hj3pdmlTrdMKi52iyYjNeZWXl/v37fX19\nhULh06dPORyOq6urlZVVRkaGo6OjhQVt1oiCSIewOPUH3zX98LjuFDiqh+cbDo0XhG8nMbBX\nBDuEEJkaYxZj1fmmH54AbJ17pTjeGLMQq8xhwHACKsjPzy8uLjZyZ4VCkZ2dXVVV9ULrPg8c\nOLBN15rTaDQajaa1T3EcaOSY9lcWB9GoAAAAYQEc4Ir6pkRQDoKyWx1yRpd1rqnv8MoLfmO6\ndRvo3PT7vxOJn/35pm0ni4B3u5MVGEQ7srNL2B5vczxD/t3QVJgUiT8BjoAXMJuswIxnamo6\nffr0w4cPe3h4EFtUKlVZWZmvr6+Pjw+5sRlJAXhn5IFhVfsyhcIa0JXYaKIo6/9k833QtZuV\nLy36Uo8ePbKzsxMKn5mIzsLCIjs729vbm0Yvc0Kk4/pNwzF1/Z8TTT84SmxR5cY3HBovGPU9\nLyCS3NheBewQQmTiD1tav3t4/cF3Tab+07QJxxvPLFCmHzaLvEhqaMwhlUqfPn1q5M44jru5\nubFYLOO/AgDQ01t7LWzsrF27d2rtU6VcLXpcg/97sYip8YYaGQCAw+dyBf81ceZ2JmbWrU5L\n69aty+uL943Wwc16Z+Q//9szzq2fo3bjP99fu3E0c+Gfk0gM7OXI61S1jxRkR9Fcbm5uiyu2\nt6i8vPzx48dCoVAulxv5FQ6H0707+V131LpLwx/vmkz9m9NtlHaj/Opm+YWvaXS7sE+fPmw2\nOycn5/Llyw0NDUqlcty4cQMGDGj2zJCyWCwWP2DWvUrXXk9+brCZAQAwwyX98w9WmPeNfdqr\nO5sel5FSqbRZb5AgFAqlUmn7x9MMhmE3b95s0z9hZ2fn6enZpn/iRf2+ICZ88RDbzrS4pfAM\nnv8sAED9X+9xugYDDGs4+K5g1Pe8wfPIjuuV0KMmQ0yFmnYwnXOxfvfwhoPjWB37AAAazyxQ\npkeZRV5kOcI7dq+Hr69vjx492vRPtPVqWvJ6RU7i4xf9lqJBqWj47wU2qahRz87dBtBmInsS\nqRRqlVytf5+BE3oo5aqds/+eujkEx3CNEjux/nLisXuf7HzX2sm8sdZAn4RvykNZFJo7pDSt\npvBiLVhIdhzPKioqEovFRu6sUChMTEzEYnFjo74qoEsoFFKhQ8gb8AlAWQ0Hx5v8u6St/PqP\n8gtfm844w+5CmxeDEQTx9fX19vY2MzMrLCycMGGCg4MD2UH9R5l1EqsxMITEq/5BRV1VhYX/\noKq9CMCD6o5KhS7VwGZil2rzh3/J8/XNYYugXN6g/73WkF8Gm83W3rhkATULNMWs0WjY1OjT\nPnnyAnMolJeXSyQSNzc348fmIAhChQ6hWqnRLluSff1R4OReRIdQdzuJ5Fc3y85+Zfz+qgex\nxA+Np+c3np6vf2cCf+Q3guGrXia4NkaJagAxElbzRJn1tzF7cnu9p7i5U12cAgCCq2X8gXNV\nBZdUBZcMfpHjNpToRkJ6sFgsFov8dvZVdO7e4YfUzwzuVvawatcn0f5ju9lbiUX3MzzGTzuw\n+GzYosDBk3oa/C6HDxtDw+J/uxOzPcnInffOiwUAZD4uBaAUALDto2PGfGtl7DRiHRoSZV0u\nrHpSM2xa01IByL9LmJTmVN0+lT1+6VDyQmvSr1+/Nh3k3B4thlqBqwx3ULk9I3BVY8OfE/kc\nJ37NPXnccZMpUayOfXCZxOB3EZ4ZQKlSrzkcjqWlpbW1NdUeDMpOzsEaDdxccAXAVedXNlBa\nNeZZNeYBABQlBv8CQoUOoZ2dnVgs7tSpEwAglH1NhpjWAz8cx8VisZ0d+Ut0oigaFvYCa7Kn\npqYWFBQEBwdbWRm7WgMV+r1qlebLfr9M/ia42bsDVU9qtk45+v7Xwb7B7mTFRsDVbT8eRG3s\nSI12Rn75gJhKde+4LOaLl/ii/OpmI/fU9JpkMuXoS/wJSA/V/VOsTv1Qi1aHaLY/lIUILQzc\nBy15UPXr3OhBE30mLAvK3LzAwexK99Hr2Tz23nlnhOb8we8Z7hNCBtl2tvQa3OpMj/ViWW1V\nvfZXhUytbFACAISWfBa7aToKBEHsXKw4vFb7GzwT7uuLtwUaNSYpNzBCTK3SRG+5UV1SFzS1\nj0n9w0GOidUl70uKyw8sju0d6ikqrtX/dYEZz8SyDV+pBQDY2Ni06b/fDhpORipTDxm/v7m6\nEMgADkD9H+8a+RWTiH1cf5pNQtP+2F6jscoHrX2KqxVArQAAKFUqpayBpxShAAcAKDhWKN+M\nx+MhAACUjXBbHY0P2G1bF4zUhVs1pG+31IcFXbp0YeMqDq5Sq9UFBQWhA7t35lQDQP6ix6am\npsbvLBQK+Xy+iYnJC32LdGwO66PvQ/cvisVwfMC4poFL1SW12z867u7n5DOM/Bc3+EMW8vpM\nMWZPddH1xn8+YTn6Ahyoy9NN3vmJ7WHUvHSIqf2rxdhWYIcQaiuogy/L3rv1zzGglP073wTA\nZRJcWQ8AQNh8xMRWu6o4wuGD1pdUZrvSZtQQjcguruMPns/1m0Z2IC+m5tLOj94t6bWMeJDY\nVLJ8h7t/tsZClroUvBdLYmyMoVKo9Yz5VMlV2odpAACA/Vu/caC7XV6vUMlbnUAY02CtffRa\nVJfUrhm+z5g9L/6ecvH3FH+3NC/XrG9DDhIbE49mJh7N1P/FkE/6v/slbJoMaOPjDAAAagxv\n27sLjGDynlHdck1VjvTXoLpO75oURle4TXF8ctz03X0cn3FtHd7rgmceHlh4kdtjTczVZEtF\nQwOO3b17d1yQb6+slWrTmZzO/mQH+GJUKpVMJsOwtq9FL+J6VMaTrAqDu3n4dzr41fmbJ7IU\njaqzP998lPHUzEbIM+FErU4w+N0Pvhv5OiJtFcI1QawN3x1Q5cY3/jNXMGqTpjoPqOTc/nMa\nTn1q+sFRTvd32jS8NgU7hFBb4XQdwVmcbXi/pllkoni9J2PScqy6ELXsbDL1H4QatxXfEA1H\nPuIN+pTtPKDpd2JdHRyXnVvKdh5Ai7O+97th0j3DZedsBaM2aLsfqofn7DP/Jxi3ldzYGKOx\nTm7w+RhBJVerlZpOtiW1MktpHcITcrQPCfU/oNOo2naCIp6Q23d0N/37dOWc7si6FV/x5YPb\nIuKFRhaXZeNkHtQz2ZUdnyA3MLG4Uzfb1xYuc5X3XZEKRunfJ+tQtUaBhY2541V1orTWUck2\n6SLMvWP3Wdzhzg59TVzeNtP/9WC34NafW0EvQFOVU//bMG73cM7Ar5Edp9ne4SZ+b9dHTTad\nHEWFswPeIMJqDLxkzvOfqRHl+ues7DV5Y8XZBIxrHvx2X1bClyznAdwe72hK7+r/OmrjgfAp\nMfdJcXFxZmbmnQsZJfEKHI/29PT08/Nrcb6c9vfgxuO087lG7px7qxgA8DDpCQBA0aAUPakx\n5ltt3SE0hio3vuHgu4LRm3iDPiv44QOglrtPmAUwTf1f75l+dJLjNYbsAF8S7BBCpPq3N2gW\nmaC8dwKRSbRzzMA+YXti2XrU7wsxnXme7TKwaROON/4zV3X/FF3GXLGc+prNuSTdEwwwlYOH\ntRqYqXLjGg5NEIzZTN+FYqlm5JyAkXMCDO4W/cP1q3+mf/5nRP3et6stA3GPT0//eCPypzA9\nw03bjYW9SeRPrb6r01AjS9ibItWM59clhnXebGH3tSrzJgCgQxerkQOzPOr33zdba2tn4TXI\nxTuQ/FxorfhWTfpvhubFwZHe1gldy+KOZn/S2+5ShbRzLu47Qv1TocW0J/f7SO4b+Hpf9wYq\nvB5Gd7hCKv11KLdnhPCdn2v/nX2a228GjuP1UZPN/5fEcupLboTK7NONJ2YZuTP77ylOAAA5\nAKduYgBg2adV2YYXuTWdEUP6hb68XpmV+uDQyd9dXFyUjRouIpRKpQkJCSJRtY9z365+zob/\niTb2/tpgPa9Yn/juMtEJJKgUGrVSDVBEoPOaAJvHXnBoku704BSkLLrJH/0Db9BcAEC9RIao\n5QAAXv85AGUrC5NILycvjdL/6RDjya9+T6wwwXL0BfdOAGLe0cgL9b+93fj3JyaTDpAd4JuC\nH7wGx/H6vSNMZ54FAAAcb4z+THn/H7M5l1h2Bh6nUAerYx+zyATpnmC+Q0/AlzUcHEfcwyM7\nrjdLxrpZDxPsFxxa4NjNOhsABOBvz/TDMfzWt8uE/xvpHDad7AD10aiwxlo5hrFugu/6a5YN\nRFYmsbwAAD2sr3jUR6WyVlbK+gKZXNGoNPhPQfpxOXy1HNe/T3/ny0EecQdvzi4SufSywTUq\n7EaOn0aheM/v4JE0QZHYQNPE4cARo68BwjUxmXSA4xkKkGem/+X5z2TZdkVtSJ4FBADAsuvG\n6z+n1Y81Sqy+qulnHFOXpeHSpwAA1KITy9G36f0UBKCmHfRMQYRakt/depBUdODzhM7hbo6O\n9pL8RwAAExMTOzv767uzr1c++SF5HoKSPD/z2Z+S7l8tau1TTI1x/528DdNgcmIOcAwHAGi3\nIyiya46+yQjXXSF/ob8TFwIapfJIfw2b898LTRo19scBWxbLftZoEkN7JbBDCJGJ4xnC6TGu\nWZcDNXM0++SqpuI+WVExDK6SGTOrFT/wc6CW1/8+CjFzVN49oK58YDo9GjXvaNRsfnwLgLT6\nVtirU2UcqT882fj91YVXiR8ao+c1Rhu1NBCne7jptOiXCQ56ForJZw/9zcLmfQxYazcO8b7Z\n0PvvKhn5t06lZeV3f9qmZwft4on5suFumqPDupWgCOZk+ec98UiObb0TfhEAUHMZXLnc6r/Q\nod8A7wnkj6OjuLem9HprSq/WPlXJ1bVVDcidEuD09/uzAg58cRYAABCk+9AuIStnIg8PTx7J\nxr3et3EyJ/0imPkQVHcdSDXKw9gC4meKLP7Bdh3Mdh3c2qfKtD8bo3XWA8CaBqXjCqn68b9L\n/yGoyft/crqFtmGUeuEY/vCmgWUn6hulaMeGJ6dM0Pp6VTUCMKSuSP04U6x4zOsWZm7w6+Z2\nJh0923Y0u6JB1VhneJZOHMPlDUqUhWI4xuaxZPUKjQbTdq6UhlY2alMVheKMC/n697HuaJ59\npOjb0X/0f7d75eM+AFOV77qdEpsjLpMOed83/rc7+r/ec7i7owcVZwWDHUKITLqLRiBsPvj3\nNIOY2rOpOhET7dT/PkrbQTIGXl2AVRcAAKS/DDLyK2bz7rA7teVL+RwBQPUsdYgD/Nl365t+\nRZ65pY2gALR67YjwzF8tRKhJzzV/yc4tk/42TDCduIgHitu/yc5+ZTb1hLX3WLKjA4rCW72w\nTUbt+uyI9V7W5wB2zpjv1aX2ALBD+Gqu/pl+csMVAGwBeADAAwAAGAQwDX7/cuGay4XEPgiy\nZ8Ff73n2J20FUZVKlZ6ebvz+Dx48KCsrS01NNf6NL3t7excXag3LxcwVAAAgAElEQVROvtxj\nZw9zV7KjeIYy7S+DN/5wDEcQBACMmL4OAIArpAjPDAcowHEExRqi9M0taTLlCMezDd9e06ix\n7VOPG7GjEAC88Hytk9XTKYNP7TraNP7lwQnRgxMGvu4f7j1za9vekpu2xcBbwQCA6pLarR8c\n6zG0y4wfR38VsHPOznfqxbL9i2InfhOsnXeURGW5on82XTNmz7rqxtM/3gBAAIAA3LpObIwz\n1BsEAFg5msEOIQTpwx/6Ba5pw5W13lgIR6i3N4U1TSFDwPGmKTqbPfHT25sCSNu2JJzu71ht\nMGqQnio3ruHgOLZnCF5foal6yOs3QzBmS5vG9kapra2trTViUpkec3l1ddjvoQIz8w6CnMbo\nKFnorjoTX2DEysuOjo4cjp7i+qrMXN3rLTxa/xxHVI2YRtNYp+Bw2TyeClHWAQAAylGzLGX1\nSi6fzRVwAIuPtz66zKItLxwZQ63UKGWtNviDJvoMmuhD/Cx5Kt0V+c+VnOFytXmXXo6Rv4Tx\nhP+NBdUz7S3flIuy2nDkgkajyc838DCh2f4WFhbFxcXGL/OIIAjVOoQYSr2BuCwuIjCwHF99\ndSPQqEy4dQjXRCFTAgTlclBc2SiVm7N4XFMrgf6vI6w2bJQAACgLGfmxvtez5Q3KxrqqRw9T\nOBYeDeUqE1WDpVCCsBAbbz7GUnc0r7HqNIjDZ+tZ271zd/JvsmvU2A/vH/Ec0Hnq96OI+boA\nAH1HeeIYfuCLs7adLDz8SV7vyrW3o56XzHXJpIrYHUm1lY04wE0s+WPnDzKzMepGj2tvR8M7\nkQF2CCHKYHERFvXONPTX9FqgQTjeGD1Pee84IrRh2Xqq8xNMZ55ld3mrjaN7nYjeoGD0Jlwt\nV+ddIN4nBADAPuHr0nD4fdPHF1r/HEfAM2+F2YFaIC0GCCI4+9+UDzjQd43e8N5Ryz4TXjXQ\n1vE6+fKW5+nfJ/Xsw5KcqpGDsuVnPi/gjBLWZHX07MDn8KR9913959FHa0LaLrw3x7W/0o9/\n2/q42xZ0BgCIMsqXB+428guLj7zfpteXPB4vJKRtCwOf3+Yzq1VWVsrlxq6UXVlZKRKJysvL\nzc2NHVKBoiixHHzb4fpO5PpO1L8P5/F9yU9DHtYG9v7+/IMlw1Qcy75fHnm4+m1bk3K7RTe5\n9iT3ulEWOu6rVs+2jbXyJf13edplfBpw9Pfrs+uqXRw6AAAArsFFWbJRPWP6WqWsP7LGb7T3\nrB3kj8LQg8VGp3w7ovuQLtreIMFvTDfrjuZ2rpZkBaZl5WBm1fo01GlxeX8ui9P+imM4huEA\n4BoVdnpronb7+2uD/cO82jbQNgA7hBCkz/3799VqY0e0FxUVPX782NraWiw2NHvev4RCYdeu\nXV82utfn396gWeTFhmPTuD3eZXXsXX8gzHRW3H9rUVCbOv9iwx/vCsb+wBv4P/m1LYCYY2ZW\nnHTvCMA1EYxYS3aATMBHVAj+4stC4M/0EhGg71/gogYmGmkHfUd362FzVXb6c5MPj9ceieWD\nbO7UGPWf4Xapsz5ca9SoUcggq47mBmedVSnUT7Iq+Kbcjp62pTkivinX2tHsSXYlgoDO3e0N\nPv0TmLdtbwpBEGtra8P7Udv9+/ef/jt3qEGNjY21tbW5ubkikcjIr3A4nIiIiJeNzij3rxUl\n7E3Rv0+Q1WYl1vv4zXePDdkT7qNuVCtXvn2Ax586ZdBfFetm36xtfU4aAAAA4YsCu7Tlgx2N\nGvt9ob7Fcn1HeADgkS2Xznxrz8HUOYB4Uw9FRgXEBnS8c1W2ts8oLwzH98w709q/4NHPadg0\nkueDBQD4BP23yh9XwOEJmx69dulDiedmapVG2djqyAW3Po4f72xaaRDD8Lhdtx7eLMYB4uBm\nHbYwkMVpapHsu1jqGbnAFXJ0Z6OhDtghhCB9cnNzjb97KpPJTExMysvLje8Q2tnZUaFD2Hh6\nvureCbM5l1kduhNbBCO+BgCv3xdiNucSy8mP1OiMgstrheN2cftN193I6tTPLDJB9SCGpKCY\nxmp2DFDJjNlTcfeA/Nwy1MYdNbFTl2eYfnRS94VhPajwMqcy46jszAKTqf9wuoVaOl3iKVkI\n38J01nnp3pENf040nXWe7ACZoE9I1z4hBpq+bR8e6z3CY/oPY1AW8uvHp5x7dhj92cDGWvn2\nqcddfR3HLaHT+AXKcnd379ChQ9v9+8aPj31ptRX1OYkG1iHMQyZocBYASgCARo2r5RpFo0rR\nCH6LmYggOIYb+PrwGW17EsQxPPXsQ4O7pYKBw7tLp/bZc+H+SADAyO5n/Tvc2nslslSMAGDg\n6yw2Omza64n2dVmbMIvDp1Y35N7Fgt2fGl6GpJmijPId0415BRQAAGZuHeMf7v2if6IdUOtI\nQBDVDBs2DMMww/u9LDabEnUQYXFNP77Msn+mkRKMWIsKrLCGairey3oOx2f8f7/ovPHIcvKj\nRYeWFhA2HxixOqji9m/yc8tNPjwhv/YDx2ccy3lg/aEIs9nxrE792iHIV8dy6GkaeZFYk5Nr\nwmYLUAAAIrAym31BlX+R7OjeIJE/hwnN+c3mERVa8L84OhnDyH+SzAzOzuQvqPCK3Ac6ztzT\n6ou7OVeLk/58oMH/O4+ViJ0blU2ve+EAwXEEABD8v97OfVp9y66jT9s+Cmah2LfL9c5HopYD\nXFNZKK4TNbAsOo7pFYPjYGj3a7WsHsO7X+7U3c7Ego+z+ABt9XTNdlIBQP48z7qo1hsEAJjZ\nCA2OXMBxUJ4nktUpnHt2EJfW4Thu62z5JKuCw2N38rIzOO+xuZ3J64v3daLcwYAgSrG0JH9Q\nezsQjP1B5zdEO6MML3ABKfG8Im7vyRxavf3IJIqkn2VnvzKZdorjGSK/9gMAQDBqA66WS/eF\nmn18meXQk+wADdM+JwcA4AhH8++JEhFYcnu24fuNUDMmlv9N9eHY1cbOpWniEApeR0IkunU6\n8/wPqS+wf0ELE2gn7NQ3YezkTUFvTWjD+1mIWobmGn7E5IAABzsAGgAAAEEAwDBLLMPSAQAx\nAGI9074BAACoSgahy15LtAzm4d/p84MG3kc9vu5SdXHN0n8+tHI0O7b2kkqp/uC7kbUV9T9+\ncLRDF6vJ60a0T6ivHWxVIQh6hjBsq+4FMR2hZo7AjBIvJLyBNGVpJlP/4Xg+M9mGMGwrwjPV\nlKbSokOoq8Yp+KHG1YnsMKB3vqDEkncQBXX2dPAINNzga1RYaZaYzUVZbBTloAqpCiCgYw/r\nZhOctMjeuY3XCeAI2P1m6/kcx1S4RoOpMBaXhZenaSoeYDjOYrFYHsFAaKtWqNk8NsLi6FkQ\nmN3Rtw3ifhMNmthz5Mf9LeyfedBn0cH0i6OTayvqyYrq1TGtQ4hh2KlTp+Li4qqqqmxtbUeO\nHDl+/HgUbcOJpyGIYSiy1jBEU8KIfc9uaLrYEoxc1/7BvDocYanYpmRHAUFQq/oGd+8bbOAm\nZr24cduHx9z7dJz727jDKy+Y2QpHfTrgp+kngBz59EAE35TkGc4xhBWjftvATggAXOBZfrSz\nqPA2MraX8nKJbVDXggsp7stqhB4AAL3TdQEXxMXYlYUhvZy87LQ/80w4KLvpHGdmIzRy5Qlq\nYlqHcO/evTExMYMGDQoPD8/Ozj548KBIJPrkk0/IjguCIOiNwx+ysNmLqRAEQe3v8MoL5nYm\nc38bpx1vLDDjzTsQsWPaiX++v0qFYX4ODg4G93HM3WsrvljQ/wdHRS0/64bCf4Eo38q/cGNB\nv02Nlga6xG/I+y/tLGxhINkhvDaM6hAWFxfHxsYOHTp08eLFAIAxY8ZwOJxz586NGjWKaku7\nQhAEMR6nezjZIUAQBIH31wYLLfnNpvsXmPEW/jVJKTd2Zam2g6LosGHD9O+jvHey8dp5s7lX\n+zv1VT0835jHGzZsGBg2THbBpVvSasvVVXrGi0JtxJjxxnTBqNJz/fp1HMfDwsK0W8LDw3Ec\nv3btGolRQRAEQRAEQWQxtzPR9gZtOlvYODUtb8MVcEytBK1/j0I43mPMF2WxnJqvJSgYsdZ8\n/l3YG4ReEaOeEObn57NYLHd3d+2WLl26cLncgoICEqOCIAiCIAiCqGDs57R8mQ5h85F/J0tD\nzRxQOy/tR6iVKzkxQQzCqA6hWCy2sLDQXQUVQRArK6vq6mrd3W7dulVf3zQRUGVlZbuGCEEQ\nBEEQBEEvi9Wxt9kcuCYq9DoxqkOoUCg4HE6zjVwuV6FQ6G7Ztm1bfn4+8XO3bt08PDzaKT4I\ngiAIgiAIgiAqYVSHkMfjyWSyZhuVSiWfz9fdMmXKFIlEQvzc2Nj49OnTdooPgiAIgiAIgiCI\nShjVIbS2tn78+LFGo9GOGsVxXCKR+Pj46O4WHv7fxHfJyckxMTHtGiUEQRAEQRAEQRA1MGpW\nInd3d41GU1hYqN1SVFSkVCp1p5mBIAiCIAiCIAiCCIzqEA4ZMgRBkDNnzmi3nDlzBkGQIUOG\nkBgVBEEQBEEQBEEQNTFqyKizs/Po0aNjY2NVKpWPj092dvb169dDQ0NdXV3JDg2CIAiCIAiC\nIIhyGNUhBABERkba2NjEx8ffvn3bxsbmo48+Gj9+PNlBQRAEQRAEQRAEURHTOoQoikZERERE\nRJAdCARBEARBEARBENUx6h1CCIIgCIIgCIIgyHgIjuNkx0Cm5OTkVatWubm5kR3IK1Gr1SKR\nSCAQWFhYkB0LBEGvQWNjY11dnYWFhUAgIDuWN5pEIlEoFPb29igK759CEARBDJSenv6mdwgV\nCoVIJCI7ileFYZhcLmez2Vwul+xYIAh6DdRqtVKp5HK5bDbTBvbTi0Kh0Gg0AoEAQRCyY4Eg\nCIKgNvGmdwghCIIgCIIgCILeWHAMDARBEARBEARB0BsKdgghCIIgCIIgCILeULBDCEEQBEEQ\nBEEQ9IaCHUIIgiAIgiAIgqA3FOwQQhAEQRAEQRAEvaFghxCCIAiCIAiCIOgNBTuEEARBEARR\nlFqtbmhoIDsKiAlgWYKg1sAOIQRBEARBVKTRaDZu3Lhy5cr6+nqyY4HoDZYlCNIDdgghCIIg\nCKIiBEEEAkFBQcGqVavgdTz0KmBZgiA9YIeQ3nJycnAcJ34uKSlZs2ZNXV0duSG9KAakAFEE\nM8oSA7JgQArMwIADgaLowoULhw4dSt/reAYcBWZgQFliBlgjqIn19ddfkx0D9JJSU1NXr15d\nVlY2YMCA0tLSFStWFBUVyWQyf39/skMzFgNSgCiCGWWJAVkwIAVmYMyBQBBkwIAB5eXlaWlp\n6enpgYGBXC6X7KCMxZijwAy0LkvMAGsEZbHJDgB6eV27dnVxcbly5YpcLn/48KFEIvH19Z05\ncybZcb0ABqSgSyQSHTx4MDc3197ePiwsjI4NHH1TYEZZYkAWDEhBV0NDw8mTJ5OTkxUKRdeu\nXSdOnOjq6kp2UEZh0oEgnu0AAK5evbpq1ap169aZmpqSHZRRmHQUAJ1PEFr0LUu6YLtEBQyo\nDroQ7XNbiI6kUunKlSuLiooAAL6+vqtWreLxeGQH9WIYkAKhpqZm4cKF1dXV2i2jRo36+OOP\nUZQ2A7PpngIzyhIDsmBACoSysrLVq1dXVlYCAAQCgUwmY7PZ8+fPDwoKIjs0ozDjQEgkkoMH\nD2ZkZCAIUlVVBQBwd3en0XU8M44CoP8JAtC/LBFgu0QFDKgOzdA1bojQ0NBQU1ND/GxlZUXH\nwQ8MSIFw8ODB6upqd3f31atXL1682NbW9ty5c9u2baPRPRe6p8CMssSALBiQAgBALpevXbu2\nsrLS3d19x44dR48eDQkJUavVW7duLS4uJjs6ozDgQIhEokWLFl28eBFF0aCgoIiICHt7e3q9\nA8aAo0Cg+wmCAWUJwHaJMuheHZ4H3yGkNy6Xm5WVZWtra2pqmp6e/vTp0wEDBiAIQnZcL4AB\nKRB27txpbm6+ZcsWFxcXV1fXoKCg1NTUjIwMGmVE9xSYUZYYkAUDUgAAnDx5MikpqUuXLhs3\nbrS1tT1//vzRo0cBALNnzw4ICCA7OqMw4EBs3749NzfXy8tr06ZNfn5+vXr1Cg0NLS0tzcjI\noMs7YAw4CgS6nyAYUJYAbJcog+7V4XmwQ0hjEolELpcHBwcHBQW99dZb6enpaWlpzcri7du3\nzc3NKfs4ngEpaP39999jx47t1asX8Sufzx88eDC9Gghap8CMssSALBiQAuH3338Xi8XffPON\nra1tXFzcrl27cByfPXt2eHg4ACA+Pt7JyYnNpu57+Aw4EBqNZvv27RiGrV271sbGhtjIYrEG\nDhyYkpJSUFBA/et4BhwFLVqfIBhQlgiwXaIIWleHFsEOIS2JxeLt27f/8ssvN27cGDRokIWF\nBY/HGzx4sLZqBQQEoCh6+fLlLVu2pKSkDB8+nGoNBANSAABIJJK9e/f++eefKSkpdXV1Pj4+\n3bp1035KiwaCASkwoywxIAsGpKDr2LFjpqamU6dOjY+P37lzp+5Vl1QqXb16dW5uLjVf2mHM\ngVCr1UeOHGGz2XPmzNHdjqIon8+/efOmRCKh7HU8M44CA04QBFqXJV2wXSIRY6pDi2CHkH7K\ny8uXLFmSm5trbm4+duxYd3d3oVAIANCtWmlpaVlZWUeOHMFxfPTo0b179yY76mcwIAUAgEQi\nWbRoUVZWVm1tbVlZmUwmq62tHTFihO4rxboNRJcuXTp37kxiwM9jQArMKEsMyIIBKTRz586d\n8vJyLpe7e/du3asuAMDu3bvz8vICAgL69u1LbpDPY9KBYLFYV65cqaurGzhwoKWlpe5HtbW1\nly9f9vf3z8rKcnBw8PDwICvIFjHjKDDgBKFF37LUDGyXyMKk6tAi2CGkGaVSuXz58oqKCi8v\nr/Xr1/v5+RGVisDj8YYMGZKXl5ednf3o0SMURadPnz5x4kQSA34eA1Ig/Prrr9nZ2W5ubp99\n9lmfPn1yc3PLysqqq6sDAgJ0bwsRDYSDg8OwYcNIjLZFdE+BGWWJAVkwIIXnaTSapKSktLQ0\nAIDuVVdcXNyRI0f4fP7ixYt106QC5h0ItVqdnp5eXFwcFBSke+EVHR2dl5f39ddf+/j4UO15\nCGOOAt1PEM3QsSw9D7ZLZGFYdXgeXHaCZs6dO7dr1y4HB4dt27Zpa1RGRkZGRoatrW1ISAiL\nxcJxPDExsbi4eODAgRRcmoYBKYhEIhsbm+nTp3M4nB07dhBZiMXiFStWlJaWBgcHz5s3j+JD\nBRiQAmBEWQKMyIIBKWAYhuM4i8XS3bJ06dKcnBwnJ6fvvvvO2tpaLpcfP378xIkTOI5/+eWX\nQ4YMITHgFjHgQDSj0Wi++uqrvLw8Pz+/zz//nHi2c+7cuV9//dXCwmL//v26h4wiGHAUmHGC\naIaOZQk81zTBdqn9MbI6PI9aw3Mhgx4+fAgAGDNmDFEiS0pKdu7cmZWVxWKxNBpNYmLit99+\niyBIYGAg2ZG2iu4plJaWLl++3M/Pj8VihYaGals3a2vr9evXL1++PCEhAQBA5QaCASkQ6F6W\nCAzIgtYpiESiffv2JScnq1SqTp06hYaGjhkzBkVRFEVXrFixZs2awsLCmTNn2tvbi8VipVKJ\nIMiMGTMoeNUFaH4gAADEHWrdZofFYq1evXrNmjV3796dPXu2u7u7RCJ5+vQpAGDq1KnUvIKn\n+1FgxgmCAWWptaYJtkvtiRnVwRhwyCjNlJSUZGRksFgsNze32NjYrVu3Wltbr1ixYvr06Tdu\n3CgsLOzXr592Bi1qonsKGo3m2rVrGRkZjY2N/v7+uq8UCwSCwYMHJycnZ2RkiESiZgMJqIMB\nKRDoXpYIDMiCvilIJJIvvvji4cOHGo0GAFBXV5eampqZmdm/f38ej8fn84OCgnAcLykpqa6u\nxjDM19d30aJF1LzqAnQ+EFVVVT/++OO2bdtOnTpVVVXl7e2tnduDOApKpbKgoODp06f19fVC\noXD27NkhISHkxtwa+h4FAt1PEMwoS3qaJnNzc9gutRu6VwfjwSGjNCOXy9esWfPgwQMAgJmZ\n2QcffDBq1CgEQXAc/9///ldaWrpp0yYvLy+yw9SHASlIJJLly5eXlpa6u7tv2bKl2Z1F7acr\nV66k7LpADEgBMKIsAUZkQd8UfvzxxytXrnh5ec2dO9fV1TUvL2/v3r05OTmenp7r16/XXkfi\nOC6VSgUCAYfDITdg/Wh6IIjZGqqrq7VbHBwcvvnmGwcHB93d5HJ5UVERjuNubm58Pr/dwzQW\nTY+CLvqeIBhTloxpmmC71D7oWx1eCOwQUlpDQ8PJkyeTk5MVCkXXrl0nTpzo6uqq0Wju3r2r\n0Wh69eqlfXh95syZPXv2WFlZ/f7771Qb+fB8Fp07d6ZXCs/TNgEtDh+XSCRJSUljxowhKzxj\n0DEFBpQlWKkpgngtZOrUqXw+f8eOHQKBgNiuUqnWrl2bmZkZERExdepUcoPUjxllCQDw888/\nx8fHd+3ade7cuaampseOHUtISLC1tV2/fn2z63hqYkB1eB4dTxCA/mUJ0L9pYky7pIum1eGF\nwA4hdZWVla1evbqyshIAIBAIZDIZm82eP39+s1mwcBw/efLkoUOHqPk+sTFZUDyFFls3YKiB\noJoWs6BXCgwoS7BSU4T2tZDU1NSRI0dOmTJF91ORSBQZGcnlcg8dOkTZRcmYUZaIa9/IyEgM\nw3bs2GFqakpsj4qKioqKosV1PAOqA2DECYIBZQnQv2liRrvEgOrwEuA7hBQll8uXLl1aUVHh\n7u6+du3ayMhIsVicl5d369atwMBACwsLYre0tLSff/75woULCIJMnz49NDSU3LCbMSYLiqdQ\nVla2ZMmS5OTk2tpajUZTUFBw4cKFDh06uLq60mj4eGtZeHt70yUFBpQlWKmpQ/taiEwm8/Hx\n6dmzp+6nQqHw1q1bVVVVAQEB1HyzhRllqbS0dMmSJcXFxRUVFcHBwX5+ftqPiCNy586dmzdv\n9u/fX3txTzXMqA4MOEEwoCwRaN00MaNdYkB1eDmo4V0gMkRHR5eXl3fp0mXDhg2urq7nz5+P\nj48HAMyaNUu70mVNTc2uXbvu3bvn4OCwdu3a8ePHkxpyCwxmQfEU5HL52rVrKysr3d3dd+zY\ncfTo0ZCQELVavXXr1uLiYgCAlZXV+vXrnZycEhISfvrpJ2o+b9efBS1SAPQvSwBWairRFnsA\nwLVr19Rqte6nOI7X1dUBADAMIyc+Q5hRloRCoVAoTEhIqKys1I6L05o8efLkyZNFItHy5cuJ\nqSApiAHVgRknCAaUJQKtmyYGtEvMqA4vCYcoaeHChWFhYcRLz+fPnw8PDw8LC4uOjiY+jYuL\nk8lkOI5XVVUlJiYSy9RQkDFZUDmFI0eOhIWFzZ8/n/jfPnfuXLMUCGKx+JNPPgkLC7t9+zZJ\nkepjTBYUTwGnf1nCYaWmHm2x/+GHHzQajXZ7TExMWFjYe++9J5fLSQxPD2aUJVznEHz++edq\ntfr5HQ4fPhwWFnbq1Kn2j80YDKgOzDhB4PQvS7po2jQxoF1iTHV4CbBDSFEzZ86cNWsWjuNx\ncXHNimNdXd2ECRPWrFlDZnzGoXsWRrZuOI6LxeKYmBiy4tTPyCyonAJO/7KEMyIFnOZZaDSa\nZleK2lP7F198cf369czMzN27dxN5nT17lqw4DaL1UWhGewi2b9/e4jXivXv32j8qIzHgQDDj\nBEGgaVl6vl3C6dk0wepAa3DIKLWUlJQUFhYCABwcHOrq6qKjo3/55Rccx2fPnh0eHk7sc+DA\nAaVSqX3+TjXaFACdsyDU1tba29u7urrGx8fv3LlTNwWpVLp79+6NGzcSe1pZWVF2gikjs6Bg\nCswoS7BSU4FIJPr+++8nTZo0fvz4Tz/99MyZM8SYK+0QoIcPH27atGnFihVnzpwxMzObN2/e\nqFGjyI66OQaUJRzHMzMzY2NjU1JSiAXWDI7C8vHxISPSVjGgOuii7wmCAWWptXYJ0KppYkC7\npEXf6vDq4KQyFFJTU7N06dILFy4EBASYmJgkJSWlpaUBAHQrVVxc3JEjR/h8/uLFi7VT91KH\nbgoWFhYajYaOWWjduXOnvLycy+Xu3r27Weu2e/fuvLy8gICAvn37khukQTTNghllCVZqKtC/\n+rx2diipVNq/f/8VK1Z8+OGHXbt2JTvq5hhQliorK9esWXPixIm7d+9evXr1+vXrnp6eNjY2\nNJqgiwHVoRmaniAYUJb0t0tAZ91zKjdNDGiXdNG0OrwW8AkhhRw6dEgkErm6utrb2wcHBxPL\ndDo5OQUGBgIA5HL5oUOHdu7cCQCYN2+era0tyeG2RDcFAABdssjJydHeSiwpKVmzZg3x3vbQ\noUPlcvm+ffuatQtxcXEXLlzg8/nvvPMOaUE/q7UUAK2y0EXTstQMrNRUsH///urqai8vr+3b\nt0dHR2/ZssXLyys7O3vt2rVKpRLo3Iy/ffv233//Tc0Vsehelmpra5cuXZqXl2dlZRUREREW\nFlZRUbFixYrU1FRAkwm6AG2rA8NOEMwoSwbbJUCHpomO7RLDqsPrAp8QUoJIJBIIBDt37rSw\nsNiwYQOfz0cQJCAgICMj48mTJ6dPn7506dJff/117949BEFmzJgREhJCdsjNPZ8CAIAWWaSm\npq5evbqsrGzAgAGlpaUrVqwoKiqSyWT+/v5dunRJT08XiUROTk4zZswQCARyuTwqKuqPP/4A\nACxcuNDb25vs8AHQmwIAgC5ZaNG3LOmClZoKiBR27dplaWm5adMmOzs7BEFsbGyCgoJycnKy\ns7MxDOvVqxfQuRlPwQcLDChLAICNGzcWFBR4e3tv2LAhICCgsrIyOTlZrVYnJSV5eHg4Ojrq\nHgIPDw9iokXqoG91YNgJAjClLBnTLgEKN000bZeYVx1eF9ghJJ/u+jmhoaHaVoDP5wcFBeE4\nXlJSUl1djWGYr6/vokWLqLaCJ2g9BUCHLExNTVNTU9PS0o9Gkx0AACAASURBVB49enTs2DGJ\nROLr67tgwQI2m02L1g3oTQHQ5JJFi9ZlSQtWaipotjSZ7jgfFovl6+sbExNTWFj4zjvvEPfd\nqXnhRbuypFarMQxD0WfGH+Xk5Bw8eNDW1nbDhg3m5ubnz5//9ddfcRx/++238/Pzm13Hd+jQ\nYdiwYWTF3yJaVwf6niAYX5aMaZcAJZsm2rVLWvStDm2NTXYA0H/r5wAAmo0H4PP5U6dO/eij\nj6RSqUAg4HA4JMVogJ4UAOWzMDMzW7du3cqVK2/dugUA8PX1XbVqFTGCHwBgYWGxcePGY8eO\nXbhw4enTpwiC+Pr6fvDBB5S6S6Q/BUCTLAi0LktasFJTgW4Kz7O1tXVxcSksLHz06JGnpyex\nkRigtXz58qSkpIiIiI4dO7ZjvC2jV1lSq9XEpAvLli3TjfbevXsAgMjISDMzs5s3b+7atUs7\nIkuhUCQmJhL/7X379qXmbA20rg40PUG8CWXpeS22S4B6TRO92iVdNK0O7QA+ISSf7nvDYrE4\nJCSk2f0wBEF4PB4Fx45rGUwBUDsLiUQSExMjl8sBAF5eXoGBgbq339hsdq9evcaNGzd27NgP\nPvhgxIgRdnZ25AXbMv0pAJpkAehflgiwUlNBsxRCQ0N1U8Bx/Pjx442NjcHBwbpvthDfGjhw\noIuLCxlRN0evsqRUKuPi4jIyMoqKigYPHqwN1dvbu7GxcezYsfX19atWrVIqlZMnT46IiAAA\nPHr0qKysTC6XJyYmvvXWW6ampqRm0DK6Vwc6niDekLJkZLsEKNY00atdaoaO1aEdwA4hJWir\nVklJSVVVVf/+/UkfD/CiaJ0Cl8vNysqytbU1NTVNT09/+vTpgAEDmsVP5dYNGJcCoHwWBFqX\nJS0GZMGkFMrKyioqKnRTOHv27PXr14VC4YwZM4jBQrrfsra2JiPeltHoQLDZ7CFDhmRlZTW7\njkcQpG/fviiKxsbGJicn9+nTZ968ecRX/vzzTz6fP3fu3I4dOw4YMIDU8PWh0VF4Hh1PEG9C\nWXqhdglQrGmib42gY3VoB7BDSBXaqpWZmUmRMeIviqYpSCQSuVweHBwcFBT01ltvpaenp6Wl\nNWsgbt++bW5urjuogFIYkEIzNC1LzTAgCyalcO/evbS0NKFQWFtbe/r06aioKADA7NmziWnx\nKI5GB6K163jCpUuXCgoKJk2a5ObmBgCIjY2Ni4vz8vJ67733qLZG3PNodBR00fcE8SaUJdgu\ntTP6Voe2BjuEJFCr1ZcuXTpz5sydO3fq6uo6depE3Aei4HvDerSYBb1SEIvF27dv/+WXX27c\nuDFo0CALCwsejzd48GBtAxEQEICi6OXLl7ds2ZKSkjJ8+PDn79iRiwEpAEaUJQZUagakAABo\naGg4cuTI3r17T506lZOT4+TkZGlpqU2hqKgoMTHx0qVLubm55ubmc+bMoeAkAbQ7EGq1WiaT\ncblc7RY91/F1dXW3b9+WSCR2dnYxMTFRUVEIgsydO5dYxYFSGNAuMeAEwYyyBNslKmBAdWhT\nCGVXaGGq8vLyb7/9tri4WLvF3t7+yy+/7NatG/GrRCJZvnx5aWlpcHDwvHnzqFm19GdBlxSW\nL19eXV1tYWERHh4+bNgw7Xh9qVS6atWqwsJCT0/Pjh07XrlyBQAwefLkyZMnkxnxcxiQAmBK\nWaJ7pWZACgCAsrKy1atXV1ZWAgAEAoFMJmOz2fPnzw8KCgI6KfTv33/atGkODg4UPNnT7kBo\nNJoNGzZUV1evW7eu2Stbcrl8zZo1Dx48CAgI0M4LotFo1qxZk5mZqd1t+vTp48ePb++4DWFG\nu8SAEwSB1mUJtktUwKTq0EbgE8J2RaymWl5e7ujoGBERERAQoFAoioqKrl692qNHD+K2FsXX\nzwFGZEH9FJRK5fLlyysqKry8vNavX+/n5ycUCrWf8ni8IUOG5OXlZWdnP3r0CEXR6dOnT5w4\nkcSAn8eAFAAjyhIDKjUDUgAAyOXypUuXVlRUuLu7r127NjIyUiwW5+Xl3bp1KzAw0MLCQpvC\ngwcPFApFiy+NkIumByIlJSUtLS09PT0wMNDgc0IURQMDA9lstkqlcnNzi4yMfPvtt0kMvkUM\naJeYcYLQom9Zgu0SFTCsOrQVHGobKpVq586dFRUVuht37twZFha2ePFimUym3Xj8+PGwsLAP\nPvigrq5Ou1EsFsfExLRfuK14lSwokkKLzp49GxYWFhkZ2dDQoN2Ynp7+xx9/xMbGqtVqHMcx\nDLt+/frhw4eLiopIC7R1tEuBAWWJAZWaASm05siRI2FhYfPnzyeyOHfuXHh4eFhYWHR0tO5u\nYrH4k08+CQsL2759O4ZhJAXLqAOh0Wi2bNkSFha2YMECqVTa7FOZTPbVV1+FhYWtW7eOaJco\nhQHtUotod4IwBsXLUotgu0QFjKwOrx18QtgmMAzbtGnT5cuX79+/HxISor3fs23bNqVSuWLF\nCt0x7t27dy8tLc3NzUVRVLu4p0Ag0F2ChhSvmAUVUmhNbGxsUVHRe++917NnTwBASUnJxo0b\njx49+vDhw+Tk5Ozs7LfffhtBEGdn5549e1paWpIdbwvolQIDyhIDKjUDUtDj999/F4vF33zz\nja2tbVxcnO7qZACA+Ph4JycnirwDxrADgSDIgAEDysvLjX9OSGK0uhjQLrWGXieIFmEY1mxV\neiqXpdbAdokKGFAd2gHV6xJNRUdH37x509TUVHcsNY7j9fX1AABnZ+dm+48ePRoAkJqa2s5x\n6seMLLRKSkry8/OJnzt16gQAyMjIKC4uPnz48IIFC3Ac37Zt2+HDhx0cHO7du5eXl0dqsK3S\nZkGvFBhQlmAKFFdbW2tvb+/q6hofH79z507dqy6pVLp7925ikWvw7xLPTk5OSUlJ5eXl7R8q\n8w4EiqILFy4cOnRoQUHBqlWriES0+Hz+2rVrvb2979y5s2HDBo1GQ1aczTDsQND0HKfRaPBn\nJ7MQiUTff//9pEmTxo8f/+mnn545cwbDMOIjypal1sB2iUQ0vV4iC+wQtomLFy8CABYsWODm\n5lZSUnLr1i0AAIIgjo6OAIDnSx6fzwcANDY2tnuk+jAjC4JcLl+xYsU///xD/Dp27Fhvb++U\nlJRPP/00NjZ25syZ69evd3Nz4/P5xNvq2tMPpehmQa8UGFCWYApUkJOTo712LCkpWbNmTV1d\nHfGrg4NDXV1ddHT0L7/8onvVBQA4cOCAUqns3Lmz9t8hrr2+/fbbjh07tnMKgBEHQpdEItm+\nffvs2bOzs7MBAAb7hElJSSRF2hyTDgRNz3FqtXrDhg0//fSTtl5LJJIvv/wyMTFRqVTiOF5c\nXLxnz57ly5dLpVJiBwqWJdguURB9r5fIAjuEbYJ4XZXD4ZSUlKxYseL7778nJsIaOXIkAGDf\nvn1KpVJ3/6tXrwIAunTpQkawrWJGFgQ+n29ra3vz5s3a2lri1/Xr169cuXLZsmV79uwZPXo0\ncT8sJiamtLTUysqqa9euZIfcAt0s6JUCA8oSTIF0qampy5Yt27p1K47jRAppaWl//fUX8enQ\noUPlcvm+ffuaXXXFxcVduHCBz+e/8847uv+alZWVh4dHe+cAAKD/gdAlEokWLVp08eJFFEWD\ngoIiIiLs7e319Annz58/ZMgQsqJthkkHgqbnuIaGhtLS0oSEBG2fcP/+/dXV1V5eXtu3b4+O\njt6yZYuXl1d2dvbatWu1h4NSZQm2S2QEaxh9r5fIAt8hbBNWVlbXrl1LSUm5cuWKRCLp2bPn\n+PHj2Wx2165dU1NT8/Pz79+/7+vra2JiguN4bGzs4cOHEQSZN2+edhpcKmBGFlo8Hi8xMdHM\nzKx79+4AABRFnZycOnfuzOFwAAA4jp88efLAgQMAgHnz5rm6upIabKt0s6BRCgwoSzAF0pma\nmqampqalpT169OjYsWMSicTX13fBggXELO1dunRJT08XiUROTk4zZswQCARyuTwqKuqPP/4A\nACxcuNDb25vsDJrQ/UDo2r59e25urpeX16ZNm/z8/Hr16hUaGlpaWpqRkdHi+4TEGuIUwaQD\nAeh5juPz+c3endu1a5elpeWmTZvs7OwQBLGxsQkKCsrJycnOzsYwTPu6GnXKEmyXqFkdAG2v\nl8gC1yFsKwcPHjxx4gQAwMvLa926dTwej9heW1u7Zs2awsJCFEWdnZ1ra2slEgkAYMaMGePG\njSMz4pYwIwuCWq2eNWsWh8PZs2dPs9e109LSTpw4ce/ePQRBpk2bRsGFjLRay4L6KTCgLMEU\nSCeVSleuXFlUVAQA8PX1XbVqlTYF8GwW9vb2YrFYqVQiCDJ9+nRKZQHofyAIGo1m0qRJKpXq\nl19+0R35ptFovvjii4KCAnd39+fXJ6QUZhwIAn3Pcbqr2KWmpo4cOXLKlCm6O4hEosjISC6X\ne+jQId1bDBQB2yVqou/1EingE8I2UVZWtmfPHrlcDgBQKBT9+vWzsrIiPuLz+UFBQUqlsqio\nqLq6Wi6XW1tbf/bZZyEhIaSG3AJmZKGFoqhcLr99+zax9qh2e01NzYYNGwoLCx0cHL766qth\nw4aRGKRBLWZB/RQYUJZgClQgkUhiYmKIFLy8vAIDA3VP80QWxMCt6upqDMN8fX0XLVpEhXFl\nuhhwIAhqtfrIkSNsNnvOnDm621EU5fP5N2/elEgkzz8npA7GHAgCfc9xunNsymQyHx8fYjZI\nLaFQeOvWraqqqoCAABsbG7LibA1sl6iJptdLZIFPCNtEY2Pj6tWr+Xx+7969Dx48aGZmtm7d\numbDG+RyeXFxMYfDcXFxodo6pARaZ1FSUlJcXNy/f3/daalrampmzpzZp0+fVatW6e4sEoly\nc3MHDhxIqRTAi2RB2RQItC5LBJgCFSiVyvXr16tUqoaGhsLCwqCgoIULFz4fJ47jUqlUIBAQ\no4OohgEHQuvjjz8uLy/fsWNHszFXGRkZq1at8vf3T05O/vTTT6l54UjrA8GMc5wu7XPCjh07\n/vzzz8SQSwKO47NmzRKJRJs2bfLy8iIxyBbBdokKGHO9RBb4hLBNcDicwMDAoKAgX19f4s5W\nYmJinz59tLdbAABsNtvGxsbS0pKyJZK+WdTU1Hz55ZcXLly4dOmSWq3u3LkzcX+az+eXlZUl\nJSUNHz7cxMREu79QKOzcuTOlUgAvmAU1U9Cib1nSgimQTiKRyOXy4ODgoKCgt956Kz09PS0t\n7enTpwMGDNBGe/v2bXNzcz6fz+PxiOnjKIjuB0KXWq1OT08vLi4OCgrSvQ6Ljo7Oy8v7+uuv\nfXx8goKCyAtQH/oeCGac48rKylgslrZ3pH1OWFZWVlFR0b9/f23AZ8+evX79ulAonDFjhm5H\nkQpgu0QFTLpeIgvsELYVDodDNFteXl6tVS1qIh4aE1WFplnw+Xx/f38EQYhVR2NiYqqqqhwc\nHCwsLOzs7OLi4ng8nvbddMpiRhZaNC1LumAKZBGLxdu3b//ll19u3LgxaNAgCwsLHo83ePBg\n7bVXQEAAiqKXL1/esmVLSkrK8OHDqXbV2AxND4Rarb506dKZM2fu3LlTV1fXqVMnb2/v1NTU\nnJyc/Pz83r17EzPRnzt3LioqytLScsqUKc8vX0YpND0QDDg7VFZWLlmy5M6dO4GBgc/3Ce/d\nu5eWliYUCmtra0+fPh0VFQUAmD17NqUeD8J2iToYUCNIBzuE7YEuVauqqurHH3/ctm3bqVOn\nqqqqvL29dV/8oEsWEomkoaHBwcHBz89v7Nix9vb2FRUVKSkpZ8+ezc7OdnZ2rqioyMzMDA8P\n172fTSlECkKh0NzcnL5Z6EGXsqQHTKHdlJeXL1myJDc319zcfOzYse7u7sT06LrXXmlpaVlZ\nWUeOHMFxfPTo0b179yY76hdAowOxfPnyCxcuFBUVFRYW3rlz5+rVq97e3mPGjMnIyMjOzo6N\njb179+7x48evXLkCAJgzZw5ZE+i/HLocCAac4wAAfD4/Nzc3PT09MzOzxT5hUVFRYmLipUuX\niLo/Z84cSg08hu0SdTCjRpAOdgjbCfWrlkQi+eKLL/Lz83EcV6lU+fn5iYmJ/v7+uhPEUTwL\n3dt1/fv3NzU1ZbPZHh4eoaGhffr0UalUqampxHzKMpnMxcWFgreun08BAEC7LIxB8bJkDOqn\nUFJSUllZaW1t3doO1E9BqVQuX768oqLCy8tr/fr1fn5+xFUXgcfjDRkyJC8vLzs7+9GjRyiK\nTp8+feLEiSQG/DyDRwHQ4UDU1tYuXbq0vLzc0dExIiIiICBAoVAUFRVdvXrVz89v0qRJSqWy\noKDg6dOn9fX1QqFw9uzZlLp8NxLFDwQDznFaKIoOHDiwuLhYT59QKpX2799/xYoVH374IaVW\nimNAu2QMilcHwKwaQTrYIWw/2qrl4OBAnZVntPbt25eVldW1a9eVK1dOmDBBJpNlZmbevHlT\n2y0hUDaL1m7XEWxtbQcOHBgaGmpmZlZWVtbQ0FBbWzt8+HASA36e/hQATbIwHmXLkvGonIJc\nLl+4cKFYLB48eLCe3aicAgAgPj7+0qVLDg4OGzduNDc3JzZmZGTEx8eXlpa6ubnxeLxhw4Y5\nOzs7OztHRkYOHDiQ3ICbMfIoAMofiP3792dkZHh6em7evLlnz56enp7Dhw/ncDipqanJycmj\nRo0aMGBAeHh4v379goODZ8yYQcEUjETZA8GAc1wzxvQJHzx40KdPH91FTaiA7u2S8ShbHQAT\nawS54Cyj7e3hw4fdunUjO4pniEQiGxubyMhIDMN27Nih7f5FRUVFRUXZ2tquX7/ewcFB9ytU\ny0KpVC5YsKCkpMTLy2vZsmX672PhOL5z5864uLht27ZRZGVb8IIpAGpkoVarFQqF7tQFL4Fq\nZeklUDaFxYsXFxUV7d+/38LCQv+elE1h27Ztly5dmjVr1jvvvAMAKCkp2blzZ1ZWFovF0mg0\nPXv2/Pbbbyk+N4DxRwFQ+EB88MEHUqn0xx9/bDYKdMuWLdeuXYuIiJg6dSpZsbUFqh0IBpzj\nAAANDQ3Pny80Gs3mzZuTkpI8PT2/+eYb3Wt6iUSSlJQ0ZsyY9g3TMAa0Sy+EatUBMKVGUAp8\nQtjebG1tSfzrarUawzDdUdSlpaVLliwpLi6uqKgIDg728/PTfkQsBHTnzp3nnxOSm8XzDN6u\n000ZQRArK6v4+HgURfv160dSyM29UAqAAlloNJqNGzfGxsa+4iJjVCtLL4GyKfB4vMTERDMz\ns+7du+vfk7IplJSUZGRksFgsNze32NjYrVu3Wltbr1ixYvr06Tdu3CgsLOzXrx8F1yXTZfxR\nAFQ9EDiOHzx4EAAQGRnZbI5ES0vLhIQEuVweGhpKUnRtgmoHggHnuJKSksWLF7PZ7GZdC+I5\nYWpqal5e3vPPCT09PckI1gAGtEsvhGrVATCiRlANpec7gl4vtVq9ceNGAMCyZcu0J3WhUCgU\nChMSEgAAAoGg2VcmT54MAIiKilq+fPnzzwmp4+HDhwCAMWPGEDcXm92uS0xMbHa7zszMDADw\n4MEDsgJ+3oumAMjOAkEQgUBQUFCwatWqdevW6d4vgCgiMDBw//7958+fnzBhAk1vV48dOzY5\nOTklJSUlJcXMzGzmzJmjRo1CEATHcaIRwzCM7BgNYMBRQBDE0dGxrKwsLy+vR4//t3fvUU1d\n+eLAz8kDwkOegiDykDfIQ0Ei8QH4BkU7nWsvy3Z1gNuq9Y50tO1SR9TWOy2wnM6I16ky0tqO\neH1Up2OXICqMggUpGAJBQOQhWBIQDYaHSggJ+f1xfjfrTMIjAa9nn5Pv578Cru7NYWef7358\nv/PI3yLSir58+ZKippkKus9xEomkublZrVbn5uZiGLZhwwbyd9ls9ltvvZWRkdHc3Hzw4EGd\nfUIEMeBzie7oPiIQBPl2TIhKpRocHGxsbHz8+LH2i/b29hkZGW5ubhiGlZSUqNVqnX+1efPm\nzZs3y2SyysrK19pcY8yZMwfDMLFY3NnZefbs2Z07d2o0muzs7LNnz7q4uNy7d6+lpUX7w6Oj\no9999x2GYUjFt0Z1AUOgFywWa9euXbGxsURM+Pz5c0qaASbA4XDi4+OfPHlSXV1NdVumiMfj\nZWRk7N+///e//31ubu66deuIOT4/P18qldrb2yOVamJMDHgKGIatWbMGw7BvvvlGqVSSv15a\nWoph2Ny5c6lplsmg9RzX19d38ODBb775Ztu2bTY2Nrm5uVeuXNH5GeIoKZ/Pb25uLisro6KZ\nRmDA5xLd0XpEoAl2CE0Ij8c7dOjQkydP3Nzcenp6Zs6cSSxlETHhvn37Hj58+NVXX6Wlpeks\nY2/evDk0NDQkJISihk/OqOW6tra2yspKS0tLpC69GLviiEIviJgQw7DS0lK67xMqFIp//OMf\nZWVlycnJfD6f6uZMhUQi6ezsXLRoEfmoTEJCwsWLFwsLC+l7TobNZpOfiEaj+fvf/56Xl4dh\n2Pvvv49alWemPoWNGzeWl5e3tLR8+umnu3btcnZ21mg0BQUFly9fxnH8zTffpLqBYyDX1KU7\nWs9xeXl5MpksNDSUz+d7eHikp6fr7xMSKws7duxoaGiYNAMTCuj1uUSAEYHIiEATJJUxmkql\nKikpaWhowHE8KCgoJibG3Nxc/8ekUimx7Yag7u7uvXv3+vn5kc+OyuXyffv2SaXSVatW6ceE\n6FOr1dXV1Wq1Ojw8XHva5MqVK7m5ufb29qdOnSJ/QFdVVdnZ2aF2OcGoLmDI9GJ0dPTIkSOl\npaU+Pj7jxYQoDwcMw7q7u//rv/5LKpUSc/zHH3885q1IlHvR19f3u9/9Ti6XOzs7r1u3bs2a\nNdoHceTIkZKSktzcXGdnZ2obOX01NTWXLl26d+8ejuPJycm//vWvqW7Rv2DMUxhzmuvv7//0\n008fPnzIYrE8PDz6+/vlcjmGYampqdQGhGq1msVikeesp0+f5uTkiEQic3Pz2NjYd999l46f\nSzroOMcRKetSUlLMzMz++7//m7iW8ujRo/T09IGBgaSkpLfffhvHcaIXM2fOPHXqFLUNnhrE\nP5cwGBHIjAiUQVIZ44xZmTcgIEDnxm1JScnBgwetrKxQy8tE4HK5QqFQLBa3t7cvWbKEWMnW\nZnkWi8UymYzP59MrJmSxWG5ubu7u7sR9dGK5jjgkkJaW5uXlRf5hNzc3BC98G9UFDIFeyOXy\nkydP5ubmymSyly9fyuXy2tpa/RwziA+H4eHhvXv3dnV1+fr6ZmRkJCQkjLm4i3IvJBLJ8+fP\n16xZg+P4gwcP7t69m5+f//TpUxcXF1tbWycnp+vXr5ubm4eHh1Pd0mnp6+vLzMx8+PChi4vL\n7t27ly9fTnWLdMlksrlz5zo4OND6KYw3zbm5ucXFxSmVyvb29t7eXoVC4eDgsGPHDmrrDRJ3\n48VisXbOMqSmLob2iB4T7eY4csq6+Ph47V++nZ1dZGRkRUVFdXX11atX8/PziTOiW7dupePZ\nY/Q/l2BEYGiMCMRBQGiECSrzzps3j7zuW11dXVtbGxAQQCTqRA2Hw1m2bFl9fT3DYkKtmpqa\nv/zlL0VFRTiOp6Sk0DH9HfpdkMlkn3zySUNDg7W1dVxcXHBwsEwmk0gk+jEh4sPh8uXLZWVl\n7u7uhw8fniB1NbK96Ovr27t3b1FR0apVq1asWJGYmOjs7NzT0yMUCq9evdrY2Ojh4dHT01NX\nV7dx40adXLX0wuPxBAJBUFDQ9u3bXV1dqW6OLuJBVFZWbt++/Z133qHpU5h4mps9e3ZERMTG\njRujo6MTExOTk5M9PT2pbfDg4OA//vEP8pxlYE1dZEe0IdCfIDAMU6vVt2/fFovFQ0NDERER\n5Cp2dnZ2S5YsaW9v7+zsfPnypZmZ2XvvvUftysKUIf65hBlcZRpGhImDI6NGOHHiRGFhob+/\n/+eff06kVsMw7NKlS6dPn7axsTlx4gSRxYjQ2NhoSJJxCikUik8//fT+/ft8Pn/Ms6P79++n\n42Wqvr6+3bt3P3782MXF5T//8z/nz59PdYuMRosuZGZmVlRUBAYGHjp0iDgIpFQqjxw5Ul5e\nrn92FOXhsGvXrra2tn379kVHR0/8k2j24tixY0VFRaGhoQcPHiQfX29qarp69Wp5efnIyAiL\nxRodHd29e/fSpUspbCqzjfkgaPcUjJrmEKFz38HwmrpojuhJ0WKCIGgfjYeHx9GjR/UPX/zy\nyy+9vb2+vr4I/l0xgLFVpmFEmDLYITRCdna2UqlMT08nbwYGBwdLpdLm5mYWi0U+C+Tk5ERF\nG8el0Wju3bsnFAoHBgZmzZrFYrEm3iecNWsWgicfDIH+ct2k0O+CWq0+evTo6OjooUOHtMcw\n2Gy2QCAQCoVtbW06+4SoDQey8+fPDw0NpaSk6FdMLioq6u3t1d6pQK0XMpnMwsLi+PHjtra2\nmZmZ2td3wsyZMwUCQXx8/IwZM7q6ul68eNHf379y5UqqWstgEzwI2j0Fo6Y5ROicbTG8pi5q\nI9pA6E8QWtpHI5FInj59umjRIp1jR7a2tq6urmMmYgDTNIUq0zAiTBkEhIaidWXeJ0+efPrp\np5cuXaquri4tLf3pp5/8/f0dHR0niAlpffXW0tLS3d2dpuddCYh3QaVSnT9/nsPhbN26lfx1\nFovF4/EqKirGu0+IoDt37shksoiICJ2JRKPR5OTkXLlyZf369ZT3QqVSDQ0NkZsx3v0cHTwe\nLzg4eMOGDXK5nJj7JzgWCyY1tQdBl6dA32mOHBO+ePGCz+cHBgaSf2C8N2CaQnyCINM+mrq6\nOmSvojQ1NTk6OhINk0gkf/rTnyIjI+kepmqP7MKIAIZA9yYDaojKvBiG6ZSDw5CvzEvcCWlp\nabG3t9+0adOGDRt6enrS09NFIhH2v7UogoKCqqqqMjMz9esQAqDPzMzM1dVVpVJ1dHTofIt4\n042KimpraysvL6egcUaKi4vDMCwvL0+nwNqPP/74uoUr3wAAIABJREFU4MEDLy8vymdKtVqd\nlZW1f/9+crFHS0tLS0vL4uLi3t7eSVOc4zhO1JG7cePG/21bGW2aDwLNpyCRSLQFEuk7zWFM\nqanLABqNRucukvbRFBcXHzt2DLWbSiKR6Pe///2RI0c0Go1EIklPT6+pqfmf//kfqts1XTAi\ngFFgh9AISqWytrb20aNHy5cvJ0/8ly9fbmpqCg0NXbZsGYXNG09WVlZbW1tQUFBmZiafz3/y\n5Mndu3dVKtWdO3d8fX1dXV3J+4QeHh6UJwkAtKBSqWprazs7O+Pi4shJMn788ceWlpbPPvss\nJCSEiLUQ5+3tXVNT09raWl9fHxQUZGNjo1Aovv/++zNnzuA4vnPnThRK2QqFwpqaGvKmq3bd\nfXBw8NmzZ2vXrp04VcnIyMiVK1dUKlVCQsLravW4ZDJZTk7O3/72t6qqKmtraxolOp/mg0Dq\nKWAYptFoPvnkk6qqqvj4eA6Hg9F2miNonwVxM01/Myo0NDQ0NDQmJoaqFjKJWq3GcVyn2sef\n//zn7Ozsy5cvP336NCgoSLuXjnLKOmtra5FIVFNT09HR8f3338vl8rCwsJ07dxIjgtZgRADD\nQUBoBD8/P5FI1Nra2tDQEBYWZmVlRVTmPXv2LI7jaWlpOsUnUNDU1HT69OmZM2dmZmba2Nhc\nu3YtJydHo9GsWLGitbVVJyZ0dXWl6b1B8Pr5+/uLRKKmpqbW1tb58+cTGwiFhYXnzp2zs7N7\n++23PTw8qG6jQVgs1qJFi8RicXNzc0FBwbVr186dO1dXV4fjeGpqKgoxLY7j0dHR3d3d44Ui\n493P0RodHf3qq686OzuDgoIof6Hv6+v7+OOP79+/Pzg4+Pjx49u3b/f19UVGRuo3XiqV2tjY\nUNLIMU3zQSD1FAg4jr948aKyspLFYoWFhWH0nObIJg08aFEHEn1TqPZBfjS+vr7oLAOZm5sv\nWbKkpqamvr5eoVCEhYUdOHBggvOiqH0uTQxGBDAQBIRGYLFY0dHRxItjfn7+nTt3Lly4QByK\nS01NRWSC13Hr1q26urrf/e53Pj4+FRUV2dnZGo3m/fffT05O/uWXXzo6Osgxobe3N9Xt/Rf0\n3UYgY0Yv9GmHQ2NjY0FBQXV19cWLF0tKSjAM27p1q6+vL9UNNAKPxyOWQiQSSX9//+joqK+v\n74cffojO+sikocjE93NaW1u/++47CwuL3bt3U/4qc/LkyYaGBh8fn7S0tIULF7a0tNTV1T1+\n/Dg6OprceDSLYk3nQSD1FLQCAgJKSkpqa2tjY2Otra3pOM3pQHkzSgd9Z4epVftANmWdXC7P\nz89XKBQYhgUGBi5dunS8vxk0P5cIKpXq5s2bV65cqaqqGhgYmDNnDrHJCSMCGAICQuPweDwE\nK/Pqk0gkMpnM3t4+KCjo5cuXiYmJz58/P3DggFKp3Lx586ZNmzAM6+jo6OrqUigU5eXlMTEx\nlF+U0kHfbQQyA3uBchcmoB0ObW1tjx8/fv78uaWl5fvvv4/acDAEh8MJDw9/88034+Pjk5KS\nNmzYgFqysklDkQkme0dHR29v74SEBBTqPh8/ftzGxubLL7/09PT08vKKi4sTiURisVgnJkS2\nKNaUHwQ6T6G3t9fc3Jw42spmsx0dHW/fvv306VMi3qPLNDcBWrwB03qO4/F4Or/h3NxcCwuL\nw4cPu7i4WFtbL1q0CBsrZwkiKevUarVQKJw9ezbx2zYzM6uvr585c6a1tXVtba3++pQWsp9L\n3d3d+/btKyoqam9vf/jwYVVVVWlpaUBAALGlz6QRgeBwYAYICI3G4XBQq8yrQ1uoms/n29nZ\nRUREsFisgoKCu3fvLliwIC0tjfixM2fO8Hi87du3z549e9IKbK8frbcRtAzpBWpdMCrfmnY4\nLFy4cNWqVampqeTqw7SD47iFhQXlOUX1yeXykydP5ubmymSyly9f6iRxNWSyd3Nz0xYIodYP\nP/yQmJiozcZJvFnqx4TBwcHh4eErVqygtLG6pvkgUHgKEolkz549RUVFLi4us2fPxjDMw8Oj\noaGhuro6MDCQWAdBf5qbFLIHFLXoPsdNudoH5UpKSjIyMgoLC7WDlM1mL168OC4uLiYmpra2\ntqamRudBVFZW2tjYmJubo/m5ROQO7O7udnV13bRpE5/PHx4ebm9vLy0tnTdvHnEolBkjAtnh\nwAAQEE4Rh8NxdHS0s7NDcJUlNze3vr4+ICBg3bp12lvRN2/ebGtr+/d//3fiXGhBQcH169cD\nAwOTkpJCQkIobe/Y6L6NQDCkF0h1QSQSHTx4sKurKzo6WiqVpqent7e3Dw0NRUVFTfCvOByO\nk5OTk5MTA27hI0gmk33yyScNDQ3W1tZxcXHBwcEymUwikYwXiiA42cvl8q+//vrMmTNEKdSQ\nkBDydD5eTIhaUSwGPAgMw3744YeampqXL1+WlJS0tLT4+fnNmDHD19f3+vXrzc3N8fHx2qQ4\nKE9zhkD2gCKBAXMc7ap9qNXqnJycvLy8Fy9eCASCX/3qV+Q6umw2m7hPqI0J+Xw+i8W6devW\nl19+KRQKV65cSUx21PZC37fffisWi/39/f/4xz+Ghob6+/uvXLmSy+WKRKK7d++uXr2aWNJl\nwIhAeTjQHQSEjDJBfeSBgYHKykq5XO7k5JSfn3/u3Dkcx7dv347sfWJabyNoGdILpLrA4Hxr\n9HX06NHm5ubAwMDDhw9HRkaGh4fHx8dLpVKxWKwfiiA42cvl8o8++qi+vr6/v7+rq2toaKi/\nv3/16tXkbJzkoTF37lx3d3cKGzweuj8Igp+fX3FxsbOz8xtvvHHr1q38/PyhoSE+nz80NCQU\nCq2srHTe6WkNkQOKY2LGHEfOsqs/rjFSTOjs7Ez5n9bRo0eLi4t5PN6uXbveeecdBwcH/Z8h\nx4REppnz589rNJp169bNnz//9bfZENnZ2UqlMj09nfxGFxwcLJVKm5ubWSyW9s+M7iMC8eFA\naxAQMsfE9ZE9PT3v37/f2NhYUlLS3NyMYVhKSkpsbCxFjR0bM7YRptALdLpgbL418H9NrVYf\nPXp0dHT00KFD5MVsgUAgFArb2tp0QhEEJ/ucnJzGxkZvb+8dO3YsWLCgubm5q6tLPwc6MTRc\nXFzQjKMY8CAIZmZmVlZWRUVFS5cu/eCDD549e1ZYWPjPf/6Tz+e3traKxeJVq1ZZWFhQ3Uxm\nYsYch2GYXC5/8eKFpaUlRp/aBhUVFXl5eRwO5/PPPycfbdVnbm6+bNmylpaWxsbGjo4OFouV\nkpLy1ltvvbamGkWj0Zw+fRrDsC1btuiUQrWzsysuLlYoFPHx8RS1bhK0fl9iGAgImUOtVt++\nfVssFg8NDUVEROhc5WKxWEuXLuVwOCMjI97e3lu2bEFtiYUZ2wgM6IXh+dbAa6BSqc6fP8/h\ncLZu3Ur+OovF4vF4FRUVOtfYqKVSqYaGhrQtIc4s5OTkEAeBvLy8vL29Y2Njx7tlx+Px/Pz8\nKGr7JOj1IHRIJJLKykpvb2/it+3j4yMUCn/++ec33ngjNjZ2wYIFjY2NxcXFIyMjIyMjAwMD\niNwqN+o+M/oYMDtgGPbs2bOjR49+9dVXZWVl2lOgtKhtcOLEiSdPniQlJekvOXV2dt6/f1+p\nVNrb2xNfMTMzW758uYeHh4eHx5YtWwQCwWtvr6FwHC8tLR0cHFywYIHO73lwcPDatWvm5uYb\nNmygqnkTYMaIYAxTDwiZlOJ20vrIbDY7JCRk9erVMTExqGVQxJiyjcCAXhiebw1ZhoxrumQq\nY7PZJSUlAwMDAoHAzs6O/K3+/v5bt25FRUXV19e7uLhQXuqDKE1WUFBABEXaMwtPnjxJSEgg\nn1lCP9+dPho9CB0jIyP79u0rLi4WCoWenp4zZ87EcdzT07OgoGB4eDgyMnLmzJlr1651cHBo\namoaHh6Ojo5G4X7O1O4zo4wBs0N3d/eePXuam5ttbGwSExN9fHyITUKMDuP61KlTSqXyvffe\nI58UbWpqysrKysvL++mnn65du9bc3BwVFUWs6eA47uHhERoaqjPeEaRUKmtrax89erR8+XLy\nJuHly5ebmppCQ0PRLBjDgBHBJCYdENI66fOYDC9UjRRmbCMwoxdyuVyhUKxatcqQfGvUNnU8\nhoxremUqU6lUtbW1nZ2dcXFx5FWeH3/8saWl5bPPPgsJCYmLi6OugRj2v9FgVVXVyMgIETJp\nzyy8fPkyKiqK/KtG/91xTLR4EPrYbPayZcsGBwerq6uLioq6u7sDAgLc3d0fP35cXFy8ZMkS\nW1tbHMd9fX3XrFnj4+Ozfv16qpuMYcy6z8yM2UGpVO7bt6+npycwMDAjIyMyMlIbDRIQH9c3\nb94cGBjw9/f38fHBMEyhUHz77bfHjx/v7e11c3MjckR1dna2traidn5Kh0KhuHjxYk5OjpOT\nE7Hc6efnJxKJWltbGxoawsLCrKysNBpNQUHB2bNncRxPS0sjik+ggxkjgmFMOiCke9LnMRlY\nqBodzNhGYEAvyAeBFi9ebGtra0i+NapbPQZDxjW9MpX5+/uLRKKmpqbW1tb58+cTyaIKCwvP\nnTtnZ2f39ttve3h4UNtCbTRobW39+eefE3X2Js42gX42Tn3oP4jx8Hi8RYsWLVy4sKOjo7q6\n+tq1aziOb9iw4caNGx0dHdrXXzMzM3S6YOx9ZmTXbRkwOxBu3Lhx8+ZNFxeXrKws7a9aLBbf\nuHFDKpV6e3uzWCzEx3V1dXVdXZ1Go7l//352dnZtba2tre1vf/vbHTt2xMTECASC4uLirq6u\nefPmzZo1i+rGjo2oN3jnzp0XL14olcpFixax2WwWixUdHS0Wi5ubm/Pz8+/cuXPhwoXy8nIM\nw1JTU1HbHmTMiGAYkw4IGZD0eUz0GlTM2Eagey/GOwhEx3xrhoxremUq0072jY2NBQUF1dXV\nFy9eLCkpwTBs69atlB9Q1IkGicI2BO0f/6NHj/QPAiGejVMf4g9iUo6OjqtXr541a1ZjY2Nl\nZWVVVdWcOXPu3bvn5eWF5s0cw+8zo7xuS/fZQaugoKC9vT0pKYl4F5JIJFlZWRcuXHjw4MHd\nu3cbGxtXrFhBlHJFc1z7+fk9e/bswYMHdXV1RLaFmJiYAwcOaHOf2tra3rt3r6enx8fHB8E/\nJAzDhoeH9+7d29XV5evrm5GRkZCQoD0gyuPx4uLilEple3t7b2+vQqFwcHDYsWPH2rVrqW2z\nPsaMCIYx6YCQGUmfx0SjQcWMbQRa92Lig0D0yreGGTyu6ZWpTDvZt7W1PX78+Pnz55aWlu+/\n/z7lk702GuRyuZmZmcRZLLKJP4tQzsY5JmQfhIFwHPf29o6Pj1epVDU1NT09PRiGNTc3r1+/\nXufOOSXUarVQKJw9ezbxR2L4fWaU121pPTuQSSQSsVjMZrO9vb0LCgqOHDni4OCQnp6ekpJS\nVlb28OHDhQsXEgl40RzXOI7z+fyAgABbW9uFCxdu27YtISGBXJ1LpVKdPn1aoVAkJCTMmTOH\nwqaO5/Lly2VlZe7u7ocPH9bmv9HicDgREREbN26Mjo5OTExMTk729PSkpJ0TY8yIYBiTCwgZ\nk/R5UjQaVMzYRqBFL1Qq1ejoqM6b36QHgczNzRHPtza1cU0v2sl+4cKFq1atSk1N1ckk/Ppp\no0EMw0ZHR2fMmKFT7YZAo/UpQyD4IIzF5XIXLFiwbNmy7u7u7u7ujRs3hoWFUd0orKSkJCMj\no7CwUPtHwmazFy9ebMh9ZsTXbWkxO0zK29u7vr6+rq7u6tWrjx49Sk5O/uCDDxwcHDgcTmFh\n4eDg4KpVq1C7q6bP1dU1IiIiJCTE1tZW51sXLlwQCoX29vbbtm3Tqd+AiNzcXLlcvmPHDi8v\nr/F+hsPhODo62tnZofwxy4wRwTCmFRCaWopbGg0qZmwjIN4L4vW9rKxsyZIl5L95Aw8CIZtv\nzaTGNYfDcXJycnJyovwCJ/mk6LvvvltfX19fXz8yMmIKMSGG0oOYMhsbm7i4uEWLFlFeIE6t\nVufk5OTl5b148UIgEPzqV78iV3pks9mG3GdGfN0W8dnBEBwOZ8WKFX5+fkuWLNmyZUtwcDDR\nhfz8/JKSEnt7+//4j/9AYZ95agoLC7/77jsMwz766CM0N9YwDDt//vzQ0FBKSoqVlZXOt4qK\niojsOJQ0bAoYMCIYxrQCQtqluNUp6oVhmEQikclk+kcFxkOjQcWMV0aUe6FUKq9fv97W1rZ4\n8WJy9gXDDwJRS384EOg1rqc/qFGgc29QIBD4+fmVl5cbGBMifmbBpKDwh3f06NHi4mIej7dr\n16533nmHXBVAi473mXWgPDsYiMViubm5ubu7c7lcDMM0Gs3f//53Io5KS0ubYNsKZcPDw3/9\n61/Pnz+PYVhycvKaNWuobtG47ty5I5PJIiIidCqHaTSanJycK1eurF+/HsE6qONhwIhgEsYG\nhAyoj6xT1AvDsL6+vr179xYVFfH5fP3TDgzAjE8HZHvB4XCWLVsmEAjc3d17enosLCyI1Vxa\nHATSHw4YDcc1Ywb1jRs3Ll++TM4i4+rqamBMSIszC+C1qaioyMvL43A4n3/+eWRk5AQ/Sbv7\nzPqQnR2moKam5i9/+UtRURGO4ykpKfHx8VS3yGhqtbqgoCArK6uhocHc3HzXrl0JCQlUN2oi\nIyMjQqGws7NzxYoV5EOtP/74Y3Fxsbe3N5oF6CfApBFBd8wMCBlQH1m/qBeGYbm5ufX19QEB\nAevWraPvOaWJMWMbAdlecDgcW1tbIqdoY2MjcXYU/YNAYw4H2o1rJg1qHx8fpVKZmppKzilq\nYEyIwpmFpqYmR0dH4g9DIpH86U9/ioyMRLa0JrOdOHHiyZMnSUlJ+ssEnZ2d9+/fVyqV2m1M\nMzMzxO8zTwrZ2cEofX19mZmZDx8+dHFx2b17N02XeFgs1u3bt+vq6gQCwZ49exDMSKTD29u7\npqamtbW1vr4+KCjIxsZGoVB8//33Z86cwXF8586dLi4uVLfRaMwYEQzAwICQAfWR9Yt6ETsh\nx48ft7W1zczMJOfFYh5mbCOg3AsulysUCsVicXt7OxETonwQaMwadxjdUlczbFDjOD5//nz9\n04aGxISUE4lEBw8e7Orqio6Olkql6enp7e3tQ0NDUVFRVDfNCIyJaU+dOqVUKt977z3ySdGm\npqasrKy8vLyffvrp2rVrzc3NUVFRxKY6yveZDYTy7GDgCXYejycQCIKCgrZv365zfJFeIiMj\nY2Ji1q1bh2YRSx0sFmvRokVEvcGCgoJr166dO3eurq4Ox/HU1NS4uDiqGzhFKI8I08G0gJAB\n9ZH1i3ppd0J6enri4+PRfMd6tSjfRhjzuhpjLnASZ0fr6+vJMaH2u0gdBDKkxh3649qkBjX6\nMaG1tbVIJKqpqeno6Pj+++/lcnlYWNjOnTtptEPLjJiWcPPmzYGBAX9/f6JmiUKh+Pbbb48f\nP05kyAgODpbJZJ2dna2trcgmEZ0CFGYH/WnOqBPslpaW7u7ulK+1TR8tQkEtHo9HRE0SiaS/\nv390dNTX1/fDDz+keyiFwogwcYwKCBlQH3nMol7anZChoaGIiIjxUpxLpVJ6fa4ha8zrajS9\n6zWe8WJCpA4CGV7jDuVxPeVBTd8RjXhMSKQnIRKTKBSKsLCwAwcOTLC3huCDMDamRbALZNXV\n1XV1dRqN5v79+9nZ2bW1tba2tr/97W937NgRExMjEAiKi4u7urrmzZs3a9YsqhvLEGNOczQ9\nwW5qOBxOeHj4m2++GR8fn5SUtGHDBlpv0gJEMCcgZEB95PGKepF3Qp49e7Z27Vr9C10lJSUH\nDx60srIiH5wDUzDmRS+MiTPlmDEhOgeBXkmNO8rH9ZQHNd1HNGoxoU7Fc7lcnp+fr1AoMAwL\nDAxcunTpeBsdaD4Io2JaNLug5efn9+zZswcPHtTV1RFLJDExMQcOHAgMDCR+wNbW9t69ez09\nPT4+Pmh2gXb0pzlan2A3TTiOW1hY0CinKEAcQwJCBtRHnriol7blEonk6dOnixYt0ml5dXV1\nbW1tQEAA+reiUTbmkWMGzJQqlermzZtXrlypqqoaGBiYM2cOEdOOGROicBCIGTXupjOoGTCi\ntTFhaGgotb3Qr3huZmZWX18/c+ZMa2vr2tpanXLnZMg+CMNjWmS7QMBxnM/nBwQE2NraLly4\ncNu2bQkJCeSPWZVKdfr0aYVCkZCQMGfOHAqbqkXrC5z60xyDT7ADAAzEhICQAe+OhhT10ra8\nrq5Ov+XBwcHh4eFIXbGQyWQ5OTl/+9vfiH5RfjlzUmMeOWbATNnd3b1v376ioqL29vaHDx9W\nVVWVlpYGBAQQlSQmvk9IiWnWuENkXE9zUCM4oqfA1dWVOPJHVQPGq3jOZrMXL14cFxcXExOj\nLXdOjgkrKyttbGzMzc2RfRCGx7TIdoHM1dU1IiIiJCRE/0D+hQsXhEKhvb39tm3byKn2qULr\nC5xjTnPMPsEOXpvxlp4BLdA+IGRGfWQDi3pN/Nbr5OREWQf09PX1ffzxx/fv3x8cHHz8+PHt\n27f7+voiIyP131cQmWbGO3JM95myv79/79693d3drq6umzZt4vP5w8PD7e3tpaWl8+bNc3Z2\nxv41JvTw8PD09KS2zdOpcYfOuJ7+oEZqRE/ZjBkzKPy/T1DxnM1ms9lscrnzx48f8/l8Fot1\n69atL7/8UigUrly5ksPhoPkgDI9pMTr/LRUWFhLpjj/66CPKP5oI9L3AOd40x/gT7OA1mHjp\nWQud4QB00D4gZEZ9ZMOLeiG4EzKmkydPNjQ0+Pj4pKWlLVy4sKWlpa6uTn8NG5FpZoIjx3Sf\nKb/99luxWOzv7//HP/4xNDTU399/5cqVXC5XJBLdvXt39erVxPsiERO6urqiMCKmU+MOnXHN\nvEFNOwZWPCfHhMStvPPnz2s0mnXr1s2fP/91NthYhse0VLd0KoaHh//617+eP38ew7Dk5OQ1\na9ZQ3aL/j6YXOCe+WcP4E+zIYsaumiFLzxhKwwHoo31ASPf6yASjinqhthMypuPHj9vY2Hz5\n5Zeenp5eXl5xcXEikUgsFuvEhChMM5MeOab1TJmdna1UKtPT07WfyBiGBQcHS6XS5uZmFoul\n7SaHwyEPIgpNp8YdOuOaeYOadgyveG5ubr5s2bKWlpbGxsaOjg4Wi5WSkvLWW29R0eqpoG9M\nOya1Wl1QUJCVldXQ0GBubr5r166EhATKmzS1pESITBCG3Kxh/Al2BBm4q4Yhv7Fm4NIzIsMB\njIn2ASGt6yMbYoLXR0R2Qsb0ww8/JCYman/tPB5vyZIl+jEh5dOMgUeOaTpTajSa06dPYxi2\nZcsWnbs3dnZ2xcXFCoWC2jKDxmLGuKbpoKYdoyqem5mZLV++3MPDw8PDY8uWLRTee5wause0\nZCwW6/bt23V1dQKBYM+ePZS/O04nKREKE4ThN2sYf4IdKQbuqmF02FgzcOkZheEAxkP7gHAC\nzHh3xMZ/fURkJ0RLLpd//fXXZ86cEQqFAwMDISEh5A+v8WJCaqcZw48c03GmxHG8tLR0cHBw\nwYIF5I9pDMMGBwevXbtmbm6+YcMGqpo3NcwY13QZ1LRmbMVzHMc9PDxCQ0O1xWbohe4xLVlk\nZGRMTMy6deuo3RWZflIiDIEJwqibNXCC/bUxcFcNQ35jzailZ8qHAxgPkwNCjCnvjhgdOiKX\nyz/66KP6+vr+/v6urq6hoaH+/v7Vq1eTb9yRY8K5c+e6u7tT2GCCUUeO6ThTKpXK2traR48e\nLV++nPxJffny5aamptDQ0GXLllHYvKlBfzgYghm9QJypVTyne0xLhsIBuVeSlIjC9hOMvVkD\nJ9hfD8MvdCCysdbf319bW/v06VNnZ2fyqx0jl55NEMMDQoxBb13oFPUaU05OTmNjo7e3944d\nOxYsWNDc3NzV1dXb26sTNRExoYuLCyLn4ow9coz4TKlf6sPPz08kErW2tjY0NISFhVlZWWk0\nmoKCgrNnz+I4npaWpn9XgRYQHw4GYkYvkAUVz8F0MCYp0RRu1sAJ9v9rxl7ooHZjbXR09OzZ\ns1lZWaWlpSUlJWVlZZGRkeQM0oxcejY1zA8IMQa9dVFe1IugUqmGhobMzMyI/yTqtufk5BBZ\nZLy8vLy9vWNjY8fbSePxeH5+fhS13QgTx4QIzpRjlvqIiooSCARisbi5uTk/P//OnTsXLlwo\nLy/HMCw1NZXWn9GIDIdpYkYv0ETHiucAHaaQlGjimBBOsE8fA3bVVCrV4cOHr127Njo66uLi\nguO4TCYTi8Vr1qzRxn5MXXo2KSYREGIMeuuitqgX9r/X0wsKCpYuXWpmZqat2/7kyZOEhARa\nn67UN0FMiOBMOV6pj7i4uOXLlyuVyvb29t7eXoVC4eDgsGPHjrVr11Ld5OmifDi8EszoBbJo\nVPEcIMVEkhIx5hQVapixq0a88lVWVlpaWu7Zs+eDDz5ISEiora3t6OgICgqaPXs28WMsFis6\nOpqRS8+mw1QCQgzeul4FbbKykZERgUBgZ2enrdv+8uXLqKgo8rErZseECJqg1MfSpUsjIiI2\nbtwYHR2dmJiYnJyMSIlnAKiCYMVzgBTTSUpEo2mOLpixq0bOT/vFF1+EhIRgGMblctlsdmVl\nZWxsrDYgxDCMx+PFxcUxcunZRJhQQAimSSd19dy5c7F/rduun0UG8Rt3BqLLkeNJS31wuVxH\nR0c7Ozs6RuYAvCrIVjzXMrBWNeKlyRjAdJIS0WWaowVm7KrpvPKRMxJdv379l19+YbFY33zz\nzdWrV+VyeVBQEJvN5nA4sPRMXxAQAoNM8NGgjfoePXqkn0UG2Rt3RkH2yPHUSn0AYJoQrHiu\nz8Ba1eiXJqM7U0tKhOw0Ry+M2VUbHR0tKyuTSqVWVlZr167Vrj1VV1efOnVKpVJ1dXXZ2tpK\nJJKGhgaRSBQbG0usW3E4HFh6piMICMHktB+Tpn9fAAAHq0lEQVRwXC43MzOTOD9DNvHpUDRv\n3BkLwSPHNC31AQBVUKt4rs/wWtWIlyZjABNMSoTgNEcvTNpVY7FYixcvbm9vb2tru3PnDp/P\nt7Gxqaury8jIUKlUsbGxX3zxxRtvvBEVFfXzzz93d3cPDQ1NkIwXoA8CQjAJ7QcchmGjo6Mz\nZswY84IBM24M0gtNS30AQCFEKp6Px/Ba1YiUJmM8SEoEDMewXTWdmNDS0jI7O3t4eDghISEt\nLY1INe/g4ODg4FBRUdHT0/PrX/+a6iaDqYOAEEyEvNz17rvv1tfXT3DpHGLC14appT4AeA3Q\nDAUJhteqxqguTWbiICkR0Me8XTVyj+7evatWqxMSEj744APyC8bIyMiNGzdYLBYtSq2A8UBA\nCMalc/hBIBBMmoiMGVlkEMfsUh8AmCxja1UDSqCflAhQiHm7atoeSaVSLpf74Ycf6uyWX7p0\nqaWlJTw8PC4ujqI2gleANfmPAFNVXFyscxQ+IiIiPT2dy+VeunSJeHHRZ29vn5GRsW3bNj6f\n/3rbayosLS0tLS2Li4tlMhkxu2gRv3w3N7fi4uJjx45pNBqqGgkAGE9/f//PP/9cU1OjVqvJ\nX8dx3NXVFcOwlpYWnX9CXF17+fLla2sk0KdWq69cubJly5br16+bm5t/8skn//Zv/0Z1owBy\nOBzO3r17+Xy+XC7/6quviGhQZ1eNWC5XKpXUNdMI2h6NjIzs379fKpVqv3Xr1q2rV6/iOJ6U\nlERhC8H0wQ4hGJePj49SqUxNTSVfjDakYBEzssggyxRKfQDASMyoVW2y0E9KBBDBvF21MU/D\nlpSUHD16VKPRoFAnA0wTBIRgXDiOz58/397eXufrUMSWcqZQ6gMAhmFGrWoTh3hSIoAObQTV\n2dlZUVFBRFDEt27dupWXl4fj+M6dO2k0onViQrVaffLkydHR0c2bN8PtQQaAgBBMBcSElDOF\nUh8AMAYzalUDDO2kRAApzNtVI/dILBZrNJrNmzdv3ryZ6naBVwACQjBFEBNSDrLIAEALjKlV\nDQAwCvN21cinYSEaZBIc0k6A6RCJRF988cXIyMimTZt+85vfUN0cUySXy/ft2yeVSletWpWW\nlgYxIQBImaBW9YkTJ/75z3/GxMTU19ez2ezFixcnJSVpM0UpFIrOzk4ul+vp6QnjGgD6Itdz\nxjCMAXGUSqWqqKig3Q4nmABkGQXTos07yuVyqW6LiSJnFr179y7VzQEAjI3L5WrLymMYVl1d\nff36daVSWVZWZm5u3tXVdfHixb179yoUCuIHiPKhXl5eEA0CQGvaLJ0YI6JBDMM4HA5EgwwD\nO4TgFeju7iaypQOqyOXyO3furF+/nuqGAAB0afcHtMs3dXV1f/jDH4aHh2NjY7dv325padna\n2nro0KH+/v7ExMStW7dS3WQAwCsGu2oAZRAQAkA9lUo1PDxsZWWl/YpEIlEqleTTZQAA+iLH\nhG+//fbXX3+tX52spKTkz3/+s62tbV5eHrWtBQAAYFLgyCgAFCPeFPfv3//8+XPiK319fQcP\nHjxw4EBnZye1bQMAvBLMq1UNAACAMSAgBIBK2n2Dnp4emUxGfDEvL08mk3l5eTk7O1PbPADA\nq0K+R8TlchMTE3UuB968eRPDsODgYGraBwAAwFRBQAgAZXTSD3p5eclkMo1GIxQKZ82atX//\nfnIKCgAA3WljwpGRkf3790ulUu23bt26dfXqVRzHk5KSKGwhAAAAEwQBIQDU0E9GL5VKP/74\n42PHjrFYrDVr1lhYWFDdRgDAK0Y+O0oUjMEwTFurOiUlJTAwkOo2AgAAMC0QEAJAAW00yOVy\n//CHPxDJYywtLS0tLYuLi3t7e9ls9pj/kLylAACgI52Y8NKlS9nZ2USt6jfffJPq1gEAADA5\n7M8++4zqNgBgWsg1akdHR2fMmBEeHo5hmIWFxZIlS+7evTs4OPjs2bO1a9eyWP+yZFNSUnLw\n4EErK6uAgABqmg4AeBVYLNbixYvb29vb2trEYrFGo2FGdTIAAAB0BDuEALxW5JOi7733HpfL\nvXTp0unTp4nvasuU/fLLL8eOHdOpCtPb2zs6OqpNRgoAoC/m1aoGAABAU7BDCMDro3NvUCAQ\n+Pn5lZeX19fXj4yM6OwT1tXVyWQyPp+vTUUYHBwcHh6+YsUKSjsBAHg1iH1CDw+P9evXU90W\nAAAApgsCQgBenxs3bly+fFmbRQbDMFdX1wliQrFYrBMTOjk5UdkBAMArxWKxPD09qW4FAAAA\nkwYBIQCvj4+Pj1KpTE1NJaJBgrExIQAAAAAAAK8KBIQAvD44js+fP9/e3l7n65PGhL6+vm5u\nblQ0GQAAAAAAMBkEhAAgYYKYcNasWcuXL6e6gQAAAAAAgIFwnTSGAAAKiUSiL774YmRkZNOm\nTb/5zW+obg4AAAAAAGA42CEEACFj7hMCAAAAAADwfwTqEAKAloiIiPT0dC6Xy+VyqW4LAAAA\nAABgODgyCgCKuru7XV1dqW4FAAAAAABgOAgIAQAAAAAAAMBEwZFRAAAAAAAAADBREBACAAAA\nAAAAgImCgBAAAAAAAAAATBQEhAAAAAAAAABgoiAgBAAAAAAAAAATBQEhAAAAAAAAAJio/wc0\n2SQWWzBtzwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhwAAAIcCAIAAAAynOArAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdeUCUdf4H8PfzzMU93HIJ3njikaamiUeaAqFZurZmalqa1eZud/qzy00t\nsxJaNFtF2t3UzBXUarVUyAPNVFIUFRlABZH7PmbmeX5/DI7DMMIMzMwzA5/XP+t85/sMb1rl\nw3N8P1+G53kQQggh5sAKHYAQQkjHQUWFEEKI2VBRIYQQYjZUVAghhJgNFRVCCCFmQ0WFEEKI\n2VBRIYQQYjZioQNYxLVr106cOCF0CkII6XQ6ZlG5fPnyuXPnxo0bJ3QQQgjpRGJjYztmUQHQ\nr1+/mTNnCp2CEEI6ka+//pruqRBChFdXVyd0BGIeVFQIIQLjOO7RRx9dsGBBfX290FlIe3XY\ny1+EEHsRExOTkpLi5uYmk8mEzkLai85UCCFCUigUK1eulMvlcXFxQmchZkBnKoQQwXAct3Dh\nwqqqqoSEhKCgIKHjEDOgMxVCiGBiYmKSk5OjoqLmzZsndBZiHlRUCCHCKC4uXrlypYeHx+bN\nm4XOQsyGLn8RQoTh5eWVmJhYXl4eEBAgdBZiNlRUCCGCmThxotARiJnR5S9CCCFmQ0WFEEKI\n2VBRIYQQYjbWuKeyYsWKCxcueHl5bdu2Te+ttLS0HTt2XL9+nWXZ/v37z5s3r3v37m2YQwix\nCwUFBe7u7rRyvgOz+JnK//73v8uXL4tEouZvnTp1atWqVTk5OeHh4aNGjbpw4cIbb7yRmZlp\n6hxCiF3gOG727NkPPPBAUVGR0FmIpVi2qJSUlGzbtu2JJ55o/otJQ0NDXFyco6Pjhg0bXnzx\nxeXLl3/44YdKpVK3VYMxcwgh9iI2NjYlJaVbt27e3t5CZyGWYtmiEhcX5+HhMXv27OZvnTt3\nrqSkZPLkyX5+fpqRvn37Pvjgg9euXcvJyTF+DiHELigUihUrVsjl8k2bNgmdhViQBYvKr7/+\neurUqWXLlkkkkubvpqenAxg8eLDu4JAhQ7RvGTmHEGL7tD2+Nm7cSD2+OjZL3aivrKz86quv\nHnnkkUGDBhmckJ+fD8Df3193UHNGonnLyDm6X5Hnec2flUpl+78FQoi5xMbGJicnR0ZGPvPM\nM0JnIZZlqaKyZcsWAAsXLrzfhJqaGgBOTk66g5qX1dXVxs/RioyM1MwHMGTIkBEjRrTvOyCE\nmEdDQ8P69es9PDy++uorobMQi7NIUTl79uzRo0dfffVVV1fXlmcyDNPqpxkzB8CECRO028ZJ\npVJjDiGEWIFUKj19+vSlS5eox1dnYP6iolQqv/zyy2HDhoWHh7cwTXvC4e7urh3UnGo4Ozsb\nP0fr/fff1/45KSmp+fUxQohQ/Pz8tI/bkI7N/EWlqqqqsLCwsLAwOjpad7ympiY6Ojo4ODg2\nNhZ375Tk5+cHBgZq5+jdRDFmDiGEENth/qIik8kmT56sN3jkyBGRSDRu3DgvLy/NyIABA/bu\n3ZuWljZ8+HDttLS0NM1bxs8hhBBiO8xfVJycnF5++WW9wePHjzs6OuqODx061NPT89ChQ5GR\nkZrz4oyMjNOnT/fu3TskJMT4OYQQQmyHYPupSKXSpUuXrlmz5tVXXx0zZoxSqTx27JhYLH7h\nhRdMmkMIsUHZ2dlqtbpnz55CByHWJmSX4lGjRn3wwQfBwcFHjx49ceLEwIEDP/744169epk6\nhxBiUziOmz9/flhY2JUrV4TOQqzNSmcqO3bsMDg+ePBgvQXzbZtDCLEdMTExKSkpkZGRoaGh\nQmch1kb7qRBCzEmhUKxcuZJ6fHVatEc9IcRstD2+EhISqMdX50RnKoQQs4mJiUlOTo6Kipo3\nb57QWYgwqKgQQsyD5/n9+/d7eHhs3rxZ6CxEMHT5ixBiHgzD/PTTTxkZGdTjqzOjMxVCiNmI\nRCLqdtHJUVEhhBBiNlRUCCGEmA0VFUIIIWZDRYUQ0naZmZnfffed0CmIDaGiQghpI47jFi1a\nNHv27CNHjgidhdgKKiqEkDbS9PiKioqaMGGC0FmIrRDfvn27zQc7OjrK5XIzpiGE2AtNjy93\nd/e4uDihsxAbIm7Pvrzz58+Pj483XxhCiH3gOG7BggXU44s0R5e/CCEm0174oh5fRA8L4Jln\nnlGaTujkhBDBFBUVeXt7U48v0hwLgGEYsemETk4IEcyHH3547do16vFFmmMnTZrUtl49bT6Q\nENIBuLu7Cx2B2CLxzz//3LYj23wgIYSQjopu1BNCCDEbKiqEEELMpqX77UVFRcXFxQYf9Bo4\ncKDFIhFCbE5mZmZcXNyHH37o5OQkdBZi0wwUlbq6ujVr1sTHx+fm5t7vMJ7nLZmKEGJDND2+\nUlJSHnzwwT/96U9CxyE2Tb+o1NfXT5gwITU1FYBEIlEqlR4eHhUVFWq1GoBYLKa+LIR0Ntql\njlRRSKv076nExsampqaOHz8+Pz9/9uzZAEpKSmpra48dOxYdHc3z/KpVq4qKioSISggRgKbH\nl1wupx5fxBj6RWXXrl0Mw3z99dd+fn7aQYlEMmbMmMTExGXLli1fvvzQoUPWDUkIEQbHcQsX\nLqyqqoqJiaEeX8QY+kXl8uXLISEhPXv2BMAwDADNhS+NdevWubi4fPbZZ9aMSAgRSkxMTHJy\ncmRkJPX4IkbSLyr19fU+Pj6aP8tkMgBlZWXadx0dHfv373/mzBmr5SOECKh79+59+/b96quv\nhA5C7IZ+UfHz8ystLdX8WdMV//Lly7oTCgsLy8vLrROOECKs6Ojo9PR06vFFjKdfVHr27Jmf\nn89xHICRI0cCiI2N1bwEsG/fvqysrODgYCunJIQIhWVpiTQxgf4jxVOmTDly5MjJkyfHjBkz\nZcqUkJCQnTt3KhSKsWPH5uXl7d69G8DcuXOFiEoIIcTW6ReVmTNnnjlz5tatWwCkUumOHTsi\nIiJOnz59+vRpzYSpU6e+88471o5JCCHEHugXlT59+mhORzRGjRp17dq1Xbt2XblyRSaThYeH\nT5s2TfNUGCGEEKKn9b22vLy8XnjhBStEIYQITqFQzJs3LzY2dsiQIUJnIXaJbsERQhppljoe\nP378woULQmch9oqKCiGkES11JO1n4PIXz/OJiYkHDhzIzMysqqoy2JCY1j8S0sFoe3xt2rRJ\n6CzEjukXlZqamscee+zw4cOCpCGECELb4yshIYF6fJH20C8qH3zwweHDhyUSyZw5c8aOHevn\n50dLnwjp8P7xj38kJydHRUXRhS/STvpFZdeuXQC+/fbbJ554Qog8hBABREZGHj58ODY2Vugg\nxO7pF5WbN296eXlRRSGkU+nevfuePXuETkE6Av2i4uXlRXs7EkIIaRv9+yVTpky5fv16cXGx\nIGkIIYTYNf2i8t5777m4uCxfvlylUgkSiBBCiP0Sp6am6g2tXbt2+fLl586de+GFF0JDQ11c\nXJofNmrUKKvEI4RYSkNDg1QqFToF6WjEo0ePNvhGenr6Sy+9dL/DDK6IJITYi+vXr4eHh69f\nv37OnDlCZyEdijgkJEToDIQQq+I4btGiRbdu3VIqlUJnIR2NODs7W+gMhBCroh5fxHJotTwh\nnQv1+CIWxQKIior6+uuv79y5I3QYQohlaXt8xcTEUI8vYgksgAMHDjz33HP+/v5jx45dv379\ntWvXhE5FCLGIb775hnp8EYsSA/j111/37t2bmJh4/Pjx48ePv/766/37958xY8aMGTOGDx9O\nmwcT0mE89dRTubm5ixYtEjoI6bAY3YeDL168mJiYuHfv3t9//10zHhgYGB0dPWPGjAkTJkgk\nEuFymiYpKSk/P3/JkiVCByGEkE4kIiKCMbji5ObNm5rqkpycrHnoUC6XR0REzJgxY9q0aa6u\nrlaPahoqKoQQYn33LSpa5eXlBw4c2Lt3708//VRZWQlAKpVOnDhxxowZ0dHR/v7+1opqGioq\nhBBifa0XFa36+vpffvklMTExKSnp9u3bABiG4TjOwgnbiIoKIYRYX0REhLHrVGQyWURExObN\nm/Py8k6cOPHGG2/06dPHouEIIWZx69YtoSOQTsTkxY8Mw4wePXrdunUZGRmWCEQIMaPr16+H\nhoa+9tprQgchnQWtqCekw9L0+Kqurh48eLDQWUhnob/z44wZM1o+QCQSubm59ejRIzw8fNy4\ncRYLRghpL+rxRaxPv6gkJiYaf/DQoUP/85//9O3b16yRCCFmQD2+iCD0i0pcXNyNGzc++eQT\nqVQaFRU1ePBgV1fXysrK8+fP79+/X6lUvv76656enhkZGXv27Dl37tykSZPOnz/v4+MjSHpC\niEHaHl8JCQnU44tYk35RiY6OfuCBBx588MHdu3f7+fnpvpWfn//EE09s27bt7Nmzfn5+H3/8\n8fTp03/99dfPPvvso48+smJmQkgrjhw5kpKSQj2+iPXp36h/9913i4uLd+3apVdRAPj7+3/3\n3XeFhYXvvfceAA8Pj2+++YZl2QMHDlgnKyHESJMmTfrpp582b94sdBDS6eifqfz4449hYWEB\nAQEGZwcGBoaFhWmrSEhIyMCBAxUKhWUzEkJMN2XKFKEjkM5I/0ylsLCw5TX2PM/r7rzi5eXV\n0NBgkWiEEELsjX5R6dKlyx9//JGbm2twdk5Ozh9//KF7ZezmzZt0l54QQoiGflGZMWOGSqV6\n4oknmteV7Ozsxx9/XK1WT58+XTNSUVGRnZ3drVs3KwQlhBBi+/TvqaxatSopKenMmTO9e/ee\nPHny4MGD3dzcKioq0tLSDh061NDQEBISsmrVKs3kf/3rX0qlcuLEiVaPTQjRl5qaOmzYMKlU\nKnQQ0qkZ6FKcm5u7YMGCI0eONJ89YcKE7du3d+3aVfMyJyensrKya9eucrnc4klNQV2KSWeT\nmZk5ZMiQ4cOHHz16VOgspPOKiIjQP1MBEBwcfPjw4VOnTv34449XrlyprKx0dXUNDQ2dNm3a\nyJEjdWeGhIRYKyoh5L44jlu8eHF1dTXtE0wEZ6CoaIwcOVKvhBBCbJOmxxctdSS2gLoUE2Lf\ntD2+4uLihM5CyP3PVAghto96fBFbIwbQhjbDtEMXIbbgypUraWlpdOGL2A4xgCtXrggdgxDS\nFv369bt48aJIJBI6CCGN7l3+6tev39y5c7t06SJgGkKIqQIDA4WOQMg9YgBjxow5fvz45cuX\n33vvvWnTpi1cuDAqKkoikQidjRDSoajrUZ0PiQscvYWOQixGDODYsWPXrl2Lj49PSEjYt2/f\nvn37vL29586du2DBgiFDhgidkBBi/3hc+w7X94JTAoC8F8KWwpXWuXVEjY8U9+7d++9//3tO\nTs7//ve/p556qqqq6osvvhg6dOiQIUO++OKLoqIiYVMSQuya4gCufddYUQCUZ+LMWiirBc1E\nLKPJOhWWZadMmfKf//zn9u3bmzZtGjlyZFpa2vLlywMCAmbOnHn48GGhUhJCtPbu3ZudnS10\nChPwPK7v0R+sLcLNowKEIZZmeJ2KXC5fsmTJkiVLMjIy4uPj4+Pj//vf/1ZUVFDvSELa6VYy\nqm62/fDS0tIft2UddcxfsmQJy9rH4mWuAQ2VBsbzUtBQZvU0QguZBgdPoUNYUkuLH9VqdXZ2\ndnZ2dnl5udUCEdKxBYa3/ViO4yZOfDz5bHJCQkK/efZRUQDwauT+DHWzzfy6PIheTwgRiFiS\n4aKiOUH55ptv8vLyAPj4+CxdunTx4sXWzUYIacJOe3wxIgRNRM5PTQZFDggYK1AgYklNikpZ\nWdmOHTvi4+NPnToFQCKRREdHL1y4MDIykp4wJkRYdt3jq+/TqL2DO2cbX0pcMOgFONGiuI5I\nDECtVh86dCg+Pj4xMbGurg5AWFjYggULnn76adoqmBBbYO89vkQyDH8bZZmoyIbUBV6DIHEW\nOhOxDDGA4OBgzWUuLy+vxYsXL1y4cNiwYUIHI4TcU1xcXFNTY3cXvvS494J7L6FDEAsTA9BU\nlL59+z722GNSqXTPnj179jR7ALCp1atXWyMdIQQA4OPjc+LEiaqqKqGDENKKe/dUMjIyjO89\nTEWFECsTi8Xu7u5CpyCkFWIAkZGRQscghBDSEYgB7N+/X+gYhBBCOgKL7PxYWVm5e/fuy5cv\nFxQUVFVVeXh49OjR48knn+zTp4/ezLS0tB07dly/fp1l2f79+8+bN6979+5tmEMIIcQWWGRR\nbklJyd69e6uqqnr27Dlq1CgvL69Tp069/vrrR48e1Z126tSpVatW5eTkhIeHjxo16sKFC2+8\n8UZmZqapcwjpkLZt27Z3716hUxBiGobnebN/aENDQ0NDg4uLi3YkIyPj7bfflsvl8fHx2jnP\nP/98XV3d559/7ufnp5nz1ltv9ezZ89NPPzV+jkFJSUn5+flLliwx+7dGiHVkZmYOGTJEKpVe\nv37dw8ND6DiEGCUiIoIdOHDgypUr23BwCwdKpVLdigKgb9++QUFBJSUlSmVj8+tz586VlJRM\nnjxZUy00cx588MFr167l5OQYP4eQjofjuMWLF1dXV3/xxRdUUYh9YdPT02/ebEvTVJMOvHHj\nRn5+fkBAgLbdS3p6OoDBgwfrTtPsCaZ5y8g5hHQ8dtrjixBobtTX1tbevn3b7B9dUFDw/fff\ncxxXVFT0xx9/iESipUuXat/Nz88H4O/vr3uI5oxE85aRcwjpYOy6xxchYgC7du3atWuX2T+6\nrKzsp58aG5O6uLj87W9/092cuKamBoCTk5PuIZqX1dXVxs/Revfdd+vr6zV/lkqlgYGB5vtW\nCLESe+/xRYhFHinWCA0NTUpKUiqV+fn5e/bs+fDDDxcvXvzYY4/pzmEYptXPMWYOgCNHjmiK\nEIAhQ4ZQUSH2SKlUDh48WC6X04UvYqfElnj6S5dEIgkODl6+fHlhYeHWrVtHjhzp6+sLnRMO\n3c4Tmqrg7NzYv9SYOVo7duzQfi8pKSkVFRWW+6YIsRCZTPbFF1+o1WqhgxDSRtbbPG7AgAFq\ntfrq1aual5o7JXq3RvRuohgzRysgICDwruYlhxA7IhKJhI5ASBtZr6gUFBRA51/LgAEDAKSl\npenO0bzUvGXkHEIIIbbDIkXlwoULd+7c0R05ceJESkqKVCrVFoOhQ4d6enoeOnRI++BZRkbG\n6dOne/fuHRISYvwcQgghtsMiN+pPnDjxww8/BAcH+/r6Mgxz69atW7duMQyzdOlSNzc3zRyp\nVLp06dI1a9a8+uqrY8aMUSqVx44dE4vFL7zwgvZzjJlDCCHEdlikTcvVq1cPHTqUnp5eXFys\nVCrd3d379+//2GOPhYaG6s3UNotkGEbTLLJHjx5tmKOH2rQQO/Lll19mZWWtXr3a0dFR6CyE\ntEtERIRFiorgqKgQe6FQKMLCwkQi0cWLF2lhCrF3ERERFlynQghpGS11JB2P9Z7+IoTo0fT4\nioyMpKWOpMOgokKIMLQ9vjZt2iR0FkLMRv/yl1qtPn/+fGpqakFBQWVlpVwu79Kly+jRo8PC\nwliWKhAh5sHz/IIFC6qqqrZv304XvkhHcq+o8Dz/1Vdf/f3vf79x40bzed27d/+///u/hQsX\nWjEbIR0WwzAvvfRSjx49nnnmGaGzEGJOjUVFrVY//fTTO3bs0LwUiUTe3t4uLi6VlZVFRUUc\nxykUimeffTYlJeWf//wnnbIQ0n6zZs2aNWuW0CkIMbPG8rBu3TpNRZk0adIPP/xQVlZ2+/bt\nzMzMgoKCsrKyffv2jR8/HkB8fPznn38uYFxCCCG2jAVQXl6+evVqACtWrPj555+nTZumuxmw\nq6trVFTU4cOH33rrLQCrVq2qrKwUKi4hhBBbxgLYuXNnbW3tww8//OGHH95vHsMwH3300Zgx\nY6qrq3fu3GnFhIQQQuwGCyA5ORnAK6+80vJ2WAzDvPLKK9r5hBCTcBxHG6WQDo8FcP78eQDh\n4eGtztbcWdHMJ4SY5Msvvxw3bpxCoRA6CCEWJAZQUFAgl8u9vb1bne3j4+Pq6qrZGYUQYjyF\nQvHOO++IRCKJRCJ0FkIsiAVQWVmp7UjfKrlcTjv1EmISbY+vjRs30lJH0rGxABoaGoxfeiIS\nierr6y0ZiZCOJjY2VtPji5Y6kg6PljESYlkKhWLFihXU44t0Eo0r6ouLi5cuXWrMAcXFxZbM\nQ0hH8+KLL1ZVVcXHx9OFL9IZNBaVqqqqzZs3CxuFkA4pJiYmPj5+/vz5QgchxBrEACIjI4WO\nQUiH1bNnzxaWFRPSwYgB7N+/X+gYhBBCOgK6UU8IIcRsqKgQQggxG/2dH5srLS39448/CgsL\ne/bsOXToUCtkIsSucRxXXFzs4+MjdBBCBHDvTOWHH3545ZVXli5d+sUXX2jXzK9bt65r167j\nx4+fNWvWsGHDhg0bdu3aNYGiEmIfYmNj+/Xrd/ToUaGDECKAxjOVBQsWbN++XTu6fv36U6dO\n7dmzR7OHita5c+cmT5584cIFV1dXq8YkxE5oljqKxeJevXoJnYUQAbAAdu/erakoPXr0ePTR\nRwMDA2/evLl69eq///3v7u7umzZtunz58qVLlzZu3Ojq6pqTk/OPf/xD6NiE2CKO4xYsWEA9\nvkhnJgawbds2AIsXL968eTPLsnV1dTNnztyyZYtKpfr222/nzJmjmdqvXz9nZ+dFixbt27fv\nzTffFDI1ITYpJiYmJSUlKipq3rx5QmchRBgMz/P+/v63b98uKCjw9fXVjJ4+fXrkyJEikaiu\nrk4svnczv76+3tHR0cPDw8abtSQlJeXn5y9ZskToIKQTUSgUYWFhYrH4woULdJpCOqeIiAgx\ngKKiIk9PT21FAdC3b18A/v7+uhUFgEwm8/X1LSoqsnJQQmzf6tWrq6qqtm/fThWFdGZiACqV\nSu/Gu2Z7FZlM1vwABwcH2hKVkOb+8Y9/PPzww9TcnnRytPiREPOQyWQLFiwQOgUhAqOiQggh\nxGxa2k+lsLCw+aCN36InhBAioJb2U6moqKBNVgghhBiP9lMhpI04jvvtt99GjhwpdBBCbAjt\np0JIG8XGxi5fvnzTpk3PP/+80FkIsRV0o56QttD0+JLL5REREUJnIcSGtN76nhCiR9vjKyEh\ngZY6EqKrpaKSkZHRfLBHjx5SqdRieQixA9Tji5D7aSwqmzZt2rt379ixY1euXKl9r1+/fs0P\neP/991etWmWldITYHoVCsXLlSnd397i4OKGzEGJzWABlZWVvvvnmkSNHtA2JW7Bu3bry8nLL\nByPERn3//fdVVVVffPEFXfgipDkWwK5duyoqKubOndt8WyE/P78bOpYuXVpTU7Njxw4hohJi\nE1577bXU1FTq8UWIQSyAH3/8EcDTTz/d/G2RSBSkY9GiRQAOHTpk5ZSE2BRam0LI/bAA0tLS\nGIYZPXp0q7OHDRsmk8nOnj1r+WCEEELsjxhAQUGBu7u7o6Oj3nshISH+/v66IyzLenp6FhYW\nWi8gIYQQ+yEGoFQqm1cUANnZ2c0H1Wp1Q0ODpWMRQgixRywAT0/PsrKy+vr6Vmc3NDSUlJR4\neXlZPhghtoLjuK1btyqVSqGDEGIHWAB9+vRRq9UnT55sdXZqaqpKperTp4/lgxFiK2JjYxct\nWvTWW28JHYQQO8ACmDRpEoAvv/yy1dkxMTEAJk6caOlYhNgIbY+vv/71r0JnIcQOsAAWLVok\nlUp3797d8u4pmzdv3r17t0wmW7x4sbXiESIkjuMWLlxYVVUVExNDSx0JMQYLICgoSHNqv3Tp\n0nnz5p0/f15v0vnz5+fNm6fZBXLFihUBAQHWD0qI9cXExCQnJ0dGRgrT44uHKhcNaWhIB9ch\nN1ytr0dmJs6exe+/48oV1NQIHYiYAcPzPO52Xf3mm280o56ent27d3dxcamqqlIoFCUlJZrx\nBQsWbN26lWEYwfIaJykpKT8/f8mSJUIHIXZMoVCEhYWJRKKLFy9a/zSFV6EuGVzZvRFJH0gH\nWTmFJalUuHgRuo+SikQYMAAODsJlIu0VERHR2FCSZdmEhIQxY8Z8+OGHt27dKikp0RYSjaCg\noFWrVj333HNC5CREAOnp6SzLbty4UZALXw0XmlQUAMqrEPlC1MX6WSwjLw96ixPUaty4gd69\nBQpEzKPxTEWroaEhOTn5119/vXXrVkVFhZubW1BQ0NixY8PDw+2o4z2dqXQuavBqi3xwYWGh\nj4+PmT9UrUbxnVZnqa4a+KZYOUQd5tpzURHq6wEwDA/c/SkkEoGurgPw9IRMJnSItrh3pqIl\nlUonT548efJkQQIR0gbqIv1f6s3FAz6qKrN/qgh864VKaagVOMuCN38egVSzqKsDIHIsZcV3\nT1kkEpi9itsjkUjoBG1n8s6P586d27Zt28aNGy2RhpA2EHWxu4tCrf+7U+WDK9EfFAVBEmqR\nQAIoZKEo0B/09ISYtqO1b8buUV9cXLxx48ahQ4cOGzZMs1qFEGI5uvfkNdeGWBeIewqUxhJ8\nfODp2WTExQWBgQKlIWbTyi8FarX64MGD27ZtS0xM1Lb8Gjx4sOWDEdKpibzh8DAaLoIrAyuC\nyA/SQWA62C/xvXqhtBQVFeB5uLrC0xM2/2QpadV9/5Jeu3YtPj5++/btt27d0ox4eXn9+c9/\nXrhw4dChQ60VjxDr4TjunXfeefHFF7t27Sp0FgAQ+cJxIsAZf0HBDnl4wMND6BDEnPSLSnV1\n9Xfffbd169Zff/21cYZYrFKpvL29b926ZUcPgBFiqtjY2HXr1uXk5Hz77bdCZ9HRgSsK6Yju\nFZXjx49v3bp1165dVVWNz5cMGjRo/vz5Tz/9tJ+fn0gkoopCOjBtj69PPvlE6CyE2DExgLVr\n127btu3q1auaIW9v76eeemrBggXDhg0TNBshVqLt8ZWQkEA9vghpDzGAt99+G4BEIomIiJg/\nf35UVJREIhE6GCHWI3CPL0I6kHvXa6VSqbu7u1wuF9Nz4qQzUSgUK1eulMvlmzZtEjoLIXaP\nBfDOO+8EBQVVV1dv37590qRJ3bp1W7FixZUrV4TORog11NfX9+nTR6geX4R0MGBF7TEAACAA\nSURBVPe6FB88eHDr1q1JSUnafYVHjhw5f/78OXPmeHp6dunS5fbt24JGNQH1/iImUalUdIJO\nSPtFREQ0Xv5iWXbq1Km7du3Ky8vbuHHjkCFDAJw6dWrZsmX+/v4A1Gq1SqUSMiwhFkMVhRBz\n0X8G3tPT8+WXXz537ty5c+defvllLy8vzYlLUVFRYGDgq6++evHiRSFyEkIIsQP3XVg1ZMiQ\njRs35uXl7dy5c+rUqSzL3rlzZ8OGDYMGDRoxYoQ1IxJCCLEXrazWlUqls2fP/vHHH3Nzc1ev\nXt2rVy8AZ86csUo2QgghdsbYFhCBgYErVqy4du1acnLy/PnzLZqJEIviOG7OnDn79+8XOggh\nHZDJ9yfHjRs3btw4S0QhxDpiY2N37txZXV0dFRUldBZCOhpqVkc6F22Pr7i4OKGzENIB0ZOU\npBOhHl+EWBqdqZBOhHp8EWJpVFRIZ0E9vgixArr8RToLHx+fZ555ZtSoUXThixDLoaJCOgsX\nF5cvv/xS6BSEdHB0+YsQQojZUFEhhBBiNuIZM2a04bC9e/eaPQohhBB7J05MTBQ6AyGWolar\nRSKR0CkI6UTEzdcV5+bmfvLJJzzPR0ZG9u/fv0uXLgUFBZcuXTpw4ADDMK+//npwcLAgWQkx\nCcdxU6ZMGTFixOrVq2nHFEKsQ7x06VLd13l5eUOHDh06dOiOHTt69Oih+1ZmZuacOXO2bt16\n9uxZ64YkpC1iYmIOHz7s6OhIFYUQq9G/Ub9q1aqSkpLvv/9er6IA6NWr1549e4qKit59911r\nxSOkjWipIyGC0P8N7qeffgoLC+vatavB2cHBwWFhYT/99JPlgxHSdtTjixCh6J+pFBYW8jzf\nwgE8z9+5c8eSkQhpL02Pr6ioKOrxRYiV6ReVLl26/PHHHwqFwuDsrKysCxcu+Pv7Wz4YIW2U\nl5e3YsUKDw+PzZs3C52FkE5Hv6jMnDlTrVY//vjjFy9e1HvrwoULM2bMUKvVM2fOtFY8QkwW\nEBCwefPmuLi4gIAAobMQ0ukwehe7iouLR4wYoVAoGIaZOHGi9pHi9PT0I0eO8Dzfs2fP3377\nzcPDQ6jExkhKSsrPz1+yZInQQQghpBOJiIjQv1Hv5eWVkpKycOHCn3/++Zdffvnll190350y\nZcq2bdtsvKIQQjqgujrcuYP6ekil8PGBk5PQgYhhBp7fDwoKOnTo0G+//fbDDz9kZGRUVla6\nurr27ds3MjJy+PDh1o9ICOnsystx7Ro4rvHlnTvo3h3e3oJmIobdd1HYiBEjRowYYc0ohLSm\nGqrPwe0DXwy2H0R/BTtB6EjE8jgOWVn3KgoAnkdODuRySCTCxSKGtbTSmOO4srKympoaU5/0\nr6ysPHHixMmTJ3Nzc0tLSz08PIYNGzZnzhzvZr9ZpKWl7dix4/r16yzL9u/ff968ed27d2/D\nHNIJcFAuApd899Vv4P4MyTawUwGUlJS4u7uzrJ103eZ5NDQIHcJ+VFdDqdQfVKtRUgJ3dyEC\n2SeJBFb5B6J/o14jJSXl448/Pnr0aHV1NQDtnLVr12ZkZKxfv755edC1devWvXv3uri49OnT\nx9HRMSsrKz8/383N7ZNPPtF9HPnUqVMfffSRs7PzmDFjlErl8ePHAaxZs6ZXr14mzWmObtR3\nQNyPUD6rP8j4Q3qG4zBhwgQA+/fvd3V1FSCbqdRqFBcLHcJ+1NXh9m0D4z4+cHa2ehq75eFh\nhRM7AzfqAaxfv/6NN94wWGzc3Ny2b98eHh6+cOHCFj43ODj4zTffHDVqlKZBLMdx//znP/ft\n25eQkPDmm29q5jQ0NMTFxTk6Om7YsMHPzw/A1KlT33rrrbi4uE8//dT4OcRY3O/gLwsdoh04\nQ30c+HyoNh05/Fvf3mfCwsJcnRKhtnqwtvG6+wfRdMAeCqGAVCoUFKD5TyR/fzg4CBGItES/\nqCQnJ7/++usODg5vv/323LlzP/jgg4SEBO27jz/++Isvvrhv376Wi8ojjzyi+5Jl2fnz5//w\nww+XL9/7oXbu3LmSkpLp06drqgWAvn37Pvjgg6mpqTk5OSEhIUbOIcZieoCx5xubfCbwS/Ph\nG3k9l//tLZFI+v6Hn4P1s36udqMfi60Ri9G1K3JzmwxSRbFV+kVlw4YNAOLi4hYsWACAYRjd\nd/39/QMDA69cuWLyl7lLO5Keng5g8ODButOGDBmSmpqanp6uKRjGzCHGYjyAFp4FV4FLB3cD\nonAwNvmLs+hJqPVXyHN4cN4zay6mVyYkJPj5jxQkF7EGPz9Ipbh9u/GRYl9f+PgInYkYpl9U\nTpw44enpqakoBvn7+2dmZpr6ZU6ePFlfXz9s2DDtSH5+vubTdKdpzkg0bxk5R+vq1atqdeO1\nj7KyMlMTdmrqVNSvBH8LAOAA6QuQPC9wpOaYgRC/BdVanRHvmH8MTk7+kHp8dQqenvD0FDoE\naZ1+USkvLx84cGALB3AcV1dXZ9LXKC0t3bJli4uLy+zZs7WDNTU1AJyarmDSvNQ8HWDkHK3F\nixdr5gMYMmQIPQ9tLP4G6l8GX3X3dR0aPgPjDbHtNeMRvQLmIe0jxdV1T364eiD1+CLEpugX\nFQ8Pj1y9a5c6VCrV1atXtXc4jFFTU/P++++Xl5evWLGi+TNjepfXDDJmDoDo6OiGu49pcrqP\ntJOWKXfqVBTt4BZbLCoA2BFgG39dcHbG8ePHs7KyqMcXIbZDv6iMGDHiwIEDBw8enDJlSvPZ\n//73v6uqqqKjo4389Nra2nfffVehUPztb3/TW42vPeFw13nSXHOq4Xz3MUFj5mi99tpr2j9r\nHik2MqTdUP0I7pL5P1Z92MAgl4sGSzxfJ4X0ZTN+XGhoaGhoqBk/kBDSTvpFZfHixQcOHHj+\n+ef37NmjewsEwKFDh/7yl78AeO6554z56Lq6uvfff//q1asvv/xyeHi43ruaOyX5+fmBgYHa\nQb2bKMbM6UTE04Bp5v/YhnpwzXY6YPwhfdX8X4sQ0tHpL7CcMWPGrFmzcnJyRo4c+fDDD6em\npgJ48803x4wZM2XKlIqKimeffXb8+PGtfm59ff0HH3xw6dKlpUuX6j1hrDFgwAAAaWlpuoOa\nl5q3jJxD2kv8ZNOnWhnUeaH2SdTS6jxCiMkMrNr/17/+9fLLL/M8f+zYMc3Twx9//PGJEydY\nln355ZeNuSna0NCwevXqixcvPvfcc9OmGf7leujQoZ6enocOHbp9d61sRkbG6dOne/furX1W\n2Jg5pL3YPpCtBuMGACpHKB5D1nRkVeLiVlz9HqpaofMRQuyJ4TYtABQKxZ49e9LS0kpLS11c\nXAYNGvTkk0/26dPHmA/95z//mZiY6O7urncBDcArr7yivfGempq6Zs0aFxcXTQuWY8eO8Ty/\ndu1a3RYsxsxpjtq0mIwvh+oksn9FWdNmSh690WuGQJkMyM3NdXR09KE1CoTYpIiIiPsWlfb4\n/PPPDx82dPsX+O9//6vp3aKhbRbJMIymWWSPHj30DjFmjh4qKm1RnoWr3xsYD3seMrnV0xjA\ncdyECRMuX7585syZ4OBgoeMQQvQZKCpLly4dPXr0/Pnz73fMhg0brl69umnTJsvHazsqKsYq\ny7x376Q6H6XXDMzxGXyvqLgGwSXQwByr+OKLL5YvXx4VFbVv3z6hMhBCWmCgoeTmzZvr6upa\nKCpJSUnJyck2XlSIsdx7wf3uhcTyLMNFxX+kLZypKBSKlStXyuXyuLg4obMQQu6rpf1UDOI4\nzsjViMTOuIXAyQc1hU0GPXrbQkXhOG7hwoVVVVUJCQmm7u5DCLEmk/dsuXnzpn1sWUFMxYjQ\nczqcddoluPdEt6nCBbonJiYmOTmZenwRYvvEALKysrKysrRD+fn5P//8c/OpNTU1v/zyi0Kh\neOihh6wXkFiTgwf6P42aQjRUwsEDDjbRv4/juISEBOrxRYhdEANISEh4//33tUMHDx48ePBg\nC8e89NJLFs9FBMPAyRdOvkLHuIdl2WPHjl28eJF6fBFi+8QAfH19tQvU09PT3d3ddduiaDAM\n4+Tk1Lt373nz5j366KPWjkk6N0dHR2o7TYhdEANYtmzZsmXLNK8Zhpk+fXp8fLyQoQghhNgn\n/ae/tm3b1vJidUIIIeR+9ItKC3s+EkIIIS1raZ1KUVFRcXGxUqls/lbLu0MS0k7Xr1+/devW\nuHHjhA5CCDGNgaJSV1e3Zs2a+Pj4FraAtETHMEI0OI579tlnjx07lpqaSvfnrUFdCa4OYk8w\notYnE9Ii/aJSX18/YcIEzTYqEolEqVR6eHhUVFSo1WoAYrFYLhd+fTXp2GJiYlJSUqKioqii\nWFxDHor2oP4WALAO8HgEbmOEzkTsm/6K+tjY2NTU1PHjx+fn58+ePRtASUlJbW3tsWPHoqOj\neZ5ftWpVUVGREFFJp0A9vqxHXY3b8Y0VBQBXh+L9qPpd0EzE7ukXlV27djEM8/XXX/v53WvX\nIZFIxowZk5iYuGzZsuXLlx86dMi6IUlnoe3xFRMTQz2+LK7yNNSV+oOlBrppEGI8/aJy+fLl\nkJCQnj17AtA0jtRc+NJYt26di4vLZ599Zs2IpPOgHl9WpTS0Y7SqDLzawDghxtEvKvX19dpt\n9WQyGYCysjLtu46Ojv379z9z5ozV8pFOJT09nXp8WY/I2cAg60i360l76BcVPz+/0tJSzZ/9\n/f0BXL58WXdCYWFheXm5dcKRzuarr76iHl/W4zIUTLPnP12HCxGFdBz6RaVnz575+fkcxwEY\nOXIkgNjYWM1LAPv27cvKyqKdXInlUEWxHqkfvGeAkd4bceoHjynCBSIdgf7vKVOmTDly5MjJ\nkyfHjBkzZcqUkJCQnTt3KhSKsWPH5uXl7d69G8DcuXOFiEoIMZa6BqwjWt9Oz+UBOPZG7XVw\ndZAFQka/L5L20i8qM2fOPHPmzK1btwBIpdIdO3ZEREScPn369OnTmglTp0595513rB2zM6sv\nR5kCjAgePSAxdBGcEC0exadQ+CvUNWBEkA9Cl8kQO7V4iMgNLkOtFI90AvpFpU+fPprTEY1R\no0Zdu3Zt165dV65ckclk4eHh06ZNo+2EredqIq7sgVoJAGJHDJqHkPECRyI2rOgkCu4+8M+r\nUXYeDaXoNt+IUxZCzKT1Peq9vLxeeOEFK0Qh+m6dwqWd916qanHuK7j4wytUuExmdv369e+/\n//5vf/ubWNz6X0XSMk6FwqP6gzU5qLoK147zV4bYOvqXbMOyfjQ0eNBQUeHA3wScwXhZPpbZ\naHp8paSk9OnTZ8aMGdrxigzU3hQwl71S14Iz0P0VRSdRc8PqaewfK4UPdTQ1HRUVG1Zbamiw\n2YI19XdQfwC+CACYQZB8DGaIxbOZQ2xsbEpKSmRkpG5FAeDWF259AQD19bh1C9XVEIng7g4/\nP7D6zysSLVUVSs8aGJcPhCc9J0ysxXBROXLkyL59+zIzM6uqqrTPE+s6evSoZXMRAI5eqCnU\nH3TyafKSOwTVX+695C9A+WdIDoPxg21TKBQrVqyQy+WbNm0yPKOuDunp0DZ0qKpCRQVCQ+n+\nwP2IXeDcDdXZTQZZKVz7CJOHdE76RaW2tvZPf/rTvn37BElDmugVieKMJiMiCXo+2mRE9Yn+\nUXwp1Fsg/j/Tv14D+CIw1lgmou3xtX379vv2+MrOhrppv5CKChQVwcfH8HwCBM5AdgIaShpf\nshIETofETdBMpJPRLyqrVq3at2+fWCyeMWPGyJEjfX19WbrgYEbc/8AZ3eTGBxjriKKMxl5M\nrAQ+A+G6EyqdOfwVQ1/lR6hYAKivh/E73/B1QAGYEANvqR4DZ85Npv/344++YvGa119/JioK\nJSWGJ1U263UIoKgIIrttIuLgAKeWH+9tL4kcvZah4hLqCyF2gWtfqijE2vSLyrfffgvg+++/\nj46OFiJPR8c+CvbR1qdpeQPyGpQpwIohD4HYQX8Clwi+2U1YdjTEKwCgoQYwfju1IvAnwBj6\n/11iQmRjNDBMtUq1aNkyyGSmHSkWm3yI7bDKE26a5SmECEX/b3lhYaGfnx9VFBsicYLPgCYj\n1QVwcIdIBgCiOQaugLGzG/9g0u/FfAW4WsNNBs1t+p//PO3JJ6VSaUuT5HLoNDNt5OkJZ1oB\nSojt0r+0FRQU5OLiIkgUYqy81HsPhon+AjZS5z0pxO+BHWn6h6rB54LPA+raH9AYrVQUACEh\n+r/au52F83vg8y2XihDSTgbatHz66afXr1/XbKlCbEtJJjJ2oaEcN0/AvRf6/wkyN0i+Bvc7\n+LOAE9iHwZjevok7BdWr4K8DgHo7xG9A9JzZs5tMJsOgQchLQdUtiGrgkgaPFKg51OXCcSfQ\n7EogIcQGMHzTG7llZWWjRo3y8PDYuXOn/XYjTkpKys/PX7JkidBBzKr0Oi5shaM76qsgloEV\nob4GD62AqLVf+VvG30LDJKDpdgbiLyGa2a6PNQ8ONePAN1uaI/sA4llC5CGEtCQiIkL/TMXd\n3T0lJWXu3LmhoaGRkZG9evUyeDVs5cqVVknYKXGXoDK0lr7sJEJYAFArwYrAsABw50V49W3f\nlzsJvl7/F/+G1RAp2vWx5lFnoKIAUO4Cl2v1MNagqkZtHrhasDI4dIHEvbUDGA9InrVGMkKM\nY+BxlB07dvz22291dXXff//9/Q6jomKs4gxU5pl+mKGusXf+gLQKADgeDAdGc4pZitr23WPg\nqgFPAPAugaP2hsodsOa8uVJWVnb06NFJk6a5enxgynH1UO5Ak2eoAQDiiZB0wH50lVdxY1eT\nzXy7TIb3Q8IFIsR0+kXlm2++eeWVVwD4+fkNHjyY1qm0l7oefIOZPqsfGhgA4BrAiBr3fGUY\nMGHt+lTGDXwGAPAX7t2lZ/waH0o2B47jpj8xISXlTELCX0zce14G8RSofmg66ACRcRtJcTVg\nLbsuxIx4NfIS9beHv3MYbv0g9RAoEyGm0y8qn376KYDXXnvto48+kkjMvTyhE/IdDAw2z0cV\np4PnAECpgljU2AXLtRu6T23Xx/JBaIgC6psMip5p12c2FRMTo+nxNW/ePGUlVFUmxXsfDSw4\n7bU4KaSLUWHcUyQVaXAbbWJYwdQXQlWjP8irUfYH9VkxTCSD1FPoEKQZ/aJy9epVFxeXdevW\n0QmKzQl5BNkHmw4x6DGtvR/LDIR4HVQrgbs/7EV/gujF9n7sXQqFYuXKldoeX+paKA31ybw/\nF2AduHRwN8G4gO2POqM7MVc7Qd36LBuhqjA8rq4y9b9YZ8G7UFGxRfpFxdXV1dPTkyqKLfIZ\nzGWlsKK7zc2lrug1HVJzLCoS/QnsJHA/gjsF8ctgzLb5hrbHV0JCgqbHl4MvHHxN/RgWGASY\nvky89DY8zHSaaHmcCkXHoW52J8tzFGT2tKEB6ez0i8f48eMVCkWlwbZLRGhcWR4eWA55d/SZ\nicFL4exvto9mvME+AnaYGSsKgJiYmOTk5KioqHkm3kvphFgx/O8uY9U+5u/zMFUUYmf0i8p7\n770nFotff/11gx3vifAYFqFPwN2c7R0t5+GHHw4PD9+8ebPQQeyDfCC6L4BrKBy84dIDQU/C\nd6LQmQgxkf7lr/Ly8rVr17722munTp1asmTJ/dapjBo1yirxiCFSV6ETGGvYsGG09Y5JnEIQ\nbKhPNCH2Qr+ojB7d+LTM+fPnW9ianje+oTqxF4wr2BFCh9DBq1B5BjXpEHvBeQAce5twbEMe\nyo6gLgt1OXAOg9uDzU/KCSGWoF9UQkLo1ySbpKxV/7GTUxxVH/+CHTiTkXe1wNdwAWMzPdO5\nGuTFQVkEAMhE5Sm4jYaXcc2z67KQv6Xxz2oF6hSoz4HPnyyUlBCiS7+oZGdnCxGDtIQvVSi3\nTOJLFTzA56Ti4ArJrHh24JNNJ5WAcQHa1wfMdhTvv1tR7qo4Ccc+cGq1Jw2Poj36Y1Xn4fIA\nHO3jRhQhds0auwZ1UrzaXGvpVf99lq/Jh8zh7ubsauW+F6RdhzGuOk9/qfeDfdDwvo3WxXGc\nGR5Jr7lkYLD6Dzi09g2qK6E01C6s9hpkge1NZddYR6ETkE6BiorFqEpRk97+j+HryhnnOlG/\nIfrjN3YzXXX2TeFKwFwGU9D+r9gexcXF8fHx06dP79WrPacFPHilgWFlASpPt3Iod59C3pDX\n+rEdGQP5OKEzkE5BvH//fgBBQUFDhgwBoHnZqqioKMvmskN80VX1ma3m/9zqIvX5VANfrkLG\n3dTZ3Z2/BCYQkLf9C3EclEq293i2//S2fgA3M3pCSkqKb+9ZvR4Ib3sSANWXUN9sm2TnoZCP\nbf3YmktouK0/6P5I62c5hJB2Ez/22GMA5s6d+69//QuA5mWr6Omv5hjvPuKpa83/ucoaddq3\nUOq3hRKNe4MNjWh8wRdBHQPmAYgmA229ytHQgNJSdOnS5qSaHl/mWeroFYX8LeB1+hNLu8DN\nuB0tvZ9E/uYm5zpuY6ii3FdNBmoywNdBGgjXkWA7ym05IhDxAw88AKBHjx6a15qXxKpUZVBV\nQupt+Kq3xEn8yHuqH9/QHWN7TmL73O0jqfoE6ligAQDUXSBeC7Z9LSbbRNPjy93dPS4uzgwf\nJwuG3yKUHkT9DbAyOPWHxxQwxnU4lQUi6K8o/xVV5+DYG85hcB5ohkgdUnEiKrTnwWmoOIGA\nZRDZzUIoYoPEZ86c0X2t95JYlrIUhXtQmwUAYOE2HN6RYPRvdIkefhUiiTp5HV95GxIn0ZC5\n4qlrGzfpUv8b6g33pvIFUC6D9CcwJja2ValQWYmaGtTVwcHknXo5jluwYIFujy8zcOgG/+fB\nq8CIAKb1+bpEzpD4gJVA4guJt3nydDy1V3QqCgBAVYbiRPg+LVAg0hHQjXrh8CoU/Bv12i22\nOFScBsPCu9kVSIYVjVkuGrNctf+v4shPG8uJhrp5B5RaqLdD/HcTkhQXIycHKhUAFBbC1xfd\nuplwOLBly5aUlJTHHnvM/D2+mpXY1qnKkL8JqnIAKPsF5cnwjLCjHvjWU3PlPoO8yVWckLv0\n/8UuXbp09OjR8+fPv98BGzZsuHr1qqaNOTEZ9z9wd88FlUVwuAT9s4LfoTx7v5+kbGg61Gua\nDPHZhr7KEaiMLipKJWqL4dP0JlmZK3Tb84iebLnR5FNPPZWenv7WW28Z+0Utqmh3Y0XR4FUo\n+QGOPSExuT1yB2fwETteDZ5r3AKOENPp//DavHlzXV1dC0UlKSkpOTmZigoAlCaDa8Oeu8Mb\n/7f+JmoN7UvIDYToPg3ty6tRPrzJiPoK0HS3DUkJXMNN2LfxVg4Kmj2IXCLDYBOaxru5uW3c\nuNH4+RbE1dy9nKiDV6H6EtypqDQlC0Jls8vdsgCqKKQ9TL62wHEcw9CpMQDAo31PzValGfjx\nB8BzMsRuBsZLSlBTiJr+TQb5p8AdbTpPjKpZQLPnce+nvNzAYH09bhj9CcZjWQRaeAUip9Tp\nHK/DbJs6dyAuw1F5BvU3740wYmN74RByHyYXlZs3b7q60sMh5uAUCrG8yYUaAM79DFcUAJ6e\nXG0621XvJmpXqM5CvRlQAgDjBfFasPorJVuRn68/4uCArpZoL2Z5YleInKGu1h+XBgiRxgx4\nFRjWMv0wGRH8nkXZYdRchroWsiB4PAKZff7/TmyGGEBWVlZW1r1fmfPz83/++efmU2tqan75\n5ReFQvHQQw9ZL2AHxjqgyxwU7ISqrHHEoRt8Hm/hCPHDrxsaXQHRIqhjwQyBaBrgbFoMX1/c\nuQN10313/c23/Ze1sfCMROGuJmMO3eHc/z7zbZc6Dw0XwVUCLES+kA4Ga459PptgHeEZCc/I\n1mcSYhwxgISEhPfff187dPDgwYMHD97/ELz00ksWz9VJOAQjeDlqFVBVQOoDh+BWnrpxus+W\n3IwfmH5gHzC5ogCQydC7NxQK1NcDAMsiIAA+Pq0eV1pa6uHhYfKXswKXoWBYlB6GshAiJziH\nwWOy3bW+V99B3cm7Lziob6OuAo6TwNDaRGLbxAB8fX0HDBigeZ2enu7u7h7Y7MI3wzBOTk69\ne/eeN2/eo48+au2YHRgjgZOJa0rMzs0NYWGoqEB5OQIDIWr9Pm1mZubw4cPfeeedN954o9XJ\nAnAeDOfBKP0JHgKsAzWLhgv6I3wNVNch6SdEGkKMJgawbNmyZcuWaV4zDDN9+vT4+HghQxHr\nYxg4OqKuzpiKwnHcokWLysvL/W3jKpk6D+oSQ2/UhTZ7YttucIaen1DdAK82MG7XxCFg6S5t\nB6J/o37btm3t6y9LBMJOA2P2K+6GmbPHlzmIAiAyeBu+9Co8uls7jZmossHX6w+y3pBSxxli\n2/SLyoIFC4SIQdqNuc/tFuOxLBxbb0ap6fEll8vN0+PLouQPC52g7cRdocw0MEiIjdO/e5mb\nm7t79+60tDTtCMdxH330Ubdu3aRS6ZgxY86dO2fdhMRaxGK43edp5rs4jlu4cGFVVVVMTIzZ\nenxZDmtobamdkA6EyKvpSH+IWn9+ghCB6ReV2NjYWbNmXbt2TTvyySefrFixIicnR6lUnjhx\nYtKkSXl5edYNSWxFYmJicnKy7Vz4ap397tEggsN4OIyGJBTSgXCcRLfoiX3QLypHjhyRyWTa\nPbhUKtWnn34K4JNPPvntt99mzZpVWlqqGSGd0OOPP759+/bNm5t3sbQxKhUUCvz+O377DRcu\noMTgfXw7IAqAdCAkoWDdhY5CiHH0i8rNmzeDgoIc7jY/P3XqVGFh4fjx41977bXhw4dv2bLF\nwcGh5VUspGN75plnAgJse3U6z+PqVRQWNq7orK1FZqb91hVC7It+USkuLvb1vdd37/jx4wCi\noxvbAcnl8j59+uguvyfWpPrf2wAADnx+Y18W0lxxMaqq9Adzc4WIQkino//0l0QiKdfpMPjr\nr78CGDv23sbgzs7OanWHe1TeuviyHNSUMN59IDV1ATwH9WdQ/QOoAiQQDVItbQAAIABJREFU\nTYfoPTBerR9npNJS1LWh77KNMdgis6EBN28aswrH1nl5QUqr6ont0i8qPXv2vHTpUl5eXkBA\nQFlZ2eHDh11cXIYOHaqdcPv27S7t2Ma8k+NvX1B+v4i/+RsAiB1E414XP/Jek023VB9B/M59\nj+dOQ5Vx94US6t3g8yD5zmw9SNzc0AG6hapUqKgwMO7rC9bOmrUY0AHqIunQ9ItKdHT0hQsX\nIiIinnnmmb1799bU1MydO1csbpxWVFSUnZ398MN2/Pi/kOrKlNsf48tyGl+q6tSHP2RkLqJx\nRnY6qQR/Fmj6mCx3AtxRsBPNEI/nwKggkukNX7x4ccCAAfa034GXFwoKwHFNBt3d6Rd8QqxA\nv6i8+uqr3333XVpa2quvvgrAw8Pjvffe076blJTE8/y4ceOsGbHDUJ/7F9u/iHFqeirAfwJl\nA7Q/srmT99+0sZDtaWirAnUcuJMGxo0kfhlwAwB1JaovQz5K983r16+PGjVq6tSpu3fvbvuX\nsDInJwQFNbmJIpOhu70urSfEvuj/kPLw8Dh9+vSWLVsyMjKCg4MXL16s+6jPpUuXJk2apH3g\nmOji88+r03a0MIG7fpi/2WyfD1Ty5XcgvXv+wVWCrdR9m3GQi8a/DQD8Te7q12y3Zr9us7Mg\nmt2O4PcPzHGLFi2qrq6ePn16ez9Lrcbt26iuBstCLjemC3K7+PnBzQ2lpVCp4OQEL6+OcOGL\nEHtg4DdfuVz+2muvGZy9fv16C+exY4z/ELF/S7tjqZPXqTR3U3SJHcSR6yHSlAoVVCsgfqfx\n1EGDU0LVoP59q/roWr6sWn22VhTmIJ7oCgcGABgPsJPM+41oxcTEJCcnR0ZGtnepo1KJ9HQ0\n3N17saQEpaXoY+HezE5OcLLjFfWE2KmWdn7kOK6srKympsYOGnLYA3bwHBz5CPVN7iGLHlgA\nkRTgoY6BaiNQDXUC2IkQr0G5GhcSUJIJnmOqihhVNQ+gjlOfruFL1JK5HmDcII4159NfOrQ9\nvjZt2tTez8rNvVdRNMrKUFho8fMVQojVGS4qKSkpH3/88dGjR6urqwHwd3tdrF27NiMjY/36\n9d7e3tbL2FEw7iGSP/1LtXshX1OsGWFDI8SRnwKAejNUa+5N5Q6jfi5Se2sf8GVdvNi+E+rT\nkqCsB8Bl1nPZz7ChbxioKDU1bexNoq5DHSCuBsBx3JqVK0ODgj744IMgDw9UN79qZ4qyMgOD\nxcWtnEnwatSkoaEYrAwO3SALblcGY4jFkOk/p0AIMYmBorJ+/fo33niDN/SDyc3Nbfv27eHh\n4QsXLrR8NjvDlyq4P3a1Ok300Et8cRavrGZcAxh5kPpEDKCG6jNA0+hcc8eeB9JQnIfyJnf1\nGYkDr2zsh65OvcAXfN388xnWC0ybnjrlG6CqYHzrGP+w7Kys6pKSWdHREZMmoS4P3HnwFWB8\nwQ4HY/qPXYNFTq1u3GvSIPUlNHwLtgosoHZDcTCkYXAdYfKXNgnPU1EhpJ0YveKRnJw8fvx4\nBweHt99+e+7cuR988EFCQoJ2Tn5+fkBAwOOPP75nzx4h0horKSkpPz9/yZIlZvis6gJkHzbD\n59yPQxac08Df3eePZwAWjBoA6mSocsb1EO1crjyPr278rZ/tPYUJGKr/ae3B1UNZDFnjcxlF\nRUUODg4uTnegTkZAIZzrAIDxhcNWsD1N++SrVw2crAQHw8/vPkn+QM1cMCqdERlKJsLneTj1\nNe1LE0KsKCIiQv9MZcOGDQDi4uI0G6vorU7w9/cPDAy8cuWKtRLaAOcuGPBUWw7kG6Bu1izE\nsBo0PAJwAMBJwUkgbgCAIh/c9IfOr85cXTFXfpP19mO8AhA2Ae6DIDLfvWh1JWoy4dpYqLxD\nAb4Ydc+CrwVEUGsW/1ej5h04mLiTSqAram5DtxGDoyO8JFDdpx9X/UZwMjR+5yKAA3g45qD6\nHKS+hg8hrWAg9hA6A+kU9IvKiRMnPD09W9iqy9/fPzOz2eZBpDl1NWr1/kOdApNjeDLfHfwd\nAAALnoWKBURw5RCarzuLDZSI3YfDQbOVVhwqRJD6QmSONfA8B64afA1q94G5+7eCvw1Oqf+X\nRJ2D2v8D0/p2Xk30UKOuHmo1GKbx1kX9/VdTqq/c+6K8CAwH8JAUgj+Aut9N+7qdEB8GND+f\nYyx+8ZAQAM2LSnl5+cCBLW1YynFcXQdoD2UFYg+4Pth06EHDMwGgDMq54M6Ck4GTQsxAsgHX\ncnHjV+0M3sFHffsU+/CDTTpJMhJ0fQliT9SXg5VA2qYdhavTUbQXakcAYESQj4LXNICBMgEN\nhn6IO74Itr/JX6WVDcB01E4Dl60/WB8I0VK4jG0+nedx8whuJaO+FM4B6BENT9PTEULMwsDi\nx9z793NVqVRXr171u9+lcNJ27pDsA5eChk8gmgLpXDDeeAAICUfRZfAcvPsxPv2ZneH6x/FK\nFBxCYTFUtQDg6INuU+BiSmv6hjso+A783UrFq1F2HGJ3yB8Ca3ApiQxMNxO/OxOJpoFrdoVN\nNRAeowzNxuVtyP6x8c/V+bjzO4a9Cj/DcwkhlqVfVEaMGHHgwIGDBw9OmTKl+ex///vfVVVV\n2k74pIna66hp94VBdX/AE6K75wcM4KM5+biFolw2sJuBQ6ovQyKGRPMiF7nx8B50dzWlEWqv\ng1cC/I2b5X4+LhKpCAyDkl+gqgQAVQT4XLikg7n7QIf0L2AsvKhQ+gK481Dr9J5RPQSv1feu\ny+moUNyrKFoXv4LvcLAtrcIihFiE/j+7xYsXHzhw4Pnnn9+zZ8+wYcN03zp06NBf/vIXAM89\n95z1AtoRx55wNPGxqObqfwAzCFJDK/Or/mjSz1iLb3pzglOh+jbcjF7VwdVDqSrLL/vfiRsD\ne3uPDHZjnGVwuvuZ4vGlmXfqSsYBSsABbAiYQCDN+G+oCYaFyyAj5kmAf4K7BE4BRgI2FEy3\n+00tPG9gsKES2T/A0YbXVrp1g7O/0CEIsQD9ojJjxoxZs2Z99913I0eOHDVqVGFhIYA333zz\n2LFjJ06cAPDss8+OHz/e+kE7iLJMVOW1NEEtBzIhqgAAZS1un0VlPsDBxR/+w6D0Q23TO+Q8\ng3op9NaB8AwkRt9Ir3bmC7gfUkqkvHN/d1+mlkEtIHeATPMJjjKHLmy3PpA5Adbs8ssAA4AB\nrc6T/T97dx4YVXUvcPx7l7kzk0z2fSPsICC7iqBIKzwVxO25V0SrVnxdbNXaBftstRZfa23r\nRtUKaKXV2kq1WutSiwoKiAIKCLIGCAlkX2afe+/7YybJZGaSTPYQzucfM2fOvfcM18wv9yy/\nkxK73J5FwgDeokEVGWSEQSpGB8Hzzz+fm5v7xBNPrFu3Lljyy1/+EpBl+Zvf/GZwzrHQRakj\nSR3ZXgXv35BGok3GW8+Ll9AYNvvry38ZWdPkyfOpWYvhA7AVUaNjuiJPklREYdyZpD/f+8jz\n7373mU+/d8m4689KwqwGiZo8pobOkDCwc/SoNvatiSy0Z5J7RuznOkEQelWMoKJp2iOPPPK9\n733v5Zdf3rZtW01NjcPhOPXUUy+//PLRvZ0EUJBmhxasbH6iVUQBTF3xHqf0KIxCdyOreDSc\nR2kojTyJmoLzz3FesG7fZsMwf/P1Kd+4uBilkbQGAKORz3/e6UWOHVIsjL28Z0+ZmM+Ya9gd\n9nFlCxO/KSKKIPSPNocyhw0bFtxS5WTnruJoVGrh3qCX4/k3+hEAdQgHj0S1pEZSrNhaL2Gz\npqJ7aGyKK5JCxrj4B1RM0/zNn/6zc1/pty4dllBUQk06WnPv3Gos30YeDpA7hcSB25c04jJS\nRnJkLd5qEgsYdqEYrhCEfiPmx3REtZFc1OtXMSqpfwmbp2lj4CNIsVabx2xMyhDcVbgrkVUS\nc7F0Yt/7iuPHtx3xDc1Om71Qw27i1ghf6KJsQDsHToARgMyJZE7s70YIgiCCSscsiWR1PFzc\nXfW/QjYJT8lSaKc2apHp8P/q2cZkZ41f/c7nrj3vkncvGjhUwse95Vrsvf/ZBUEYRETH88Cg\nH4wsGZNCRus16JljmX5bj185ISEhc9KFOE5FNrG03tddGrhdXoIgDEziSWVgiE6lJUvMm03p\nZEo3gUnedCZc3YkljZ1lXUTg+5GFlqt763KCIAxSIqgMDNaz8O+MLLTP5tSFnPq1vmiAci7a\nTXjfbm4Q2jdRemujYkEQBqveCir/+te/du3atXfv3sOHD5um+eSTT+blxZiRs23bthdeeGHf\nvn2yLI8bN27RokXDhg3rQp0Tnv1i/J/h3dBSYp2F/UIAw4vvGJKMloNk6cU2qNdhGYXVBFAm\ni74vQRC6oLeCyooVKzweT0ZGRlJSUn19fcw6Gzdu/MUvfpGYmHjOOef4/f7169fffffdy5Yt\nGzlyZKfqDAoSyf+LbxOedwFsc9GmA9RtoPotDC+AkkjmwvjSnLRn9erVw4YNmzlzZqxWJKO2\nnYjRbIQapHzo0s6SgiCcBHorqPzwhz8cNmxYWlragw8+GMzvEsHn8y1fvtxutz/88MPBtMfn\nn3/+D3/4w+XLl//617+Ov86gop0OFpBCub9cu6j8R8u7upPjf8WSjrWgy1fYt2/frbfearPZ\nSkpKEhPjnnxsluK9D/19ACkRy61Ybm7a+VgQBKFFb83+mjp1alpaezvNbdmypbq6et68ec2J\n9MeOHXv66afv2bOnpKQk/jqDWe26yBIzQO36Lp/PMIybbrrJ6XQ+/PDDMSKKmkzy9FjHefDc\nFooogOnE9zD+VV1uhiAIg5gKLFmypLOH/f73v+/mhXfs2AFMmjQpvHDy5MkbNmzYsWNHcXFx\nnHUGM3/Uvu5AoKbL53vsscfee++9BQsWXH/99bHel2LmlifwBsaeqLY9gWWRmOghCEIEFXjy\nySc7e1j3g0pZWRkQMXoffCIJvhVnncFMTSJQHdnLpLaRlbcjBw4cWLp0aUpKSuS9Mz4n8FZ7\nR+qxstSYjfgegHY2mpTRvteVhgqCcCJTgQULFvT9hV0uF5CQ0Cr/R/Cl0+mMv06zO+64o3mf\n45SUlKFDh/ZGs/tUypl4onbhTD6jC2cyDOPGG29sbGx89tlnCwtbpx2WT0Vrd/DfvxJf9AYq\nCpa7kDqREkYQhJOBCrz22mv9dXlJ6niwN546wObNm4NBCJg8efJgCCqOifgqqH0fMwAga2Rc\ngL0r06ldLld2dnbbHV/tUs/D/1hkgn31v0REEQQhWr/1iTc/cKSmpjYXBqNC8xhyPHWavf76\n66YZ2qzq7bffrqys7MXW95n0c0k+De8RJBlrEUoXv8cdDsdf/vKX5ie5zpHy0X6B7x7MxlCJ\nPBHt3q61RBCEwS0UVHRd9/v9kiRZrda2qnq9XtM0LRaLovTAMoXgSElZWVlBQcsE2YhBlHjq\nNEtKSmr+2WLpzUWCfUxNRh3XXgW9gdr38B5G1rCPJnkmUuwbZLPZutqG81Cmo7+PWY08GmWW\nyBonCEJMoa+GK664wm63/+hHP2qn6j333GO326+88soeufD48eOBbdtaddYHXwbfirPOyS5Q\nR+nvqF+P9xDuvVT/k/JnQtt89SwpA/VSLDehnC0iiiAIbZGBLVu2rFmzZtiwYf/3f//XTtXg\nOvaXX35569at3b/wlClT0tPT33777fLy8mDJrl27Nm3aNGrUqOa5wvHUGWzkJOQkdJ3KSkpL\nqaggEIis4zsW2k4YqH4NvfWcBc8B6jf1RVMFQRCiqMCqVauAu+66q/1eI1VVv//97996662r\nVq367W9/2/55//GPf+zbtw/Yu3dv8BJ2ux1YvHhxcFGkpmlLlixZtmzZnXfeOWvWLL/fv27d\nOlVVb7utJbt7PHVOMP4KAnUd1PF6OPIOfn/oZZlCQQHhU+BcO7EWh8ZXXFErSADnNiyZPdLe\nEC0XpZ3Zw4IgCCEq8P777wMXXXRRh7UXLlx46623Buu377PPPtu4cWPzy48++ij4w+WXX968\n0n7GjBn33XffCy+8sHbtWkmSJkyYsGjRouHDh4efJ546g4ppUlraElEAXaesjOHDiW8WXLPX\nXnvN4/Fcdtllsix6qwRB6COSaZopKSm6rjc2NnZcHVJSUiRJqq2Ntdh7wHj11VfLyspuvfXW\n/m5I5zmd7NgRo3z0aJqnwNV/RMK40CrI48/jjKqfcfHe45mTJ0/WNG3nzp3NSW4EQRB61fz5\n81XA5XKlp6fHeUxiYuIgma3bN5xOqmPtNt8Wrzd2+fHjNDQ01ZGwVCDXAxgzcFkww55slBSz\nNu+JB+93Op3Lly8fjBGlDrMKaYhIEhMSCGCaDKYZj8KJTAVSU1Orq6sDgYCqdvBbqut6VVVV\n+5kihVYSE4k/GTDg88UOQgUFLeepP0JCVku+Fj2H2rV4DyFpJIwheeYjjzz+m2eeufDCCxct\nWtS91g8w5kECP8AI9r4moH4H5TsndbJkp5OSEoJ9DJrGkCHE/dehIPQSGRgxYkQgEAgfAmnL\nxx9/7PP5RowY0fsNO1lpGtnZkYXp6e1FJiWJjIXkf5O8W0iZfeDg4XvuuSclJWX58uW92tI+\n58a/uCmiAC4CD6J3Om3d4OHzsXs3zb3WPh9791LX0TQQQehlMnDuuecCv/vd7zqsHawTrC/0\nliFDyMsjOLouy+Tk0OFOl34/dXU0NBiBQDDH16OPPhqZ46vLKip65jzdpL+C+WVkYeA34I9V\n+yRw7FiM6eZHjvRHUwShhQrccsstv/rVr1566aXHHnvsW9/6VltVly9f/sILL2iadsstt/Rh\nC094zs/+Xbf+Jb2hMuWsq5PP/O/Yk7iM/6CvhnIoRv0GRZMoKsLnw2LpeNLXkSOUlRFMUaMo\nl51/fm5uboyOL+MdjI4fRmNQ6gkkd+XAdlQU4evk8n6zDGIlLpNeBK1HGtU/5CnQpUwHNbE2\nQXC5OHy4my0SKCzs7GRLoZkKDB069O67737ggQe+/e1vr1u37q677po2bVpzGkfTND/99NOH\nHnrohRdeAH70ox8NGTKkP5t8Qjn62E01/14R/Ln+o78lTphT/L//kiytc+HoTxC4v+nFJ/he\nxvIH5AVocXxXVlRw9GjzK1nXvzN37nduvz1GTXku8txOfwCPh5pSHEVxNSZ+kUl24qD/nsBz\nUaUq1t2QEKP+oBcIEJ3MTdMoKuqP1ghCSGhk/r777ispKXn++edffPHFF198MS0tbcSIEQ6H\no7Gxcd++fTVNfxPdcMMN994rMgnGq+79PzVHlCDn9rUVf7k/+2s/bykyDxN4MPJI/11Yz43r\nD9imXAMtDIPjx+l+xgGvl/37Q1POqqrIyGDoUHoi7VsXyRfCr6H1xHf5opM0ogAZGTF6JjN7\ndNGrIHReKKjIsvzHP/7x7LPPvv/++48cOVJTU7N58+bwekVFRf/7v/97880390cj+5MZ8Bme\nyL1b2mN83NzL7znw+4Rxrf7At2edYVM8+q43wy5QinlpjPPIf4fwWXZuzBJJrZG1bPypqB5k\nK4BRg8UAMC0Emmb+1NbS/QWPERliqqqQJPpx2alUiOV3+L8H9aES+TQsy/qtPf0uOZnCQkpL\naUrOTVoa+fn92iZBaD3T/xvf+MYNN9zw3nvvffDBB0eOHGloaEhOTi4sLDzrrLPmzJkzqFL/\nxs13bH/Dxlc6cYB5CPTgj+4vSwLVevibDdUfOg9s9VnC/tw2D2B8FOM88hGkrKY6lRjvQiBh\nrCVhiIaniIAD83SSZ+KrxucDMBJagkpqanf7QGpqiN5bs7KSoqL+XA8hz0c7HeM9qEIai3x2\nm/OJDYxGkJAdg3rKcX4+6enU16PrOByEJeoWhP4SuTBF07R58+bNmzevX1ozAFkLxlovG9u1\nYwMNdzlf+XVEoWPqWZn/Hbahr3kQ35mtapggJWN9HuwA+HF/lZqL8OWCSRn4M1AacRdzzIsy\nkQZ/q0FFycAIdHe0NmpjzZBDh3p4cKUdJqYlhZRkKbx/S8pE+e/2jwscwbcN0wMg2dAmoxa0\nf8SJzGajyzsaCEIv6Lf9VAYjN+bx8NdZl13r2vknva6lUNJsuTfcjlkSVktC+Qb6UxAMJyCB\nelfoVN6PcP8JQ8N6GPt+bCXIPlzDsZbhGo1rJElvPPuvPR9t1B9YcltGSgpqA7mrSf0qyhVd\n/RRJSOlUV1NfH+PNop4esW+D/wt8u0OPfHIa1mnIKR0dA4BRhXdz87Mipgfvx8h25O4sCqyr\no6ICrxebjZwcHCK3piC0KRRUrrjiijVr1nzve997+OGH26p6zz33PPTQQ5dddtnf/va3vmre\nCcW9l/rV+J0oNhx5JGQriQy9+wbfkc2BhmpMQ0lItRYVy/aXaYg++ByMavCBDTkL72bYjOFG\nD1t2YKh4hiDpmBZ8uUh+7Ae9bvepk10TJ5Nyyh9QJWQfGDS+gxwre3H7rGkoVihEHkOKSfqB\nUMca4BlGIIW0tE5ElJoa6uowDBwOsrI6NUHTvxffzpaXRg2eDwz7OX4pqc2/eJr5vmyJKCE6\n/i+xzoj/+q2Vl3PoUOhnp5OqKkaMICOjq6cThEFOMk1zy5YtU6dOHTZs2O7du9sZOAkEAqec\ncsrevXu3bNkyefLkvmxlZ/VDQsm6g+x5GTPs+yx/BgVnB3803PW6q86SUYS5D7M03nM6VxDY\n1/zKqB9jeHJAwVSQnfiyTcP2nw37j1d6Z5xhGVoc/viYj3xadz9RIECjE10HTOcoU8olLS3e\n8f/aWtzulpeqSmZm/HHFvw+iVvUptno5U+kw503gIGZU+jTJijo0zou3puscPx5ZKEnk5Ay+\ndQxKJsrgSxQn9K1QQsne2E/l5GKaHHyjVUQBjm4gfSz2LEC2J8v2ZABpBFLcSW78K9Fbhl7l\nhKNy2mYCqb79t4KEN2/zZ+UbP3SOGKEMybQZ4YMg8hykCd35QCEaeL04naQkdWJ83u1uFVGA\nQID6elLi7MCKEVEA01AlZ6WketpviWLHjPq2l2zIXdsM0+9DjZXi01fd4xMW5OR2++gsFuz2\nnr2iIPSG3tpPZZDzNeAJS/vorccXa+OA49tIG9XyUrWTkI3fibuS5DjWkcip6Meii7W8N/Hn\nHjj03nnfX6Go2vYt+Vp+A76cpqOmoX4d2sh2HJuXwF8JfAhO5OGo1yGHTR0uqycvsRMnPHQE\nM2qxt8XCqHFxHW4SONwqrsgWl6HbLImVqqMcUyY9t52vV8ke/nQXohajhE/PVpR4H7kavBhR\nTypAgY2Ek3EypCB0SAX279+fmJgYT6qovLy85OTk/fv3937DTixmx1WaGX68tRBHULGdj393\nqxJvPq7h6Ekg3fzDNxqdvmcfvryw+CH0p2g0wYI0FnlmywrB4KhGh43Xt4MJzZPQPkJ2IjU9\nJHm9bSbkjynmzLFAgIMH4zyBLRvT1fJSUr3oqqS5AAyDsjIcjraiggJSFqaz6Z5IyIlIOoRv\n12C1xruKU9djFEoSPl+rjdTilJwc7+OaIJywxH4qXaIloYWtCTANStfhj/oyzZpIQuuUw+5K\nqnfhrsCa2vHDiu08Aodwrwm9lDTcWQRSkExM6cHvf/VP/9hx/UVDcVXhuDd24pPohMfRAq/h\n/UlkoTwe+187Pjamo0djpDVMTmbMmDhPIOt4NqI3rZORFL+WVqLKTZHSNElNJa/NTC8ymE70\nKgAlA6kzOw/EYLO1DNQHDRsmFq4LQlvEfio9QZIZeh57Xm5VmDs9MqIc/Yjqd0OTkw59jtVL\nWkGMIRa/P2xMIhW+FlpzYSo4y9GswanHp52Sedopp+KH8k0oX3S6zUo16lEAScc4M0YF9Y8g\ngw3f6Z07s2miqq1W40sSmtappTO2IswUn1njRjZkxYfU+nmrujpGgt4wEqjBkZVq6MweabGl\np+NyEQigqiQm4nYPoKSNqtpOfBWEvqcCI0aM2Lhx48aNG2fNmtV+bbGfSptSRzBuEeWbcFeh\nJZExnoxTWlWoL6F0Xat8um471ncp8KPEyv8YzVPJ+0sYMSb4pNJSnjMXx6mdbrBZhVkO4F9J\nIHpJv4z9dlDBglxk+JA7tTolL48jR0Kdb4mJFBWR0OkMXRJIFRUcPNiShqRZRgaDcEdLQRgM\nVODcc8/duHHj7373uw6DithPpT2JuYxoe7JDVayHiepTyPk18mVIcWRVURLRciILLRkkxNut\n1IqUgZQBoF5E4PWoa81AnmR4OfYutdswvKhJZM4i4/T4sp5YLB3vAROPrCx8PkpbT8K2WETv\nkyAMWGI/lW5wV1K1s+NqQY2tvxmttXhTCTgon4H8JtLojs9gzyRxLImpuJrik5ZDzpWdfIiI\nosxGvYxAWN+dlIr1p5gceZmGpm2xAg2U/wvTT+ZZ3bpap+XnEwhw/HjoecVuZ/hwOuqnFQSh\nv4j9VLrBnknh7E7ULwvbI0urxZuK/Ti5H2D5GvJsALMS8zOQkCaGHiPCGK7qgMup5X6bmrdR\n0rDmouUjdTsbMWD9OcpZ6O9g1iOPw7IYKd15sCWiNDu+lvTTQvmR+4gkUVxMfj5uN6qK3T74\nVh0KwmAimaYJGIaxePHi559/Pljazn4qK1askAb8b3U/rKjvkN/JjlX4Xa0Kh/8NRznaBqRc\nvfHZyvXupgUaFuQzkSaGqnnrOfLRlh17A4ZZlOXIHTeJlHE9/9VumgQCzWv6PGU0RkwdN0Ei\ndRLqgMl9JWtkdSasC4LQq0Ir6hH7qfQBSyKjr6DkJRqdIKHVk/cejhLUB5ByMd5RLD/MmRNx\nyJ+R5+B38pcrDhzft3hVye1fSZucn5JjH8XwbzDykh5uoc9PTQ05oWGb2m1RQUUCk6zZaN1J\nzigIwqAm9lPpQwnZnPJNXOuofYOsz2ECyv8hnwmgPxOjvv4H5Dl88Tej9tCNfyxzeo0F4x2F\nqSrAp0/2cFAxDJxO3G78/uDDimMkihW99apHW36fRRQT1048h5D+o1U8AAAgAElEQVQs2Edi\nG9o3VxUEoZvEfip9TplAYyUlwe/m9ehrMBsx9yLbo1bm70b5NYfXfXrIc8G4xO/OSZtUaAWo\nrcbp5LWbSR2GEsdeGolZTLy+vQq1tRw8GMpJXFFBXh6FhWoi+RdTugajaeW4JYnCyzr7aTvg\nqUa1oUbMNzYDlK/E0/SgVPtvks8ko+M0Qt3RUELdAVQ76eNaLWwVBKFTxCyaPic9z9AbGH0J\n+lHq7ycQ3FslCzmZhP3InuaKhnN84PCdh93VX/ndq4rMjnua8nElOPD5yR6NLZXxi1G6N7ji\n8bBvX0s+EtPk6FE0jezs5FOwF1C/A3891kxSJiL33MPqkbXsXo23FiB9HONvIql5/kftuy0R\nJaj+I2zDSeyJLJlRTJ1tj3F0XeilJZHxN5Pfx5PcBGGw6Im5Q0Ln+NAcYFD/YFNEAcCw4h4a\nvgzE99k3/Hv5wZOfNnqNR67IKUht+gugvBRHIZKEt45jn3a3OcePx8hwVV4e/K8lmYwzST3D\n/HJd4PX/8b/xHf/2F3QjVkKsTinfxGePhyIKUL2Tj3+Or3mbGefnMY5xbuvuVduw56WWiAL4\nnXy+nMYBs2ReEE4s4kmll9V8iTP0BY1ZhlGP2Yj0NKaHgAVOiaxfNw7JwFBMd4GWsoOUHX96\n5OKqukl5SU7UxNCML9mCooIBUPchjd2LK3qAxGASlEQIexI5uCv4XyNAwx5z6HCGNj0p1b8v\npXa8tFEnUIfhBRPZipoCKpIU3EfdX8KYCyIPcH6OFty4ORBr00lvKdX/avNiHrwVGD4UO7Yc\npM7sTarpMRrjPYijnaRhJqYXdCTrwPsdShiDrSdWngpClwy0X4gTn34Ez9stLxVIDn9bRa9E\nKUJ34otK0Q5oI/W6TKM+HSP0/S7JambamIDcoMob8dSRkIE1yWzMx5cEkDGeIV9tqy2SAmFf\nr6ZB7TbcpShWHCNJDH7zHDrU/FzSwmpl6KTgj/++27/vzVDqLVuCbEuQgSGz5IwxEmD4qY3e\nZNI08JW33oJRRstt/rKv3RMj94p1HQnBLFa+aaF0Z+GUJNTUyDI7KcPwVtCwNxRkAdlCygSU\nOPPCmOx7NUaa6aTtZB+KVR9MD3oZZtOumHIqSnZ8iQb62/BLsHQzvaYgdEQElZ6mFJJ4Y/BH\n00WgLOwt04NZguFAng6puKNyrgD2hYHDmUbUfsOSgpmzm/ItJOcHS5w1mrvRQtoo9rSZeF9O\nQ24KaYaPo6/iC8uumDyBzJngzeZQQ+R3fF4eO0Mlhz9secvjMjwuA3Ack0ddHfqfJzM64WT9\nehq3Rn20MaSFJoBsui9GTueMqQy/GACfQeU/gjEpOafG6nCjJFHwHWI9f/gb2PsYqVlNr02Q\nsOqMuDbeL/qjH+KuiCzMPZNRV8SobPpwv43ZOrpZRqN1PvuaIAxKIqj0IikBS3NeLn093u+3\n7F4lj8c/Hu/HrQ7QppOSYRrouyK/D+UMLFPzePe3JA8Pfm8GarJdttOxO9rbzaUemnqSaj6J\nHCdwb0S3YM/TUIbYfNu1hEoAScJux+KkKbCNmaMbURmBk/Iks7btATnXAfSoCOA6grQp+OPo\nBTREDVpkT8FsGmXBOhpvKbrL0K2Gko59HHWtM+KomaY2HKj/AsMXVi4BeI7hLot39vPwi/li\nZasSLYmCs9GjHpYA/wF0V2Sh90uUEZ0boJRVJPHLJwxG4v/rPmFWtYoogLEDLR2+gndtKCpY\nzybxm7pHkotgP4YnGDsAkNFGo/s0UqdTNAfXMRQtbWRxmj0rxrXaENiGPWobtpQk8mYDSQQm\nUF+J00lWVsRGudrbuqsMIC2PxORQixx5ks3d9oNAIA3DI0mto51pwRNKLWzLxyERaH5YkbBn\nYtUg/HtcnopsBqqlQKzc9aauBbdvNhtIi5Ww2LMZX3xJ0VJh8oW4KzENAMVKYj7+rcTchMtw\nYsbasaxhbecy5lhSB1Bigp5iGYEktjw+6XU6qGzZsmXlypWPPPJIb7Rm0NL/E2OHXX0dSctI\nWoJ+FDkPOdnwUfMJpmlWeirTAllmI6aJbEfOxbsXdIWy8fiy8TgxvMjHsMpYIlOEtdmEWF+F\n3uPUfBL8MQk9Abeb45FfdfnTzM9X67qPxqY+osRcafwUxdfed2i9anyWOvKTVmWpc0hr2VE4\nGaq2U7sXSwKZk0iI1RcYD+dBjj0bWSir5H69ExOgU0D30ngESyL2nPayi/n34ouehqaQeL6Y\nSikIEH9QqaqqWr169cqVK7du3QqIoNI50REFwMSsRh6FGuojkzUyZ/Hoo4/dddddf/zjH6+8\n5cqwpxUwJQ5+jvGPVudIPZuM8+NpQsNuXFE9TikTyGze7kAHj0SMgVwpZbKy+Um9YoehWKXi\ns+VJixW1gzWXQyh/B3dYgbWA1MgJBRkTyOj2ypPEoSSPpX5Xq8Lsczu9pEaxkhLHPkFqEf5d\nkQ8rluEioghCSMdbPb711lsrV6585ZVXfL5Q1/WkSZN6v2GDixRz52ANqSCi6MCBAz/+8Y/t\ndvvMmTOh9VBz3UcYByPPUfsBCWOwdzyFNPc8DqzCDBsd0TJIDx9jVxQSY88NcuRJc37aqYda\nmdybaNyCex/o2IbhmN65eb6dUXAp2vvUbiXgREsncxZpU3rpUkhWrDPwbsZs6rtTh6D1yqJM\nQTghtflNsWfPnlWrVj377LOlTVskZWRkXHvttTfeeOOUKb32K3tCM9zo7jbem4wxGaP13FvL\n1wh4wocRDMNYevdt2WnqQw89VJiTgL/1YELth7HP3bgVNaXD1tmzGXYdlR/iPYZkwTGUjFnI\nErGHDiJY0jo/Z1bCMRXH1E4e1RWyRs5ccuZi6r0XuVoomST8F3oNeJFSkMUkXUEIExlUnE7n\nSy+9tGLFig8++CBUQ1UDgUBmZmZpaammdW8/qMHNX433aGSh7yi+YN/XVzCKMINxQkYuQEqF\nV8PrHj5Usnh+2l2LF02dqlDxauSp9KiJxkGuvfjr4mmg3ULROeEHQvhEJltxm2PH6rQTYheT\nPogoITJKvINZgnByaQkq69evX7FixV/+8pfGxsZgyamnnrp48eLrrrsuNzdXURQRUTpgLcAa\n2Z0VyWzA9yusP2m1dh2AAwcOTJw3UVGU7du3kx81Tws49H/4Yy01T59LUq89Oxr/QH8RfznS\nSNQlSJN760KCIAwKKvDggw+uXLnyyy9D+/xlZmZec801N9xww9SpfdF3cXKRkpBSoyMKAc/T\nyx9pbGxctWpVYWGsiKL/G/sH+KNGs6wFJPXaEFdgGXrTjAxzB75XsKxCPq+3LicIwolPBX70\nox8BFotl/vz5ixcvvvDCC8XWKX3HW8vBt6gveeDyvLMKb5k/bzStpnyFKuH9CQk1GBYax4Zm\nGkkGiWPIuqa3Jh6Zu1siSrPAXWhfjREUBUEQgPDuL03TUlNTU1JSVFWsiOxRphPzYNjLSowd\noZ8NnUOv46/FjiTr8y/04FlO9TuktJ4tZpTCcSRI+pykHeh2MJA9WC7BfJFu5QzOQGrZPMRT\nhrMEw4slleRRa2PMyjUr0f+MNLQ7l+xRGvKM/m6DIAgtVODHP/7xc889d+TIkWefffbZZ58d\nMmTIddddd/31148ZM6bD44U4eDDCV4gktrxsOIxxOPR3v6SjuACc23HYWw2Mm1XB/xoNo+Sk\nPShNs1nNOoyorFWdIidCKKjUbqW2OeX8IRp2zcqb93c1qaytQwVBEKJJpmkChmG89dZbK1as\nePXVV73e0MquM844Y/HixVdffXV6enpOTk55dC7bgerVV18tKyu79dZb+7kd7kqqdrZXoeEI\njaUxyrMnt956y49/NQT0qhlK+kZkH1lbAexvIg+JcXgXWlrK/j9EFiYUfDxsUev9FqVstM2i\n+0sQhJjmz58f6umSZfn8888///zzq6urV69evWLFiq1bt27cuHHjxo3f+973AF3XA4GA6Bnr\nHHsmhbMBw0sgOHnX+AzzI/AijUP+Ku4duJwASQeRTDK24EuhZgKJc1DCvrhNAgcK/QdyTH8q\n8i1q6jZL4+tSYi6psYb0u6Qu1rZYrtLT3McmKNawqczqwz25+2P3SWiR6fAFQehPoSeVaFu3\nbl2xYsWf/vSnqqpQ30t2dvZ111134403Tpgw0BcQD5QnlSbeClyHwHgV44PmQpPibZ9Nn5Th\nlJL2kLyPxiIcTd1iyrVILbOE9WMEWj/PyNZKS9Z6rDmknNEjW3nU76Jxb4zy3Lm7ZcsGzDrk\nbDgHKW9gbRwikSamKArCgDF//vw2g0qQz+f7+9//vnLlyrfeesswQrsgTZ8+/eOPP27nqH43\n0IIKgPEW/sXhBY8+4frOHfU//cHie3/2ZlTtZKxbwQ6g4/wH0aPxtuHPKcm7yb68RxapNOzi\n0IuRhVoqo74DEvoxfNsx6kBGyUabiDzoMuwKgtB9HQeVZqWlpatWrVq1atXevXuBOI/qL30V\nVPyYTur2465EtRvq8EC5A7OsZQ9CwPSFMqqbX4YPqnu85sebfSCdMTFbS6qNOjPIpyIlAwQw\nagBMQ0W3AZLiMQ1N1qolrQY1GS2Y4NcCmV3/KCb1e+2+KtXrxNXU3VX8NRwj0avwrG1VV7Jj\nn4sk1sIKgtBay5hKhwoKCpYuXbp06dL3339/xYoVvdqsE0ZgD8d/FdrC0IcsyVrBKBK8rR4r\ndGdoDylzJ4RyeZmwfYufYmPcWM2RlomtKsbJpYnBjYhNA6PaL9sPo7qMqlly4n6jfoLROFxJ\n2i/bS9FySRwHICVgjO3Op0kfO6Rqg9+1w6IamjXbyDonIbEYwBc13GK48e9BG9+dqwmCMDh1\neuB99uzZs2fP7o2mnHhK9lI9rlVJhcr4xdjCdhxs/gcO/Ar94eCP/1nrO/f86gvn2/7xxAIO\nn8KYlUgR3VupWJ8HGyDhk1zXSPZjgO/gYvuMa5SkLwOf/l7S0wLHzsM+CmtenO31N1L9Bd5a\nZJWEHFJHI4fff31DSsr2lJlNL2tP9TWcAaHnpHASBI60t+FkDzBNnE4CATXDJecnktJxxkxB\nEAaCjoPKhg0b1q1b5/V6R48ePX/+/MQ2sqMPQt5aKj5r813ToObLyEIjwMG3cOTHOmAy+nxo\nqKszt//b/Zs7zZsWO6iahG5h31UtQ/RB8gXNO+9ifCHriTSeBlhsezl+GmDN+xOeIhzJJJmw\nJ/JSzawpZIWSuDSWsv7BVlt1pYzgzJ83xZXAq3h/EHX4L1EXBg5hRiVfVjJ6M9+7z8eOHch+\nNGiA3ZCXR1FRr11PEIQeowJlZWXPPPOMzWa76667wt/zer3XXHPNmjVrmksKCgpefvnl008/\nPfI0g5I1NTghuJW6A6Hd1U2dmANL4fu5RxxujiLws9f+89qqtxqffiQ/KX08vqa9pSwe0v1Q\nj5SOdDqSDk0RK/AfjNBeg5Iqk940RUJfiC0Lqe2IEuT/GCkd9bKdKyI3f6zbx6G3GDo/eJU1\nMY4NvIy6UC3EH3URtccmM8dy4AD+1hn5y8pITSUpqY0DBEEYKFTg9ddf/8lPfnLttddGvHf3\n3XcHI4osy6mpqdXV1aWlpQsXLvzyyy9TTtruiJRhpAR3xDKp2tW0/CRM9iTSnPgfw9iNKxV1\nLpb/CaVCkYZiWfm1a6pmZv1qmCOJY2FHZUzA+hXdR2X0VrUBB3poL3r/kUsshUmynAgK2u3x\nTiY2ZdPweo6SELWko3obCcG+Ot9UiA4U2WheDPxOzLAPqmTjPAgH27umxU5a14Z4TJP6WMmY\nq6oYMHmy/XU496N70TJwjOjc7vRtUhTEOjDhxKcCa9euBa688srwN8rLy5cvXw4sWrTo8ccf\nT0pK2rx580UXXVRWVvb0009HPNOclCQKz+Zg69nACVmk1OL5RtPrRvyrMD7H9iw07fVhzRh2\n5g0cfBM9tJMmycUUzUeyyCq26AlcxiS8fw3+KNd5tPQyzT8JeTgqcQ9r6FCXOTQ0YyCcI5+k\nZAACaRhRk9DkdNQ6gGkYDZgekJAdSPY4rmlQ+wG+KjDR0kkagxLPUYBpxnwENBvcyHWStUeW\n5XSL6zB1n4fm9Hn34f6CzBnI1o4O61BCAg4xU1s44anAZ599JknSnDlzwt9Ys2aN3+8vKCh4\n6qmnbDYbMH369AceeODrX//6P//5TxFUALImYuoc/Qi/E0kmdSRDvkrgishq+icEXkcNy3eS\nPpakIuoPEXCTkE1S6BFBUkgZHn2ZU/Cdjf/3gM93VBu6A7Mc7Um07E411vcWRzdHFk6egz04\n1cCYivshCO8gs2H/E3LnrhKke9j3JP6wIKVuY8QS1Di7r44fxx05jOM7khX4MlNOxjodOa0L\njeoZ3ipK/tWqjxPwGhRd1U8NEoQBRgWOHTuWnZ0d0aO1bt064JJLLglGlKCrr776pptu+uKL\nL/q4lf3P2IvxaYzydEjPRE9CtiB5Mf+OURKjWmBNy7bBwb/EZZnQv/deWr6hNNRLYhyu3U5g\nGM5nCCTTMAnPEMznybycpGnxf4JTbqR6F56w2cu5Z5B/VtMLeRy23+G9H7MUQCrCeg/yKfGf\nP1zlB60iChBwcezfFMT6cDEUF7NrV3iB7k0KuDIAox7Ph9jnInX/yaBLGr6IjChAw24MH/JA\n6ZwThP6kAtXV1Tk5ORFvfPLJJ0DE44vdbs/MzKyuruZkI+WinNnmuy272PrwSTF6peTi0OG6\nTmMDTic5OaEOdF3n2DFqawkEsCWQXUNa1N/hxlEqP0YfhzcH97BQYdUrJIxGiXfs2prC7Ic5\n+E9q96JYyZ5G/tktXUmeY/iqzsE7A1cphoGaRXJyREeT+0jTzsgdcR2KUVj/BYY3RnksyQSm\n4najGxiSoVsMvy2820suR02P+7mnRzkPxig0TY69I4IK6WdgEXMpTnoqkJiYeOzYMcMwZDk0\n4FhXVxfcCPK0006LPEBVpRNhu/IeJjkgvv5u5Sz0D8ILDF158g81X1ukJxsGpaUEAgDHS8jO\nJjeXfftodIEGGo3QuNXIGB2oD9sA3TxI4FOz/nLDlWcEEgO1p8rWKjmhHEyq6ujkdmpDRjNk\ndOhn/+cgWYIbuxtuqHXjdAZXXIKfihpSUlFaxqDtCdgT4vs38BBojCq0kdTRbsthVEhCJ3Ak\nxntyEpZcLPE1pmclyDREpcyRVDJ6Jlt0p0kaltEdVxOEPqMCY8aM2bRp07/+9a/584PTS3nr\nrbdM0ywoKCgubrVblM/nq6yszM3N7YeWniis9+G+CvN4c8GqZ5K2fvx+Au7F585DNmn+e7bm\nOIESfA20/gtXdlVrw5rWZJjV6A8b1dP8jSNlx0EZJNVjBmyytULN2EzSVKytt/PqLNtQLNmA\n5nKxfTsRc/pSUujSnjo+mZq3IwszZ5J8VqzabQkEcLo8Ltlw202z5WHQBOvYfvsmtegc34un\n9S4z+Qt7c9WOIJxQVGDBggWbNm36wQ9+MHHixMLCwvLy8vvvvx+45JLILvBPPvnE7/efckoX\nu9pPClIu9n/ifgL3O3jznEdPO7ZvW1EKl067CFfUoLdHwsyIcZKaXBQFwChDn6gfvEkym+ZO\n+ZEM2Vc9VdJqlNyzsGR1t8HBJ6eYXZp1dXi9oZZ0RsZ0nHtwhz1kWLPJOguiRiPaVF5OWRmm\nacvA1BVf3RDdHeoVlC2oBWGn6ttpuJJC8TWUv0n9LkwdNYnsc0SmZEFooQLf+ta3Hn/88e3b\ntw8bNqygoKC0tDQQCFit1u9+97sRtV9++WVg5syZMc50EnK7qawEMMsxDxDQDFfTSpDAGMyR\nIAVc/q+dPzsjLTlBc5imJ/IMbU0JrjzcNISQhDlPcRwHkLyGEeqM0pJ34x9i7NsNu3vmswT8\nyDqAL09Ww4Y+Kiq6EFQkGDIPz1F81WBiScNegBQrbWZsLhdVLTMKJEW3ph/0N7pN3SJZUAqQ\nwtex5MWbpaanqEkUXo5pYHhQ+qMLThAGMhVIT0//5z//eemllx4+fLikpASw2WzPPPPMyJEj\nw6u63e7nnnsOaO4lO0nVfYjZ9Hdyy7BkLoYsJQR7skxqPwXzk8/L6p0+l9u3YMQofFnoKWbD\nASlpWMupFBO99QCVnoxWxMiRGKX4n0DfbHjzPBtXRbdCG2eqQ6IGtwyDigqqqggE0DSys0lP\njz42htpaSkqAVlnINI3CLi6dl8CeT5xLUyLt2BFVZCrZupk9RMkInxbRnyRZRBRBiCHUdTBt\n2rTdu3e/9dZb+/fvT01NPf/88/Oi/gCsqqp64IEHFEWJHr0/uSRNbesRo+U73vNGyZHKS2//\n421fm/L1KyZLWjWqj7oRprtcSshECmBqAEoNCcU0hP3hLaukqFTvw/8yqDBDAWvm56a/9Wp4\nGVVDiu6yqq0NrfBQQPdQVk9jUrxL6hJMfK2XRyYmcvhwG7V7U9QiFUAO1OE9zNG+b82JRuSz\nEfpVS3+03W6/+OKL26laWFh48803936TBjy5aeGO7xgNW2NU8JRgBDRVWfo/My+ZNzo3MxHD\nNCt2G9Xr8HkMywY58xTkTCy1aLWkKKT6cbsxDCwWEhKQqjG2YmlZqagMfSJQtkBvHKHXhUaz\ntIlII6Ku63RSVhZZ2NjI6NFxdWHl5VFaSnU1gQB2OwUFMSY39436epzOyMKUFJFTUhAGPpFr\nqBu0HDLOiyysXY+nBMjLdlx/6akJdgsQ2PBPKfcoVrBiWkoM/YCkuKT0PGQFbQualZQClLBJ\nqfo6jJbdfaUkLGmb5OrTLPVnSRqSVZMsED3X1ufDETZs4yvEl45pcuRIB1mzcnORJFSV4mKK\nizFN+nfWeE4O+/e3KpFlsruytl8QhD6mAo2NjZIkxZnTfv369X6/P2JRpNDEpHZt84tgRDGr\njuk7t7GzqVSpk9Qq099g/drtpB/B9IAL9mAbTtLtoTo+V3hQAVBcSuYHvurTtaGPY/0NSqy5\nEtXVVB6MUZ6ejr3d0Y2IENLv65AyM/F6OXo0lAQsGO1Onj0XBOFEpgJJSUkZGRmVwYlMTS65\n5JLk5OTgyHy4iy++uKqqaoBvJ9zzPIdwtk5O43frW/4RWc00go8prcp8XmXC6UgSPp/pqg8O\nx0hkBLa/J9nC09uuRv2IxCkARgWBpulPiqSckQ4gGUg6igv9XqzvxkismJbG4cPordfm2Wwn\nZA97QQHZ2bhcSBKJiV2YgSYIQr9os/vrlVdeyciItYTi5GQbgq31mmnTUOacE/rZOBDa8sTw\nU9eAGbXkuolRetCsrcLQAfmUNMneulfKYmBRQIJijAvQPwWQwFDQHRiakvIF3jy0avzPhHaw\nDyfBSCcVFS0lskxODoFdkTXboV7R/3mAgywWseGjIJxwxJhKV0ky9qZxbNMCWQBGI4FjuA+2\nfVillJ1l7N8pJahSmh3D1upNpRx1PepVYIMRmLPQ38HYjzsffyayF08e7lo8xWSdihJrf8lk\nsHqprcXnw2olI6Pzf+MPjIgiCMKJSQSVjhhu/PEk0JQNw3jggd9ddunF43NzojvBgsyqI/LQ\nMcaxHep56ch+dAd602iHpCP7CZRjfop2OwS/3k/BvQzn+NDhzpHYqwGqvyDnjNgNsYFIoyMI\nQj8RQaVtuhPPfnQX/qqOK8O2LVsc5r59n70yfuhFqCkYTrzl6K2mxkoZOZLNZrn4LMmi4gZD\nw2jK4a64MYJj0WWo61tujXt681pLOblp9N79JfUfdvxUoSRgLQIFVfQjCYLQF0RQaZukoqaj\npmNtY1W5eRAzlDexsbFx58FXc4ZLcxdOIWFTqIJ3P8bBVqe0OUncIyHjDy50lzCCgygSctjC\nQ+kNaBrDt3kw/QCGJqn1KF5MCX8mgfqOt7E1XBhe5AQRVARB6BsiqLRNtmJtP1d7AcwCDMO4\n8IKvvvfenueeey4hc1HL+9JHlL2METYaX1POyF1YqrFUA+iJVM0DsFSR1pQwX0ok4WVoymnf\n+CkVLwV/NOpHKsGHFS2X9PO7/xEFQRB6lggqPeDRRx997733LrzwwkWLmiOKTsMjeN4mUcWb\ni2FFCgBSURW6tTlehHbckgIkh63Mt9zaElEAx2QaPsZzEAhFFEklo73cB4IgCP0lFFScTueS\nJUsi3mursC/aNXAEDuL9Tzvv19XVGQ0rfvPziTfdNA/nylCpfyf+HQBSAFvrte+mNdT3ZaSA\nHcdxLPUYFox0UJAn4VPwrQTQMVxgIil1kr0Ow4OegmUcaRe02SMnCILQr0JBxePxPPnkkxHv\nxSw86ahDUW9s531P47H3P3nv0ksvTcq9vqW06trYtb1+7CZaJZIHuSkTiZSHuhpU5KHNzyiB\nQ/i2hgZTADV9i3XoX8FA748Mj4IgCPEJbdLV3804oThXQ8ugeo6DNc9fBHrLYwomRl2rQ3TD\nOFpjVjSgG1hkOS9RKshADrTkmZeWIi+EdVhOQZth1OH9FMLWUAaqp8jWKkvevzH9VP6Vgsit\nbgRBEAYCFXjttdf6uxkDkwfzWIzihOZNcQPgBtC96A2t6khqy54roG87bBwL7VElabLhdUoN\nNnlcMnJz/sc9qEWgYnrwrjWOo0ZlMzAMkF0AgQO4PkCOZ7MSDamTaRE6mJsgCILQHjFQ3zaz\nFuODditUYn4OYOjo/lZvWUswLABSwPQjDdWlwnmht1QJCcNvmjUKMmFbs7zTMo1YRsmJvJrh\nHO4r+6/Qi0o7UgdL5dXs/XKqG2lS+9UiWfPFonpBELpMBJW2Sbko18UoDzwEXrzewHvvtXGk\nibkPQ8XUkPy4DLPWDQdCb6qSGTABMq3YzKagYkMaH7qoNEyvxGhecClpRsF9gGytso9/CMCS\nSWE8PZZT4vucgiAIPUYElc5T7wJQUdvZVdl3NuZeTAUjydhV73+pLrqK9l95Un7TbvCWPyF/\npfktxY37HczW2zBacv8DIKlk/nc3P4EgCEIv6WhJthDFMNeXi9gAAB0dSURBVIz58+c/8sgj\n7eX/V5cCSDqKUx4uSQmR/85SllXKTQI78mlYXgyPKIBkxzoTuSljvaTo2tBNau5hEieR/01s\nQ3vy8wiCIPQc8aTSaY8++ugbb7why/J3vvOdNivJ52N5nMAyzCPYLep/n+3/yyd4G4NvSknJ\nlmvWYP9qO1dRMrDPw3CCHzlZQTkdTu/ZDyIIgtDjRFDpnAMHDtxzzz0pKSm///3vO6gqX4Z2\nGWYVkkMeZ9XuLDc+f8msLZGyxigTr8Yax8ZZErKjR1otCILQR0RQ6QTDMG688cbGxsbnnnuu\nsDC+Ne1NM3qlpFxl5rc7dTnThX4cM4CchiL2SxME4UQggkonBHN8LViwICzHV2/x78f3Wcv6\nRyUP2wwxBCYIwkAnvqXidfDgwaVLl6alpT311FO9fS2jplVEAfQyfDt7+7KCIAjdJZ5U4lVU\nVPSzn/0sLy8vPz/WPr49KnCoVUQJFR5Em9DbVxYEQegWEVTipSjKnXfe2cWDjeBzRgOmEykZ\nEkLlPh9+P4qCpiG3PDXqx2Ocw/Th296Ja6r5yOldbK8gCELXiKDSJ6RybeSP0DeEXqoXotzD\n3jJc9UhggF9h+HDS0oLv+5UYnV2yQzypCIIw0IkxlT6g47m9JaIAgdeo+wH19WFVdPbvxxta\nYK8OR7KFZQUDwDKuD5oqCILQLSKo9D59E8ZnkYW299CqWlfTqQqVSFZss1o6ryQN61RUsS+X\nIAgD3gnQ/bVt27YXXnhh3759siyPGzdu0aJFw4YN65tLO53OxMTE2O+ZNfj/EBmVdZ0YO2NW\nY4yNcYaM1zAi0tdbqAxtaC+DfSKYYCj4rgeF5t257HYyMzv1QQRBEPrGQA8qGzdu/MUvfpGY\nmHjOOef4/f7169fffffdy5YtGzlyZG9fOpjjKycn59lnn7XbozYvkdLQvh/jsOhdTvS1eG6L\nUfPojfhyW5UUF5MZlfJeEAThxDGgu798Pt/y5cvtdvvDDz/8zW9+87vf/e7999/v9/uXL1/e\nB1d/9NFH33//fZfLFSOidIoyA3loZKE+LTKiWK3i+UMQhBPdgA4qW7Zsqa6unjdvXm5u6Pt3\n7Nixp59++p49e0pKSnr10p3I8dUxG9bfIod12clTSHqYwsKWacQOB6NHo3Sw75YgCMIAN6C7\nv3bs2AFMmtRq78LJkydv2LBhx44dxcXFvXTdruT4ap88Bvur6Jsxy5GHIk8CiXzIy8PjQVWx\nWHrgKoIgCP1tQAeVsrIyIC8vL7ww+NQSfCvc5s2bDcMI/lxRUdGd6/ZOji8VZUZkmSTRzb41\nQRCEgWRABxWXywUkJCSEFwZfOqMmWd1xxx3B+sDkyZNPO+20rl20trb2Jz/5Sd/k+BIEQRhk\nBnRQCZIkKZ5qS5Ys8fv9wZ+rqqrar9yO1NTUN9988/jx432Q40sQBGGQGdBBpfmhJDU1tbkw\n+DgSvXzk2muvbf751Vdfje4fi9+ZZ57Z5WMFQRBOZgN69ldwNCUiPMQcaBEEQRAGggEdVMaP\nHw9s27YtvDD4MviWIAiCMKAM6KAyZcqU9PT0t99+u7y8PFiya9euTZs2jRo1qvfmEwuCIAhd\nNqDHVDRNW7JkybJly+68885Zs2b5/f5169apqnrbbbGynnTD0aNHU1JS2kzzJQiCIMRnQD+p\nADNmzLjvvvuGDBmydu3aDz/8cMKECb/85S97NvGXYRjXXHPNpEmTjh071oOnFQRBOAkN6CeV\noEmTJkUsqu9ZwRxfCxYsyMkRyRwFQRC6ZaA/qfS2Hs3xJQiCcLI7AZ5Uek/P5/gSBEE4uZ3U\nTyq9k+NLEATh5HXyBhW/3//oo4+KHF+CIAg96OTt/rJYLJs2bdq+fbvI8SUIgtBTTt4nFSA9\nPX327Nn93QpBEITB46QOKoIgCELPEkFFEARB6DEiqAiCIAg95uQKKgcOHAjuey8IgiD0hpMo\nqASXOk6bNm379u393RZBEITB6SQKKo899th77703d+7cCRMm9HdbBEEQBifJNM3+bkPPe+ed\ndx599NHwEl3Xm7eMVBSl/cN1XQc6rCb0L9M0DcNA3KkTga7rkiTJ8kn0V+yJKPg71c07NTiD\nSjedccYZY8aMee655/q7IUJ7XC7X7NmzzzjjjMcff7y/2yK0p7y8/MILL5w3b96yZcv6uy1C\ne/bs2XPNNddcdtllP/7xj7t8EvGHgyAIgtBjRFARBEEQeowIKoIgCEKPUX7605/2dxsGHKvV\nOn369NGjR/d3Q4QOJCQkTJ8+fcSIEf3dEKE9kiQlJSVNnz596NCh/d0WoT2yLKempk6bNq2o\nqKjLJxED9YIgCEKPEd1fgiAIQo8RQUUQBEHoMSfvJl0xbdu27YUXXti3b58sy+PGjVu0aNGw\nYcP6u1EnkYaGhg8//PCjjz46dOhQTU1NWlra1KlTr7766szMzIia8dwpcTf7zNKlSz///POM\njIyVK1dGvCXu1EBgGMYbb7zx73//+8iRI7Is5+fnz5kz56KLLgqv01N3SoyptNi4ceMvfvGL\nxMTEWbNm+f3+9evXA8uWLRs5cmR/N+1ksWLFir///e8Oh2P06NF2u33//v1lZWXJycm/+tWv\n8vLymqvFc6fE3ewzb7755pNPPmmaZmpqakRQEXdqIPD5fD//+c+3bt2akZExZswY0zSPHj2q\nKMpvf/vb5jo9eadMwTRN0/R6vYsXL77qqqvKysqCJV988cXFF198xx139G/DTipvv/32unXr\nAoFA8KWu60899dTChQsffPDB5jrx3ClxN/tMVVXVVVdd9fzzz1911VU33HBD+FviTg0QTz/9\n9MKFC1euXNn8m2WaZkNDQ/PPPXunxJhKyJYtW6qrq+fNm5ebmxssGTt27Omnn75nz56SkpL+\nbdvJY+7cubNmzWrO5SXL8uLFixVF+eKLL5rrxHOnxN3sM8uXL09LS7vyyiuj3xJ3aiCora19\n/fXXx4wZE/xVai53OBzNP/fsnRJBJSS4z8qkSZPCCydPntz8ltAv1CbNJfHcKXE3+8YHH3yw\ncePG//mf/7FYLNHvijs1EGzcuFHX9XPPPTcYXf785z+/++67TqczvE7P3ikxUB/SnMM4vDAY\nk4NvCf3io48+8nq9U6dObS6J506Ju9kHGhoannrqqblz55566qkxK4g7NRDs27cPqKmpWbJk\nidvtDhY6HI4f/OAHzRGiZ++UeFIJcblcQEJCQnhh8GVEVBf6TE1NzdNPP+1wOMJ7V+K5U+Ju\n9oGnn34auPHGG9uqIO7UQFBfXw+8+OKLM2bM+MMf/rB69erbbrvN6/UuW7asrq4uWKdn75QI\nKq1IktTfTRBCXC7Xz372s7q6ujvuuCN6SnE8d0rczd7z6aefrl279uabb05KSmq/prhT/cs0\nTSA/P//222/Pzs5OSkq64IILLrroIpfL9e6774bX7Kk7JYJKSMyQGwzOiYmJ/dOmk5jb7b73\n3nsPHDjw3e9+d/r06eFvxXOnxN3sVX6///HHH586deo555zTTjVxpwaC4L/wlClTwvfdCv5O\n7d+/P7xOT90pMaYSEuwrLCsrKygoaC6M2Y0o9DaPx/Ozn/3syy+//Pa3vx39tRXPnRJ3s1c1\nNjZWVFRUVFRErJ5zuVwXXXTRkCFDHnvsMcSdGhjy8/Npo9vK5/MFX/bsnRJPKiHjx48Htm3b\nFl4YfBl8S+gbXq/3vvvu27lz55IlS+bOnRtdIZ47Je5mr7JarfOiqKoaLJ85c2awmrhTA8GE\nCROAw4cPhxcGX2ZnZwdf9uydEk8qIVOmTElPT3/77bcXLFgQnNKwa9euTZs2jRo1qri4uL9b\nd7IILv3dvn37LbfccsEFF8SsE8+dEnezVyUkJHz729+OKFy/fr3dbg8vF3dqIBg7dmxxcfHG\njRv37NkzatQowOVy/fWvfwWaw3/P3imRpqXFhg0bli1b5nA4gkkI1q1bZ5rmgw8+KNJF9Jln\nnnnmlVdeSU1NDZ9DHHT77bc3DxLGc6fE3exjV199td1uj0jTIu7UQLB79+6lS5cCZ5xxRkJC\nwqefflpRUXHBBRfcdtttzXV68E6JoNJKc7o0SZKC6dKGDx/e3406ifz2t7+NmJHSbM2aNeHr\ngeO5U+Ju9qWYQQVxpwaG/fv3r169eufOnT6fr6Cg4IILLjj//PMjpnL11J0SQUUQBEHoMWKg\nXhAEQegxIqgIgiAIPUYEFUEQBKHHiKAiCIIg9BgRVARBEIQeI4KKIAiC0GNEUBFOVNOnT5ck\n6bXXXuvvhgghUphgdpCBY+jQoZIkbdiwoWdPO3fu3PBPXV5e3rPnPxGJoDKYXXjhhZIkLVmy\nJLqwmaIoaWlpZ5555oMPPtjY2BjzPIcOHfrJT34yc+bMnJwcTdPS0tKmTZt25513RiQC6nJ9\noLa2Vorb3//+9+78s3RNeXn5888/f/vtt8+aNSsxMVGSpNTU1C6fbenSpcHP8uCDD3ZY+ejR\no/fdd9+cOXPy8/OtVmtSUtKIESOuuOKKFStWNG+J0Szi/kqSpGlafn7+woUL16xZE33yiPo2\nmy07O/vUU09dtGjR008/HdyNo1OuvPLKxYsXX3LJJTGvUlhYqOt6zANnzZoVrDN27NjOXjTa\nunXrJElauHBh90/VjvPOO2/x4sXXX399r17lBGMKg9eCBQuAW2+9NbrQ4XAUFxcXFxcXFBQ0\n58QeMWLE4cOHwysbhnHvvfdqmhasoChKVlZWeMbTyy67LBAIdLl+s7q6uowowUOSk5P/v71z\nD2rq6AL4BhPQikEeIkhA8EWRirwqMpUiUEcRH1hRhCRNsSi1ijgVwSJ0LIN1Sm3pVOygFgYt\nikKhBqUwBSwoU4QKWqUzEMsISCAgCVJASUKS749T79zmZYCAfmV/f5HN2b1794Z7ds+ec1ap\n/Oeff1YoFElJSUwm886dOxMzeMqkpaUp/e+YmJiMrSmZTMZgMKCRJUuWaJGUy+XJyclGRkYg\nbGBgYGZmRlZmdDo9IyODXEXp+c6fP9/U1JSQ37lzp9IllOQZDAb5iJTXXnstNTVVJpPpcl9Q\npaurS/UruApQUlKiKsDj8QgBR0dHXS6nnYMHDyKEzp49Cx8hP1VNTc34W1ZFKpVqufepBlYq\n/2W0KBVy4fDwcHp6Ohwzvn79erLw+++/D/8tISEhN2/elEqlUP7o0aNTp045ODgghJ49ezZm\neS0QR5+qfQdNPpmZmQEBAfHx8fn5+V999dV4lEpJSQlCaObMmTDmkENJLcR4BgcHV1RUEEM3\nNDRUWlrKZrNpNNratWvJVdQ+dIFA8MEHH0BToJK1y/f09OTn569atQqqsFgsXe7rhUoFliCh\noaGqAgkJCQghJycnfSmVRYsWGRgYdHd3w0esVCYNrFT+y+ioVABIOUehUHp6eqAEzotFCJ08\neVJt+xKJ5MCBA8PDw2OT186rplTI5ObmjkepbNu2DSHE4XA2b96sdvUAnDlzBkYgPT1dU1M8\nHi85OZlcoun5ymQySNO0f/9+XeQVCoVcLodfBULo9OnTL7yvFyqVQ4cOmZubT58+va+vT6lv\nDAaDSqWmpKToRancv38fIfTWW28RJVipTBp4TwXzD+vWrUMIKRSKv/76CyEklUqTk5MRQqGh\nofv27VNbhUajpaWlgXFmtPLjR9NGPZfL3bhxo5WVlaGhoaWlZXBw8I0bN5RkiG3bpqYmNptt\nY2NDpVI1dVu/iESioqIihNB7773H4XAQQnl5earnsUskEhjP8PDwvXv3ampt8eLFSUlJulzX\nwMAAMp+LxWIdu0qhUFJSUgICAhBCx44dk8vlOlbUhKGhYVhY2PDw8KVLl8jl5eXlHR0dgYGB\nc+fOVVuxt7d3//798+fPNzIysrW1/fDDDwUCQUZGBoVCUdq8AbhcLkJI7Vetra0cDsfa2trI\nyGjRokUJCQnE9IWAx+N98cUX/v7+9vb206dPNzEx8fb2TktL033opjJYqWD+QemVUVlZCSf5\nxMbG6lJ9tPITgUQiCQ0NDQ4OvnbtmlQqfeONN0ZGRrhc7urVq0+cOKEqX1dX5+npmZOTgxCa\nPXv2+F+aunDhwgWxWGxnZ+fn57dhwwYLC4vBwcH8/Hwlsaqqqo6ODqS/8RSLxY2Njei5iUl3\nYHOivb39zp074+9GREQEQig7O5tcCB/hK1UePXrk6el58uRJPp/v7OxsaWmZmZnp7u4O46MW\ncOWAhSCZP/74w83N7eLFi3Q63djYuKWl5fjx45s3b1b8O69uQkLC4cOHa2pqpk2b5uLiYmpq\nWltb+/HHH7/zzjtYr7wQrFQw/1BaWooQolAoMJ+trq5GCIHjli7VRys/ERw6dCgvL8/Ozq6k\npEQoFDY0NIhEoqysLCMjo7i4ONX1SlxcnJ+fX1tbG5/P7+3thZXBRJOVlYUQYrFYFAqFRqOF\nhYURhWRgPM3MzNzc3MZ5xYGBgd9//z0kJITP58+bN4/Yp9ERHx8fOHRAL/647u7uLi4utbW1\nTU1NUNLf3//TTz9ZWFhs2LBBbRUOh9PW1ubm5tbS0tLQ0FBfX9/a2mpvb5+amqpWns/n19fX\nL126FH7JZA4cOBAUFCQQCJqbm4VC4eXLl6lUallZGawdCbZt21ZZWTk4ONjS0lJXV9fa2trU\n1OTj41NdXX38+PFxj8F/HKxUMOjp06fffvstzOXXrVtnYWGBEIJp4MKFC5UOXdDEaOX1zsOH\nD0+dOkWlUgsKCsCUB0RERHzyyScKhUL1HWRvb19QUGBnZwcf4cYnlLt37969exchRDihwiv+\n5s2bDx48IEvCeIJrwxg4ffo04SVMp9NXrFhRWloaFRVVV1dnYmIyqqaMjY1hZLq7u8fWGSXg\nlonFyqVLl4aHh5lMJrgtKFFbW/vrr78aGhoWFhYSJwza2NgUFBSolUcIXblyRaFQqLV9LViw\nIDs7m3As3L59+44dOxBCSkbU0NBQX19f8vk9S5YsycvLQwipHhiDUQIrlSlKTk4Og8FgMBhW\nVlbGxsYxMTFSqdTBwSEjIwMEIEDB2NhYxwZHK693CgsLZTLZypUrPT09lb5iMpkIocrKSiUD\nV2RkJOH9PDnAisTLy8vR0RFK3N3dly1bhlQsQlrGEzaEyBCzfgI6nb7wOQwGY9q0aWAJVBuq\n8kKgGwMDA2OoqwqLxaLRaD/88AMErMBrWtP6CTzl1qxZY29vTy63trbWtLIB25dapfLRRx9R\nqf86Q93HxwchBPuIZCQSybVr15KSknbt2sVms1ksVmxsLI1Ga29v7+3t1eU2pyz4jPopytDQ\nEGwOw0z29ddf37hxY3R0NJ1OBwEIVtAUDqnKaOX1DkRWPn78WPX1BBbzoaGhJ0+emJmZEeXL\nly+fxA4iiURy8eJFhBDszxNwOJzY2Nhz584lJycTs2N4EGrH09raemRkBCEkk8k0hXCHhYUR\n8wOE0MjIyOXLl/fu3RsdHT00NBQfHz+qnoM6Ge0SRxNz5swJDAwsKioqKyuzt7evra1dvny5\nq6urWuHm5mak4Um5urrC6oFMf39/VVWVjY2N6twCIUTocgI4bl1pnG/durVjx462tja1XRIK\nhZOwqP3/BSuVKUpUVBT5paMKROe1tLQoFApdLFqjldc7fX19CKHm5mZ4Danl6dOnZKVCjvKb\nBK5cuSIUCg0NDUNDQ8nlTCbz8OHDfD7/l19+CQwMhEIbGxuE0MOHD1XbqampgT86OjpsbW11\nuTSVSmUymQMDA3v27ElJSdm9ezc5IlI7AwMDMDfX5Jo1BiIiIoqKirKzs2H9oWmLHj3XZ8Rc\nh4zax1dcXCyVSjdt2qT2R6i68oPIX/JGvVAoDAoKEolE27dv37dvn5OT0+zZs2F9Y2Zm1tfX\nRzgQY9SCzV8Y9YBZoK+vr6GhYSLk9Q68L+Li4rR40BNx7C8FsPNIJBJzc3Oy8YpYeZDt9TCe\nIpFIS26b0bJ69WqE0ODg4L1793SvdePGDTAbent766snQUFBc+bM4XK52dnZNBoN7JNqAc2h\nNluMWnOcFtuXjuTl5YlEohUrVuTm5vr4+FhYWIBGkUqlY0haMwXBSgWjHl9fX3gFQ/S43uX1\nDuxMgNPUKwgsRBBCFhYWc1UAcwqXyxUKhSDv6+sLi5Wvv/5aX30g5uOPHz/WvRZ0wMHBwcXF\nRV89AUUyPDzc3d0NftWaJMFgpVazqhaKxeLS0lITExM/P78x9w1WuqtWrSLSFwF1dXWaspZh\nyGClglGPoaEhRNXl5uZqMpSNjIzExcWB5/5o5fXO1q1bDQwMfvvtt4qKiolof5xkZ2fL5XJL\nS8uuri6BCnw+39zcXCKRXLhwAeSJ8Tx//nxmZqZe+kCMzMKFC3WRVygUiYmJ169fRwglJiYq\nvWTHSWRkZEBAQEBAgPaYU7AHlpWVtbe3k8sFAoFq3GtFRcXAwMD69es1OYbpAgTndnZ2KpVr\n8mDGKIGVCkYju3fvZrFYCKE9e/aEh4fX1tYSMzWBQHDmzBknJ6cvv/ySmP+OVl6/ODo6QuR5\nSEhITk4OGJSArq6u7777Tpd8wBMHOHexWCwl7yPA0NAwPDwc/dsCFhUVxWazEUKRkZFhYWHV\n1dWENV8ul9++ffvYsWM6Xl0sFp8/fx5yrri6ur4w9qW3t7egoMDX1xcuweFwdu7cqeO1dMTZ\n2bm8vLy8vNzf31+LmJeXl5+fn0Qi2bp1K6FXOjs7Q0JCJBKJkrCWQHrdefvttxFCP/7449Wr\nV6Hk2bNnMTExxcXFap8dRpkJTQKDebmMKveXWmQy2ZEjR4h5n5GR0bx588heQFu2bCFnHR6t\nvBZemPsLoiyvXr1KlEilUmLLd9asWR4eHm+++SYYkRBCHA6HkBxDJqjOzk4iTTIY+ikUClHC\nZrO11K2qqoI+3Lt3T5MMsRfV0NBAFMpksk8//ZTwe6bRaHPnzoUE+FAyY8aMo0ePisVioopq\nlmIrKyti15rBYDQ1NZGvqyRva2tLfl4zZ848ceKEvrIUHzlyRHsLkD5OKfdXW1sbPC8qleru\n7u7h4UGj0aysrCAH5bvvvgticrkccvP8/fffqi1reuKgOTw8PIgSuVy+Zs0auJcFCxasXLkS\nHvc333wDAS73799XagTn/iKDVyoYbRgYGKSkpPB4vISEBC8vr1mzZkG6STc3t5iYmIaGhsLC\nQnKM2Gjl9QuVSs3Kyrp+/XpYWJipqWljYyOPx6PT6Vu2bMnMzFSbqUV3ZDKZ8DmwRaxQKIgS\n7Vu4sP7w8PCAjR+1uLm5geMsObrewMDgs88+a2lpOXr0qI+Pj5mZmUgk6u/vt7a2Dg4OTk9P\n5/P55LMGCAYHB9ue09PTA9mrPv/88z///FPVrZYs393dTaPRnJ2dmUzm2bNnu7q6Dh48qF/D\n12ixs7O7fft2dHS0tbV1Y2OjQCDgcDj19fXgyEc4ht26dUsgEPj7+4/TqY9CoRQVFSUmJsJJ\nEA8ePPD29i4pKYmJidHDzUwBKIqJsUVgMJipBqyHurq6IPhjotm1a9f333+fnJwMm0/x8fGp\nqakZGRlRUVGTcHUyIyMjsDqftHt/lcErFQwGo0+sra0pE3+c8JMnTwoLCxFCvr6+UMLlcikU\nyqZNmyb0ukrAccLj8Qv474H3nTAYjH4gZwrQY0hQW1tbcXExm80m7Frt7e0cDkckErm6ukJA\nD0JINVfNJLB27Vrync6YMWPy+/Cqgc1fGAzmlaaxsXHZsmU0Gs3BwcHGxkYkEjU2NspkMisr\nq4qKiqVLl77sDmL+xbSjR4++7D5gMBiMRoyMjKhUqlgs7u7u5vF4/f39ixcvjoiIOHfu3Jiz\nOGMmDrxSwWAwGIzewBv1GAwGg9EbWKlgMBgMRm9gpYLBYDAYvYGVCgaDwWD0BlYqGAwGg9Eb\nWKlgMBgMRm9gpYLBYDAYvYGVCgaDwWD0BlYqGAwGg9EbWKlgMBgMRm/8D8w1Ihg2+9jyAAAA\nAElFTkSuQmCC", "text/plain": [ "plot without title" ] }, "metadata": { "image/png": { - "height": 180, - "width": 600 + "height": 270, + "width": 270 } }, "output_type": "display_data" @@ -1241,592 +1244,20 @@ "output_type": "stream", "text": [ "Warning message:\n", - "“\u001b[1m\u001b[22mUsing \u001b[32msize\u001b[39m for a discrete variable is not advised.â€\n", - "Warning message:\n", - "“\u001b[1m\u001b[22mUsing \u001b[32msize\u001b[39m for a discrete variable is not advised.â€\n" + "“\u001b[1m\u001b[22mRemoved 80 rows containing missing values (`geom_point()`).â€\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAAFoCAIAAADIFpV9AAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdd0BTV/sH8HOzSNh7iWw3KqDgRGvdKEjRirPuiqOtb/VtbW0db9VOx6+2\ntirWbVWqIkJVVMStoIALAUFkKFOQEQgZ9/7+iE0pWknCxYB8P3/dnDzn3CdUbR7uGRTDMAQA\nAAAAAABaH46uEwAAAAAAAADdQEEIAAAAAADQSqEgBAAAAAAAaKVQEAIAAAAAALRSKAgBAAAA\nAABaKRSEAAAAAAAArRRP1wnoWGlpaWJioq6zAAAAAAAA0IHWXhBmZmZu27atf//+uk4EAAAA\nAADgtQoPD2/tBSEhpGPHjh988IGuswAAAAAAAHitTpw4gTWEAAAAAAAArVSze0JYUlLy+++/\nJyYmlpeXm5iYdOnSZcGCBSKRSPkuTdMRERGnTp0qLi62tLQcNmxYcHAwh/N3WdtgAAAAAAAA\nACg1r4IwOzv7888/l8lkPj4+dnZ2VVVVqamp1dXVqoIwLCwsKiqqb9++gYGBKSkpu3fvLikp\nCQ0NVY3QYAAAAAAAAAAoNaOCkKbp77//3sjIaNWqVTY2Ni8G5ObmRkdHDxw4cPHixYSQUaNG\n8fn8EydOjBw50snJSZ0AAAAAAABopOTkZC8vr2nTpu3cuVPXubApLy+vbdu2Y8aMiYiI0HUu\nr08zmkt548aNnJycadOm2djY1NTUSKXSegEXL15kGCYgIEDVEhgYyDDMhQsX1AwAAAAAAGi5\nZDLZTz/91K9fP1NTU4FAYGdn5+Pj89FHH50/f74pbpeRkUFR1IQJE5pi8DVr1lAURVFUWlpa\nU4wPampGTwhv3rxJUZS+vv5HH32UlZVFUVTnzp3nzJnj6uqqDMjIyOByuW5ubqouLi4uAoEg\nMzNTzQAAAAAAgBaqtrZ2yJAhly5d0tfXHzRokJ2dXXFxcXp6+o8//piZmTlw4EBdJ6gBhmG2\nb99OURTDMNu2bfvhhx90nREhhFhbW1+8eNHCwkLXibxWzaggfPLkCZfLXbt2rbe397hx44qL\niw8dOvT5559v3LjR1taWEFJaWmpiYsLlclVdKIoyMzN7+vSp8mWDAUobN24sKChQXguFwib/\nYAAAAAAAjbZ169ZLly716NEjJibG3Nxc1Z6RkXH//n0dJqaFmJiYrKys6dOnnzhxYteuXWvX\nrhUIBLpOiggEglZ4PnkzmjJaU1Mjl8u7dOny6aef+vn5BQcHL126tLq6+vDhw8qA2tpaPp9f\nr5dAIKitrVUzQOnatWtn/vLgwYOm+TQAAAAAAGy6cuUKIeSDDz6oWw0SQtzd3euumVI6cOCA\nn5+fsbGxSCTq2rXrN998U/crcVRUFEVRK1eurNfL1NTU3d1def3NN9+0a9eOEHLw4EHqL3v3\n7q0bn5ubO2nSJEtLS5FI5OPj8+eff6r5WbZt20YImTNnzuTJk0tKSo4ePVovIDk5maKo6dOn\nZ2RkBAcHm5ubGxsb+/v7p6enE0Ly8/OnT59uY2MjEon69+9/8+bNet2vXr06duxYW1tbgUBg\nb28/ZcqU1NTUFwfPzMycMGGCtbU1h8O5du1aXl4eRVFBQUH1Rrt27dr48ePt7e319PTs7OyG\nDRt26NChup8lKCjIxcVFJBKZmpoOHDgwPDxczZ9Dc9CMnhDq6ekRQgYNGqRq8fT0NDMzu3v3\nriqgpqamXi+pVKp6ytdggNKPP/4ok8mU1/fv37948SJ7HwIAAAAAoElYW1sTQnJzcxuM/OST\nT77//ntra+spU6YYGBhER0d/9tlnJ0+ePH369IuPT/5NQEAAn89fsmRJ7969FyxYoGzs16+f\nKiA3N9fHx6dNmzbjx48vKiqKiIgICAiIi4vz8/N79ciFhYWRkZHt27fv27evsbHx+vXrt27d\nGhIS8mJkTk5Onz593N3dJ02alJqaeuLEieTk5AsXLgwaNMjS0nLs2LE5OTnR0dFDhw59+PCh\nqampste2bdtCQ0MtLCxGjx5tbW2dlZUVHh4eERFx9uzZXr161c2/V69elpaWI0aMEIvF/zZz\n8Ndff12wYAGfzw8MDHR3dy8qKrpx48bmzZvHjx+vDJg7d66vr++gQYNsbGyKioqioqLGjx//\n7bfffvLJJ2r+qHWMaTbWrVsXEBBw586duo0ffvjhlClTlNerVq0KCgqSy+Wqd2maHjt27IoV\nK9QMeFF8fPzy5cvZ+xAAAAAAAE3iypUrXC5XIBAsWrTo7NmzZWVlLw1T7qfo4uJSVFSkbJHJ\nZCNHjiSErFmzRtly/PhxQsiLX5JNTEzc3NxUL5WT6UJCQuqFJSUlKUuJL774gqZpZeOePXsI\nIQEBAQ1+kK+//poQsnbtWuVLb29viqIePHjw0lusWrVK1Th79mxCiJmZ2UcffaS67xdffEEI\n+eabb5QvU1JS+Hz+8OHDq6urVR1v3bplaGjYrVu3eoMvXLiwbu2gLLbHjBlTtyOXyzU3N09J\nSambXm5uruo6Jyen7ltisbhnz54ikai0tLTBH4XOjRw5shlNGVU+ki4pKVG1MAzz9OlTExMT\n5Us3NzeFQvHw4UNVQFZWllQqVe0i02AAAAAAAEAL1adPn3379llZWW3cuHHw4MFmZmYuLi4z\nZsy4dOlS3bDffvuNELJ8+XIrKytlC4/HW7duHUVRYWFhLObj6Oi4YsUKiqKULydPnmxiYhIf\nH//qXgzDhIWFcTic9957T9kyffp0ZeOLwU5OTsuWLVO9nD59uvLi66+/Vt1X2ZicnKx8uXnz\nZplM9vnnn4vF4pK/2NvbDx48+Pbt29nZ2arRLC0tv/3227r7j7zol19+USgUK1eu7NSpU912\nBwcH1XXbtm2Vn6u8vLywsLCiouKdd96pqalpKfMQm1FB2KdPHx6Pd/LkSZqmlS2XLl2qqKjw\n9vZWvvTz86MoSvn7DKXjx49TFKV6Kt1gAAAAAABAyxUSEpKdnR0XF7d69epx48aJxeKdO3f6\n+fnVnZ2YmJhI/rkOixDSqVMnOzu7rKysZ8+esZWMl5cXj/f3AjSKohwcHMrKyl7dKzY2NjMz\nc+jQoW3atFG2TJo0SSAQ7Ny5U7Wqq+4t6hZsyi5dunQRiUT1GvPy8pQvr169SggZOHCg1T8d\nO3aMEJKfn6/q6Onpqa+v/+psr127RghRPl/9N0lJSWPGjDExMTE1NbW1tbWzs1MWsY8fP371\n4M1EM1pDaGlpOWHChL17937++ee9e/cuLi4+ceKEcnKwMsDR0dHf3z86Olomk3l4eKSkpFy8\neHHEiBHOzs5qBgAAAAAAtGhcLnfgwIHKQyYYhvn9999nzJjx/fff+/v7v/XWW4SQ8vJyQohy\nl/667Ozsnjx5Ul5erlpr10gvjsPj8RQKxat7bd26ldR51kcIsbCwCAgIOHz48LFjx8aNG1c3\nWDVVUDX+vzWqiknl+QKRkZF1i0aVug/67O3tX50qIURZP6tq1xclJib2799fKBTOmzeve/fu\nyiMPzpw5s27dunobWzZbzaggJISMHz/ezMwsMjJyz549QqHQz8/vvffeq/uffM6cORYWFjEx\nMdevX7ewsJg6dWpwcHDdERoMAAAAAAB4M1AUNWnSpLi4uG3btp0+fVpZECq/PBcUFDg5OdUN\nVj4cU77L4XAIIXK5vG6ATCYTi8WWlpZNl3BxcXFERAQhZOLEiRMnTqz37tatW+sVhFpQfkBb\nW1sfH59XR6omnb6Csuh9/PixavPVetavX19TUxMZGTlkyBBV44u7njZnzasgJIQMHTp06NCh\n//Yuh8MZN27cK/6gNBgAAAAAAPAmUW4cqno05+Xldfv27bi4uGnTpqli0tLS8vPzXVxclBWO\nmZkZeWHD0qSkpHolonK6ZoMP/dS3a9cuqVTao0cPT0/Pem9FRkaeOXMmKyvLxcWlMbfo3bv3\nrVu3Dhw40GBBqOZoycnJJ06c+OCDD14a8OjRI2VY3cbY2NjG3/q1aUZrCAEAAAAA4N/8/PPP\nR48elUqldRtv3Lixf/9+Qohq14yZM2cSQr766ivl5ElCiFwuX7x4McMws2bNUrZ07dpVKBQe\nO3asoKBA2VJeXv7xxx/Xu6OFhQUhJCcnh62PoNw5ZvPmzWEvmDt37r9tLaORhQsX8ni8TZs2\n1avKqqqqDh48qOlo8+fP53K5K1eurHuMIamzZNHV1ZUQcvr0adVb+/fvf7Eg/Oabb0aMGKH+\nOY2vU7N7QggAAAAAAC9KSEjYtWuXkZGRr6+vs7OzTCbLyMi4evUqwzDjx48fNWqUMmzAgAEf\nf/zx+vXru3TpMm7cOH19/ejo6JSUFD8/v//+97/KGENDw3nz5m3YsMHT0zMgIEAqlZ4+fbpH\njx7GxsZ172hsbNyrV6/r169PnDixY8eOXC43KCjIw8NDu/zj4uLS0tK6du3q6+v74ruzZs1a\ns2bNjh07Vq1aVXevGk15eHhs2bJl7ty5Q4YMGTZsmJeXl0KhSE1NjY2NdXZ2fulph6/QtWvX\nTZs2LVy40NPTMzAwsF27dk+fPr1x44aRkdG5c+cIIQsXLty/f//EiRNDQkKcnJySk5P//PPP\nd999t97Z9MnJyadOnXrnnXe0/lxNBwUhAAAAAEALsHbt2r59+546dSolJSU+Pl4ikVhZWY0c\nOXLKlCkTJkyoG7lu3Tpvb+/Nmzfv2rVLJpO5u7uvXr168eLFAoFAFfP9998bGxvv3Llz165d\n9vb2s2bN+vLLL62trevddO/evf/5z39OnTp18OBBhmGcnZ21Lgi3bdtGCFGeJfgiZ2fnIUOG\nnD59+vjx440snGbOnOnt7b1+/fq4uLhz584ZGBjY29tPnTpV02pQad68ed26dfvhhx/i4uIi\nIiIsLS27deum+hS+vr5nzpxZvny5cm1kz549Y2Jinjx5Uq8gTE9P5/P5w4YNa8znaiIUwzC6\nzkGXEhISoqKiVq1apetEAAAAAADgDVRaWmplZRUaGvrzzz/rOpf6/P39sYYQAAAAAACgqZw7\nd05PT++LL77QdSIvh4IQAAAAAACgqYwdO7a6utrOzk7XibwcCkIAAAAAAIBWCgUhAAAAAABA\nK4WCEAAAAAAAoJVCQQgAAAAAANBKoSAEAAAAAIAWKS8vj6KooKAgXSfSgqEgBAAAAAAAnZFI\nJFQdXC7X0tJy8ODB+/fv13VqrQJP1wkAAAAAAEBrJxAIZsyYQQiRyWQZGRmxsbGxsbE3btxY\nv379K3pZW1tfvHjRwsLidaX5BkJBCAAAAAAAOiYSiX799VfVy5MnT44aNWrjxo0ffvihs7Pz\nv/USCAT9+/d/Hfm9uTBlFAAAAAAAmpcRI0Z4e3szDJOQkEAISU5Opihq+vTpmZmZEyZMsLa2\n5nA4165de3ENoSoyIyMjODjY3Nzc2NjY398/PT2dEJKfnz99+nQbGxuRSNS/f/+bN2/Wvem2\nbduCgoJcXFxEIpGpqenAgQPDw8PrBrw0jZ9//pmiqMDAwHofgWGY9u3b6+vrl5WVNdWPiQ14\nQggAAAAAAM0OwzCEEIqiVC25ubm9evWytLQcMWKEWCwWCoX/1jcnJ6dPnz7u7u6TJk1KTU09\nceJEcnLyhQsXBg0aZGlpOXbs2JycnOjo6KFDhz58+NDU1FTZa+7cub6+voMGDbKxsSkqKoqK\niho/fvy33377ySef1B28Xhr9+vXz8fH5888/c3Nz27Ztqwo7d+7cgwcPpk2bZmZmxvKPhlUo\nCAEAAAAAoHk5ceJEUlISRVE+Pj6qxtjY2IULF27cuJHL5Spb8vLyXtr93Llzq1atWr58ufLl\nnDlzwsLCfH1933vvvQ0bNiiLzC+//HL16tVbtmz59NNPlWHZ2dl1K7rq6uqBAweuXLlyzpw5\ndYu6F9OYP3/+jBkztm/fvnLlSlXYli1bCCFz585t7M+iiWHKKAAAAAAA6FhNTU1oaGhoaOis\nWbMGDhw4atQomqYXLVrk5OSkirG0tPz2229VZdgrODk5LVu2TPVy+vTpyouvv/5a9chR2Zic\nnKwKU1aDDMOUl5cXFhZWVFS88847NTU1Fy9erDv4i2mEhISYm5uHhYUpFAplS1FRUURERNeu\nXfv06aPRz+H1wxNCAAAAAADQMalUqnykxuFwTE1N33rrrVmzZk2ePLlujKenp76+vjqjeXl5\n1S3Y2rRpQwjp0qWLSCSq11j3GWNSUtLKlSvPnTtXWVlZd7THjx+/Og2RSDR9+vT169dHR0cr\nFxPu2LFDKpWGhoaqk61uoSAEAAAAAAAdMzExefbs2atj7O3t1R+t7ksej/dvjTKZTPkyMTGx\nf//+QqFw3rx53bt3NzEx4XK5Z86cWbduXW1tbYNpzJs3b8OGDVu2bAkMDGQYZtu2bQYGBlOm\nTFEzYR1CQQgAAAAAAC1A3Q1mWLd+/fqamprIyMghQ4aoGuttQ/qKNNzd3YcMGXLy5Mns7Oz0\n9PTMzMxZs2YZGxs3XcJswRpCAAAAAABo7R49ekQI6d27d93G2NhY9UeYP38+TdNhYWEtZTsZ\nJRSEAAAAAADQ2rm6uhJCTp8+rWrZv3+/RgVhQECAg4PD1q1bIyMjvb296+6P2pyhIAQAAAAA\ngNZu4cKFXC534sSJ06ZNW758eWBg4Hvvvffuu++qPwKXy33//feLiopkMllLeTxI2FpDuHDh\nQo3ilyxZ4uzszMqtAQAAAAAAGsnX1/fMmTPLly+PiIgghPTs2TMmJubJkyfh4eHqDzJz5szl\ny5cbGRlNmjSpyTJlGcUwDAujaLi+8+rVq/Wm5+pKQkJCVFTUqlWrdJ0IAAAAAAC0bCdOnPD3\n9w8NDf3ll190nYta/P39WdtlNCIiol+/fg2G1dbWOjg4sHVTAAAAAACAZuK7774jhCxYsEDX\niWiAtYLQxMTE0tKywTCJRMLWHQEAAAAAAHQuMTHx5MmT165di4uLCwkJ8fDw0HVGGmCnILx6\n9Wrnzp3VidTT07t69WrL+hkBAAAAAAD8mytXrixbtszU1HTixImbN2/WdTqaYacgVH9BIEVR\nzWT1IAAAAAAAQOMtXLhQ0102mw8cOwEAAAAAANBKsbaGsC6GYc6cOXP9+vXS0lKapuu+tXHj\nxqa4IwAAAAAAAGiK/YKwsrJy5MiRly9ffum7KAgBAAAAAACaCfanjK5YseLq1atr165NSUkh\nhERFRZ0/f37YsGE+Pj6PHj1i/XYAAAAAAACgHfYLwqNHj44fP/6zzz5zcXEhhFhYWAwYMODP\nP/9kGOann35i/XYAAAAAAACgHfYLwsePH/v5+RFCOBwOIUQmkxFCuFzuhAkTwsPDWb8dAAAA\nAAAAaIf9gtDAwEBZBAoEAqFQ+OTJE2W7sbFxQUEB67cDAAAAAAAA7bBfELq6uqalpSmvu3fv\nfuDAAYZh5HL5wYMHHRwcWL8dAAAAAAAAaIf9gnDYsGGHDx9WPiScPXt2RESEu7t7u3btzp49\nO2PGDNZvBwAAAAAAANphvyBcunTp2bNnlccPzp49+4cffhAKhYaGhitXrly6dCnrtwMAAAAA\nAADtsH8OoYmJiYmJierl4sWLFy9ezPpdAAAAAAAAoJHYf0IIAAAAAAAALQL7TwhVaJqurKxk\nGKZuo6mpadPdEQAAAAAAANTHfkFI0/SWLVt+/PHHhw8fSqXSeu/Wqw8BAAAAAABAV9gvCFev\nXr1ixQpra+uAgABLS0vWxwcAAAAAAABWsF8Qbtu2zdvb++LFi/r6+qwPDgAAAAAAAGxhf1OZ\nwsLCSZMmoRoEAAAAAABo5tgvCN3d3cvLy1kfFgAAAAAAANjFfkG4aNGi3bt3V1RUsD4yAAAA\nAAAAsIidNYQRERGqa2tr67Zt23br1m3evHlubm483j9uERQUxModAQAAAAAAoJHYKQjfeeed\nFxuXLl36YqOax06kpaV98sknDMOsWbOma9euqnaapiMiIk6dOlVcXGxpaTls2LDg4GAOh6N+\nAAAAAAAAACixUxCGh4ezMo4STdO//PKLnp6eRCKp91ZYWFhUVFTfvn0DAwNTUlJ2795dUlIS\nGhqqfkBLkZqamp+fr9sc2rVr5+DgoNscAAAAAACg6bBTEI4bN04sFhsYGLAyWnR0dGFhob+/\n/5EjR+q25+bmRkdHDxw4cPHixYSQUaNG8fn8EydOjBw50snJSZ2AFqSioqKgoEDr7kVFRQUF\nBc7OzsbGxloP0qZNG637AgAAAABA88faOYRWVlbK+ZkBAQFmZmZaj1NWVrZv376pU6dKpdJ6\nb128eJFhmICAAFVLYGBgbGzshQsXpk6dqk5AC9KjRw9PT0+tu6ekpNy5c8fPz8/e3l7rQeqt\n/wQAAAAAgDcMa9/4//vf/x4+fHjatGl8Pn/QoEHBwcFBQUE2NjaajhMWFmZjYzNy5Mhjx47V\neysjI4PL5bq5ualaXFxcBAJBZmammgEtCJfL5XK5Wnfn8/k8Ho/P5wsEAhazAgAAAACANwlr\nBeGqVatWrVr14MGDw4cPHzlyJDQ0dP78+X379g0ODg4ODlZzxuatW7cuXbr09ddfv3QbmNLS\nUhMTk7plEkVRZmZmT58+VTNA6cMPP8zOzlZet2nTxsrKStMPCwAAAAAA8AZgefvNdu3aLV26\nND4+PicnZ/369RwOZ8mSJc7Ozj179ly7dm1qauor+srl8l9//XXgwIGdO3d+aUBtbS2fz6/X\nKBAIamtr1QxQEovFlX95cd8aAAAAAACAVqKpzmNo27btRx99dP78+YKCgq1bt1paWq5cubJT\np06dO3eOiop6aZcjR46UlZXNmDHj38bU09OTyWT1GqVSqZ6enpoBStu3b4/9y7x58zT+bAAA\nAAAAAG+EJj+gz8rKas6cOSdPniwuLt6zZ0/Hjh3v37//YlhFRcWhQ4eGDBkikUjy8/Pz8/Mr\nKysJIU+fPs3Pz1eeXmhubl5eXq5QKFS9GIYpKyuzsLBQvmwwAAAAAAAAAFRe3zaSJiYmU6ZM\nmTJlykvfraiokEqlkZGRkZGRddvXr19PCDl06JBQKHRzc7tx48bDhw/btWunfDcrK0sqlap2\nkWkwAAAAAAAAAFSay7kCFhYWn376ad2WhISE2NjYiRMnOjo6KrfK9PPzO3To0PHjxz/++GNl\nzPHjxymK8vPzU75sMAAAAAAAAABU2C8IhULhS9spihKJRE5OTsOHD1+yZImlpWXdd0UiUb9+\n/eq2FBUVEUI8PDy6du2qbHF0dPT394+OjpbJZB4eHikpKRcvXhwxYoSzs7OaAQAAAAAAAKDC\nfkE4evTo+/fvp6SktG3btn379oSQtLS0vLy8zp07Ozg4pKenf/vtt3v37r1+/XqbNm00HXzO\nnDkWFhYxMTHXr1+3sLCYOnVqcHCwRgEAAAAAAACgRCn3a2HR5cuXR44c+csvv0yaNImiKEII\nwzB79+5dsGDBqVOn+vTps3///qlTp86YMSMsLIzdW2shISEhKipq1apVuk6EZffu3bt9+/aA\nAQO0qLoBAAAAAKA18Pf3Z/8J4dKlS6dPnz558mRVC0VRU6dOjY+P/+yzz+Li4iZNmhQbG3vq\n1CnWbw0AAAAAAADqY//YicTExG7dur3Y3q1btxs3biive/fuXVhYyPqtAQAAAAAAQH3sF4R8\nPj85OfnF9qSkJD6fr7yura01MDBg/dYAAAAAAACgPvYLQn9//19//XX79u2qA+IVCsW2bdu2\nbNkyatQoZUt8fDx2/gQAAAAAANAt9tcQfv/999euXZs9e/bSpUvbtWvHMExGRkZJSYmbm9t3\n331HCJFIJDk5OZMmTWL91gAAAAAAAKA+9gvCNm3aJCUl/fDDD8eOHbt9+zYhxNXVdd68eUuW\nLDE2NiaECIXCc+fOsX5fAAAAAAAA0Aj7BSEhxMTE5Kuvvvrqq6+aYnAAAAAAAABgBftrCAEA\nAAAAAKBFYO0JoUQiUSdMKBSydUcAAAAAAABoDNYKQpFIpE4YwzBs3REAAAAAAAAag801hEKh\nsHfv3lwul8UxAQAAAAAAoImwVhC6ubllZmamp6dPnz595syZbm5ubI0MAAAAAAAATYG1TWUe\nPHgQGxs7aNCgDRs2tGvX7u233963b19NTQ1b4wMAAAAAAAC7WCsIKYoaNGjQ3r17nzx58tNP\nP5WXl0+ZMsXe3n7BggWJiYls3QUAAAAAAADYwv6xE6ampvPnz79582ZSUtKUKVN+//33Hj16\n/PDDD6zfCAAAAAAAABqjCc8hdHd39/T0VC4mrKqqarobAQAAAAAAgBbY3GVU5fLly9u3bz90\n6JBYLO7Tp09YWFhISEhT3AheQaFQ6DoFAAAAAABo1tgsCAsKCnbv3v3bb7+lpaVZW1uHhobO\nmjWrU6dOLN4CGlRWVnbr1q2kpKSHDx9KJBIPD4/u3bureUokAAAAAAC0KqwVhGPGjPnzzz8Z\nhhk2bNiaNWsCAwP5fD5bg4OaioqK4uLi0tPTZTKZXC4vLi6Ojo4uKCgYNmyYvr6+rrMDAAAA\nAIDmhbWCMDIyUigUBgUFtWnT5urVq1evXn1pGHaXaVLx8fGPHj1yc3PLy8srLS01NjZ2dnZO\nSkqysrLq16+frrMDAAAAAIDmhc0poxKJ5MCBA6+OQUHYdMrKymJiYnx9feu1Ozg45OXlKRQK\nLperk8QAAAAAAKB5Yq0gTEhIYGso0E51dbVAIHix6hOJRJcuXRo9erSBgYFOEgMAAAAAgOaJ\ntYKwZ8+ebA0F2hEIBHK5nGEYiqLqtstksr59+woEAl0lBgAAAAAAzVMTnkMIr5m5uXn//v2f\nPn1ar72oqMjCwgJ7/AAAAAAAQD3sFIQ7d+4sKChQJ1KhUOzcubO4uJiV+0JdXC63e/fumZmZ\nJSUlDMMoG588eeLi4uLp6anb3AAAAAAAoBlipyCcMWNGamqqOpEymWzGjBmZmZms3Bfqadeu\n3fz58+3t7e/cufPo0aObN2+6u7v7+flZW1vrOjUAAAAAAGh2WFtDmJKSIhQKG/RKavAAACAA\nSURBVAyTSqVs3RFeqn379m5ubra2tklJSW+//XanTp3qLSlsWW7dupWSkqJ1d4VCIZPJ+Hx+\nY3ZY7dKlS7du3bTuDgAAAADQbLFWEC5YsICtoaCRuFyuqamphYWFiYlJi64GCSEikcjc3Fzr\n7k+ePElPT+/QoYOVlVVjctC6LwAAAABAc8ZOQbhp0yaN4l1cXFi5L7zx2rdv3759e627Z2Rk\nCIXCXr16ubq6spgVAAAAAMCbgZ2CcOHChayMAwAvlZqampSUpHV35dRZHo/H42n/V97d3d3H\nx0fr7gAAAADQDLE2ZRQAmo6BgYGtra3W3YuLi9PS0tzc3BwcHLQexNjYWOu+AAAAANA8oSAE\naAHatm3btm1brbvn5eUpFIru3bt37tyZxawAAAAAoKXDwfQAAAAAAACtFApCAAAAAACAVgoF\nIQAAAAAAQCuFgvANxTBGNdm6TgIAAAAAAJq1JiwIFQpF0w0Or8Yrz+ybvkzXWQAAAAAAQLPG\nckFYWlq6YsWKHj16GBoa8ng8Q0PDHj16rFy5sqysjN0bwYvo8se1V34iDEMIoRiaYmhlOyOX\nSOK+YeQSnWYHAAAAAADNDpvHTty6dWv48OGFhYWEECMjozZt2lRUVCQmJiYmJm7btu3kyZNd\nu3Zl8XZQHy2rOfM/RUm6fsD/qdoYuUS8K4iueKzX70MdpgYAAAAAAM0Qa08Ia2pqxo4dW1xc\n/PHHH2dkZFRUVOTl5VVUVKSnpy9atCg/P3/cuHG1tbVs3Q5exDFzNgo9L7sdXn009PlzQoVU\nvPdduizbcHYMxdfXdYIAAAAAANC8sFYQHjx4MDMzc9OmTevWrXNzc1O1t2vXbsOGDRs3bkxP\nTw8PD2frdvBSXOtOhu/HylIije5sIYQI/nyfLskwnBvLMbLTdWoAAAAAANDssDZlNDIy0tnZ\nOTQ09KXvLly4cN26dceOHZsyZQpbd3yzifeMk2Wd16CDvJYQ5vk1TQuzTxNCuI9iab6o4vv2\nz9spLuHy1R9S2DtUOOwrDXIAAAAAAIAWhbWC8Pbt24MHD+ZwXv7IkcPhDBky5MKFC2zd7o2n\nKE5lxCWNHYWhGalY+xxKHjQ2AQAAAACAFo4uz6u9/KPI/ztdJ9IkWCsICwsLnZycXhHg6OhY\nVFTE1u3eeEZzzzG1ldr0VEirj86vzU/hVBcyInO9DsNEw1YTitJiJErfQpsEAAAAAFo4WdoJ\nWfop/YCNuk4EmgW6JL32xg4UhA0Qi8UikegVAQYGBpWVWlU4rRJlYEUZWGncTV5btWcsXZFf\n2m+t5elZknFHuBETJOe/03/nV+1qQgAAAIBWgpFLCMNQfBEhhC7JUDxJ/usNhpE8o0RmukwO\nXjvZ/aia0yuNZp2o951clnay+shck08zCYfN8xp0iLVNZRiGYSUGtCevrdoVSD/LNgo9zwjN\nCCGMmbvh7Bjp3aPVxz/SdXIAAAAAzVrthfWVP/ky4uJ/tDJM9bEPKrcO1lFSoDP8dkM5RraV\nvwygKwtUjbK0k+I9wcKB/31jqkHC7jmE4eHhqamp//bunTt3WLwXvEhecJuRVhvNOUsZWqsa\nubZdjd4/Kz74HlNdSumb6zA9AAAAgOZMOGCxPPtK5S8DDOeee97EMNXHP5LePmT0/lmdpgaN\nRT/NZCTPNO0lGrysOvqTqp/76PWZR2h57dWfa6IW6/X7kOfUR/H4pqajccxcmue3cTYLwvj4\n+Pj4eBYHBI3wHHyM5l18sZ1r29X4o6TXn09zIJPI7+x62sNLoetEAAAAoNnj6RlOPVy1Z2zV\nlkEC7ymEkOrjH0mTDxi9f5Zr21XXyUGjVEctlqUc0777n58SQqojFhJCJOe/l5z/XotBDCbu\nE3hO0jqHpsNaQZiQkMDWUNB4csM2943GvGqTnzdabbVMT59PCJFVisfY/iQT96/XDgAAAG+2\nyq1v02XZ2vRkGLqqsCZmBSFEnnWJY2xXtStIuxwMZ0RxrTtp1xfYxe/ozzV3VjdaIa29/QdR\nSP96zTC1lYRhKK6A8P/eM4Vj7sJ3Hah+DlzLduoHv06sFYQ9e/Zs5Ah5eXlxcXE3b97Mz8/n\n8Xht27YNCgrq1atX3RiapiMiIk6dOlVcXGxpaTls2LDg4OC6Z100GNBKPC1gft/lt2yGrvPQ\nhcKHpd8H/zZ3S0i7Xm05ssr2NmmFMjEhJP1aztbQQ58em23lZKrrHAEAAKBpKZ7cIlK1tzNk\nGIaWv/Qdujzv7xccDkVx1c+BLstGQdhMyFL/bMwTQiVGIa1TJRLFk+S/dx5SA7etL9fBp5E5\nNIVmtBry0KFDly5d6t69u5eXV21t7aVLl9asWTNx4sSJEyeqYsLCwqKiovr27RsYGJiSkrJ7\n9+6SkpLQ0FD1A95g5UXiu+ce9gvpSghhFAxDP9/CRy5TnN+TPHCKJ0+gwT9hzYT4maSmslaj\nLlxx1tIRK3YtyfX7b6hCLiGEVJbU3IxOu/DtT0uHb6cqB5fkumo0oMhIz8BUqFEXAAAA0C1K\n35yuKWV5UJpmCK1+OMfYjuUEQFtc++5Eps3p3Ez1U0X+LY5xG7qygBKaMLIarkMPiivQYiiO\nka0WvV6Dpi0Ia2tr79+/X1FR0a1bN1PTBh7LDBw4cNasWSYmJsqXEydOXLRoUXh4+JgxY/T1\n9Qkhubm50dHRAwcOXLx4MSFk1KhRfD7/xIkTI0eOVB6B2GDAm00qkR359nxhVmnw0r8fXstl\nim0LIguzyvpP6NYSC8IzYQknf7muaS+/9oOm+P66e620uMrqs1Hk4CeXrYyKpvffHntv0Lkx\nZwnRbF34yAW9Az/ur2kOAAAAoEMmnzzQphvDVEd+KL11UM9nljz7MiU0oUsyDOfGcoxQ2rVs\noqGrtOglS48R7w4Sjd7Ite1StS/E5PO8qj1j6aeZBnPPNdvqTgtsFoQnTpzYuXOnQCCYM2fO\ngAEDYmJiZs6c+fjxY0KIQCD48ssvv/jii1d079GjR92XhoaGvXv3joyMLCgocHV1JYRcvHiR\nYZiAgABVTGBgYGxs7IULF6ZOnapOwJvNytH0P3vHb5waztCMVXchIUQhp8MWHi94WPrxvpAW\nunbOvr2lt38HTXuJSYdU2mq6345DCSGEEEfL7Am++9Ppd8tdxnu7aJODxn0AAACgxfmrGjR6\n/6w8M45QHMMpf1TtHVe15W3UhK2QPC9BvDtI5P+dXt+F8sxYQgjh6RlMCRfvGlMVNsz4o8Q3\n5uQJ1j7G+fPnR40apTxp8NChQ9HR0cHBwfr6+mPGjJFKpRcvXvzyyy87duw4btw49cesqKgg\nhJiZPT8GNCMjg8vlurm5qQJcXFwEAkFmZqaaAS3IiZ+vJcdo85stI0v92J2JAn0uIWRD4BG5\nlLZxMd/8/lEthho6x6fn6I5adGSRZ4dsD/5l9eOv/nG3pkpKCKlkmFzjtiG+ewkhk3vvzi1z\nflZeYE9tIoToG+v1Du6i/pg8Nz1CdPxzAAAAgKZWe2WT9PYho/djubYe8sw4Qgjh6RlMPiTe\nHSTeF2IUekHH+cHrxTG0MZi4n9/lH1sKUXyRwbRj0qR9RJPVpM0cawXhhg0bDAwMfv/9d2dn\n57lz506dOtXJyeny5cvKmaJZWVleXl6bN29WvyB8/Pjx5cuXvb29VQVhaWmpiYkJl/v3T5+i\nKDMzs6dPn6oZoCQWixWK5+cQ1NZqtj7ttcm4+yjnbqHW3SWVNCFEUiUjhDxOK24o/OWyH+T1\n1HUhVB75JbfkhvrxXpaEvPA8j0MpnMwzncz//r2AJC5K/THlKeesFg9TPx6ajlwul0gkus2B\nx+MJhVhTCgDwBuJ7BPM7B3LMnOs2KgsAuuCujpICneGYOnJMHZ+/4AoozvPZdhRfpOc7W2dp\nNQHWCsKbN2+GhISMHj2aELJq1aqhQ4d+9tlnqnWDLi4uEydOPHDggJqjVVdXf/3113w+v+5+\nMLW1tXx+/XmPAoFAVdQ1GKA0a9asjIwM5XWHDh3c3d3VzOp1snQ3tC3VVz++NF1Sd3MseTVN\nCKE4hCv8e4dVgQHH2EmDJbCmDhok0EQeV3voVz5SP57LUVDU8910eBy5gZ6YohiGocS1BnL6\n+Z92huEoaA02nhUbdrVSP7qZoWn6wYMHt2/fTkpKkkgkNE136NDhxb8mLUVeXt7Vq1e17i6X\ny6uqqoRCYWMqOgcHBz8/P627AwBAs8UxcVBdUyJTSvj8eyzFE3IdGrudPrRoPKd+Rgs13tWi\npWCtICwoKFDN1VQu+XN0dKwb4OTkVF5ers5QEolk1apVhYWFK1eutLX9e72mnp5eTU1NvWCp\nVKr6btdggFLv3r2dnZ2V10KhUDnNtblRPOUX3Khu5CAM/bwyVJJX09XFL99S+aU4/rp/DGIS\ntDbv/n806iKRSI7ui3ISl07rt/1G9SAfg9h48TBv/XMHr0zNElkGTw3Q09PTaMC2na01im8+\nZDLZuXPnTp8+LRQKi4uLKYpKS0vr16/f4MGDlRs1tTgGBgb1/mHRyLNnzx4+fOjo6NiYQSws\nLLTuCwAALYXAe6rAa4qus4Bmg6I4pm11nURTYa0glMvlqscOAoGAEMLj/WNwHo+nTulVW1v7\n1VdfZWRkfPnll126/GOhl7m5eXZ2tkKhUE0KZRimrKzMw8NDzQClRYsWqa4TEhKiojSYPfja\n+C/oM2CSp6a9FHL66Hfnn+ZVjJjru3/5mVkbRu1ffqbr266DZ2rzay0zOyMterHLubudc3fN\n1nBn3HnkuPXp9P6/PbILeCD28KmMfejQ31TfYlq/33Zdnu7qa+vS6Y39+1zPrVu3zp071717\n9/Ly8mfPnllZWdnb29+4ccPQ0HDQoEG6zk4bVlZWVlbaP68tLi6uqKjo2LGjl5cXi1kBAMCb\niaJ0nQHA69C89saRSqWrV69OSUn57LPPPD3rl0Nubm43btx4+PBhu3btlC1ZWVlSqVT1ZLLB\ngBbEvI2xeRtjjbrIZYqt8yMriqs/+WNyVWk1IaRnYCdrN/Mf3ws3sTasexbFm83GpHpG/20Z\nNmOybd8hmc835smyHs3IJNP67xQaafa8seWiaTorK8vJyaneqloXF5cjR474+voaGBjoMD0A\nAAAAaA7YLAjDw8NTU1MJIdXV1YSQTZs2RUREqN69c+fOq7vLZLK1a9feuXPnk08+8fX1fTHA\nz8/v0KFDx48f//jjj5Utx48fpyhKtZ6nwYA3W+69oopi8X/2hZhYGygLQkKIYxebD3e/u+M/\n0cNDe7WS09WN7N3ueX91LlPuSgjFZQghFJcihJyVeHF79PK10/zciZappqbmwoULvXr1Ur7k\nUc83UtLT0xMIBJWVlSgIARhxCSU0JlqdLwwAAPBmYLMgjI+Pj4+PV72MiYnRqPuWLVsSExPb\nt2+fm5t78OBBVfuAAQPs7OwIIY6Ojv7+/tHR0TKZzMPDIyUl5eLFiyNGjFAtCGww4M3m4mm3\nNOIlk90du9isiJn5+vPRGZ5exxFz886cSUlJEVFSOeFVSWuL0tM9PDw6DBnSer75cTgcQghN\n01wulyLMZ6Kwo4olhLQhhCgUCuW7AK1c1f4Jgu4T3rDN4gAA2KSQ0uWPOeat5ffprRNrBWFC\nQkIjRygsLCSEpKenp6en1213dXVVFoSEkDlz5lhYWMTExFy/ft3CwmLq1KnBwcF1gxsMaCXM\n2xgPneOj6yx0xtTUdNiwYTY2Nrdu3Zpx5a2Ro216d+vm6elpZKT7VZGvjUhPML6n+c3SUhsb\nG8IwfCLjERkhpKKiYnQ3U1P95jVdHF4zRiqm+Pqtc3mM9HY4320QZWBJCCEKKVE834Zann2V\nEuhz7brrMjkAgGZGmhIpOfuV8aJbuk4EmhBrXwp79mzsbrxfffVVgzEcDmfcuHGvOMywwYBW\nQmSk13oWDb6UsbGxn5+fnZ2dsbFx//79lTvftipMbUXnzB/FNa7ZovdVjTU1NcaZf/TgXeRW\njSOG5jpMD3Sr8tcBomH/43ccpetEdECatFcSu9poztnnNSEhhBBZeox4d5D+uO2tsyCsPjyH\na9NFr/+ihkPfaGX5lYQiZrat6FeHAC+lKLhLl2byO48hhBBaTv462YypLpXePqjXe54uk4Mm\ngGlj8IZruWfuNRIlMjOdF+ejn+VbeUy5uDc7O5t7d99w7gWDyQe5th4NjgBvGFnaCSL/61BW\naTUjFSsvFXk36PI8naX12hlMOsAxtK78dQBdWaBsUVaDopHfCDwn6ja310mRf5uRVimvmZoy\nuuaZ8pquLKBLH+ouL1069ev1mC3xDcdB65B9u+Dc7kRdZ6EbjLioal9IbcJv/2isLq3cNkR2\n96iustKt3JSi/w3foessmgqb08ZOnDjB4XCGDx9OCCkqKpo58x/r1rp167Z27VoWbwcAr8a1\n624aeo6zdfCHHoYki7zbTdA294rB5HB+50BdpwY6UHNiaa2Jg+HUI4T391GcsrST4j3BBpN+\nr3scc0vB1FbKc7Q5JljQb5Hk9PLKn3oRgb4sPUaWtljPdxbHurPswRlNh6IE+jynvlrkoHM1\np1cwVYWGM09Swr93tKZLsyq3DhJ4vyca9j8d5vY6xR+7b+lo4uplTwhh6L8Px3qY+ORpXrlP\nYCfdpQY69jD5SdLJB4Pe89Z1Io3F1FaqHvGpiWvvZRCyq/rgNEbyjBKaEEZBlz2q2h1M8fT0\n3/2NqSnTNAdKYEi4Le8X9BKxtLywysbVnBBSXS6pfPr3CeE59wodu9joLjWWsVYQ3rp1a9So\nUb/88ovyZXV1dXR0dN2A6OjosWPH9ujRg607ArQekiubpNe3qR/PKKREIVVec3hCi0eHCSEO\nWfspQ+vq44vI8UXKNyieBhvP8tsPFY1ap0HS0GTkmbFVezSfGM8wioJ7ZV8aUXoGjKSyOnxm\ndfgsRiqm+CLxoRmaDsZz7G0480+Nc2AV/TSjKmxoYwcpSiWE1F7dXHt1sxbduVYdjJekNjIH\nnTAYv6tq+/Cq30YYzjypbKGf5VRuG8xr20s0ZLluc9OOXKb4tNcvGveSKqQSuVCfz+FxhKSY\nMFTC8VRaTkuqZQIh78DKs5oO+H3CfA4X069aqjNhNzIS8mZvCuAJuHXbL+y/deP4/Y9/n6Cr\nxBqjavsIefYV7frWRC1WXpR/83xTmfK12hzmbDg7ht+usf9cv34Pbz7ZMv/YvK3vdOzrqGpk\nGPLH6tj4yNRvr4W+MX/ZWSsIt2/fbmVlNWPGP75V7NixY8SIEYQQuVzerVu3Xbt2oSAE0IL8\nwRlFQQMHt6iBoasKte9NK1AQNhccPiUy06IfJTShK/MZmYQwCkYhIwoZpW9OCU20GUpP9+us\naHGxrlMgTE2prlMgdHmedl/RlJ6tMCGEkDuHJWdWEUKkpVnS24c0HYQSmZmu1PGPgqIofWO9\nhuNeUFNZW10uMbYy8HM4QzPUhceTKyok+sZC7UYjpDXu1fTG8B3T6fKh21vmH5u7eYyq8cK+\n5D/WxL2/uaVOruE69KQE+upGMwxdWUAY+vkraRX9LJcQQvFFHFNHQj2vfyihsUb/F+DoW2iQ\ncdO4dvRe/oOnmvZy8bLbNOMPr+HtKYrU1siOfnch9Ur2k/SnPUd1OLbukqaj+Yzu6NDZWtNe\nrwFrBWFcXNzQoUMFgn/s6W9qampra6u8DggIuHDhAlu3A2hVhIO/0Hpamjw3QZZyjNByhqfH\nd/Dhdxqt3Thce0/tOgLrioXucY6r1Y8XykoNJE+U13xTcae8PXpEwihkORZDi0yf7wdGc/hl\n+u3V33fUyspqiEZJNwGOqRO3jZa/ZGQkFXRpJuHwlR+Za9leu+lMHDMn7RJgEcUT8ttp8l+D\noVWrBwmtoIvT6NoqQlEckRnHwv2vcoaiBIYa7EMrMNQggabB5XG+ipujaS9p0j6Ouce5GF70\nj1c4XEIxpFYsC/hP/6GjabrskcBzUlOkCq/HpQO3q8slmvbyHtnh0oHbq/13WbuYlj2p3Dr/\n2O2zmT6BnZ6klTxJK9F0tD7jPIws1C7Gmoagyxjaub+awUzNM8mFH+pMMeUSQhHCMFwho5Cp\nwrjmbvwuQernQJm0UT+4iSSffHDrTIZ2fW9GP58JcmpLvPKfxWtH7mkxjkNHqze8IMzKyho7\nduwrApydneueUw8A6uM5+PActDlHpDY+TJ4aXTvyV73o2c/8vjOP/4rr0FM/YAPrGcLrxOfz\nzc012CTW8UG4Zf5p1UsOrfyfOtOm/Eqb8r/mEXH4d31+kuqpO6yxsXHDQU2Ma9XB+MMbWnR8\nvqdowAbpnT/4HsHy1Gi6/LHh7FMcI1vWk3wNKANLw9mnG477S+2l/6s+/sKGogxDV5fS1X9t\nqUJRRrNP89wHs5Tja8HQtfFh6oeLy2qy7xYaVyeYic87mISMHGBoWVPAEGp4vxSn8viKXw6V\n6Q+sOHPXqautgakGs+v1fGernqKAbsVsjS/OfqZd34oScWFWKSGkJPcZ0fbbPyGk8wAXnReE\nNae+1HrK6N8kZbTk76WD0tKH0uT96vc2nB3D0fWU0dGL+r31npf68VVlNQr58yel9y88ij9+\nn6EZgR5vxPxeFg7PZ9YIDQR6+hr8MtG+vWXDQbrAWkEokUjqbufo5ORUWVkpEolULfr6+jU1\nNWzdDgAaVBsfVnPsA4PJB6sMu+sRIjd2NppzpnLbEEIIasIWzcJQMMRDk/+peCwjZJnyUp5z\nrSbqY4YmhCsQOnQTjfqB4j6f2TFAoySawRMh7aj2FNXr96H0zh8Ul28wLbJqZ0DV9uH1zqJo\nKeiKJxXrNds3+O8pxwzN1FY+nx7G4dV9Kli1911NBjQ1+VTXe5PS8uojc9UPpwhx/uvatnyv\nrSEhhoQQ4koySTkhhJiLz5iLz5BYUv0vI7yUns9MFITNRMiKwbViqZrBzwoq4/YkM8zzjYVo\nBVOaX0EYYmyuLzD4+/tthz6Onf2c1c/Boo3uf3em12eeFpvJMbIaacJ2wuFx2/ooHp7ndfSX\nJu7ldwrgOfbSIgeuZTsterHLoZOV+sGSKuknvptltfU345HVyo9vuKx66Tms3dxfxpCWj7WC\n0Nzc/PHjx6qXFEUZGv7j60JeXp6Fhe4nEAO0Eoy4pCbyI4Opf/A7jiI52cpGrl13o9mnK7cN\nEXQP4Tn21m2GoDV5ztWq7SMaOQilkMofXan8WcupyDzn/kbzLjYyB52QxHyprAZVLRRfZDj9\nuHj3O7U3dwoHLNFhblqiONqtKSW0nK54QvFFhBDC4TPyGkYu4RjZalHPaLcSlWUcnn7wFu26\nPrt+jJsbQ1EMQwhDU4o2b5v1fdWkp1dBNdhsXPz9Vll+pZrBDM2oqkFCiLRGRhhCCKmplvL1\n+arZ01nJ+bkpRern4NDZWqTlYlTWCLymaNpFecIEx8LdcEaU7P5xSeE9g3d3CDoFVv0+UdA5\nQNBT433ImoOUC49Kn1SoHz9++dvKC4YhiX+mpl/PoxU0l899a6qnrdvfFc2lA7fVH7NDH0cr\nJ1P1418b1gpCLy+vU6dO0TTN4bzkn0Kapk+dOuXlpcGDWgBoDMrA0mTl0xf3EeXae5osy9No\nf1FobjgmbfV6va9pL7o8T54ew23rS1t0kN46WGve2bxtJ+n9KErPkN9uGOFwGx6ibg4W7pom\n0EwYLXzJSRUUX2Q46+TrT4YVHCNbk08zNe1FP8up3PKWwOMdg4n7xfsncGw8hH7/qdo+glBU\nvbMoWgqaJn9EOqsfLyKFdsx5wpBasbTwIdXRuYujwS1CSF5t15SzfOuHF4WGeoQi+eStGkqD\nNT+TfCj1l15Ckyp7UlmSV65FR+XeszwBl1YwChn9rKBSz+D5TIrqitpX931xKC0S0DlZ2p8c\nIxuDKX9QAgNVI9/jHcNJB2rOftVCC8IL+5K1XkOoopApzv52U+vuMzeMesMLwpCQkJkzZ27Y\nsGHx4sUvvrthw4YHDx58/vnnbN0OABr0d9VHcYqMvRihRf12aJm4Np21eBJSvtZBNHq9Xr8P\nKisra++deuY8xmHcF8LKgqqtb3Od+uj5zGqKVJs5fqcArbelaemq/5jNc+xtELKHcLi1Yimn\nWiYSmhjOOlm1fbjkzCrR6Ja3pTBNMxr9qt7F6qFjpwuEED4hhlaEK60hBoQQwpGWuVlJSBUh\nVYQQknFfkFXsqv6wE/83hMJGo83DZ5FTteh16cDtQ/+Lnfdr0NMn5UknH8zZFLBh8iFzO6O5\nv47h67F5fHdzJvCa8tLnivwuQRrtJdOsDJjs6TFIg7/L5K9ngw+T8gfP7CGTyC8duD3287dS\nr2TfOp0xcMo/nhOqybm7naZdXg/W/mRPmTLl559/XrJkyb179+bPn+/p6cnj8eRyeXJy8ubN\nm3fs2NGzZ8/JkyezdTsA0ABF3XRe4inUalIZvClMPn1IuIJ6jRwjW+NFtwintXzLqUc48L+6\nTkFnDCYfpIQmyvmNTx48pYsLTMcQSmhiNPc8o+EZ1s0El8tZtk+jlbADCJl+NfyuyETYo0eV\n3tX/MDIuIZS95VNJ73U3Eo0lVdI+Y7tous0ong+2aDeiUw/9L/b9nwM9Brme251ICDGy0F+0\n590Nkw/u+u+J2T8G6DpBHeC28Rb0mKbrLFjQeYCzpl1uncnIu1/83/BJDp2s0q7mXDtyr/+E\nbv0ndDuz/Ub0/11Zl7QQ5xDWx+fzjx07FhAQsGPHjh07dlAUpa+vX11drZyQ7e3tfezYsbq7\nzgDAa8Mw5OraArefa0hnXaeiOzk5Offu3btz505NTY1QKHR3d291/yLVqQZLjDwYw79OrtPq\nuAVo6c6HP3LtYe/YxYYQ8kzhyOc9//Nw50KeQk57DtP9DhCaohiZwVGNt7sYwiNETEjdU7Hk\ncuGl+f0JIRxCjmqehq+MxS9X8JpZOZp+sGNsu17/ONjT2MrgP/snpF7O0SyPqwAAIABJREFU\n1lVWusW1bM8d+Imus9ANj7dcV56ZaWAqqtc+ZFZP3zGd35hqkLD7b1abNm2uX7++e/fu8PDw\nu3fvlpeX29vbe3h4jB8/furUqa3uuxeATjE0k3HjcTtfB+W1XELLJM9/6//oVr59e0uBqLX8\nlWQY5vLly4cPH9bX18/Ly6uurk5LS+vfv/+gQYPq7X3VelyTT+rE12zmDDRbErH0wt5kTXvd\nv5x99Nvz/UK6mdoYxqcNN3pqUL4l/nFayc2o1B6jOxRllTU8RB08Pd7b0701zYFlFEfQTYOd\nUZUYcbE86xLHuhPXumNN5nVCKJGbr6LoPl2UynPx02rXWTwhbMGcuv599gyXx+Xynn/jN7bU\n9x3TSUdJgc5weRxVNWhiZeDY1Ub1lrGljk8TYRfLv8Ti8/mzZs2aNevla1GSkpKwrwzA61Fd\nUfvL+0ffes8r8ON/HEd79fDd/V+c/vTIFI32X27R7t+/HxER4enpKZFIKioqbGxsnJycEhMT\nhULh0KE6PhZJVx5EPjPVLyct6pA5+Dc1lbVHv7vQcNzLnNuV+PwqrUT1ACT+2H1C7ms0jr6J\nUPcFIYdnMPmQpp1qohbzOvgrJw9TR+cRiqMf9DMhRHL+O6aqWDTqe/bzhBaiz9gunkNb6u5Z\nwDpbd4sPdozTdRZN5XXMaigvL9+/f39YWFhiYmLdLX0BoOkYmAoX7Rv/43vhcqmi58Tnz4Ku\nHr67f9npaT+MbD3VICEkMzPT0dFRIBBIJBJlC0VRLi4ux48f79mzp5lZy1taKZPIy4vFmvb6\n8+drfYK7mNkZicViWk5Xl9WW5JYTQi4duN22s7VTN83OZOcLuCY2rfT5anNjZK7/0W6Nn4wp\nXf3j7q3TGVKJXE/El0nlg2f26NTfWYtxVA9SWpx/2z5H2FrnyIEKX4/Ht8LsX2gVmvYP+qVL\nl8LCwsLDw6urqw0MDN59V8v/YwG0chkJeXfOaXPoc9fBbnG7k+5efEgIObf5Xv79sq5vu+am\nFGl0jJKSi6ddS1xWpFAoqqqqjIyM6rXz+XyRSFReXt4SC8IH8XmbZvyhRcer4XdU1wl7shL2\nbNM6B/eebRYfnKh1d1Y8e/bs7NmzjRlBLpdTFMXlanbkRl2GhobDhw9vTA6NxxNwO/ZzUj/+\ncVrJvbjn/5606WhVXixOu5pTWy319u9gYCrKuVtICCEU6RXUxcTa4FUDvXH4HsEUThEEgNan\nSQrC4uLi3bt3h4WFpaamEkKGDx8+d+7cESNGiET1F2UCgDoe3S6I2RKvdff81KeEkCf3Sgkh\nt89k3j6j8ZFlhBC/id1bYkGo3PGPpukX32IY5qXnpjZ/xlYG3v4dNO2lUNDpCdk15VKRLVXz\nmKH0aJ4+R1ZOHLtbW9ppXBXbuppr2oV1FEUJBPX3TVWfXC6/ceOGmZlZ165dtR6kMQnoStmT\nitQr2ar5OlVlNYQQhpCSvHJx+fOn6Fwup8tA11ZXELZrpXPIAaCVY7MgpGn6zJkzYWFhx44d\nk0ql3t7ey5YtW7NmTWhoaFBQSz20BKA5sHE26x+iwXfWO7EPG5xSKBDyfAI7qb9BupOHTcNB\nzQ+HwzE1NX3y5Im+/j/Wf0skEolEYm6u+6pGCw6drOZs0nj381u3bmUbXzd+4FD6QEIIw+FR\ndA3lMp7n6qUfGDi8JRY2JiYmAQHa7wIvlUolEomdnd1bb73FXlI6wNBMTaUGh2W7etu7etsr\nr2+fzdz3eQxFUQIhr/Bh6dzNYxzr/E2v/qs+bBBFUSJjPfVzAACA5oO1gvB///vfb7/9lp2d\nbWVlNX/+/BkzZnTr1u3Ro0dr1qxh6xYArVbho7JLB+80HKcJqUR++ZAGY1IcTj92M3hdOnfu\nfOrUqbobispksgcPHoSEhLSSXUbvnnv4ICEvMzOT+8yKb8Th6hGZmCiqiXV3kewx50LiPXGy\n0NzCbNhcXz391rL37JvkWVHV5/22NHKQ2hoZIeT/3gvXrru+iXBd4sJG5tBINE0fPar5MRFs\nCw4OxlGEANCysFYQrlixwt3d/ciRI6NHj8YJEwDs6vq2m7ld/VVw6si8+fj83mTvQPeEI+le\nQc73Yx637+PYK0ib4wgtHU216NUcODk5zZkzZ8uWLVwut7i4WCaTFRYWBgYG+vr66jq116Sy\ntLokt7yisEYh40gkir/mClKyapqWM5RE8DSvgpFwFDIFIfjXu+WhicKivcYboEurFJX5tYY2\nAj1jXmW+lCegRBb86hKZpFxu7KDH09NsNjVfqP06TBY18kH3tWvXKIrq1UvjwwwBAFo01gpC\nS0vLjIyMzz//PD09ferUqfb29myNDAA2LmY2Lhqv8roRlXph/61pP/jbdDNIOJLeeWjbETP9\nfnwv3MbVPHjpwKbIs9nq0qXL6tWr7969Gxsb26FDBz8/P1tbzTbVbNH6jPXoM9YjIiLi8ePH\nFYm80nQJIYQjZKoLZd1mWabl5ATNDXF1xbGELZWBqbDX/LYNx/3T3UOFroPM2/gYE0Jivr/N\nseT0muFBCHlw8ilXQLm+rdls6ubwi2AOh9OYKcSEEIVCQVFUIwcBAGhxWCsIHz9+fPTo0W3b\ntn322WfLli0bPny4ctYoW+MDgEaqymp2f3Jy5oZRXiPa52TnKhsdu9gs2D5204w/vIa3d/Gy\n022Gr5mxsXG7/2fvzgOaONPHgb+TBBLCfRpEDkEQLOCBIAgoKioe0K7V+tVuPVqxta2tR2sV\nFGvrInXdiraiFY9WWlGrXa0ggq7iASogEEVEbiXcgXATQpL5/THd+WVBkXtg5vn8sxqS7MPT\ndx7nmXnnfW1tnz9/PmbMmOHeDVYWSZJ/7/EU4rIy6bP7TXIJR89GTfJMhlg4m8t6+GPViAmj\n06KLhGqiHn2b4SjdacvH9zQGMBB4PF4vehjVT6QeKzEw0/rrS6AbAgAAhum3hlBdXX3p0qVL\nly4tLCw8fvz4zz//vGTJEk1NTYRQWVlZf/2/AAC6SUtf47sH6zS0Oy7zMHqCaeidD7maw28F\nEUCqKanv7aqzbIRwyTMZQkjZzGppbkcIlac0ladk9PSLxkw2g4aQNkxdNPUFvZmUDgAAgAb6\nf9sJa2vrf/zjH998801sbGxkZGRcXNwnn3yyb9++xYsXL1myxNXVtd//HwEAL0V2gxgL07Pm\nauj+9VeeFnSDw5v1pJHbLr3X00/98d3t8fOsqppLb968qcwwlhmLpy1ytbIcXXizxsbFzMbF\nrEffRo/lZ55dkCi9NJAP1XFQzWAsT1cX9oWiD1F2lVKJv/59A8nM3pjNGZb7+gDAQAO1MT2b\nzQ4ICAgICCgtLT158uTx48f/+c9//vOf/8RxiisUGF6EQmF2dnavPy4Wi1+8eCEWi42MjHr9\nJW+88cZwn/yMYcj5fSMNXegDaYKnpW7R811ANkQtQQgh5Drd3z3M/zd3P48Vn77N4XBm/q3f\nAxzSaksb9ATaLDaGEGqtlbfU/LVhQ3OdlMXGOt9UB2DY+X752R7tRDIQwpI/0h3BiGWcAaCB\ngWoISWZmZtu3bw8ODr5+/XpkZORA/98BmtHS0urL414CgcDR0bHvMfTxG/pOoVAoFIpef7y9\nvV0ul7e3t8tksl5/CZvNZrOHxEKCoI80NTWtZ+tbTRRwOAP+T8CAqq9suvFLek8/df/CE74+\nT/CGtqRO0lDZmnWz6Pt1v2hr6D69UWL+honV+J49W6ttwPddM7mnMQAwoDzefkMmlff64+lX\nc6WNsqlL+vSvp7oGHSYRAMAQg3Q2gGHY7NmzZ8+ePTj/d4A2bGxsbGxsqI6Cenl5eRkZPX7K\ni9TQ0FBcXFxbW9uX261jxoyBKd+0YeykoaE37O8YN9S09O5ZygZxc0VeDUIIIbasHM8rr0ao\nGiGUe78k935Jj75qhLUBNIRgqFmyY2ZfPl5wN0MLr3/3H3P6Kx4AwBA3vC8PA8AQmpqafbxT\namdn18cYdHR0+vgNQ8Hoqsvs0T2ebAmGJmNLvc9PLenpp0pKSuIuJsif6vH1OfUlMrYGYrNZ\nanrIZrbB1KlTudyeTRmF2yCAHooyy7l8tZF2RgihiYI7uqNKEQpFCNVVNpU+q35j2miqAwQA\nDCBoCAEYBszNzc3Ne7zPGOjMuupyTf0MhPp0+RwMETxNdXtPy+6/X6lQSptkheKnI8fr6U0x\nyjpVgxBSSjF9e3Xbt/Syn2Z76bla2loy6jHCFy9eFBYWpqWlaWlpaWtrjx07ti9PXIPhqzbx\nt5QrBQu+/9rCcQSG4RiGI4Qk5Y2/Bf5zvJMETfuB6gABZVob28rza6wnwgbjdAYNIQCA1hTt\njRGeGn87xBn1P/Nd8bbG5tP/x5u2mWMDzSFT/Pl9UvyRB//9WxXxPziOxE+l4qcVCBlEXIxD\nCAVfXjFqnAlFMQ6qhw8fRkVFjRw5sra2trm5OTEx8ezZs59//jkDJ+qXlpbm5+enpKRgGKav\nr29ra2tqyqydWp18zKwqgi5sks/55zfEK5LyxtOBe5eMC9eesZna2AC1sm8Xx/5wL+TqKqoD\nAQMIGkIAAK2x1Th2s5uOzdFak4C4VsRreFtj03E/pJSzzeDpLwZZuGGq1/8537p1q6ioSEtN\nN+espK1BgWFI345nM183vyA/ICBgrIMdQ3bkKy8vj4qKcnJy4vP5IpGIz+dbW1vr6ek9fPhQ\nIBAQ2wgzxOPHj48dO2ZqalpTU4NhWHJy8oULF9auXfvGG29QHVovtV77GsmlPf0Ud+zsxejE\ns/2plnqNPFZT9na/pW+kqY8ajymkrXFbe/ptvBlBGI8ODxowU35aacmTyhkrJyGEcBxH/90j\nQFxSf/u3zEVbp1MaHeh/0BACAGhOY+4/EMZuipyNvX0WRwhTyJp+9sflUu011+B8ZViTtbZX\nFNT29FM6GnpVRRJRhpKnz25rULD4eHN5e+6l2mbTZi2uTqO4pVHc0v1vU+OyTW2H5RzLoqIi\nExMTPp+v+qKBgYFQKHR0dBw3bhxVgQ2ympqayMhIJycnLS2t6upqDMMsLS0NDAx++umnXbt2\n6evrUx1gb7TdDcel9b34IIaQ/Qgh8Wcj7SqEkEKUqhCl9uKruJ6fQYEdvrh8tT+/v9ssaV24\nwZN8UVxSv3/5WdspoygMDAwQaAgBAMOGsrFCUZHViw9yRk9T1Bbh5xYhpcLgYZiSq6Ex/zt5\naY93LEAIsbRM2KbDe19K2qgskux5M6pXH9VCSNHWoEAIKZoxBfHnQsGhpEs9/aIR1gZfX3u/\nVzFQrLGx8aW3ATU1NRsbGwc/HqoUFxcbGhp22F5IW1vb0NCwqKhomDaE2h8mIry7OxWVZj4r\n+P04+VcDXpmFbg5CqKrJvKzZlnzdxHuBvV8P7guxNI27/2YwoH5Yfb5YWNGLD1758X7C0VSM\nhcllik0TfpA2y1hs1uMbhZsn/djTr/rw8Jt2U2AphKELGkIAwLDRdus76Z3wvnwDGyF2k0jZ\nhJqjFvXuG1gGo3W/KuxLDH3X2NhYWNj7GJqbm58/fy6XyzvcHeoRTU3NMWPG9Prj/ULHkD/n\nQ7eefur+H0+4Wmp6tmp5eXlykYaSJ7WZOEqLq1N4r9rSUWA1vmfL+Wob9D6H1OJwOC/d3VSh\nUAz3DSp75FWNMZ/Pb2pqGvx4+kXqC2n3t67lsdptnZqJBlLZjjeV/DXXFMcVVjYSNY2/tp+t\n0VfeL+7BNFRXY1wddq4dGnia6nyd3qyVxdNUr69uxjCkVOBtLe3qPI62YS8rHovN6t0HweBg\nUNEHAAx3mLYp4vB68AFciXDl//+rUoEQjhBCLDZCGPmtiNWD0xaWNvVLTTQ1NfVlS0mFQqGp\nqSmVSvvyJcbGxpQ3hLojtP62ZVpPP+X5jpORuS6LzaqtrQ392y+WbqM+Cl2upqbWWNPCYrM0\n9XoywIYzY2PjmpqaDkunKJXKuro6Y2MG3dvpojFms4drQ2Pz5yyOogczn1Vp//cR2hHaZaip\nDP23KdasTuvR98htC9RNrHsXA+hfgT8GdP/NbS3t1yJT29vkxF8bqpsfXHyCEDIYpT1xrh2G\n/fVP51h3i3HTrPo7UkAZaAgBAMMGb/oW3vQtvfggLmtuOrmgvVkiFxe0WczQLr+j9UE8x2JK\nv0c4OAwMDGbMmEFtDOrqw3VfexOrvyYBamlpaRpy9QU6ampqCKFeX/kepuzs7FxcXJ49e2Zp\n+dfWHXK5PD8/f/bs2Yza5MbY2Li2ttbc3Jw800UI4TheW1trYjJcF5tVGzUJyZp79BF5u6Ku\npFqfV8nSMmqslXKwdg1jY7y+pK7FUGukoBf7bfL4Wq9/Exh65DJ5VbFEIf/rWqqstR0hDCEc\n4ahG1EC+bcRoBk0sZwJoCAEANEd0g3hbo2Lx7+gnl6bRAUbWE5uOzx2+PSGXyxUIejazEbyU\n/RJ9U9Nh+ZBY3/F4PB8fHzU1tZs3b5aWlqqrq0ul0gULFnh5eam2RrRnY2Pj6ekpFApHj/5r\n73WFQlFYWOjt7W1tPVxvcOl9fKenH7n27VFn3maN6V/wF3x3a8lcQ26l9/7MttQT+IWP7pZ8\n8GZE2EDECQbHn9/frSyS9OKDstb23AclbA5LLlPUljex1arNxv41feDJ7eInt4u7/1XzP3E3\ns2fQ1INhBxpCAACtKRVNx+YgpVx77Y22RhnxmsacbxCuaDrhp70uiT2CKaspAtCBgYHBggUL\nXF1do6OjdXR03nzzTQbuSs/hcGbMmKGmphYfH19aWooQksvlfn5+np6ew3fKaC94e0vw9k0a\ns3epvsh1fR/DWLNf3KcqKtAvnt17UZhe1scvUbYrKgtqK3u+sDPBa6mzWR8jAAMJGkIAwLBR\nXl7+6NGjHn0Ew5UjWTYVlm8pbt2vr6/3ksuzs7NfoHiEpplYNDYk35PyS3r0hSYmJhMnTuzR\nRwAYslgslkAgGDlypK6uLgO7QYK2trafn9/kyZPPnz+PEFq8eLGRkdGwvk3a2tCG/3fjuO6a\n+DmO4xkpwtzcXFa7DHHxM1HnLC0tHR2XsG3/r6W+x7saamhzMdYwziGdrP95sVKufP37VEjK\nGw+t+WP0eMGyb+cIr+dfO5qy5cK7xY8qIj+5NP3vE3uxmhdXc7g+ZcAQ0BACAIaN9vb2Xqz7\n98z4TSTFEWpisVhsjrqOrn5DUxNCqEl3OlIi1MMv1NGBnbUAoBsMw4yNjU1NTYk/UB1OXwVP\nO9ra2Nbrj5sZOJdxm3K+foHQC4R6PPuUEJb8ke4IeIxwSOD1vBnLTy11mmmzdOcsFhvj8tVY\nbBZflzfO2+qzX96J/+kBX5cpi28xBzSEAIBhw8LCwsLCoi/foJhqM1vghFhQ+gAAtGU3xbyt\ntb1HH5HJZEVFRdra2iwWq7JJUNau0LPh4jje2Nhobm6uoaHR0xg4XAZNuKUfZ18bZ1+bzq+P\nnmj60ZG3Bj8eMNDgrAgAwCBJiazJC+R8XSh9AADa+uinHp+yZ2ZmXrqUb2dnghASCktbW1ud\n3W0QQi9etE6dOtrb27v/owTDxBjXUfM+9aA6CjCw4KwIAMAgf/7rjsDGwG4Kg1bVp7GWlpYn\nT570+uPt7e0FBQX19fUv3Ze8m3g8npOTU68/DsAQIZVKX7qXDJfLbWnp5ZaGgB70Rmi5+ttT\nHQUYWNAQAgDoTCFX/rj6/OLtM83G/s+CGe1SedTWq97LJ9i6jaIqNtBHbW1t+fn5vf44juO6\nuroYhvXlS3R0dKAhBDTA5XJlMlnn12UyWS/miwIAhhdoCAEAdMbmsEzHGIX//dyGX98he8J2\nqTxi7b8bxc0j7QypDQ/0hY6Ozty5c6mNYSjsTKBQKIj9EnpNLBa3tbW9ePGi19/AYrFGjYJr\nK8PYyJEjJRJJW1sbl8slX1QoFNXV1aamphQGBgAYBNAQAgBobknITIQhoidECMllioi1/66r\nbNr46zuaenDlexhjs9kGBgZUR0G9tra2pKSkvnxDXV1dS0tLX75EXV0dGsJhbcSIEYsXL/7z\nzz+tra1xHMdxvKmpqbi42NfX18bmJYuLAADoBBpCAMCwUZJdlRaT04sPqvE4BiO1v1v0G65U\n/vJlnEKunLzQ/j8nH/biq0baGk35G+xlD4YQNTW18ePH9+Ub+vhxNDTulII+mjp1qqamZl5e\nXlxcXHt7+9SpU/39/SdNmsRisagODQAwsKAhBAAMG09vFyX8lNLHL2mobkYI3YrK6N3HR08w\nhYYQDClqamrjxsGYRDiOl5SU9OUbqqurMQzry9RZhFAft8ahEIvFmjhx4vjx49lsdn19/ZIl\nS6DPB4AhoCEEAAwb3J7vrtvv1DXUqA4BAPASOI73feoshmF9/BJzc3MMw/ryDdRisViampoK\nhQK6QQCYAxpCAMCw4TTTRtuQ34sPKtoV8T+lNNdLW+ulI8cal+fXLFg/1WCkdi++Sk/Qm08B\nAAYahmGUT50dIl66Xmj3yeVyuVzexy9RU1Mb1o0xAIxCt4ZQqVRevHgxPj6+urrayMhozpw5\nixYtgunvANCDgZmOgZlOTz9FrCmqUODbLr73jd/JN7+cJkzIi/8pRXXdUQDAcIdhGEydJfz5\n55/t7e29/nhubm5bW1sf27m33noL9qsAYLigW0N47NixmJiYqVOnBgQEZGdnnzp1SiwWf/TR\nR1THBQCgBq7EiR0mNkcv1TLgI4QwDC3ZMRPH8fC/n9tyfrmxpR7VMQIAQH8aMWKEXC7v9ccF\nAkHfY4Br8QAMI7RqCEtKSmJjY6dPn75582aE0IIFC9TU1OLi4ubNm2dpaUl1dAAACuA4PsrB\neO6HC4hukIBh6J2QWfqm2jJp78+ZAABgaPL29qY6BADAcEKr6zd37tzBcdzf3598JSAgAMfx\n27dvUxgVAIBCLDbr7W0+ZDeIYRgxDwrD0Jy1bjBlFAAAAAAMR6s7hPn5+Ww2W3UH1dGjR6ur\nqxcUFFAYFQBg6Pjw8JtW402pjgIAAAAAYKigVUNYW1urq6urulAyhmH6+vo1NTWqb7t//35T\nUxPx56qqqkENEQBAqTGuo6gOAQAAAABgCKFVQ9jW1qam1nGLMHV19ba2NtVXwsPD8/PziT+P\nHTt2zJgxgxQfAAAAAAAAAAwltGoIuVxua2trhxdlMhmPx1N9Zfny5RKJhPhzS0tLRUXFIMUH\nAAAAAAAAAEMJrRpCAwOD58+fKxQKctYojuMSicTR0VH1bQEBAeSfU1NTY2JiBjVKAAAAAAAA\nABgaaLXKqI2NjUKhKCwsJF8pKiqSyWSqy8wAAAAAAAAAACDQqiH09vbGMOzy5cvkK5cvX8Yw\nDDbkAQAAAAAAAIDOaDVl1MLCYv78+bGxse3t7Y6OjtnZ2Xfu3PHz87OysqI6NAAAAAAAAAAY\ncmjVECKEAgMDDQ0NExISHjx4YGho+N577y1atIjqoAAAAAAAAABgKKJbQ8hisRYvXrx48WKq\nAwEAAAAAAACAoY5WzxACAAAAAAAAAOg+ut0h7IUHDx58/PHHVEcBAAAAAAAAAIOqrq4Ow3Gc\n6jCo1NbWJhaLqY4CAAAAAAAAACjA9IYQAAAAAAAAABgLniEEAAAAAAAAAIaChhAAAAAAAAAA\nGAoaQgAAAAAAAABgKGgIAQAAAAAAAIChoCEEAAAAAAAAAIaChhAAAAAAAAAAGAoaQgAAAAAw\nmlwub25upjoKAACgBjSEAAAAAGAuhUIRFha2ffv2pqYmqmMBAAAKQEMIAAAAAObCMExDQ6Og\noGDHjh3QEwIAGAgaQrrJycnBcZz4s0gk2rlzZ0NDA7UhAQrBeCBAHgiQBwLkAahisVgbN26c\nPn069IQAQX0AjMT++uuvqY4B9Jv09PSQkJCysjJ3d/fS0tLg4OCioqLW1lZXV1eqQwMUgPFA\ngDwQIA8EyAPoDMMwd3f38vLyjIyMzMxMLy8vdXV1qoMCFID6AJiJQ3UAoD/Z2tpaWlomJiZK\npdJnz55JJBJnZ+f333+f6rgoIxaLT506lZuba2Ji4u/vz7SCDuOBAHkgQB4IkIcOGF4nScR9\nQoTQrVu3duzY8e2332ppaVEdFAWam5svXLiQmpra1tZma2u7ZMkSKysrqoMaPFAfOmP4kCDR\nu1Ri5G1xQA+NjY3bt28vKipCCDk7O+/YsYPL5VIdFDXq6uo2btxYU1NDvjJv3rwPP/yQxWLQ\nTGkYDwTIAwHyQIA8kKBOEiQSyalTp4RCIYZh1dXVCCEbGxsG9oRlZWUhISFVVVUIIQ0NjdbW\nVg6H89lnn/n4+FAd2uCB+qAKhgSB9qWSJr8GIDU3N9fV1RF/1tfXZ/Kkl1OnTtXU1NjY2ISE\nhGzevNnIyCguLi48PJxRF0FgPBAgDwTIAwHyQII6iRASi8WbNm36z3/+w2KxfHx8Fi9ebGJi\nwsDnCaVS6a5du6qqqmxsbA4ePHj27Nm5c+fK5fL9+/eXlJRQHd3ggfpAgiFBon2phGcI6UZd\nXT0rK8vIyEhLSyszM7OiosLd3R3DMKrjokBERISOjs6+ffssLS2trKx8fHzS09OFQiGjcgLj\ngQB5IEAeCJAHEtRJhNCBAwdyc3Pt7e337t3r4uIyfvx4Pz+/0tJSoVDIqOcJL1y4kJycPHr0\n6LCwMCMjo6tXr549exYhtGbNGjc3N6qjGzxQH0gwJEi0L5XQENKKRCKRSqW+vr4+Pj7Tpk3L\nzMzMyMjoMFgfPHigo6PDhPkPf/zxx8KFC8ePH0/8lcfjeXp60uwA7hqMBwLkgQB5IEAeVEGd\nVCgUBw4cUCqVu3btMjQ0JF5ks9keHh5paWkFBQXM6QlPnDhRW1v7zTffGBkZxcfHHz58GMfx\nNWvWBAQEIIQSEhLMzMw4HJqvPQH1QRUMCRLtSyU0hDRRW1t74MCBQ4cO3b17d+rUqbq6ulwu\n19PTk6xlbm5uLBbr5s2b+/btS0tLmzVrFi2PYYlEcuzYsV9//TWdo6k+AAAgAElEQVQtLa2h\nocHR0XHs2LHkT+l3AL8KjAcC5IEAeSBAHghQJ1XJ5fIzZ85wOJy1a9eqvs5isXg83r179yQS\nCUN6wnPnzmlpaa1YsSIhISEiIkL11L+xsTEkJCQ3N5fGT45BfeiM4UOCUaUSGkI6KC8v/+qr\nr3Jzc3V0dBYuXGhjY8Pn8xFCqrUsIyMjKyvrzJkzOI7Pnz9/woQJVEfd/yQSyaZNm7Kysurr\n68vKylpbW+vr62fPnq36yK/qATx69Ghzc3MKAx4gMB4IkAcC5IEAeSBAneyAzWYnJiY2NDR4\neHjo6emp/qi+vv7mzZuurq5ZWVkCgWDMmDFUBTk4UlJSysvL1dXVjx49qnrqjxA6evRoXl6e\nm5vbpEmTqA1ygEB9eCkmDwmmlUpoCIc9mUwWFBRUWVlpb28fGhrq4uJCVDECl8v19vbOy8vL\nzs4uLi5msVirVq1asmQJhQEPnCNHjmRnZ1tbW3/66acTJ07Mzc0tKyurqalxc3NTvWxDHMAC\ngWDGjBkURjtAYDwQIA8EyAMB8kCCOtmZXC7PzMwsKSnx8fFRPdu7dOlSXl7e119/7ejoSOPb\nICSFQpGcnJyRkYEQUj31j4+PP3PmDI/H27x5s+qBQxtQH16FsUMCMa9UwrYTw15cXNzhw4cF\nAkF4eDh5WAqFQqFQaGRkNHfuXDabjeN4UlJSSUmJh4cHLXePEYvFhoaGq1atUlNTO3jwIJGH\n2tra4ODg0tJSX1/f9evXD+tb+d0H44EAeSBAHgiQBwR18tUUCsWWLVvy8vJcXFw+//xz4j5h\nXFzckSNHdHV1T548yWazqY5xQCiVShzHyd9OqVRu3bo1JyfHzMzsH//4h4GBgVQq/f3338+f\nP4/j+Jdffunt7U1twAME6gOhw3hATB0SzCyVNJ/9zATPnj1DCC1YsIAYsiKRKCIiIisri81m\nKxSKpKSk3bt3Yxjm5eVFdaQDpbS0NCgoyMXFhc1m+/n5kdXcwMAgNDQ0KCjo+vXrCCFaHsCd\nwXggQB4IkAcC5AHqpCriUjj5m7LZ7JCQkJ07dz58+HDNmjU2NjYSiaSiogIhtGLFClp2g2Kx\n+Pjx46mpqe3t7aNGjfLz81uwYAGLxQoODt65c2dhYeH7779vYmJSW1srk8kwDFu9ejUtT/0J\nUB9eNR4YOCQYWyphyuiwJxKJhEIhm822traOjY3dv3+/gYFBcHDwqlWr7t69W1hYOHnyZHLl\nNFpSKBS3b98WCoUtLS2urq6qj/xqaGh4enqmpqYKhUKxWNzhRj8twXggQB4IkAcC5AHqJKG6\nuvr7778PDw+/ePFidXW1g4MDsVQMj8fz8fGRyWQFBQUVFRVNTU18Pn/NmjVz586lOuT+J5FI\nvvjii2fPnikUCoRQQ0NDenr6o0ePpkyZoqOj4+Pjg+O4SCSqqalRKpXOzs6bNm2i5ak/ieH1\noYvxwOVyiUODOUOCsaUSpowOe1KpdOfOnU+fPkUIaWtrv/vuu/PmzcMwDMfxjz/+uLS0dO/e\nvfb29lSHObAkEklQUFBpaamNjc2+ffs6XNAlf7p9+3ba75wD44EAeSBAHgiQBwR18r+rRNTU\n1JCvCASCb775RiAQkK9IpdKioiIcx62trXk8HhVhDrjvv/8+MTHR3t5+3bp1VlZWeXl5x44d\ny8nJsbOzCw0NJTpkHMcbGxs1NDTU1NSojnfAMbw+dGc8ICYNCWaWSmgIh5nm5uYLFy6kpqa2\ntbXZ2touWbLEyspKoVA8fPhQoVCMHz+evLt9+fLlyMhIfX39EydO0HLGSwfkIfrS6d0SiSQ5\nOXnBggVUhTdAYDwQIA8EyAOpcyrMzc0ZmIcOmFknST/++GNCQoKtre26deu0tLTOnTt3/fp1\nIyOj0NBQ1Z6QxoiHo1asWMHj8Q4ePKihoUG83t7evmvXrkePHi1evHjFihXUBjkIoD4QYDy8\nCgNLJTSEw0lZWVlISEhVVRVCSENDo7W1lcPhfPbZZx1WP8Nx/MKFC1FRUXR95PelZ73odQcw\n/cB4IEAeCJAHUndSwYQ8vLRUMq1OEogT38DAQKVSefDgQS0tLeL16Ojo6OhohvSE5MNR6enp\nc+bMWb58uepPxWJxYGCgurp6VFQUvXdchPpAgPFAgFNKAjxDOGxIpdKtW7dWVlba2Njs2rUr\nMDCwtrY2Ly/v/v37Xl5eurq6xNsyMjJ+/PHHa9euYRi2atUqPz8/asPud2VlZV999VVqamp9\nfb1CoSgoKLh27dqIESOsrKzoPb27AxgPBMgDAfJA6k4qmJCHV5VKBwcH5tRJQmlp6VdffVVS\nUlJZWenr6+vi4kL+yMnJCSGUkpJy7969KVOmkI0iLZEPR7W2tjo6OhK/O4nP59+/f7+6utrN\nzY3Gz8tBfSDBeEBwSqmC9fq3gKHh0qVL5eXlo0eP3rNnj5WV1dWrVxMSEhBCH3zwAbkVZl1d\n3eHDhx8/fiwQCHbt2rVo0SJKQ+5/Uql0165dVVVVNjY2Bw8ePHv27Ny5c+Vy+f79+0tKShBC\n+vr6oaGhZmZm169f/+GHH2h8AxzGAwHyQIA8kF6bCibkoetSyZw6SeDz+Xw+//r161VVVeSk\nONKyZcuWLVsmFouDgoKIlUXpivzvjhC6ffu2XC5X/SmO4w0NDQghpVJJTXyDAuoDCcYDnFL+\nDxwMExs3bvT39ycedr969WpAQIC/v/+lS5eIn8bHx7e2tuI4Xl1dnZSURGwmQz9nzpzx9/f/\n7LPPiF82Li6uQx4ItbW1H330kb+//4MHDyiKdMDBeCBAHgiQB1J3UkH7PHSnVDKhTpLIX/bz\nzz+Xy+Wd33D69Gl/f/+LFy8OfmyDjEzFv/71L4VCQb4eExPj7++/dOlSqVRKYXgDDepDB0we\nD3BKqQqmjA4b586d09LSWrFiRUJCQkREBI7ja9asCQgIQAg1NjaGhITk5ub6+Pjw+Xxzc3O6\n3tc+ceJEbW3tN998Y2RkFB8ff/jwYdU8JCQkmJmZcTgc4kb/iBEjZsyYQXXIAwXGAwHyQIA8\nkLqTivnz59M7D90pldra2rSvkyRy9teLFy9qamo6z/5ycnJycnKaNm0aVREOHKVSqVQqWay/\nZoSRqXj8+HFGRgafz6+vr//zzz+jo6MRQmvWrKHxcpoI6gOMBxVwSqkKNqYf0kQikUwms7a2\nRggJBIK8vLxLly6dOHFCdcgihH7++WeZTEZODKOx+vp6ExMTKyurl5byo0ePJicnE9c49PX1\nabYAFIEcEgwfD5AHAuSBAKWyg26WSrrWSRzHHz9+XFJSMmLEiIkTJxLrQxKzv7rYV9rR0ZGa\ncAfMq3YbJ1Px7NmzvXv3Em/W0dFZuXLl7NmzqY15IEB9IMB46ABOKVXBHcKhq66ubuvWrdeu\nXXNzc9PV1VUoFMnJyRkZGQgh1RIWHx9/5swZHo+3efNmcq1kukpJSSkvL1dXVz969GiHUn70\n6NG8vDw3N7dJkyZRG+TAUR0SmpqajB0PkAcC5IEApbIzJpfKqqqqnTt3nj9//uHDh7du3bpz\n546dnR2xKgajVonoerdxMhWNjY1TpkwJDg7++9//bmtrS3XU/Q/qAwHGQ2dMrpOdwaIyQ1dU\nVJRYLLaysjIxMUEI+fr6EjfuzczMvLy8EEJSqTQqKioiIgIhtH79eiMjI2oD7kc5OTn4fx/e\nFYlEO3fuJB5unj59ulQqPX78eIdDNz4+/tq1azwe780336Qs6IGnOiQYNR46gDwQIA8ExpbK\nV9VJxOBSWV9fv3Xr1ry8PH19/cWLF/v7+1dWVgYHB6enpxNvYM4qESdPnqypqbG3tz9w4MCl\nS5f27dtnb2+fnZ29a9cumUyGVFLx4MGDP/74g5b77CEG14cOmDwe4JSyO+AO4VAkFos1NDQi\nIiJ0dXX37NnD4/EQQhiGubm5CYXCFy9e/Pnnnzdu3Pjtt98eP36MYdjq1avnzp1LddT9Jj09\nPSQkpKyszN3dvbS0NDg4uKioqLW11dXVdfTo0ZmZmWKx2MzMbPXq1RoaGlKpNDo6+pdffkEI\nbdy40cHBgerwB0TnIcGc8aAK8kCAPBCYXCq7qJMIIcaWyrCwsIKCAgcHhz179ri5uVVVVaWm\npsrl8uTk5DFjxpiamqL/vU84ZswYYpVFOiGOi8OHD+vp6e3du9fY2BjDMENDQx8fn5ycnOzs\nbKVSOX78eET3W6ZMrg+qGD4e4JSym6AhHHJUd0zy8/MjjlICj8fz8fHBcVwkEtXU1CiVSmdn\n502bNtFsy1QtLa309PSMjIzi4uJz585JJBJnZ+cNGzZwOBwGlnL06iHBkPFAgjwQIA8EhpfK\nLuokYsBZr1wuV10Yg5CTk3Pq1CkjI6M9e/bo6OhcvXr1yJEjOI7PnDkzPz+/c09Iy1UiOmy6\nqDrhjc1mOzs7x8TEFBYWvvnmm8QtIFr2AIjx9YEE4wFOKbsJFpUZcsgdkxBCnW/Z83i8FStW\nvPfee42NjRoaGmpqalTEOLC0tbW//fbb7du3379/HyHk7Oy8Y8cOLpdL/FRXVzcsLOzcuXPX\nrl2rqKjAMMzZ2fndd9+l8YWcLoYEE8YDCfJAgDwQGF4qu66TiNalUi6Xh4WFIYS2bdum+p/+\n8ePHCKHAwEBtbe179+6prhnY1taWlJRErJxBnBPTdZUI1eOiMyMjI0tLy8LCwuLiYjs7O+JF\nck2R5OTkxYsXjxw5chDjHSgMrw8kGA9wStlN8AzhkKO6VeiNGzeIx387wDBMR0eHxiWsubm5\nrq6O+LO+vr66urrqT4lSfurUqV9//fX8+fO7d++m96H72iFB+/FAgDwQIA8EKJVd10lE31Ip\nl8sbGxtTUlL27Nmj+t/97bffDggIcHNza2hoOHjwII7jy5YtI54LMjMz09fXVygUoaGhsPs8\n6rTbOPGp3bt3D/ezfxLUBwKMBwSnlN0DU0aHIvKWvUgkqq6unjJlynC/Zd9T6urqWVlZRkZG\nWlpamZmZFRUV7u7uHZKAYRiXy6XTc89dgCFBgDwQIA8EhuehO3US0bFUcjgcb2/vrKwsoVBY\nVFTk6elJzB3FMGzSpEksFis2NjY1NXXixInr168nPvLrr7/yeLx169aNHDnS3d2d0vAHHHlc\nlJWVVVZWqh4XV65cuXPnDp/PX716NTG7WPVTBgYGVMQ7UBheH0gwHuCUsjugIRyiyAP40aNH\n9JjG3X0SiUQqlfr6+vr4+EybNi0zMzMjI6PDAfzgwQMdHR3V+VG0x+QhoQryQIA8EBibB4bX\nyVf1hIQbN24UFBS88847xNZzsbGx8fHx9vb2S5cupd9mgy/F5N3GVTG2PnTA5PHA8FLZfdAQ\nDglyufzGjRuXL19OSUlpaGgYNWoUh8Oh36O9r1VbW3vgwIFDhw7dvXt36tSpurq6XC7X09OT\nPIDd3NxYLNbNmzf37duXlpY2a9asDte06OGl4wHR8WnvrkEeCJAHAuSBAHWS0EVP2NDQ8ODB\nA4lEYmxsHBMTEx0djWHYunXriI0H6Ke5ufnMmTPHjh27ePFiTk6OmZmZnp4eeVwUFRUlJSXd\nuHEjNzdXR0dn7dq1dF0tA06lCDAeCFAqewSj8SY8w0V5efnu3btLSkrIV0xMTL788suxY8ci\nhCQSSVBQUGlpqa+v7/r162lcyMrLy4OCgmpqanR1dQMCAmbMmEFuB9TY2Lhjx47CwkI7O7uR\nI0cmJiYihJYtW7Zs2TIqIx4YXY8HxJghAXkgQB4IkAcC1MkOpFLpzp07nz596ubmRq4xo1Ao\ndu7c+ejRI/Jtq1atWrRoEXVhDqCysrKQkJCqqiqEkIaGRmtrK4fD+eyzz3x8fJDKcTFlypSV\nK1cKBAK6nvLCqRQBxgMBSmVPwR1CihG76JaXl5uami5evNjNza2tra2oqOjWrVtvvPGGiYkJ\n7XdMIshksqCgoMrKSnt7+9DQUBcXFz6fT/6Uy+V6e3vn5eVlZ2cXFxezWKxVq1YtWbKEwoAH\nyGvHA2LAJloI8vBfkAcC5IEAdbKzl94nZLFYXl5eHA6nvb3d2to6MDBw5syZVEc6IKRS6dat\nWysrK21sbHbt2hUYGFhbW5uXl3f//n0vLy9dXV3yuHj69GlbW9tLnzKlATiVIsB4IECp7A0c\nDJb29vaIiIjKykrVFyMiIvz9/Tdv3tza2kq++Pvvv/v7+7/77rsNDQ3EK7W1tTExMYMa7uC6\ncuWKv79/YGBgc3Mz+WJmZuYvv/wSGxsrl8txHFcqlXfu3Dl9+nRRURFlgfafvowHnEZDAvJA\ngDwQIA9dYGCd7KbW1tYtW7b4+/t/++23RB4Y4syZM/7+/p999hlxaMTFxQUEBPj7+1+6dEn1\nbbW1tR999JG/v/+BAweUSiVFwfYPOJXqAgPHw0tBqewFuEM4SJRK5d69e2/evPnkyZO5c+eS\nl2TCw8NlMllwcLDqsw3jxo0rLS3Nzc1lsVjEbqoaGhrkFjG0FBsbW1RUtHTpUicnJ4SQSCQK\nCws7e/bss2fPUlNTs7OzZ86ciWGYhYWFk5OTnp4e1fH2VR/HA6LLkIA8ECAPBMhD15hWJ19F\nqVR22JW+6zVmaOzEiRO1tbXffPONkZFRfHy86taLCKGEhAQzMzM6PUcHp1JdY9p4eBUolb3A\niIo5FFy6dOnevXtaWlqqk9dxHG9qakIIWVhYdHj//PnzEULp6emDHOdgEolE+fn5xJ9HjRqF\nEBIKhSUlJadPn96wYQOO4+Hh4adPnxYIBI8fP87Ly6M02H4G44EAeSBAHgiQh5ciSyXT6qRC\nocD/d5kDsVj83XffvfPOO4sWLfrkk08uX75M7p/G4/F27drl4ODQeX9CGquvrzcxMbGyskpI\nSIiIiFA9+29sbDx69GhYWBjxTnI/uuTk5PLyckqj7j0oEV1j2nhQxeRTyn4BDeEg+c9//oMQ\n2rBhg7W1tUgkun//PkIIwzBTU1OEUOehyePxEEItLS2DHukgkUqlwcHB//73v4m/Lly40MHB\nIS0t7ZNPPomNjX3//fdDQ0Otra15PB6xSECHXVOHOxgPBMgDAfJAgDx0ploqGVUn5XL5nj17\nfvjhB7InlEgkX375ZVJSkkwmw3G8pKQkMjIyKCiosbGReINqT5icnExd7P0sJyeHTIJIJNq5\ncyexmThCSCAQNDQ0XLp06dChQ6pn/wihn3/+WSaTmZubk99Dg93GoUQgGA8vw/BTyn4BDeEg\nIZ5nVVNTE4lEwcHB3333HbEA2pw5cxBCx48fl8lkqu+/desWQmj06NFUBDsYeDyekZHRvXv3\n6uvrib+GhoZu375927ZtkZGR8+fPJy7+xcTElJaW6uvr29raUh1yf4LxQIA8ECAPBMhDZ6ql\nklF1srm5ubS09Pr162RPePLkyZqaGnt7+wMHDly6dGnfvn329vbZ2dm7du0iBwbRE3722Wfe\n3t6Uht9v0tPTt23btn//fhzHieMiIyPjt99+I346ffp0qVR6/PjxDmf/8fHx165d4/F4b775\npuq36evrjxkzZrB/h/4DJQLGw0sx/JSyX8AzhINEX1//9u3baWlpiYmJEonEyclp0aJFHA7H\n1tY2PT09Pz//yZMnzs7OmpqaOI7HxsaePn0aw7D169eT6+TSD5fLTUpK0tbWHjduHEKIxWKZ\nmZmZm5urqakhhHAcv3Dhws8//4wQWr9+vZWVFaXB9jMYDwTIAwHyQIA8vJRqqWROneTxeB0e\nczp8+LCent7evXuNjY0xDDM0NPTx8cnJycnOzlYqleRzpBwOh9iPnh60tLTS09MzMjKKi4vP\nnTsnkUicnZ03bNhA7BYwevTozMxMsVhsZma2evVqDQ0NqVQaHR39yy+/IIQ2btzo4OBA9W/Q\nn6BEwHh4FSafUvYL2Idw8Jw6der8+fMIIXt7+2+//ZbL5RKv19fX79y5s7CwkMViWVhY1NfX\nSyQShNDq1av/9re/URnxAJPL5R988IGamlpkZGSHB5ozMjLOnz//+PFjDMNWrlxJy/2jYDwQ\nIA8EyAMB8tDZq0olE+qk6vZx6enpc+bMWb58ueobxGJxYGCgurp6VFSUuro6VXEOqMbGxu3b\ntxcVFSGEnJ2dd+zYQR4X6H8PDRMTk9raWplMhmHYqlWraHloQImA8fBSDD+l7Du4QzhIysrK\nIiMjpVIpQqitrW3y5Mn6+vrEj3g8no+Pj0wmKyoqqqmpkUqlBgYGn3766dy5cykNecCxWCyp\nVPrgwQNib1Dy9bq6uj179hQWFgoEgi1btsyYMYPCIAcIjAcC5IEAeSBAHl7qpaWSCXUS/e/2\nkq2trY6OjsSygSQ+n3///v3q6mo3NzdDQ0Oq4hxQEokkJiaGOC7s7e29vLxUz3eJQ4OYQFhT\nU6NUKp2dnTdt2kSbSbOqoEQgGA+vwORTyn4BdwgHSUtLS0hICI/HmzBhwqlTp7S1tb/99tsO\n01qkUmlJSYmampqlpSXNlgBGCIlEopKSkilTpqiuBl5XV/f+++9PnDhxx44dqm8Wi8W5ubke\nHh70ywMBxgMB8kCAPBAgD6gnpZL2dZJE3iccOXLkjz/+SMyOI+A4/sEHH4jF4r1799rb21MY\n5MCRyWShoaHt7e3Nzc2FhYU+Pj4bN27s/B8dx/HGxkYNDQ1ijhwtQYlAMB4QQnBKOQDgDuEg\nUVNT8/Ly8vHxcXZ2Jq5oJiUlTZw4kby4hRDicDiGhoZ6enr0G7J1dXVffvnltWvXbty4IZfL\nzc3Nibk9PB6vrKwsOTl51qxZmpqa5Pv5fL65uTn98kBi+HggQR4IkAcC5KFHpZLGdbKsrIzN\nZpMnsuR9wrKyssrKyilTppC/9ZUrV+7cucPn81evXq3aKNKGRCKRSqW+vr4+Pj7Tpk3LzMzM\nyMioqKhwd3cnk/DgwQMdHR0ej8flcolFFOkKSgSMBwSnlAMDGsIBR9yDxTBMTU2N+OfK3t7+\nVYWMrng8nqurK4ZhxK6gMTEx1dXVAoFAV1fX2Ng4Pj6ey+WSSwIwBJPHgyrIAwHyQGB4HqBU\nIoSqqqq++uqrlJQULy+vzj3h48ePMzIy+Hx+fX39n3/+GR0djRBas2YN/W4P1tbWHjhw4NCh\nQ3fv3p06daquri6Xy/X09CR7ADc3NxaLdfPmzX379qWlpc2aNYuWLXEHjC0RMB5IUCcHAjSE\nA6i6uvr7778PDw+/ePFidXW1g4MD+cg7owqZRCJpbm4WCAQuLi4LFy40MTGprKxMS0u7cuVK\ndna2hYVFZWXlo0ePAgICVG/9MwqjxkMXIA8EyAOBaXmAUkng8Xi5ubmZmZmPHj16aU9YVFSU\nlJR048aN3NxcHR2dtWvX0u85sfLy8q+++or4BRcuXGhjY0PsuKDaA2RkZGRlZZ05cwbH8fnz\n50+YMIHqqAcbc0oEjAcS1MkBAg3hQJFIJF988UV+fj6O4+3t7fn5+UlJSa6urlpaWsQbmFDI\nVC9oTZkyRUtLi8PhjBkzxs/Pb+LEie3t7enp6cTi0a2trZaWlhYWFlSHTBkmjAeEkEgkqqqq\nMjAweNUbIA8EhuThtRiSByiVqlgsloeHR0lJSRc9YWNj45QpU4KDg//+97/Tb0sxmUwWFBRU\nWVlpb28fGhrq4uJCnP0TuFyut7d3Xl5ednZ2cXExi8VatWrVkiVLKAyYQkwoETAeCFAnBxQ0\nhAPl+PHjWVlZtra227dvf/vtt1tbWx89enTv3j1iEBPvIQuZQCCg3+Ywr7qgRTAyMvLw8PDz\n89PW1i4rK2tubq6vr581axaFAVOO3uMBISSVSjdu3FhbW+vp6dnF2yAPBNrnoZtonwcolZ11\npyd8+vTpxIkTzc3NqQ11ICQkJNy4cUMgEISFheno6BAvCoXChISE0tJSa2trLpc7Y8YMCwsL\nCwuLwMBADw8PagOmFu1LBIwHBHVy4MEqo/1PLBYbGhoGBgYqlcqDBw+S7V90dHR0dLSRkVFo\naKhAICDf/+zZs7Fjx1IU7ECRyWQbNmwQiUT29vbbtm3r+qIdjuMRERHx8fHh4eHDekNhuVze\n1tam+ihzL9ByPJA2b95cVFR08uRJXV3drt8JeSDQOw/dR9c8MLNUdtbc3Ny5cioUin/+85/J\nycl2dnbffPON6vmfRCJJTk5esGDB4IY5SMLDw2/cuPHBBx+8+eabCCGRSBQREZGVlcVmsxUK\nhZOT0+7du2GFjA7oWiIQjAeok4MC7hD2iVwuVyqVqtOUS0tLv/rqq5KSksrKSl9fXxcXF/JH\nxO5JKSkpHe4TGhkZDXLYg+C1F7RUk4ZhmL6+fkJCAovFmjx5MkUh95VCoQgLC4uNjfXy8urL\n/si0HA8kLpeblJSkra09bty4rt8JeSDQOw/dR9c8MLBUdiYSiTZv3szhcDqc0BP3CdPT0/Py\n8jrfJ7Szs6Mi2MEgEomEQiGbzba2to6Njd2/f7+BgUFwcPCqVavu3r1bWFg4efJkum662Gt0\nLREIxgPUyUFBzwWIBodcLg8LC0MIbdu2jVzYl8/n8/n869evI4Q0NDQ6fGTZsmUIoejo6KCg\noA73CWnm2bNnCKEFCxYQ13Q7XNBKSkrqcEFLW1sbIfT06VOqAu47DMM0NDQKCgp27Njx7bff\nkg0/UOXl5XXy5MmrV6++/fbb9L6i2TXIAyAwsFR2IBKJcnNzFQpFZGQkQsjf31/1p2w2e8mS\nJaGhobm5uSEhIR3uE9LVwoULU1NT09LS0tLStLW133///Xnz5mEYhuM4cbKhVCqpjhEMHhgP\nUCcHAazA03tyubyxsTE7O7uiooJ8UV9fPzQ01MzMDCGUmJioUCg6fGrZsmXLli0Ti8UPHjwY\n1HAH16hRoxBCQqGwpKTk9OnTGzZswHE8PDz89OnTAoHg8ePHeXl55JuVSuXPP/+MEBrWHTKL\nxdq4ceP06dOJnrCpqYnqiIYiDofj5+dXVVX18OFDqmOhEsX8DqcAACAASURBVOQBEBhYKlXV\n1dWFhIQcP378ww8/1NHRiYyMvHz5cof3EFNJ3dzccnNz7969S0WYg43H44WGhm7fvn3btm2R\nkZHz588nTnZjYmJKS0v19fXpt44O6AKMB4bXycEBdwh7j8fj7dq1q6qqyszMrLKy0sjIiLhU\nQ/SEQUFBhYWFhw4dWr9+fYc7AMuWLXNycnJ0dKQo8MHQowtaBQUFDx484PP5K1asoC7kfkD0\nhAihW7duwX1ChJBIJCopKZkyZYrqdI558+b9/vvvcXFxzJnLAXkgkfuyUh3IUMHMUkmKiooS\ni8VOTk5ubm4WFhbBwcGd7xPeunULIfTpp58+efKk63WY6ITNZru5uZF/xXH8woULUVFRCKE1\na9bQcrdx0AWGjweG18nBAYvK9IPy8vKtW7fa2tqqzh2VSCRBQUGlpaW+vr6de0ImUCgUDx8+\nVCgU48ePJyf5XL58OTIyUl9f/8SJE6olLCUlRU9Pjx7PhCiVyv3799+6dcvGxqaLnrC0tJS4\nk0xXdXV1n3/+uUQiMTExmT9//pw5c8hU7N+/PzExMTIy0sTEhNogBwEz86BQKFgslmrdq66u\nPnLkSHp6OpfLnT59+nvvvffSQ4P2x0VnzCyVxOprq1atUldXP3jwIPGExfPnz4ODgxsaGpYu\nXbp8+XIMw4g8GBkZnThxguqQKZORkXH+/PnHjx9jGLZy5cpFixZRHdGAkMvliYmJT548wTDM\nwcFh2rRpXC63w3sYWB86Y8h46ICZdXIwwaIy/UBNTS0tLU0oFBYVFXl6ehI3AcilsYVCoVgs\ndnNzY1pPyGKxzMzMzM3NiWUAiAtaxH389evXW1lZqb7ZzMyMBo9ESySSo0ePRkZGisXilpYW\niUSSmZn50jVmEhMTQ0JCNDU16boqmkgkampqmjNnDoZhz549S01NjYmJqa6uFggEurq6xsbG\n8fHxXC53/PjxVEc6sJiZB+L5aqFQSNa91+7LSqD9cfFSDCyVqquv+fn5keNfT0/PxcXl3r17\nDx8+vHLlSkxMDDFHdO3ataNHj6Y0ZMrU1dXt2bOnsLBQIBBs2bJlxowZVEc0IMrLy4OCgq5d\nu1ZUVFRYWJiSknLr1q2xY8eqLhXDzPrQAUPGQ2cMrJODDBrCfsDhcLy9vbOysqAnfJWMjIwf\nf/zx2rVrGIatWrXKz8+P6oj6n1gs/uKLL548eaKlpeXj4zNu3DixWCwSiV7aEz58+DAzM3Ps\n2LHE2rM0U1dXt3Xr1mvXrvn6+s6cOXPhwoUmJiaVlZVpaWlXrlzJzs62sLCorKx89OhRQECA\n6ixKmmFsHhobG//973+r1r3u7MuK6H5cdAcTSiVCSKFQ3L59WygUtra2Tpo0SXXvOD09PU9P\nz6KiopKSkpaWFnV19Q8++GDu3LkURkstHo/n4eHh4OCwbt06U1NTqsMZEPX19Vu3bi0vLzc1\nNV28eLGbm1tbW1tRUdGtW7feeOMNcgIF1AfEjPHwWgypk4MMpoz2G6lUunPnzqdPn7q5ub10\n7uj27dtVp4AzR11d3ZYtWyoqKgQCwccffzxhwgSqIxoQe/bsuXfvnr29/a5du4jpTzKZbP/+\n/UlJSS+dO5qdnf3aLQeGqR9++OHatWtOTk4hISGqc35ycnKuXLmSlJTU3t7OYrGUSuWWLVu8\nvLwoDHVAMTkPHebMd39fVhofF6/FkFJJIEeIhYXFgQMHOj8E9eLFi5qamjFjxhALBgIaO3z4\ncFxcnJ2d3e7du3k8HvHi+fPnT506paOjc/jwYXIMMLk+AAKj6uRggjuEvYHj+OPHj9PS0hoa\nGkaMGEFc2u/6PuGIESOYc2e/AyZc0FIoFAcOHFAqlbt27SInKrDZbA8Pj7S0tIKCgs73CY2N\njSkKdgCJxWINDY2IiAhdXd09e/aQ/7QTjIyMPDw8/Pz8tLW1y8rKmpub6+vrZ82aRVW0Awfy\n0GF+RPf3ZaXlcdFNTCiVJHKEiESi6urqKVOmdJhBo6ura2pq2vkpMkA/4eHhMpksODhY9Wnq\ncePGlZaW5ubmslgsclIxk+sDIDCqTg4maAh7rKqqaufOnefPn3/48OGtW7fu3LljZ2dH9ABd\n9IQMf7aVz+ebm5vTeMasXC4/c+YMh8NZu3at6ussFovH4927d6+L5wmHKblc3traqvrrvOq5\noA54PN64ceP8/f0lEgnRDOjr6w9W1P0P8vAqqj1hc3Ozm5ubvb296hte1RMyGe1LpSpyhDx6\n9IjeT1Xk5OQYGhoSv51IJPrXv/7l4uICvS4Bx/FTp04hhAIDAzvcKNbT07t+/bpUKoU5gUAV\no+rkoKHPUyuDg5jpnpeXp6+vv3jxYn9//8rKyuDg4PT0dOINxF4UDg4OKSkpe/bs6bwPIaAl\ndXV1U1NTuVxeXFzc4UfEWb6rq2tBQUFSUhIFwQ0AhUIRFha2fft21e0W+Xw+n8+/fv16TU3N\na1fBxjBszpw5CKGEhISBjXUgQR66BvuyAlU4jnd4SoUcIdevX//hhx9o+QxLenr6tm3b9u/f\nj+O4SCQKDg7OyMj47bffqI5rqMAwjLjPo7qVHIGYW9HS0kJBWAAwDNwh7JmwsLCCggIHB4c9\ne/a4ublVVVWlpqbK5fLk5OQxY8YQRU31PqGFhYWlpSXVUYPBIJfLMzMzS0pKfHx8VBcIuXTp\nUl5e3tdff+3o6Ojj40NdgP0sLS0tIyND9bYneb2/sbGxtrZ27ty5XS+U0t7efvnyZblcPm/e\nvMGKuv9BHrpGZoN4JKzzXSAnJycnJ6dp06ZRFSHodwqFAsOwDpuOfP/99+Hh4RcvXqyurnZw\ncCBvqtN+9TUtLa309PSMjIzi4uJz585JJBJnZ+cNGzZwOLAR9F9kMllmZubz589nzJihehHt\n4sWLOTk5Tk5O3t7eFIY3QMRi8ZEjR3755ZeUlBQtLS3YTgNQCxrCHsjJyTl16pSRkdGePXt0\ndHSuXr165MgRHMdnzpyZn5/fuSc0NTVl7HODDGRnZ5eenp6Tk5Ofnz9hwgTi0mZcXFx0dLSe\nnt7y5cstLCyojrHfYBjm7u5eXl7+ql7oVc8FkZRK5aFDh0pKShwcHIbvP/aQh+547Rk//bZh\nZLJebDqiOkLGjBlDszNjLpfr6emZkZGRlZUllUqdnZ137NjxqvmipaWlOjo6gxwh5WxtbdPT\n0/Pz8588eeLs7KypqYnjeGxs7OnTpzEMW79+vermE/RQV1e3efPmp0+fNjY2VlRU3L59u66u\nzsXFpfO/FMwcEmDwQUPYAzdv3nz06NHnn39uY2Nz79698PBwHMfXrFmzcuXKFy9eFBcXd+gJ\nra2tqQ65n8EFrS6wWCx3d3ehUJidnR0bG/vw4cPff/89MTERIbR27doxY8ZQHWA/e20v1PVz\nQfn5+T///LOGhsaWLVuG9b92kIfuoP1doA6YXCp7t+kIvVdfk0gkMTExUqkUIWRvb+/l5fXS\n8c/YffbIfz1zc3NjYmKSk5PPnj1LPGGxevVqWl4pO3r06JMnT2xsbNavXz958uS8vLxHjx5V\nVFS4u7urjg16Dwkm18khCBrC1xOJRGKxWF9f38HBoaWlZeHChU1NTTt27JDJZMuWLVu8eDFC\nqLi4uKysTCqVJiUlTZs2jZarI8AFrdfi8Xg+Pj4ymaygoKCioqKpqYnP569Zs4aum2i9thfq\n4uzf0NDQ2tp63rx5NNhvGvLQHczpCbtZKulaJ3k8Xof/0JGRkRoaGnv37hUIBFpaWlOmTEEv\nW0yITquvKRSKtLS0kSNHEv/R1dXVs7KyjIyMtLS0MjMzO5/3E5i8zx75r2dRUVFNTY1UKjUw\nMPj000/p+q9nRESEjo7Ovn37LC0traysfHx80tPThUJhh7FB4yEBp5RDDTSEr0FuLe3m5qan\npzdp0iQWixUbG5uamjpx4sT169cTb/v11195PN66detGjhzp7u5ObcwDhMkXtLq/RhyHw5k0\naVJAQMDkyZN9fX1Xr16tuucynUgkkqNHj0ZGRorF4paWlg7LqHbn7N/MzIzcomP4gjx0H71n\nBpK6UyppWSdJvd50hB4SExNDQ0Pj4uLIQ57NZk+dOtXHx2fatGmZmZkZGRkdxsODBw90dHQm\nTpw4fvz4mTNnUhs/Vch/Pd3d3RcuXLhy5UoaL8Hwxx9/LFy4kFyDmriM0rknHDduHF2HBJNP\nKYcmaAhfIzIyMisra+zYsfPnzycfAb9x40ZBQcE777xDTAqNjY2Nj4+3t7dfunSpo6MjpfEO\nIMZe0EpPTw8JCSkrK3N3dy8tLQ0ODi4qKmptbXV1dX3VRzgcjrGxsbGxMV2XDRCLxV988cWT\nJ0+0tLR8fHzGjRsnFotFItGreiG6nv1DHnqK3jMDCd0plfSrkx0wc9MRhUJx5MiRqKio5uZm\nDw+Pt956S3VbWjabTTxPSPaEbm5uLBbr5s2b+/btS0tLmzVrFuyrxuFwDA0N9fT06DeDQCKR\nHDt27NdffyV2sXZ0dFRtcl7VE9J160XGnlIOWdAQvlIXW0s3NDQ8ePBAIpEYGxvHxMRER0dj\nGLZu3Tp6L43A2AtasEZcZwcOHMjNzbW3t9+7d6+Li8v48eP9/PxKS0uFQmHnXojGZ/+Qh16g\n08zAl+pOqaRfnexMdbnd+vr62bNnd1hul+wJTUxMOrSLw9SBAweuX7/O4/E2btz47rvvGhgY\ndH6Pak9IrDRz5swZHMfnz58/YcKEwY8ZDA6JRLJp06asrKz6+vqysrLW1tbOB4VqrRg9erS5\nuTmFAQ80xp5SDlnQEL5c11tLW1paPn36NDs7OzExMTc3FyG0atWq6dOnUxTsAIILWqiHa8Qx\ngUKhOHDggFKp3LVrl+r1bw8Pj7S0tIKCgg69EF3P/iEPgNSLUkmzOkmSSCTNzc18Ph8xbNOR\ne/fuRUVFcTic3bt3q86P7YzL5Xp7e+fl5WVnZxcXF7NYrFWrVi1ZsmTQQgWD78iRI9nZ2dbW\n1p9++unEiRNzc3PLyso6HxRErRAIBLS8eginlEMZNIQvp1Aobt++LRQKW1tbJ02a1OExMBaL\n5eXlxeFw2tvbra2tAwMDaXn1Ai5okbq5RhxDyOXyM2fOcDictWvXqr7OYrF4PN69e/c6PEdH\nV8zMQ/efp2UOKJWE2traAwcOHDp06O7du+QsUOZsOnL48OGqqqqlS5d2PpUvKSl5+vSpTCbT\n19cnXlFXV58xY4aFhYWFhUVgYKCHh8egxwsGilwub21tJcs+Md3syJEjxAxJKysra2vr6dOn\nv+qg4PF4tra2FMU+gKBODnHQEL7ca7eWZrPZjo6Os2fPnjZtGl0n/cMFLVI314hjCDabnZiY\n2NDQ4OHhoaenp/qj+vr6mzdvurq6ZmVlCQQC+m22oYqBeejF87RMAKUSIVReXv7VV1/l5ubq\n6OgsXLjQxsaGuEmIGLPA7IkTJ2Qy2QcffKA6UzQnJycsLCwqKurOnTtXr17Nzc11dXUlWgUM\nwywsLJycnDpUD3pg7I4CxD6csbGxxKVAcrpZVVXVvHnzyOlmDDkoVEGdHOKgIXyl7m8tTT9w\nQUuVRCKRSqW+vr6vXSOOOfdJ5HJ5ZmZmSUmJj4+P6rWSS5cu5eXlff31146Ojj4+PtQFOEiY\nlgd4nrYDKJUEmUwWFBRUWVlpb28fGhrq4uJCdoMEJpz+3rhxo6Ghwc7OzsbGBiEklUpPnjwZ\nERFRU1NjZmZGrDhVUlKSn59PyylFqhi78wrRDaakpLS3txMXCsnpZi0tLa6urqozJJlwUBCg\nTg4L0BB2pZtbS9MMXNAiqc6Amjp1qq6u7mvXiGPImbGdnV16enpOTk5+fv6ECROIJZfi4uKi\no6P19PSWL19uYWFBdYyDgWl56NHztPQ72+sASiUpISHhxo0bAoEgLCyM/I8uFAoTEhJKS0ut\nra1ZLBYTltt9+PDho0ePcBx/+vRpeHh4Zmamrq7uJ5988umnn06bNs3Dw+P69etlZWVvvPHG\niBEjqA52ADFz5xWyG9TS0tq9ezextWzXSysx4aCAOjlcQEP4GgwcsnBBi/CqGVCwRhxCiMVi\nubu7C4XC7Ozs2NjYhw8f/v7774mJiQihtWvX0maG5GsxMA/dfJ6Wfmd7nUGpJMXGxhYVFS1d\nupRYOFQkEoWFhZ09e/bZs2epqanZ2dkzZ87EMIzey+3a2trW1tY+e/bs0aNHxAIE06ZN27Fj\nB7mAqq6u7uPHjysrK21sbGh8XCBG7rzSoRsk9iQjkNXg+fPnnWdI0vugQFAnhw9oCF+PaUMW\nLmih182AgjXiEEI8Hs/Hx0cmkxUUFFRUVDQ1NfH5/DVr1sydO5fq0AYVvfOgUCjS0tJGjhxJ\nFr1uPk9Ls7O9l4JSSRKJREKhkM1mW1tbx8bG7t+/38DAIDg4eNWqVXfv3i0sLJw8eTKxEi+N\nl9vFMMzNzW3s2LG6urqTJ0/+8MMP582bp7phlVwuP3XqlFQqnTdv3qhRoygMdaAxbecVshtU\nU1Pbs2cPMWdYVdenkTQ+KBDUyeEDw3Gc6hiGB4lEEhQUVFpaun37djc3N6rDGXDk7+vr67t+\n/foOJ3wSiSQ5OXnBggVUhddf5HI5QqjzPM+4uLjDhw8LBILw8HCyFRQKhUKh0MjIaO7cuWw2\nG8fxpKSkkpISDw8PKyurQY586JBKpUVFRTiOW1tbq579MA398pCYmPjrr79WVVV1KAIymQwh\n1NbWtmPHjsLCQh8fn40bN6o+T+vg4KCjo5OdnT1u3DjKoh8sDCmVXZNKpTt37nz69ClCSFtb\n+9133503bx6GYTiOf/zxx6WlpXv37qXHToN9ER0dHR0dra+vf+zYMTU1NarD6WcSieTXX3/N\nzc01NjYuKir629/+FhAQoPqG+vr67du3P3/+vEPFGO7IbpD46+LFi1esWPHSd3ZdK+gN6uTQ\nB3cIu4v2t/U7YMIFLaKO371719PTs8Mqst2cAUXjNeK6j8PhGBsbGxsbM+T5yVehUx4UCsWR\nI0eioqKam5s9PDzeeustcqNFhBCbzWaz2a99npauyy93wIRS+VocDmfmzJm2traenp6BgYHj\nxo0jkhATE5OYmKivr//+++93qLFMExcX9/PPPyOENm3aZGlpSXU4/YyxOwqozhR97733srKy\nsrKy2tvbO2xeTWDadDNVUCeHPgY1hB12hiGIRCKxWExuDdQ1pg1Z2hcvmUwWHx9fUFAwderU\nDqtfdH8GFA10PjR6dFwA+jlw4MD169d5PN7GjRvfffdd1WX0VcHztATal8ruYLFYZmZm5ubm\nxL0vHMcvXLhAtEDr169n8hyKtra2n3766cyZMwihlStXzpkzh+qI+h8zdxTo8Nygh4eHra1t\nUlJSN3tCps2QhDo5xDGlIeywMwzxYl1d3datW69du+bm5qarq0tthEMTvQ9gDofj7e3t4eFh\nbm5eWVmpoaFBXs60trbOysp69OjRlStXnj9/vnLlyo8++sjAwIDD4cTFxTU2Nvr6+hoZGVEb\nf7/ofGjAccFw9+7di4qK4nA4u/9fe3cf09T1xgH8tlCKgAJTwUatKAMmCigVpCoM5nwpcyYm\nLItZJjBDyKIkwyVj48Ut2RCysczshbFpZoZmupcsJIxpkKCyaDLFSrsCDg3osLy4QlvYBhSw\nvz/uLzc3LZSWt0vP+X7+o0ByKJxz+d57zvN88IFCoXD8xThPyyJ7qXTVnTt3Pv/888uXL4tE\nooyMjL179wo9ImGMj4/X1NSUlpY2NzdLpdLc3FyVSiX0oGbE/u4hzR0Famtrq6qq+FVkZDKZ\nk5mQnu1mfFgnFzIqAqF9Zxj29VOnTul0uoiIiNTUVAJ2ec0Rsm9oeXp6+vv7swVFW1pauL2j\nlOyAmnBqUDsv7t69u3TpUvYX/ejRo48//lihUNDTW5Lz5ZdfPn78+OWXX7b/f6Wzs7O1tdVi\nsfCfHnt5eaWkpMjlcrlcnpWVpVQq53e8CwXZS6XzTCZTSUlJe3v7ihUr3nrrLQr/6+WIxeKG\nhgatVqtUKvPy8ty9wJL93UPKOwqEhoZaLJbMzEx+TVEnMyFV2834sE4uWOQHwgk7w7D3tMrL\ny/39/UtKSsioADF3iL+hJZFIGhsbNRpNR0cHlwmJ3wFlPzVonhdqtfr48eNdXV0JCQl6vb6g\noKCjo2NoaCguLk7ooc23b775xmKxHD58mL9T9O7du6WlpWfPnv3tt98uXbrU1tYWFxfHPSjA\neVoW2UulkzvJvb29lUrl+vXrX3/9dUrOkTqgUCiSkpJSU1PdvSfnhHcPKe8oIBKJNm3aZD8j\nnMmENCN7nXRfhAfCCTvDcPe0ent79+7dS8NcxflJx9i9ozqdziYTcsjbAWU/NSicF3x+fn5q\ntfrOnTsPHjz44YcfjEZjdHT0G2+8QdUzUlZ9ff3AwEB4eDhbPH14ePjMmTPl5eV9fX0rV66M\njIw0GAydnZ33798no2T87CJjqbS/ZLi0k9zHx2f16tXkBYDpcfcoyExyY51BR4HJIRM6RsY6\nSRiSA+FknWG4e1pDQ0OxsbHr16+3/169Xk/AIs7C+UlnOMiE5O2AmnBq0DYvbLD1UdjKKMPD\nw9HR0UVFRZPtFyX4fWDdvn1bq9VardbW1taTJ082NTX5+/sfOXLk6NGjSUlJSqWyrq6uq6tr\nw4YNwcHBQg8WZtmElwxqd5KDg5brDPVd1x1AJgT3Qmwg5HeGefLkyeLFi+13tw8ODvb39+/Z\ns8fmcdDVq1ePHz/u6+vL3//gpnB+0nmTZULCdkBNNjWomhfMRC3XjUbjL7/8Mjw8zDDMM888\ns2PHjgkfcRD2PtgLCwvr7+//888/tVote4MgKSmpqKiI6yPn7+//xx9/9Pb2hoaGkvomUMv+\nkkHzTnKYsuU6g44Ck0MmBDdCZiCcsjMMt349evTo77//3rp1K3/9un37dlNTU0REBBlHwHF+\nckJjY2P19fXV1dU3b94cGBhYtWqVp6fnZJmQmB1QjqcGJfOCYZirV6+eOHHi4sWL/H9fvLy8\ndDrdsmXL/Pz8mpqaenp6EhIS7H/pJL0PExKJRPHx8REREf7+/lu2bMnOzlapVPyFYmxsrLKy\ncnh4WKVSrVq1SsChzjrKCwvZXzIo30lOOQc31m3QcGJwerhMGBUVReolA8hAYCB0sjMMt35p\ntVqb9SsyMjImJsbdj8fg/KQD3d3d+fn5ly9f7ujoaG9vv3nz5rVr1yIiIpYtWzbleUL35czU\nIH5eOGi57uHhsW3btuTk5KSkJK7fOj8T/v7770uWLNm8eTMB78OUZDJZbGzsxo0b7beUf//9\n942NjYGBgdnZ2R4eHoIMby5QXlhowksG5TvJaeZSy3UGmXByMpmM3Wkv9EBmmcFgqKio+Pbb\nb9k/EqrOiBKJwEDofGcYB+vX8uXLBfsBZgPOTzpgNpvffvvt7u5umUyWlpYWHx8/MjLS0dFx\n7dq1DRs2BAUF8TOhXC5fs2aN0EOeHU5ODYLnBTNVy3UPDw8PDw9+v/Wenp74+HixWHzlypWy\nsrLGxsadO3cSsHN42i5evMjW2j127BgxU4PlUmEhwtbJyS4ZtO0kB9Y0Wq4zdFeRcWzx4sVC\nD2GWmUymN998s7W1dXBwsKenp6GhwWQyKRQK+7sAhC2VBCMwELrUGYbIe1o4P+nYmTNnNBpN\neHj4Rx99FBUVFR4evnPnTolEolarb926tWvXLqlUymZCmUxG0lF456cGkfOCcaXlOj8TspVm\nLly4YLVaU1NTN23aNG8DXlBGRka++uqrCxcuMAyTnp6+e/duoUc0y5wvLETYOul4ZyA9O8mB\nM72W6wzdVWSo8vXXXzc3N4eGhubk5GzZsuXevXtardb+nAVhSyXZCAyErnaGIeyeFs5PTunk\nyZMWi6WgoCAoKIh7MTIyUq/Xt7W1icVi9r3y9PS0Kafm7lyaGoTNC5ZLLdelUmliYuK9e/da\nWloePHggFoszMjJeeumleR+18MbHx2tqakpLS5ubm6VSaW5urkqlEnpQs2DahYVIWied2RlI\n/E5ysDHtlusM3VVk6FFeXr5kyZKysrI1a9aEhIQkJyer1WqNRmOTCUlaKolHYCB0wHEmJOCe\nFs5PTslqtVZWVjIMk5WVZXP8KSAgoK6ubnh4mIA2g65ykAkJmBccV1uue3l5paSkyOVyuVye\nlZVF3iEQJ4nF4oaGBq1Wq1Qq8/LyyLi0z6SwEDHrpPM7A8neSQ420HIdHPv555/37dvH/QF4\ne3tv377dPhMSs1TSgK5AyDjMhATc08L5ySmJRKJr164NDg5u3ryZ/4SQYZjBwcFLly5JpdIX\nX3xRqOEJaLJMSMC84Eyj5bpIJJLL5VFRUVzLFjopFIqkpKTU1FQCToPMvLCQVColY510aWcg\nqTvJwSXIhNQyGo2nT58+d+5cY2PjwMDAxo0b+RtBJ8uEZCyVNKAuEDJEL2c4P+kMi8XS1NT0\n8OHDlJQU/kPCqqqqu3fvRkVFJSYmCjg8ARE8NThouT5tBERB1qwUFiKjfaurOwOJ3EkOrqLh\nSgE2jEbjsWPHdDqd2Wzu6uoaGhoym827du3i16HgZ8K1a9euXr1awAGDq2gMhAy5nWEoPz9p\nb8KyyGFhYWq1+v79+83NzdHR0b6+vlartaam5rvvvhOJRDk5OcuWLRN64IIhdWqw0HIdUFiI\nbxo7A8nbSQ7TgExIm4qKipaWlnXr1h09enTz5s1tbW1dXV19fX02zxLYTLhixQqsD25HZLVa\nhR6DYNjGA0KPYv6o1eri4uLR0dG0tLRDhw5xrxuNxhs3brzwwgsCjm0umEym3Nzcvr4+7hWV\nSpWdnS0Wi81m87vvvtve3i4Wi+VyudlsNhqNDMNkZmYeOHBAuCEvFGRPDba1gJ+f37Zt22xu\nYY6Njb322msmk6mgoGDr1q1CjRDmTn5+vk6nO3jwp4yJAwAABpxJREFU4MGDB20+1dnZqdfr\ng4KC+I/L/v3335KSEq1WyzCMWCxOT0+nZ4mY7JIBwGL/QtLS0uxnE7ivsbGxkZERX19f9kOD\nwbB06dKMjAyJRPLpp5/6+PgwDNPf319QUKDX659//vmcnBxK9peRjdInhCzyOsM4Rvb5SXsO\nyiJ7e3snJydbLJaOjo6+vr7h4eGnnnrq6NGje/bsEXrUCwLZU4PCluvAQWEh5+EpEDhGast1\nmrGFpmpqanbs2OHl5aXX6/Py8jo7Ox8/fqxSqXDmiGBUB0IKUXWBd1wWWSKRxMbG7t+/PyEh\nYd++fenp6YR12QZXEdxyHTgoLOQSqi4ZMA1k3z2kDVd2eHR0VKlUBgQEjI+PNzQ0aDSa//77\nLy4ujn+SApmQMAiE1CH7kBifM2WRPT09ly5dGhAQgIWMZsS3XAc+FBZyCT2XDACa2TShWbt2\nLcNLfYODg/ZVZIivQ0EVqs8Q0ozUQ2JGo/HcuXNtbW3Lly/v6Og4cODA/v37+V9gNpsLCwsf\nPnyYnJycm5uLHEi58fHxX3/99ccffzSZTFKpNCcnJykpSehBwRyyWq1ffPFFbW0t+6FIJEpM\nTMzKyuLvHy4qKtJoNFlZWXR2oJkQqZcMAGDs0iD/HDXDMEajMT8/f7ITg6TWoaANAiGQgy2L\nzK8iExoaWlZWZnMYjMuE77zzDg4/wKlTp6qrq5VK5aFDh3CDkxIoLAQAwOLSoEQi+fDDD9nt\n9DYcZ0IgAAIhkOOTTz65cuXKunXrXnnllYGBgcrKSqPROOHiZTabb9y4oVKphBoqLCh6vR5R\nEFjnz58/f/58YGDg6dOnJRKJ0MMBAJhDXBpkP3RQUhiZkGw4QwgkMBgMixYtqqioYKvIhISE\nrFu37tlnn53suLO3t3dYWJiAA4YFhZiW6zBDKCwEAPTg7xR99dVXdTqdg/JRqCJDNgRCcHso\niwwAM4TCQgBAFZtzg0qlcsqSwqgiQzAEQnB7KIsMANM2Pj5eU1NTWlra3NwslUpzc3OxmRwA\niFdbW1tVVcWvIuNMmxn236rg4OCUlJR5HzLMIQRCcHsoiwwA0yYWixsaGrRarVKpzMvLQ2cF\nAKBBaGioxWLJzMzk1xR1MhOGh4fP40hhPqCoDBACZZEBYNpQWAgAgKVWq4uLi0dHRx3UmAHC\n4AkhEMLx7lDc0AIAB1BYCACA5cxzQiAMAiGQAycGAQAAAGYImZA2CIRAFGRCAAAAgBlCJqSK\neOovAXArgYGBJ06cWLlyZV1d3a1bt4QeDgAAAID7iY2NLSgokEgkEolE6LHA3EJRGSATqsgA\nAAAAzFB3d7dMJhN6FDC3EAhhIRobGxsZGfH19eW/+OjRI4vFwq+PDAAAAAAAM4Eto7DgjI2N\nlZaWFhYW/vPPP9yLJpPp+PHjRUVFnZ2dAo4NAAAAAIAkCISwsLBp8ObNm729vQaDgXv97Nmz\nBoMhJCQkKChIwOEBAAAAAJAEgRAWEC4N+vn5ffDBByEhIQzDGAwGq9Xa2NgYHBxcWFgolUqF\nHiYAAAAAACE8hR4AwP/ZpEH2rKBer8/Pz1coFGKxePfu3YsWLRJ6mAAAAAAA5MATQlgQuDQo\nkUjef/99rnKMj4+Pj49PXV1dX1+fh4fHhN+r1+vncaQAAAAAAORAIAThcWmQYZjR0dHr169z\nn+KaCjIMU19fPz4+bvO9V69ePXLkSHV19XwOGAAAAACADAiEIDD+TtHDhw9LJJKffvqpsrKS\n+wIuE/7111+fffaZTaOUvr6+J0+e8OuRAgAAAACAkzzee+89occA9LI5N6hUKsPCwq5fv67T\n6UZHR2NiYtgvW7Ro0fbt22/duqXVag0GQ3x8vEgkYj8VGRkZExPz3HPPCfdDAAAAAAC4KwRC\nEFJtbW1VVRW/ioxMJnOcCTUajU0mXL58uWA/AAAAAACAO0MgBCGFhoZaLJbMzEyuigwzrUwI\nAAAAAADTgEAIQhKJRJs2bQoMDLR53ZlM+PTTT7PFZgAAAAAAYHoQCGGBcpwJg4ODU1JShB0h\nAAAAAIC7E9nUbARYUNRqdXFx8ejoaFpa2qFDh4QeDgAAAAAAUfCEEBa0yZ4TAgAAAADAzKEP\nISx0sbGxBQUFEolEIpEIPRYAAAAAAKJgyyi4h+7ubplMJvQoAAAAAACIgkAIAAAAAABAKWwZ\nBQAAAAAAoBQCIQAAAAAAAKUQCAEAAAAAACiFQAgAAAAAAEApBEIAAAAAAABKIRACAAAAAABQ\n6n/Kq2svxVwyFAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhwAAAIcCAIAAAAynOArAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdeUBVZf4/8Pe5K8gOiiAGKu4baJmW5pJLioqA5VRmaVmS0+IvSyvnazmV\naYs1TTNmNm41hUuKml2Rcs/cJsQVV8QNjUX27S7n98fFKxwucNF772F5v/6Ze57znHM/NuKH\nc57n8zyCKIogIiKyB4XcARARUePBpEJERHbDpEJERHbDpEJERHbDpEJERHbDpEJERHbDpEJE\nRHajkjsAhzh79uy+ffvkjoKIqAlJTU29dOlS40wqp06dSkpKGjhwoNyBEBE1FTdu3EhKSmqc\nSQVAly5dYmJi5I6CiKipiImJGTFiBMdUiIjIPlQqFZMKERHZDZMKERHZDZMKERHVmU6nW7hw\nYdX2RjtQT0REDqLT6WJiYkRRfOyxx9q1a1fxFJMKERHVQUJCQkxMjMlkWrdunSSjgK+/iIjI\ndgkJCVFRUeaMMnbs2KodmFSIiMgmtWYU8PUXERHZKCEhQRTFDRs2REREVNeHTypERGSTTz/9\n9PDhwzVkFDCpEBGRjQRB6N69e819mFSIiMhunDGmMmfOnGPHjvn5+S1fvlxyKjk5OS4u7vz5\n8wqFomvXrpMmTWrbtu0d9CEiovrA4U8qCQkJp06dUiqVVU8dOHBg7ty5aWlpgwYN6tev37Fj\nx2bNmnXu3Lm69iEiIrvT6XSrVq2q61WOTSrZ2dnLly8fP368VquVnCorK1u8eLGrq+uiRYv+\n+te/zpgx47333tPr9YsXL65THyIisjudThcdHf3iiy9ev369Thc6NqksXrzYx8dnwoQJVU8l\nJSVlZ2cPHz48ICDA3NK5c+f777//7NmzaWlptvchIiL7MtfMi6IYFxdn+efXRg5MKnv27Dlw\n4MD06dPVanXVsydOnAAQFhZWsTE8PNxyysY+RERkR7ZUONbAUQP1+fn5X3/99bBhw3r06GG1\nQ3p6OoDAwMCKjeaUaD5lY5+K3yiKovmzXq+/+z8CEVFTc5cZBY5LKkuXLgUwZcqU6joUFRUB\naNasWcVG82FhYaHtfSxGjx5t7g8gPDy8T58+d/cnICJqclasWCGKYnx8/KhRo+7sDg5JKn/8\n8cfOnTtnzpzp4eFRc09BEGq9my19AAwZMqS0tNT8WaPR2HIJERFVtGrVqiNHjtzNL+X2Typ6\nvf5f//pX7969Bw0aVEM3ywOHt7e3pdH8qOHm5mZ7H4t58+ZZPm/atKnq+zEiIqqZWq2+y9c8\n9k8qBQUFGRkZGRkZkZGRFduLiooiIyODg4O//PJL3BopSU9PDwoKsvSRDKLY0oeIiOoP+ycV\nrVY7fPhwSeOOHTuUSuXAgQP9/PzMLd26dYuPj09OTr7vvvss3ZKTk82nbO9DRET1h/2TSrNm\nzV5++WVJ42+//ebq6lqxvVevXr6+vomJiaNHjzZP6EpJSTl48GCHDh1CQkJs70NERHdm69at\nSqWy6mPA3ZBtPxWNRhMbG/vhhx/OnDmzf//+er1+7969KpXqxRdfrFMfIiK6A+Z95l1cXFJT\nUyuOW98lOTfp6tev39///ve4uLidO3eaV1SeNGmSZMdjW/oQEVGdWPaZX7VqlR0zCpyWVOLi\n4qy2h4WFSQrm76wPERHZ6O4rHGvA/VSIiJoQh2YUcI96IqIm5aOPPrrLmvmaMakQETUh8fHx\nR44ceeihhxx0f77+IiJqQjw8PByXUcCkQkREdsSkQkREdsOkQkTUaCUkJCQlJTnzGzlQT0TU\nOJlr5n18fM6fP+/q6uqcL+WTChFRI2SpmV+yZInTMgqYVIiIGh9HVzjWgEmFiKhRkTGjgGMq\nRESNiclkmj17tkNr5mumun79+h1f7Orq6uXlZcdoiIjobigUiq1bt544cWLo0KGyBKC6m315\nn3nmmRUrVtgvGCIiulsBAQHmXQ1lwTEVIiKyGwWAp59+Wl93ckdORET1jgqAIAgqFUfsiYga\nnsTExA4dOrRp00buQMophg4d2q1btzu48o4vJCIiu9DpdGPHjh05cqTBYJA7lnKqX3755c6u\nvOMLiYjo7plr5kVR/Pjjj+vP2yYO1BMRNTzyVjjWgEmFiKiBqbcZBTVX1GdmZmZlZVmd6NW9\ne3eHhURERNUqKyuLjY0VRXHDhg0RERFyhyNlJamUlJR8+OGHK1asuHTpUnWXiaLoyKiIiMg6\njUaj0+nS0tIeeeQRuWOxQppUSktLhwwZsn//fgBqtVqv1/v4+OTl5RmNRgAqlYrrshARyatz\n586dO3eWOwrrpGMqX3755f79+wcPHpyenj5hwgQA2dnZxcXFe/fujYyMFEVx7ty5mZmZcoRK\nRET1nTSprFmzRhCEb775puLSMWq1un///hs3bpw+ffqMGTMSExOdGyQRETUM0qRy6tSpkJCQ\n0NBQAIIgADC/+DJbuHChu7v7Z5995swQiYiasp07d2ZlZckdha2kSaW0tLRFixbmz1qtFkBO\nTo7lrKura9euXQ8fPuy0+IiImjKdTjdy5MgxY8Y0lOlR0qQSEBBw8+ZN82fzqvinTp2q2CEj\nIyM3N9c5wRERNWWWmvm3337b/Oqo/pMmldDQ0PT0dJPJBKBv374AvvzyS/MhgM2bN1+4cCE4\nONjJURIRNTX1ucKxBtIpxSNGjNixY8fvv//ev3//ESNGhISErF69OjU1dcCAAdeuXVu3bh2A\niRMnyhEqEVFT0UAzCqomlZiYmMOHD1+9ehWARqOJi4uLiIg4ePDgwYMHzR1Gjhz59ttvOztM\nIqImo6Cg4KmnnpJxn/m7IU0qHTt2ND+OmPXr1+/s2bNr1qw5ffq0VqsdNGjQqFGjGsqrPSKi\nhsjd3T0+Pj4vL6/BZRTUvPaXmZ+f34svvuiEUIiIyKx///5yh3CHuEoxERHZDZMKERHZjZXX\nX6Iobty4ccuWLefOnSsoKLBaccP6RyIie/n999/Dw8NdXV3lDsQOpEmlqKho7Nix27dvlyUa\nIqKmRqfTxcTEDBs2bPPmzXLHYgfSpPL3v/99+/btarX68ccfHzBgQEBAgELBV2RERA5hrpk3\nmUwvvPCC3LHYhzSprFmzBsAPP/wwfvx4OeIhImoqGm6FYw2kTyFXrlzx8/NjRiEicqhGmVFQ\n9UnFz8+PezsSETlUZmbmY4891kBr5msmfVIZMWLE+fPnG9Da/UREDU7z5s1Xrly5YcOGRpZR\nUDWpvPvuu+7u7jNmzDAYDLIERETUFERHRze+jAJAtX//fknTggULZsyYkZSU9OKLL3bq1Mnd\n3b3qZf369XNKeERE1JCoHnjgAasnTpw48dJLL1V3WUPZg4yIiJxJFRISIncMRESNXFJSUs+e\nPZVKpdyBOJzq4sWLcsdARNSYmWvmn3rqqaVLl8odi8OxWp6IyIEsNfORkZFyx+IMCgBjxoz5\n5ptv/vzzT7mDISJqVBprhWMNFAC2bNny/PPPBwYGDhgw4JNPPjl79qzcURERNXhNMKPAnFT2\n7Nkzc+bMdu3a/fbbb2+88UbHjh27des2Z86cQ4cOcZYXEdEduHz5clRUlLlmvulkFABCxbRx\n/PjxjRs3xsfH/+9//zO3BwUFRUZGRkVFDRkyRK1Wyxdn3WzatCk9PX3atGlyB0JETdfixYvb\ntGnTKCscqxMRESFYfRa5cuWKObvs2rVLr9cD8PLyioiIiIqKGjVqlIeHh9NDrRsmFSIi56s2\nqVjk5uZu2bIlPj5+69at+fn5ADQazcMPPxwVFRUZGRkYGOisUOuGSYWIyPlqTyoWpaWlv/76\n68aNGzdt2nT9+nUAgiCYTCYHR3iHmFSIiJwvIiLC1joVrVYbERGxZMmSa9eu7du3b9asWR07\ndnRocEREDcjp06flDqFeqHPxoyAIDzzwwMKFC1NSUhwREBFRg6PT6cLCwt555x25A5EfK+qJ\niO6KuWZeFMX77rtP7ljkJ935MSoqquYLlEqlp6dnu3btBg0aNHDgQIcFRkTUADTNCscaSJPK\nxo0bbb+4V69e33//fefOne0aEhFRw8CMUpU0qSxevPjy5csff/yxRqMZM2ZMWFiYh4dHfn7+\nkSNHfvrpJ71e/8Ybb/j6+qakpKxfvz4pKWno0KFHjhxp0aKFLNETEcklJSXFXDO/YcOGiIgI\nucOpL6RJJTIy8t57773//vvXrVsXEBBQ8VR6evr48eOXL1/+xx9/BAQEfPTRR+PGjduzZ89n\nn302f/58J8ZMRCS/zp07z5w588EHH2RGqUg6UP/OO+9kZWWtWbNGklEABAYGrl27NiMj4913\n3wXg4+Pz7bffKhSKLVu2OCdWIqJ65f3332dGkZAmFZ1O17Nnz1atWlntHRQU1LNnT0sWCQkJ\n6d69e2pqqmNjJCKiBkKaVDIyMmqusRdFseLOK35+fmVlZQ4JjYiIGhppUmnZsuXRo0cvXbpk\ntXdaWtrRo0crvhm7cuUKR+mJqCm4cuWK3CE0ANKkEhUVZTAYxo8fXzWvXLx4MTo62mg0jhs3\nztySl5d38eLFNm3aOCFQIiIZ6XS6Dh06LFmyRO5A6jvp7K+5c+du2rTp8OHDHTp0GD58eFhY\nmKenZ15eXnJycmJiYllZWUhIyNy5c82dv/vuO71e//DDDzs9bCIi57HsM1/deDNZSJNK8+bN\nd+/ePXny5B07dmzZskUys2vIkCErV65s3ry5+XD06NEDBw685557nBQsEZHTscKxTqRJBUBw\ncPD27dsPHDig0+lOnz6dn5/v4eHRqVOnUaNG9e3bt2LPkJAQZ8VJRCQDZpS6spJUzPr27StJ\nIURETcoff/xhHkKOj49vUrsC3w2uUkxEZF1YWNjEiRM3bNjAjGK7ap9UiIiaOKVS+Z///Efu\nKBoYFYA7WGaYO3QREVFVKnAXTCIispPbr7+6dOkyceLEli1byhgNEZGMsrOzfX195Y6iYVMB\n6N+//2+//Xbq1Kl333131KhRU6ZMGTNmjFqtljs2oiZBX4iiG3BtDo2n3KE0bQkJCRMmTFi5\ncmWtG+BSDVQA9u7de/bs2RUrVqxatWrz5s2bN29u3rz5xIkTJ0+eHB4eLneERI2WoRgnl+HK\nLkAEgID70e0FaL3kDqtJstSjKJVKuWNp2MqnFHfo0OGDDz5IS0tLSEh44oknCgoK/vGPf/Tq\n1Ss8PPwf//hHZmamvFESNUrHl+LKzvKMAuD6QRz5HDWuEk4OwQpHO6pUp6JQKEaMGPH9999f\nv379q6++6tu3b3Jy8owZM1q1ahUTE7N9+3a5oiRqfIr+xLU90sas47jJmZXOxYxiX9aLH728\nvKZNm7Z///5Tp07Nnj3b19d3w4YN3DOYyI6Kb1hvL7ru3Diatn379o0bN04Uxfj4eGYUu6ip\not5oNF68ePHixYu5ublOC4ioidBUM3ai9XZuHE1br169hg0bxpp5O7JeUZ+SkrJixYpvv/32\n2rVrAFq0aBEbGzt16lTnxkbUmHncA59OuFm5SMwtEH7dZQqoSXJ1df3pp5/kjqJRqZRUcnJy\n4uLiVqxYceDAAQBqtToyMnLKlCmjR4/mDGMiOxMQ/ir+9xHyLpY3NAtAr9eg4I8aNWQqAEaj\nMTExccWKFRs3biwpKQHQs2fPyZMnP/XUU9wqmMhxXFug/0Jkn0BhOlxbwK87Mwo1eCoAwcHB\n5tdcfn5+U6dOnTJlSu/eveUOjKhJEBTw6wG/HnLH0WQUFha6ubnJHUVjpgJgziidO3ceO3as\nRqNZv379+vXra77s/fffd0Z0RET2k5CQ8NRTT/34448DBw6UO5ZG6/aYSkpKiu1rDzOpEFHD\nsnXr1ujoaFEUCwsL5Y6lMVMBGD16tNxhEBE5UEJCQnR0tLnCkbOHHUoFgDPqiKgRY828Mzlk\n58f8/Px169adOnXqxo0bBQUFPj4+7dq1e/TRRzt27CjpmZycHBcXd/78eYVC0bVr10mTJrVt\n2/YO+hARWbVz586oqChRFDds2BARESF3OI2fQ/aoz87Ojo+PLygoCA0N7devn5+f34EDB954\n442dO3dW7HbgwIG5c+empaUNGjSoX79+x44dmzVr1rlz5+rah4ioOmFhYb179167di0zinMI\nogPWRC0rKysrK3N3d7e0pKSkvPXWW15eXitWrLD0eeGFF0pKSj7//POAgABznzfffDM0NPTT\nTz+1vY9VmzZtSk9PnzZtmt3/aETU4IiiKAiC3FE0CREREYru3bv/7W9/u4OLa7hQo9FUzCgA\nOnfu3Lp16+zsbL1eb25JSkrKzs4ePny4OVuY+9x///1nz55NS0uzvQ8RUc2YUZxJceLEiStX\nrtzBlXW68PLly+np6a1atbIs93LixAkAYWFhFbuZ9wQzn7KxDxER1R8qAMXFxdev23+57Rs3\nbvz4448mkykzM/Po0aNKpTI2NtZyNj09HUBgYGDFS8xPJOZTNvYhIqqorKxMo9HIHUXTpQKw\nZs2aNWvW2P3WOTk5W7duNX92d3d/7bXXKm5OXFRUBKBZs2YVLzEfWkqTbOlj8c4775SWlpo/\nazSaoKAg+/1RiKhhSEhImDZt2s8//9y1a1e5Y2miHDKl2KxTp06bNm3S6/Xp6enr169/7733\npk6dKpkkbsu7Thvfh+7YscOchACEh4czqRA1NTqdLiYmRhTFy5cvM6nIReWI2V8VqdXq4ODg\nGTNmZGRkLFu2rG/fvv7+/qjwwOHtfXtPInNWsCz3Zksfi7i4OMufZffu3Xl5eY77QxFRfZOQ\nkBATE2OucHzkkUfkDqfpckidilXdunUzGo1nzpwxH5pHSiRDI5JBFFv6WLRq1SroFq5CStSk\nsGa+/nBeUrlx4wYApVJpPuzWrRuA5OTkin3Mh+ZTNvYhoiYuMTHRUjPPjCI7hySVY8eO/fnn\nnxVb9u3bt3v3bo1GY0kGvXr18vX1TUxMtEw8S0lJOXjwYIcOHUJCQmzvQ0RNXKdOnUJCQlgz\nX084ZKB+3759P//8c3BwsL+/vyAIV69evXr1qiAIsbGxnp6e5j4ajSY2NvbDDz+cOXNm//79\n9Xr93r17VSrViy++aLmPLX2IqIkLDg4+duwYtzyvJxyyTMuZM2cSExNPnDiRlZWl1+u9vb27\ndu06duzYTp06SXpaFosUBMG8WGS7du3uoI8El2khInK+iIgIhzypdOzYseqCxFaFhYVJCubv\nrA8REdUHzhuoJyKyC5PJJHcIVC0mFSJqSBISEnr37n3t2jW5AyHrHFhRT0RkXzqdLjo6GsCp\nU6datWoldzhkhTSpGI3GI0eO7N+//8aNG/n5+V5eXi1btnzggQd69uypUPCxhohkY66ZF0Vx\n3bp1Q4cOlTscsu52UhFF8euvv/7ggw8uX75ctV/btm3/7//+b8qUKU6MjYioHGvmG4ryhw+j\n0fjkk0/GxsaaM4pSqWzZsmVoaKi/v7/5ASU1NfXZZ5+dMmUKh8iIyMm2bt06btw4URTj4+OZ\nUeq58qSycOHCuLg4AEOHDv35559zcnKuX79+7ty5Gzdu5OTkbN68efDgwQBWrFjx+eefyxgu\nETVBAQEBvr6+a9euHTVqlNyxUC0EURRzc3MDAwOLi4vnzJnz/vvvW+0niuLbb7+9YMECNze3\n9PR0Dw8PJwdaJyx+JGpkioqKJFsrUT0UERGhALB69eri4uKHHnrovffeq66rIAjz58/v379/\nYWHh6tWrnRgkEZF0sz6qtxQAdu3aBeDVV1+teTssQRBeffVVS38iIiIJBYAjR44AGDRoUK29\nzSMr5v5EREQSCgA3btzw8vJq3rx5rb1btGjh4eFh3hmFiMgREhIShg0blp+fL3cgdCcUAPLz\n8y0r0tfKy8uLO/USkYPodLqoqKi9e/fyjUgDpQJQVlZme7W8UqksLS11ZEhE1ERV3Gf+oYce\nkjscuhNceYWI6gXWzDcO5cu0ZGVlxcbG2nJBVlaWI+MhoqaIGaXRKE8qBQUFS5YskTcUImqy\nBEHQarXffvstM0pDpwIwevRoucMgoiZtxIgRFy9e9Pb2ljsQulsqAD/99JPcYRBRU8eM0jhw\noJ6IiOyGSYWIiOym9qRy8+bNXbt2rVu3LikpyQkBEVGjl5CQ8NRTT+n1erkDIfu7vfPjzz//\nnJCQUFpa2qVLlylTpphr7BcuXPjee+8VFhaa+/Tq1Wv16tUdOnSQJ1giavi2bt0aHR0tiuKr\nr77ap08fucMhOytPKpMnT165cqWl9ZNPPjlw4MD69evffPPNir2TkpKGDx9+7Nixer6fChHV\nTwkJCdHR0eZ6FGaURkkBYN26deaM0q5du0ceeSQoKOjKlSvvv//+Bx984O3t/dVXX506derk\nyZNffPGFh4dHWlrav//9b7nDJqKGhxWOTYEKwPLlywFMnTp1yZIlCoWipKQkJiZm6dKlBoPh\nhx9+ePzxx81du3Tp4ubm9txzz23evHn27NlyRk1EDQ0zShOhAPDHH38A+OCDD8zLSrq4uLz7\n7rsGg0GpVD766KMVe0+cOFEQhFOnTskSKxE1XOnp6YIgbNiwgRmlcVMByMzM9PX19ff3t7R2\n7twZQGBgoEqlqthbq9X6+/tnZmY6OUoiaugmT578yCOPBAYGyh0IOZYCgMFgkAy8m6d+abXa\nqhe4uLgYjUbnBEdEjQkzSlPA4kciIrIbJhUiIrKbmvZTycjIqNrI/VSIqFY6nW779u0fffSR\nIAhyx0JOVdN+Knl5edxkhYjqSqfTxcTEiKI4efLkbt26yR0OORX3UyEie6q4zzwzShPE/VSI\nyG5Y4UgcqCci+2BGIVRcpZiI6G788ccfoihu2LAhIiJC7lhINjUllZSUlKqN7dq102g0DouH\niBqqt956a8KECaGhoXIHQnIqTypfffVVfHz8gAED/va3v1nOdenSpeoF8+bNmzt3rpOiI6IG\nhRmFFABycnJmz569Y8cOy4LENVi4cGFubq7jAyMiooZHAWDNmjV5eXkTJ05s37695HRAQMDl\nCmJjY4uKiuLi4uQIlYiI6jsFAJ1OB+Cpp56qelqpVLau4LnnngOQmJjo5CiJqL7R6XSfffaZ\n3FFQvaMCkJycLAjCAw88UGvv3r17a7Va8/4rRNRk6XS66OhoQRCio6PbtGkjdzhUj6gA3Lhx\nw9vb29XVVXIuJCREslS1QqHw9fXNyMhwXoBEVM+Ya+ZFUVy7di0zCkmoAOj1+qoZBcDFixer\nNhqNxrKyMkeHRUT1EyscqWYKAL6+vjk5OaWlpbX2Lisry87O9vPzc3xgRFTvMKNQrRQAOnbs\naDQaf//991p779+/32AwdOzY0fGBEVG9s3nzZlEU4+PjmVGoOgoAQ4cOBfCvf/2r1t7//Oc/\nATz88MOODouI6qF//vOfBw8eHDVqlNyBUP2lAPDcc89pNJp169bVvHvKkiVL1q1bp9Vqp06d\n6qzwiKgeEQShZ8+eckdB9ZoCQOvWrd98800AsbGxkyZNOnLkiKTTkSNHJk2aZN4Fcs6cOa1a\ntXJ+oERNhQmGiyhLRtlJmHLkDqZxyMjA0aM4dAjJybh2DaIod0CNmSCKIgCTyTR58uRvv/3W\n3Orr69u2bVt3d/eCgoLU1NTs7Gxz++TJk5ctW1b/9wfdtGlTenr6tGnT5A6EqG7EUpTsgin/\ndoumG9Sd5QuoEUhPx+XLlVpatEDbtjJF08hFRESULyipUChWrVrVv3//99577+rVq9nZ2ZZE\nYta6deu5c+c+//zzcsRJ1FSUHamUUQCUnYDSHwpfGYLZunVrTk6OLUsC1l8GA65ckTZmZMDf\nH25ucgTU+FVa+n7atGlTpkzZtWvXnj17rl69mpeX5+np2bp16wEDBgwaNIgr3hM5lgjDNSvN\nhqvQOD2pmPeZVygUDz/8sL+/v7O/3l6Ki62/7CoqYlJxEOl+KhqNZvjw4cOHD5clGqImzQSY\nqjSKEA3ODsSyz/yaNWsacEYBoKhmc9vq2umu1fm/bFJS0iuvvOKIUIiaOiUU7lUaBSi9nBpF\no6pwbNYMWq20UamEp6cc0TQJtiaVrKysL774olevXr179zZXqxCR3WnCpC0KL6hCnBdAo8oo\nAAQBoaFQKm+3KBRo2xZqtXwxNXK17FFvNBq3bdu2fPnyjRs3Wpb8Cgur8hefiOxBGQCXB1B2\nEqY8CCooW0HTHVDWfqG9LF261Fwz33gqHN3d0bMnMjJQUgKNBs2bw8VF7pgas2qTytmzZ1es\nWLFy5cqrV6+aW/z8/J588skpU6b06tXLWeERNTnKVnBtBZju4OW0HXz//fdJSUl9+/aV4bsd\nR60Gq+ucRZpUCgsL165du2zZsj179pT3UKkMBkPz5s2vXr3KCWBETiLTQLJGo2lsGYWc63ZS\n+e2335YtW7ZmzZqCggJzS48ePZ555pmnnnoqICBAqVQyoxARUc1UABYsWLB8+fIzZ86Ym5o3\nb/7EE09Mnjy5d+/essZGREQNjArAW2+9BUCtVkdERDzzzDNjxoxRc2oEUROwdetWrVY7ZMgQ\nuQOhxuP26y+NRuPt7e3l5aVS1TIljIgaga1bt0ZHR7u6ul68eNGTdRtkJwoAb7/9duvWrQsL\nC1euXDl06NA2bdrMmTPn9OnTcsdGRI6SkJAQHR1tMplWrlzJjEJ2pADwwQcfpKWl6XS6xx57\nTKvVXrp0af78+Z07d+7Xr9/ixYtv3rwpd5BEZE+NrcKR6pPyeYsKhWLkyJFr1qy5du3aF198\nER4eDuDAgQPTp08PDAwEYDQaDQanr0BERPbGjEIOJZ0M7+vr+/LLLyclJSUlJb388st+fn6l\npaUAMjMzg4KCZs6cefz4cTniJCI7EEVx/vz5oihu2LCBGYUcoXyTruqUlZXFx8cvX75827Zt\nJlP5Aqr33XffoUOHnBLeHeImXUTVyc3NPXLkyKBBg+QOhBqhiIiIWsp2NRrNhAkTdDrdpUuX\n3n///fbt2wM4fPiwU8IjIvvz8vJiRiHHsXUtiKCgoDlz5pw9e3bXrl3PPPOMQwQz4eQAACAA\nSURBVGMiIqIGqs4lKQMHDhw4cKAjQiEiooaO258RNWYJCQnHjh2TOwpqQlg8T9RomfeZb968\n+dmzZ124iQg5BZ9UiBonyz7z//73v5lRyGmYVIgaIVY4klyYVIgaG2YUkhHHVIgaFaPR+Prr\nr5tr5iMiIuQOh5ocJhWiRkWpVG7duvXUqVPDhg2TOxZqiphUiBqboKCgoKAguaOgJkoVFRV1\nB5fFx8fbPRQiImroVBs3bpQ7BiIiaiRUixcvljRdunTp448/FkVx9OjRXbt2bdmy5Y0bN06e\nPLllyxZBEN54443g4GBZYiWiqn755ZdOnTrdc889cgdCBACq2NjYisfXrl3r1atXr1694uLi\n2rVrV/HUuXPnHn/88WXLlv3xxx/ODZKIrNPpdNHR0aGhocnJySoVh0hJftI6lblz52ZnZ//4\n44+SjAKgffv269evz8zMfOedd5wVHhFVy1wzL4riggULmFGonpAmla1bt/bs2bO6R+ng4OCe\nPXtu3brV8YERUU1Y4Uj1kzSpZGRk1LwXpCiKf/75pyNDIqJaMKNQvSVNKi1btjx69GhqaqrV\n3hcuXDh27FhgYKDjAyMi60pKSp5//nlRFOPj45lRqL6RJpWYmBij0RgdHX38+HHJqWPHjkVF\nRRmNxpiYGGeFR0RSLi4uP//888aNG0eNGiV3LERSguRlV1ZWVp8+fVJTUwVBePjhhy1Tik+c\nOLFjxw5RFENDQw8dOuTj4yNXxLbYtGlTenr6tGnT5A6EiKgJiYiIkM4Y8fPz271795QpU375\n5Zdff/31119/rXh2xIgRy5cvr+cZhYjISUQRmZnIy4MowsMD/v4QBLljkpmVaYitW7dOTEw8\ndOjQzz//nJKSkp+f7+Hh0blz59GjR993333OD5GIqD4SRZw+jby88sPsbGRkoGtXKJr0liLV\nzm3v06dPnz59nBkKEVkhpu3e8UrP7ue8vQUI/aB6G4K0hozkcePG7YxiVlSEq1fRtFc3qKlg\nymQy5eTkFBUVtW7duk43zc/P37dv3++//37p0qWbN2/6+Pj07t378ccfb968uaRncnJyXFzc\n+fPnFQpF165dJ02a1LZt2zvoQ9Q4iRm6nwbHTEi7r7d696++grAFZb9B8yuEVnJHRkBOjvXG\npp1UrD+m7d69e8yYMZ6enn5+fhULIRcsWDB58uTMzMyab7p27dp//etfZ86cCQ4O7tevn1qt\n3rZt24wZM9LT0yt2O3DgwNy5c9PS0gYNGtSvX79jx47NmjXr3Llzde1D1Fgl6F6OmZBmMmHW\nTLdb7+pzYFwgb1RUzmpJX411fk2BlSeVTz75ZNasWVZLID09PVeuXDlo0KApU6bUcNPg4ODZ\ns2f369dPqVQCMJlM//nPfzZv3rxq1arZs2eb+5SVlS1evNjV1XXRokUBAQEARo4c+eabby5e\nvPjTTz+1vQ9RY5WQkBA1fq3JhHU/eI8drb19wnREvqCoAnd35OdLG93c5AilHpE+qezateuN\nN97QarXz5s07d+7c008/XfFsdHQ0gM2bN9d802HDhvXv39+cUQAoFIpnnnlGqVSeOnXK0icp\nKSk7O3v48OHmbAGgc+fO999//9mzZ9PS0mzvQ9Qo3aqZr5JRAMBVnphIolUraCv/X6NSNfF3\nX6iaVBYtWgRg8eLFc+fODQ0NFSpPjwsMDAwKCjp9+nRdv0Z1i6XlxIkTAMLCwip2Cw8Pt5yy\nsQ81HCUwnYDpGFAsdyT1XX5+/pNPPimKYvz66VUyCqB8RI6gqAqlEl27okULaLXQauHnh27d\noNHIHZbMpK+/9u3b5+vrO3ny5OouCAwMvIMhjd9//720tLR3796WFvP4imTFF/MTiWXoxZY+\nFmfOnDEajebPOVYH0EhGBh3KPoCYBQCCJzSzoBovd0z1l4eHx/r164uKikaNGgF9Bky7bp9T\n3A/ly/KFRpWp1eC8ocqkSSU3N7d79+41XGAymUpKSur0HTdv3ly6dKm7u/uECRMsjUVFRQCa\nNWtWsaf5sLCw0PY+FlOnTjX3BxAeHs750PWI6ShK3wJKyw/FPJT+DUIglA/KGla9NmjQoPJP\n6u9hjIe4DxAh9IVyPKCUNTSimkiTio+Pz6VLl6rrbTAYzpw5YxnhsEVRUdG8efNyc3PnzJlT\ndUqxYEP1qS19AERGRpaVlZk/m0wm2yMkh9OvuJ1Rbjd+w6RiGwWUMQAX3KOGQZpU+vTps2XL\nlm3bto0YMaJq7//+978FBQWRkZE23r24uPidd95JTU197bXXJNX4lgcOb29vS6P5UcPt1vQJ\nW/pYvP7665bP5rW/bAySHM501UqjaK2RiBo46UD91KlTAbzwwgtV9wxOTEx85ZVXADz//PO2\n3LqkpGTevHlnzpx5+eWXbz/L32IeKZH80y8ZRLGlDzUAQgtrjf5Oj6P+OnDgQGlplYc5ogZI\nmlSioqIee+yxtLS0vn37PvTQQ/v37wcwe/bs/v37jxgxIi8v79lnnx08eHCt9y0tLf373/9+\n8uTJ2NjYYcOGVe3QrVs3AMnJyRUbzYfmUzb2oQZA/WSlQ3MFlOpJa12dpTgTOedQVC+2m9u6\ndevgwYOfeOIJuQMhsgMrFfXffffdyy+/LIri3r17zbOHP/roo3379ikUipdffnnJkiW13rSs\nrOz9998/fvz4888/X92WD7169fL19U1MTLx+/bq5JSUl5eDBgx06dAgJCbG9DzUAygeheQtw\nKT8UNNC8DJVMe4HoC3F6NY4vx9kNOLESp75Haa48kQAAEhISoqOjTSZTzQXFRA2FdD8Vi9TU\n1PXr1ycnJ9+8edPd3b1Hjx6PPvpox44dbbnpf/7zn40bN3p7e1ecQ2z26quvWgbe9+/f/+GH\nH7q7u/fv31+v1+/du1cUxQULFrRv397S35Y+VXE/lfpIzIQpGaIByjAIdZjrYWen1yCvcuWs\nWyC6PAlBhpVluSswNTIRERHVJpW78fnnn2/fvt3qqQ0bNlgq7VFhsUhBEMyLRbZrJ12B1ZY+\nEkwqZF1xBo6vsNLe+Ql41G3V1LvHjEKNj5WkEhsb+8ADDzzzzDPVXbNo0aIzZ8589dVXjg/v\nzjGpkHW5F3DmRyvt7UbDr6szA8nIyGjbtq3BYFi/fn1ERIQzv5rIcSIiIqSP/EuWLNmxY0cN\n12zatMmWYRWi+kjjUU27p3PjQIsWLZYtW8aMQo1PTfupWGUymWysRiSqd1xbwDNEOqbi3gru\nQc6PpeICE0SNRp0HJ69cueLhUc2ve0T1X7vR8KwwddC9NULHcl9xIntRAbhw4cKFCxcsTenp\n6b/88kvVrkVFRb/++mtqauqDD3J1DWqw1G7oNAHFmSjNhcYTzawVZhLRnVIBWLVq1bx58yxN\n27Zt27ZtWw3XvPTSSw6Pi8ihXJvDVboSnUMlJyf36NFDoZBh4jKRM6kA+Pv7WwrUT5w44e3t\nHRQkfcUsCEKzZs06dOgwadKkRx7hdg5EdaDT6aKjo5977rl//etfcsdC5FgqANOnT58+fbr5\nWBCEcePGrVixQs6giBqRhISEmJgYURRHjhwpdyxEDied/bV8+fKai9WJyHascKSmRppUatjz\nkYjqhBmFmqCa6lQyMzOzsrL0en3VUzXvDklEaWlpUVFRoihu2LCBFY7UdFhJKiUlJR9++OGK\nFStq2ALSESuGEdWNqRSGHKi8odDKHYoVISEhCxYs6NChAzMKNSnSpFJaWjpkyBDzNipqtVqv\n1/v4+OTl5RmNRgAqlcrLy0uGMIkqMpUi+yfk/w8QAQHu4fAbA0UzucOSevXVV+UOgcjZpLPm\nv/zyy/379w8ePDg9Pd28jER2dnZxcfHevXsjIyNFUZw7d25mZqYcoRLdkrkB+Ydv7fYloiAJ\nGetuHRKRnKRJZc2aNYIgfPPNNwEBt3e8UKvV/fv337hx4/Tp02fMmJGYmOjcIIkq0GegMFna\nWHQKpdfkiIaIKpEmlVOnToWEhISGhgIwLxxpfvFltnDhQnd3988++8yZIRJVos+qpl3mB+hz\n587JGwBRfSBNKqWlpS1alK+GpNVqAeTk5FjOurq6du3a9fDhw06Lj0hK6VZNu7tz46hEp9N1\n7979/ffflzEGovpAmlQCAgJu3rxp/hwYGAjg1KlTFTtkZGTk5sq5pzc1ddogaAKljeoWcAmx\n1tsZLDXzYWFhcsVAVE9Ik0poaGh6errJZALQt29fAF9++aX5EMDmzZsvXLgQHBzs5CiJKlDA\n/wmoKywHqfKF/5MQ6rw5kF2wwpGoIunP4YgRI3bs2PH777/3799/xIgRISEhq1evTk1NHTBg\nwLVr19atWwdg4sSJcoRKdIu6BYJmoPgMDNlQ+Yiajia9SilHIMwoRBLSpBITE3P48OGrV68C\n0Gg0cXFxERERBw8ePHjwoLnDyJEj3377bWeHSSQhKNGsiz4H6ZtQcBaiCWov+D8M757OC+HE\niRPjxo0DEB8fP2rUqLu9nb4IORdgMsArBC4+doiPSA7SpNKxY0fz44hZv379zp49u2bNmtOn\nT2u12kGDBo0aNYrbCVN9YNIj7TuU3poLps/F1Q1QqODZ1UkBdOvW7ZVXXhkyZIgdMsqVfTi6\nAmUFAKBQocMYdOFmw9Qg1f4a2s/P78UXX3RCKER1kpN0O6NYXE90XlIB8NFHH9nhLrkXkbQE\nxluL7JkMOB2PZi0QMsQONydyLu5DR7XKgXgRMNbaz8lKM6w06nNgsrICav2W+svtjGJxfqsc\noRDdLXkmzFDDIJ6BYRZMBwAAnlC9AeVUJ311YSHS01FUBI0Gvr7w96/aReFi5TpBJdcssLtQ\nctNKY3E1NZ5E9Zv1n78dO3Zs3rz53LlzBQUFlvnEFe3cudOxcZH88qCfCPHK7UPD/wFuUD7h\n+G/OQ0pK+eeSEuTlobAQbdtKenl1ReZe6aVe3eG4Ib/09HRz8ZadufpZaWzWwv5fROR40qRS\nXFz8l7/8ZfPmzbJEQ/WI8YcKGcXS+JEzkkpqqrQlIwPNm8PDo2KbSyACRuJGIsRbb+ZcWyHA\nYTv26nS68ePHf/nll88++6ydb912OC7thrGsUmN7LphPDZI0qcydO3fz5s0qlSoqKqpv377+\n/v4KBcddmiTxvLXG60AhUM1CKXZRWorSUivt+fmSpALAry882iP/DIwlcAmEZyfAMY8p5pp5\nk8lkWcTInjzvwX1/RfJylOQAgFKDjlG45yH7fxGR40mTyg8//ADgxx9/jIyMlCMeqj98rTU2\nA1wd+7V1fHul8YPfAw4KpZwzKhwD+8C/J3IvwVgKrzbQyLmOGdHdkD6FZGRkBAQEMKMQlNFA\nlaFw5QSHzxjUaOBibQhept3hqmSUMojZDvkmpRa+HdCiOzMKNWjSfyBat27t7s6/0wQInaBa\nAFTYTlExEKq5Dvs+A8QLEI8DpWjXDpKXroGBcHPkO7dqHD58eNy4caIoxsfHjx0dhpJpKOyN\nov4oGgLDRufHQ1T/WVmm5dNPPz1//rx5SxVq0pR/gWIQTDuBXAg9oHjQUV9U8ityv4bpJlyv\nw7UUrm+ix5NIT0dxMdRquOpxeTWOnYGgQItu6Pq402ZGhYeHT5gw4Yknnhg1ciBKYmC6VH5C\nvI7SNwEtVA6bGEDUMAmiWGkT1pycnH79+vn4+Kxevbrhrka8adOm9PT0adOmyR0I2eD6L7h6\nGKZbC0L6nMA926D+GooxAFCUgR1vQV90u7+LD4Z8CK2nU4PUr0TZAmmjcA+abXNqGET1W0RE\nhPRJxdvbe/fu3RMnTuzUqdPo0aPbt29v9W3Y3/72N6dESI1dwRVcSsq5GpZ3o71R7+rq+adf\nqLvaJQv+n0MzBgBOxlXKKABKbuJMPHo87dQ4TVbnwl0GSqyMPBE1YVaKH+Pi4g4dOlRSUvLj\njz9WdxmTCtlHxvEryaNzr5Uv11WU3frmle7thBJti3+Xd8i5aOWqmxecFJ6FYPXByBXQOjsS\novpNmlS+/fbbV199FUBAQEBYWBjrVMih8tM8LRnFzGTQXEsa37bPraWylRorl1lttIebN2/6\n+Fhbdl41Cvr/VGkc46i6GKIGS5pUPv30UwCvv/76/Pnz1Wq1HCFRE1KYeU/VxqKse0RxSvm/\n1gG9kZsm7RF4nyOCSUhImDBhwrfffmtlSr2iGzRvo+wT4FbduyIcmtmOCIOoQZMmlTNnzri7\nuy9cuJAPKOQMri2tNovKZ8uTSqcoZBxH9tnb5wJ6oe1wuwdiqUepdrsg9SQoH4JxN5APRVco\nB3GRb6KqpEnFw8PD19eXGYWco1lbTdZhaaNrkKBQ3fqXXaHGQ+/g8l5knS6fUhzU1+4vnWyt\nmVe0gaKNfb+aqJGRJpXBgwdv3LgxPz/fo8o6S0R259kFHh2Rf+Z2i0KFVmMqdxIUCB6I4IEO\nioH7zBPZkfSJ5N1331WpVG+88YbVFe+J7EzAPX9BwAg0C4a2Bbx7ol0sXAKc9/179+6NiooS\nRXHDhg3MKER3T/qkkpubu2DBgtdff/3AgQPTpk2rrk6lX79+TgmPGj9BAb8HHL4oZHV69er1\n0EMPzZgxIyKCS80T2YG0or7aUcrKJFfVN6yor+9KLiB3D/RZUHnCvQ/ce9YyTCLqkX8IZdeg\ncIVrZ7hyDSGi+shKRX1ISIgsoVATUnAEGavLP+szUHwe+uvweaTa/sYCpH8F/a3tdXP3wush\n+Nr5wULMOG1K2SwWZSsCwxTdx0PR4DYlJqoXpD85Fy9elCMMajJEPbKqrO+bsxPuvaC2shE9\nAGRtvp1RzHL3wLUjXNvbKyjj/n8btrwGQykAIyAE9FQ/v11oZm2XXyKqEacOk3OVXYepxEp7\nSZUKx3Iiik5aabbaaIOioiJJi3j9qGHLTHNGud2y8a93dn+iJo5JhZysmrEToZq/iqJ4ew/6\nSu1lVhprk5CQ0K5du4MHD1ZsNB7/EQZpnjOdWF8xzRCRjVQ//fQTgNatW4eHhwMwH9ZqzJgx\ntXciqkoTCKU7jAWVGgUVXNpZ7y8ooAlAWXqV+wTV9Zt1Ol1MTIwoitnZlbduLMm10tuoR1kh\nVFwvkqhuVOa5+RMnTvzuu+8A2DhVv57P/iKnyIXpOKCAojtgc6msoETz8fjzu0rPHz4joLK2\njKOZ31ikf12pRdMKHn3qFGtCQkJMTIy5wnHkyEo7awktu1kJ0zMIrtWHVJFoRP4hlF6CoIRL\nKNzDuMokNWWqe++9F0C7duW/J5oPqckxlUCfCaU7VN429Tcug2E+UAgA8IRqHpSP2/pdzTqj\n1UvI2wd9BlTecL+vlinCLm0R+DxuJqL0KhSuaNYFPsMh1GF2Vs0188pek4z7/ileP1axUTXq\nI9gyvV7U49pXKLtWfph/GIXJaPk08wo1WarDhystvSQ5pAZJFFFQgLIyaLWwVrtaubMRWTrk\nHYBoAgCXEPjHQN28pktMv8Iwp8JxHgz/D0IbKGwuidUEoHlMLX2KT6P4AkQjXELg1h2Bd1h1\ntH37dkvNvPUKR5WLevLPhp9nmk5uhKFU8GmjHDZPEf6kTXe/mXg7o5gVpSDvADxZHUxNFCfj\nNzolJTh3DpY5Tm5uaN8e2urHBrJ/Qe7vFS5PQ/p3aD0diur3LDF+ba1xaR2SSi1EZKxBwZHy\no7zf4BqKllMgKGu8yroePXp069btnXfeqaFmXvBqrX5iNUwGlBXAxbZnNbOiFOuNTCrUVEmn\n3MTGxq5cubKGCxYtWhQbG+vIkOguiCLOn0fFWbOFhThvbSvc8v565O6TNuozUHiixm+5aq3x\niu1h1iL/f7czilnxeeTsuLObtWjR4uDBgzYNFipUdcsoAESDtUZ93W5C1IhIk8qSJUt27Kjp\np3fTpk1LlixxZEh0FwoKUFhoU6OZIc/6P4v6bCuNFkIra411no5VrSJrKa3o+B3fz4FbOWhb\nW2u0svMYURNR5x+2mnYxItnpq/kduayaqg6lm/W/A6oaZ3Mpn7O18c6YrBWImO6kMMXhfEdB\n4VKpReUN78HyBENUD9Q5qVy5coVbrdRfmmoGQqobU1G4wL2HtFHpBjcrs2wrXPUIVO8CrreO\n3aH6CIr+NkdZG02grY3W6KvLrI6g8kGr6XDrBqU7VF7wuBetXpSmmbt2R4WeRPJQAbhw4cKF\nCxcsTenp6b/88kvVrkVFRb/++mtqauqDDz7ovACpTtzd4emJvLxKjd7eaNas2ktaRMJYgOJb\n4y4qT/hPgNKtli9SToPiMYhHAQGKcMDr7uKuzHsICo9WKpAUNPCtfsXJChISEl566SWdTte+\nvd1WBquFugX8n3LInUXoz0B/BmIZBBVUbaDuVqep1EQyUAFYtWrVvHnzLE3btm3btm1bDde8\n9NJLDo+L7lhoKC5cQO6tKnEfH7RtW1N/hQtaPYuSy9D/CaU7XNrWNO+rIsEXwuC7DNY6pTsC\nX0D2zyi+AJigDYbvqGqXm6xAp9NFR0cDuHDhgvOSisOUnYT+1uQy0QD9OZiK4CLTxjNENlIB\n8Pf379at/HXHiRMnvL29g4Kkg66CIDRr1qxDhw6TJk165BGbfmckeajV6NQJpaXldSrVvRCT\ncLkHLvVpeFndAi2fAUSIYrXLglVmrpkXRXHdunUjRoxwdICOJpZCf1raaLwGYxaUXD2Z6jEV\ngOnTp0+fPt18LAjCuHHjVqxYIWdQdPe02ppqUxoMwaay9sa4z7ypALC2FpKYCzCpUD0mfUG7\nfPnyRvDegJqUbdu2jRs3DkB8fPyoUaPkDsc+BHU1J2x78iSSizSpTJ48WY4wiO5c27Ztg4KC\nPv/880aTUQAoPKHwgqnyAsqCFsrah5aI5CR9W33p0qV169YlJydbWkwm0/z589u0aaPRaPr3\n75+UlOTcCIlq0aFDh5SUlMbx1qsi7f0QXG8fCmpo+0DgkwrVb9Kk8uWXXz722GNnz561tHz8\n8cdz5sxJS0vT6/X79u0bOnTotWvXQFR/iKJaXd3bogZM4QnXEdD2hrojNOFwHQFlS7ljIqqN\nNKns2LFDq9Va9uAyGAyffvopgI8//vjQoUOPPfbYzZs3zS1E8svOxrFjOHQI//sfUlOrXVCg\nwRJUULWFpgfUoRDsXFJJ5BDSpHLlypXWrVu7uJT//T1w4EBGRsbgwYNff/31++67b+nSpS4u\nLjVXsRA5WvkecdnZOHcOxcUAYDQiIwNnzoDbxxHJSppUsrKy/P1vDwX+9ttvACIjI82HXl5e\nHTt2rFh+T42NeAMoljuImiQkJNx7773Xr1/HpUvSc4WFyMyUIygiKidNKmq1Ojf39oyTPXv2\nABgwYIClxc3NzWg0ghof4w8oC0NZOErbQ/84xPr4q4NOp4uKijp58uTJY8esr5JZXK8zIlGj\nJ00qoaGhp0+fNg/F5+TkbN++3d3dvVevXpYO169fb9mSw4WNjikehtcg/mk+gGkX9E8C+TJH\nVZlln/m1cd8PLN5SvlWlhONWuSciG0h/AiMjI41GY0RExKJFiyIjI4uKisaNG6dSlZezZGZm\nXrx4sU2bNs4OkxzN8KG0RUyD8b9yhGJdxZr5Uao9xt//Ybq+x0o/X1+nh0ZEt0mTysyZMzt2\n7JicnDxz5sw9e/b4+Pi8++67lrObNm0SRXHgwIFOjZEcrgxilfEJAOJZK41y0Ol048aNE0Ux\nPj5+7PCHjL9/CcBwZKFYWHm7yeDgmtZjJiLHk1bU+/j4HDx4cOnSpSkpKcHBwVOnTm3V6vY2\nfydPnhw6dKhlwjE1FmqgGVBUpd3nTm4misjIQF4eRBFubggIuPtXUi1btvTx8fn6669HjRol\nXj8KkwGAWJJV9usTytaPCF4dxbJcRbtwRcD9d/lFleiLoGaKIqobK5szeHl5vf7661Z7f/LJ\nJw6Oh5wpD+JNCK0BJZTjYfy28lktlFF1vqUo4vTp2xu63LyJzEx06wal8m4C7d2797lz59zc\n3ADAvcKQnrHMmLbZ/FHoseJuvuK2klxD4v8Z//gWJTmCd4hy0Cxl3xel61oaiqFyreZ6oiat\nph1/TCZTTk5OUVFR69bWNuKmhku8AMMsmH4DAHhCNROqdyCehungrR5aqN6F0L3Od/7zT+kW\nYSUluHwZdz0OV55RAMG9paLrONPJjRXPCh6Byi6Rd/kVACCK+rgnTad/Lj/KSTNs/Cv0xcqH\nZgKAsQynNyA1EfoiaNzR7hF0jISiERbzE90x6+8ldu/ePWbMGE9PTz8/v3vuub3NxoIFCyZP\nnpzJUoCGrQD6ibcyCoA8GN6BcT3U8VB/B9VsqOZDsxPKyXdy79xcWxvvgipmqSLk9u7Fgoef\natwcaCWvqox3UHBjOveLJaNYGBL/D2UFAHB0Bc5shL4IAMoKkPIjjtejuQxE9YGVJ5VPPvlk\n1qxZorXKZE9Pz5UrVw4aNGjKlCmOj40cw7gG4sUqjR9B+RQUQ4Ghd3VzqwXttVa5my7A+AvE\nTCg6QDUWqGVBEsGthXraHtOJf4iXEoRm7opWIVBfwZVFaPUiVN4Qr6FsAQy7gDIo2kL9KlS2\nbisn3jhmpVVfLGaeFTz8kbZTeurCNoRGwI1LBxOVkz6p7Nq164033tBqtfPmzTt37tzTTz9d\n8ax5r9bNmzc7L0CyO6tVjWImYI/nCXd3WxstDD+iOBpln0H/LUrnomhMwtbvR4wYUVBQUNNV\nZVcUbjeUXcIVIe1hXk3SmIfMH4FilEyFIREoAwBTKkpnwLjD1vi1ntbbXbyQf8X6qfzLtt6c\nqAmQPqksWrQIwOLFi80bqwiVxycDAwODgoJOn66yzSk1IILVSg4t4GaHmwcGIisLJSW3W1Qq\nBAdX29+UhtL3yxMAAGDrtjPRTzwtiqojR44M6NcTJakwlUAbBG3lgb2iFOmtABSfR1kcTKnS\n9rKP4TrElvAVnUZB6yGW5lf8ey+0vk/wbYc/q0lyanv8dyNqLKRPKvv2PgCHpgAAIABJREFU\n7fP19a1hq67AwEAufd+wKcYBVWYuKccD9hhwVijQtSsCAtCsGVxc0KIFunWDpvo9QIw7gdsZ\nKOGXwugnrphMprVrlg3o6YJLi3BjDTI24cpi3PgBYoX1gUSrCxKLMFn7jcd0EYVHUXwephIr\nZysQPIPU0V8LatdKLRO+AwC/TnCtko+btYBPaM33JGpSpE8qubm53bvXNOfHZDKVlNTyk0n1\nQcYRXNyCwutwbY57hqJVf8D867cQCtXHMMy6XZiieACqeXb74pofTaRu//qf8Eth1ONXTCas\n+y5o7IguuBYP0VCh43Gom8N3ePmhJsjaV/tAYULVpelEBW6sBgCFK1qMg3uPGgJShD2uCe5r\nOrZWzL0q+HdV9poIjTsAKLW47yUcWFQ+aA9A44H7XubsL6KKrBQ/Xqq6+OstBoPhzJkzAQEB\nDo6K7tbl7Ti2uPxz0XVkHUfBVXT8y63TyvFQ9IdpJ5ADoRsUA24lHKdTdDL/b6WMMroVCq5U\nyihmN/fBayCUWgBw74H8Ayip/KbLLxKqEuhXSi8sufXqzFSMP3+Epjk0gTUEJfi0VQ6cZeWE\nX2cM+xRXfkfRn3ALQOsH+O6LSEL6+qtPnz5ZWVnV7Zjy3//+t6Cg4MEHH3R8YHTnDMU4uUza\neG4diq5XOBYCoHwcylgoHpItowBQDoGyDwCTCRq1sO67oLER7tC8AaPV2cBlSNXd+qxAy6fh\nNQAqbwhquIQg4Fk06wxFODSvVbpI7428nrcPRT1yD+KOaTzQbgS6P4W2wwAB2edQcN360pZE\nTZL0SWXq1Klbtmx54YUX1q9f37t374qnEhMTX3nlFQDPP/+88wKkusu7CGOplfabp9Gs3j1k\nKqH9J8o+G/XIz6knXXz92kIdC1U01L9a6WtUIPcsijPg2gIAFC7wHQ3f0dJu6uehHAjjLoh5\nyExBsb80axrypJfUmYhT63D2J5j0AOB5D3pPg3e7u74tUYMnTSpRUVGPPfbY2rVr+/bt269f\nv4yMDACzZ8/eu3fvvn37ADz77LODBw92fqBkO6GapbaEu1oqxWEEL2jfBd71bVZyu0LF637k\n7pOOq5e4AEDJzfKkUgNFp/IXa8YvgBvSs2pv61cV3sChL3HtMCAgqC/6/BXNmlvveU6H0xtu\nH+Zdxv5PMGRBtTOSiZoMK8WP3333XUBAwL///e+9e/eaWz766CMACoXir3/9q3nOMdVnXu2g\n8UBZPgBoPbPcAi6W5PiX5LT27SLfay6bVKh5VHrAezQy4qE0AoAooMgVpRoAdVvk0XsA/vyx\nUoughmdfKz2Ls7D2MRRllB/mpCJtJ/4SD61Xla4izm6StpXk4NIudBhbh9iIGiMrSUWj0Xzx\nxRf/7//9v/Xr1ycnJ9+8edPd3b1Hjx6PPvpox44dnR8i1ZVCjR7TcfTL4i5PvNd6QPkv1CW5\n97n4zgfuqfnaOhP1EBwz/ck7HFePoDQDAmAUyl9huTaHW6varqzAozcMubi5s3zYX+mBFuOg\nsVYAf/CftzOKWcF1HPo3Brwl7WkoRam1F2iFf9YhMKJGqtoFJdu2bTtz5kxnhkJ21PI+DP50\nvtrl9isaF6/DKHkFrquB6qtG6qRsPwpXwXAJghaavnB/Dgo/Gy/V6XRr1qz55ptvlDWsXiwo\nEBqJsxtQmlPeovVB6Nhq3+5Vx2cIPPuiLB2CBtqAalPg9SPWGpOsNCq1ULnAUGVivcsd7RRA\n1LjUtEoxNWBittplvbTRlALjHijvbnUvs7LDyP37re8qRulOGFPh/Q8ItWcsnU4XExMjiuJL\nL71077331tTVtTl6PIvcVJTmQusFr7Z3OC6kbAbX2koUFdZ+Fqw2CgLaDMO5nyo1qlxwz4A7\niY2oceGG3o2UeA2wNs/VVM0CVnVVsFTaYkhDydZar7u9z/zatbVkFDNBCe/2aHkvvNs7dqZB\n8EO2NgLo+hiCKgzMaDxw31+5rCQR+KTSaAnVzI8S7PIPnwFGa8nJUGXRrcoq7jM/dmw9G9O+\ndxrSdiKzwpJiLXui13PWOyvU6PMqOl1G7kWo3eHXiXtEEpkxqTRSQksoh8JYudpDCIJyoD3u\nroSghlgmbRZq+oe1XmcUACoXjF+N43FIN08pvh/d/mL99ZeF5z3wtPfEB6IGjkml8dK+h9J8\nGG9VjyuCoV0EwS7LigjQDkDJ9irf2N9a53Lm5X82bNgQERFhjxgcQKlB2NMIe7r2nkRUDUcl\nla1bt6akpJw7d+7y5cuiKC5ZsiQw0MpqS8nJyXFxcefPn1coFF27dp00aVLbtm3voA9ZIfjA\nZSVMR2FKhdASyt52m/cFwH0aDOdhSLvd4jYJ6q41XPH8889HREQEBVlbCPIuGXKhz4LKE2o/\nOZecISLHJZVly5aVlJT4+fl5eHjk5VlfFePAgQPz5893c3MbNGiQXq//7bffZs2a9eGHH7Zv\n375Ofagmip5Q9Ky9W10JHvD5J0p2wXAOgju0faGq/f8Re2QUA0zXoPAvr5Q0lSIjHgVHy0+6\nBMP/UahtndlMRHbnqKTy5ptvtm3b1sfHZ8GCBeb1XSTKysoWL17s6uq6aNEi87LHI0eOfPPN\nNxcvXvzpp5/a3ofko4LLXW8/XAd6lH0B/SqgDFBANRKat5G583ZGAVByCdf/i9bTIfC9LpE8\nHDWluHfv3j4+NdWCJSUlZWdnDx8+3LKQfufOne+///6zZ8+mpaXZ3oeairLPoP/m1h6RJhh+\nRsmryP+jSrcbKDrj9OCIqJwKQGxsbF0v++qrr+7yi0+cOAEgLCysYmN4ePj+/ftPnDgREhJi\nYx+qn3Q63Z49e+bPn2+f24k50K+SNpr+B60rSqtMkjbkSFuIyFlUAJYsWVLXy+4+qaSnpwOQ\njN6bn0jMp2zsQ/WQpWZ+0qRJXbp0scMdxUuwsqEjoMwHqiQVJZcKJpKNCsDo0VV2pHC8oqIi\nAM2aVapsMB8WFhba3sfitddes+xz7OXl1aZNG0eETbWy1MyvW7fOPhkFAKpZrF5dZQsTtS+a\ncdlTItmoAPz000+19nMQQah9AqgtfQAcPnzYnIQAhIeHM6nIwlEVjopgKO+F8X+VGoXm8H4V\nZVtQfL68Rd0CLf8Chf1mThNRHck2ScbywOHtffuXUHNWcHNzs72PxZYtW0RRNH9OTEzMzMx0\nYPRkjWNr5rUfoeQFmG7lD8EP2k+hbIlWz6L0GvSZUHrC5Z76uhMZUVNRnlSMRqNerxcEQavV\nVte1tLRUFEW1Wl3TcuU2M4+UpKenV6xdkAyi2NLHwuP/s3fegVFU3d//zuzs7G56I500eu9N\nQFRAKVJFOk8sIFiwIGJBLChifeT3qKD4Uuw0IfSmdIFA6CChJaQX0tvWmXn/mGSzZXazSTaV\n+/lr98yZmTt3d+bMvfcUd3fjZ7m8bip8NEW4YhQcgTYVNAtVO3gMqLvHbmxsrCAIdRUzTwVD\nFQPuaEUs50OgKn5xRTAU1SmyQiAQ6oxyl+Inn3xSpVK9/bZVPSIT3n33XZVKNXnyZKecuFOn\nTgAuXbpkKhS/ipsc1CHYw1CA1BUoOgltMtS3kbcbWeuksxc7g/fee+/y5ct1mYWFgWwo5LPB\njKm0KAQCoTFBA7hw4cK2bdsiIyM/++wzO6piHPvWrVsvXpQqZ1RNevTo4ePjc/DgwczMTFES\nHx9/5syZNm3aGH2FHdFpnggCcnORlobsbOj1NT9O7k7wZWYS9R0Ux9WydXYgtUEJhPscBsD6\n9esBLFy40P6sEcMwb7zxxty5c9evX79ixQr7x925c+edO3cA3L59WzyFSqUCEB0dLQZFsiw7\nb9685cuXv/766wMHDtTr9SdOnGAY5vnnnzcexBGdZohWixs3UOHJhpQUtGoFLxvuT/bRJEgI\n1Qlw71vz5hEIBIJtGADHjh0DMHbs2Cq1x4wZM3fuXFHfPpcvX46NjTV+PXXqlPhh0qRJxkj7\n/v37L126dMOGDUeOHKEoqnPnzrNmzYqKMnMSdUSnuZGQUGlRAHAcEhLQpQvIQhGBQGj0UIIg\neHp6chxXUlLiyA6enp4URRUUNOqg5R07dmRkZMydO7ehG1J9dDpIzi5GRqKFjbpbdsj6BWX/\nWgr9JjhlpLJv3747d+68+OKLtT8UgUBoHowaNYoGUFZWZu2hawtXV1djOAjB+RgM1ZPbx3cM\naJWZRBkF9941OZQ5e/funTBhwsKFC8UqKQQno9OBF/0pSiHcrsh4RiA0ARgAXl5eeXl5BoOB\nYaoIW+E4Ljc3136mSEKtUChAUagIuKnEpUbVahkvhL6KgiPQpoBWQNUOHg/UPouoacx8WFhY\nLY9GMCMzE2lp4DgA8ExF8FKwWYAcsqfAvFOe8J9AaMTQAFq1amUwGEyXQGxx9uxZnU7XqlWr\num/Y/YpMBuuiIx4e8PSs6QE94DsWwS8icDY8B9c+SKWxVwVu0mRlITm53KIAKAxF4rvgWUAP\n7kcY3m/QxhEIDkEDGDp0KID/+7//q1Jb1BH1CXVFUBBatoQYYUpR8PNDVBSKi1FYWCv3YmdA\nLEodIghIS7MUasJQMKT8M/cLhMx6bhSBUF0YAHPmzPniiy82b9787bffvvTSS7ZUV61atWHD\nBpZl58yZU48tvP+gKAQFISgIOh3kchQU4Nq1cnMibgoNld5RyAT3HYRLgBvoRyGb6fQ0PFu3\nbhUEISYmZuTIkc49sk0EoejUn2U3T1MyuVu3Ya5dm+8LjcEgvXKmNf7cAoQ7oALrsU0EQrWh\nAURERCxatAjA/Pnzp06dGhcXJ5jM6QuCcO7cuWnTpr3wwgsA3n77bTKNXk+wLDQa3LlTOUAR\nBKSnIztbQllIgm4IuP8H/iz4wzC8Df0zgNXaTI0RBJSVrfrii9MnT9abRREMurvvD0354snc\n7V/lbP307vvD0r59pn5O3QDIZJDMnSozqcZN+dVbcwiEmlH+Jrt06dKkpKRff/1148aNGzdu\n9Pb2btWqlZubW0lJyZ07d/Lz80W1p5566v33ycRuPXLvXoUXkAmZmfC3rkz1NlBkJuEPgtsG\n2UQnNKOoCImJ0GppoDtNIz0dwfWRa+ve5o9Lrxw2lRT8vc61yyNeQ2bWw9nrG5qGjw9yc82F\nGnidBAABoHuAIgkLCI2dckcgmqZ/+eWXH374ITQ0FEB+fn5cXNyRI0fi4uJEi9KyZcsff/xx\n3bp1DiaiJzgHrVZCqLN2MBXAn5TQFI7bOK4APgaG+dA/De7/gOIq2nDrVmVLeB6pqbh3z267\nnUPRyS1Sws31cOqGITwcps79tBah34HNAAC6NeQrAXL3ERo7ZnPuzz333FNPPXX06NHjx4+n\npqYWFxd7eHiEhoYOGjTooYceIql/GwBWqjSIpFBypsvW7Jf+RfDbyj/z+8D9DPk+UDaCK7Oz\nK/2RjGRkoEULoAyGlRCOQdCB7gPZK86dn+E1EgG5vNquCWzSMAw6dUJBAcrKIJfDUw5mBoSH\nQUWAHgqQG5DQBLBcyGVZdvjw4cOHD2+Q1hAs8QayOQjmfsAtrBP0UqAHgD9qIdVeHEC7QW5R\nfZHfWWlRRIR0GN6F/AcAgh5CKSgVKAX27dtXWlr6RLduEg3TagEddOMgXC2XcJfA74D8ICir\nqTlpDDCkgWIgC7IVOqMM76rPSbEURnZ37PhNFi8vk1RvVSdPIhAaFQ1WT4XgEOqjcC9ESXfw\n4u/Cw+U25ClApKUm8wl0jwGVr/ZczhBDyiQIgBzy1iaa/CGJE/GHwEF7GYbE8vHN30n7piye\nwDDMg8eOSQxhWBbcD5UWRUTIBvcRmG+qvi7tYZT8CL4AAOgWcH8JbB9rLf9Zy0uvHOJ16sqr\n9Ar0m/hW1cdvNqjVyMiAWg2Wha8vfHwaukEEQhU0WD0VgkPos6FIh88BeB2H5yn47ofrNeik\nvL+oKLCH+ZIZfGFnLvcB3b/va878AoEGoI+3PKjUmXTayzAklFuUvy7un/LWBN7A//7b7y3a\ntwct/k/KgBug4kHlAlqkCTBY5VbgTzlwUZdR9EW5RQHA30PRMhgSrRWV4V3Cl/7t0mEQxbC0\nwsW922MRL29idFSDx+vUE0VFuHoVOTkoLUV+Pm7fBkmKQ2j0MKhOPZWYmBixnkr37s19CqKR\nIGbuogyQm1RHltlI2UKFGlK+1N+xFAtaCHpQxgl5qifwp6WOfpjxqf7Xxf1TPxvPC/yvC7eM\n6jsGKiAqCokXwF8EAiC0AWhogcz+uNcVUe/B5ZZpI6q+qLKNVk3UQf0n3Bda67q0GxD5yXFB\nU0bdug21BnogMREyGaKi0OzTBSUmWibsycyEry8cztRHINQ/NKpZT8WoT6gP3HpICW1adEpy\n8pIBZbp2JpsFymKZRCVolxjHKJUWpfcYvhQA4OMN5jbAQmhltv7BuSB5gZmEHizdMkMBym5C\nmw6BB5choSApNF5XcirUVuUAJLzgmhEajbTvX1GRhJBAaDTQqGY9FaM+oT7wGGBpQjwegKvU\nyjkAQBZmbj8AAPIIi/GDHOwmyF4A1RZUMOhRYPdQyghx24/7VwoQ/li0bVTvMTBaKW0BdEWA\nF2C1nKYNhqYiWRkVBNm7lgqCHtlbkPQFMn5C6ndI/RYwedGmBMgLoEwHcwya+eCvS1yVwQDr\nUgsch4rwKQKB0HhgACQkJLi6uobaSv5hQlBQkIeHR0KCVD1BQp1AocUUuPeD5i4oGspWUFil\nmzSBdgXbG7rzECpe4mVBYDtbK3qAWQIsqTyNK2T+4LLx04KNlxIv9Gs7AADlApmYE0ScgxFs\nOGjwfUGHguoN5kXAKvFl7j4UX6j8qssCzcLoFM1mQSauw2vB/QX1MSjXQ2Y+PrN2aBapWTmA\npoJSCZaVGI15eDREawgER2EAlJWV+TjsVeLq6pqTk1O1HsGJKCNQMZKoEiYEshbg7gE60F6g\nHVl3KElHSaoinNVoOykLlUaLouxXMe5ReoF1h65YOvCl9C1423gj4XUoOmsp1CihegDcSchK\nKyyKER1070O1w0zGspDJJEyLSmUpaWZERuLGDTNJYCBZUCE0ckg9lWYBHwduZXm2QXoyxU5k\nQhwOvb67H/cuA6AAlcdfXODDgksvSgWZv+lcF4WIx3BzC5AFBFgewY4vFlcMQXKcMQA+T0O7\nDIKVJxt/C0IxKJNYHIpCcDBSzANWXF2b/0K9pyc6dy53KZbL4ecHX9+GbhOBUAWknkr9wRsk\nim8547h7oR8Dfi+Em+CPwfASDB84uu+9y6JFKYcSZOpDjMcVWZDV6olnJDr9B3QhqDRAaxas\nbzu2CTI3UFKBjYwnZCFgoqT2oSTWhSzKAfj4oE0b6fSLzQwXF7Rqhc6d0a4dsSiEJgGpp1If\nFN/E7ZW4vgzXlyF5I3RWq861QA/DG5YybjWEa47svHfbbycu3rWU5lqVtRdxCUDoMAghgKJy\n6Z9h4Gc7NQutgHsvSyHjCbfOACAbJLGLrBcgNa8VFIRevdC9O3r1QuvWNnLVEAiEBoYGMGfO\nHLlcLtZTsaNK6qnUjNIEJP8B7T0AEDgUxyPpZ/BSzqI1QbgNIVdCzp+ucte9e/dOfPnrCYt+\nKi4zb41BY2MPIDAQQUGVQwSlEm3aVPF89x1VbkJE5H4InA5aCQCy/mCmmilT7mCX2jsay1ZE\nYhIIhMYIg4p6KsuWLZs/f/6JEycWLlzYq1cvYzZiQRDOnz//5ZdfbtiwAaSeSvXJPGgp0eUj\n7yz8pF7Tq4+NJ6ygBn8YEEB1lUzyWFFnXli75El3F/P5K6XdaZaWLREUhLIyMAxUqqrnoGgW\nAdPgkwNdNmRuUISYlTRWvA+qLwx7QGtAt4f8KVBkkodAaMKQeip1jlYqqYomy0lHp1qDCpSo\nMst9BU4ccKjAvAXZc6YbK6sC/7F+TEQ2eBPfXFqO4AFVnJRhqu3YKveD3Mq2FaXg+DIkn4DA\nwdUffUegA7EoBELThtRTqXNoqWVsmdJZh5eBWSGVFN04haWG4X3wlcMlszrzT8xAmyegqnjc\nu/ij7SSo6uXJri/Drudw92i5e1hpNg6/i1u76uPUBAKhziD1VOocz07Ii7MUenRy3gnoIWAP\nglsN4RYQBCEFwgVLHW4N6OEABEFYunSpIAjbtm0bNWoUAHiEofPT5esojJStMxhQVgaahkoF\nRxJUCxxKL0GXAdoFLh3A2qipHr8VBXctU4Wd+gptHq/6FAQCobFC6qnUOQHDoc6AOq1S0mII\nXCOceg6qHZivyj/rpH47Ib1ckaJ27dp16dyOwX1kBddOleV1dQ1x9YyyYU4AZGQgLa28pDHD\nICKiiuzrfBkyVkNXMbtXcAjej8JTKiFYvlRehpJM6EsFxlWTC9YdMtu+ygQCoXFSRbQjofbQ\nLKKeRdF1qNNAK+HeGsogABBKYUgBrwbtBiYclLNcZKlQyzInAKiW5R8EtTf95UPdLkAHL3+4\nqLwu/fQ67dKr+2uQWTcgL88s5NBgQEICFAp7Qd05OyotCgDBgLw9UEZCYRVyLxW/IshUCTtV\nd2JgUIOiENAHHZ+pwm+AQCA0Koh3Zr1AwaMjWjyMzGTu8DL9zuf0p5cbCnZCdw2GO9BdhvpA\nZXmR2mK+Jl8hnFv+oeR76Conx1j3gu7PfFZ4Ozf+F6lDZVhlDuZ5ZEs5HogIPMqs7BmAUimh\nyt3MDQwAkJD3zo0/aIMaAAQBmWdw7nMzNwICgdDIIUalnuA57Jqr/+dzQ9JxPi2Wv7iB27VS\npykTxEUFQQvtGdsl5asFPQDMf00SO3qA+RL0g+Wn0Ry2UJe7lAT1OpZ6SCqdimRuecl87OUY\nJJOy8JK7yGQI6wtKJshCOMVgnunAu4TevjLeQqswAZlVh9yYIxhQcBhpK5D8MTJWQ32r6l0I\nBIKTINNf9cS/m7j0ON5UUloonD/IPTCu/Cfgi8EXgTZP8ltyGyUJEPRQhcKzq8N5SWTTIBsD\n/l9A2H8wIyysXQexTL1QDEi89is88jkd9GVg3c03sKxEXi87oY4UC8YbBsuM9NknAt16wK21\nuVSmQIuuWrxi0JRn8tdq8zi9xB+yNM1aZpd7GyvHRlwiMhPhPwOuErmaCQSC0yEjlXoiNZa3\nFmYkmAkFAwA9uL+h/wmGA+k7NUm/IfcU8uKQFoPENeCrUUXXDXTfvfvzxo2bOnLkSK04VqC9\nQElkQCm9Fyx3g9zNakOAVe5ImpYQmuI72kKgyQ/Mu9ErbRs4i+GKT3tt/kNGiwJARvlI1o2U\nu0sIbaK+JTHblrsdkOh/AoHgdIhRqScEqWeaWX5JGrT7XajHQvMSdJ9C+0qL3qNUAZUpvNRp\nyLacu7KHGDMvCMI333yjKM/5yMBlkoVa2b3gjLghrSZIDYP8/BASUrlB9P6yn3rdpZNWNkNb\n2AICxRvYwsTuSX8/LXCMoQxlSWaKgv8DhhKzamMMC99gy+MxKgT2q/JaTdCmSgi5EuhJRS8C\noT4g01/1RFBPOumopWHxD6t8kLMdeYpbAP6uUSL3yAgdu+DOuu28odzft+g6Ah916HRmEY5j\nxlRucJkCQYuybYAeQH5Ch2sbX40YpYocY+NAISHw90dpKWgarq6OxKno9Z2TtnemZXqeZyBU\nXqBFujNBK3Gotn1wlUNxRX4ARoWuL1XT+8s6w7EITaKsCIT6oNpG5cKFC+vWrfvf//5XF61p\nxnSZLru9l8uJrxybKN2pPmMYALQr5G3BhMdDY1lMl/VMdml5piTxQfGr4FhRdpsWBQBouD4F\nlykwpKnzPWnfFv2XgbFf7Eouh5eXQycGACj9QVHgOcuHuNI8CJJSApSlbwKrRP8FyMtFSTJY\nL/j3gsKqkqRN9DkoioPOKmMNADYYMlIwkUCoDxw1Krm5ub/99tu6desuXrwIgBiV6iJjMW4d\ne3GdIeUkz+kR0IXuNVfm6k+Br5iD5KTnZxiXSrkY4GIfg8Hw2muvmcXMW0OpIG+t8ofKv9oX\nUgW8mine4NspKufqEFOxdy8oWpg3QQ4mHIa75kIXMKEIiERA72qet/QasjaJq1KgKFAmxopW\nosWT1TwcgUCoIVWXejxw4MC6deu2b9+uq3Aw7datm/29CJLIXdDnRabPi+ZS46oWHS65lzYv\nsnw7gwAH5r4Yhtm3b9+NGzcaJi3CvRiob/t3S2AUpbnxD+hLveQuJd59lX6DJP5pbDdAD0OF\ncxftDkUfUDWYpuI1yN5WblEACBQEQMZA1RpsMDz6Q2bthEAgEOoEm0bl1q1b69ev/+mnn9LS\nym96X1/f6dOnP/300z169Kiv5t1PUKFgxsMQYyrTZA/R5Xeh5VCFIGAYlI4NLMLCwhqmPAFX\njJJrACiK9+3wj2+HfwReRtEcAqZA1tVanWKg6A95MYRiUErQXjV1HNHcBW9R654Cx8FjEFSS\nxSUJBEJdYWlUSktLN2/evHbt2uPHj5drMIzBYPDz80tLS2NJub06RfEeKBX0mwAOoMCMUUa8\n0/5NCgIkfW0bHYZii0USiuYAwFBoZyfaHaiW07A1tmLuhWq4YBMIBKdQaVT++eeftWvXbtq0\nqaSkRJR06dIlOjp65syZgYGBMpmMWJS6RwX2PbCLwKeBCgLlUi52rkUxHAS3F0Iu6NaQPw3K\nKitXjWG8JBbfAcjt5qB0BCEB3P/A/wvKB/RIyGYCppW+QiR2oWgorDyUCQRCHcMA+PTTT9et\nW3fz5k1R5OfnN23atKeeeqpnz54N2rb7FiXoVo5r//333x06dAgOduwBqvsc+nXln7kz0G+F\n6mfQXcBpoS+FwtM6H1c1kLnAozeKzpoJ2QC4tKv5MQEIV6EbU14hRgD4o+BPQv5DpYLcG15D\nUHDUbC/vRyCr5QiIQCBUGwbA22+/DUAul48aNSo6Ovrxxx8npVOaCnv37p04cWLbtm3Pnz8v\nqzKIhL9caVHK0UDzJtJmo+AOIDoD9EbIQMkUwg7hOwqCAcUVOSsK+5ScAAAgAElEQVSVYfCf\nZDN2xEH0C01qjgEA+B3gnwBt4rfgOwxyLxSegSEPcl949oc7eSUiEBqAyrudZVkvLy9PT0+G\nIRGRjlKWisJLMJRA0QI+fcDU75txRZ15/uOPP67aogDgTkkIhUSUXgZcAYA3IOM0KCBEqgKK\nI9As/CfB9zHocsC4Q+5b68m7MgiXJMT8STOjAhoefeHRt3bnIhAItYUG8M4774SGhpaWlv70\n009Dhw6NiIhYvHjxjRs3GrptjZ3c00hcg7w4FMXj3nHc+hbq9Po7u90IR1s4lv8q4yw4x8Is\nbSFzhyoScr8m4mBAIBCcBg1g2bJlSUlJe/fuffLJJxUKRXJy8ieffNK+ffv+/fuvWrVKrFFP\nsECXi6y/zSS8Dmlbq0pfLzgaFW+fGlkUgO4lIdS5Qe9iJhE46Oz5a9UvLqClJrLomo6lCARC\nXVI+00XT9IgRI0aMGJGXl/fbb7+tXbv24sWLsbGxsbGxr732GgCO4wwGA5kZM1KSUBlsZ0Sb\nA10+WClfJ0ED3SUY0gEelApsBzCRjp2JjwV/GNCC7gl6NECr1epnn31WEISYmJiRI0dCSAT3\nf+CvgvIGPQKyaJvhR7K+YMbBsN1MmDFYYjzBuFhKao/6NorOwVAE1g+eA8E6HM3PfAHd44BJ\nJAo9EfRQ57eQQCDUGsunj4+Pz/z58+fPn3/x4sW1a9f+/vvvubm5AHJyckJCQmbOnPn00093\n7kxKU0hYFACgbMh5aP6prO0oqKE9D1BgIqo6jeEdcEZnLYDuC/kmlUq1e/fujIyMESNGQPi3\n8oErAPwJ8CcgX2tz3kmxDHQ3cHsg5IJuA+o/UMcBRWY6nlGQ201FXAMKjiF3f/lnzV0UX0Tg\nDLi0dWhfqiPYI+C+hXAN8AI9GrKpTm4egUBwEpQg2Juv0el0MTEx69atO3DgAM+Xz8j37t37\n7NmzdvZqcHbs2JGRkTF37tyqVWtKWTIS11kKZUq0WyjhlGtIgjbOUkgp4DLa7qIDvwf6Z63O\n8QKYJZVf9Y+DP2epI/9/oC3rmlgg6KC7Ci4FggEUU8R6nGTcrgCASwDaPuGQURF4aPIhV1U9\nrNHnIuV/lvZW5o7wN2rlwUwgEBoZo0aNqmI6i2XZyZMnT548OS0tbf369evXr799+3ZcnNUD\n8v7DJQxeXVFw2UwYNEr6IckXSQgFLQQtKKXtc3A7pY61E1gCgUfBbZRlguLg4QG5+Qn4k1UY\nFQHaU+ByKr4ZPLR5I+DTgYng4Rnh0Op6RizST5VXDXMLRcSjUNnOUK9OlBjBccXQZZH4RAKh\nmeFoOEJISMjixYtv3bp19OjR6OjoOm1TUyF4LAKGQxkAxgUu4QifDs8u0prSSRKpKuM3SiRk\nQjEMZfh3DW5vR3os0h7BjadQ0MFcSfxZBRj+hHo0Sjuj7BHovjFGexjSKy2KEV1yONwjHbIo\n2eeReqyyDmVJKm79aVXZ0azRNuSkGiOB0Nyo9sL7gw8++OCDD9ZFU5oclAx+D8DvAXs6JSm4\nuQm6LHTqA9rcgsuCqup+qiPwF4Dj/+i6dZF7eFAAQHdCwmqUmWS14hmkDocqE4oKPz16IADo\nf4Lus3KJkAH9SgjJUHwBgJfy7RJ0ENSgHFlMSbOKd9EWIucaAmzEGyqlEjDTKrCBAJCTg+Ji\nCALc3eHnJ1WBkkAgNBmqNiqnT58+ceKEVqtt27btqFGjXO1XkyWYUJyEk++Uh3zcptC6d6Vd\noT2gqDLiWzYP/OZ9++9OmFzQv6/80H4filIAj6Moy3KIyTMobA3/swBAjwM9AkIpdCssD2jY\nBfkM0N1tppd35B3DoIGhTEKuse16zvrD60EUHDMTthgHyBAfj6KKubucHNy7hw4diF0hEJou\nDICMjIw1a9YolcqFCxeabtNqtdOmTdu2bZtREhISsnXr1r59SdyyQ1xbUxlEmJGA/Gz4hSC4\nH7x6gAlxYJ6J8t5/6OUJk2fzPBa84kHRPcAsgXobhBYSykIkaE/QI8s9o4QEQGo+ivsXdHdZ\nEHAN4My2yPxBKRy4KhkLmpFIDCy3u1zv+ygUgSg6B0Mh2BbwHARVBDIzKy2KSEkJ0tMRIpUg\nkkAgNAVoALt3716yZMmFCxcsti1atEi0KDRN+/j4AEhLSxszZkxhYeOJjGvECMi/aSbQlCD9\njl7v8f8Y35Eo6wn1EzDsthMtuX///vETnud52ZYtMWMmpoPdA3oA6FzIpKyFy3OQ/wLZ9IpB\njHSJ4NK7LoYS0G5QdDcb7VCuUDhYbJGi4dvJUkjL4dPe/m5w64bgZxD2GgJnQhUBAAUFEook\n2JZAaMrQAI4cOQJg8uTJphsyMzNXrVoFYNasWQUFBbm5uWfPng0KCsrOzv7xxx8boqlNDQq0\nlSdY5+gPgnp/Bf4uBDX4f6FdCP0fknubx8yPBSpmrGThaGHlQ6xUw7c9AAjgi8Hdg6CLAm1Z\nn4rXu6TueODWtyi+CSYCquGQtUF+KdKTkXYDaXuhc/B5HvYwPEyWSWQsIkdA6e3YzqYNklqo\nt+vjTiAQGjk0gMuXL1MU9dBDD5lu2LZtm16vDwkJWb16tbu7O4DevXsvW7YMwJ49exqiqU0P\nv+5mXz0jr4YO3lr+xTj3pfsCguUSRWFh4bRp08Q685ZZWJin4JuKoFNg1ABACXC/i1b9QMn4\nYqgPQ30AmmMo203rEj4H5WHcT+DY9AMfGkr8eS3SYmAoBVikHEVhIrRF0BWg8AoSVkPvyCiU\nlqPdZLSfhrChiHocXWZXNUyxgeT6HFm0IxCaMgyArKwsf39/T09P0w0nTpwAMH78eKWyMpJi\n6tSpzz777PXr1+u5lU2UTs+i4Ca0FXM8npFXpbQ0EG6DMqu26+npuWnTJp1ON2rUKEt1OgyK\n7+H9Brz/gEEFikJJJ9w7Cb/O2lMhfHGloj6+E7h9svCtxdcT9CUBBf+O1eVHiJs4NUpuQ5cP\nXR5gYuA4DTIPoOWTjl2eeyjca1fgKyQE+fnQmWRDYxiEOq9oGIFAqHcYAHl5eQEBARYbzp07\nB8Bi+KJSqfz8/PLy8uqreU0KnkdpKTgOLi5gWQBKHzy4And3o/AOGBVCh9gKdDRZH9fpkJqK\ngoJhXl5wc0NJCdzcrE4UhnsDQRWD4sGJ7/U6w+1LfHH5+jYt1zAuuRSt47NUWven0vZLBGRy\nGqhTJZoiKawrGAYdOyIlpdKlODQUpMAogdCUYQC4urpmZWXxPE9XeLwWFhaKhSD79OljuQPD\nUMTj05qCAiQmQq8HAIoS3AK02WF8MSgVInpAPgmgAaE/ylRmiREB0GGg25R/5jjEx0NTUZCq\nqAjx8ejYES7mjlXq2xAMEMyW4gV1ueVgXHMV3gmgylcmZNlZlKybYO7oBUDpj9I7nFlRXgCo\n97QpLItW1ShzSSAQGjk0gHbt2hkMhn379hmlBw4cEAQhJCQkPNwsbE2n0+Xk5Pj7O5xf9j5B\no8GdO+UWBYAgUMWZtDZD0IIvgO4ytOcBAFQgFO9WLrlDdLr6vNINKyur0qKI8DySky1PJ5W0\nkmKKAFAyHet912hRAMgobUCHdDe/QpVXKUWXL4y7hd9zDdO6tdplfRy3NrmOXjWBQCBYQQMY\nPXo0gDfffDM1NRVAZmbmRx99BGD8+PEW2ufOndPr9R06dLA6zv3NvXvgLMcCcvcs42dDEjjx\nWc1MhGoL5M+CGQ35i1DtBd0NwJkzZ3Q6HUpLJQ5uLVS0tNaS+SRSKsiUhRRl2RLflqnhfW5E\nDbjW5sHL7v553m3Ohvb7Adkbvbu96RZhVtdd4Xsr4ME1jlwxgUAgSMIAeOmll7777rurV69G\nRkaGhISkpaUZDAaFQvHqq69aaG/duhXAAw/YzUxyH6KTKLxFyXSgKqNQ+DzIxIyLdFuwZkGm\ne/funTBhwrhx4zZ+8onEwWmr/GzKCLj1QIlZXBEV8JjSC9xle9m05CpdWO/r8DwMmRplNygX\nt7ApMwquTC69+6DAsS4hZ717rqcVE+xfK4FAINiBAeDj47Nnz54JEyakpKQkJSUBUCqVa9as\nad26tamqWq3++eefAUi4JN3nKCQi0QWONYtrtJG6U6wzLwjCzJkz4e2NXKvZJ2+T+I+SEqSk\noLQUdGu4tITqOJANWSFcE8BwtEsI3cMF9stAC3Jow+ESDwCGVpQyzbvrH95dTWJlqDa2diUQ\nCIQqKU/21KtXrxs3bhw4cCAhIcHLy2vEiBFBQUEWqrm5ucuWLZPJZNar9/c7LVogK8tiBkxf\nFFj5RQaZpXsdIFkVuEUL3LtXqeHigpYVk12lpYiPLw8Y5HkUyaDugNZ/gNYAgCEdfBI8f4OP\nD+y75/EVy/6yRwDzfFxUGGQzqr5eAoFAsEFlBkGVSjVu3Dg7qqGhobNnz677JjVBFAq0bo3E\nxPJ5MIrSlwTqSyqNCtsZtJVjsHSd+chI+PigsBAcBzc3s6y9ycmWIej6AOQ+hhYV5YH5yzDs\nh7cCmmxoQiEoIEAixRhdBgCUHK6TQbuB+wzCPYACPRjMJ4CHpX4TRyjJ5g4s5q/vFLRFdEgv\n2aMf05FDGrpRBEKzhdScdxKenujaFWVlYpwKY5ALd8AXg1aCCQdtVbU+KytLnPXatm2b5XSi\npyfMA1HLKZPMDWyeVT53PUraQgWorkGgoGmDMnOvCsoAZQoA+I2C3BuYAdkMCJmg3AAru9cM\nMGj0a4YLmeXF1Pi7J/jVD8nnHqMjBjdsuwiE5goDoKSkhKIoB3Pa//PPP3q93iIokgAANG0M\nVKTkYDvb0w0ICFi9erW3t3c1Fqho2trHDJSJC7JAodQk3xclQHULvBKayIojaOB2EXQpvAbD\nwyTVNGUyU9e84M6sNloUI4adr7DzzzdIewiEZg8DwN3d3dfXNyfHrBbg+PHjPTw8xJV5U8aN\nG5ebm2u/sj3BEWbMqObqhbc3srMthR4mySV5JQSLoacA18twj4XeH4ICsnzIWHiPgNegmrS4\nCSKkW+beBiBkXALPSeT7JBAItcbm9Nf27dt9fW1XHSdUF4FD0SmUXQVXBjYIXg+X1z0008mE\nkA0qHFTF9JdgQHEsNMmgGPi0QgmFMhNz7nPOzKjQOlACBOtFFDW8j0E5HqpnwHg4VDC42SBZ\n5UWuAuVoIW0CgVAtyJpKfZH9B8qulX/W30PZvwiaA0VYuUTIgHYxOLFMLw3mCSjeAU8hfSX0\nFaOTkvPwuQcvGprWoPTw7gafOTCEgT9Xnj+f4qBMgToMFnBeENJAAYzUUk2zhu44nju90lpI\niksSCHUEeV+rF8quX7lwxGzKUDAgpyINPgzQvFJhUQDwMGyG9hPkH6i0KCLaFlCmImgdAn+F\n4l3wt8CMBrsEdEX6LHER3gKBBucGud1FnmYK3Wa4bNACUwnl15YZ838N1R4CodlDjEp9sHfX\nlj7j1r/60V9mUl0WeDUAcP+Av2K5j+FPqP+VOJbOGPCihSEGAEBB8RkoFwCmWb/MYNpCMaCG\nrW/iMKO/ks85JBv8uqz3M8y4lewrlykXMq9LINQVZPqrztm/f//E/3wsCBg2MMJqIw0AvGS6\neR6CRPYXCCbLy0JFkCPdCaq90P8G6o5pbphKvF66v5ZSzKGjHqajHm7oVhAI9wVkpFK3lEc4\nCsKWlRPGDDVLewNFGGgFAFA2XpwVwRJCuUm0PB1R+ZnyB/saZDPBplnu4tUHcr9qN51AIBCq\nDzEqdYhJzPyfY8ZPN9tGs/CbWP5ZNhiUlf2QDYbPOMv1ZFkZXG6Vf6Z8wUy13KvsdyiyoUqE\nrASUHrJSqJKgyHTO9RAIBEJVlE9/lZaWzps3z2KbLWF9tKvpk5iYOH78eJOYeQGqVii9Cq4U\nbBA8B1f6YlGuUH4NzesQKubBhO5QLEPBT1Bdhy4IvAoUB3k2VHfLFegwMG3AfQSqC2QzgIqa\nklwGAMgLIC+obApHjAqBQKgnKEEQalDJsZEHP+7YsSMjI2Pu3LkN24wvv/yyY8eOljHzQi70\n34GLBTjQvcG+JAa0G9I03N04MFlCaQSX35PxS1K0fxW0DvJ8KJNMVuBVoB8Gv6fygFQk5DvL\n59Dy5oCzmv5SPgp3yyoGzkFbDLkLiSIkEAgio0aNYlBRpIvgdBYuXGgpEoqhngKh4rnPJ4E7\nAlUMX+KnPasEVxnobsiJUFB6UHooU8x9utRmFgWAkAjDu5CvAgDlCJRaVdlSPuqMqzGDO7eO\n++tDoSAJjJLu/AQz6kvKvdnmeiEQCI7DANi1S6KsLKFO0H9faVFEhFzoVhiSP4ZVWi9BG0C5\n/wurSo4S8PsBAaDgMhFcMjQHy+UUC9fZkHd0RtMr4c7/ZNjyTPkXg4a/+Jv+Xjz7/EnIWOee\niEAgNDmIS3H9wl+UEl4QtBJiXcoURad3HTuuDuABGUDB/TWoJsAQD0oJeWfQzvb7Enhu75uW\nsrRz3KU/ZD2jnXwuAoHQ1CBGxWkkJiZGRkZWpSXZ4QwtlSGayxkATUsoJaNYzKE6ASYLG0wE\nmIiq96oRQuk9oSRLQp55tY7OSCAQmhDEpdg57N27t2PHjp9//nkVejKp9MCywUwEKKuSxPLA\nwyhrB3W41Q5WjhXMxw63tLZQrJvkyjylvO8SixEIBGuIUXECYp15nuc7dOhQhar8adA9zCR0\nO7AvUQooB4I2PpZlYDvy8raeUEagdAA0Lc1+KdkMyP4DKghwBf0A5NtB12OBZ9aVbj/GUihX\n0Z0nSmkTCIT7CzL9VVukqwLbhIHqZ+g3g4+FwEHWG/KpgAIA7Q3VUPBlgA60O8DQwEPweggo\nhuFTcL8DGsANstlgXgNY4LO6vzgb1zDhB33ODSH7esV3BfP4Csrfye4ABAKhKUKMSq2opkUR\nYSCfBkyT2EKBdgUs11fcwSwDsxRCDij/xpDCi3LzZ1++xF3ZJGRcplz96I7jKb82Dd0oAoHQ\nKCBGpeZcvXp13LhxAGJiYkaOHFmlPp8PLg8UDdofkivzdpGBCqhaq96QyWXdZ6B7NYtXEgiE\n5g4xKjWnU6dOzz///KOPPlq1RRGgjYMhueIrDbYT5G3ruH0EAoFQ7xCjUnMoivr6668d0dTf\nNLEoAHjoroD2hqxFHTWNQCAQGgbi/VUfGJKkhHfruxkEAoFQ15CRSq0pKoJaDbkcHh5gpPtT\nMmC+XCjkg08A1QJ0KLHxBAKhqUOMSjXIysoKCDBZLTcYcPMmSkrKvzIMWrWCp0QMIOUOIddS\nSHvooVsO/SaIab/oLlAsr6w2TyAQCE0Q8mrsKPv27YuKivrll18qRXfvVloUAAYD7tyBTqIG\nMGsVE0nJwbZaAf0fMCaS5K9A+yKEMie3m0AgEOoRYlQcYv/+/RMmTDAYDF5eXuUijkN+vqWe\nwSAhBGQBUPQBVVFJi/aEYpAG+NVSj08Cd8CZ7SYQCIT6pQlMf126dGnDhg137tyhabpjx46z\nZs1yIG+jM5GOcDQYIFmpTK+XPAgTBiYMQikgA6UE+GyoJcY04FOc1WwCgUCofxr7SCU2Nva9\n995LSkoaMmRI//79r1y5smjRotu3b9dbA2zGzMvloKV6T6mUEFZAuVaMVygfs7zCRmj/2rSW\nQCAQGpZGbVR0Ot2qVatUKtV///vfF1988dVXX/3oo4/0ev2qVavqpwFnz5411pm3zMJC0wgK\nstxBpYKPj0OHptzAPG4l9IXM+VUaCQQCod5o1EblwoULeXl5w4cPDwwsL1Xbvn37vn373rp1\nKylJKvTD2XTv3n3cuHFbt261rDMvEhyM4GBQFcm4PDzQtq308EUS9l3IBld+pQKhWAHKu3ZN\nJhAIhIakUa+pXLt2DUC3bt1Mhd27dz99+vS1a9fCw60LjTgZuVy+YcMGm5spCqGhCA6GRgOW\ntRWkYnt3NyhXg/8X/E1QLSDrBdibOiMQCITGT6M2KhkZGQCCzGeZxFGLuMmUuLg4nufFz/fu\n3auXBgIAaBouLrXYvSNokjSeQCA0Exq1USkrKwPgYv7IFr+WlpZaKC9YsEDUB9C9e/c+feqx\nbhWBQCAQADRyoyJCUQ5VEJk3b56+wp03N9cqft0xCgsLPaVC4gkEAoHgCI3aqBgHJZUhhxXD\nF1dXy4Ik06dPN37esWOH9fxYlezfv3/KlCm//fbb6NGja9hiAoFAuL9p1N5f4mqKhXmQXGip\nPWI8ilqtNi7MEAgEAqG6NGqj0qlTJwCXLl0yFYpfxU3OokZVgQkEAoFgSaM2Kj169PDx8Tl4\n8GBmZqYoiY+PP3PmTJs2bZzoT0wsCoFAIDiLRr2mwrLsvHnzli9f/vrrrw8cOFCv1584cYJh\nmOeff95Zpzh+/LgxZl46wpFAIBAIDtOojQqA/v37L126dMOGDUeOHKEoqnPnzrNmzYqKinLW\n8Xv27Dl48OD58+cTi0IgEAi1p7EbFQDdunWzCKp3Iq6urgcOkGzzBAKB4Bwa9ZoKgUAgEJoW\nxKgQCAQCwWncd0ZFrVY3dBMIBAKh2XJ/GZX9+/dHRUXFxcU1dEMIBAKhedIEFuqdxd69eydO\nnCgIQk5OTkO3hUAgEJon94tR2b9//8SJE8UIxxEjRjR0cwgEAqF5cl9Mf5GYeQKBQKgfmv9I\n5dChQyRmnkAgEOqH5j9S6dSpU4cOHTZv3kwsCoFAINQ1zX+kEhAQEBcXR9PN33wSCARCg3Nf\nPGqJRSEQCIT6gTxtCQQCgeA0muf0l4uLy549e/bs2VOz3TmOAyCTyZzaqPsFnucFQSC9V2M4\njqMoigyva4Z489I0TVFUQ7el6SEIAs/ztfn7yeVyShAE5zarGdCvX7927dr9/PPPDd2QJsk3\n33zz008/rV69umfPng3dlqZHfn7+8OHDH3zwwf/+978N3ZYmyfvvv7979+6tW7eGhYU1dFua\nHrdu3Zo2bdrEiRPfeeedGh+EvA0RCAQCwWkQo0IgEAgEp0GMCoFAIBCchuyDDz5o6DY0OhQK\nRe/evdu2bdvQDWmSMAwTGRnZs2dPNze3hm5L04OiKFdX1z59+kRGRjZ0W5okcrm8TZs2PXr0\nUCgUDd2WpgdN015eXr169WrZsmWND0IW6gkEAoHgNMj0F4FAIBCcBjEqBAKBQHAazTP4scZc\nunRpw4YNd+7coWm6Y8eOs2bNIlPbAPbt2xcfH3/79u2UlBRBEH744YegoCBrNUd67z7s4eLi\n4pMnT546dSo5OTk/P9/b27tnz55Tp0718/Oz0CQdaE1xcfGWLVuuX7+elZVVUlLi7e0dFRU1\nadIk6yVP0nuOsHjx4itXrvj6+q5bt85ik7M6kKypVBIbG/vJJ5+4uroOHDhQr9f/888/AJYv\nX966deuGbloDM3nyZI1G4+vrq9fri4qKJI2KI713f/bw2rVrY2Ji3Nzc2rZtq1KpEhISMjIy\nPDw8vvjiC9NuJB0oSVJS0ssvvxwSEhIYGKhSqXJycuLj4wG89tprDz30kFGN9J4j7N+//4cf\nfhAEwcvLy8KoOLMDBYIgCIKg1Wqjo6OnTJmSkZEhSq5fvz5u3LgFCxY0bMMaA+fOncvLyxME\nYfny5WPGjElPT7dQcKT37tsePnjw4IkTJwwGg/iV47jVq1ePGTPm008/NeqQDrSFVqstLi42\nlVy/fn38+PHR0dGmOqT3qiQ3N3fKlCm//vrrlClTnnrqKdNNzu1AsqZSzoULF/Ly8oYPHx4Y\nGChK2rdv37dv31u3biUlJTVs2xqcnj17ent721FwpPfu2x4eNmzYwIEDjcnQaJqOjo6WyWTX\nr1836pAOtAXLsha+6e3btw8NDc3Ly9Pr9aKE9J4jrFq1ytvbe/LkydabnNuBxKiUc+3aNQDd\nunUzFXbv3t24iWAHR3qP9LARpgKjhHSg46SkpGRkZAQHB8vlclFCeq9Kjh8/Hhsb+8ILLxg7\nzRTndiBZqC8nIyMDgMVSgWiTxU0EOzjSe6SHjZw6dUqr1Zom3CQdaJ+srKw///yT5/mcnJzL\nly/LZLJ58+YZt5Les09xcfHq1auHDRvWpUsXSQXndiAxKuWUlZUBcHFxMRWKX0tLSxumTU0H\nR3qP9LBIfn7+jz/+6ObmZjoRQTrQPgUFBfv27RM/u7m5LViwQHxHFiG9Z58ff/wRwNNPP21L\nwbkdSIyKGaQGQ21wpPfu8x4uKyv78MMPCwsLFy9ebO1STDrQFu3atduxY4der8/IyNi6detH\nH300e/bsMWPGmOqQ3pPk/PnzR44cef31193d3e1rOqsDyZpKOZImVzTOrq6uDdOmpoMjvUd6\nWK1Wv//++4mJia+++mrv3r1NN5EOdAS5XB4WFvbqq6927tx57dq12dnZopz0ni30ev13333X\ns2fPIUOG2FFzbgcSo1KOOFdoMTkoOY1IsMaR3rvPe1ij0Xz44Yc3b96cP3++9R1OOrBadOrU\nieO4mzdvil9J79mipKTk3r1758+fH2tCWVlZbm7u2LFjX3rpJVHNuR1IjEo5nTp1AnDp0iVT\nofhV3ESwgyO9dz/3sFarXbp06b///jtv3rxhw4ZZK5AOrBZZWVkwKfhNes8WCoViuBUMw4jy\nBx54QFRzbgcSo1JOjx49fHx8Dh48mJmZKUri4+PPnDnTpk2b8PDwhm1b48eR3rtve1in0338\n8cdXr16dM2fOyJEjJXVIB9riypUrxmkukZMnTx47doxlWeOzjPSeLVxcXOZbIYb+zJ8/f/r0\n6aKaczuQpGmp5PTp08uXL3dzcxOTEJw4cUIQhE8//fT+yeJgi507d965cwfA1atXs7OzBwwY\noFKpAERHRxuDIh3pvfuzh9esWbN9+3YvLy9TH2KRV155xbjySTpQkh9++GHPnj1hYWH+/v4U\nRaWlpaWlpVEU9cILLzz22GNGNdJ7jjN16lSVSmWRpsWJHUiMihnGdGkURYnp0qKiohq6UQ3P\nsmXLYmNjreUrV64MDQ01fnWk9+7DHl6xYsWhQ4ckN23btub30n8AABamSURBVM04hwPSgVLc\nvHnz4MGD165dy83N1ev1Xl5eHTt2HDNmTLt27Sw0Se85iKRRgfM6kBgVAoFAIDgNsqZCIBAI\nBKdBjAqBQCAQnAYxKgQCgUBwGsSoEAgEAsFpEKNCIBAIBKdBjAqBQCAQnAYxKgRCPdG7d2+K\nonbt2tXQDakTvv/+e4qixo8f39ANaXgoEzp37tzQzTEjIiKCoqjTp08797DDhg0zXnIzNyrp\n6elLly596KGHgoODFQqFu7t7q1atnnzyybVr1xYWFlooP/7445RdSkpKbCkrlUp/f/8uXbrM\nmjXrxx9/LCoqkmyPuJdpfaEqOXHiBEVRFlm+q3XY5OTkJUuWPPDAAwEBASzLent79+rV6/XX\nX7dI41OtyweQl5f30Ucf9e/f39vbm2XZwMDAbt26zZo1a82aNcZEDtVl5cqVH3zwQUJCguO7\nJCcnf/3116NHjw4ODmZZ1svLq3///p9++mlxcXHN2lBLanAJ9UYjbNvixYvFf9enn35apXIt\nb2eWZYODg8eMGbNt2zbrg9fsjrbD5MmTo6OjLays8SyhoaEcx0nuOHDgQFGnffv21T2pNY48\nQGrPY489Fh0d/Z///AcAhGYKz/NLly5VKBTiNdM07ePj4+XlZewFDw+P77//3nSX0aNHA1Aq\nlb42KCkpsVB2c3MLDw8PDw8PDQ01LVfg4uLy+eefcxxn0Spxr7lz5zp+Ia+//jqAH3/80Y6O\nrcPyPP/++++zLCu2SiaTtWjRwrTMzsSJEw0GQw0uPy4uzt/fXzwIwzAhISHGrwA++ugjxy/Q\nFDGb08GDBx3Uj4+Pp0wKPCiVSuPniIiIW7du1awZtcHOJSxZsmTGjBkXLlyo/1aJVLd7q8Wq\nVasAjBs3zvFdOI4zZmRo27atHc0a387GOzQ8PNyYUgjAM888Y3GKmt3Rkoi7ZGRkWG8SzyKy\nd+9eawVj6mUA7dq1c+R09rF4gIh5uk6dOlX7I1uj1+ubs1F56qmnxB9m/Pjxf//9t1qtFuWl\npaX79u2bNWuWXC5/7LHHTHep1hNfUjk7O3vz5s2DBg0STz1z5kxH9rJP69ataZrOysqqbmME\nk06YNGnS8ePH9Xq9KE9JSfnuu+8iIyMBGHvG8baVlZWFhYUB6Ny5865du4xmKT8/PyYmZtq0\naZ9//rnjF2hKdZ96V65cYVl2xowZu3btKigoEAShoKBg9erV4uOma9euDj4FnEidPrhrSWMz\nKnv37gXg6uoqFk4Xc0lJ4qzbOTMz89lnnxUPtWfPnir1q7yjJanSqIhDkClTplgrvPPOOwA6\ndOjgLKNi8QAhRqWGrF69Wvxdv/32W1s6N2/eXLp0qamk9kZFhOf5xYsXiw344YcfanwKQRCu\nXLkCYODAgTVojFhDFMA333wjuZdOp3v11Vc1Gk112xYTEwOAYZiUlBTHrsNRqvvUy8/PT05O\ntpZv3bpVvPZjx445tYFVQ4yK47s8+eSTAKKjo8eNGyc5ehBx7u3McZyYrurll192RF+we0dL\nUqVReeONN3x9fZVKZX5+vkXbQkNDGYb5+OOPnWJUrB8g9WBUmuGaik6nW7p0KYDp06e/+OKL\nttTatGmzZMmSumgARVEff/zx0KFDASxbtozn+Rofavv27QBqsPip1+vFTpgyZYqxFI8Fcrn8\n66+/Nk4pOI44KR8SEmKaTdION2/e/Oyzzx555JGIiAilUunp6TlgwICvv/5aq9UaddavX09R\n1LVr1wAMHz7cOLVtf/3Jy8urZcuW1vKxY8eKeZRNJxPss3379jFjxgQGBrIs6+/vP378+GPH\njlnoFBYWvvfee926dXNzc1MoFKGhoQMGDHj77bdTUlIcuQTrhXrjqumNGzemT58eGBjo4uLS\no0ePX3/91XjGt956q3Xr1kqlMiwsbNGiRWq12qJVTuxeRzoBQH5+/oIFCyIiIhQKRcuWLefM\nmZOenu5gPxvJy8vbsWMHgP/85z/R0dEANm3aZF0u3um3M03Tbdq0AWDaP/Zx4h0twrLstGnT\nNBrNhg0bTOV//fVXamrqyJEjAwICJHfMycl5+eWXw8PDxZ6fN29eZmamHRcJOw+Qu3fvRkdH\nBwUFKRSK1q1bv/POOzX7a0lQF/aqYTlw4IB4aefPn6/Wjs4aqYjs2bNHbEZcXFzNTiEIglh0\n9ubNm9VtjLETzp496+C5HG/b2rVrATAMI/kuZs0TTzwBQKlURkVF9enTJzw8XFwIGTRokHGc\ndPz48ejoaHHa6tFHH42uYP369Q623xSDwSAalY0bN1aprNVqJ0+eLHaXj49Pjx49xMl3iqK+\n+OILo1phYaE4a0HTdIcOHQYMGBAVFSWa5M2bNztyCb169QKwc+dO4zHF18ZvvvlGtFLt2rVz\nc3MTW/K///0vKyurffv2FEVFRUUZnzJjx46ti+51sBMEQUhLS2vVqhUAmUzWvXv3Hj16yGSy\ngICAt99+G9UZqfzvf/8DEBYWxvO8Tqfz8/MDsG7dOgs1p9/OGo0mJCQEwIoVKxzRNyJ5R0si\nqtkZqSxevPjcuXMA+vXrZ7p12rRpALZu3SpOM1iMVJKTk8U/jEwm69GjR8+ePRmGCQoKEkdR\nkj1v/QARj/D99997eXkxDNO2bVsfHx+xwcOHD+d53nR3R/5apjTb6a/33ntPvDGqu6NzjUpx\ncbGY1dx0zF6tU6SmplIU1bFjxxo0RuwEb29vi39JtQ5ii7S0NPFh2qVLl82bNxcWFtrX37Bh\nw5EjR4xLL4Ig3LhxY/DgwQDef/99U01nzc9s2bIFgFwut78WJfLyyy+LTzfThdO1a9cqlUqK\noo4ePSpKvvjiCwBdu3Y1nfRTq9WbNm26ePGiI5dgy6goFIrnnntO7EaO48SVVU9Pz2HDhvXr\n1+/27duisjFP/qFDh0wP65TudbATBEF49NFHxZ/+zp07oiQpKalXr14Mw1TLqHTv3h3AO++8\nI36dP38+gMGDB1uoOfF2LioqOnPmzOOPPw4gODhYXISzo2+B5B0tiSNGRRCErl27Arh+/bq4\nqaCgQKlU+vn56XQ6SaPy8MMPA+jRo8fdu3dFSWpq6oABA8QVKeuel3yAiH85pVI5Y8aMnJwc\nUbhx40bx54uJiTFVdvyvJdJsjcozzzwDoFevXtXd0dQxwxqL38yRR7D4drlkyZJq7WXk22+/\nNb3rqmy56WHFTujdu7cjJzI9iIOX//PPPxudymiabt++/fTp07///vvMzEwHTydWtw4LCzMV\nOsWo5ObminNiFpPmkiQkJMhkMoZhrId0H374IYDRo0eLX8UF3i+//NL+AWtgVLp3727qUKDV\nasV/jlKpTEpKMj3CpEmTALz22mtVXle1utfxTjh79iwAiqIuX75sqnbr1i3xgeugUblw4YL4\n54mPjxcl4ps7rMblTr+dGYaZO3duamqqpH5172hJHDQq//3vfwG8+eab4qbvv/8ewCuvvCJU\nLIiaGhUxsoRl2cTERNMDpqeni/6c1j0v+QAR/3IdO3Y0uu2IzJw5E8Ds2bPtX5pg468l0mzX\nVESPcuM0giniFLYp8fHxFjq2fGo9PDyq2xKxDTUOmBDXw2sWTWanE+zj4OXPmjXrypUrzz//\nfHBwMM/z8fHxv//++7x581q2bLlgwQKdTmdxWJ1Ot2vXriVLlsyZM2fWrFkzZ85cuHChXC5P\nTk7OycmpwQXaQqfTPfHEEykpKZ06dVq+fHmV+lu3buU4rn///uJEgSkzZswAcOTIEXEOXXR4\n2759u3VIRC2ZO3cuTVfeiSzLim/xo0ePFk9qpF+/fgBu375tcYRadq/jnbB7924ADz/8cJcu\nXUzVWrdubf+lxAJxBrVfv37GWls9e/YUj7l+/XpTzVrezh4eHq0qCA0NlclkBoNh+/btkqEq\nVVLLO9qCmTNnyuXyX375RQxYEatmGf3cLBA95YYPHx4REWEqDwoKEsde1th5gLzwwgvi0MSI\nOP5wyl+LkZQ2acTHn0WknkhQUJDBYADAcZytAL3o6GjxlaH2iH8+T0/PGuxbWFh49OjRkJAQ\n6/vcEUQXe8lOsI/jl9+2bduVK1euXLny7t27cXFxhw8fjomJSU9P//rrr1NSUjZv3mzUPH36\n9NSpU5OSkiSPk5ubK86n1x6DwTBlypQjR46EhYXt3r3bNCLHFmIE6L1796xvZvGVs7S0tKCg\nwMfH59lnn12xYsXx48eDg4OHDh06aNCgQYMG9evXz7R0Y82wLmcrBv3Yklv8rLXvXsc7QXxq\nG4vDm9KxY0dx4b1KdDrd77//DkBcnzcSHR29cOHCn376aenSpcZereXtPG3aNNP/s8Fg2Lhx\n44svvjh//vzS0tI333zTkQYbqc0dbU2LFi1Gjhy5Y8eOgwcPRkRExMbGduvWTXyfsObGjRsA\nunXrZr2pe/fumzZtshDaf4BY180MDAyEk/5azdCoiKtwiYmJ1ptOnTolfkhNTZX0GnIixcXF\noiW35chhn927d+v1+rFjx5oG9zmO6JclznrX7AiOExERERERMWnSpC+//HL27Nm///77li1b\nYmNjxdfq3Nzc0aNH5+XlTZ48+aWXXurQoYO4QgjAx8cnPz+/fB7WLkOHDrX4Z69bt058tzJi\nMBimTp0aExMTGhp66NAhcZhfJfn5+QBu3Lgh3rSSlJWV+fj4hISExMbGfvjhhzExMTt37ty5\ncycAf3//hQsXvv7666ZDjepi/RouHs2W3NT7yCnd63gniE9Vyb+04//zmJiY3NxclmWnTJli\nKp8xY8Zbb72VlpZ24MCBkSNHikLn3s4Mw8yYMaO4uPj555//+OOPn3vuOdOISPvU8o6W5Omn\nn96xY8f69evF8cfTTz9t5+yoMLEWmAZpGrH/ALH11xJMCgHX+K/VDKe/xGdNXl6eRRqSeubY\nsWPizT9gwIAa7F6buS9UdEJ+fv758+drdoQaoFKpVq1aJf47jx8/Lgo3bdqUl5fXt2/fP/74\nY/DgwX5+fuL/Uq/XO576Iikp6Y45Fr6ner1+8uTJf/75Z0hIyOHDh0X3JEcQ765FixbZmUQ2\nek63adPm119/zc/PP3PmzFdffTVkyJDs7OxFixY5kmKkjnBK9zreCeLzKysry/ogkkJJxHke\nnU7n6+trOnllHHmYlk+vi9v5oYceAlBSUnL58mXH96rlHS3J6NGjW7RosX379vXr18vlcnGy\nURKx5yV/U8npuFo+QFCLv1YzNCpDhgwR327EdbCGQjx7ZGSk6ONRLbRa7b59+zw9PUV/jxow\nZMgQ8Snw1Vdf1ewINcPDw0P0WzV6sosvv4MGDbJ4lz9z5ox17iNbgyqjB5SRESNGGLfqdLon\nn3xy27ZtwcHBhw8ftp41soM4j3/ixAnHd5HL5X369FmwYMGRI0dElzBjdJ6dS6gjnNK9jneC\n6FT977//Wm+SFFojDkQA+Pn5BVghTqds3749NzdX1K+L29n4Pn7v3j3H96rNHW0L0ZBoNJqs\nrKzHH3/czkSlOGElaVmthbV/gKCafy1TmqFRYVlWDIP6+eef16xZU/8NEATh3XffPXToEIB3\n3323BhMjf//9d3Fx8ahRo0RnwRpg7IQ//vjD1hqJwWBYtGiR4yFgRlJTU63jpETOnTuXl5cH\noG3btqJEdD62Do77/PPPrXcXg0vKysocb4xOp5s0adL27dtFiyLGtTnOE088QdP0yZMn//77\n72rtKCK+85peXQ0uoTY4pXsd74RRo0YBOHTo0NWrV03lCQkJ4hp+laxfv57neX9//4yMjEwr\n0tLSfH19dTrdb7/9JurXxe1svEwHR7S1v6PtMHv27KFDhw4dOtRWkLKIOB948ODB5ORkU3lm\nZqZ13uvaP0BQzb+WKc3QqACYO3furFmzAMyePXvatGknTpwwTv/xPB8XF7ds2bK6OG9OTs6f\nf/45ZMgQ8fjR0dGiQ2R1qXEgvSnPPfec6Cb4/PPPT58+PTY21vh+kZmZuXr16g4dOohxbdU9\n8r59+yIiIt56662zZ88aO1aj0fzyyy9ivo3g4GDx6QPgwQcfBLBlyxZxEQKAWq1+5ZVXdu/e\nbeF/AkA0CY4/30WLsnPnTtGiGC2Z47Rr106M0540adKvv/4qTr+IZGRkrFy50ji19cYbb6xb\nt05cfhApLCwUb7A+ffrU+BJqiVO61/FO6NOnz7Bhw0QPVOM6R0pKytSpUx0coonOXTNnzrRu\nHgCWZadPnw7zGTAn3s5arfbnn38WowXFyE37+s66o+3QqVOnv/7666+//nrkkUfsqPXr1+/h\nhx8WnRuNdiU9PX3SpEnWzpZOeYBU669lRpVeyU0UjuPee+89YyyFXC4PCAgQM2aLEpVK9cEH\nH2i1WuMuVabpNU14Z5HTtGXLlqY+Ia6url9++WXNshTzPC/mySgqKnLwYu2kOVq8eLHxbUWh\nUAQHB5u2c8KECY5nKTZevugPKsKyrJii2PhM8ff3P336tOnlDB8+XNwUFRXVv39/cXZ4xYoV\nvr6+AK5cuWJUFv0mAURGRg4ePHjIkCFfffWVnQs3vqOpVCrJNn/22WdV9p5erzcukLq7u/fq\n1atPnz7ilAuA6OhoUU3M0kHTdOvWrR944IFu3bqJSZG9vb3PnTvnyCXYilOxTsQkukVZJ3v+\n5ZdfAAwZMsTp3etgJwiCkJKSIqYiNY3r9vf3dySi/ujRo+IBLcJcTDGuApqG0Nf4djbNUhwY\nGGj8l4aGhhpDZP5/e/fzkkwQxgF8LceFwhKS2liSIjqYBP44xAZRIJQnsW4RUaHHZKFDkHjw\nZBAevXbo4B/goWN1q3Owpy6xxh7EWPQkHmLfw7xI2LquvdPra+/3c1zGZXaYmUfdeWZMy9sc\n0aboR3rmqVgwTX5UVZV2GKfTGQ6HI5EIIUQQBLoH5e7uLi1mPYF063I0cnzMB+qra1E/Nvnx\no9fX11wut76+PjMzQwgZHx+fn59PJBLFYlHX9Y7CPRfa39/fdyvscrm8Xm8gENjf36enL5jW\nx05QeXh44DguFovZf0zr2768vGQymdXVVfqqbWJiIhQKybLcse9FX4//9PR0cXERjUbpKSaE\nkOnp6c3NzcvLy4498gzDaDab2Wx2cXGREDI1NbW1tUXTtk27ZqlUkiTJ7XbT8W/dVu3vUN2Y\n5v2auru729vb8/l8PM9PTk76/f6dnZ2rq6tarUYLPD4+np+fr62tiaLocrnGxsYCgcDp6amm\naR236vYI3xFUDKbN27MRqLe3N1mW5+bm6FeKZDKpaZqdDSXpkuWemYx04ezJyUnH9T8cziMj\nIx6PR5KkfD7/eRuIr41oU/QOzIOKYRi1Wi2dTrdbPpVKaZpWKBQ4jjs6OqJlrCcQ+0HF6LNr\nGf9JUBlGZ2dnHMd1HA4BAMPCIqh8h1QqxXFce5PmAU4gPzajftiVy2WHwxGPxwddEQD4utnZ\nWcf3Hydcr9fpQQ8bGxv0ykAmEHqcMP2n/QcmPw67z1tNAMAQ+bhTgM3jIexQVfXm5ubg4KCd\n7VipVA4PD3VdDwaD7VzggUwg29vb7Sd1GP0v/gEAgL9MUZSVlRVCyMLCgiiKuq4rivL+/i4I\nwu3t7fLy8qAr+NtoLpcbdB0AAKAHnuedTmer1apWq8/Pz41GY2lp6fj4+Pr6mq7H+0fglwoA\nADCDF/UAAMAMggoAADCDoAIAAMwgqAAAADMIKgAAwAyCCgAAMIOgAgAAzCCoAAAAMwgqAADA\nDIIKAAAw8wsDhvIYziNadAAAAABJRU5ErkJggg==", "text/plain": [ "plot without title" ] }, "metadata": { "image/png": { - "height": 180, - "width": 600 - } - }, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Warning message:\n", - "“\u001b[1m\u001b[22mUsing \u001b[32msize\u001b[39m for a discrete variable is not advised.â€\n", - "Warning message:\n", - "“\u001b[1m\u001b[22mUsing \u001b[32msize\u001b[39m for a discrete variable is not advised.â€\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAAFoCAIAAADIFpV9AAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdZ0AU19oH8DPb2KX3qlI1KoKI3YjoDYKgoEEFa+yxkWuixqgxlmtJsb6a\n2MBurFdFFLFFsaKiiBoREURFOoKUBbbO+2GSvRts7DK6IP/fp50zzznnmTVRHmbmHIqmaQIA\nAAAAAACND0fXCQAAAAAAAIBuoCAEAAAAAABopFAQAgAAAAAANFIoCAEAAAAAABopFIQAAAAA\nAACNFApCAAAAAACARoqn6wR0rLi4OCkpSddZAAAAAAAA6EBjLwgzMjIiIyO7d++u60QAAAAA\nAAA+qIMHDzb2gpAQ0rJly6+++krXWQAAAAAAAHxQcXFxeIcQAAAAAACgkap3dwiLior27t2b\nlJRUWlpqYmLi7u4+depUkUjEnFUqldHR0adOnSosLLS0tPT39w8NDeVw/lfWvjMAAAAAAAAA\nGPWrIHz69OncuXNlMlnHjh3t7OwqKipSU1MrKytVBWFUVNTx48e7desWEhKSkpKyc+fOoqKi\nSZMmqUZ4ZwAAAAAAAAAw6lFBqFQqly9fbmRktGjRIhsbm1cDsrKyYmNjfX19Z8yYQQjp27cv\nn8+Pi4sLDAx0dHSsTQAAAAAAANRRcnJyu3btRo0atX37dl3nwqbnz583bdq0f//+0dHRus7l\nw6lHz1LevHnz2bNno0aNsrGxqaqqkkqlNQIuXbpE03RwcLCqJSQkhKbpixcv1jIAAAAAAKDh\nkslkv/7666effmpqaioQCOzs7Dp27Dht2rQLFy68j+nS09MpihoyZMj7GHzp0qUURVEU9fDh\nw/cxPtRSPbpDeOvWLYqi9PX1p02blpmZSVFU69atJ0yY4OLiwgSkp6dzuVxXV1dVF2dnZ4FA\nkJGRUcsAAAAAAIAGSiKR+Pn5Xb58WV9fv1evXnZ2doWFhWlpaWvXrs3IyPD19dV1ghqgaXrL\nli0URdE0HRkZuWLFCl1nRAgh1tbWly5dsrCw0HUiH1Q9KghzcnK4XO6yZcu8vb0HDRpUWFh4\n4MCBuXPnrlmzxtbWlhBSXFxsYmLC5XJVXSiKMjMze/HiBXP4zgDGmjVr8vLymM9CofC9XxgA\nAAAAQJ1t3rz58uXL7du3P336tLm5uao9PT39wYMHOkxMC6dPn87MzBw9enRcXNyOHTuWLVsm\nEAh0nRQRCASNcH/yevTIaFVVlVwud3d3/+6773x8fEJDQ2fPnl1ZWXno0CEmQCKR8Pn8Gr0E\nAoFEIqllAOPatWtn//bo0aP3czUAAAAAAGy6evUqIeSrr75SrwYJIW5uburvTDH27dvn4+Nj\nbGwsEok8PDx++ukn9R+Jjx8/TlHUwoULa/QyNTV1c3NjPv/000/NmzcnhOzfv5/62+7du9Xj\ns7Kyhg0bZmlpKRKJOnbseOLEiVpeS2RkJCFkwoQJw4cPLyoqOnLkSI2A5ORkiqJGjx6dnp4e\nGhpqbm5ubGwcFBSUlpZGCMnNzR09erSNjY1IJOrevfutW7dqdE9ISBg4cKCtra1AILC3tx8x\nYkRqauqrg2dkZAwZMsTa2prD4Vy7du358+cURQ0YMKDGaNeuXQsLC7O3t9fT07Ozs/P39z9w\n4ID6tQwYMMDZ2VkkEpmamvr6+h48eLCW30N9UI/uEOrp6RFCevXqpWrx8vIyMzP7888/VQFV\nVVU1ekmlUtVdvncGMNauXSuTyZjPDx48uHTpEnsXAQAAAADwXlhbWxNCsrKy3hk5a9as5cuX\nW1tbjxgxwsDAIDY2ds6cOSdPnjxz5syrt0/eJDg4mM/nz5w5s0uXLlOnTmUaP/30U1VAVlZW\nx44dHRwcwsLCCgoKoqOjg4OD4+PjfXx83j5yfn5+TExMixYtunXrZmxsvGrVqs2bN4eHh78a\n+ezZs65du7q5uQ0bNiw1NTUuLi45OfnixYu9evWytLQcOHDgs2fPYmNje/fu/fjxY1NTU6ZX\nZGTkpEmTLCws+vXrZ21tnZmZefDgwejo6D/++KNz587q+Xfu3NnS0rJPnz5isfhNTw5u3Lhx\n6tSpfD4/JCTEzc2toKDg5s2b69evDwsLYwImTpzYqVOnXr162djYFBQUHD9+PCws7Oeff541\na1Ytv2odo+uNlStXBgcH37t3T73x3//+94gRI5jPixYtGjBggFwuV51VKpUDBw5csGBBLQNe\ndePGjfnz57N3EQAAAAAA78XVq1e5XK5AIPj666//+OOPkpKS14Yx6yk6OzsXFBQwLTKZLDAw\nkBCydOlSpuXYsWOEkFd/SDYxMXF1dVUdMg/ThYeH1wi7ffs2U0rMmzdPqVQyjbt27SKEBAcH\nv/NCfvzxR0LIsmXLmENvb2+Koh49evTaKRYtWqRqHD9+PCHEzMxs2rRpqnnnzZtHCPnpp5+Y\nw5SUFD6fHxAQUFlZqep4584dQ0NDT0/PGoNHRESo1w5Msd2/f3/1jlwu19zcPCUlRT29rKws\n1ednz56pnxKLxR06dBCJRMXFxe/8KnQuMDCwHj0yytySLioqUrXQNP3ixQsTExPm0NXVVaFQ\nPH78WBWQmZkplUpVq8i8MwAAAAAAoIHq2rXr77//bmVltWbNms8++8zMzMzZ2XnMmDGXL19W\nD9u6dSshZP78+VZWVkwLj8dbuXIlRVFRUVEs5tOsWbMFCxZQFMUcDh8+3MTE5MaNG2/vRdN0\nVFQUh8P54osvmJbRo0czja8GOzo6fv/996rD0aNHMx9+/PFH1bxMY3JyMnO4fv16mUw2d+5c\nsVhc9Dd7e/vPPvvs7t27T58+VY1maWn5888/q68/8qoNGzYoFIqFCxe2atVKvb1Jkyaqz02b\nNmWuq7S0ND8/v6ys7PPPP6+qqmoozyHWo4Kwa9euPB7v5MmTSqWSabl8+XJZWZm3tzdz6OPj\nQ1EU8/sMxrFjxyiKUt2VfmcAAAAAAEDDFR4e/vTp0/j4+CVLlgwaNEgsFm/fvt3Hx0f96cSk\npCTyz/ewCCGtWrWys7PLzMx8+fIlW8m0a9eOx/vfC2gURTVp0qSkpOTtvc6dO5eRkdG7d28H\nBwemZdiwYQKBYPv27aq3utSnUC/YmC7u7u4ikahG4/Pnz5nDhIQEQoivr6/VPx09epQQkpub\nq+ro5eWlr6//9myvXbtGCGHur77J7du3+/fvb2JiYmpqamtra2dnxxSx2dnZbx+8nqhH7xBa\nWloOGTJk9+7dc+fO7dKlS2FhYVxcHPNwMBPQrFmzoKCg2NhYmUzWpk2blJSUS5cu9enTx8nJ\nqZYBAAAAAAANGpfL9fX1ZTaZoGl67969Y8aMWb58eVBQUM+ePQkhpaWlhBBmlX51dnZ2OTk5\npaWlqnft6ujVcXg8nkKheHuvzZs3E7V7fYQQCwuL4ODgQ4cOHT16dNCgQerBqkcFVeO/qVFV\nTDL7C8TExKgXjSrqN/rs7e3fniohhKmfVbXrq5KSkrp37y4UCidPnty2bVtmy4OzZ8+uXLmy\nxsKW9VY9KggJIWFhYWZmZjExMbt27RIKhT4+Pl988YX6H/mECRMsLCxOnz59/fp1CwuLkSNH\nhoaGqo/wzgAAAAAAgI8DRVHDhg2Lj4+PjIw8c+YMUxAyPzzn5eU5OjqqBzM3x5izHA6HECKX\ny9UDZDKZWCy2tLR8fwkXFhZGR0cTQoYOHTp06NAaZzdv3lyjINQCc4G2trYdO3Z8e6TqodO3\nYIre7Oxs1eKrNaxataqqqiomJsbPz0/V+Oqqp/VZ/SoICSG9e/fu3bv3m85yOJxBgwa95T+U\ndwYAAAAAAHxMmIVDVbfm2rVrd/fu3fj4+FGjRqliHj58mJub6+zszFQ4ZmZm5JUFS2/fvl2j\nRGQe13znTb/a27Fjh1Qqbd++vZeXV41TMTExZ8+ezczMdHZ2rssUXbp0uXPnzr59+95ZENZy\ntOTk5Li4uK+++uq1AU+ePGHC1BvPnTtX96k/mHr0DiEAAAAAALzJb7/9duTIEalUqt548+bN\nPXv2EEJUq2aMHTuWELJ48WLm4UlCiFwunzFjBk3T48aNY1o8PDyEQuHRo0fz8vKYltLS0unT\np9eY0cLCghDy7Nkzti6BWTlm/fr1Ua+YOHHim5aW0UhERASPx1u3bl2NqqyiomL//v2ajjZl\nyhQul7tw4UL1bQyJ2iuLLi4uhJAzZ86oTu3Zs+fVgvCnn37q06dP7fdp/JDq3R1CAAAAAAB4\nVWJi4o4dO4yMjDp16uTk5CSTydLT0xMSEmiaDgsL69u3LxPWo0eP6dOnr1q1yt3dfdCgQfr6\n+rGxsSkpKT4+Pt9++y0TY2hoOHny5NWrV3t5eQUHB0ul0jNnzrRv397Y2Fh9RmNj486dO1+/\nfn3o0KEtW7bkcrkDBgxo06aNdvnHx8c/fPjQw8OjU6dOr54dN27c0qVLt23btmjRIvW1ajTV\npk2bTZs2TZw40c/Pz9/fv127dgqFIjU19dy5c05OTq/d7fAtPDw81q1bFxER4eXlFRIS0rx5\n8xcvXty8edPIyOj8+fOEkIiIiD179gwdOjQ8PNzR0TE5OfnEiRODBw+usTd9cnLyqVOnPv/8\nc62v6/1BQQgAAAAA0AAsW7asW7dup06dSklJuXHjRnV1tZWVVWBg4IgRI4YMGaIeuXLlSm9v\n7/Xr1+/YsUMmk7m5uS1ZsmTGjBkCgUAVs3z5cmNj4+3bt+/YscPe3n7cuHE//PCDtbV1jUl3\n7979zTffnDp1av/+/TRNOzk5aV0QRkZGEkKYvQRf5eTk5Ofnd+bMmWPHjtWxcBo7dqy3t/eq\nVavi4+PPnz9vYGBgb28/cuRITatBxuTJkz09PVesWBEfHx8dHW1paenp6am6ik6dOp09e3b+\n/PnMu5EdOnQ4ffp0Tk5OjYIwLS2Nz+f7+/vX5breE4qmaV3noEuJiYnHjx9ftGiRrhMBAAAA\nAICPUHFxsZWV1aRJk3777Tdd51JTUFAQ3iEEAAAAAAB4X86fP6+npzdv3jxdJ/J6KAgBAAAA\nAADel4EDB1ZWVtrZ2ek6kddDQQgAAAAAANBIoSAEAAAAAABopFAQAgAAAAAANFIoCAEAAAAA\nABopFIQAAAAAANDYWVpaOjk56ToLHUBBCAAAAADwofXv35+iqHXr1r166tq1azwer0WLFmKx\n+MMnBo0NCkIAAAAAgA8tKirKxsZm1qxZKSkp6u1isXjEiBEURe3evdvAwEBX6UHjgYIQAAAA\nAOBDs7Ky2rZtW3V19fDhw6VSqar966+/zsjImD9/fqdOnXSYHjQeKAgBAAAAAHQgMDBw6tSp\nycnJ8+bNY1piYmKioqK6des2d+5cpmXfvn0+Pj7GxsYikcjDw+Onn36SSCSqEY4fP05R1MKF\nC2uMbGpq6ubmpjpMTk6mKGr06NFZWVnDhg2ztLQUiUQdO3Y8ceJEjY4KhWLlypUtW7YUCoVN\nmzb9+uuvKyoqavNyXVxcXO/eve3t7fX09Ozs7Lp37758+XL1gISEhIEDB9ra2goEAnt7+xEj\nRqSmptYY5Nq1a2FhYapB/P39Dxw4oB7w9m+j9pepVCrXrFnTqlUr5jK/+eabioqKVy8qMjJy\nwIABzs7OIpHI1NTU19f34MGD6gGqGTMyMoYMGWJtbc3hcH777TeKokJCQmqMRtN0ixYt9PX1\nS0pK3v5lfmA8XScAAAAAANBILV++/Ny5cytXrgwKCmrduvX48eONjIx27drF5XIJIbNmzVq+\nfLm1tfWIESMMDAxiY2PnzJlz8uTJM2fO8Pl8TefKysrq2LGjg4NDWFhYQUFBdHR0cHBwfHy8\nj4+PKubLL7/cunWrk5NTREQEh8M5fPjwrVu3FArF20feuXPnqFGjbG1t+/fvb21tXVhYeP/+\n/aioqG+//ZYJiIyMnDRpkoWFRb9+/aytrTMzMw8ePBgdHf3HH3907tyZidm4cePUqVP5fH5I\nSIibm1tBQcHNmzfXr18fFhbGBNTy26jNZU6ePHnz5s2Ojo4REREURR0+fPjmzZuvXubEiRM7\nderUq1cvGxubgoKC48ePh4WF/fzzz7NmzarxxXbu3NnS0rJPnz5isfjTTz9lqtCsrKymTZuq\nws6fP//o0aNRo0aZmZnV8o/sA6Ebtxs3bsyfP1/XWQAAAABAI3X79m2BQNC0adOAgABCyNat\nW5n2ixcvEkKcnZ0LCgqYFplMFhgYSAhZunQp03Ls2DFCyIIFC2qMaWJi4urqqj4F85P/vHnz\nlEol07hr1y5CSHBwsCrs7NmzhJC2bdtWVFQwLZWVlR06dCCEODo6vuUSunXrxuVys7Oz1RuL\ni4uZDykpKXw+PyAgoLKyUnX2zp07hoaGnp6eqkMul2tubp6SkqI+SFZWVu2/jVpe5vnz52tc\nplgsbteu3auX+ezZM/VDsVjcoUMHkUikujTVjBEREXK5XBW5bdu2V/9cmMr26tWrb/wedSEw\nMBAFIQpCAAAAANCln3/+makrQkNDVY2jR48mhGzbtk09MiUlhaIoZ2dn5lCjgrBZs2YymUzV\nqFQqTUxMbGxsVC1ffPEFISQ6Olp9qJMnT9amIBQIBPn5+a89GxERQQi5cOFC4T/179+fEPLk\nyROapidNmkQIWbt27ZumqM23UcvLHDVqFCHkyJEj6kPFxsa+6TKVSuXLly/z8vJyc3OXLl1K\nCDl69Kj6jJaWlmKxWL1LZWWlubm5g4ODqkrMz88XCAQeHh5vukBdCQwMxDuEAAAAAAC6NHPm\nTFtbW0LIihUrVI1JSUmEkF69eqlHtmrVys7OLjMz8+XLl5rO0q5dOx7vf++LURTVpEkT9ffZ\nmPJG/dFKQkj37t3fOfLQoUOlUqm7u3tERMR///vfvLw89bMJCQmEEF9fX6t/Onr0KCEkNzeX\nEHLt2jVCCHPH77Vq/23U8jJ79OihPlSNQ1Vk//79TUxMTE1NbW1t7ezsvv/+e0JIdna2epiX\nl5e+vr56i0gkGj16dHZ2NlNnEkK2bdsmlUqZure+wTuEAAAAAAC6xOFw9PT0CCEikUjVWFpa\nSghhCkV1dnZ2OTk5paWlpqamGs3yajyPx1N/ca6srIzH45mbm6vHGBgYvHP3i4iICDMzs99+\n+23Dhg2//fYbIaRr167Lly//9NNPCSEvXrwghMTExKhfnUqrVq0IIUxF5+Dg8KYpav9tvPMy\nS0tLX71MQ0PDGpeZlJTUvXt3oVA4efLktm3bmpiYcLncs2fPrly5Un0lG0KIvb39qwlPnjx5\n9erVmzZtCgkJoWk6MjLSwMBgxIgRb7pAHUJBCAAAAABQ75iYmBBC8vLyHB0d1duZW2rMWQ6H\nQwiRy+XqATKZTCwWW1paajqjsbHx06dPi4uL1YslsVhcm9GGDx8+fPjwsrKyhISE6OjoLVu2\nBAYG3r9/v2nTpkyqtra2HTt2fFN3porLzs5WXxxVXW2+jVoyMTF59TIrKipqXOaqVauqqqpi\nYmL8/PxUjbdu3Xp1QIqiXm10c3Pz8/M7efLk06dP09LSMjIyxo0bZ2xsXPs8Pxg8MgoAAAAA\nUO8wy5zEx8erNz58+DA3N9fZ2ZmpoJj1KrOystRjbt++XaNErCUvLy9CyOXLl9Ubaxy+nbGx\ncUBAwIYNG2bMmFFeXn7u3DlCSJcuXQgh+/bte0tHJiYuLu5NAbX5NmqJGYpZpUalxiEh5MmT\nJ6rEVJgrqqUpU6YolcqoqKhNmzYRQiZOnFj7vh8SCkIAAAAAgHpn7NixhJDFixczj1wSQuRy\n+YwZM2iaHjduHNPi4eEhFAqPHj2qem2vtLR0+vTp2s3ILCqzcOHCyspKpqW6unr+/Pnv7Hjm\nzJkaJWhRUREhhHmzLiIigsfjrVu3rkY1VVFRsX//fubzlClTuFzuwoULa2xO+Pz5c+ZDbb6N\nWmIWlVm4cKFYLGZaKisrf/jhhxphLi4uzKWpWvbs2aNRQRgcHNykSZPNmzfHxMR4e3u/5Qap\nbuGRUQAAAACAeqdHjx7Tp09ftWqVu7v7oEGD9PX1Y2NjU1JSfHx8VPv7GRoaMu+qeXl5BQcH\nS6XSM2fOtG/fXrtHE/38/EaNGrVjx442bdoMHDiQoqgjR47Y2tqampoyz6a+ydChQ3k8nq+v\nr6OjI5fLvX79+vnz593d3fv160cIadOmzaZNmyZOnOjn5+fv79+uXTuFQpGamnru3DknJ6fw\n8HBCiIeHx7p16yIiIry8vEJCQpo3b/7ixYubN28aGRkxu0TU5tuopV69ek2YMCEyMlJ1mYcP\nH7a3t69xmzEiImLPnj1Dhw4NDw93dHRMTk4+ceLE4MGDa+xN/xZcLvfLL79kKup6e3uQsFUQ\nMovJ1t7MmTOdnJxYmRoAAAAA4KO0cuVKb2/v9evX79ixQyaTubm5LVmyZMaMGQKBQBWzfPly\nY2Pj7du379ixw97efty4cT/88IO1tbV2M27ZssXd3T0yMnLt2rVWVlYDBw5cuHChtbV1jTf3\naliyZMmpU6du3rx5/PhxPp/v6Oi4ZMmSqVOnqlaRGTt2rLe396pVq+Lj48+fP29gYGBvbz9y\n5EimGmRMnjzZ09NzxYoV8fHx0dHRlpaWnp6e48eP1+jbqKWNGze2atVq48aN69ats7KyGjx4\n8OLFi2uUJ506dTp79uz8+fOjo6MJIR06dDh9+nROTk7tC0LmwufPn29kZDRs2DBNk/xgKJqm\nWRjldW9SvkVCQkKN53F1JTEx8fjx44sWLdJ1IgAAAAAA9c6dO3e8vLyGDBmyd+9eXefS8MTF\nxQUFBU2aNGnDhg26zuX1goKCWHtkNDo6mllY9u0kEkmTJk3YmhQAAAAAANhSVFSkvtJmZWUl\n80Dm559/rrukGrBffvmFEDJ16lRdJ/I2rBWEJiYmtVnctrq6mq0ZAQAAAACARQsXLoyPj+/Z\ns6etrW1OTs6JEyeePn0aGBg4ePBgXafWkCQlJZ08efLatWvx8fHh4eFt2rTRdUZvw05BmJCQ\n0Lp169pE6unpJSQk1PMvBQAAAACgEerTp09aWtp///vfkpISHo/3ySefRERETJs2TdMXxBq5\nq1evfv/996ampkOHDl2/fr2u03kHdt4hbLjwDiEAAAAAADROQUFB2IcQAAAAAACgkXov+xDS\nNH327Nnr168XFxcrlUr1U2vWrHkfMwIAAAAAAICm2C8Iy8vLAwMDr1y58tqzKAgBAAAAAADq\nCfYfGV2wYEFCQsKyZctSUlIIIcePH79w4YK/v3/Hjh2fPHnC+nQAAAAAAACgHfYLwiNHjoSF\nhc2ZM8fZ2ZkQYmFh0aNHjxMnTtA0/euvv7I+HQAAAAAAAGiH/YIwOzvbx8eHEMLhcAghMpmM\nEMLlcocMGXLw4EHWpwMAAAAAAADtsF8QGhgYMEWgQCAQCoU5OTlMu7GxcV5eHuvTAQAAAAAA\ngHbYLwhdXFwePnzIfG7btu2+fftompbL5fv372/SpAnr0wEAAAAAAIB22C8I/f39Dx06xNwk\nHD9+fHR0tJubW/Pmzf/4448xY8awPh0AAAAAAABoh/2CcPbs2X/88Qez/eD48eNXrFghFAoN\nDQ0XLlw4e/Zs1qcDAAAAAAAA7bC/D6GJiYmJiYnqcMaMGTNmzGB9FgAAAAAAAKgj9u8QAgAA\nAAAAQIPA/h1CFaVSWV5eTtO0eqOpqen7m/FjcuvWrSdPnmjdXalUKpVKLpdLUZTWg7Rt29bN\nzU3r7gAAAAAAUM+xXxAqlcpNmzatXbv28ePHUqm0xtka9SG8CfPipdbdnz59mpmZ6eHhYWFh\nofUgfD5f674AAAAAAFD/sV8QLlmyZMGCBdbW1sHBwZaWlqyP30i4u7u7u7tr3f3+/ftGRkY9\nevRwcHBgMSsAAAAAAPiYsF8QRkZGent7X7p0SV9fn/XBAQAAAAAAgC3sLyqTn58/bNgwVIMA\nAAAAAAD1HPsFoZubW2lpKevDAgAAAAAAALvYLwi//vrrnTt3lpWVsT4yAAAAAAAAsIiddwij\no6NVn62trZs2berp6Tl58mRXV1ce7x9TDBgwgJUZAQAAAAAAoI7YKQg///zzVxtnz579amMt\nt514+PDhrFmzaJpeunSph4eHql2pVEZHR586daqwsNDS0tLf3z80NJTD4dQ+AAAAAAAAABjs\nFIQHDx5kZRyGUqncsGGDnp5edXV1jVNRUVHHjx/v1q1bSEhISkrKzp07i4qKJk2aVPsAAAAA\nAAAAYLBTEA4aNEgsFhsYGLAyWmxsbH5+flBQ0OHDh9Xbs7KyYmNjfX19Z8yYQQjp27cvn8+P\ni4sLDAx0dHSsTQAAAAAAAACosPYspZWV1YABA3bu3FlSUlKXcUpKSn7//fcRI0aYmJjUOHXp\n0iWapoODg1UtISEhNE1fvHixlgEAAAAAAACgwlpB+O2336anp48aNcrGxiYgIGDTpk35+fla\njBMVFWVjYxMYGPjqqfT0dC6X6+rqqmpxdnYWCAQZGRm1DAAAAAAAAAAVdh4ZJYQsWrRo0aJF\njx49OnTo0OHDhydNmjRlypRu3bqFhoaGhobW8onNO3fuXL58+ccff3ztMjDFxcUmJiZcLlfV\nQlGUmZnZixcvahnA+Pe///306VPms4ODg5WVlaYXCwAAAAAA8BFgefnN5s2bz549+8aNG8+e\nPVu1ahWHw5k5c6aTk1OHDh2WLVuWmpr6lr5yuXzjxo2+vr6tW7d+bYBEIuHz+TUaBQKBRCKp\nZQBDLBaX/+3VdWsAAAAAAAAaife1H0PTpk2nTZt24cKFvLy8zZs3W1paLly4sFWrVq1btz5+\n/Phruxw+fLikpGTMmDFvGlNPT08mk9VolEqlenp6tQxgbNmy5dzfJk+erPG1AQAAAAAAfBTe\n+wZ9VlZWEyZMOHnyZGFh4a5du1q2bPngwYNXw8rKyg4cOODn51ddXZ2bm5ubm1teXk4IefHi\nRW5uLrN7obm5eWlpqUKhUPWiabqkpMTCwoI5fGcAAAAAAAAAqLD2DuE7mZiYjHXhM0sAACAA\nSURBVBgxYsSIEa89W1ZWJpVKY2JiYmJi1NtXrVpFCDlw4IBQKHR1db158+bjx4+bN2/OnM3M\nzJRKpapVZN4ZAAAAAAAAACofriB8OwsLi++++069JTEx8dy5c0OHDm3WrJlAICCE+Pj4HDhw\n4NixY9OnT2dijh07RlGUj48Pc/jOAAAAAAAAAFBhvyAUCoWvbacoSiQSOTo6BgQEzJw509LS\nUv2sSCT69NNP1VsKCgoIIW3atPHw8GBamjVrFhQUFBsbK5PJ2rRpk5KScunSpT59+jg5OdUy\nAAAAAAAAAFTYLwj79ev34MGDlJSUpk2btmjRghDy8OHD58+ft27dukmTJmlpaT///PPu3buv\nX7/u4OCg6eATJkywsLA4ffr09evXLSwsRo4cGRoaqlEAAAAAAAAAMChmvRYWXblyJTAwcMOG\nDcOGDaMoihBC0/Tu3bunTp166tSprl277tmzZ+TIkWPGjImKimJ3ai0kJiYeP3580aJFuk6E\nZffv3797926PHj20qLoBAAAAAKAxCAoKYv8O4ezZs0ePHj18+HBVC0VRI0eOvHHjxpw5c+Lj\n44cNG3bu3LlTp06xPjUAAAAAAADUHvvbTiQlJXl6er7a7unpefPmTeZzly5d8vPzWZ8aAAAA\nAAAAao/9gpDP5ycnJ7/afvv2bT6fz3yWSCQGBgasTw0AAAAAAAC1x35BGBQUtHHjxi1btqg2\niFcoFJGRkZs2berbty/TcuPGDaz8CQAAAAAAoFvsv0O4fPnya9eujR8/fvbs2c2bN6dpOj09\nvaioyNXV9ZdffiGEVFdXP3v2bNiwYaxPDQAAAAAAALXHfkHo4OBw+/btFStWHD169O7du4QQ\nFxeXyZMnz5w509jYmBAiFArPnz/P+rwAAAAAAACgEfYLQkKIiYnJ4sWLFy9e/D4GBwAAAAAA\nAFaw/w4hAAAAAAAANAis3SGsrq6uTZhQKGRrRgAAAAAAAKgL1gpCkUhUmzCaptmaEQAAAAAA\nAOqCzXcIhUJhly5duFwui2MCAAAAAADAe8JaQejq6pqRkZGWljZ69OixY8e6urqyNTIAAAAA\nAAC8D6wtKvPo0aNz58716tVr9erVzZs3/9e//vX7779XVVWxNT4AAAAAAACwi7WCkKKoXr16\n7d69Oycn59dffy0tLR0xYoS9vf3UqVOTkpLYmgUAAAAAAADYwv62E6amplOmTLl169bt27dH\njBixd+/e9u3br1ixgvWJAAAAAAAAoC7e4z6Ebm5uXl5ezMuEFRUV728iAAAAAAAA0AKbq4yq\nXLlyZcuWLQcOHBCLxV27do2KigoPD38fEwEAAAAAAIDW2CwI8/Lydu7cuXXr1ocPH1pbW0+a\nNGncuHGtWrVicQoAAAAAAABgC2sFYf/+/U+cOEHTtL+//9KlS0NCQvh8PluDAwAAAAAAAOtY\nKwhjYmKEQuGAAQMcHBwSEhISEhJeG4bVZQAAAAAAAOoJNh8Zra6u3rdv39tjUBACAAAAAADU\nE6wVhImJiWwNBQAAAAAAAB8AawVhhw4d2BoKAAAAAAAAPoD3uA8hAAAAAAAA1GfsFITbt2/P\ny8urTaRCodi+fXthYSEr8wIAAAAAAIDW2CkIx4wZk5qaWptImUw2ZsyYjIwMVuYFAAAAAAAA\nrbH2DmFKSopQKHxnmFQqZWtGAAAAAAAAqAvWCsKpU6eyNRQAAAAAAAB8AOwUhOvWrdMo3tnZ\nmZV5AQAAAAAAQGvsFIQRERGsjAMAAAAAAAAfDLadAAAAAAAAaKRQEAIAAAAAADRSKAgBAAAA\nAAAaKRSEAAAAAAAAjRQKQgAAAAAAgEYKBSEAAAAAAEAj9R4LQoVC8f4GBwAAAAAAgDpiuSAs\nLi5esGBB+/btDQ0NeTyeoaFh+/btFy5cWFJSwu5EAAAAAAAAUEfsbEzPuHPnTkBAQH5+PiHE\nyMjIwcGhrKwsKSkpKSkpMjLy5MmTHh4eLE4HAAAAAAAAdcHaHcKqqqqBAwcWFhZOnz49PT29\nrKzs+fPnZWVlaWlpX3/9dW5u7qBBgyQSCVvTAQAAAAAAQB2xVhDu378/IyNj3bp1K1eudHV1\nVbU3b9589erVa9asSUtLO3jwIFvTAQAAAAAAQB2xVhDGxMQ4OTlNmjTptWcjIiKaNWt29OhR\ntqYDAAAAAACAOmKtILx79+5nn33G4bx+QA6H4+fnl5yczNZ0AAAAAAAAUEesFYT5+fmOjo5v\nCWjWrFlBQQFb0wEAAAAAAEAdsVYQisVikUj0lgADA4Py8nK2pgMAAAAAAIA6Yq0gpGmalRgA\nAAAAAAD4MNjch/DgwYOpqalvOnvv3j0W54K3kMvlJSUlRUVFpaWldnZ2b3qxEwAAAAAAGjk2\nC8IbN27cuHGDxQFBCw8fPrx3797Ro0dfvnx5+/bt/v37d+jQwcHBQdd5AQAAAABAvcNaQZiY\nmMjWUKC1tLS0jRs3urq6enp6Pnv2rGXLlhkZGdXV1T179rSxsdF1dgAAAAAAUL+wVhB26NCh\njiM8f/48Pj7+1q1bubm5PB6vadOmAwYM6Ny5s3qMUqmMjo4+depUYWGhpaWlv79/aGio+iOR\n7wz4iCkUirt377q6ulpYWDx//pxptLOze/LkyZ07d/z9/XWbHgAAAAAA1Df1qFI6cODA4cOH\nTU1Ng4KCfH19c3Jyli5dunfvXvWYqKio7du3Ozs7jxs3rnnz5jt37ty8ebNGAR+x4uLiy5cv\nm5ub12i3trZ+8eKFTCbTSVYAAAAAAFBvsfkO4askEsmDBw/Kyso8PT1NTU3fHuzr6ztu3DgT\nExPmcOjQoV9//fXBgwf79++vr69PCMnKyoqNjfX19Z0xYwYhpG/fvnw+Py4uLjAwkNkC8Z0B\nHzepVMrj8SiKqtHO5/OvXr0aEhLC5/N1khgAAAAAANRPbN4hjIuLCw8PHzly5MWLFwkhp0+f\ndnV1bdeuna+vr42NzZIlS97evX379qpqkBBiaGjYpUsXuVyel5fHtFy6dImm6eDgYFVMSEgI\nTdPMdLUJ+Ljp6+tLpVKFQlGjvaqqqnv37kKhUCdZAQAAAABAvcXaHcILFy707duX2WnwwIED\nsbGxoaGh+vr6/fv3l0qlly5d+uGHH1q2bDlo0KDaj1lWVkYIMTMzYw7T09O5XK6rq6sqwNnZ\nWSAQZGRk1DLg42ZmZhYQEPDnn382a9ZM1UjT9PPnz/39/blcrg5zAwAAAACAeoi1gnD16tUG\nBgZ79+51cnKaOHHiyJEjHR0dr1y5wjwpmpmZ2a5du/Xr19e+IMzOzr5y5Yq3t7eqICwuLjYx\nMVEvbCiKMjMze/HiRS0DGGKxWHUbTSKRaHvF9VGnTp3EYnFaWppMJpPL5WVlZXl5ee3bt2/X\nrp2uUwMAAAAAgHqHtYLw1q1b4eHh/fr1I4QsWrSod+/ec+bMUb036OzsPHTo0H379tVytMrK\nyh9//JHP50+aNEnVKJFIXn0LTiAQqIq6dwYwxo0bl56eznz+5JNP3NzcaplV/WdlZeXv729r\na3vr1q3i4mJra+s2bdp4enqKRCJdpwYAAAAAAPUOawVhXl6e6llNFxcXQoj6g4uEEEdHx9LS\n0toMVV1dvWjRovz8/IULF9ra2qra9fT0qqqqagRLpVLV23HvDGB06dLFycmJ+SwUCpnHXD8a\npqamPXr0sLCwuH37dq9evbAlPQAAAAAAvAlrBaFcLlfdnRMIBIQQHu8fg/N4vNqUXhKJZPHi\nxenp6T/88IO7u7v6KXNz86dPnyoUCtVDoTRNl5SUtGnTppYBjK+//lr1OTEx8fjx4xpdaUOB\nlwYBAAAAAODt6tE+hIQQqVS6ZMmSlJSU7777zsvLq8ZZV1dXhULx+PFjVUtmZqZUKlXdmXxn\nAAAAAAAAAKiwuQ/hwYMHU1NTCSGVlZWEkHXr1kVHR6vO3rt37+3dZTLZsmXL7t27N2vWrE6d\nOr0a4OPjc+DAgWPHjk2fPp1pOXbsGEVRPj4+tQwAAAAAAAAAFTYLwhs3bty4cUN1ePr0aY26\nb9q0KSkpqUWLFllZWfv371e19+jRw87OjhDSrFmzoKCg2NhYmUzWpk2blJSUS5cu9enTR/VC\n4DsDAAAAAAAAQIW1gjAxMbGOI+Tn5xNC0tLS0tLS1NtdXFyYgpAQMmHCBAsLi9OnT1+/ft3C\nwmLkyJGhoaHqwe8MAAAA+JhIKmWJMQ/qMkJOWpHISM/MzkjrEXgCbpdQ93fHAQBA/cNaQdih\nQ4c6jrB48eJ3xnA4nEGDBr1lM8N3BgAAAHxMKsuqf/9es0dyWKdvIkRBCADQQLH5yCiw6MB/\nzl2PTtG6u0IhV8iVN/iHOBzt1w36fFaP7kM8te4OAAAfgL6xcPhSf017JR57YOVo5uRpSwjZ\nM++M0FAQOtuXEPJn/GMen9vyU0eNRuMJsK41AEBDxWZBGBcXx+FwAgICCCEFBQVjx45VP+vp\n6bls2TIWp/u4GVnoWzY10br7i5yXkgq5kYWekZm+1oMIDQVa9wUAgA9DT5+vxS/vREZ622ee\naNG5aaf+rfbOOyMQ8rsP8YxZdTntWta0XYMdPWzfPQQAAHwUWCsI79y507dv3w0bNjCHlZWV\nsbGx6gGxsbEDBw5s3749WzN+3AKndgmc2kXr7nsW7LFIWScY/H+9wl6zXisAADRy7ft+QnGo\nbdNjaeVfWwQfW30lfuftr7YPaqDVoFJBn42q63IGddd7QkeKQ+k6CwAADbBWEG7ZssXKymrM\nmDHqjdu2bevTpw8hRC6Xe3p67tixAwXhhyFSFnVyuZas6zQAAKDe8g5sQQjZNj2WJkQilp7f\nkfTV9kHOXna6zktLSqXyyC8XdZ0F8RvfgSIoCAGgIWGtIIyPj+/du7dA8I+HDE1NTW1t//pF\nY3Bw8MWLuv+buqGgxYW0pFyjLors21UnZumHbeeYOIjoF4QQPUm2svixIjup8miE4ZgTlMhU\nowEpfQtKqP1jq6y4c+dOSkpd3qVUcKpLlEIzLlf791vc3d09PfEuJQB8JO5fyLz63z9Vh03b\n2GQm5UgqpS26OZ7dcpNppCjS96uuds0tdZSjNrhczrSdg+sywpZpxwlFxq3pV5dBqDq8ug8A\noBOsFYSZmZkDBw58S4CTk5P6PvXwdlUn50puRGnRsXxjD0JIZ0IIIa3+DC39+x/9srUa35vV\nD/k/vU//rUUOLBKJRObm5lp3L8pKC3g07eQnv5k7uNQlB637ArvuX8iMWXVZtzl80rUZs/YG\nQANlYm3o2MZGdVj5spr5YGQmaupurWrXNxZ+6MzqhuJQmq6FUwNPwK37IAAADQ5rBWF1dTWf\nz1cdOjo6lpeXq/8kra+vX1VVxdZ0Hz2ecw9Caf5bRpqWPz6vLM+rkBob0DmVhu4GVY+4dh5c\nB22e1OXattGiF7tatGjRokULjbrQUrEsNVbgGUYIeXzPmPOI/rRLR6fWHQgh0rsH+K36UXzt\nF9oB3RKXVD37M7/Ow9CkDg90mdsb1zkBAF1q0sqqSSsr5vOx1Vee3sujKEpkpJd85lGbXi6d\nP2+t2/QAAOADY60gNDc3z87OVh1SFGVoaKge8Pz5cwsLC7am++gJvEcKvEdq01OpEB8YJUw+\nTAgRVmYIP5sr9FvAcnL1G11VUnl4kuL5LVHQz+rtVbEzJTe3GTv7oCBsuDoNaN1pgPY/rWbc\nyl4RttdvfMeBc3qylxRAQ3Vs9RXmvcEVg/bw9XjDl/lvmx5LCEFNCADQqLBWELZr1+7UqVNK\npfK1G98plcpTp061a9eOrengH2hl+a9dlJUvVA0cWsp8kNzaKbm1k/nMc+xmMGSXDtKrA0ni\nFtmdfZr24lq1kFxeLbu7z0hoQwgxODO17FiBsvQ518G7cv8Xmo4m8Bou6DBa014AAPXZiV8T\nzu9I+veOQU5t/1pFxjuwhVKp3DEzTqDPbxfQXLfpAQDAB8NaQRgeHj527NjVq1fPmDHj1bOr\nV69+9OjR3Llz2ZoO/oHiCAOW0NWlzJGi8GHV6YWEEJriCn2+oQz/eleEY9bw3otQvsiQPTqr\nXV9FyTMeeUYI4eXcUBBCCJE/u6HFONxm2u//AVA/KfJTOBYuFK+BvSQGr1VZWq3F6po5aUWf\ndG165cC9KwfuKWm6qrz69+9PE0Kad2568ffklIuZGo0mEPEHz+ulaQ4AAFAfsFYQjhgx4rff\nfps5c+b9+/enTJni5eXF4/HkcnlycvL69eu3bdvWoUOH4cOHszXdR0/TVUa5lm7MB0V2kiT+\np3JOM2NlpkTkzD//o8HQPRzTpsxZZfHj2o9ZH1YZFX72g9D329rHK3LvKCtfMp+VJZmVcbMp\nhZTm8vUDlnEs/vqKOPqmXLu2GiSBH5o/LnKpQtcp6J749zBh70UCj7etBAYNhaRKdnnf3ToO\nIq2W12UQfRMhCkIAgAaKtYKQz+cfPXo0ODh427Zt27ZtoyhKX1+/srKSpmlCiLe399GjR9VX\nnYG303qVUYYxySSE6Ff8qSSkfFNP7QapD6uMUnwR4WuwyGfV2f8oS56+Oozk2gbVAdfCxXD8\nGTaygwap/EWlrlPQjeoLvwjaj+IwjwwoFYT+qzCW3v6da92K6+Cty+SgDows9Occ1eqd87/J\nE9YSUydeqxCtR+BgK3YAgAaLtYKQEOLg4HD9+vWdO3cePHjwzz//LC0ttbe3b9OmTVhY2MiR\nI1ENaoTr0F7gWapRF1pSLk8/y7H8hGvTOvvPR1bK5Jdmn1k3MZNnXacri/kt/AlHsz9ujqXu\n3yGRP74gf3at9vH8FgGqz7K0U4qXzwghhKY5xg78Vn1Vp6rjf36175vwHLvxnH1qHw/1ikKu\n3DzlaOhsXxsXc0IIjytn2uUyxb75Z7sN9nDxttdpgh+O/PFF6a0dhl+e4xj+b8sByeX/qzo5\nx3DCHzpMDOqIx+c2U9tGoraUCsL5a4NWcfJDjilfxAxC04RWqk41IEqlMjY2ti4jVFdXE4oc\nO3asLoP069ePolAeA0BDwmZBSAjh8/njxo0bN27ca8/evn0b68rUkl6XSXpdJmnUhRYXytLP\nCdqGE0Lu/7C2p3TaE5dlzmGdiFIuubVDz/sLwm14Nbks7VT1+R+17s78m0wpZfInl+RPLmk3\niPCzeSgIGy4uj2Nkob96xIFvdocRQqYH/JzEmS+XKTZPiSl4UtJ/ZiP6kzX84nDFroEVG30N\nJ55nWiSX11TGzTYceYjn2FW3uUGdKOVK5pdfmqjcP4qydBP9ax6hKFoqpqtKlMWPaYWk6sgU\njrmr8F8avvNPcThmTprmwDqpVFrX7lRdBwEAaHBYLghfq7S0dM+ePVFRUUlJScwTpPA+UAZW\nTDVICJHJOHLl37/f5fD0Or6+RK//BF5DufYa/xJBmrxX9ui06F/zCsUKw0vzKn1/tNCnqv5Y\nzHfzE7TT+EVWrnUrTbtAvRI2iubxXVcN3Tdwbk8HnpSrrIqMiMnPLP5mhauhsJKQRrMNCVdg\nOPJQxa6BFZt6EaVClnpCemef4chD/JZ9390X6jFleV7pz67a9HxyWXpz+1+fH56UXFn71+eM\neEniFo1GokRmpguLtcmBPRwOZ+DAOr0We3npGkKROg4CANDgvN+C8PLly1FRUQcPHqysrDQw\nMBg8ePB7nQ5UXlTarDw3O6CjrvOoM66tB9fWQ6MuiqI0+dEIzsi467nKRxmXBxISl05aeHX1\nGnlCvn+wfr+VHAutfnLSqUePHt29q/16DzRNKxQKDofz2l1hasnZ2dnbW8evmeXm5mr6PVBK\neduE0d6mXlmth/7+w6lZn5Gn93OyxIafj8pR7J+c4LWs3FSz/8Csra11/qSDNGln5aGJGnSg\nlTStVDtUEJpWvEgnFLdixwCmjSKURk8Jcixcjaf/qUEO8N5QfJHAU5t/XmlJmfzxBY6xveJF\nJuHrcURmtKSC59pTm+VnBQZaJFDfOJs/ogme9gSARue9FISFhYU7d+6MiopKTU0lhAQEBEyc\nOLFPnz4ikQarg4CmHiflbPn6+Ne7w6yamRJCSqtMmfa061mRU2MWnh1nYNooVsvkWragI1LP\n/vHHgwcPDEgFIaS8vDw+Pr6gdWu/rx5yTE11naA2uFyuQCDQuntRUVFKSoqzs3PTpk21HoTH\n+xAPFLydTCarqKiofXzWlbKSzOp7/GmDmqzxEb3cxw0nhEgrFZ7O91o83n42f3hKqgFP70nL\nzy04vNr+FGhsbKxN6qxSVhTS8moWBqIV5O+HNmhCiFKmSQ75LCQAbKD0LQyGH9Cur6LgQcXm\nfxFCCE1TesZG/77FMbJjM7kPiaYVOUl1GaBj08s0oRTZt+oyCNfem+AdQgBoUNj8CU+pVJ49\nezYqKuro0aNSqdTb2/v7779funTppEmTBgwYwOJE8FrOXnbNOzVZPXT/N3vCVY1p17PWjz8c\n9FXXRlINMhITE9PS0tzc3Irys++VtuAbmDe3sU9NTTU1NfXz89N1dtpwcXFxcXHRuvvz58+F\nQmHbtm1bt27NYlYfXrNmzZo1a1b7+FvCh8/u5xNCUpQtvEqnhXntI4Q4Wz3u2fT8I4NZAssA\nL0IEIn6fgZ25PO3vnX54eh1Ga7Z1ihrZn4clN6IooSklMiXyalHfFZS+uRbjcEQN8ncrQAiR\n3IisOvHd/46VCkJoIpcoy/PKVrr/1cjhGo48xHPuoZMMtaSUla3tUJcBWloTQkgdBzH7UUYo\n3f/6DEDl+fPn1dVs/A6xDhwcHHBbqD5j7e+s//znP1u3bn369KmVldWUKVPGjBnj6en55MmT\npUuXsjUFvB3FoUb9Erjzu5Orh+23bmlMCCl8Unp0cULApM7+X3bSdXYfTmVl5bFjxzp06EAI\nURDeQYm/G8UjhDRp0qSwsLC6uloobES18UdGemu7+MCY2se7EKJeRreyziOEfNbyNCGkpXhZ\nS/Eypr3sew1y4LcONhwVo0GH94DSt+A31+ZXG5LLayQ3txqOOlJ1fKbQ7wdp8t7qM/MNJ55v\nwDeFgJCqqqoTJ07UPp4vFxg2+4r5zKEVTtkHTCRlNKGK9NyybIL+urtFUaW3cpRJh2o5pkAg\nCA4O1jBxtlEcvc5fatpJWZYjf3iS26Q9165t1bUoQihRl3GKnGRFThLvk0Bt/tegGtJvl6Ax\nePDgQVFRkdbdi4qKxGKxvb19XfYLMDQ0REFYn7FWEC5YsMDNze3w4cP9+vXDDhO6QnGoL37u\ns/O7k7diUwkhl7b9GRTRNXBqF13n9UFVVVVxOJxXH7DU09NLSEgICAhAQdhwKfLv6zoFoihI\n1XUKWpJc/r+qk3MNRx/jN+9ddXwm4fAMRhwU7/y8ItLPaGI8ZWCl6wQ1VlpaevHiRd3mYGho\n2KuXjjdkpxRS68oHmvXh8wkhFK1o+my/nqyEJpSECEzFDzmFnBz7YKYmtKxKr/14XJkeIbou\nCDk8/dBNWvSTZ16q2BrEbxWioHk0TXEsW0iTdhuOO8Vz/RfrOQJ8eK1atarLHcLbt29nZ2d7\neXnp62u/BpuJiYnWfeEDYK0gtLS0TE9Pnzt3blpa2siRI+3tG8vWXvUBraR/GrC7sux//7cr\nZEpCCKGoqwfvXT14j2l0ams37v/66STDD0kgECiVSoVCweX+Y4UMuVxO03Rd3sRrwGj6X/en\nvHQ7REjDfmSU3ypEWfJU014ZN7OrK6UtWnPp3ERaSZQUl29qm13qVFYo/qRrM4FIs19gcZvq\n/n57RUXFs2cabzNgcX1nec+1OTIHkpJiJZEUPX9ezXtMOi4zuzyn6MLuaqeAdw+hRl9f38nJ\nSdMc6hW5XH716lUzMzMPD80WFqpvBIryNn/+UMdBhERC5BLzkkTzkkQtulMiM0K+rWMOusJz\n9jEce6JiaxCHUhBCVZ+ebzjmGKpB+Gg0adKkLt0LCwvlcrmLi4uhoSFbKUF9w1pBmJ2dfeTI\nkcjIyDlz5nz//fcBAQHMU6NsjQ9vQXGo0Dm+4pIq5jAv40Xs2gRCCJdLPhvT3tjqr8XfLB0b\nxTs/RkZG/v7+jx49srP7x6M+BQUFAQEBjeivM5pW5CRxHdoTQgitFMheUrK/lmNR5N3jWrYg\nPD1dpqcVnrOPpntCKhXK+w/PBQ4soOPGFrovNkhaer1y9GdmJxw9HOILpoi7fWLW2vo9Zfv+\nlJeX37lzR+Nu9jNJISGFd2QymU9Fxd27d6tK7QghxHQUKSVEwwGtrKx0XhCamJjU5TFFqVRa\nXV1tZ2fXs2dP9pLSAUpoIgr8SdNe0jv76bJsQecvKYFhYfxvCqGlbZdwZXmu5EYU37kHz8VX\nsxy0WJhU1+SZF6v/WELTSmYfea51S/r5TUIRro1n9fkfyfkfaZqmKI7Qbz7PqbuukwUAeI9Y\nKwgFAkF4eHh4ePjjx4+3bNmyffv2wYMHGxgYEEJycnLYmgXe5JOuf620kZ74fOd3J62bm+Q9\nfGnX0uL05sRv9oRbNdhSMPthUX7GC017CV9aZCZcEVsTQgidr1+mVJQ+zCksLGxr0y3pxENN\nR7N1s7BvYalpL52jq4rLN/YU9ppTY4Np6d0D4v1fGE9N0GKDx4aIw+UMHFwq3jfWIHTT45cd\nDJKWVilNjCaeL9/Uq2czYtByt64T1IaZmdmnn36qdXexWPwo21fo1NW7m/aD6Ok1vF8ofKwo\nPSNhz+/eHfdPvGadudatKUNrQkjltSNSEzennt8RQvS6TiGyKq1XLWpAOCZNeW6f3TyeqlTS\nHfu1VDy9zLRT+lYc5543jz3g8Lgd+n7CManT3RUAgPqP/YWwXFxcli5d+p///Cc2NjYyMjIu\nLm7q1KkrVqwYNGjQ4MGDO3Zs+Fvj1WPpic9/HXuoz+TOmalZeQ9fdhzUIutm8eph+xtuTXjz\n2IOTG65r1dUyhzAbr1n9/cHyUNIVLQYKnNolZHrD+/UwpW9hOO5kxdZAzFRxgwAAIABJREFU\nQitI8y+YRum9/4r3f2EwMLKRVIOEEKKQVR4cYxC6WdD+C/LHfUKI0JDPMXMymnCmfFMvWWos\nv3WIrlPUmFAo1Gi11RrKy8uTnUKdHJ3qMgg0dDyXnqrPCkpAc/+q8LmWLXSSz4fHMXcW9vzO\n/ZPy1cP2K5VXvQzPy5U8mlDUkyv3U6xP3eo+fU+4sEljfPFJcvn/FIWp+p9v0HUiAPCBvK+V\nkblcbkhISEhISHZ29rZt27Zs2bJ8+fLly5fTNP3uzqCVvPQXv449FPRVV/8vO234dxYhhKKo\nkT/12fXdydXD9s8/PUZo0PBen2vt4yQy0vJGBE3Tdy6mZl4vdO1q7dH9E0rbjaFcvBvqC7E8\np08Nx8ZVbA0UlJYSQvRyropvrzEYGCnwHqnr1D4gLt9kfsE/nmfjUIQQjoWbyax0wm14/1MQ\nQh4mPNs8VfuVTmmalslk1zj5/+Vpv9+as5ddxNaBWnevJ9pkRcq4foT01HUiOna/2XhjE/PG\n+Y6HmZ3RNzMK5Bd+jy//oRt/MU2oCxXzunIXzPjGybwxVYPKl88onpC5Y6ysfEFX/vVsDi0V\nK18+41q30ml2APB+vfetchwcHObNm/f999+fPXs2MjLyfU/XmBlZ6o9Z1bdtbzf1Rg6X+uKX\nPokxDwTCBrktUvPOTZt31n4vdbG0PPN6YfNuTQImdWYxqw9PkrC+6tQ8DTrQNLPTOE3TSrmc\nf30lIcQ48WclV08cHVF59K8V5zVaHl2vw2hRv1Ua5FBvqFeD6fktKm0t/jpogG9RMrg8jr6x\n9snLpPKqMglXQIzNtR9EaKj7WlqRn1KxXfN3CJVywuERQmiatnv5nC5LKs3cQgghNLMWl2Z7\nBnAtXAzHn9E4h3pGydGjOQ3y34h/UMhKV7TUtBNdXUqqinlGNl7Fa3kcGSHEU7aCb2ZGri15\neXcDJTTWdECTb9MIh/vuuHpGcm2j9M5+o4nxHNP//ZtLS8ortgZSBlaGXxzRYW4A8L59oH8A\nKIrq3bt37969P8x0jZOBqUhVDVLc/90NozhUpwENe21JkGVepKtKtOur/uMtRyEhCol2t+ll\nGRd0voWQpFJW/qJS6+7lRVX7rw9v6WdRlFWq9SACEd/YUvult1nh1rHJ4vgJmvbKSilo0tKK\n4lCZ95//ErLP0sVwYewEQkhRVqnISM/AtOEtCpKXXkDl5WraS48vUdIcmZxPEVookNHSMnGe\nlKJoPZ5EruTJFZr9s1iWRWtcgsD7Qmv096RCppBWybkcOU0LlC/L9DhEQXMJIUJuZfVLwqEE\nVHmZorRSIOJz+Rr9mqBBPgkl8l+sLHlSvtHH6MvzTAstFVdsD6ZlVYaDtug2NwB43xr+bwTh\ndUTGuv/lPbDJuQ+do/FyOGKxWCwWG/Ll+vJCitA0oaq5puVKfaGe0MjISOMc3HT/rt2d04+2\nzdBgA+7XSj2b88NZ7Z9W8PJvPnFD/zrmoBORU2Nc2zt88UsfZkMqhUKhVCqf3ctfO+q/Q//j\n1zGk4T0SxrPz3PpY433nTAV5wc1+zKryuJodPrb11CKx9cm8OSHNfswX253O/reC1uyfRQsH\nYxSE9QVXYLqwuPbhkkrZkzu5tJImhNBK+uTG6y0la2maesCPCJzShcOlCCEUh3L2stN0c5oG\nicM1CN8l3j+yfHMvfqsQopRXbOtLS8qNxp+h9M11nRwAvF8oCAEagGspbQ5tGK5FxzZN7oZ1\n2nv4ZtjATvsP3hjS3/vwndRO51P9tBjKZ2jbYX216Mcmcwdj76BPtOgokUhevHiRk5NTXV3N\n5/MdHByMjY2NjTV+GIwQ4uRpq0Wv+mDarsErh+5bNnTLM34yhzjl5uZtX7f33rYinyFeDbEa\nJITYuJjPOarNC7HKogGi9T4WrodIEeHyFOFtVwhs2zqNjfFqsE8Rgxb09PnMAt1KBb1temxR\nVunl8n8RQrimFZf33x33f/24PM2eH64/XmwJpmVVtY+nZKp9jGmOpFJybT0hFOEKldati7f8\n/atAnh6tyav4ZkN3cU3s3h0HAPUACkKABsDG2UzTQkgulytz94e1OHQ2d+hDuSch+wuVDkey\np4a2Xs8xlucaThQKNXtEsFkbG43i3we3jk3cOmq8BHxxcfHZs2crn5R6GdmmpKTY29ubmNDp\n6bf6jBvn7u7+PvKsn4RmPPdRpgnrnplau5YRhb6eQdLmXKpJhVuQma5T+1BoJV1dStN04v3H\nl0r9hlUeJYSY6JVkVztl6od2ePLIwcGBcHiUnub3zxusp0+fPn78ODEx0cjIyNDQ8JNPPrGy\nstJ1Uh8UUw0+vp0zfU/4gt5RhKIW7wlfPWz/lmnHG25NyEn7f/buNK6Ja20A+JmskxASAhGD\nyCKboIILCiguuNQdfGu1vdrWrWprb7UubVVQLG0vcq23Lm2xV1vbonWrbV1ABa3iAsgiu4js\nStgDAUIgZJv3w9jcFNwIy5CZ8/9SGjL5PTw+Mzln5iwxPTByVddCq0gx+mhlfZkZ7BD2D1nX\niuRS42dblJTU1Ne3JqsedGe3oRFTnSwGUmYjaBMEO4QQmeGL2pJgbVvPac6e05y7dEi7rFL+\n7zcybVaC0VOtkmsBABwbYLFgbEbLx5OQCMbbn1h5zuydYPud7OzswsJCJyen5uZm/BWhUOjq\n6nr//n1XV1cWi/zjq5UKVUtDW1ZW1oMH+SP+4ZB3qgEAoJbRxGPMrMaaZyTmClFrnrmZ0Ibk\nHaG2KyHK+AgAgBsAbownDWY6orXXFtvnvAdyQCMAAAD+hxn0QaOIDLSvpKWl/fLLLzY2No2N\njW1tbbdu3Tpz5syGDRtcXFxefDBZnP3ixqPs6o9OL9HXv9DGfOMvr+9bevr33fGLd04jNjzj\nyL3WYpp2Iw5EdBrO42tA2QAwhMZgtjrO1jGNbMTbDHA17kCox8X9N6Uk3fgtwRGAsRiqgnNG\nLmSA2/DzYtgh7M9ghxAiM3WbBgCgUWqJDoQAaiD88nIIOoHjbv2317PLrG79ufOd1z2snnEg\nyWAYVlNTY21t3eF1CwuL5ORkf39/W1tbQgLrS2f/dSPhdA4AAACzeiB98qoOVKcpqtMAAPK7\nXx6n0ZEvbq0VisncJ0Rf2cX2XZOUlJSbm+sgQr1KvuZo6jFAq7EYVzjoH/fzHixZssTeYQhN\n6EB0pH2hsrLy+PHjXl5eHA5HIpFwudwhQ4YIBIJ79+6JxWIejypNN7/Xhs96z0fw96aq5SD+\nR6eXNNUpiIqqm+zf/M6IozCVouXH+Zhw0EPZOKaiynW4K+NRovm78TShY08HCPWpoM0TFbIu\nDCHuIDfq4Bj+hYpxZwbYGj+b1NadWkMPTA7sEEJk01DRfDrsz7cjZvEs/7YUpLy+9di22CWf\nzSD9YxAcT8iZ9uErF/6dVEivZNDp5fUOrRpOeV5t2e/t4/5vpPNY4zfzMC0ajUan0zEYT7nW\nMZlMlUrV9yH1vbfCZ70VPuvMmTNNTU1YMyv7qFSrxBA6JhrGdV9s+SA/780333R3J//aKAgD\nRSyd6rW5LA5vRNnXLUwbjqZephQKWwuHVJ/L5AY0IUKK9AYBAGVlZdbW1hzO3xYPtrS0zM7O\n9vT0HDaMKmtTdxgMr58kJxjIE1DpgcaT3mB7s/nqq4qQVdx23ZM1Zv4bAPuEpg6fK9slusbH\nOnk1w84HAFB6HmPS1e6THBzcB2EapabwGtNjfi+ECREJdgihfq2qqqq2trZLh2hU2gapLGJR\nVGCYd21NLQCgurr67q3UC6H3eCJ2aUXR49quzQkZOHCgWGyS64jMWjVBp9NFf5mstqk5VP6B\nekAD96F27IKhK3cTv15on2EymSwWq7GxscOcSQzDlEqlmZkZUYH1PQ6HU5ZTJTknF7qzpJnt\nDCEml6jzf21od1V16BWQG0cjm15zoJU7ON1y1ayy9VqMnuK8zaf4i2naJjptIdHR9R25XP7U\n+jczM5PL5X0fD7HUarVEIkGYGECwsrKywYMHP/UuEonlfL6C11Zhv+vu/9YUpdHNXv+5MOyV\nis9eHbYvg9DojHTv3j18UWUCjRo1ivAvGqxdDnSaLh2iKbvd+us73H8cY7rMYCLtNESHqJp0\nzUjrqaW61kaGo39XY0BYPECnwGq9Jota1zvI5NTW1ubl5XX1KMdX0byTrWc+ThC6swAATQ3y\ns9sSWXy6QxD/YWF+Vz8NQRAT7RACAOasnigQCH7ZcVUHdGij1ZTlY17bHkB0UH3N3t4+PT1d\nIBAYvlhVVRUQECASiYiKqu+hasGj31SDxplbejGkme0IHfNabpVxpNaS5mg9gPgVg4ygrXuo\nONnl1XfHVOeptBimbvSr/BIAYMFu8Cr7uh3huGuyaefmNN/o2jIYNKED7+3fuhpDf8BgMLTa\npwyn12q1VOsLSaXS27dvJyUlqVQWAAGRkZETJkyYNGmSlZWpjqzfPOrrNnnX5hCyGSO12BjN\nH0cBADOGK+jmmnXOewEANGQuh9mmuLC3qzFEJL5H+CPWqqqq7tzdePTokUKhcHd3p9GMX1uo\nPyxd1vLDbM2jRCMOVBx/HQAwCf/y/GWYfgPfxk+7PHaUtzqO6Qp3I++/qHXRh0yOk5PTwIHG\nNFUDAnSng29W5tYDAJpysIHOoiURAQw23YiPMsW5NF8tOVWYIunwolaNXfs+7dr3afj/8geY\nRSSt68oq4qbK09Ozurr67t27AoFAo9G0traWlpY6Ozv7+vp252ve5Pz55X2nKSKZVXFLiwgA\ngGFYfWsN8K5qzXHKiCmcsNiT6AC7TtOuayjp6kE0BoMOdGxlNQ2h6TAaAAhXVavVagGTQ9O0\ndvUDEcRUS2jAgAH19fU2Nn/rAGu1WplMRqmFRpVK5c2bN4uLi0eNGnUnphwgYNSoUfn5+Tqd\nbt68ed1ZVpFAg4dZtyu6PB6+VdEmfdREY4CGVisMIHQupm0D/EHmfKGNET1jOpP4U2PatGk6\nnc7ow2/dulVTUzN37lwm0/hHW1wu98Vv6mX0wWMRljFh6JordHUP1VomA2nH2BY0TE0f7I3Q\njVmJjcY11dsrFAE7hFC/Zm5u3qUt1H8Lj2+oenI7kMc306rqAAAqpZYvNL+8Nx1/3cqWv3Db\nlB4PtV9Z+dU8ef2TNaarSxqOb4tVt2toNPDq1ilufk/mEqA8FhV6gwAAFEVnzpwpFosfPHhQ\nXl7O5/PHjh3r5eVlurf/jRN8YRmbz8jMzMxKygOgHkFow4cP/8c//mFpLmKiJvldQLfx6tJG\n5Hq1tbV3ExNvxN1c1HQ9q9ajcNjAV199dfz48Sba+jeOm5ubt7d3fn6+g8OTaZNqtbqoqGjm\nzJl2dlSZYwwAKC4uvnfvnqfn/26IIAji4OCQmprq4eHh4WGSW3RuPvFGVw9paWmJiYmpKlM9\nOqtOfzwWaAEdRdyXmZXUP9gUEtJ5XS6T0M3OGIfDQVGUx+N1p0PYH3CDDnTh3RimKbuNaZ7c\nUFDnX9Ld2Q8AADQW99X/6kcU0wcMpVlQ6EJBeibZCICgZxHZW9D+2jZKpVTjG05gOkxgbcbm\nPrmgW9kasx25aRHamONr5zy+X3Mm7M8h48QFdySDR4rO/+fOOwfmj5pJudXA2Wz2uHHjHB0d\naTTa8OHDR48eTXRE3ZJ3q+zrlWe7+SGqGtqFD+5fAPeNO9xlrO2W00u6GQMhDr9/3nfh8MDA\nwGGuI/YF2XIHMD79dLmFwOL0Z9ftPKz93zDBJ6VGQVF06tSpLBbrzz//lEgkLBarra0tMDDQ\n398foci9IgAAAA0NDRYWFp1ft7CwqK+v7/t4+l5RWkXUx5fb29tbWlpYLBamA0ALAAB0JlJ2\noU2rtt2bcobNZs/7cILfq8SPfuxLKpVKqVSSYOeqLtE1SRS/vGG4bQmCb9Gjkrf+8Z7+Rfa4\nVZx5XR5ITKy6urq2NuNXW0Vaqlk5P7WP39adGEQiUX94aNwZ7BBCpDLlrSe7h7U0tO5/64zF\nQPOa0garwYKHSY83HX+dP4BCK4gAAB7frzm47NcJiz359uyCOxJLe17AP8biuy1TsE+Io9ON\nGTbc36DmrA5LI3aJVqttampis9ndWepgoJPx648Ta3iA0/frL67+OtBx1EAAAJPBtBBYHNsW\n++BO2fSV3kRH16eEQuG8efPGjRt34sQJgUCwYMECqj02BwDodLqnDh2n0WjdGW1oQuyGWb+6\nbUpB/sPc3Fxra0Ftdmt7sxZgABXQbSeYNzU32tkN9PLycvGh0OOggoKCvLy83HuJRVlJKIo6\nOzuPGjXKdDet7dKiMgibx9/yZO2GdkWz7NgSuiKNSVMDnaZ9yufWfkv/97FtXdiZsD8sKpOf\nny+RdJxN8/I4tam+1VHx7X7deWI8YcIE/aCMfgV2CPupwhRJTYkxQ6FwtUVNAICSlGqmLtvo\nD3EaM2iQm0kuuYH3BvnWPDdfu/N7b09YNOLh3fJ9b52hVJ9Q0ajc/9aZKW+OWvDRpGsn7uIv\njl80AsOwHz6M3nbubduhJvmPCwEAnEYP2n7+baMPl8vl0dHRjo6O48eP78GoTIX/654IAr5f\nf3Hpv14BAGAAi9p6Je922abjrw9weMqTInJDEGTgwIGDBg0SCAQU7A0CAAQCwVPXHWlubu6w\nEpUJybpapFV3bQNevANcm90qK2xH6BimQZSN2opEOXcYhneYi1LKu/SBntOcTXQsemZmZlRU\nlKOjo5s6a7ZraYpMdu7cufr6+pkzZ5roLUWjF5UBAKAAABoAACCYmnXlg8YrHxj3Of1hURlH\nR8euXuXYkpvmWYcapkfqUMvq5IegGjg7OwuFQnZloiDp07qFlzGkayXx1PEI/YFJnqtUkHzu\n/l8bSRsv7Y+CtD8KjD789dBpptghbJO373vzjGAgb91//y8+KgMAQGfQ1n4TFLn2j4PLf/3o\nzFKUZ6o3+bqEy2e/d2iBfsag3oTFnjYuogH2ptrQgaDuw1fQORF8FQCgbFTjvUGxCxW7Q5CT\nk9OwYcOkUqml5f8eekul0hEjRjg5OREYWHf8/PHlrq4yCgAAgAUAvkkDAgBQtehULbpmCagG\npUmgtKufFZH4ngA1vSXZmnIuJf4c6TFsAY/HY1QjdBrg8/nDhw/PjD8/rPWOw2v/IjpAYxix\nqIxWpVYUpzFoarm5k6auUchuaOA6oyoZH6tpZTlbODh2NYb+sKiMEbOjMdchise/o7f+ab7m\nmurBAKBFhg4dKmhIV8Rv4MyJEA0nzxQD2CHsp3z/b7ijV9dWPzdUWVlZUVHh6uranVsRTmMG\nGX0sgdTt2mGTHYM2T2Sy/1feTJTx/uFXL3x1R92uMcUO4aPs6odJj404sCyrGgBQlCkBAEiL\nm+P+m4K/XtjFe70AgMEe1sMmOxoRAwT1Eynn8pJ+/9+cScvB/NpSmbpNO9hdcPqz6/iLdDrt\nH5/NENnBOyZUwefzx40bl5qamp+fr9OxAAIePnzo4eHh6+vbpSXN+pX5H07QqLr2hLAwVfLg\nTinqrBpgZynJatApgYOfVUNtY2sBw8Z5gPecoV2NATU3ySWaGmrKF7Ou5KkdK8H/ttrjaaRv\n08+0VfgRGFh3dG1RGQAAADVxX8pL759MD1ZiPGfzu5Ntr19Qb3h0RTF1esKkAQm81Vd7I85+\nCGFyzJZfUPwc1Hxocr12vkiNKbMvMK5/wJkTwfbfQHR0PQl2CPspV5/Brj6DjT78/n26Nls2\nerKzra1tD0ZlEvgirn6rvSdLIyAAAMBEGa8FBxAVVTelX38Q9/W9bn6IJLdBknvL6MNHzXeC\nHcJ+oqWl5fFjY24Q4BQKRUVFBYZh3RkRx+VyHR0djT6cEAOdLD38n0zewDAs7eKTXUmtHYU2\nrk/uXiM0xMwCJSY+iCBOTk6WlpYuLi4/nr0OEBAYONPFxcV0x4sCAKZ1fTasq4/d7PXjCqvu\nX7lypYVBBzRWNadu6oqpnm6jFdXq4VOG9Eacve3L2XsaK7swzw3nZhM0D/uu4uIjjKFjiGkV\nXye94XtC0mgTE+Ol+357Vz/t/ZMf2A43vZaYzD7wJNro+pZj9o9SrQIBAJRdUTjPFdS7z7pj\n+cZrRIdnnKbU85r6si4dUlsmK7lXMdjb07Ixz135DYuuQa+sqeT7qTOqiiNXTH5zFELr2hJc\nZiNmoYPdu3RI34AdQojM2GYsAACba3qPBDsQe/KH/cP4NTzwzfdQFO3OnHiHkUKjj4V6llwu\nz8rKMvpwjUYDAJDJZN35kAEDBphch9DBS+zgJQYAYDosauuVpjoFAAAVMNNi8lcfDBz5igvR\nAUKEsbCw8Pb2Ps68DRDg7U2ttYVwQ0bbAACcvAaPGTPm8LZfm6uVGz9aIhaLaTQa6PLTwf7i\nDc/95iOrjDt2jlc0/sPagEgAgIDTONTmgRGfo1HOBcCUOoTNdYr/rjvfIlfU15u3cuoABuoa\nrQur3RgoUp2m0CZrS5iqguPHvOcOnfmuD9HBdo38zFozWm2XDhEDILYET0ZM/zVb0EaeCOSJ\n9oMBuPlzV2OoKlgxZMOPXT2qD8AOIURmpFk7fbT/8KGjCb5Bi6LwsUl/IRQK/f39X/y+3tQf\ntuxTqVTV1dVdPQrTYTF7UktSq1/91O/4hngaG8x6d8yR9Rf+L3S828Qut9uYTGaHvd0hyHQh\nCGJtbT361SFNsuZBg0xy2ogh0aRFmPylLxFatVZWqtWoa2pqOCiHhSlRlRQAoKFxlCxRm1Ip\nFArZKJtmLkbQLkzGETh1nMnfz5kJOZOWjmxsaIqJiRnoYKmU6iru2lbKbNkWiHiMWUNjvbOz\nvZubG35zzbRg5g5aRdPLvx8BOgAAhmEYBhCA0WlaAAAGEJ2OhgEEQQCCIBhAnoxDezmoTT9d\n4x12CCHIBKAoCvtjkB6Kovb2JtbI6A0KhSIhIaGrRxWeb2x4qPR6R1RcnQ8A0Kg1cn6l83zB\nH2GJw9+yErp0raPL5/PnzZvX1RggqD+jM2kM9ClbcZgc5tA5WHvLS74Zk1drU3+g0+hCC2Fj\nUxNg0FGAAICpAVvZ3m5mZsZiswEGaFZuDKcpLx8DgprY2GM6g+a3cDgAgDmkLe7EnZZUHoOn\n08hpNBaozGhWe1bNf2+ltbU10WEawy40pauHlJeXHzx4cLojw7vsPyllvsMHZVU3DbKylN9x\n+YglHPz666+TZtdW2CGEIAiCTBKHwxk5cmRXj9IWl8xYPdBikJlKoUkC1WY8s5EjR44cCZxc\nq1A+y25kFxcl7wdPSiEIeqrW8xt09UVdPYoFgDUA4K99+zi6Rg4AQAF0CgAA0FbntCd9+/Kf\nxt+YSef0050Gnk+otVUkmNOHNagesRDA1Q2rZhXaWlaMEvAoMX+kvVX9w4fRzY1y29YGb3Ds\nZkXgI8mA4YOyfslYtXz8T+MffHmqaP2B6F9dxw2et2EC0cH2ANghhCDIZKhUqpaWl73d25lM\nJmtpaWlqampoMH6TTxaLxeOZ3lrqpISi6LBhw7p6lP6QtuZ2AOLYf32IER/VT2i12oqKiu58\nglQqbW9v785KRTQabfBg4xdCg3rWhQsX1Gq10Yfn5OS0trZ2c8+9efPmET6wBZ3ycZc2TwcA\ntLWoUs8kjRTf5tg45d/XWaGVluNmYA9+uy/xHDzlFf3qUy+PZm6SQ8oL7j7+8cPL/wib4Tx5\nwP6lZ5qb1K+98eowr6Hfrbn433XnNvy8mOgAex0LZYyZ46auvOv+OCpdt6iAHcDGMgAAGh3z\nBn3DdMaBpSP+WzXqgrUT8dtp9AjYIYQgyGRUVlYmJSUZfXhbW1tlZWVbW1tVlZHLDAAABg8e\nPGnSJKMPh/obwQAzokPorvb2diOGzhpqaWnp5oewWCzYIew/mExmd0aykWZZHbbv2q4ewmoo\nHZd1+OGjEekNW0SNpxn81sfI1oJUdLHPKd64j1mjlvZGnP2QmZCrX2oL5XCagdre3t5KLNx4\n7PW0i8YsrmNyEBrit3C4pp6TfH5LSp5VTXKLiy0GAGBwkMpM9RmfBSvGMv0XjSTNYhWwQwj1\na5lxhfdvdnk/XL3q4gYAwN3f75dmGt8BGDHVaeQMuPxgvyAQCLr5GKf7DR2TXowe6ozOMPm5\nUkwm04ihs4a6eTgAoJtPk3qERq1d776v+5+zznlvdw7/tmAzjU5wUc2ZM4fYAPoJtVqNYVjX\nDsmLZrrNcl3+7yurzvMZWsAHv+++ufw/21DxLGXGKTBsUVdj6GbnnCi2Q0W2Q0X4z4bRm1mg\nU94eTUhI3Xd0U4wRTUqtxqa9VY3QsHY5Q6eltzfqlFqd4sLAyOssZHcXBg/j3vzXzDFz3Lp6\nVB8gW4dQp9OdO3cuNja2rq5OJBLNnDlz4cKFNJrJf99T1qPs6junsrv5IYUpksIUidGHm1tx\nYYewnxAKhUIhJWYvQNDLYzKZpjvetQchCGI/YmB3PqGxsREAYGHRzRlfptf6J6vY2Fi5XP6S\nb26TavLPyjAdBoAnOHgc0wGMhwEAGFxwenccAACA6eDooUE+PPFY7svHMGfOnG5XFMG4lia/\ndxeOzWVy+V2b9a1Ra5tqlBwei44iFQrHQzf+yebRmQxmW5NardRYDOzy/BEGk/h7Z09Ftg7h\n999/Hx0dPWHChKCgoLy8vKioKKlU+t577xEdF2SkGavH+b/hRWwMHHO4aAQEQVB/R2fQtp9/\nuzufcO7cOQRBFixY0FMhQcQSiURmZi87Jlwj1IEZKKZ78r/SopaSPCelms3islynDdDvPy5y\nMeOLOS8fA4Nh8i3tru693m+9+a+ZXT2kplRWlCrxf90TABAd9Wfcl1mhV94WiUTKFlX8sYxZ\n7/qQJjkmX6aGysvLY2JipkyZsmXLFgDAvHnzmEzm5cuX58yZ4+DgQHR0kDHMLFAzC7jdAgRB\nEARBXePn59e1A2Y/+W/irzknT13jWbqlP7IZ6MRplzDePbSAwepvVtyTAAAgAElEQVSnz3ag\n3jNwiHDgkCfjkhAEIH+NOER5rNnrfAkLqxeQqkN4+/ZtDMMCAwP1rwQFBV2/fv3WrVtvv92t\nu4YQBEEQBEEQ6SX+mnMy9Nrqg4F/fHkLAPDPIwsj3/3jv+vOwz6hqUtNTa2urjb68GJpMcNP\nGhsby+fzjf6QMWPG2NraGn147yFVh7CoqIhOpzs7O+tfGTJkCIvFKi4uJjAqCIIgCIIgqP/L\nuFKA9wZHvuKCdwjNRdwNPy/at/R01NYrq/bNIzpAyHhqtVqlUhl9uJ29nZ29HQCgOx+i0+le\n/CYikKpD2NDQIBAIDNc6QxBEKBTW19cbvu3u3bv6rcxqa2v7NEQIgiCoh+i0mLKl3ejDlfJ2\nAIBWo2ttUhr9ITQ6DeWRZMUFCIIsBpr/8/uF7v5/m2ckFJtvPvmPB7fLCAoK6hkTJpBhB/le\nQqoOYXt7O5PJ7PAii8Vqb/9bi2H//v1FRUX4z0OHDnVxgQtIQhAEmZ6Kh3XhgVHd/JD8xEdb\nxnxj9OEDnSw/vbqqmzFAENRPDBn9v33kDbeLsBjIG79oBBER9YAzn12vKqp/8fueoep+EwDg\nVMh11Mz4NfZe3TrZfni3FgGGehWpOoRsNrutra3DiyqVCkX/tirJ0qVLZTIZ/nNra2t3xhND\nEARBREHNWB1u5Pc9odic2AAgCHqWygKpRqU1+nC2GQsAIMmrZXE7Pmx4eTYuVkyU4Mb2o5zq\nkvTKbn5IWWa3WssKmfEDMaA+QKoOoaWl5aNHj7RarX7UKIZhMplsxIi/3dQJCgrS/5yamhod\nHd2nUUIQBEE9YYCDxYdRi4mOAoKgfuq7987VPWrs5of8Z8mp7hweEr18sMeAbsbQTR//urQ7\nhyclJZWVlQUGBvJ4Xd52DzIVpOoQOjs7p6WllZSUuLq64q+UlpaqVCrDZWZMRXt7u1qtNvrw\n1tZWpVKpUCj0syWNwGazOw/BhSAIgiAI6v/GzneX17cSG4OZEG6dBZkAUnUIJ02adObMmYsX\nL27evBl/5eLFiwiCTJo0idjAjJCVldWdxVFra2urq6tVKlV31sb19vZ2c3Mz+nAIgiAIgiCi\nBG2eSHQIEGQaSNUhtLe3nzt3bkxMjFqtHjFiRF5e3u3bt2fPnu3o6Eh0aF1maWnZnSeE9vb2\n3Y/B3BzOjYEgCIIgCIIgMiNVhxAAsGbNGisrq7i4uOTkZCsrq7fffnvhwoVEB2UMFxcXuPwp\nBEEQBL0kDMPi4+O78wk5OTkIgnRnZA0AICAgwHB1SgiCoP6PbB1CGo22aNGiRYsWER0IBEEQ\nBEF9B8Owbi4bPmjQIAAAXHscgiCqIVuHEIIgCIIgCqLRaK+99hrRUQD4eBCCIJMDO4QgOTn5\n/fffJzoKCIIgCIIgCOpfmpqa2tra4uPj9Zu6QSTT2NiIYBhGdBhEam9vl0qlREcBQRAEQRAE\nQf1Oe3u7VqtFUZRGoxEdC9RbqN4hhCAIgiAIgiAIoizY14cgCIIgCIIgCKIo2CGEIAiCIAiC\nIAiiKNghhCAIgiAIgiAIoijYIYQgCIIgCIIgCKIo2CGEIAiCIAiCIAiiKNghhCAIgiAIgiAI\noijYIYQgCIIgitJoNAqFgugoIAiCICLBDiEEQRAEUZFWq42IiNixY0dLSwvRsUAQBEGEgR1C\nCIIgCKIiBEE4HE5xcfHOnTthnxCCIIiyYIeQbPLz8zEMw3+WSCS7du1qbm4mNiRCwDzgYB4g\nQ7AeIEM0Gm3Tpk1TpkyBfUIIwOsDBD0DFU4N+qeffkp0DFCPSU9PDw0Nrays9PPzq6ioCAkJ\nKS0tbWtrGzduHNGh9SmYBxzMA2QI1gPUGYIgfn5+VVVVGRkZmZmZEydOZLFYRAcFEQBeHyDo\nqShyajCIDgDqSa6urg4ODvHx8Uql8uHDhzKZzMvLa9WqVUTH1ddgHnAwDx1IpdKoqKiCggJr\na+vAwECSXc1fCNZDBxSvBz38OSEA4ObNmzt37vz88895PB7RQRGA4vUArw+dKRSK3377LTU1\ntb293dXVdfHixY6OjkQHRQCK54EipwaifwYKkYNcLt+xY0dpaSkAwMvLa+fOnWw2m+igCADz\ngIN50GtsbNy0aVN9fb3+lTlz5rz77rs0GoVGzsN60IP1gJPJZFFRUVlZWQiC1NXVAQCcnZ0p\n2CeE9QDg9eHvKisrQ0NDa2trAQAcDqetrY3BYGzYsCEgIIDo0PoUzAOgxqlBoSsdRSgUisbG\nRvxnoVBI2cE/MA84mAe9qKio+vp6Z2fn0NDQLVu2iESiy5cv79+/n1I3xWA96MF6AABIpdLN\nmzf/+eefNBotICBg0aJF1tbW1JxPCOsBwOuDAaVSGRYWVltb6+zsfPDgwdOnT8+aNUuj0ezb\nt6+8vJzo6PoOzAOOCqcGnENINiwWKzc3VyQS8Xi8zMzM6upqPz8/BEGIjquvwTzgYB70IiMj\n+Xz+3r17HRwcHB0dAwIC0tPTs7KyKJUTWA96sB4AAAcOHCgoKHB3d9+zZ4+3t/fIkSNnz55d\nUVGRlZVFtfmEsB4AvD4Y+O233xITE4cMGRIRESESia5cuXL69GkAwOrVq318fIiOru/APOCo\ncGrADiGpyGQypVI5Y8aMgICAyZMnZ2ZmZmRkdCjc5ORkPp9PvofdhmAecDAPhn7//ff58+eP\nHDkS/18URf39/SnV5oP1YAjWg1arPXDggE6nCwsLs7Kywl+k0+njx49PS0srLi6mVJ8Q1gO8\nPhg6evRoQ0PDZ599JhKJYmNjDx06hGHY6tWrg4KCAABxcXG2trYMBvmX4YB5AJQ5NWCHkCQa\nGhoOHDjw7bff3rlzZ8KECQKBgM1m+/v76wvXx8eHRqPduHFj7969aWlp06dPJ+U5DPOAg3nA\nyWSy77///vjx42lpac3NzSNGjBg6dKj+t9Rp88F6wMF6MKTRaE6dOsVgMNauXWv4Oo1GQ1E0\nKSlJJpORu08I6wEHrw+dnTlzhsfjLVu2LC4uLjIy0rAXJJfLQ0NDCwoKqDCJjuJ5oNSpATuE\nZFBVVbV169aCggI+nz9//nxnZ2culwsAMCzcjIyM3NzcU6dOYRg2d+7cUaNGER11z4N5wME8\n4GQy2ebNm3Nzc5uamiorK9va2pqaml555RXDVSIM23xDhgyxs7MjMOBeAusBB+uhAzqdHh8f\n39zcPH78eAsLC8NfNTU13bhxY9y4cbm5uWKx2MXFhaggew+sBxy8PjxVSkpKVVUVi8U6fPiw\nYS8IAHD48OHCwkIfH58xY8YQG2QfoHIeqHZqwA6hyVOpVMHBwTU1Ne7u7uHh4d7e3njJ4ths\n9qRJkwoLC/Py8srKymg02ooVKxYvXkxgwL0E5gEH86D33Xff5eXlOTk5ffDBB6NHjy4oKKis\nrKyvr/fx8TG804+3+cRi8dSpUwmMtpfAetCD9dCZRqPJzMwsLy8PCAgw7AidP3++sLDw008/\nHTFiBFlv/8N6APD68GxarTYxMTEjIwMAYNgLio2NPXXqFIqiW7ZsMcwVWVE2DxQ8NeC2Eybv\n8uXLhw4dEovF+/fv19drVlZWVlaWSCSaNWsWnU7HMCwhIaG8vHz8+PFk3T0G5gEH8wAAkEql\nVlZWK1asYDKZBw8exPPQ0NAQEhJSUVExY8aM9evXk3X0VwewHgCsh2fTarWffPJJYWGht7f3\nhx9+iD8nvHz58nfffScQCH788Uc6nU50jD0P1oMevD7gdDodhmGG1a7T6bZt25afn29ra/uv\nf/3L0tJSqVT++uuvZ8+exTDs448/njRpEoEB9xKYBz0KnhqmOtQV0nv48CEAYN68eXjJSiSS\nyMjI3NxcOp2u1WoTEhK++OILBEEmTpxIdKS9C+YBB/NQUVERHBzs7e1Np9Nnz56tv5RbWlqG\nh4cHBwdfu3YNAECRNh+sB1gPevj9X8M/k06nh4aG7tq16969e6tXr3Z2dpbJZNXV1QCAZcuW\nkbI3COvBELw+SKXSH374ITU1Va1WDx48ePbs2fPmzaPRaDQaLSQkZNeuXSUlJatWrbK2tm5o\naFCpVAiCrFy5kny9IJiHDih4asAhoyZPIpFkZWXR6XQnJ6eYmJh9+/ZZWlqGhISsWLHizp07\nJSUlY8eO1a8gR2IwDziYB61We+vWraysrNbW1nHjxhmuEsHhcPz9/VNTU7OysqRSaYexYaQE\n6wHWAwCgrq7uq6++2r9//7lz5+rq6jw8PPTrxKAoGhAQoFKpiouLq6urW1pauFzu6tWrZ82a\nRWzMvQTWgyGKXx9kMtlHH3308OFDrVYLAGhubk5PT8/Ozvb19WWz2fipgWGYRCKpr6/X6XRe\nXl6bN28mXy8I5qEzCp4acMioyVMqlbt27Xrw4AEAwNzc/M0335wzZw6CIBiGvf/++xUVFXv2\n7HF3dyc6zF4H84CDeQAAyGSy4ODgiooKZ2fnvXv3dnjQof/tjh07SL+TEqwHQPl6wFdPqa+v\n178iFos/++wzsVhs+DalUllaWophmJOTE4qifR5m36F4PRii+PXhq6++io+Pd3d3X7dunaOj\nY2Fh4ffff5+fn+/m5hYeHq6/aYJhmFwu53A4TCaT2IB7CcxDZxQ8NWCH0MQoFIrffvstNTW1\nvb3d1dV18eLFjo6OWq323r17Wq125MiR+gEwFy9ePHLkiFAoPHr0KPlG/sA84GAenkXfqnvq\njCCZTJaYmDhv3jyiwuslsB6ehZr1gPvmm2/i4uJcXV3XrVvH4/HOnDlz7do1kUgUHh7eoU9I\nHZSth86XCDs7OwpeH/B5pMuWLUNR9ODBgxwOB39drVaHhYVlZ2cvWrRo2bJlxAbZB2AecPCr\nE8AOoWmprKwMDQ2tra0FAHA4nLa2NgaDsWHDhg6rwGEY9ttvvx07doysU35hHnAwD3pPvZo/\nv81HPrAe9GA94PDW3po1a3Q63cGDB3k8Hv76yZMnT548SZ0+IawH3MtcIqhwfdDPI01PT585\nc+bSpUsNfyuVStesWcNisY4dO0bWHThxMA84+NWJg3MITYZSqdy2bVtNTY2zs3NYWNiaNWsa\nGhoKCwvv3r07ceJEgUCAvy0jI+Obb765evUqgiArVqyYPXs2sWH3OJgHHMyDXmVl5datW1NT\nU5uamrRabXFx8dWrVwcOHOjh4UGdGUGwHvRgPeAqKiq2bt1aXl5eU1MzY8YMb29v/a88PT0B\nACkpKUlJSb6+vvqOIinBesC9zCWCCtcHYDCPtK2tbcSIEfjpoMflcu/evVtXV+fj40OySWId\nwDwA+NVpgPbit0D9w/nz56uqqoYMGbJ7925HR8crV67ExcUBAN555x39brmNjY2HDh3KyckR\ni8VhYWELFy4kNOReAfOAg3nAKZXKsLCw2tpaZ2fngwcPnj59etasWRqNZt++feXl5UKhMDw8\n3NbW9tq1a19//TWJB0TAesDBetDjcrlcLvfatWu1tbX6kWB6S5YsWbJkiVQqDQ4OxpcVJSVY\nD3ovvERQ4fqA0/+7AwBu3bql0WgMf4thWHNzMwBAp9MRE19fgXkA8KvTEAaZiE2bNgUGBuKT\n/q9cuRIUFBQYGHj+/Hn8t7GxsW1tbRiG1dXVJSQk4JvJkBLMAw7mAXfq1KnAwMANGzbgf+/l\ny5c7pALDsIaGhvfeey8wMDA5OZm4SHsXrAccrAdD+r/0ww8/1Gg0nd9w4sSJwMDAc+fO9X1s\nfQPWg97LXCJIf30wpP93/89//qPVavWvR0dHBwYGvvHGG0qlksDw+gzF8wC/OvXgkFGTcebM\nGR6Pt2zZsri4uMjISAzDVq9eHRQUBACQy+WhoaEFBQUBAQFcLtfOzo7EQ19gHnAwD7ijR482\nNDR89tlnIpEoNjb20KFDhqmIi4uztbU1Nzf39/cfOHDg1KlTiY63t8B6wMF6MKTfR+Hx48f1\n9fWdR0V6enp6enpOnjyZqAh7G6wHvZe5RMydO5fE1wedTqfT6Wi0JyPj9GdHTk5ORkYGl8tt\namq6cOHCyZMnAQCrV68m2RqSejAPhuBXpx7cmL5fk0gkKpXKyckJACAWiwsLC8+fP3/06FHD\nkgUA/PTTTyqVSv90m5T0qYB5gHkw1NTUZG1t7ejo+NSr+eHDhxMTEz/99FOhUEjKNQNhPXRA\n8XrAMCwnJ6e8vHzgwIGjR4+m0+n4qLDn7Lc+YsQIgoLtCxSvB9iEwD1r13X92fHw4cM9e/bg\nb+bz+cuXL3/llVeIjbk3wDzg4HnxVPAJYf/V2Ni4bdu2q1ev+vj4CAQCrVabmJiYkZEBADAs\n2djY2FOnTqEoumXLFv3CuCRjmAozMzOYB4rnwVBKSkpVVRWLxTp8+HCHq/nhw4cLCwt9fHzG\njBlDbJC9BNZDZ1Suh9ra2l27dp09e/bevXs3b968ffu2m5ublZUVBfdb16NyPcAmBO75u67r\nzw65XO7r6xsSEvLWW2+5uroSHXXPg3nAwfPiWeCiMv3XsWPHpFKpo6OjtbU1AGDGjBn4g3tb\nW9uJEycCAJRK5bFjxyIjIwEA69evF4lExAbcewxTAfNAwTzk5+djf633IJFIdu3ahU92BwBM\nmTJFqVT+8MMPHVp7sbGxV69eRVF0wYIFxATd+2A9AFgPf2lqatq2bVthYaFQKFy0aFFgYGBN\nTU1ISEh6ejowWD2ClKunwHp4KtiEwP3444/19fXu7u4HDhw4f/783r173d3d8/LywsLCVCoV\nMDg7kpOTf//9d5JtLqcH84CD58WzwCeE/ZFUKuVwOJGRkQKBYPfu3SiKAgAQBPHx8cnKynr8\n+PGFCxeuX7/+yy+/5OTkIAiycuXKWbNmER11r+icCpgHquUhPT09NDS0srLSz8+voqIiJCSk\ntLS0ra1t3LhxAIAhQ4ZkZmZKpVJbW9uVK1dyOBylUnny5Mmff/4ZALBp0yYPDw+i/4KeB+sB\n1kMHERERxcXFHh4eu3fv9vHxqa2tTU1N1Wg0iYmJLi4uNjY2hs8JXVxc8KUFSQDWQ2ewCYHD\n83Do0CELC4s9e/YMGDAAQRArK6uAgID8/Py8vDydTjdy5EhgMI+OlE/RYR5w8Lx4Ptgh7HcM\nN4+aPXs2fpbiUBQNCAjAMEwikdTX1+t0Oi8vr82bN5Nvf0zcs1IB84C/TpE88Hi89PT0jIyM\nsrKyM2fOyGQyLy+vjRs3MhgMQMmrOawHKteDRqMxXBACl5+fHxUVJRKJdu/ezefzr1y58t13\n32EYNm3atKKiog59QpKtnkLxeugMNiFwHfbhNBwYTKfTvby8oqOjS0pKFixYgD8KI2tfCOYB\nB8+LF4KLyvQ7+s2jAACdH9mjKLps2bK3335bLpdzOBwmk0lEjH3kOamAecBRIQ/m5uaff/75\njh077t69CwDw8vLauXMnm83Wv0EgEERERJw5c+bq1avV1dUIgnh5eb355pukvPcPYD1QuB40\nGk1ERAQAYPv27Yb/9Dk5OQCANWvWmJubJyUlGa6l2d7enpCQgK8YMWbMGPKtnkLlengq2ITA\nGeahM5FI5ODgUFJSUlZW5ubmhr+oX1slMTFx0aJFgwYN6sN4ewvMAw6eFy8E5xD2O4ZbhV6/\nfh2f/tsBgiB8Pp/0JfvCVMA84EifB4VC0djYiP8sFApZLFaHN+BX86ioqOPHj589e/aLL74g\na2sPwHqgcD1oNBq5XJ6SkrJ7927Df/fXXnstKCjIx8enubn54MGDGIYtWbIEny9na2srFAq1\nWm14eDhZN6CnbD08FWxC4IzbdR0/6osvviBHLwjAPPwFnhcvBIeM9kf6R/YSiaSurs7X15cc\nj+yNAFOBo3geWCxWbm6uSCTi8XiZmZnV1dV+fn6dM4AgCJvNJutUeEOwHqhZDwwGY9KkSbm5\nuVlZWaWlpf7+/vjYUQRBxowZQ6PRYmJiUlNTR48evX79evyQ48ePoyi6bt26QYMG+fn5ERp+\nb6FsPTwLxa8Pevo8VFZW1tTUGObh0qVLt2/f5nK5K1euxEcXGx5laWlJRLy9BeYBB8+L54Md\nwn5KX7jZ2dlkGsZtBJgKHGXzIJPJlErljBkzAgICJk+enJmZmZGR0aHNl5yczOfzDceJkR6s\nB2rWw7P6hLjr168XFxe//vrr+BZbMTExsbGx7u7ub7zxBln3G6R4PTwLZa8PHVB813U9mAcc\nPC+eA3YI+wWNRnP9+vWLFy+mpKQ0NzcPHjyYwWCQdWrvczw1D4C8s5yfBeYB19DQcODAgW+/\n/fbOnTsTJkwQCARsNtvf31/f5vPx8aHRaDdu3Ni7d29aWtr06dM73OMkB1gPOFgPuOf0CZub\nm5OTk2Uy2YABA6Kjo0+ePIkgyLp16/AF1kkG1oMebELgFArFqVOnvv/++3PnzuXn59va2lpY\nWOjzUFpampCQcP369YKCAj6fv3btWlKuKgRgHv4Cz4suQUi2H5Epqqqq+uKLL8rLy/WvWFtb\nf/zxx0OHDgUAyGSy4ODgioqKGTNmrF+/nsSF+/w8AMqkAuYBV1VVFRwcXF9fLxAIgoKCpk6d\nqt8OSC6X79y5s6SkxM3NbdCgQfHx8QCAJUuWLFmyhMiIewesBxyshw6USuWuXbsePHjg4+Oj\nX2NGq9Xu2rUrOztb/7YVK1YsXLiQuDB7C6wHPdiEwFVWVoaGhtbW1gIAOBxOW1sbg8HYsGFD\nQEAAMMiDr6/v8uXLxWIxWe8OwDzg4HnRVfAJIcHw3YSrqqpsbGwWLVrk4+PT3t5eWlp68+bN\n4cOHW1tbk3XzqA5emAfw9+chZE0FzANOpVIFBwfX1NS4u7uHh4d7e3tzuVz9b9ls9qRJkwoL\nC/Py8srKymg02ooVKxYvXkxgwL0E1gMO1kNnT31OSKPRJk6cyGAw1Gq1k5PTmjVrpk2bRnSk\nPQ/Wgx5sQuCUSuW2bdtqamqcnZ3DwsLWrFnT0NBQWFh49+7diRMnCgQCfR4ePHjQ3t7+1Fmm\nJADzgIPnhTEwqK+o1erIyMiamhrDFyMjIwMDA7ds2dLW1qZ/8ddffw0MDHzzzTebm5vxVxoa\nGqKjo/s03F7TnTxgJEoFzMNzXLp0KTAwcM2aNQqFQv9iZmbmzz//HBMTo9FoMAzT6XS3b98+\nceJEaWkpYYH2HFgPz0HBenhJbW1tn3zySWBg4Oeff47ngQqoWQ+wCfEcp06dCgwM3LBhA56H\ny5cvBwUFBQYGnj9/3vBtDQ0N7733XmBg4IEDB3Q6HUHB9iIK5gGeFz0FPiHsIzqdbs+ePTdu\n3Lh///6sWbP0t2T279+vUqlCQkIM53gMGzasoqKioKCARqPhu2dyOBz9FjEmrZt5AGRJBczD\n88XExJSWlr7xxhuenp4AAIlEEhERcfr06YcPH6ampubl5U2bNg1BEHt7e09PTwsLC6Lj7S5Y\nD89HtXp4Fp1O12FX+uevMUNWFKwH2IR4vqNHjzY0NHz22WcikSg2NtZwK04AQFxcnK2tLRXm\nj1EtD/C86EHk/+boJ86fP5+UlMTj8QwHK2MY1tLSAgCwt7fv8P65c+cCANLT0/s4zt4G84CD\neehMIpEUFRXhPw8ePBgAkJWVVV5efuLEiY0bN2IYtn///hMnTojF4pycnMLCQkKD7WGwHp5K\nXxJUqwetVov9fXq/VCr997///frrry9cuPCf//znxYsX9fuGoSgaFhbm4eHReX9CkqFsPQB4\niXiRpqYma2trR0fHuLi4yMhIw16QXC4/fPhwREQE/k79fnSJiYlVVVWERt3zqJYHeF70INgh\n7CN//vknAGDjxo1OTk4SieTu3bsAAARBbGxsAACdv71QFAUAtLa29nmkvQvmAQfz0IFSqQwJ\nCfnjjz/w/50/f76Hh0daWto///nPmJiYVatWhYeHOzk5oSiKL57RYRddUwfroTPDkqBUPWg0\nmt27d3/99df6PqFMJvv4448TEhJUKhWGYeXl5UeOHAkODpbL5fgbDPuEiYmJxMXeiyhbDzh4\niQAA5Ofn608KiUSya9cufFN1AIBYLG5ubj5//vy3335r2AsCAPz0008qlcrOzk7/Oaa+6zrM\ngx48L3oQ7BD2EXzKO5PJlEgkISEh//73v/GF4GbOnAkA+OGHH1QqleH7b968CQAYMmQIEcH2\nIpgHHMxDByiKikSipKSkpqYm/H/Dw8N37Nixffv2I0eOzJ07F7/5Fx0dXVFRIRQKXV1diQ65\nJ8F66MywJChVDwqFoqKi4tq1a/o+4Y8//lhfX+/u7n7gwIHz58/v3bvX3d09Ly8vLCxMXxh4\nn3DDhg2TJk0iNPzeQtl6wMFLRHp6+vbt2/ft24dhGJ6EjIyMX375Bf/tlClTlErlDz/80KEX\nFBsbe/XqVRRFFyxYYPhpQqHQxcWlr/+GngDzYAieFz0IziHsI0Kh8NatW2lpafHx8TKZzNPT\nc+HChQwGw9XVNT09vaio6P79+15eXmZmZhiGxcTEnDhxAkGQ9evX65fSJgeYBxzMQ2dsNjsh\nIcHc3HzYsGEAABqNZmtra2dnx2QyAQAYhv32228//fQTAGD9+vWOjo6EBtvDYD08lWFJUKce\nUBTtML3n0KFDFhYWe/bsGTBgAIIgVlZWAQEB+fn5eXl5Op1OP4+UwWDg+9GTFTXrAQcvETwe\nLz09PSMjo6ys7MyZMzKZzMvLa+PGjfiuCUOGDMnMzJRKpba2titXruRwOEql8uTJkz///DMA\nYNOmTR4eHkT/BT0D5sEQPC96ENyHsO9ERUWdPXsWAODu7v7555+z2Wz89aampl27dpWUlNBo\nNHt7+6amJplMBgBYuXLlq6++SmTEvQPmAQfz0IFGo3nnnXeYTOaRI0c6THDPyMg4e/ZsTk4O\ngiDLly8n5b5qsB46e1ZJUKEeDLfJSk9Pnzlz5tKlSw3fIJVK16xZw2Kxjh07xmKxiIqzL1G5\nHgC8RAAgl8t37NhRWloKAPDy8tq5c6c+CeDvebC2tm5oaE1QRgYAACAASURBVFCpVAiCrFix\nAuaBlHnAwfOip8AnhH2ksrLyyJEjSqUSANDe3j527FihUIj/CkXRgIAAlUpVWlpaX1+vVCot\nLS0/+OCDWbNmERpyr4B5wME8dEaj0ZRKZXJyMr6dtP71xsbG3bt3l5SUiMXiTz75ZOrUqQQG\n2UtgPTzVU0uCCvUA/r69ZFtb24gRI/AVNfW4XO7du3fr6up8fHysrKyIirMvUbke4CUCACCT\nyaKjo/EkuLu7T5w40fC+AJ4HfCBlfX29Tqfz8vLavHkz+QZRwzzowfOiB8EnhH2ktbU1NDQU\nRdFRo0ZFRUWZm5t//vnnHYb3KJXK8vJyJpPp4OBgoksAvxDMAw7mQSKRlJeX+/r6Gq6S39jY\nuGrVqtGjR+/cudPwzVKptKCgYPz48eTLAw7WA+hKSZC+HvT0zwkHDRr0zTff4KPCcBiGvfPO\nO1KpdM+ePe7u7gQG2UtgPRiClwgAgEqlCg8PV6vVCoWipKQkICBg06ZNnf9SDMPkcjmHw8GH\nE5MPzIMePC96EHxC2EeYTObEiRMDAgK8vLzwO7sJCQmjR4/W38wAADAYDCsrKwsLCxKXLMwD\njuJ5aGxs/Pjjj69evXr9+nWNRmNnZ4ePeUNRtLKyMjExcfr06WZmZvr3c7lcOzs78uVBj+L1\nALpYEiSuh8rKSjqdrm/A6Z8TVlZW1tTU+Pr66v/qS5cu3b59m8vlrly50rCjSA6wHjqAlwiZ\nTKZUKmfMmBEQEDB58uTMzMyMjIzq6mo/Pz/935ucnMzn81EUZbPZ+Hqz5APzYAieFz0Idgj7\nDpPJxL+23d3dn1W4VADzgKNyHlAUHTduHIIg+EbS0dHRdXV1YrFYIBAMGDAgNjaWzWbrl8og\nN3yMBoIgVK4HAEsCAABAbW3t1q1bU1JSJk6c2LlPmJOTk5GRweVym5qaLly4cPLkSQDA6tWr\nSfl4ENZDZ5S9RDQ0NBw4cODbb7+9c+fOhAkTBAIBm8329/fX94V8fHxoNNqNGzf27t2blpY2\nffp08t0iATAPz0DZ86LHwQ4hMWDh4mAecJTKg0wmUygUYrHY29t7/vz51tbWNTU1aWlply5d\nysvLs7e3r6mpyc7ODgoKMhwqRj51dXVfffXV/v37z507V1dX5+HhoV8ahFL1AGBJ/AVF0YKC\ngszMzOzs7Kf2CUtLSxMSEq5fv15QUMDn89euXUvK+TCwHl6IOpeIqqqqrVu34gU/f/58Z2dn\nfKcBw75QRkZGbm7uqVOnMAybO3fuqFGjiI6658E8vAzqnBe9AXYICUOFwpVIJLW1tZaWls95\nDxXy8DKokAfDG5y+vr48Ho/BYLi4uMyePXv06NFqtTo9PR1fPLqtrc3BwcHe3p7okHuLTCb7\n6KOPioqKMAxTq9VFRUUJCQnjxo3j8Xj4G6hQDwCWxN/RaLTx48eXl5c/p08ol8t9fX1DQkLe\neust8u22B+vh5VHhEqFSqYKDg2tqatzd3cPDw729vfFeEI7NZk+aNKmwsDAvL6+srIxGo61Y\nsWLx4sUEBtxLYB5wsEnZq2CHkEj6whWLxSTbHAYAoFQqN23a1NDQ4O/v//x3kjsPL4/ceXjW\nDU6cSCQaP3787Nmzzc3NKysrFQpFU1PT9OnTCQy4V/3www+5ubmurq47dux47bXX2trasrOz\nk5KS8EYw/h5y1wOAJfE0L9MnfPDgwejRo+3s7IgNtcfBeugq0l8i4uLirl+/LhaLIyIi+Hw+\n/mJWVlZcXFxFRYWTkxObzZ46daq9vb29vf2aNWvGjx9PbMC9BOYBwCZl74OrjBLv4cOHQ4cO\nJTqKXrFly5bS0tIff/xRIBC88M0kzkOXkDIPKpVq48aNEonE3d19+/btz79ph2FYZGRkbGzs\n/v37ybfRtlQqtbKyWrNmjU6nO3jwoL77d/LkyZMnT4pEovDwcLFYrH8/KesBwJL4i0KhMFw/\nCafVar/88svExEQ3N7fPPvvMsF8kk8kSExPnzZvXt2H2OmrWg0ajaW9v71wAXULWSwQAYP/+\n/devX3/nnXcWLFgAAJBIJJGRkbm5uXQ6XavVenp6fvHFF1RYKQTmAQeblL0KPiEknkgkIjqE\n3sJmsxMSEszNzYcNG/bCN5M4D11Cyjy88Aan4VwgBEGEQmFcXByNRhs7dixBIfcAjUaj0+kM\n/7SKioqtW7eWl5fX1NTMmDHD29tb/yt8l7mUlJQOzwlJWQ+AqiXRgUQi2bJlC4PB6NBwwZ8T\npqenFxYWdn5O6ObmRkSwvYuC9aDVaiMiImJiYiZOnKifP2wEsl4iAAASiSQrK4tOpzs5OcXE\nxOzbt8/S0jIkJGTFihV37twpKSkZO3YsFTbhhHnAwSZlryL/AkQQgSZOnPjjjz9euXLltdde\no8LtK+hZHj58CACYN28e/qyjww3OhISEDjc4zc3NAQAPHjwgKuDu02g0ERERAIDt27frF/7m\ncrlcLvfatWsAAA6H0+GQJUuWAABOnjwZHBzc4Tkh+VCwJDqQSCQFBQVarfbIkSMAgMDAQMPf\n0un0xYsXh4eHFxQUhIaGdnhOSD4UrAcEQTgcTnFx8c6dOz///HP9PSBIb/78+ampqWlpaWlp\naebm5qtWrZozZw6CIBiG4RdVnU5HdIx9AeYBB5uUvYqiK3RBfYPBYMyePbu2tvbevXtExwIR\nafDgwQCArKys8vLyEydObNy4EcOw/fv3nzhxQiwW5+TkFBYW6t+s0+l++uknAIBJ94g0Go1c\nLs/Ly6uurta/KBQKw8PDbW1tAQDx8fFarbbDUUuWLFmyZIlUKk1OTu7TcPscBUvCUGNjY2ho\n6A8//PDuu+/y+fwjR45cvHixw3vwkYQ+Pj4FBQV37twhIsy+Q8F6oNFomzZtmjJlCt4nbGlp\nITqifgdF0fDw8B07dmzfvv3IkSNz587FuwHR0dEVFRVCoZB86yo9FcwDDjYpexV8Qgj1GIlE\nUl5e7uvrazi2Z86cOb/++uvly5dNd2CPEfSbyxEdSH/RpRucxcXFycnJXC532bJlxIXcXSiK\nhoWF1dbW2tra1tTUiEQi/C/F+4TBwcElJSXffvvt+vXrO9TJkiVLPD09R4wYQVDgfYSCJWHo\n2LFjUqnU09PTx8fH3t4+JCSk83PCmzdvAgA++OCD+/fvv3AdBVNHzXrA+4QAgJs3b8LnhE9F\np9N9fHz0/4th2G+//Xbs2DEAwOrVq8m967ohCuYBNin7GFxUpgdoNJr4+Pj79+8jCOLh4TF5\n8mQ2m935bRUVFfiTAVJqbGz88MMPZTKZtbX13LlzZ86cqf9i27dvX3x8/JEjR6ytrYkNssdp\ntVoajWbYoK+rq/vuu+/S09PZbPaUKVPefvvtZ33Bk7seOtNqtffu3dNqtSNHjtQPfrt48eKR\nI0eEQuHRo0cNv9JSUlIsLCzIMVeqqqpq27Ztrq6uhmNHZTJZcHBwRUXFjBkzOvcJKYKaJYGv\nKrRixQoWi3Xw4EF85PCjR49CQkKam5vfeOONpUuXIgiC50EkEh09epTokPsINesBAKDT6fbt\n23fz5k1nZ+dn9Qmp9n3xVBkZGWfPns3JyUEQZPny5QsXLiQ6ImJQIQ/UbFISCy4q011VVVXB\nwcFXr14tLS0tKSlJSUm5efPm0KFDO8xnjY+PDw0NNTMzI+uqR1KpdMiQIZaWlg8fPkxNTY2O\njq6rqxOLxQKBYMCAAbGxsWw2e+TIkUSH2ZPwSWJZWVk+Pj54g/6Fm8vpkb4eOqPRaLa2tnZ2\ndvjyGPgNTnzc1/r16x0dHQ3fbGtrS5op8kwmMy0tLSsrq7S01N/fH7/Zqd9CICsrSyqV6kuI\nUihYEoarCs2ePVt/SbSwsPD29k5KSrp3796lS5eio6PxMaJr164dMmQIoSH3HQrWg0wmO3z4\n8JEjR6RSaWtrq0wmy8zM7LzGDAW/LzprbGzcvXt3SUmJWCz+5JNPpk6dSnRExKBIHijYpCQc\n7BB2S1NT07Zt26qqqmxsbBYtWuTj49Pe3l5aWnrz5s3hw4cb3r24d+9eZmbm0KFD8bUESaax\nsXHbtm3Jycnr1q178803ra2ta2pq0tLSLl26lJeXZ29vX1NTk52dHRQUZPjo39TJ5fI//vjD\nsEH/MpvL4chdDy+UkZHxzTffXL16FUGQFStWzJ49m+iIehGDwZg0aVJubi7sEz4HRUpCq9Xe\nunUrKyurra1tzJgxhntkWVhY+Pv7l5aWlpeXt7a2slisd955Z9asWQRGSyAq1INUKv3oo4/u\n37/P4/ECAgKGDRsmlUolEknnPiHFvy9wKIqOHz/ew8Nj3bp1NjY2RIdDGCrkgZpNSsLBIaPd\ncujQocuXL7u5uX3xxRcoiuIvnj17Nioqis/nHzp0CF8JDZeXl/cyS+Waoq+//vrq1auenp6h\noaH64bL5+fmXLl1KSEhQq9U0Gk2n033yyScTJ04kNtSe1WHg38tvLgdIXQ/P19jY+Mknn1RX\nV4vF4vfff3/UqFFER9QXlErlrl27Hjx44OPj89Sxozt27DCcIkIplCoJ/b+4vb39gQMHOk/+\nefz4cX19vYuLi+HXB6VQpB52796dlJTk7u4eFhaGjxxWqVT79u1LSEjoPHaUst8XEAVRtklJ\nLPiEsFv279+vUqlCQkIMHwYOGzasoqKioKCARqMZPtEeMGAAETH2LqlUyuFwIiMjBQLB7t27\n9b1iAIBIJBo/fvzs2bPNzc0rKysVCkVTU9P06dMJjLbHdXjI8/KbywGS1sPLIP0NTgzDcnJy\n0tLSmpubBw4ciN/CfP5zwoEDB5J15M/LIH1JGNJfNCQSSV1dna+vb4cnwwKBwMbG5qkT0SmC\nCvWg1WoPHDig0+nCwsL0Y1/pdPr48ePT0tKKi4s7PCek7PcFRCkUb1ISC3YIjYdhWFRUFABg\nzZo1He7yWlhYXLt2TalUkmmgi0ajaWtrMxzH8qz5MIZQFB02bFhgYKBMJsM7RUKhsA+j7nWG\nfUKFQuHj4+Pu7m74huf0CSmLy+Xa2dmRcoRkbW3trl27zp49e+/evZs3b96+fdvNzQ1v8D2n\nT0iOtTG6g8Ql0Zn+opGdnQ1HCz8V6etBo9GcOnWKwWCsXbvW8HUajYaiaFJS0rPmE5q0/Px8\nKysr/J9VIpH85z//8fb2pvK9D8rq3J4EsElJNDj61ngIguA3Lw33R8LhdzVaW1sJCKt3aLXa\niIiIHTt2GO6VpN9lu76+/vmrHiMIMnPmTABAXFxcr8fa5+DmchAOn1RcWFgoFAoXLVoUGBhY\nU1MTEhKSnp6OvwHfi8LDwyMlJWX37t2dSwUiHwzDOk/N0F80rl279vXXX8O5G1TDYrFsbGw0\nGk1ZWVmHX+EN3HHjxhUXFyckJBAQXO9IT0/fvn37vn37MAyTSCQhISEZGRm//PIL0XFBfe2p\n7UkAm5REg08Iu0WlUmVmZj569Gjq1KmG5Xvu3Ln8/HxPT89JkyYRGF7PSktLy8jIMLxnqb/P\nLZfLGxoaZs2a9ZwJvmq1+uLFixqNZs6cOX0YdR/RpwKf/9P5lr+np6enp+fkyZOJihDqAxER\nEcXFxR4eHrt37/bx8amtrU1NTdVoNImJiS4uLvj9I8PnhPb29g4ODkRHDfUMrVaLIEiHTWi+\n+uqr/fv3nzt3rq6uzsPDw/COOFxViOI0Gk1mZmZ5eXlAQIDhV+f58+cLCws//fTTESNGBAQE\nEBdgD+PxeOnp6RkZGWVlZWfOnJHJZF5eXhs3bmQwKLohtlQq/e67737++eeUlBQej0epbUU6\ntycBbFISDXYIu8XV1TU9Pb2oqOj+/fteXl5mZmYYhsXExJw4cQJBkPXr13fYfMJ0IQji5+dX\nVVX1rD7hs+bD4HQ63bffflteXu7h4UGmTrKhFzbv4J455Jafnx8VFSUSiXbv3s3n869cufLd\nd99hGDZt2rSioqLOfUIbGxsqzxskGeM2oTG8aLi4uFCqRQi5ubmlp6fn5+cXFRWNGjUKH1h0\n+fLlkydPWlhYLF261N7enugYexKbzfb398/IyMjNzVUqlV5eXjt37nzWeNGKigo+n9/HEfal\nxsbGLVu2PHjwQC6XV1dX37p1q7Gx0dvbu3MLinypeFZ7EsAmJaFgh7BbaDSan59fVlZWQUFB\ndHR0YmLi6dOn8TEeK1euJFmZvrBP+Jz5MEVFRT/99BOHw/nkk09IdmkzRLVb/lS+wdnZjRs3\nsrOzP/zwQ2dn56SkpP3792MYtnr16uXLlz9+/LisrKxDn9DJyYnokHseZUvC6E1oyL2qEGXr\n4WXo2w95eXkxMTH37t379ddf4+PjAQBr1651cXEhOsCeJ5PJoqOjlUolAMDd3X3ixIlP/Yqk\nwr6Lhw8fvn//vrOz8/r168eOHVtYWJidnV1dXe3n52eYE7Km4mX6hLBJ2cdgh7C7UBQNCAhQ\nqVSlpaX19fVKpdLS0vKDDz4g5f5RL+wTPqsjZGVl5eTkNGfOHNJvskydPiGVb3B2IJFIpFLp\nhAkTWltb58+f39LSsnPnTpVKtWTJkkWLFgEAysrKKisrlUplQkLC5MmTybqw0EuWBCnrAUXR\nDif+kSNHOBzOnj17xGIxj8fz9fUFz1hciqyrClG5Hl6Svv1QXFxcXV3d0tLC5XJXr15NmvaD\nVqtNS0sbNGgQ/o/OYrFyc3NFIhGPx8vMzOzc/8FRYd/FyMhIPp+/d+9eBwcHR0fHgICA9PT0\nrKysDjkhcSpepk8Im5R9CXYIewCDwRgzZkxQUJCfn9/8+fOXL19OynlBMpns8OHDR44ckUql\nra2tHdZAe+EJbGtrq19cm9woMgyM4jc49fAtdK9everr6zt16lQajRYTE5Oamjp69Oj169fj\n7zl+/DiKouvWrRs0aJCfnx+xAfeelykJEtdDdzahISXK1kOX1tLUtx/Gjh07Y8aMlf/f3r0H\nRXWefwB/9waIKKKiUGXFpYAiKIIQFhXB+xLrxBlSJ3WiGEtsKswU26kpiEmnXhhjJ9o2SqoT\nW2AKadqMHSUYZBCJl1ER2c1yERW0sCh2cbnEsCy77u+PM78zJ7uwLIoc9j3fz3+uMPMA77k8\n5zzv82zfPn/+/LGN91WprKw8ePBgaWkpe0sgkUji4+MTExMTEhJqa2tv375tsx6uX78+efLk\nxYsXL1q0aOXKlfzG/0p9+eWXGzZsYBtpMk+U7HPCsLAwKn8Vju8nCW4p+YCEcNRIpdJp06ZN\nmTKFyjdCer3+N7/5TV1dnZeXV2JiYlhYmF6vb2trGyonpDgRcgbdZWAMPOBknDx5UqvVhoaG\nJicnM90RKioq7t+//9Of/pQpCi0pKfn666/nzZu3efPm8PBwvuN9hZxZEnSvBwyh4RLmeqip\nqdm3b197e3tcXJxOp8vOzm5paenr64uJiXHwXVKp1NfX19fXl44OKxaLJS8vr6Cg4NmzZ0ql\n8o033uDOWpRIJMx+QjYnjI2NFYvFFy9ePHLkSHV19apVq6icP2kwGE6dOlVYWMhMqQ0PD+c+\nBxkqJ6RvBKUz95MEt5RjDgkhOOXYsWNNTU3z5s07fPhwdHT0okWL1q9fr9Pp1Gq1fU5IdyLk\nJFrLwFgCf8BJhh6h29PTc/36dYPB4Ovre+7cuaKiIpFI9N5771HfVciZJUHxemBwG+V1d3ev\nWbPGplEemxPOmDHDJl2kjDDXA3ppEkKOHTtWXl7u4eGRmZm5ZcuWqVOn2n8NNydkOs0UFxdb\nrdbk5OTIyMixj/lVMxgMu3fv1mq13d3d7e3tfX199ucH7jEyd+7cgIAAHgN+dZy8nyS4pRxb\nSAhheBaL5dixY8+fP//973/Pfc6nVCqrq6vv379vkxPSnQgJGR5wshyM0J0zZ05DQ0N9fX1l\nZWVTUxMhJDU1dcWKFfwF+wq9wJKgcj0QQgwGw7Nnzzw9PYU8hAbrYUS9NKl07dq1goICqVS6\nf/9+bsm0PXd39+XLl9+9e7e+vv7BgwdisTg1NfXNN98cs1DHUl5eXn19vUKhSE9PX7x4cVNT\nU3t7u/35gTlG/Pz8aE2BRnQ/SXBLOYaQEMLwzGZzcXGxVCp99913uZ+LxWIPD49r167Z13+7\nuhFtAhEIPODkslgsVVVVarW6r68vKiqKu+1HLBYvW7ZMKpUODAwoFIq0tDSaXoBwYUkwnj59\neuzYsU8++eTy5ctMIagwh9BgPTCc7KVJqxMnTjx58mTz5s32KU1ra2tDQ4PJZPLx8WE+cXNz\nS0pKksvlcrk8LS1NqVSOebyjz2w29/X1sbdDTC1JXl4eU0EdGBioUChWrFgx1PnBw8MjODiY\np9hfOQHeT7oKJIS20CbbnkQiqays7OnpUSqVU6ZM4f5Xd3f3xYsXY2JitFqtn58fHZ2yX2wT\nCPXwgJPL8QhdiUQSHh6+Zs2ahIQEKjfDMLAkCCGPHj3as2dPU1PT5MmTN2zYEBQU5OnpSYTU\ncJiF9cBwspcmrT777DOTybRjxw5upWhjY2Nubm5BQcE333xz/vz5pqammJgY5o5fJBLJ5fKI\niAibuwsXxYwkLSkpYVIatpbkyZMnKpWKrSUR4PmBIbT7SReChPAH0El/KGazuba2trW1NTEx\nkXvj+5///Ofu3bsffvhheHh4YmIifwGOJmwCsYEHnINycoQulbAkGCaTKSsrq6OjY968eQcP\nHoyOjmayQYZw7vmwHlgGg8FoNK5evXrYXpq0lpxUVFT09PSEhIQEBQURQoxG4+nTp48fP97Z\n2Tlr1iymg0hra+u9e/foK51gssEbN24MDAwwCQ9bS/L999/HxMRwK6iFc36wIaj7SReChPAH\n0El/KCEhITU1NY2Njffu3YuMjGT6Z5SWlhYVFU2ZMuVnP/uZXC7nO8ZRM9JNIHQ/HcADTgec\nGaFLHywJVllZWUVFhZ+fX25uLnsSUKvVZWVlOp1OoVB4enpS3ygP64HBrRyOj4/39vYetpcm\nrQ8Zb926pdForFZrQ0PD0aNHa2trvb29d+3alZ6enpCQoFQqy8vL29vbFyxYMHPmTL6DHTVs\nNujl5bV//35mRJ7jLlPCbKQpqPtJF4KE8AfQSX8oYrE4Li5OrVbX19eXlJTcunXriy++qKys\nJIS8++679L3Zd34TCPVPB/CA0zEB/hKwJFglJSUtLS2bN29mrgVtbW25ubmff/75nTt3bt68\nWV9fv3LlSuob5WE9kKErh4XWS5MQEhwc/PTp0zt37mg0GmaXdUJCQk5ODttT19vb+9tvv+3o\n6AgKCqLmummTDTIzhxjsUfDw4UP7Cmrqzw/2hHY/6SqQEP4AOuk74OHhkZiYaDKZ7t+///jx\n4++++87T0/PnP//5unXr+A5tFFgslurq6h/96EfMn9j5TSDUPx3AA85hCeeul4ElwWpra1Or\n1RKJRKFQlJSUfPzxx1OnTs3Ozk5NTb18+XJzc/OSJUumTZtGd6M8rAfHlcOC6qVJCBGJRLGx\nsaGhod7e3kuWLNm5c6dKpWKn8hBCzGZzfn6+0WhUqVSzZ8/mMdTRwmaDMpns0KFDTK0sl+Nr\nBN3nh0HRfT/pokRWq5XvGHhmMBgKCwubmpp8fX1bWlo2bdq0ceNG7hd0d3fv3bv34cOHiYmJ\nmZmZdN/qOcNoNLa0tFitVoVCwT3Lu67KysrCwsInT56sXr06IyOD+RObTCZCSH9/f05OTnNz\ns81f//r16/Pnz2eKxOrr68PCwniMfwwYDIasrCydTsf9FXH/9+rVq6+//jpf4Y0H7K9o7969\nsbGxfIfzymFJEEKMRuMHH3zQ0NBACJk0adKWLVtUKpVIJLJarb/85S91Ot3hw4fpHjbIEsh6\nMJvNhBCbUs/S0tITJ074+fkdPXqUTQXVarVarZ4+ffq6deskEonVar1y5Upra6tSqQwMDBz7\nyMePoqKioqIiHx+fU6dOyWQyvsN5WWw2yPwzJSVl69atg36l42NEmOi7n3RdQn9DiDbZL0Aq\nlfr6+vr6+lKw/8FiseTl5RUUFDx79kypVL7xxhvcwTgSicSZTSCUzdEaFB5wDktolT9YEoQQ\nqVS6cuXK4ODgpUuXpqWlhYWFMb+Ec+fOVVZW+vj4vPPOOzaD6WklhPXA3Ppfvnx56dKl3D+r\nM5XDlPXSfGGlpaV/+9vfCCG7d++eM2cO3+G8LG6l6Ntvv63VarVa7cDAAHcyLUtotSTOoOl+\n0tUJPSFEm2yBO3bsWHl5uYeHR2Zm5pYtW7htslkC3AQyKOovZjbDowghbW1ter2eHZk1LDru\nep1H/ZJwhlgsnjVrVkBAAPOuw2q1/vvf/2ZueTMyMgT1Loj69WAymb7++uv79+/Hx8dzG4k5\nWTnMY+TjQX9//6efflpcXEwI2bZt29q1a/mO6GXZ7BtUKpXBwcFXrlxxMieko4La/rpJRn7p\nhPFAQAkhRoWCjWvXrhUUFEil0v3790dHRzv4SqFtAhkKxTd8NsOjCCFdXV3vv//+hQsXYmNj\nvb29+Q5wnKJ4SbyA27dv/+Uvf7lw4YJIJEpNTV2/fj3fEY01uteDVCpdvny5UqkMCAjo6OiY\nMGEC855QoVBotVqNRvPVV189fPhw27Ztv/jFL6ZOnSqVSktLS3t7e1evXj19+nS+w+eNxWIp\nKSnJzc2tq6tzd3fPzMxUqVR8BzUKysrKzpw5w+0i4+/v72ROSEctif11k+DS6bKEkhBiVCir\nsbFx2rRpzM/V1tb2xz/+MTo6mtaBSI6dOHHiyZMnmzdvtj8vt7a2NjQ0mEwm9hGXm5tbUlKS\nXC6Xy+VpaWlKpXLM4x0X6HvASQYbHkUIOXnypFarDQ0NTU5ORjWLA1QuiRfQ1dV16NCh5uZm\nPz+/3/72txTc7b0YuteDVCr19vZmeorW19cztaOoHHZMLBZXVVVpNBqlUrlnzx5qGrAFBQWZ\nTKbt27dze4o6mRNSUEsy6HWT4NLpsgSREGJUKKumj4uwwQAADuRJREFUpmbfvn3t7e1xcXE6\nnS47O7ulpaWvry8mJobv0Hjw2WefmUymHTt2cCtFGxsbc3NzCwoKvvnmm/Pnzzc1NcXExDCP\nvrAJhEHTA04y2PAopnzg+PHj3t7ehw4dwk73YVG2JGw4Wf7k4eGhVCrnz5//3nvv+fv7j01s\n4xPd64EQIpPJqqur1Wp1S0sLkxOictix6OjohISE5ORkmmb2ikSiyMhI+zODMzmhqxt06CIu\nnS6N/oQQo0K5vLy8ampqbt++/eDBg3/+858Gg2HhwoW/+tWvhPkUp6KioqenJyQkhGkSbTQa\nT58+ffz48c7OzlmzZoWFhen1+tbW1nv37lE2YuTli/7peMBJBhsexZYPdHR0rF+/nspr+atA\nx5KwPzRGVP7k6ekZEBBA0zPEF0bHehgKUzuq1Wq5OSH7v6gcHhRNqeCw6M4JBx26iEunq6M8\nIcSoUBtMfxSmM4rRaFy4cGFOTo6DelGdTkf3SfzWrVsajcZqtTY0NBw9erS2ttbb23vXrl3p\n6ekJCQlKpbK8vLy9vX3BggUzZ87kO9jRgaJ/1qDDo9jygb6+vqioqPnz59t/I/XHhTANemig\n/AkGNVROiMphYNCaEw41dBGXTldHc0KIUaEMm5HrBoPh3LlzRqOREDJv3rxly5YN9Ty7srJy\n3759EydO5JbU0iQ4OPjp06d37tzRaDTMWSwhISEnJ4edG+bt7f3tt992dHQEBQXR8UtA0T+L\nOzzq+fPnkyZNYi7Y3PKBp0+frlu3zmbzD/XHhTDZHxoofwLHBs0JUTkMLPpywqGumwSXTtdH\nbULoYNVy0b1jkBBSWVl58ODB0tJS9qdzc3PTarXTp0/38vKqra19/PhxXFzcoD/1rVu3amtr\nQ0NDqdkCbkMkEsXGxoaGhnp7ey9ZsmTnzp0qlYp722c2m/Pz841Go0qlmj17No+hjgoU/bMc\nD49iTwttbW3/+9//XnvtNe4BQt9xgUZT9ocGyp+Ay2w2V1RUnD179saNGz09PbNnz2YenA2a\nE6JyGFhsThgREeHql4xhhy4K7dJJGToTQowKJUOPXJdIJPHx8YmJiQkJCey8dW5OeP369cmT\nJ7u7u4eFhS1atIiy7XP2/P39o6KiwsPD7UslP//88+rqah8fn507d0okEl7CGy0o+mc5MzyK\nPS1oNBqb0wJlxwUaTQ16aKD8iRCi1+vz8vL+/ve/M78cmrbTj8ijR4+ysrIuXLjQ0tLS3Nx8\n48aNS5cuhYaGMpMkHO8nBPD392d2oPAdyEtxcuiicC6d9KEwIcSoUIaDkesSiUQikXDnrT9+\n/Dg2NlYsFl+8ePHIkSPV1dWrVq2SSqW+vr48/gj8Ki0tZXrE7d69e86cOXyH81JQ9M/l5PAo\nB4+KaDouRtpoirL1MNShgfKnrq6uX//61w0NDb29vY8fP66qqurq6oqOjrZ5YErZerDX3d39\n/vvvP3r0yN/fPyUlJTY2tr+/v6Wl5dKlSwsWLJgxYwb5YU4ol8td/XoBo27SpEl8h/CynB+6\nKJBLJ30oTAgxKpQ4PXKdmxMynWaKi4utVmtycnJkZORYBjyu9Pf3f/rpp8XFxYSQbdu2rV27\nlu+IXgqK/m04PzyK1vIBrhE1mqJsPTjeWSDw8qe//vWvdXV1QUFBGRkZS5YsuXv3rkajsSkn\noWw9DOr06dNqtTokJOSjjz6KiIgICQlZtWqVTCarqam5efPmmjVrmIOFyQn9/f3puIUAsDGi\noYtCuHTSh8KEUOCjQhnOj1x3d3dfvnz53bt36+vrHzx4IBaLU1NT33zzTT6i5p/FYikpKcnN\nza2rq3N3d8/MzFSpVHwH9VJQ9G9vRMOjqCwfeOFGUzStB2d2Fgi5/On48eOTJ08+cuTInDlz\nAgMDExMTa2pq1Go1NyekaT0M5ejRoyaTKTs7m3kZyAgLC9PpdE1NTWKxmF0wUqmUe9cBQJOR\nDl2k8tJJNwoTQiGPCmWNaOS6m5tbUlKSXC6Xy+VpaWmuXun+MsRicVVVlUajUSqVe/bscfW7\nHBT9j5SDnJCa8oGXaTRFzXpwfmeBYMufvvzyyw0bNrC/Cg8Pj6VLl9rkhNSsh6FYrdb8/HxC\nSFpams028ilTppSXlxuNRowZBIFznBNSc+mkHoUJoQPCyQlHOnJdJBLJ5fKIiAh2DoFgRUdH\nJyQkJCcnU7AxBkX/L2ConJCC8oGXbzRFaFkPI9pZIJzyJ4PBcOrUqcLCwurq6p6envDwcG4t\n6KA5IR3rYSgikejSpUu9vb2LFy/mviEkhPT29p4/f97d3f0nP/kJX+EBjBMObi0ouHQKhLAS\nQiKknFCAI9dHCwWpIANF/y+G1rPEqDSa4jH+UTTSnQVCKH8yGAy7d+/WarXd3d3t7e19fX3d\n3d1r1qzh7ivm5oRz584NCAjgMeCxYTKZamtrHz58mJSUxH1JeObMmcbGxoiIiOXLl/MYHsA4\nQet1UzgElxASYaxaAY5cB3so+n9hNA2PYqDRFNcL7CygvvwpLy+vvr5eoVCkp6cvXry4qamp\nvb29s7PT5tkQkxP6+flR+Xuwn7QRHBxcU1Nz7969urq6hQsXTpw40Wq1lpSU/OMf/xCJRBkZ\nGczwCQCg77opKCKr1cp3DPyoqak5cOBASkrKW2+9xXcsrwrTTd7Lyys+Pt7mUa7ZbH7nnXe6\nurqys7Nfe+01viIEHjGHwMDAQEpKytatW9nPDQbD1atXX3/9dR5jGyeYXvN8RzE6srKytFrt\nW2+9ZX/Ga21t1el0M2bMYF+XPXv27NChQxqNhhAiFou3bdu2adOmsY6YP0MdGnQwm839/f0T\nJ05kP9Hr9dOmTUtNTZXJZH/60588PT0JIU+fPs3OztbpdKtXr87IyBBCvUBXV1dmZmZnZyf7\niUql2rlzZ29v7wcffNDc3CwWi+VyeXd3t8FgIIRs375dUMcFgDNoum4KihDfEDLoGBXqmEBG\nrsOLQdH/sCgYHsVCoynnUVxFwnTTKSkpWbZsmZubGyFEp9Pt2bOntbX1yZMnKpVKyDXkQ03a\nSExMTEpKMplMLS0tnZ2dRqNx6tSp6enp69at4ztkgHGHpuumoAg3ISQCXrU0jVyHl0HxjS/Y\nQKOpEaHy0GB7qw4MDCiVSuYva7FYqqqq1Gr1999/HxMTw91BILSc0MGkjWXLlkVFRW3cuDEu\nLm7Dhg3btm3DpRMAaCLohFCAKBu5Di8PRf/CgUZTI0LZoWEzaWPu3LnM52zW19vba99FRlD7\nioedtCGTyaZNmzZlyhS6E2MAECDh7iEUGovF8tVXX33xxRddXV3u7u4ZGRkJCQl8BwXjBYr+\nqWe1Wj/55JOysjLmnyKRaPny5Wlpadx68pycHLVanZaWhk76LDoODZts0H5+usFgyMrKGmrH\nIMX7ig0GQ2FhYVNTk6+vb0tLy6ZNmzZu3Mj9gu7u7r179z58+DAxMTEzMxOpIABQCQmhgJw8\nefLs2bNKpXLr1q10P+gFgEGh0ZQAsdmgTCY7fPgwUzNsz3FOSCVm0ga3i0xQUNCRI0ds9tWz\nOeHvfvc7oe2nBQCBQEIoLDqdDqkgANgrKioqKiry8fE5deqUTCbjOxwYHWw2yPzTcd9UoeWE\nH3/88cWLFxUKxZYtW3p6evLz8w0Gw6A/e3d399WrV1UqFV+hAgC8UthDKCzUjFwHgFGERlNU\n4laKvv3221qt1nGPHOF0kdHr9RMmTMjLy2O6yAQGBioUihUrVgz1s3t4eAQHB/MYMADAK4WE\nEABAuNBoilY2+waVSqUzfVOF0EUGkzYAAGwgIQQAECKLxVJSUpKbm1tXV+fu7p6ZmYmKOJqU\nlZWdOXOG20XGyVkaTF40c+bMpKSksQ15jGDSBgCADSSEAABCJBaLq6qqNBqNUqncs2cPBZMV\ngCsoKMhkMm3fvp3bU9T5nDAkJGSsIh1rmLQBAGADTWUAAIQLjaYEqKam5sCBAwMDA457zNBN\nsJM2AADs4Q0hAIBwodGUADn5npBujqtD6X5HCgBgAwkhAACAsCAnJNgxCADw/5AQAgAACA5y\nQoKcEACAEEKIePgvAQAAAOpERUVlZ2fLZDKZTMZ3LLzx8fE5ePDgrFmzysvLb968yXc4AAA8\nQFMZAAAA4Xr06JG/vz/fUfAMXWQAQMiQEAIAAIALM5vN/f39EydOZD9pa2szmUzckRsAADAU\nlIwCAACAqzKbzbm5uXv37v3uu++YT7q6uvbt25eTk9Pa2spvbAAALgEJIQAAALgkJhu8ceNG\nR0eHXq9nPiwoKNDr9YGBgTNmzOA3PAAAl4CEEAAAAFwPmw16eXnt378/MDBQr9dbrdbq6uqZ\nM2fu3bvX3d2d7xgBAFyAlO8AAAAAAEbGJhtUKBQ6nS4rKys6OlosFq9du3bChAl8xwgA4Brw\nhhAAAABcCZsNymSyP/zhD0zzGE9PT09Pz/Ly8s7OTolEMug36nS6sY0UAMAFICEEAAAAl8Fm\ng4SQgYGBK1euMJ+zEwUJIRUVFRaLxeYbKysrd+3adfbs2TEOGABgnENCCAAAAK6BWym6Y8cO\nmUz2r3/9Kz8/n/lfNif873//++c//9lmsFZnZ+fz58/ZZqQAAMCQfPjhh3zHAAAAADAMm32D\nSqUyODj4ypUrWq12YGBg0aJFhJAJEyYsXbr05s2bGo1Gr9fHxsaKRCLm28PCwhYtWrRy5Upe\nfwgAgHEHCSEAAAC4gLKysjNnzrBdZAgh/v7+DnJCtVptkxP6+vry+QMAAIxLSAgBAADABQQF\nBZlMpu3btzPZIGOkOSEAANhAQggAAAAuQCQSRUZG+vj42Hw+bE744x//mGk2AwAA9pAQAgAA\ngGtzkBPOnDkzKSmJ7wABAMYvkU0PLgAAAABXVFNTc+DAgYGBgZSUlK1bt/IdDgCAa8AbQgAA\nAKDBoO8JAQDAMcwhBAAAAEpERUVlZ2fLZDKZTMZ3LAAArgElowAAAECVR48e+fv78x0FAIBr\nQEIIAAAAAAAgUCgZBQAAAAAAECgkhAAAAAAAAAKFhBAAAAAAAECgkBACAAAAAAAIFBJCAAAA\nAAAAgUJCCAAAAAAAIFD/B5JhKKweyiePAAAAAElFTkSuQmCC", - "text/plain": [ - "plot without title" - ] - }, - "metadata": { - "image/png": { - "height": 180, - "width": 600 - } - }, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Warning message:\n", - "“\u001b[1m\u001b[22mUsing \u001b[32msize\u001b[39m for a discrete variable is not advised.â€\n", - "Warning message:\n", - "“\u001b[1m\u001b[22mRemoved 6 rows containing missing values (`geom_point()`).â€\n", - "Warning message:\n", - "“\u001b[1m\u001b[22mUsing \u001b[32msize\u001b[39m for a discrete variable is not advised.â€\n", - "Warning message:\n", - "“\u001b[1m\u001b[22mRemoved 6 rows containing missing values (`geom_point()`).â€\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAAFoCAIAAADIFpV9AAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdZ0AU19oH8DPbYOllQZp0jAqiYC9IjBUVrAELRo2xRVKupmluLLGkWN94\nrWCMJcaSgigiNrAFRQQrgoBIR6qUBbbO+2GSzQYLsAwuyP/3afbMc848w81Fnp0z51A0TRMA\nAAAAAABofzjaTgAAAAAAAAC0AwUhAAAAAABAO4WCEAAAAAAAoJ1CQQgAAAAAANBOoSAEAAAA\nAABop1AQAgAAAAAAtFM8bSegZWVlZYmJidrOgn21tbVisdjIyEggEGg7FwAAAAAAaKXae0GY\nkZERGho6aNAgbSfCspKSkqKioo4dOxoaGmo7FwAAAAAAaI2OHTvW3gtCQkjnzp0/+OADbWfB\nsvv379+5c2fw4MG2trbazgUAAAAAAFqjqKgovEMIAAAAAADQTrW6J4QlJSW//PJLYmJiRUWF\nsbGxu7v7okWLhEIhc1apVIaHh0dHRxcXF4tEohEjRkycOJHD+aesbTAAAAAAAAAAGK2rIMzK\nylq2bJlMJuvdu7e1tXV1dXVKSkpNTY2qIAwLCzt58uSAAQMCAgKSk5P3799fUlKyYMEC1QgN\nBgAAAAAAAACjFRWESqVy/fr1hoaGq1at6tChw7MBOTk5kZGRvr6+S5YsIYSMGTOGz+dHRUX5\n+fk5ODg0JgAAAAAAAJrp1q1bXl5eM2fO/Omnn7SdC5tyc3M7duw4bty48PBwbefy6rSiuZQJ\nCQnZ2dkzZ87s0KFDbW2tVCqtF3D58mWapv39/VUtAQEBNE1funSpkQEAAAAAAG2XTCb73//+\nN3DgQBMTE4FAYG1t3bt3748++ujixYstcbn09HSKoqZMmdISg69du5aiKIqiUlNTW2J8aKRW\n9ITw5s2bFEXp6el99NFHmZmZFEV17dp17ty5zs7OTEB6ejqXy3VxcVF1cXJyEggEGRkZjQwA\nAAAAAGijJBLJsGHDrly5oqenN2TIEGtr6+Li4ocPH/7www8ZGRm+vr7aTrAJaJres2cPRVE0\nTYeGhm7YsEHbGRFCiKWl5eXLl83NzbWdyCvVigrC/Px8Lpe7bt06b2/vyZMnFxcXHz16dNmy\nZVu2bLGysiKElJWVGRsbc7lcVReKokxNTUtLS5mPDQYwtmzZUlhYyBzr6uq2+I0BAAAAADTb\n7t27r1y50rNnzzNnzpiZmana09PTHzx4oMXENHDmzJnMzMxZs2ZFRUXt27dv3bp1AoFA20kR\ngUDw+u1P3qBWNGW0trZWLpe7u7t//vnnPj4+EydO/OKLL2pqan777TcmQCKR8Pn8er0EAoFE\nImlkAOPatWvn/paWltYydwMAAAAAwKY///yTEPLBBx+oV4OEEFdXV/V3phiHDx/28fExMjIS\nCoXdunX79ttv1f8kPnnyJEVRK1eurNfLxMTE1dWVOf7222/d3NwIIUeOHKH+dvDgQfX4nJyc\nadOmiUQioVDYu3fvU6dONfJeQkNDCSFz586dPn16SUnJH3/8US/g1q1bFEXNmjUrPT194sSJ\nZmZmRkZGo0ePfvjwISGkoKBg1qxZHTp0EAqFgwYNunnzZr3ucXFxkyZNsrKyEggENjY2wcHB\nKSkpzw6ekZExZcoUS0tLDodz7dq13NxciqLGjx9fb7Rr164FBgba2Njo6OhYW1uPGDHi6NGj\n6vcyfvx4JycnoVBoYmLi6+t77NixRv4cWoNW9IRQR0eHEDJkyBBVS48ePUxNTe/du6cKqK2t\nrddLKpWqnvI1GMD44YcfZDIZc/zgwYPLly+zdxMAAAAAAC3C0tKSEJKTk9Ng5GeffbZ+/XpL\nS8vg4GB9ff3IyMilS5eePn367Nmzzz4+eRF/f38+n//JJ5/069dv0aJFTOPAgQNVATk5Ob17\n97a1tQ0MDCwqKgoPD/f394+NjfXx8Xn5yE+ePImIiOjUqdOAAQOMjIw2bdq0e/fuoKCgZyOz\ns7P79+/v6uo6bdq0lJSUqKioW7duXbp0aciQISKRaNKkSdnZ2ZGRkcOHD3/06JGJiQnTKzQ0\ndMGCBebm5mPHjrW0tMzMzDx27Fh4ePj58+f79u2rnn/fvn1FItGoUaPEYvGLZg7u3Llz0aJF\nfD4/ICDA1dW1qKgoISFh+/btgYGBTMD8+fP79OkzZMiQDh06FBUVnTx5MjAw8Lvvvvvss88a\n+aPWrlZUEDKzdU1NTdUbTUxMysrKmGMzM7OsrCyFQqGaFErTdHl5uYeHRyMDGMz/lxj5+fkt\nczcAAAAAAGyaMmXKtm3bVq9eXVpa6u/v7+3trSqB1F2+fHn9+vVOTk7Xr1+3sLAghHzzzTcB\nAQFRUVHr169ftmxZIy/n7u6uo6PzySefODg4BAcHPxtw4cKF//73v19//TVFUYSQgwcPzpgx\nY/369Q0WhHv37pXJZLNmzSKEeHh4eHt7x8TEpKenqx5OqsTExKxatWr58uXMx7lz54aFhfXp\n0+edd97ZvHkzc92vvvpqzZo1u3bt+vzzzwkhDx48WLRo0fDhw//44w/V3nV37twZOHDgvHnz\nbt++rZ5/SEjIli1bVLVDbm5uvQTu3LkTEhJiYmJy5cqVLl26qNrVI7Oysjp27Kj6WFNT4+vr\nu3Llyrlz59YrbVqnVjRllHkkXVJSomqhabq0tNTY2Jj56OLiolAoHj16pArIzMyUSqWqVWQa\nDAAAAAAAaKP69+//888/W1hYbNmyZejQoaampk5OTrNnz75y5Yp62I8//kgIWb58OVMNEkJ4\nPN7GjRspigoLC2MxH3t7+xUrVjBVGSFk+vTpxsbG8fHxL+9F03RYWBiHw3nnnXeYllmzZjGN\nzwY7ODh8+eWXqo9MDUkI+eabb1TXZRpv3brFfNy+fbtMJlu2bJlYLC75m42NzdChQ+/cuZOV\nlaUaTSQSfffdd+rrjzxrx44dCoVi5cqV6tUgIcTOzk51zFSDNE1XVFQ8efKksrJywoQJtbW1\nbWUeYisqCPv378/j8U6fPq1UKpmWK1euVFZWent7Mx99fHwoijpx4oSqy4kTJyiKUn0J0WAA\nAAAAAEDbFRQUlJWVFRsbu2bNmsmTJ4vF4p9++snHx0d9dmJiYiL593tYhJAuXbpYW1tnZmY+\nffqUrWS8vLx4vH/mG1IUZWdnV15e/vJeFy5cyMjIGD58uK2tLdMybdo0gUDw008/qd7qUr+E\nesHGdHF3d1c9+lM1qh7ZxcXFEUJ8fX0t/u348eOEkIKCAlXHHj166OnpvTzba9euEUL8/Pxe\nEpOUlDRu3DhjY2MTExMrKytra2umiM3Ly3v54K1EK5oyKhKJpkyZcvDgwWXLlvXr16+4uDgq\nKoqZHMwE2Nvbjx49OjIyUiaTeXh4JCcnX758edSoUY6Ojo0MAAAAAABo07hcrq+vL7PJBE3T\nv/zyy+zZs9evXz969Og333yTEFJRUUEIYVbpV2dtbZ2fn19RUfHciaYaeHYcHo+nUChe3mv3\n7t1E7VkfIcTc3Nzf3/+33347fvz45MmT1YNVUwVV47+oUVVMMvsLREREqBeNKuoP+mxsbF6e\nKiGEqZ9VteuzEhMTBw0apKuru3Dhwu7duzNbHpw7d27jxo31FrZstVpRQUgICQwMNDU1jYiI\nOHDggK6uro+PzzvvvKP+P/ncuXPNzc3PnDlz/fp1c3PzGTNmTJw4UX2EBgMAAABeJ3V1dS20\nIXXj8fn8t956S7s5ALRPFEVNmzYtNjY2NDT07NmzTEHI/PFcWFjo4OCgHsw8HGPOcjgcQohc\nLlcPkMlkYrFYJBK1XMLFxcXh4eGEkKlTp06dOrXe2d27d9crCDXA3KCVlVXv3r1fHqmadPoS\nTNGbl5f37PuNjE2bNtXW1kZERAwbNkzV+Oyqp61Z6yoICSHDhw8fPnz4i85yOJzJkye/5D+U\nBgMAAABeJ0qlUrX6mmaSkpKEQmHnzp01HqE17B4G0J4xC4eqHs15eXnduXMnNjZ25syZqpjU\n1NSCggInJyemwmEWO6m3YGlSUlK9EpGZrtngQ7/G27dvn1Qq7dmzZ48ePeqdioiIOHfuXGZm\nppOTU3Mu0a9fv9u3bx8+fLjBgrCRo926dSsqKuqDDz54bsDjx4+ZMPXGCxcuNP/Sr0yrKwgB\nAACg8fT09J79lr1JOByOsbHxqFGj2EoJAFrItm3bbGxsxowZo/4tTEJCwqFDhwghqlUz3n33\n3X379q1evXrs2LHMMv5yuXzJkiU0Tc+ZM4eJ6datm66u7vHjxwsLC5nJpRUVFYsXL653RaZ7\ndnY2W7fArByzffv2Pn361DvFLBYaFha2du3a5lwiJCRkz549W7duHTNmjPrkherq6sjIyOdu\nbvES77//fmho6MqVK4cPH67+xVlubi6zroyzs/PVq1fPnj07YcIE5tShQ4eeLQi//fbb2NjY\nDz/8cPTo0RreWItBQQgAAAAA0AbcuHFj3759hoaGffr0cXR0lMlk6enpcXFxNE0HBgaOGTOG\nCRs8ePDixYs3bdrk7u4+efJkPT29yMjI5ORkHx+fTz/9lIkxMDBYuHDh5s2be/To4e/vL5VK\nz54927NnTyMjI/UrGhkZ9e3b9/r161OnTu3cuTOXyx0/fny9Hd0aLzY2NjU1tVu3bs9Wg4SQ\nOXPmrF27du/evatWrVJfq6apPDw8du3aNX/+/GHDho0YMcLLy0uhUKSkpFy4cMHR0bGpBWG3\nbt22bt0aEhLSo0ePgIAANze30tLShIQEQ0PDmJgYQkhISMihQ4emTp0aFBTk4OBw69atU6dO\nvf322/X2pr9161Z0dLSqaGxVUBACAAAAALQB69atGzBgQHR0dHJycnx8fF1dnYWFhZ+fX3Bw\n8JQpU9QjN27c6O3tvX379n379slkMldX1zVr1ixZskT90eL69euNjIx++umnffv22djYzJkz\n56uvvlLfr5tx8ODB//znP9HR0UeOHKFp2tHRUeOCMDQ0lBDy3nvvPfeso6PjsGHDzp49e+LE\niWYWTu+++663t/emTZtiY2NjYmL09fVtbGxmzJjR1GqQsXDhQk9Pzw0bNsTGxoaHh4tEIk9P\nT9Vd9OnT59y5c8uXL2fejezVq9eZM2fy8/PrFYQPHz7k8/kjRoxozn21EIqmaW3noE03btw4\nefLkqlWrtJ0Iy+7fv3/nzp3Bgwe/ZE0kAAAAQsiRI0cwZRQAoOWUlZVZWFgsWLBg27Zt2s6l\nvtGjR7eifQgBAAAAAABeMzExMTo6Ov/973+1ncjzoSAEAAAAAABoKZMmTaqpqbG2ttZ2Is+H\nghAAAAAAAKCdQkEIAAAAAADQTqEgBAAAAAAAaKdQEAIAAAAAALRTKAgBAAAAANqR3NxciqLG\njx/fYKRIJHJ0dGz5jLSsndzmi6AgBAAAAAB4HSQkJMyePdvZ2VkoFBoZGXl6en766ad5eXna\nzgtaNRSEAAAAAABtG03Tn3/+ee/evfft22dpaTlt2rRx48bV1dVt2LChU6dOv/76q7YThNaL\np+0EAAAAAACgWVavXv3999937Njx119/7dOnj6p937598+fPnzJlytmzZ4cMGaLFDKHVwhNC\nAAAAAIA27PHjx6tXrxYIBKdOnVKvBgkhM2fO3Lp1q0KhWLhwoVKpfMkgSqVyy5YtXbp00dXV\n7dix43/+85/q6urGXD0qKmr48OE2NjY6OjrW1taDBg1av369ekBcXNykSZOsrKwEAoGNjU1w\ncHBKSkq9Qa5duxYYGKgaZMSIEUePHlUPOHz4sI+Pj5GRkVAo7Nat27fffiuRSFRnb926RVHU\nrFmzcnJypk2bJhKJhEJh7969T506pdlthoaGjh8/3snJSSgUmpiY+Pr6Hjt2TD1AdcWMjIwp\nU6ZYWlpyOJxt27ZRFBUQEFBvNJqmO3XqpKenV15e3pgf6SuGJ4QAAAAAAG3Y3r175XL5O++8\n4+Hh8ezZOXPmrFu3LjU19eLFiy95SLhw4cLdu3c7ODiEhIRQFPX7778nJCQoFIqXX3r//v0z\nZ860srIaN26cpaVlcXHx/fv3w8LCPv30UyYgNDR0wYIF5ubmY8eOtbS0zMzMPHbsWHh4+Pnz\n5/v27cvE7Ny5c9GiRXw+PyAgwNXVtaioKCEhYfv27YGBgUzAZ599tn79ektLy+DgYH19/cjI\nyKVLl54+ffrs2bN8Pl+VTE5OTu/evW1tbQMDA4uKisLDw/39/WNjY318fJp6m/Pnz+/Tp8+Q\nIUM6dOhQVFR08uTJwMDA77777rPPPlMPy8nJ6du3r0gkGjVqlFgsHjhwIFOF5uTkdOzYURUW\nExOTlpY2c+ZMU1PTl/88tYNu3+Lj45cvX67tLNh37969Q4cO5ebmajsRAABo7Q4fPhwVFaXt\nLABAc2+99RYh5Oeff35RwHvvvUcIWb16NfMxJyeHEDJu3DhVQExMDCGke/fu1dXVTItYLPby\n8iKEODg4vOTSAwYM4HK5eXl56o1lZWXMQXJyMp/PHzlyZE1Njers7du3DQwMPD09VR+5XK6Z\nmVlycrL6IDk5OczBpUuXCCFOTk5FRUVMi0wm8/PzI4SsXbuWaUlKSmJKm//+979KpZJpPHDg\nACHE399fg9vMzs5W/ygWi3v16iUUClW3prpiSEiIXC5XRe7du5cQsmLFCvXuTGX7559/vvDn\nqD1+fn6YMgoAAAAA0IYVFBQQQuzt7V8UwJzKz89/UcBPP/1ECFm5cqW+vj7Toqent2bNmsZc\nncvl8nj/mnWoeg62fft2mUy2bNkysVhc8jcbG5uhQ4feuXMnKyuLELJjxw6FQrFy5couXbqo\nD2JnZ8cc/Pjjj4SQ5cuXW1hYMC08Hm/jxo0URYWFhdW7zRUrVlAUxXycPn26sbFxfHy8BrfJ\nPN+jabqiouLJkyeVlZUTJkyora29fPmyephIJPruu++4XK6qJSgoyMzMLCwsTPXUkXlW2a1b\nt/79+zfwo9QSFIQAAAAAAG0YTdOEEFUh9CIvCWCedw0ePFi9sd7H55o6dapUKnV3dw8JCfn1\n118LCwvVz8bFxRFCfH19Lf7t+PHj5O869tq1a4QQ5onfcyUmJhJC6k127dKli7W1dWZm5tOn\nT1WNXl5e6qUpRVF2dnbqr+01/jaTkpLGjRtnbGxsYmJiZWVlbW395ZdfEkLq7eHRo0cPPT09\n9RahUDhr1qy8vLzIyEimZe/evVKpdMGCBS+6Qa3DO4QAAAAAAG2YtbV1SkpKVlbWwIEDnxuQ\nnZ3NhL1ohIqKCh6PZ2Zmpt5oYGCgepL2IiEhIaamptu2bduxY8e2bdsIIf3791+/fj2TSWlp\nKSEkIiJCKBQ+25d5JMhUdLa2ti/JjRBiZWVVr93a2jo/P7+iosLExIRpUR2o8Hg89fcDG3mb\niYmJgwYN0tXVXbhwYffu3Y2Njblc7rlz5zZu3Ki+kg0hxMbG5tmEFy5cuHnz5l27dgUEBNA0\nHRoaqq+vHxwc/KIb1DoUhAAAAAAAbdigQYNiYmKio6OnTZv27FmlUnnu3DlCyIvKRUKIsbFx\nVlZWWVmZerFUXV0tFotFItHLrz59+vTp06dXVlbGxcWFh4fv2bPHz8/v/v37HTt2NDY2JoRY\nWVn17t37Rd2ZKi4vL8/V1fVFuRFCCgsLHRwc1NuZB4zM2UZq5G1u2rSptrY2IiJi2LBhqsab\nN28+O+BzH7q6uroOGzbs9OnTWVlZDx8+zMjImDNnjpGRUePzfMUwZRQAAAAAoA2bNWsWl8s9\nfPjw/fv3nz27Z8+ex48fv/HGG76+vi8agVlYhVm+RaXex5czMjIaOXLkjh07lixZUlVVdeHC\nBUJIv379CCGHDx9+SUcmJioq6uW5xcbGqjempqYWFBQ4OTk9+1TwJRp5m48fP1YlpsLcUSO9\n//77SqUyLCxs165dhJD58+c3vu+rh4IQAAAAAKANc3Z2XrZsmVQq9fPzu3HjhvqpAwcOfPDB\nB1wud/v27RzOC//ynzlzJiFk5cqVYrGYaampqfnqq68avPTZs2flcrl6S0lJCSGEebMuJCSE\nx+Nt3bq1XjVVXV195MgR5vj999/ncrkrV66stzlhbm4uc/Duu+8SQlavXs1MQCWEyOXyJUuW\n0DQ9Z86cBjPU4DadnZ2ZW1O1HDp0qEkFob+/v52d3e7duyMiIry9vV/ygLQ1wJRRAAAAAIC2\njSlyNm3a1Ldv3759+7q7u0ul0mvXrqWlpQmFwl9++YXZmuJFhgwZMnfu3NDQUA8Pj0mTJjEb\n9NnY2DT4/G3q1Kk8Hs/X19fBwYHL5V6/fj0mJsbd3X3s2LGEEA8Pj127ds2fP3/YsGEjRozw\n8vJSKBQpKSkXLlxwdHQMCgoihHTr1m3r1q0hISE9evQICAhwc3MrLS1NSEgwNDRkdokYPHjw\n4sWLN23a5O7uPnnyZD09vcjIyOTkZB8fH9Vuh43UyNsMCQk5dOjQ1KlTg4KCHBwcbt26derU\nqbfffrve3vQvweVy582bt3z5ctLqHw8StgrCkJCQJsV/8sknjo6OrFwaAAAAAKCd43A4Gzdu\nDAoK2rZt26VLl5KSkvh8vqOj45IlSz7++GPVFg4vsXPnzi5duuzcuXPr1q0WFhZvv/326tWr\nG/yLfc2aNdHR0QkJCSdPnuTz+Q4ODmvWrFm0aJFqFZl3333X29t706ZNsbGxMTEx+vr6NjY2\nM2bMYKpBxsKFCz09PTds2BAbGxseHi4SiTw9PZm9ExkbN2709vbevn37vn37ZDKZq6vrmjVr\nlixZIhAImvqDasxt9unT59y5c8uXLw8PDyeE9OrV68yZM/n5+Y0vCJkbX758uaGh4XNf7GxV\nKGaZ2uaO0tAqt/XExcXVm5WrLTdu3Dh58uSqVau0nQjL7t+/f+fOncGDB79kySYAAABCyJEj\nR4yNjUeNGqXtRAAAXh9RUVGjR49esGDBjh07tJ3Ly4wePZq1KaPh4eEvWblIRSKRNOYrCgAA\nAAAAgDbq+++/J4QsWrRI24k0jLWC0NjYuMFFaQkhdXV1bF0RAAAAAACg9UhMTDx9+vS1a9di\nY2ODgoI8PDy0nVHD2CkI4+Liunbt2phIHR2duLi4NvGjAQAAAAAAaLw///zzyy+/NDExmTp1\n6vbt27WdTqOwUxA2/oVAiqJayduDAAAAAAAALAoJCWnqcptah30IAQAAAAAA2qkW2YeQpulz\n585dv369rKxMqVSqn9qyZUtLXBEAAAAAAACaiv2CsKqqys/P7+rVq889i4IQAAAAAACglWB/\nyuiKFSvi4uLWrVuXnJxMCDl58uTFixdHjBjRu3fvx48fs345AAAAAAAA0Az7BeEff/wRGBi4\ndOlSJycnQoi5ufngwYNPnTpF0/T//vc/1i8HAAAAAAAAmmG/IMzLy/Px8SGEcDgcQohMJiOE\ncLncKVOmHDt2jPXLAQAAAAAAgGbYLwj19fWZIlAgEOjq6ubn5zPtRkZGhYWFrF8OAAAAAAAA\nNMN+Qejs7Jyamsocd+/e/fDhwzRNy+XyI0eO2NnZsX45AAAAAAAA0Az7BeGIESN+++035iHh\ne++9Fx4e7urq6ubmdv78+dmzZ7N+OQAAAAAAANAM+wXhF198cf78eWb7wffee2/Dhg26uroG\nBgYrV6784osvWL8cAAAAAAAAaIb9fQiNjY2NjY1VH5csWbJkyRLWrwIAAAAAAADNxP4TQgAA\nAAAAAGgT2H9CqKJUKquqqmiaVm80MTFpuSsCAAAAAABA47FfECqVyl27dv3www+PHj2SSqX1\nztarDwEAAAAAAEBb2C8I16xZs2LFCktLS39/f5FIxPr4AAAAAAAAwAr2C8LQ0FBvb+/Lly/r\n6emxPjgAAAAAAACwhf1FZZ48eTJt2jRUgwAAAAAAAK0c+wWhq6trRUUF68MCAAAAAAAAu9gv\nCD/++OP9+/dXVlayPjIAAAAAAACwiJ13CMPDw1XHlpaWHTt29PT0XLhwoYuLC4/3r0uMHz+e\nlSsCAAAAAABAM7FTEE6YMOHZxi+++OLZxkZuO5GamvrZZ5/RNL127dpu3bqp2pVKZXh4eHR0\ndHFxsUgkGjFixMSJEzkcTuMDAAAAAAAAgMFOQXjs2DFWxmEolcodO3bo6OjU1dXVOxUWFnby\n5MkBAwYEBAQkJyfv37+/pKRkwYIFjQ8AAAAAAAAABjsF4eTJk8Visb6+PiujRUZGPnnyZPTo\n0b///rt6e05OTmRkpK+v75IlSwghY8aM4fP5UVFRfn5+Dg4OjQkAAAAAAAAAFdbmUlpYWIwf\nP37//v3l5eXNGae8vPznn38ODg42Njaud+ry5cs0Tfv7+6taAgICaJq+dOlSIwMAAAAAAABA\nhbWC8NNPP01PT585c2aHDh1Gjhy5a9euJ0+eaDBOWFhYhw4d/Pz8nj2Vnp7O5XJdXFxULU5O\nTgKBICMjo5EBAAAAAAAAoMLOlFFCyKpVq1atWpWWlvbbb7/9/vvvCxYseP/99wcMGDBx4sSJ\nEyc2csbm7du3r1y58s033zx3GZiysjJjY2Mul6tqoSjK1NS0tLS0kQGMDz/8MCsrizm2tbW1\nsLBo6s0CAAAAAAC8BlheftPNze2LL76Ij4/Pzs7etGkTh8P55JNPHB0de/XqtW7dupSUlJf0\nlcvlO3fu9PX17dq163MDJBIJn8+v1ygQCCQSSSMDGGKxuOpvz65bAwAAAAAA0E601H4MHTt2\n/Oijjy5evFhYWLh7926RSLRy5couXbp07dr15MmTz+3y+++/l5eXz549+0Vj6ujoyGSyeo1S\nqVRHR6eRAYw9e/Zc+NvChQubfG8AAAAAAACvhRbfoM/CwmLu3LmnT58uLi4+cOBA586dHzx4\n8GxYZWXl0aNHhw0bVldXV1BQUFBQUFVVRQgpLS0tKChgdi80MzOrqKhQKBSqXjRNl5eXm5ub\nMx8bDAAAAAAAAAAV1t4hbJCxsXFwcHBwcPBzz1ZWVkql0oiIiIiICPX2TZs2Eda0Y4QAACAA\nSURBVEKOHj2qq6vr4uKSkJDw6NEjNzc35mxmZqZUKlWtItNgAAAAAAAAAKi8uoLw5czNzT//\n/HP1lhs3bly4cGHq1Kn29vYCgYAQ4uPjc/To0RMnTixevJiJOXHiBEVRPj4+zMcGAwAAAAAA\nAECF/YJQV1f3ue0URQmFQgcHh5EjR37yyScikUj9rFAoHDhwoHpLUVERIcTDw6Nbt25Mi729\n/ejRoyMjI2UymYeHR3Jy8uXLl0eNGuXo6NjIAAAAAAAAAFBhvyAcO3bsgwcPkpOTO3bs2KlT\nJ0JIampqbm5u165d7ezsHj58+N133x08ePD69eu2trZNHXzu3Lnm5uZnzpy5fv26ubn5jBkz\nJk6c2KQAAAAAAAAAYLBfEP7nP//x8/M7ePDgtGnTKIoihNA0ffDgwUWLFoWFhfXv3//QoUMz\nZsxYsWJFWFjYS8aZMGHChAkT6jVyOJzJkydPnjz5Rb0aDAAAAAAAAAAG+wXhF198MWvWrOnT\np6taKIqaMWNGfHz80qVLY2Njp02bduHChejoaNYvDQAAAAAAAI3H/rYTiYmJnp6ez7Z7enom\nJCQwx/369Xvy5AnrlwZ16ttvAAAAAAAAPIv9J4R8Pv/WrVvPticlJfH5fOZYIpHo6+uzfmkg\nhDx9+vTOnTuJiYkZGRkSicTDw8PT01MoFGo7LwAAAAAAaHXYf0I4evTonTt37tmzR/WESqFQ\nhIaG7tq1a8yYMUxLfHw8Vv5sCcXFxWfOnLl06VJ5eblMJisqKjp58mR0dHRNTY22UwMAAAAA\ngFaH/YJw/fr19vb27733npWV1YABA/r3729lZTVv3jwnJ6fvv/+eEFJXV5ednT1t2jTWLw3x\n8fGZmZkuLi4GBgZ8Pt/IyKhLly5JSUlJSUnaTg0AAAAAAFod9qeM2traJiUlbdiw4fjx43fu\n3CGEODs7L1y48JNPPjEyMiKE6OrqxsTEsH5dKC8vj46O7tOnj3ojRVF2dna5ubkKhYLL5Wor\nNwAAAAAAaIXYLwgJIcbGxqtXr169enVLDA4vUlNTIxAInq36hELhlStXxo4di/c2AQAAAABA\nHftTRkFbBAKBXC6nabpeu0wmGzBggEAg0EpWAAAAAADQarH2hLCurq4xYbq6umxdEeoxMzMb\nNGhQYWGhubm5entRUZGXl5dqiVcAAAAAAAAGawVhIzc2ePb5FbCFy+V6enpevXpVvbGgoMDR\n0bFHjx7aygoAAAAAAFotNt8h1NXV7devH1Yu0aJOnTotWLDg7t27x48fr6ioEIvF48aN69Wr\nl6WlpbZTg2bJy8t7/PixdnPo0KGDq6urdnMAAAAAAHaxVhC6uLhkZGQ8fPhw1qxZ7777rouL\nC1sjQ5O88cYbLi4uVlZWSUlJQ4cO7dy5M4eDN0XbvKqqquzs7OZ0z8nJsbS0FIlEGg+C11AB\nAAAAXj+sFYRpaWmxsbF79uzZvHnzN9988+abb86ZM2fixImNnEoKLOLxeKampiKRyNjYGNXg\n68HFxcXOzk7j7nl5eX/++We3bt06d+6s8SB4DRUAAADg9cNaQUhR1JAhQ4YMGfL06dNDhw7t\n2bMnODjYxMRk2rRpc+bM8fb2ZutCAO0Qn89vTj2mr6+vq6urp6dnYGDAYlYAAAAA0Nax//jI\nxMTk/fffv3nzZlJSUnBw8C+//NKzZ88NGzawfiEAAAAAAABojhacT+jq6tqjRw/mZcLq6uqW\nuxAAAAAAAABogM1VRlWuXr26Z8+eo0ePisXi/v37h4WFBQUFtcSFAAAAAAAAQGNsFoSFhYX7\n9+//8ccfU1NTLS0tFyxYMGfOnC5durB4CQAAAAAAAGALawXhuHHjTp06RdP0iBEj1q5dGxAQ\ngDUJAQAAAAAAWjPWCsKIiAhdXd3x48fb2trGxcXFxcU9NwyrywAAAAAAALQSbE4ZraurO3z4\n8MtjUBACAAAAAAC0EqwVhDdu3GBrKAAAAAAAAHgFWCsIe/XqxdZQAAAAAAAA8Aq04D6EAAAA\nAAAA0Jqx84Twp59+GjVqlJWVVYORCoXiwIEDY8aMsbCwYOXSANB+lJeXZ2dnazcHY2NjR0dH\n7eYAAAAAwBZ2CsLZs2fHxMQ0piCUyWSzZ8+Oi4tDQQgATVVRUZGcnKxx97q6ury8PBMTE3Nz\nc40HsbOzQ0EIAAAArw3W3iFMTk7W1dVtMEwqlbJ1RQBob6ysrIYMGaJx99LS0kuXLrm5uXl4\neGg8SGN+0QEAAAC0FawVhIsWLWJrKACVhw8fZmZmajcHZ2dnNzc37eYADF1d3cbMRHgRLpfL\nPB5sziAAAAAArxN2CsKtW7c2Kd7JyYmV68Jrr7a2tqysTOPuJSUl2dnZ9vb2IpFI40Gsra01\n7gsAAAAA0JqxUxCGhISwMg5APd27d+/evbvG3dPT02/cuNG3b19nZ2cWswIAAAAAeD1g2wkA\nAAAAAIB2CgUhAAAAAABAO4WCEAAAAAAAoJ1CQQgAAAAAANBOoSAEAAAAAABop1AQAgAAAAAA\ntFMtWBAqFIqWGxwAAAAAAACaieWCsKysbMWKFT179jQwMODxeAYGBj179ly5cmV5eTm7FwIA\nAAAAAIBmYmdjesbt27dHjhz55MkTQoihoaGtrW1lZWViYmJiYmJoaOjp06e7devG4uUAAAAA\nAACgOVh7QlhbWztp0qTi4uLFixenp6dXVlbm5uZWVlY+fPjw448/LigomDx5skQiYetyAAAA\nAAAA0EysFYRHjhzJyMjYunXrxo0bXVxcVO1ubm6bN2/esmXLw4cPjx07xtblAAAAAAAAoJlY\nKwgjIiIcHR0XLFjw3LMhISH29vbHjx9n63IAAAAAAADQTKwVhHfu3Bk6dCiH8/wBORzOsGHD\nbt26xdblAAAAAAAAoJlYKwifPHni4ODwkgB7e/uioiK2LgcAAAAAAADNxFpBKBaLhULhSwL0\n9fWrqqrYuhwAAAAAAAA0E2sFIU3TrMQAAAAAAADAq8HmPoTHjh1LSUl50dm7d++yeC0AAAAA\nAABoJjYLwvj4+Pj4eBYHBAAAAAAAgJbDWkF448YNtoYCAAAAAACAV4C1grBXr17NHCE3Nzc2\nNvbmzZsFBQU8Hq9jx47jx4/v27eveoxSqQwPD4+Oji4uLhaJRCNGjJg4caL6XhcNBkA7UVdX\nd//+/Vu3bt29e1cikTx9+tTd3V1HR0fbeQEAQGulkBFCCJev7TwAAF4pNqeMNtPRo0evXLnS\nvXt3Ly8viURy5cqVtWvXTp06derUqaqYsLCwkydPDhgwICAgIDk5ef/+/SUlJQsWLGh8ALQH\n1dXV58+fj4+P53K51dXVmZmZaWlpOTk5w4cP19PT03Z2AADQGtWeXkoojnD099pOBADglWrZ\nglAikTx48KCystLT09PExOTlwb6+vnPmzDE2NmY+Tp069eOPPz527Ni4ceOYP+JzcnIiIyN9\nfX2XLFlCCBkzZgyfz4+KivLz82O2QGwwANqJhISEpKQkd3f3oqKi8vJyMzMzCwuLxMREU1PT\nwYMHazs7AABoLRS5CZSRDcfIhhBCS8WE+mtKkbIij64u5Nr21Gp2AACvAptzKaOiooKCgmbM\nmHHp0iVCyJkzZ1xcXLy8vHx9fTt06LBmzZqXd+/Zs6eqGiSEGBgY9OvXTy6XFxYWMi2XL1+m\nadrf318VExAQQNM0c7nGBEB7UFdXV1hY6ODgQFGUqpGiKAcHh/z8fKlUqsXcAACgVZEk7q/a\n4aN8mqPeqHyaXbXTR5J4QFtZAQC8SqwVhBcvXhwzZszRo0cPHjw4fPjwc+fOTZw4USqVjhs3\nzs/PTyAQfPXVV7/++muTxqysrCSEmJqaMh/T09O5XK6Li4sqwMnJSSAQZGRkNDIA2gOxWBwX\nF6erq1uvXSgU/vnnn9XV1VrJCgAAWiG9sZt59n2rdvooyzKZFuXTnKrdb/Fse+qNXq/d3AAA\nXg3Wpoxu3rxZX1//l19+cXR0nD9//owZMxwcHK5evcrMFM3MzPTy8tq+ffvkyZMbOWBeXt7V\nq1e9vb1VBWFZWZmxsTGXy1XFUBRlampaWlrayACGWCxWKBTMsUQi0fSOoZXi8Xg0TSuVynqL\nCSkUCpqmebxW9N4sADSHUqmsqanRbg4cDgdvJrcWSnn1j36adKRpIpdUbupKCU0IoaQ391IC\nQ7q2vHrvaA0GM3j3NOFwG44DAGg1WPvj+ObNm0FBQWPHjiWErFq1avjw4UuXLlW9N+jk5DR1\n6tTDhw83crSamppvvvmGz+errwcjkUj4/PprfwkEAlVR12AAY86cOenp6czxG2+84erq2sis\noE0wMjIaMmRITk6OhYWFentpaenQoUMNDQ21lZi2yGSy4uLiJ0+eFBUVubi4YKlVeG1UVFSc\nPn1a4+40TVdUVPD5fH19fY0HMTIyGjNmjMbdgU20UpZ2rlkDyP56RYWW1irTz2s8THNyAAB4\n9VgrCAsLC1VzNZ2dnQkh9vb26gEODg4VFRWNGaqurm7VqlVPnjxZuXKllZWVql1HR6e2trZe\nsFQqVU0ObDCA0a9fP0dHR+ZYV1eXpl/D391cSbnX482kXS6gQlGUh4fHpUuX1L8dePr0aWZm\n5tixY9VfLGwPMjMzb968eebMmaKiotu3bxcVFbm7u7u7u2s7r1dNoVCkpKQ8ePDgxo0bJSUl\nMpmsa9euBgYG2s4LmkVHR6c53+jJZLILFy6IRKLmDPLs7HTQGg5P7+29jQ+X5yZIb/70z2da\nSWS1hBDCF6qWliGE6PSaxbVtysZaFB4PAkAbw1pBKJfLVX9/CwQCQki9uXnMRL4Gx5FIJKtX\nr05PT//qq6/q/dlqZmaWlZWlUChUk0Jpmi4vL/fw8GhkAOPjjz9WHd+4cePkyZNNutNWTSFj\nNlDi1BRbPL1R80x7O+Hm5jZ37ty7d++eO3eupKSkrq5u+PDhCxYsUH+/tD3Izc3dsmWLq6tr\n9+7dU1JSHBwcSktL9+zZM2/evM6dO2s7u1dHJpPFxMScO3fO0NCwoqIiNze3pKQkOzv7rbfe\nMjMz03Z2oDk9Pb3evXtr3F0qlWZlZVlbWzdnEGhFlPKaY7NZGEf2r2+WJX9ua1JvHe9gQuHd\nBABoS1rX7yypVLpmzZrk5OSlS5f26NGj3lkXF5eEhIRHjx65ubkxLZmZmVKpVPVXfoMBrzf5\n4yvVByYZzrvA7fCvQlqWckr8c5Dx0ixKrx397du1a1dnZ2dbW9v4+Ph+/fr17NmzHU6VvHPn\njr29vUgkKisrY1pMTExcXFzu3bvn5uam/rbt6+3+/fsXLlzw9PQUi8VFRUUmJiaOjo5paWlC\noXD06NHt7aExwGuL4gr9vtWgH137VBK/m2NkS/GFhOLQ8jpleZZOn7ka/qNJsbl+OwDAK8Bm\nQXjs2LGUlBRCCPOW/9atW8PDw1Vn7969+/LuMpls3bp1d+/e/eyzz/r06fNsgI+Pz9GjR0+c\nOLF48WKm5cSJExRF+fj4NDLg9cZzGCjwDKzaNcRw3j9vPshST4sPThaO/r5dVYMMXV1dKysr\na2trKyurdlgNSiSSqKionj3rb6Jlamp65coVX1/feu9YvsYyMzM7duxYrwC2t7c/e/Zs3759\nRSKRthLTWE1NTX5+vnZzEAqFtra22s0B4F84XN03P29qJ+XT7KpdQ/gub+lP+6Xm+AeE4ugF\n/CA+8o70zhHDeTEcM6eWyBQAoFVhsyCMj4+Pj49XfTxz5kyTuu/atSsxMbFTp045OTlHjhxR\ntQ8ePNja2poQYm9vP3r06MjISJlM5uHhkZycfPny5VGjRqleCGww4DVHUXoBPxBCqnYP5fVe\nRgjhZsWKT80Vjv5eZ0CItpODV00mk5FnZm4TQiiK4nK5crlcG0lpgVwur6ure3YdSA6Ho6ur\nW11d3RYLwoqKihs3bmjcXS6XP3nyRCgUNmfGrIWFBQpCeA3URi3l2fXSn/oz4fz925LD1Q/a\nJz40tfbMcv0p2IoQAF5/rBWEzfnrhPHkyRNCyMOHDx8+fKje7uzszBSEhJC5c+eam5ufOXPm\n+vXr5ubmM2bMmDhxonpwgwFtRc1vcyXxYRp3N439DyFE53gwTUjN8Q9qjn+gwSB6Af+nM/BD\njXMA7RIKhT4+PhUVFfWWTpHJZDKZrP2sp8LlcimKUu00o079feO2xdjYuDmvvYnF4piYGEtL\nSy8vL40HEQqFGvcFaD30A/cSDp/UmzrO4elPP0qUMi0lBQDwSrFWEPbq1ZQ1uJ5n9erVDcZw\nOJzJkye/ZDPDBgPaClou4Rg14dt3ZfUTolSqD0AITQhFiNo/cjwBR8+8CTlIxY0PhtaGy+Xa\n2dndvXu3S5cu6u3Z2dljxoxpP9tvUBQlEomysrLqbS1QXV3ds2fPNjpvVk9PrzkLY1ZVVSUn\nJ9vZ2WHTHQDCFfxzaNvznzcAKUr9FLRDspRTsoenmblXAK+31rWoDKhQPB1lZV6zh6H/tSGS\nvK5JY1ICzffmgtbAy8urtLQ0Li5OKBTW1dU9ffq0qqrK09OzX79+2k7tlfLw8Dhx4oRQKFS9\nSlpTU5OWlhYUFIQ9AwBARafPe9pOAbSMltUSQlN8PUKIsjRDUXDn7xM0XVveDpdjgHaCzYIw\nKiqKw+GMHDmSEFJUVPTuu++qn/X09Fy3bh2Ll3u96fSdz3MboUFHRf6tuksb6mx8dHPOKxyG\ncAtvCoct55jYN9zzGTyb+gu9QtsiFApHjhxpa2t779694uJiGxubXr16ubu7N2cb7rbIyspq\n8eLFN27ciImJKSgoqKqqKigomDFjRnMmTAIAwOtHcnmz9NYhw3kXKAPLf1ppuiZ8kTznutGH\nN7WXGkALYq0gvH379pgxY3bs2MF8rKmpiYyMVA+IjIycNGnSs2sewnNx7Xpx7Zo8C1eWelpy\nZbPe2I3FSlvdnPOSgP2mN7+ri/3OcN55rlW3lsgTWjmBQODt7W1paelR/Ktw4Iwu3dvpfmsO\nDg42NjadOnU6e/Zs586dfX19289blAAA0Ei6vp/Is+OqdvoazL/wVxNN10R8KL33m+Hc8y/t\nCtCGsVYQ7tmzx8LCYvbsf+0Ju3fv3lGjRhFC5HK5p6fnvn37UBC2HEXBHfH+CcKxG3X6v0+u\n/EHI3+uO0srq0OFGn6ZSusbazhG0RKlwKjpRLG7Xs6H4fL61tbWNjY2NjQ2qQQCA1171/gnK\npzlN7kbTyqqCim+dKT0zuq7q6WoruraMI+okPjpLgxwMpv3CEblp0BHgVWKtIIyNjR0+fLhA\n8K83sE1MTKysrJhjf3//S5cusXU5eBbH1MFg9kme69B/tVKU3rj/yTqNpAT4C7h9ocUlVbve\n1J96iGvtqd6urMwX75+gN2E71xbfzgDA60OpVKrvWaUBiURCCGnmvrVTpkyh6q1ZClqiKLyn\nLE3XuDtdkU8oQkurCCHKomQNB5HVaJwAwCvDWkGYmZk5adKklwQ4Ojqq71MPrKN0jVXVIM3T\nVXD+/ieNovhdA7SWFmgJpS/iuQ6tCh1qOPc8IX89HFZW5lfvfosj6sS18nx5dwCANqc5W2sS\nQv7880+Kovr3789WPqBdxp+lNT5YkZ9U+UMvQqst2P68ul536FfCEV83OzWA1oW1grCuro7P\n56s+Ojg4VFVVqW9UpaenV1tby9bl4OXkhvYXPHYM1HYawBbl02xF8cOG4/6N33mssiKncvtA\nfv8vCCE6eVerLn5IGXTQ6bdQ9uhiU0fjGNtyLbs0HAcAoA2qZe00VltbS1FUMweB1qNq91vK\n8qzGx3OMbAj919rsdN3Tvzbf4vAofQvq7/1IpIkHpEk/N35Mg9kn8U8ntH6sFYRmZmZ5ef9s\naUBRVL23dHJzc83Nm7AJHjQHraSf5nMajoM2Qnr319qTSzTuLrj4X0KIUcL3SkLI06zqvaM1\nGESn73y9iTs1zgEAAOBVousq6NpyTTrKaohCSni6RCknFEVXFxEdg7/2qJQ1cSylQoMEAF4x\n1gpCLy+v6OhopVLJ4TynDlEqldHR0Vjk/ZUpz62+tbt4zDRt5wEs4dn11n3z88bHyx5GK6sK\nVR/pmlKikBGKQ+lbkL9fbqH4egLPt5uQQ8e+jQ8GAADQLk12iaDpmuMfSO8eM5x7Xp4RI733\nm+F7Z6oPTFKWpBnMj+EYWrdAmgDax1pBGBQU9O67727evHnJkuc8x9i8eXNaWtqyZcvYutxr\nL2rbtVtnmjD3nRAilylqKiRGIj1CSHWFmFaSPXOj+Xw+raQrS8RGIn2K07TX3IfP7d1rbOcm\ndYEWoii8K7m+uwkdlDKi/OtFCJrQRCEnhBBaSddVqOa90JKqpo2pkPI9JjQhHgAAoE2RXP1B\ndvdXw3kXuB3c5RkxhBDCFegHHxPvnyA+GGi48LK2EwRoEawVhMHBwdu2bfvkk0/u37///vvv\n9+jRg8fjyeXyW7dubd++fe/evb169Zo+fTpbl3vtleZVZN97okHHp4VVquOC1DLVcUWRuKlD\nVZViaaxWg6dLCU016ahU0FUFNE+XktcquXocRR1laE14Gq2hx9fTpBe0JjRNZ2RkpKamJiQk\nFBYW8ni8zp07GxoaajsvAIBWgd9tMt99PMfUQb2R4unqv/OH8omGC40CtH6sFYR8Pv/48eP+\n/v579+7du3cvRVF6eno1NTU0TRNCvL29jx8/rr7qDLxc8LqRweua/F77k0dlm6cf8RjiXFlV\ncfdU9qSvB94/nVNdXvvRgUADU2HD/aG1unzH87fdC5vay0C36j3fXU/FzofiZqyc8OXWqIW9\nnOO97RN+vDwvr9yuqaP5TO0+DUsttGVKpfLKlSvHjx83MzMrLy+naToyMvLx48e+vr6Wlpba\nzg4AQPs4xraqY0rPVPVVLMXT5dp6aykpgBbHWkFICLG1tb1+/fr+/fuPHTt27969iooKGxsb\nDw+PwMDAGTNmoBp8BTo4m/3n56DN049wdShCyJV99/kCPqrB14C5rVHngQ4Nx6nhcepGGW0o\nrhD9WfuZmWMdIUTPTOehYCEvf+fswXuiyr4VK5tWA1i5NGs9d9C6tLS0iIiI7t27KxSKwsJC\nExMTNze3zMxMgUAwduxYLper7QQBAFoRfo9gjvtUbWcB8CqwWRASQvh8/pw5c+bMmfPcs0lJ\nSVhXpoVcPXJX/PSvXT36BHQ5v/cmIaSyqOatWT3/PHqXabdyMfcc5qK1FLWBUso75R+m6F7a\nTqS5vEZ18hrVqUldaHld3dWihPPuT6If9Z/aiRQQW3ezzHRJsvECn/Fl73pN4hhatVC20Do9\nevTIzs6Oz+crFP+semdnZ3fx4sVevXrZ2tq+pO/rSqlU0n+vMg8AoO7ab/cSTz9cFDZR24kA\ntDiWC8LnqqioOHToUFhYWGJiIv7pbQm0kk6+nFlTKWE+KpU0oShCaJqQjJv5qp1Vq8tr211B\nKCl3LoqokHyl7US0gOLpCn2XBA4mSnLu0t57PiM5jxPL9DraLtozSUcPj+vbo6qqKj29+i+C\nUhSlr69fVVX13C6vK4VCkZycnJ6efv36dTMzM4VC0aVLl/ZZEmdnZz969CghIcHAwMDQ0PCN\nN94QiUTaTkprFAoFRTVt9TV4zRRnP1VIFVau5oSQuhqppOavXSYkNbKsu4Wd+nbUanYALaVl\nC8IrV66EhYUdO3aspqZGX1//7bebsMY9NB7Foeb+L4A5ltbKdsz7Q0ePV1spJRQxtzOavnZE\nU9cXbT2KiopKSkqa1IVXlWN8ccnTNzcrDGwLMjNNCcnMzKwherzqXJPYxeW+mxSGTXt9zsLC\nwsLCokldtO7XtTF5qWo/N4r7w9nFpbVmLg6cnQvCmTZ9E905/+ePP37aDx6Pp/5sUEUul/N4\nr+LLwVZCqVTGxsZGR0dbW1tLJJLq6urExMQTJ04sWrSoU6emPYdv627evHngwAEbG5uBktOl\nUlFsLO/IkSMfffSRi0v7+uqQpunU1NS0tLSrZ+MpiuLz+Z06derUqVPbLQ4jIiJksqbul/cP\nhUJB03Qzfy2MGTNGV1e3OSM0384F4eUFTfu2q7qs5umTaktHU4GQX1VaU1Mp+WbcAVpJFz0u\npziUpWOTV3eb839jNegF8Iq1yB8BxcXF+/fvDwsLS0lJIYSMHDly/vz5o0aNEgrxJlvLYqrB\n6vJap76WyWdzh7zn+efPKT9/eabt1oQFBQXJyU1b14uilZ4KI5MT0+Jdv6qRKggh+fn5lSX5\nfdLXFOu/cTejmKZKmzSgu7t7mysIXXvbGYn0mWNpjSzrTmFRZQcuj9i7Wxqa//WMSN9U2Gb/\n2gFNiESiBw8emJiYqDdKJBKxWNzm/gtvjrS0tNOnT3t6ehJCBAKBUCjs2LGjgYHBrVu37Ozs\nnn2I+roqTEs8dGBft27d9fT0LIpquVyZnrOziYnJ7fgrVkZ8fQt7bSf46sTFxf3+++/29vZ1\nqboUh3rU+VFsbOzbb7/dr18/baemIT6f35xqNjExsaamZtCgQSympBX5D0uKs55q0LEw459F\n2tWXfNdg+XdprVyDBABeMTYLQqVSee7cubCwsOPHj0ulUm9v7y+//HLt2rULFiwYP348ixdq\nDy4dup0al92kLkoFnZGQK5cp3Pp0zLpXQAi5ezbL9g2L68cfpF7Lsffo0NQcBkz2cPd1amov\ndjk7O3fo0OTMifJNXvRHg3O+l43dRdLJ8L5deSffox0HmPtte5PT5P/mDQwMmpyAtvUY4cYc\nVJfVbJlxTN9ct7ZKYtrRIP548sc/B1m7mms3PdAKd3f3wsLC/Px8Y2NjpkUikaSmpgYGBqpa\n2oOcnBxra2tmYyRVo6mpKfOWu5ubmxZze5XkJxa9Y1CeottLqdZobcTrdvvTcrm//ow9Wsvs\n1YrcdTn60knv4R46OjppnHKKQ1laWhoZGf2yNbzsjnz0vDZZFPn5+TWnkLOLfAAAIABJREFU\nO5/Pr6ys9Pf3Zysfbfn6wnuadYzYdCV2f5LQWKcst9K1l52kRvrRgUB9Ey0/8ARoOawVhF9/\n/fWPP/6YlZVlYWHx/vvvz54929PT8/Hjx2vXrmXrEu1K9r3CxFOpmvW9cy6dOci9W0xIMSGk\nJPtpSXaTvyRz7WWr9YJQX/pEt+qxJj0HzquLfUpFzCKECI4Hcy266Pq8T8QpGozE5TsRbdeE\nMolcVtfkbxnF5bU7FoTrGep0H+t4asMN686mhgbGm6ceXrh7QgfnJi8ZyhNwBUK8fNiGmZub\nDxgw4Pr16xcvXszPz6+oqCgpKQkMDGy7j0E0IxaLnzuTTSgUisVN3q+17Xro9rHTtY+9Mzcm\nOi9hWgTyyl7payt4JuUuM5u8L00roFQo93wc2dReWSn5sscWDwqrBAZiRbEuoUjy4TJptVKa\nJYorvp93t7ypA87ZMpbDxeyLtkepoHNTighNCCE9RrhVFov//PUeIaSyRDxtzYjS3IrS3ApC\niLmdcZurDGNjY0tLmzY3inU+Pj7Y36g1Y60gXLFihaur6++//z527FjsMNF84z/xGbVQ87/S\n4mOSTqxKCDkSoMnjtb+1hl954t/myTNimjkIXV0kry6q3nNRs+48t+GG751pZg7NdPHgrd/W\nxWrcPSMxnxByN+qvZ87fTz6kwSA+U7tPWzNc4xygNbCzs+vQoYO7u/uJEyccHR2HDx9ebwZp\neyAQCNSfDarIZDKBQPDq82k+WiqWJv3c1F7mZSlpur09664MSP2ymlMnJArr1KVyrn4G1alr\nbrTketO+PqN4OoKeM5uaA7uUSlrjL1IrHzOrsnEJISX3/lqyuySjqiSjyQPO2TKGEBSErcKF\nCxca/y1PZW7d9e25/3ymCbMOYllBxbZ5v6qand40dR3RhFk2vr6+RkZGjY9vCTwerzm/3FJS\nUoqKivr06dOcl0Lb7hu57QRrBaFIJEpPT1+2bNnDhw9nzJhhY2PD1sjtk4GZnkEzdn2z7mrq\nOMzIxFpfZNu2Z4JxjOwIrym/gGgF+WchW5ooFYTQhFCEw/3nX2iKIhSnKTlof+1BDfYhVCrp\nsrxKc1sjikPV1dU9vvnEqrOJibkxoUlZfqWhhT5f0LR957AP4euBz+fb2tra2dnZ2dm1w2qQ\nENKhQ4erV6/We21SIpFUVlZaWbXJvVjo2vKa3+c3tZc9IcxrgjqycgOKEFJCZITIyn1JLrkZ\nWXOzaaNRQlOtF4RcHnd17Nym9kpMTLx+/bpOuXnWhUqlUkkI4XA5HX0MpaLS/v37a7BXFsVp\nwr8v0HoY2ekOX+fKHMslypuheaWZNURBCEV6z7c1cWjDq2A083VQkUj0+PFjPz+/tvgGDTQS\nawVhXl7eH3/8ERoaunTp0i+//HLkyJHMrFG2xocmEQh59m8aajsLFuhP2a8/Zb8GHZXlWVW7\nh3CtusmSIwTdJslz4g3nx3DMnFnP8NXQYB9CdTnZOeveOjLso+4DR/RmMSuAtqhLly49e/a8\nf/++ap8JsViclpYWFBRkZtY2v/XgCgRewY0PVxQ9UOQ1XPDxXIdyDK0bOSbF1/6MEooioo5N\n+A70yaOya7/fLy+vLk6SWFrKjZ10ytPqCCFGTgK5VFGcJMnjVNU8vNNvkkcHJ6wS2SY5mnSW\n6jR5tVWZRB6x8wpXJhAayWvLpd2GuNzc+XjC54M1eNWCEKLDa8OVJLQfrBWEAoEgKCgoKCjo\n0aNHe/bs+emnn95++219fX1CSH5+PltXAWgMphrk2fUWjt1QkRyhN25rTeSnVbuGtOmasDko\nDuU138LEVl/biQBon1AofOutt/T09CIiIrKzs4VCobu7++TJk729vbWdmqYUUmnSQdZHlaef\nb3wwJTTVmxTKeg4tqqZCUpT1lKZpCwOb4uwSAflrgVm5VFGcXd3Bwk5WSYoqn9ZU1Gk3z1eP\nUkp5ilptZ8GCnz45pdkqo+qSotIIIYdXNuH/Duq+PDnTrks7WsYZ2ij2t51wdnZeu3bt119/\nHRkZGRoaGhUVtWjRog0bNkyePPntt9/u3RsPKKBl0eLiqp2DeY6D9IP2K8VFhBDC4eoH7hUf\nDq7aPdTowwRKrz2usWloJ8AEfgCGsbHxyJEje/bs+csvv9ja2o4ePVrrG6Y1ByU01Zu4S4OO\ntKRKcnmzgqdfXiWW800sOaVcfXNB/4UUp8kLAVA8HQ0S0C4nL+u5W/0JIRKJJGLvuQubkmmK\nJoTUFCh8P/QcP3d4G32ntPlscn7nPn1EiJbnADffiHl9mlrPp8ZlF6SVDgzqxtfhxZ+5U5pd\nPWJ2Xy6Xe/9SZlFm+ZCZTf7ayNjydfgqlkNrvq0ltAkttRkxl8sNCAgICAjIy8vbu3fvnj17\n1q9fv379euYNXYAWxOHpDPxQd9DHhMNVb9SfcrDuyv8RqmkvzsFrRpj/gLi2x6fE8CwjIyOR\nSGRmZtamq0FCCCXQ1+k7r6m9aHFx1e6h3A5djWYeL944RGrsajJjU9Xut+QPTuq/8wfVpJe3\nWwe5TPFB583NGICiCEUIUcrpmE0PYjY90GyUbQ8Xc7ht7zVCefZ1SqDPtfIghBCFlFJKmXZl\nZf7/s3fnYU1cawPAzySBLIQ9YBBBkEWwgloUUEHBFRW012q9dnFppa29tWpt64JirS1aP1vR\nVvRKta227rZaQQUt4gLIvoiI7ErYA2EnhCTz/TFtmgsuJCwDM+/vjz4YZvK8vD1zzpyZsygq\n7+s4ziYzOG15/VvjiUszVo1HCBH/B0tExc0NbTMCx+vo6Mx6z72jXa7D7qvb5oGMXxnnkX8Y\noYVkBwL6UJ+XbEtLy61btwYFBd24cSM8fJCNJwGDEcY15kz5axV1jOj+Ef9lsFSfA9qaUPZt\nSaYATfAgOxAASNZydgVDX6i3/BKm89ccJ4xvzg+80fxfX2n0du7cr8kNTwsYhmmx425bc7v4\ncYORBV/fhFdZLEYYEtoImmpb6yubzYYbcfhavCQclIMx5CV3pTFfNcz58UGtDv7kiZGi7vLl\ny44WfGFMoI6d7yDtEGpBvTNvYME1tP6nANCqN6hsKMNbxUyLMQghhqKNqfz7RatC1lF0W8dh\nBpnBgT7QT4Ubw7CZM2fOnAlr1oN+hfHNDdZlYLzBuVAE6KK6RJJ3r1Szc5QKZkqIwuU/iGvS\n1NQ0BuGVD+vuns5COI5lhsmH+jDNX9Lo+0wtDZy9bTSLAYCBh7fge4bBUPS/Qz0Z+kL9/yTg\n8kE5a47JYmy+9JamZ13eF2dsoU+8Sgp58wjGwDYffwshdPtkZmN1s/+6yb0f6IDEmbKhovgh\n57cltaarDeRyJa6sKkgfdWefxMLV5pUwsqMjxxBnfdyYRnuTqpM/udd6Zhl/5WWW3bR/PlXI\nmk+8qqx/orMuk7zQQJ+g0dMOQE/E8y1ADSUZFb8GabYnJIbhb3tnGN574+jt91plPNf5qCi+\n6s+LUXPHXh5rnXb4mFFtU5lGXzh2lgN0CAEFMExsVT+36Zgo2X89OMO4RoPyDZe2AtY/vcs3\n5XV6tR0SiWRfKm+p5YzZ9UceMu11lUq/urAGA7ufSsetKauwtrYmO0DQr3RdXlXWP2n+MUBv\n+SXJkxbdegVSyJp/eUNZk8d/r6e7Q4MBCDqEAIBBw2asxRtfzdL0rJa2yazEd96b8UOa/teo\nDRlZcldMujMMpTwwDvXb5Knpt5lakrzFMAC97tGw5YaGg3vT2l4xdLwBNbbPbtzrhHd0+zUv\nrsTlUoVcvonbzmxgMnCFC8pCDEzZwdRRtK7XzdUJ/7leh4WxOBpNwtdffZthNFi7kXV1dbm5\nuffu3ROLxQKBwMHBwcbGhuygtNcWvU1Z80ijU+QyhaJDwTJzaDnmZ8MYqqNTL/9uNJI1s2yn\n1v7yPs9Q4znGnGlbmRawF93ABR1CQHEt9VI9o8G3OgJ4KnMbY3MbbTYEa10QX7jd++XmjRgL\ndxXEDkOP2medm+k3r9cjHCyYSimCJb7A3xoetzOHtJMdBfmMbDjU6BAqavIQ0uwCZyLERQgp\nVB/gTFzOVDQhhJAM4TINvw4hZUvtIO0QPnnyJCEhIT8/v7q6uqWlJSUl5erVq4sXL544cSLZ\noWlJXhAjfxyv6VnY38VBT1mKmAhvqkAIdeRGsBCSaR6DrnsgrOk3kEGHEAxoyX88zLheoPXp\n8g5F1o3CMTPtmSzt13wbN9thvL+T1qeDXtQWE9L+5xfdPx5XKlQrG1vqIQxXIIQcjdJxxODE\nLqiL/eswBlODmpBpMUb/w8TuHz8weRTsbOR9gNAksgMBA4IorrnVmgK7DIC/6C0+his0u2l/\n8uRJVlaWpYBvUxXZoVAgHOcy5Y/N5pS3sGxsbBwdHTWNgWk+UtNTBgKpVJqUlFRVVWVnZ9fe\n3o7juJWVlVAoPHfu3NChQ4cPH052gNq4kjSpsdSqmwfzdFqnvxSNIaXqE11WB0JIoWAq8H9u\npR7X2maWjut+DFNnGjg6dP9w0N+gQwgGtPI8cdoVzcY5dJUZnd+T04fYavNKCvQJqQSXa/Ye\n46lP+zGkVH/cjcsVTzvq6ZRtEo0C6AtisTg1NVXTs4xqkxqMx+IM3ba2NpfWxsJH2eVRUQgh\nvaa8Dh1jGUezrZONjY3d3d01jQEMHJe+uWM/YdhLU2w7fX77ZCaDgWmxXj8YOHTHr9D0FD2r\n8qyE7R7osoQ/sriBZYiL2WYvWYujb8sXOroHskcOyt6dFkQiUXJy8tixY9U/5HA4QqGwqKho\nkHYIJwy5Yjwkp4dfwmQqmGpvkB2G5DkMyev+6c3yfyEE63sPXNAhBAPajFUTJi/R7L6koabl\n+7cvuM93nhk44e7prKjDifM+9PRc5BJ1ODE18tGaHxfpC3gafSFXf/BtuExVTS+tKu6w1+5c\n3YSTFh2JDAxvaDNi6aAqj08wnjazAQ3MrEifa9XR0VFXV6fpWc55R010jNJsP1Yglq6urr6+\nfnVdnaAxw7l4X4bNR3WGbhp9G5MJw38GitYG6e97bmt6VmVhXfThJCev4SZDDZrKZLKGxl+D\nossfiUuyKl6aavv4fqVG36bL1Vm81VfTGMDAIdRTrja8+rjNKGf4KrOGnxFC2SYLJOLqN3Uu\nGvE+Iju6/tPU1KSn95St5PX09Jqbm/s/nl5htTxE2VTV/eNb6qX19fX34u9O0n+kK5U8Kre3\nMyt8Um/rLHzwgDVJd4iLg6MDm6ej0T4chk5emgcO+g90CMGApmfE0XQGoMDK8OOTS/a/dVaX\nyzIQ6CGE9Iy5cWezUq88Wnt88XBXYd9ECvpDK84uatWmF2eRdNwKS76m3DATC42te9XN8E/j\n+P2ZY7cpNO8TDlPoaxFA77KwsFi6dKmmZ+HN05vCp89r+1Vv+aWm0J3e3t4Yx7Dl+Hfc+d9O\nn/RhX8QJ+kd7W8fd01nanZtzu4T4QSqRq77kfkyRpt/DM+SQ3iHEcTwrS8s8EEpKSjAMy8zs\n0ZL6rq6ug3EiYvudfXq2HpjDx9zHpXV1dTqs5tTUVNtFIZzGiPYbn+usjCQ7wH7CYrEUiqeM\nGVEoFIP3KZjOqAXdP7iuvHHbWz8wcPZSz/KOjraw2+tsBUVDjcp/vfvmZIfbs166dvyU08/V\nHd5LR73+5SDbTO7hw4daPEvtXY6OjmZmmo3H6R/QIQQUZDXKfO2J1/a/dXaooxlC6P7NwpKs\nqrU/Q29w0KtKb7m9VbNdIhBC88b84TA89Ydb71fUG8+cj+qL8Z8kK5ZPPjo66QtiLwqNvm3M\nTK63t6YhDAgY31w/8M+m8OktPy9AOK6oyGy/s487dw+bxr3Bl0qPylkzEPIhO5AeMTTT2xkb\nqN25KRG5kd8lKNrlTDYTwxhvfDXTzs1Si+8ZCD0gHMdzcno0Lk5HRwfDsB5+iavroBxty/X/\nBiHkjtCYl9uzys9yWp7s+WQPl8tFaCrZofUrMzOzhoYGuVzOYv3PHXJtbe3gXVRGIyZDDQ7m\nfVwa8VXH3cp0553cKhyTFCKEGLpY67RF2bjumzN/E35RQ3aY2niYUFxWqNnYB3X19fXNzc1m\nZmZstvYDxwx0TaBDCECfe/KgqrX+r7W2F2zwPrfzJkIoP1G0KMi3rak9N+4xQkjPmGs1ypzM\nKIG2+CY869FDNDoFwxWWJuUXCz/VGWZnPQwhDBlZ6MuHDLsh3uhtfNBpZLMY7zyH6vm0W+a0\nd8lyr0ijgjQ4QSH7Z+6lUiEvjEXKDunNXRjPVHo3VHo3FCGEMAzT5Xf/KxkmI/hvXdAghgFD\n2VTB4AuJHgy/vay17a/7A1zaiBgMjZIwQDCYDIEmA5nzk0RJl/7p89i4CguSRfJ2xWif4QXJ\nooJkEUIIw7CZgRPMhhv1frh9BsMwX1/yh60OxteD6thsdr3SCW/Td+FyyY6FBEKh0N/fPzY2\nVrWODo7jpaWlLi4uzs7O5Mamte9Wni/J1LQjpC+TblD81oorkdAaQwjhSpR+pDqD5cnleqKI\n7zWN4b1DCxw9uruwTR+pTJDmxGj/hlBoWPHm+LNhv69FqEXrL5kwXoEmaH12H4IOIaCUC1/F\n1pU3dv38xtEU1c8CK8O1J17rx6BAr3lpqu1LUzXrvyGEEFqhWgqtfMP7M1eNt5lHFIDAQbrI\npqIiQ1Ge0fPvwVvEeItYu3OVtRqPKhwgmo/NZQ0bz1v4X/UPlY3lzf/11Z3wNsdnI1mB9ZtO\nqy4r5X8tJ6hU/LOuIMbAMMYg69hgGCYUwjCQXvCgxKlONEzjLV+pwtvbm8lkXrx4USwWt7W1\npaam+vr6Tpo0ic8ffE+LCIbmfI2eGSGEEI4qS5Tyjg6ugFUvNymuGcEVMGSNCnkb0jMx4vI1\nfkWm0YTDPjJxkYv9+GEancLApToKSTvLAiFUfOWksZ7E/VUnSztzhBCno0SqY6NpDMNdLDQ9\npX+Q/78HgF60/uQS1c+Xvrnz57E0hBCTxRjn57hwE73GvYCnqjB938FlkHYD/8Ee+zqDo+WL\nSkV1Tvu9/2IsNmLqYPpCtuf7GENHi+9h8Afra3a9N840/9e39UIgK+Ag8YmyqbI5fAZDYM/x\nWkdubNqRdyjKH2nQsWfpMr2XjiF+Tv7jYWlONYYhpi4zL7H0lU+nOLj/dcPU2iB90tDdzc0Z\nDGwYjLwYzCJC41ob2xdvm9bpBefNn9NKMitWfkujXVvZbLavr++YMWOuXLlSWVn52muvDRs2\njMHQfvMq0i372k/TU+LO3L9yMGHKF/aRMRfzC1DRAz/O9KJp06ZJs3n3o0o2//lWX8TZ18bN\n1njji6qbp1nR7xi+F82ymfxL4gWEkKufrdu0lxovbWxPOGS6s5aho00DOgBBhxBQ06Vv7tz6\nJcNricvNn9OmvDku/tx9hBD0CYHblm/IDqEXMIxt2BNXa3FiR15UW+QGXsC37fEH2VM+bo87\nIM+N1Ft+CWNptnTToMYUOPLfu9n8X1+lcjVCOEPe0nxkGsPElv/Wb4g1KJcUbqpt3bXgRA+/\nRN6uQAid/+qmdqfzDDnfpNF3MioFuPk7hb5xRtGh+PcX/6wUEvNj6sW9dz448i8SAyOLiYmJ\npaUlk8m0sLAY1L1B7XgsHOXmP5Kjp+vp6/brN5ceVVevWbvW1taW+S9mwIdtZEfXf3CrmTcf\nzfQ5NCN3zHZJfT0yRHfu3OHk7hYUXYgWB72pySbGAxx1/hIAVIje4NqfF+clliKEjIV8Yo0Z\nBH1CQGMdeVEtx/9FrCLTHn8Q4xiq1pgZpH1CpaREene/BifguGq3bqbt1I6sswZyuWF+CW4w\nBDMY1nJ5PUIIYQyMqcETX4xnyp2+VYMY+gCbq6PFtoHleeKSzIpR3rZGQn5KVA6bz3KZ7FiR\nX1ucXj5qiq2RULPRcbpcijwmp4a8xFLVSODue+XTKRd2xdaVN7a2yDqaFaeDb8Sfzw5YNwkh\nRMzA14j9hGEs3cG6LCdg6TBZOkyEkKGh4TAHYdXwZqFQSKyzyjem0eRSob2p1ert1w90TMe3\nl3NnIoReav7NpPHO2YL/vHn0w0E3rv45oEMIBrQHt4vz7pVqdEpLgzTpYo7b3JFp1/JKMisQ\nQll/FtZXt7hMs4s9nt7WLOMZaPYSwGmitbO3jUanADAAtZ5/hztvL3viBwghhVyJK3GMb84P\nvNF8ZLos/SR7wttkB6gxxZOEdmJFHG0xEUI4UtY/kSUd0e4bMKYu6R1CniHnja80nvAVsT8+\nYN1kp8nDEUKPsgtMrPnElyScz0YITVw0utfjBP3m8HsX25raX3zc02THFhM/3CrOQAj99rXG\nW1wSdse/bzhksE66A+rM7PWdFpG/mlrPtZx6o+PRVQ1OwJUIoREdHTajlJhSOXNYJELIDV3v\nwNmLnb5Xhh6uZ7IQhiGkQbeQ9+oRXZdFGgbeH6BDCAa0giRR9H+TtDjx3m8PVD/nxj/JjX9C\n/Hz3lMYbTDFZDOgQAgow3FiM/n73JaloqsmudByLGPwhBusyEDYoH+QzhrjoOM7u/vE4rkSq\n1VYVMkVFllIuxRDC+OZMgcNfjTqGafSyFBu0cyn91z59Mi10BSnAf+0kuewpm+k9laSyKet6\ngRLHiX8q5crG2laEI74xl8X+q2bAEOboaTXUUdD9GDj6g3IANqAwRVU2Lmvt9uE4UsiQqqf0\n96hhDCFdZjtCCHW04x0IR5oNKlFWZiPoEAKgqUmLXUZOtNb6dLlMcT08edZ77p1W1dOIqaZr\ncwEwIN0999Bt7kiuARsh9KRplEBnOPF59q0nplaGFvampEanDaZwNP+da1qcqGyqbD4yjWE7\npa6sWDbU06LqOlPgwHs1HGG0mylEsPLWNxkCFR11xPySLGuVd/NgXInL2/8ZXyqXKRCOEEJt\nze068n8eFWXfKcyJ12Bt4fELRrJ5UKjAAMIcMlpZ3+1BZzhql+vgOI4rlRiGMbEOFuOva0qm\nZCtxBoYQhjEYLIaOrgadKYZwgD5xgw4hGNDMhhv1cCOs0b4jeisYAAa1pD8e3j2TtfbnxVwD\n9i3R6/58Z4RQwoXsk1uvr/nx1cHYIZTJZJWVGu8yjLXW8C7+W2lg1eT9bccvAZJ2pl7Ar3oX\n/93cvFTq+7WmfUIdHR0LiwG6jHj3GVjp6hnqkh0F6DUtDVK5VOM5hAghpRxXynGMiSEcV8iV\neBvO0PlrOJxc3t1Xjn8d39HdHikA/UNv6a+anlJWVvbtt98uGVJkXXXtarb/NMfrdwt9pjvd\niB+2Wj7Uc/HixX0RJymgQwgAALTwnx8Whq36bd8bZ1T7cCZcyD4ZdH353jmOntq/hydRS0tL\nXFycpmdNzA8WswwzjFbKk9PGyuX19fUlDyr0rD91z/+yrJFdYjZHo28zMDCYN49GK/KDQSH4\n+nL87yGg3Rd/6kHU9ylvfjutNLum5nHDzPdf/uH9KyO9rF7ZPFmLxTOMjHr0MLdXVFRUdHR0\naH16dXW1WCwuLS1lsbS/WxYKhbq68LRlsDI3N19qUTKs4tqZvA8Yus0IoRLbOTGPMF/8+3Jb\nLXZFHrigQwjAIFBTU1NeXq716VVVVY8fP+ZwOD1pGk1NTYcN02xHV9BHHt+vvPh/d7Q5E8Nq\nyxqDphzBlfj5kNiGqmYLR9O4s/fjzt7X9JuGOgoWb/XVJobew+Vyx4wZo+lZMuu9SkMbF4YO\nQkivwNB2mL1yzBiExtSPdjNmMA05mr0pZbNhohQYcIyNNV4CJP7c/eiw1A/CFzp7DRcXxunq\ntjmOs13/679D3zhz64fsQbpAd2pqalNTk9anV1RUtLa2JiQk9GTbiTlz5kCHcPBqz/pjWOW1\no5kreX7WjLgHCCEGX5EzYiIzXz6VuQn5v48YFOlJUeTPAIDaamtrc3JytD5dJpPp6elJJJKe\nfIm9vT10CAeIFolUi1XgO5G1dSCEyh+JNdrTXEXeTv54MA6HM2rUKM3P++eUdDEHE5iO/etL\ntPgqACjCaIj+mh8XObj/TyVvYW+6/uS/H2dpPDB7gHBycpLJZFqfrsXzpq44nMG3ow9QKZeO\nSWj57tX9Xrn5ObnRSQghHR0d73nuQ/lLLuyPeBenzg6V0CEEYBCwsbExNyd5MUNo1QYOgyF6\nngtf6v7xZbk1deWNqn/KpPIOqRwhxDNkY9hfI8EwBjbS01qH091GwdxmsK5CfnzjNY9XRhGr\nVcXUrB/vPhIhhOPo8r67whEm7q9AtxDQ0agpNqqfGUyM8fcYUaGdidDOhJyYesze3p7sEAaE\nqqqq9nYttyEhTieGzurp6Wn9Jebm5qTfRdQ8qW9r1CwPHEN93//MQzh62X6iyDCjptHcabSL\no9ABITQ36N+ihzWaxmA6zFDPaCDeTUGHEIBBgMPhkF6TgoGjsapFfWMVrbU2/E/TmHrlUffP\ntR9vOec/nj2Pof8NczILC/x99ZF/OU36a+YkjqPzX8YkXXq4/uQScmMDYCDwXf5ye5v28wvA\nQJOVlSUWazMShCAWi1taWpKTk3V0NNhfoRNfX1+hUKj16b3iwlexmTcKevAF/AfoAxR77w90\nT+uveHvfvAnznXsQQ1+BDiEAAAwyI14euvnSW1qcmBVTeO1gov+6SXdPZ018dfT9PwukrR1L\nv5jJ1dd4igubp/2dAbmmrXTDcXTo3d9X//cV9Hdv8N7vOWuPL9ZomzUAqIpnyOEZwiNI6nBw\ncLC0tCQ3Bn19fXIDQAiNnGytZ6J9wRaLxQ0NDZaWlj15QG9qZaD1uX2Kah1CpVJ58eLFqKio\nmpoagUAwa9ashQsX9mQ2MAAADDQcvq716CGanpVwITvqUOI7B/zHzXZI/P2B0M5k+jtLvl95\n4fc9t9YeX8wdhLtI1zyuP7ntunbnGgn5B1ac1+XolOeJpS0y65eG/L7nthbfYyzUX7bHT7sY\nAACgH9jY2JAdwoDAsm1h6Ui0Pl1ZXtUuFjPsOSweT+svYZqQP/0CBWA+AAAgAElEQVT+qajW\nIfzhhx8iIiImTZo0f/78nJyc48ePi8Xi999/n+y4AACAZH8eTXk71H/cbAfVJxw93Q9/fPW/\nqy/djylyXzAQB7E8X0t9TxfXaW/9a8GJkswK7b7BzJr8tfUBAAC8kJGRkVyufX+sV4a8Dtjp\nP5TqEJaWlkZGRk6dOnXDhg0IoXnz5uno6Fy9enXOnDnDhw8nOzoAACDT1isrun7I0dNde3yw\nbq3L1CF/9AeDRX4MAAAAXsjFxYXsEAYuSnUI79y5g+N4QECA6pP58+fHxMTcvn37rbe0mW8D\nAACU5PHKqGGjSF63tuf4xlyvf7tqd25RWnl1iYTN0+Hydesqmkd52xgJ+Vp8j4FA+2X3AAAA\ngIGAUh3CgoICJpNpZ2en+sTW1lZXV7ewsJDEqAAAYKDx+2BQLhDaibGF/htfzdL0LBxH53bG\n1Fc1f3ru9XNf3hw/b6RCrrz0zd3V/33FaTKMJQEAAEA7lOoQ1tXVGRoaMplM1ScYhhkbG9fW\n1qofdu/evebmZuLn6urqfg0RAAAAqX7/+lbyHw8/PrnE0smM+GTaSjelEj/03sU1Py2yH0/y\nWnwAAABAP6NUh7C9vb3rHim6urqdtuMMDQ0tKPhrH5KRI0fCvqUAAEAfLF3mul9eU/UGCTPe\nGc/R021rlJIVFQAAAEAWSnUI2Wx2W1tbpw9lMlmnJX1ef/11ieSvZWdbW1srKyv7KT4AAABk\nm/+xl+pnDEMYAyN+1no6IgAAADCoUapDaGJi8vjxY4VCoRo1iuO4RCIZPXq0+mHz589X/Zyc\nnBwREdGvUQIAABgY/rVxqsDKkOwoAAAAADJRar1sOzs7hUJRVFSk+qS4uFgmk6kvMwMAAAAQ\nbMda6Jtqv8UwAAAAQAGU6hB6e3tjGHb58mXVJ5cvX8YwzNvbm8SoAAAAAAAAAGBgotSQUWtr\n67lz50ZGRnZ0dIwePTonJ+fOnTt+fn42NjZkhwYAAAAAAAAAAw6lOoQIocDAQFNT0+jo6MTE\nRFNT07feemvhwoVkBwUAAAAAAAAAAxHVOoQMBmPRokWLFi0iOxAAAAAAAAAAGOgoNYcQAAAA\nAAAAAED3YTiOkx0DmZKTk7dt2zZixAiyA+llLS0tTU1NxsbGbDab7FgAAAAMaFVVVSwWy9TU\nlOxAAAAA9LeMjAy6dwjb29vFYjHZUfS+jo6Ojo4ONput2pIRAAAAeKrW1lYGg8HhcMgOBAAA\nAAno3iEEAAAAAAAAANqCOYQAAAAAAAAAQFPQIQQAAAAAAAAAmoIOIQAAAAAAAADQFHQIAQAA\nAAAAAICmoEMIAAAAAAAAADQFHUIAAAAAAAAAoCnoEAIAAAAAAAD+h1wub2lpITsK0B+gQwgA\nAAAAAAD4h0Kh2L1799atW5ubm8mOBfQ56BACAAAAAAAA/oFhGJfLLSws3LZtG/QJKQ86hFST\nm5uL4zjxs0gk2r59e2NjI7khkQLyAEBXcF0QIA9AHZQHAuQBqGMwGOvXr586dSr0CemA+fnn\nn5MdA+g1aWlpwcHB5eXlnp6eZWVlQUFBxcXFbW1tEyZMIDu0fgV5AKAruC4IkAegDsoDAfIA\nusIwzNPTs6KiIj09PSMjw8vLS1dXl+ygQJ9gkR0A6E0ODg7Dhw+PjY2VSqWPHj2SSCSurq5v\nv/022XH1N8hDJ2Kx+Pjx43l5eebm5gEBAbRt4GmeB7guCJCHTlpaWi5cuJCcnNze3u7g4LB4\n8WIbGxuyg+o/UB4IkIeuaN5kEIj3hAihW7dubdu2befOnXw+n+ygyEHtqhJTDQ8A1NDU1LR1\n69bi4mKEkKur67Zt29hsNtlBkQDyoFJfX79+/fra2lrVJ3PmzHnvvfcYDHqNGIc8ILgu/gZ5\nUCkvLw8ODq6urkYIcbnctrY2Fov10Ucf+fj4kB1a/4HyQIA8qIMmAyEkkUiOHz+emZmJYVhN\nTQ1CyM7Ojp59QspXlTQq1jTR0tJSX19P/GxsbEzbl/uQB5Xjx4/X1tba2dkFBwdv2LBBIBBc\nvXo1NDSUbg+DIA8Irou/QR4IUql0x44d1dXVdnZ2Bw4cOHPmzOzZs+Vy+b59+0pLS8mOrv9A\neSBAHtRBkyEWiz/++OM///yTwWD4+PgsWrTI3NycnvMJ6VBVwhxCqtHV1c3OzhYIBHw+PyMj\no7Ky0tPTE8MwsuPqb5AHlbCwMAMDg7179w4fPtzGxsbHxyctLS0zM5NuOYE8ILgu/gZ5IFy4\ncCE+Pt7W1nb37t0CgeDatWtnzpxBCK1atcrd3Z3s6PoPlAcC5EEdNBn79+/Py8tzcnLas2eP\nm5vbmDFj/Pz8ysrKMjMz6TafkA5VJXQIKUUikUil0hkzZvj4+EyZMiUjIyM9Pb1T5ZWYmGhg\nYEDtcSCQB3W//fabv7//mDFjiH9yOJzJkyfTrWFDkAe4Lv4GeVA5duxYXV3dF198IRAIoqKi\nDh06hOP4qlWr5s+fjxCKjo62tLRksSi+1gCUBwLkoROaNxkKhWL//v1KpXLHjh2mpqbEh0wm\nc+LEiSkpKYWFhbTqE9KhqoQOIUXU1dXt37//4MGDd+/enTRpkqGhIZvNnjx5sqpOd3d3ZzAY\nN2/e3Lt3b0pKyvTp0wd72X0qyANBIpH88MMPv/zyS0pKSmNj4+jRo0eOHKn6LX0aNsgDAa4L\nAuShk7Nnz/L5/GXLlkVHR4eFhanf4jQ1NQUHB+fl5VFmhkxXUB4IkAcVaDJU5HL56dOnWSzW\nu+++q/45g8HgcDgJCQkSiYQ+fUI6VJXQIaSCioqKjRs35uXlGRgY+Pv729nZ8Xg8hJB6nZ6e\nnp6dnX369Gkcx+fOnTt27Fiyo+59kAeCRCL5+OOPs7OzGxoaysvL29raGhoaZs6cqT4VXr1h\ns7W1tbKyIjHgPgJ5IMB1QYA8dJWUlFRRUaGrq3vkyBH1WxyE0JEjR/Lz893d3V9++WVyg+wj\nUB4IkAcVaDLUMZnM2NjYxsbGiRMnGhkZqf+qoaHh5s2bEyZMyM7OFgqF9vb2ZAXZb+hQVUKH\ncNCTyWRbtmypqqpycnIKCQlxc3MjanMCm8329vbOz8/PyckpKSlhMBgrVqxYvHgxiQH3EciD\nyuHDh3NyckaMGPHhhx+OGzcuLy+vvLy8trbW3d1d/XEm0bAJhUJfX18So+07kAcE18XfIA9P\npVAo4uPj09PTEULqtzhRUVGnT5/mcDgbNmxQTxRlQHkgQB7UQZPRiVwuz8jIKC0t9fHxUe8V\nX7p0KT8///PPPx89evRgfy3WTXSoKmHbiUHv6tWrhw4dEgqFoaGhquKYmZmZmZkpEAhmz57N\nZDJxHI+LiystLZ04cSKVdk1RB3lACInFYlNT0xUrVujo6Bw4cIDIQ11dXVBQUFlZ2YwZM9as\nWUPhIS4qkAcVuC4IkAeCUqnEcZzJZKr+uWnTptzcXEtLy6+++srExEQqlZ47d+78+fM4jn/6\n6afe3t7kBtxHoDwQIA8EaDKeSqFQfPbZZ/n5+W5ubmvXriXeE169evXw4cOGhoY//vijqiah\nHhpWldQcBU4rjx49QgjNmzePqMJEIlFYWFh2djaTyVQoFHFxcV9++SWGYV5eXmRH2rcgD2Vl\nZVu2bHFzc2MymX5+fqrW3cTEJCQkZMuWLTdu3EAIUb5hgzyog+uCAHkQi8VHjx5NTk7u6OgY\nNmyYn5/fvHnzGAxGUFDQ9u3bi4qK3n77bXNz87q6OplMhmHYypUrKXCL8yxQHgiQBwRNhhri\nFZHqz2QymcHBwdu3b09NTV21apWdnZ1EIqmsrEQILVu2jKq9QdpWlTBkdNATiUSZmZlMJnPE\niBGRkZH79u0zMTEJCgpasWLF3bt3i4qKxo8fr1ohisIgDwqF4vbt25mZma2trRMmTFCfCs/l\ncidPnpycnJyZmSkWizsNgKEYyIM6uC4INM+DRCL55JNPHj16pFAoEEKNjY1paWlZWVkeHh4G\nBgY+Pj44jotEotraWqVS6erq+vHHH1PjFudZaF4eVCAPCJoMhBBCNTU13377bWho6MWLF2tq\napydnYmlYjgcjo+Pj0wmKywsrKysbG5u5vF4q1atmj17Ntkh9wk6V5UwZHTQk0ql27dvf/jw\nIUJIX1//jTfemDNnDoZhOI5/8MEHZWVle/bscXJyIjvMPgd5QAhJJJItW7aUlZXZ2dnt3bu3\n0wM81W+3bt1KmZ1zngryoALXBYHmefj2229jY2OdnJxWr15tY2OTn5//ww8/5ObmOjo6hoSE\nEHd+OI43NTVxuVwdHR2y4+1zNC8PKpAHAs2bDGI1ndraWtUnQqHwiy++EAqFqk+kUmlxcTGO\n4yNGjOBwOGSE2R/oXFVCh3CQaWlpuXDhQnJycnt7u4ODw+LFi21sbBQKRWpqqkKhGDNmjGq0\nw+XLl8PDw42NjY8dO0a9N/uQh2dRNV1PnfYgkUji4+PnzZtHVnj9hp55gOtCpWsqrKysaJgH\nYnLUsmXLOBzOgQMHuFwu8XlHR8eOHTuysrIWLVq0bNkycoPsB1AeCJCHZ6Fnk0H4/vvvo6Oj\nHRwcVq9ezefzz549e+PGDYFAEBISot4npDaoKqFDOJiUl5cHBwdXV1cjhLhcbltbG4vF+uij\njzqt8oTj+IULF06cOEGZqa6dQB5UntoBeH7DRkmQBwTXhZrupIIOeVBNjkpLS5s1a9brr7+u\n/luxWBwYGKirq3vixAlq7yQG5YEAeSA8tb1AL+oTUhLRCwoMDFQqlQcOHODz+cTnp06dOnXq\nFH36hFBVIphDOIhIpdJNmzZVVVXZ2dnt2LEjMDCwrq4uPz//3r17Xl5ehoaGxGHp6enff//9\n9evXMQxbsWKFn58fuWH3OsiDSnl5+caNG5OTkxsaGhQKRWFh4fXr14cMGeLs7EyTaQ8EyAOC\n60JNd1JBhzwgtclRbW1to0ePdnFxUf8tj8e7d+9eTU2Nu7s7heeJQXkgQB4Iz2ovbGxs6DNj\nkFBWVrZx48bS0tKqqqoZM2a4ubmpfkXUFUlJSQkJCR4eHqqOIlVBVYkQYrz4EDAwXLp0qaKi\nwtbWdteuXTY2NteuXYuOjkYIvfPOO6qtUevr6w8dOnT//n2hULhjx46FCxeSGnKfgDwQpFLp\njh07qqur7ezsDhw4cObMmdmzZ8vl8n379pWWlhobG4eEhFhaWt64ceO7776j8EAAyAMBrguV\nF6aCJnlACKnKP0Lo9u3bcrlc/bc4jjc2NiKElEolOfH1CygPBMgDelF7gdQuGco3GQghHo/H\n4/Fu3LhRXV2tGiGpsnTp0qVLl4rF4i1bthAri1IYVJUIIYSDQWL9+vUBAQHEpN5r167Nnz8/\nICDg0qVLxG+joqLa2tpwHK+pqYmLiyN2UKEkyAPh9OnTAQEBH330EfH3Xr16tVMqcByvq6t7\n//33AwICEhMTyYu0b0EeCHBdqHQnFXTIg4qq/H/zzTcKhUL1eUREREBAwJIlS6RSKYnh9TUo\nDwTIA9699gKnR5NBUP2la9eulcvlXQ84efJkQEDAxYsX+z+2/kfzqhKGjA4aZ8+e5fP5y5Yt\ni46ODgsLw3F81apV8+fPRwg1NTUFBwfn5eX5+PjweDwrKysKj3OAPBCOHTtWV1f3xRdfCASC\nqKioQ4cOqaciOjra0tJSX19/8uTJQ4YM8fX1JTvevgJ5IMB1odKdVMydO5fCeVAqlUqlksH4\nawSQaiDc/fv309PTeTxeQ0PDH3/8cerUKYTQqlWrqL2MJJQHAuQBda+9YLFYxCVD7SaDoKoc\nnjx5Ultb23WUrIuLi4uLy5QpU8iKsO90qicR7atK2Jh+QBOJRDKZbMSIEQghoVCYn59/6dKl\nY8eOqVdhCKGffvpJJpOpBoZRkioVNM+DSkNDg7m5uY2NzVNb9yNHjsTHx3/++efGxsZUXRiN\nQPM8wHVBgKqS8KwtlYkBUVu2bHn06NGePXuIgw0MDJYvXz5z5kxyY+4LUB4IkIdOutleIIQo\n2WTgOH7//v3S0tIhQ4aMGzeOWD9WVTncuHEDIdR1NZ3Ro0eTE26feVY9idSyQZOqUh28IRy4\n6uvrN23adP36dXd3d0NDQ4VCER8fn56ejhBSr8qjoqJOnz7N4XA2bNigWjOaYtRToaenR9s8\nqEtKSqqoqNDV1T1y5Ein1v3IkSP5+fnu7u4vv/wyuUH2AzrnAa4LAlSVhOdsqcxms1UPv5ua\nmjw8PIKCgt58800HBweyo+59UB4IkIeu6NxeVFdXb9++/fz586mpqbdu3bpz546joyOxRAqt\nVtN5fj2J1LJB+aqyE1hUZuA6ceKEWCy2sbExNzdHCM2YMYN4W21paenl5YUQkkqlJ06cCAsL\nQwitWbNGIBCQG3DfUU8FrfKQm5uL/z2pXSQSbd++nZjZjBCaOnWqVCo9evRop1YtKirq+vXr\nHA5nwYIF5ATdByAPT0Xb66ITqCoJP/74Y21trZOT0/79+y9durR3714nJ6ecnJwdO3bIZDKk\ntnBCYmLib7/9RtX95aA8EGibB2gvumpoaNi0aVN+fr6xsfGiRYsCAgKqqqqCgoLS0tKIA+iz\nms4L60lEm6qyE3hDOBCJxWIulxsWFmZoaLhr1y4Oh4MQwjDM3d09MzPzyZMnf/zxR0xMzK+/\n/nr//n0Mw1auXDl79myyo+4TXVNBnzykpaUFBweXl5d7enqWlZUFBQUVFxe3tbVNmDABIWRr\na5uRkSEWiy0tLVeuXMnlcqVS6alTp37++WeE0Pr1652dncn+C3oH5KErOl8X6qCqJBB5OHTo\nkJGR0Z49e8zMzDAMMzU19fHxyc3NzcnJUSqVY8aMQVR/FQDlgUDnPEB78VS7d+8uLCx0dnbe\ntWuXu7t7dXV1cnKyXC6Pj4+3t7e3sLBA/1s52NvbE0tuUkn360lE9aryqaBDOOCo7wzj5+en\nKp0IIQ6H4+Pjg+O4SCSqra1VKpWurq4ff/wxJbeORc9OBU3ywOfz09LS0tPTS0pKzp49K5FI\nXF1d161bx2KxEG1adwR56ILm14UKVJWETpuJqQ94YzKZrq6uERERRUVFCxYsIJ5zU/VGB8oD\ngeZ5oHl7IZfLOy2UghDKzc09fvy4QCDYtWuXgYHBtWvXDh8+jOP4tGnTCgoKuvYJKbmajqb1\nJKJuVfkssKjMgKPaGQYh1PU9NYfDWbZs2VtvvdXU1MTlcnV0dMiIsZ88JxV0yIO+vv7OnTu3\nbt167949hJCrq+u2bduIMe4EQ0PD3bt3nz179vr165WVlRiGubq6vvHGGxR7xgl56ITm14UK\nVJUE9Tx0JRAIhg8fXlRUVFJS4ujoSHyoWjghPj5+0aJFQ4cO7cd4+wqUBwLN80Dn9kIul+/e\nvRshtHnzZvX/9ffv30cIBQYG6uvrJyQkqK+t2t7eHhcXR9QGRB+JkqvpIK3qSUTRqvJZYA7h\ngKO+P2ZMTAwx7bUTDMMMDAyoV5V38sJUUD4PLS0t9fX1xM/Gxsa6urqdDiBa9+PHj//yyy/n\nz5//8ssvKdCqdQV5UAfXBQGqSoJ2WyoTZ3355ZeUucWB8kCAPNC2vZDL5U1NTUlJSbt27VL/\n//7qq6/Onz/f3d29sbHxwIEDOI4vXbqUmD9paWlpbGysUChCQkKovfu81lvPU6+qfBYYMjoQ\nqd5Ti0SimpoaDw8Par+nfg6ap0JXVzc7O1sgEPD5/IyMjMrKSk9Pz64ZwDCMzWZTeN4z5KET\nml8XKpAHgioP5eXlVVVV6nm4cuXKnTt3eDzeypUriVFz6meZmJiQEW9fgfJAoHkeaNtesFgs\nb2/v7OzszMzM4uLiyZMnE2NHMQx7+eWXGQxGZGRkcnLyuHHj1qxZQ5zyyy+/cDic1atXDx06\n1NPTk9Tw+5x29SSiYlX5VNAhHKBUBTcrK4sOY5efg7apkEgkUql0xowZPj4+U6ZMycjISE9P\n79S2JSYmGhgYqI+HoR7Iw1PR9rroBPJAoPmWyipQHgi0zQPN24tn9QkJMTExhYWFr732GrE1\nZWRkZFRUlJOT05IlS6i32eBTQT35HNAhHBDkcnlMTMzly5eTkpIaGxuHDRvGYrHoNp8VPSMP\niH5Te+vq6vbv33/w4MG7d+9OmjTJ0NCQzWZPnjxZ1ba5u7szGIybN2/u3bs3JSVl+vTpXZ9p\nUQDkgQDXBQHyQGhpaTl9+vQPP/xw8eLF3NxcS0tLIyMjpJaH4uLiuLi4mJiYvLw8AwODd999\nlwKrZTwVNJ0EyAOC9uJvz+kTNjY2JiYmSiQSMzOziIiIU6dOYRi2evVqYmMS6nlqVUnDerKb\nMApvNjJYVFRUfPnll6WlpapPzM3NP/3005EjRyKEJBLJli1bysrKZsyYsWbNGgpX6M/PA6JN\nKioqKrZs2VJbW2toaDh//nxfX1/V9lBNTU3btm0rKipydHQcOnRobGwsQmjp0qVLly4lM+K+\nAXkgwHVBgDwQysvLg4ODq6urEUJcLretrY3FYn300Uc+Pj7EAao8eHh4LF++XCgUUvKuF0HT\n+TfIA4L2ogupVLp9+/aHDx+6u7ur1phRKBTbt2/PyspSHbZixYqFCxeSF2Yfen5VSZ96svvg\nDSHJiN1CKyoqLCwsFi1a5O7u3t7eXlxcfOvWrZdeesnc3JzyO8MQXpgHRINNchBCMplsy5Yt\nVVVVTk5OISEhbm5uPB5P9Vs2m+3t7Z2fn5+Tk1NSUsJgMFasWLF48WISA+4jkAcCXBcEyANB\nKpVu2rSpqqrKzs5ux44dgYGBdXV1+fn59+7d8/LyMjQ0RGp5ePjwYXt7+1NnT1EANJ0EyAOC\n9uJpnvqekMFgeHl5sVisjo6OESNGBAYGTps2jexI+8QLq0qa1JOawUF/6ejoCAsLq6qqUv8w\nLCwsICBgw4YNbW1tqg/PnTsXEBDwxhtvNDY2Ep/U1dVFRET0a7h9pid5wKmViq6uXLkSEBAQ\nGBjY0tKi+jAjI+Pnn3+OjIyUy+U4jiuVyjt37pw8ebK4uJi0QPsYDfMA1wUB8vAcp0+fDggI\n+Oijj4g8XL16df78+QEBAZcuXep0ZF1d3fvvvx8QELB//36lUklGsL0Gmk4C5OFZaNhedFNb\nW9tnn30WEBCwc+dOIg800c2qkkr1ZM/BG8J+olQq9+zZc/PmzQcPHsyePVv1KCI0NFQmkwUF\nBamP4R41alRZWVleXh6DwSB2leVyuepbowxePcwDolAqnioyMrK4uHjJkiUuLi4IIZFItHv3\n7jNnzjx69Cg5OTknJ2fatGkYhllbW7u4uBAThyiJbnmA64IAeXi+Y8eO1dXVffHFFwKBICoq\nSn0/MYRQdHS0paUlxeZVQtNJgDw8B93ai2dRKpWddqV//hozFNbNqpIy9WSvoEXJGAguXbqU\nkJDA5/PVB/HjON7c3IwQsra27nT83LlzEUJpaWn9HGdfgzx0JRKJCgoKiJ+HDRuGEMrMzCwt\nLT158uS6detwHA8NDT158qRQKLx//35+fj6pwfYhOucBrgsC5OH5GhoazM3NbWxsoqOjw8LC\n1G9xmpqajhw5QmxLTVDtuxUfH19RUUFe1D0CRYIAeehK1WTQrb1QKBT4/y7/IRaLv/7669de\ne23hwoX/+c9/Ll++rNpPj8Ph7Nixw9nZuev+hBTW/aqSGvVkr4AOYT/5888/EULr1q0bMWKE\nSCS6d+8eQgjDMAsLC4RQ19qKw+EghFpbW/s90r4FeehEKpUGBQX9/vvvxD/9/f2dnZ1TUlL+\n85//REZGvv322yEhISNGjOBwOMSk8K67plIDzfMA1wUB8kDIzc1V3fCJRKLt27cTmyYLhcLG\nxsZLly4dPHhQ/RYHIfTTTz/JZDIrKyv176HAlspQJAiQh07UmwxatRdyuXzXrl3fffedqoqQ\nSCSffvppXFycTCbDcby0tDQ8PHzLli1NTU3EAep9wvj4ePJi72XPqieRhlUlBerJXgEdwn5C\nTHHW0dERiURBQUFff/01sdDTrFmzEEJHjx6VyWTqx9+6dQshZGtrS0awfQjy0AmHwxEIBAkJ\nCQ0NDcQ/Q0JCtm7dunnz5vDw8Llz5xIPgyMiIsrKyoyNjR0cHMgOuU/QPA9wXRAgDwihtLS0\nzZs379u3D8dxIg/p6em//vorQmjq1KlSqfTo0aOdbnGioqKuX7/O4XAWLFjQ6duMjY3t7e37\n+2/oPVAkCJCHTtSbDFq1Fy0tLWVlZTdu3FD1CX/88cfa2lonJ6f9+/dfunRp7969Tk5OOTk5\nO3bsUJUKok/40UcfeXt7kxp+r3lOPYk0ryoHez3ZK2AOYT8xNja+fft2SkpKbGysRCJxcXFZ\nuHAhi8VycHBIS0srKCh48OCBq6urnp4ejuORkZEnT57EMGzNmjWqpZOpAfLQFZvNjouL09fX\nHzVqFEKIwWBYWlpaWVnp6OgghHAcv3Dhwk8//YQQWrNmjY2NDanB9iE65wGuCwLkASHE5/PT\n0tLS09NLSkrOnj0rkUhcXV3XrVvHYrFsbW0zMjLEYrGlpeXKlSu5XK5UKj116tTPP/+MEFq/\nfr2zszPZ4fcyKBIEyENX6k0GfdoLDofTadrboUOHjIyM9uzZY2ZmhmGYqampj49Pbm5uTk6O\nUqlUza9msVjEfvTU8Jx6EiFEw6qy52Afwv5z/Pjx8+fPI4ScnJx27tzJZrOJzxsaGrZv315U\nVMRgMKytrRsaGiQSCUJo5cqV//rXv8iMuG9AHjqRy+XvvPOOjo5OeHh4pwnN6enp58+fv3//\nPoZhy5cvp+p+QQSa5wGuCwLkASHU1NS0devW4uJihJCrq+u2bduemgdzc/O6ujqZTIZh2IoV\nK6iXBwIUCQLkoZNnNRl0aC/Ut5dMS0ubNWvW66+/rn6AWCwODAzU1dU9ceKErq4uWXH2qefU\nk4iWVWUPwRvCflJeXh4eHi6VShFC7e3t48ePNzY2Jn7F4c+wRe4AACAASURBVHB8fHxkMllx\ncXFtba1UKjUxMfnwww9nz55Nash9AvLQFYPBkEqliYmJxLa5qs/r6+t37dpVVFQkFAo/++wz\nX19fEoPsB3TOA1wXBMgDQSKRREREEHlwcnLy8vJS3e8SeSBGSdXW1iqVSldX148//pgyI8E6\ngSJBgDx09dQmgw7tBfrfZYTb2tpGjx5NrLCqwuPx7t27V1NT4+7ubmpqSlacfeo59SSiX1XZ\nc/CGsJ+0trYGBwdzOJyxY8ceP35cX19/586dnV7fS6XS0tJSHR2d4cOHU3XpW8iDSCQqLS31\n8PBQX/25vr7+7bffHjdu3LZt29QPFovFeXl5EydOhDxQNQ8EuC4IkAeCTCYLCQnp6OhoaWkp\nKiry8fFZv359pz8Wx/GmpiYul0uMkaMqKBIEyEP3mwzKtxcqqveEQ4cO/f7774nRkgQcx995\n5x2xWLxnzx4nJycSg+w73aknEW2qyp6DN4T9REdHx8vLy8fHx9XVlXhyExcXN27cONVDPoQQ\ni8UyNTU1MjKicC1G8zzU19d/+umn169fj4mJkcvlVlZWxFgODodTXl4eHx8/ffp0PT091fE8\nHs/KygryQNU8qND8ulCBPCCEJBKJVCqdMWOGj4/PlClTMjIy0tPTKysrPT09VX9yYmKigYGB\ngYEBsYgihUGRINA8Dxo1GdRuL8rLy5lMJtG3Ub0nLC8vr6qq8vDwUP3VV65cuXPnDo/HW7ly\npXpHkTK6X09yOBw2m035qrLnoEPYf3R0dIjL0snJ6VkVOoUR76IxDKNzHjgczoQJEzAMIzbM\njYiIqKmpEQqFhoaGZmZmUVFRbDZbNQWcwiAPXdH5ulBH5zzU1dXt37//4MGDd+/enTRpkqGh\nIZvNnjx5supex93dncFg3Lx5c+/evSkpKdOnT6fkrV4ndC4S6uicB2gyCNXV1Rs3bkxKSvLy\n8urUJ7x//356ejqPx2toaPjjjz9OnTqFEFq1ahX1Xg9CPdlHoENIDlpV6DU1Nd9++21oaOjF\nixdramqcnZ1VU5xplQeJRNLS0iIUCt3c3Pz9/c3NzauqqlJSUq5cuZKTk2NtbV1VVZWVlTV/\n/nz1ITHUA3l4IVpdF89BqzxUVFRs3LgxLy/PwMDA39/fzs6O2GlA/V4nPT09Ozv79OnTOI7P\nnTt37NixZEfd32hVJJ6DVnmAJkOFw+Hk5eVlZGRkZWV17RMWFxfHxcXFxMQQ1ci7775LvXmk\nUE/2HegQkoYmFbpEIvnkk08KCgpwHO/o6CgoKIiLi5swYQKfzycOoEMe1B9oeXh48Pl8Fotl\nb2/v5+c3bty4jo6OtLQ0YjHxtra24cOHW1tbkx1yn4A8dB8drguEkEgkqq6uNjExedYBNMmD\nTCbbsmVLVVWVk5NTSEiIm5sbcZdDYLPZ3t7e+fn5OTk5JSUlDAZjxYoVixcvJjHgPvLC8oBo\nUyReiA55gCajEwaDMXHixNLS0mf1CZuamjw8PIKCgt58800q7b5IgHqyT0GHkEyqCl0oFFJ1\nU5SjR49mZ2c7ODhs3br11VdfbWtry8rKSkhIICp34hhq5+FZD7QIAoFg4sSJfn5++vr65eXl\nLS0tDQ0N06dPJzHgPgJ50BS1rwuEkFQqXb9+fV1d3eTJk59zGOXzgBCKjo6OiYkRCoW7d+82\nMDAgPszMzIyOji4rKxsxYgSbzfb19bW2tra2tg4MDJw4cSK5AfeFbpYHRI8i0R3UzgM0GU/1\nwj7hw4cPx40bZ2VlRXakvQ/qyT4Fq4yS79GjRyNHjiQ7it4nFotNTU0DAwOVSuWBAwdU3b9T\np06dOnVKIBCEhIQIhULV8ZTMg0wmW7dunUgkcnJy2rx58/Mf4uI4HhYWFhUVFRoaSqUNZBGN\n8yCXy9vb29UXyNEUJa8LlQ0bNhQXF//444+GhobPP5LaeQgNDY2JiXnnnXcWLFiAEBKJRGFh\nYdnZ2UwmU6FQuLi4fPnll1RdJENd98sDonqR6D5K5oG2TUZXLS0tXVsQhULxf//3f/Hx8Y6O\njl988YWqqyyRSOLj4+fNm9fvYfYHqCf7FLwhJJ9AICA7hJ6Sy+VKpVJ9+H5ZWdnGjRtLS0ur\nqqpmzJjh5uam+hWxW05SUlKn94QUyENXL3ygpZ40DMOMjY2jo6MZDMb48eNJCrlP0DMPCoVi\n9+7dkZGRXl5eWm8NTMnrQoXNZsfFxenr648aNer5R1I7DyKRKDMzk8lkjhgxIjIyct++fSYm\nJkFBQStWrLh7925RUdH48eOpupmYuu6XB0T1ItF9lMwDPZuMrkQi0YYNG1gsVqc+P/GeMC0t\nLT8/v9N7QkdHR5KC7XNQT/YpWHgH9JRcLt+9ezdCaPPmzaqFfXk8Ho/Hu3HjBkKIy+V2OmXp\n0qUIoVOnTm3ZsqXTe0KKefToEUJo3rx5xAO8Tg+04uLiOj3Q0tfXRwg9fPiQrID7CD3zgGEY\nl8stLCzctm3bzp07Vc8+gIqXl9ePP/547dq1V199lc5Pdv39/ZOTk1NSUlJSUvT19d9+++05\nc+ZgGIbjOFGpKpVKsmPsD1AeAIGeTYY6kUgkk8mIvzc8PBwhFBAQoH4Ak8lcvHhxSEhIXl5e\ncHCw+ntCqoJ6sk9RfEUm0A/kcnlTU1NOTk5lZaXqQ2Nj45CQEEtLS4RQbGysQqHodNbSpUuX\nLl0qFosTExP7Ndz+NWzYMIRQZmZmaWnpyZMn161bh+N4aGjoyZMnhULh/fv38/PzVQcrlcqf\nfvoJIUS9HjI988BgMNavXz916lSiT9jc3Ex2RAMOi8Xy8/Orrq5OTU0lOxYycTickJCQrVu3\nbt68OTw8fO7cucTNbkRERFlZmbGxMfXWh3gqKA+AQM8mQ6W+vj44OHjbtm0MBuOrr74yMDAI\nDw+/fPlyp8OIoaTu7u55eXl3794lI9J+BfVkn4I3hKCnOBzOjh07qqurLS0tq6qqBAIB8aiG\n6BNu2bKlqKjo4MGDa9as6fTEd+nSpS4uLqNHjyYp8P6g0QOtwsLCxMREHo+3bNky8kLuE7TN\nA9EnRAjdunUL3hOKRKLS0lIPDw/14V5z5sw5d+7c1atXKTbWS1NMJtPd3V31TxzHL1y4cOLE\nCYTQqlWrKLmrMpQHFdU+vWQHMlDQtskgnDhxQiwWu7i4mJubs9nsr776KigoqOt7wlu3biGE\nPvzwwwcPHrxwKSZqoGE92W9gUZleIJfLY2NjHzx4gGGYs7PzlClT2Gx218PKysqIN2ZUVVFR\nsWnTJgcHB/WxoxKJZMuWLWVlZTNmzOjaJ6QDhUKRmpqqUCjGjBmjGtFx+fLl8PBwY2PjY8eO\nqVdhSUlJRkZGlJwDQOc8KJXKffv23bp1y87O7ll9QsrXD/X19WvXrpVIJObm5nPnzp01a5Yq\nD/v27YuNjQ0PDzc3Nyc3yAEiPT39/Pnz9+/fxzBs+fLlCxcuJDui3kfP8qBQKBgMhno7WFNT\nc/jw4bS0NDabPXXq1Lfeeoue9UNX9GwyiNX4VqxYoaure+DAAdWMm8ePHwcFBTU2Ni5ZsuT1\n11/HMIxIhUAgOHbsGLkxk4UO9WR/gkVleqqiomLLli3Xr18vLi4uKipKSkq6devWyJEjO83z\njo2NDQ4O1tPTo95qYCo6OjopKSmZmZnFxcWTJ08mHvqqlkLOzMwUi8Xu7u506xMyGAxLS0sr\nKytizjfxQIsY37JmzRobGxv1gy0tLak6JZqeeZBIJEeOHAkPDxeLxa2trRKJJCMjo+saM5Sv\nH0QiUXNz86xZszAMe/ToUXJyckRERE1NjVAoNDQ0NDMzi4qKYrPZY8aMITtS8tXX1+/atauo\nqEgoFH722We+vr5kR9T76FkeiPn2mZmZqnbwhfv0EihfPzwVDZsM9dX4/Pz81Mu/kZGRm5tb\nQkJCamrqlStXIiIiiDGi7777rq2tLXkhk4YO9WQ/gw5hjzQ0NGzatKmiosLCwmLRokXu7u7t\n7e3FxcW3bt166aWX1J9upqamZmRkjBw5klhjk5JYLJa3t3d2djb0CZ8lPT39+++/v379OoZh\nK1as8PPzIzsictAkD2Kx+JNPPnnw4AGfz/fx8Rk1apRYLBaJRF37hNSuH+rr6zdt2nT9+vUZ\nM2ZMmzbN39/f3Ny8qqoqJSXlypUrOTk51tbWVVVVWVlZ8+fPVx89SE8cDmfixInOzs6rV6+2\nsLAgO5zeR9vy0NTU9Pvvv6u3g93ZpxdRvX7oDpo0GQqF4vbt25mZmW1tbS+//HKnvSWNjIwm\nT55cXFxcWlra2tqqq6v7zjvvzJ49m6xoyUX5erL/wZDRHjl06NDVq1cdHR2//PJLDodDfHj+\n/Pnjx48bGBgcOnSIWPmKkJOT052ltAc7qVS6ffv2hw8furu7P3Xs6NatW9WHgNNHfX39Z599\nVllZKRQKP/jgg7Fjx5IdETnok4ddu3YlJCQ4OTnt2LGDGPkjk8n27dsXFxfXdewoheuH7777\n7vr16y4uLsHBwerD6XNzc69cuRIXF9fR0cFgMJRK5Weffebl5UViqKAf0Lk8dJpD0f19eilc\nP7wQfZoMpFZCrK2t9+/f/9RJcU+ePKmtrbW3t1e/wwSgh+ANYY+EhobKZLKgoCD1l4GjRo0q\nKyvLy8tjMBjqb/zNzMzIiLEP4Th+//79lJSUxsbGIUOGEI9yn/+ecMiQIbR9sw8PtAg0yYNC\nodi/f79SqdyxY4dqLBOTyZw4cWJKSkphYWGn94TUqx8QQmKxmMvlhoWFGRoa7tq1S/XUjCAQ\nCCZOnOjn56evr19eXt7S0tLQ0DB9+nSyogV9DcpDp/Ey3d+nl5L1QzfRpMkgqEqISCSqqanx\n8PDoOqLK0NDQwsLiqWtVAKA16BBqD8fx48ePI4QCAwM7PcUxMjK6ceOGVCql6sAGhFB1dfX2\n7dvPnz+fmpp669atO3fuODo6Eje+z+kTUmDOd0/weDwrKyvajphVoUMe5HL56dOnWSzWu+++\nq/45g8HgcDgJCQnPmk84SMnl8ra2NvW/5TnzYdRxOJxRo0YFBARIJBLiJtjY2Li/ogZ9BcrD\ns6j3CVtaWtzd3Z2cnNQPeFafkM7o0GSoqEpIVlYWtWfZ5ObmmpqaEn+dSCT65ptv3NzcoKNL\nFuqMzu9/GIYRD6vU98MhEA8+W1tbSQirXxCTJ/Pz842NjRctWhQQEFBVVRUUFJSWlkYcQOxF\n4ezsnJSUtGvXrq77EAJAbbq6uhYWFnK5vKSkpNOviBvcCRMmFBYWxsXFkRBcb1MoFLt37966\ndav6Xos8Ho/H4924caO2tvaFq4FjGDZr1iyEUHR0dN/GCvoelIfng316gTocxzvN3lKVkBs3\nbnz33XeUnNuVlpa2efPmffv24TguEomCgoLS09N//fVXsuOiL3hD2CMymSwjI+Px48e+vr7q\nLdzFixdzc3NdXFy8vb1JDK/v7N69u7Cw0NnZedeuXe7u7tXV1cnJyXK5PD4+3t7enugnq78n\ntLa2Hj58ONlRA9Cv5HJ5RkZGaWmpj4+P+toYly5dys/P//zzz0ePHu3j40NegL0pJSUlPT1d\n/Z2n6jl3U1NTXV3d7Nmzn79ASEdHx+XLl+Vy+Zw5c/or6r4lFosPHz78888/JyUl8fl8Wm0b\nAOXh+VTZIOaDdX0L5OLi4uLiMmXKFLIiBL1OoVBgGNZp05Fvv/02NDT04sWLNTU1zs7Oqpfq\nlF+Nj8/np6Wlpaenl5SUnD17ViKRuLq6rlu3jsWCDdLJAR3CHnFwcEhLSysoKHjw4IGrq6ue\nnh6O45GRkSdPnsQwbM2aNZ02n6CG3Nzc48ePCwSCXbt2GRgYXLt27fDhwziOT5s2raCgoGuf\n0MLCgrbzBgGdOTo6pqWl5ebmFhQUjB07lhg4cPXq1VOnThkZGb3++uvW1tZkx9g7MAzz9PSs\nqKh4Vh/gOfNhCEql8uDBg6Wlpc7OztR4jlZfX79hw4aHDx82NTVVVlbevn27vr7ezc2tUwbK\nysoMDAzICrKPQHnojhfe8VNvG0Y602LTEfUSYm9vT7EnSmw2e/Lkyenp6dnZ2VKp1NXVddu2\nbc8ZL0rJqnJAgQ5hjzAYDE9Pz8zMzLy8vIiIiPj4+DNnzhBjwFauXEnVZuzmzZtZWVlr1661\ns7NLSEgIDQ3FcXzVqlXLly9/8uRJSUlJpz7hiBEjyA65l9H5wb86yMPzqeqHnJycyMjI1NTU\nc+fOxcbGIoTeffdde3t7sgPsTS/sAzx/PkxBQcFPP/3E5XI/++wzarT6R44cefDggZ2d3Zo1\na8aPH5+fn5+VlVVZWenp6anKAIX3l4Py0B2UfwvUCZ2bDO02HaH2anwSiSQiIkIqlSKEnJyc\nvLy8nlX+KVxVDhzQIewpDofj4+Mjk8mKi4tra2ulUqmJicmHH35Iyc1hRCKRWCyeNGlSa2ur\nv79/c3Pztm3bZDLZ0qVLFy1ahBAqKSkpLy+XSqVxcXFTpkyh5Gz4bj74R1R/oAV56A5V/VBY\nWFhZWdnc3Mzj8VatWkXJ+uGFfYDn3PWampqOGDFizpw5lNlkOSwszMDAYO/evcOHD7exsfHx\n8UlLS8vMzFTvE1J7fzkoD91Bnz4hnd+ZI4Q4HE6n/9Hh4eFcLnfPnj1CoZDP53t4eKCnLSZE\npdX4FApFSkrK0KFDif/purq62dnZAoGAz+dnZGR0el6mjtpV5QABHcJewGKxXn755fnz53t6\nevr7+y9fvpyS8+VUuwl7eHj4+voyGIzIyMjk5ORx48atWbOGOOaXX37hcDirV68eOnSop6cn\nuQH3ke48+Ec0eKBF5zxotDaaqn4YP378jBkzVq5c2Wm7YWqQSCRHjhwJDw8Xi8Wtra2d1lDt\nzl2vpaWlan8OCvjtt9/8/f1Va2kSt4Od+oSjRo0aM2bMtGnTyA21L0B56D5qjwxUofk7c9SD\nTUeoITY2NiQk5OrVq6pLnslkTpo0ycfHZ8qUKRkZGenp6Z3KQ2JiooGBAZvNpnBVOXBAh7DX\nsFgsU1NTIyMjqj7eCw8Pz87OHjly5Ny5c4lZvzExMYWFha+99hoxKDQyMjIqKsrJyWnJkiWj\nR48mO96+0p0H/4gGD7Rom4e0tLTg4ODy8nJPT8+ysrKgoKDi4uK2trYJEyY85ywWi2VmZmZm\nZkbJGfNisfiTTz558OABn8/38fEZNWqUWCwWiUTP6gNQ9a5XIpH88MMPv/zyC7E76+jRo9Xv\na5/aJ6Tk/nJQHjRF7ZGBBHhnjui66YhCoTh8+PCJEydaWlomTpz4yiuvqO/Ny2QyifmEqj6h\nu7s7g8G4efPm/7d370FRnecfwM/eWER0QblWWXEpoCiKIMT1guB9iXXqDBkndSIYS2wqzBQ7\nU1MuJp16YaydSNsoaZyYgFNI03bsKMEig0i8jIqE3SwXUUEKC0KBZSGGZVnc3x9nfmdOdmFZ\nEDnse76f/1xx5tnj8r77nPO8z3P69OmqqqrNmzfTGyi374J4SAhhfGNNE+7v7797965er/f2\n9r5y5UphYaFAIHj33XfJPgrvyI1/iqKIv6HF2+uA3mi2cnNzGxsblyxZcurUqaioqJUrV+7Y\nsUOn06nVatscgNRvvXq9/vDhw1qt1mAwtLe3Dw4OGgyGrVu3sntpsn9NFi9eHBAQwGHArw4+\nD5NAUmXgqHj+zJzBbrdru0RQrJzQx8fHKl10Urm5uWVlZa6urunp6Xv37p03b57tz7BzQrrT\nTFFRkcViSUhIiIiImP6YeQgJIYzDzjThRYsW1dfX19XVVVRUNDY2UhSVnJy8ceNG7oJ9VSZx\n45+iKPJuaOE6UBPvjUa8kZGR3NzcFy9e/O53v2Pf91UqlVVVVU+ePLHKAUj91puXl1dXV6dQ\nKFJTU1etWtXY2Nje3m47UYD+NfHz8yM1C8LnARh4Zs6m1+ufP3/u5ubGq6Ejd+7cKSgoEIvF\nx44dY9fH2pJKpRs2bHj06FFdXd3Tp0+FQmFycvIbb7wxbaHyHBJCGMfIyEhlZaVarR4cHIyM\njGQffxIKhevXrxeLxcPDwwqFIiUlhcgbe7jxT8N1YDjeG40PzGZzUVGRWCx+55132K8LhUJX\nV9c7d+5YnR9zdmazeXBwkP1e6BqKvLw8uiIuMDBQoVBs3LhxrDNyrq6uwcHBXMQ+Hfj2eaBN\n6FwxT2DLYPT29ubm5n700Uc3b96kC0H5M3Tk3LlzXV1de/bssb0F1traWl9fbzKZPD096Vdc\nXFzi4+PlcrlcLk9JSVEqldMeL38hIbTG57bIo7I/TVgkEi1fvnzr1q2xsbH0nAny4MY/DdeB\n4XhvND4QiUQVFRX9/f1KpdLDw4P9VwaD4fr169HR0Vqt1s/Pj4BJG/QwseLiYiafYWoourq6\nVCoVU0PBn+6RVnj1eaBN7lwx8bBl0Do6Oo4cOdLY2Dh37tydO3cGBQW5ublRvFkiPv30U5PJ\ndODAAXalaENDQ05OTkFBwddff3316tXGxsbo6Gh6RRUIBHK5PDw83Gr1gFcNCeEPoJP+qByf\nJkwY3Pin4Tqw6fV6o9G4ZcsWR3qjcRvqtDGbzTU1Na2trXFxcewbRv/+978fPXr0wQcfLF++\nPC4ujrsApwadDd67d294eJjJdpgaiu+//z46OppdEceTL3y2ePJ5YOBcsRVsGQyTyZSRkdHZ\n2blkyZITJ05ERUXR2SCND0tEeXl5f39/SEhIUFAQRVFGo/HChQtnz57t6elZsGAB3XGqtbX1\n8ePHRJaYOREkhD/A50769jk4TZgkuPFPw3VgsMt+1q5dK5PJHOmNxnXU0yEkJKS6urqhoeHx\n48cRERF036mSkpLCwkIPD4+f/exncrmc6xhfFpMNuru7Hzt2jJmPZ79FBD97afLh88A20XPF\nZN9QxpbBVlpaWl5e7ufnl5OTw/ynq9Xq0tJSnU6nUCjc3NyIXyIePHig0WgsFkt9ff2ZM2dq\nampkMtmhQ4dSU1NjY2OVSmVZWVl7e/uyZct8fX25Dpa/kBD+AG876TuCb6s5bvzTcB1oY5X9\noDcaRVFCoXDNmjVqtbqurq64uPjBgwdffvllRUUFRVHvvPMOAZWBVtkgPWiHwfwitLS02FbE\n8bCXJvGfB1uOnysm/oYytgy24uLi5ubmPXv20F8X29racnJyvvjii4cPH96/f7+urm7Tpk1k\nLxHBwcG9vb0PHz7UaDR0N4rY2Njs7GymgapMJvv22287OzuDgoJI/aVwCkgIf4C3nfQdxKvV\nHDf+abgO1HhlP+iNRlGUq6trXFycyWR68uTJs2fPvvvuOzc3t5///Ofbt2/nOrSXxWSDEonk\n5MmTdOGTFftrIw97aRL8eaCNjIxUVVX96Ec/ov+jHT9XTPwNZWwZbG1tbWq1WiQSKRSK4uLi\nDz/8cN68eZmZmcnJyTdv3mxqalq9evX8+fMJXiIEAkFMTExoaKhMJlu9evXBgwdVKhUzvYyi\nKLPZnJ+fbzQaVSrVwoULOQyV5wQWi4XrGDim1+svXrzY2Njo7e3d3Ny8e/fuXbt2sX/AYDBk\nZWW1tLTExcWlp6cTnAI5SK/XZ2Rk6HS6rKysmJgYrsN5tZg3u2XLlrS0NKv/fb1ef/v27ddf\nf52r8KYNT66D2WymKMq2zrOkpOTcuXN+fn5nzpxhUkG1Wq1Wq728vLZv3y4SiSwWy61bt1pb\nW5VKZWBg4DRHPnMYjcbm5maLxaJQKNi7vpNiskH6j4mJifv27Rvrh+3/mvATYZ8HWkVFxcWL\nF7u6utj/0SaTiaKooaGh7OzspqYmqy8Md+/eXbp0KV00WFdXFxYWxmH804AnW8a4jEbj+++/\nX19fT1HUnDlz9u7dq1KpBAKBxWL55S9/qdPpTp06RcawwUkrLCwsLCz09PQ8f/68RCLhOhz+\n4vsTQrRFngSyyxus4MY/jQ/Xgf7qf/PmzXXr1llNCnak7Ae90Whisdjb29vb25uA85PsStG3\n3npLq9Vqtdrh4WH2OFY2XtVQOIikzwNFUSMjI3l5eQUFBc+fP1cqlT/96U/ZsxZFIpEj54oJ\nHrXH4MOW4QixWLxp06bg4OB169alpKSEhYXR1+HKlSsVFRWenp5vv/221XbDKyUlJZ999hlF\nUYcPH160aBHX4fAa3xNCHrZFth2iRVFUW1tbd3c3MwpmXPxZzSl8yft/xF8Hk8n0n//858mT\nJ2vXrrVq+eBg2Q9XkU8t2yViousDGazODSqVyuDg4Fu3bjmeE/KhIo5vcnNzy8rKXF1d09PT\n9+7dy+6kz8C5YhrxW4aDhELhggULAgIC6MdfFovln//8J50FpaWl8bacZGho6OOPPy4qKqIo\nKikpadu2bVxHxHc8SgitvuXwsy2y7RAtiqL6+vree++9a9euxcTEyGQybiOcmbCx0ci+DmKx\neMOGDUqlMiAgoLOzc9asWcyNW4VCodVqNRrNV1991dLSkpSU9Itf/GLevHlisbikpGRgYGDL\nli1eXl7cxj8lbJcI3q4PpaWlly5dYneR8ff3dzwn5EkNBa/cuXOnoKBALBYfO3YsKirKzk/i\nXDGN7C1jEr755pu//OUv165dEwgEycnJO3bs4DoiDoyMjBQXF+fk5NTW1kql0vT0dJVKxXVQ\nwJuE0OpbDj/bIo86RIuiqE8++USr1YaGhiYkJJBR1fMq4MY/jezrIBaLZTIZ3VC0rq6OqR3l\nSdnPqEsEb9eHoKAgk8m0f/9+dk9Rx3NCYmooGhoa5s+fT3/g29ra/vjHP0ZFRfFnxibbuXPn\nurq69uzZY5vqt7a21tfXm0wm5kG6i4tLfHy8XC6Xy+UpKSlKpXLa450RyN4yJqSvr+/kyZNN\nTU1+fn6/+c1veHvDSCgUVlZWajQapVJ55MgRUrsrOR1eJIS233J42BZ51CFa9GPSs2fPymSy\nkydPEnPi/xXBjX8a8ddBIpFUVVWp1erm5mYmJyS+aLopzwAADr9JREFU7Md2ieD5+iAQCCIi\nImwLZR3MCclQXV199OjR9vb2NWvW6HS6zMzM5ubmwcHB6OhorkPjwKeffmoymQ4cOMCuFG1o\naMjJySkoKPj666+vXr3a2NgYHR1NP13HuWIa2VuG4xX1rq6uSqVy6dKl7777rr+//zTENmNF\nRUXFxsYmJCQQPJDT6ZCfEI6aCPGtLfKoQ7SYx6SdnZ07duwg+2vNVCHjxv/LnyMl4zqMha4d\n1Wq1Vjkhg7yyH9slAuuDHfzJCd3d3aurq7/55punT5/+/e9/1+v1K1as+NWvfsWrZ8WM8vLy\n/v7+kJAQevSI0Wi8cOHC2bNne3p6FixYEBYW1t3d3dra+vjxYx5OpbKPmC3DavecaEW9m5tb\nQEAAGY8ZXhJSwZmG8ITQzjRh/owSHmuIFvOYdHBwMDIycunSpbb/VqfT4ZeWMDhH6gg7OSF5\nZT+jLhFYH+zjSU5I90ehO6MYjcYVK1ZkZ2fbqRcl/iPx4MEDjUZjsVjq6+vPnDlTU1Mjk8kO\nHTqUmpoaGxurVCrLysra29uXLVvm6+vLdbAwxWx3T95W1AN5SE4Ix50mzIe2yOwhWi9evJgz\nZ47tgcmBgYHe3t7t27dbPQapqKg4evTo7Nmz2SW14NRwjtRxY+WEhJX9jLVEYH0YF6k5odXI\ndb1ef+XKFaPRSFHUkiVL1q9fP9bzDeI/EsHBwb29vQ8fPtRoNPS9ktjY2OzsbGaOnEwm+/bb\nbzs7O4OCgki9CLxltXuazWY+V9QDeYhNCO0kQmyknhikjTtEi3n7bW1t//vf/1577TX223/w\n4EFNTU1oaCiO/JIB50jtMJvN5eXlly9fvnfvXn9//8KFC8Vi8Vg5ITFlP/aXCKwP42JywvDw\ncDKuQ0VFxYkTJ0pKSpgN0cXFRavVenl5ubu719TUPHv2bM2aNaN++In/SAgEgpiYmNDQUJlM\ntnr16oMHD6pUKvaaaTab8/PzjUajSqVauHAhh6FOLTQWsto9XVxcUFEPhCEzIZzQNGFSc0IH\nh2gxb1+j0Vi9/bCwsJUrV5J3FqK7uzsvL+/zzz+nLw4BZ0QdgXOkdnR0dGRkZFy7dq25ubmp\nqenevXs3btwIDQ318vIa9zyh83JkieDh+jBR/v7+dK0g14G8rLFGrotEorVr18bFxcXGxjLz\n1tk54d27d+fOnSuVSnnykfD394+MjFy+fLltdf0XX3xRVVXl6el58OBBkUjESXhTDo2FbHdP\nVNQDeQhMCCcxTZi8LjLURIZo2UmJvb29OXsDr0ZfX9+vf/3r+vr6gYGBZ8+eVVZW9vX1RUVF\n2d4FIGk1xzlSOwwGw3vvvdfR0eHv75+YmBgTEzM0NNTc3Hzjxo1ly5b5+Piwc0K5XL5o0SKu\nQ54aDi4RvFofJmfOnDlchzAF7IxcF4lEIpGIPW/92bNnMTExQqHw+vXrp0+frqqq2rx5s1gs\n5vNHoqSkhG47fPjwYWJWCWqCjYXI2y9G3T1RUQ/kITAhnNw0YZK6yNAmNESL1Mektv7617/W\n1tYGBQWlpaWtXr360aNHGo3GtgiKpNUc50jtu3DhglqtDgkJ+cMf/hAeHh4SErJ582aJRFJd\nXX3//v2tW7dKpVI6J/T39ydmfaAmskTwZ33gLQdHrrNzQrrTTFFRkcViSUhIiIiImM6AZ5Sh\noaGPP/64qKiIoqikpKRt27ZxHdFUcryxEHn7hSO7JyrqgQwEJoSTniZMRhcZxkSHaBH5mNTW\n2bNn586de/r06UWLFgUGBsbFxVVXV6vVaquckJjVHOdIx3XmzBmTyZSZmenj48O8GBYWptPp\nGhsbhUIhfa3EYjF7SSHAhJYInqwPvOX4yHWpVLphw4ZHjx7V1dU9ffpUKBQmJye/8cYbXETN\nvZGRkeLi4pycnNraWqlUmp6erlKpuA5qCkyusRBh+4Xjuycq6oEABCaEmCY8Lvs5IUmPSW39\n61//2rlzJ/OWXV1d161bZ5sTkrGa4xzpuCwWS35+PkVRKSkpVmd+PDw8ysrKjEYjAWMGJ8pO\nTkj2+sBbExq57uLiEh8fL5fL5XJ5SkoKAecnJ00oFFZWVmo0GqVSeeTIETISoUk3FiJpv5jo\n7omKenB2BCaEdiAnZNjJCUl6TErT6/Xnz5+/ePFiVVVVf3//8uXL2QUtY+WEBKzmOEc6LoFA\ncOPGjYGBgVWrVrGfEFIUNTAwcPXqValU+pOf/ISr8Dg0Vk5I3voA1MRHrgsEArlcHh4ezoyu\n4a2oqKjY2NiEhAQCzs69fGMhYvaLKdk9AZwIvxJCCjkhC08uhV6vP3z4sFarNRgM7e3tg4OD\nBoNh69at7MNy7Jxw8eLFAQEBHAY8hXCO1BEmk6mmpqalpSU+Pp79kPDSpUsNDQ3h4eEbNmzg\nMDwO8WSJABpGrk8aAakgbUoaC3EY/xSa9O6JinpwUrxLCCl8y2Ehb4iWrby8vLq6OoVCkZqa\numrVqsbGxvb29p6eHquEh84J/fz8SCqHwzlSW7ZDR4KDg6urqx8/flxbW7tixYrZs2dbLJbi\n4uK//e1vAoEgLS3Ny8uL66g5w4clAiiMXAc0Fvqhye2eqKgH5yWwWCxcx8CN6urq48ePJyYm\nvvnmm1zHwjG64T7XUUwBs9k8NDQ0e/Zs+o/d3d3z589PTk6WSCR/+tOf3NzcKIrq7e3NzMzU\n6XRbtmxJS0vjyUOwUdG/AsPDw4mJifv27WNe1+v1t2/ffv311zmM7RXp6+tLT0/v6elhXlGp\nVAcPHhwYGHj//febmpqEQqFcLjcYDHq9nqKo/fv37969m7t4Zwpilgiwj54u4O7uvnbtWqtC\nCbPZ/Pbbb/f19WVmZr722mtcRQivTkZGhlarffPNN22/FLW2tup0Oh8fH+Zx2fPnz0+ePKnR\naCiKEgqFSUlJvFoqx9o9AZwXH58Q0oiZJvzyyBiiRR8BLy4uXr9+vYuLCzNyvaurS6VSoTDS\nFq/OkdLGGjoSFxcXHx9vMpmam5t7enqMRuO8efNSU1O3b9/OdcgzAhlLBIyLbyPXgQ2NhRyH\nQjMgD38TQgrfcgjCNAQbHh5WKpUeHh7MyPXvv/8+OjqaXeOEnJDBt13NztCR9evXR0ZG7tq1\na82aNTt37kxKSiJptDTAyyB15DqwobHQhPBt9wTi8TohBDJYtYdevHgx9cOR67ZdZPhwWM5B\nvDokNu7QEYlEMn/+fA8PD97eIwBgI3vkOlhBY6EJ4dXuCcTj7xlCIINVNmg1Olyv12dkZIx1\nYpDgw3ITRfAhMb1ef/HixcbGRm9v7+bm5t27d+/atYv9AwaDISsrq6WlJS4uLj09HakgAEVR\nIyMjX3311ZdfftnX1yeVStPS0mJjY7kOCl4hi8Xy0UcflZaW0n8UCAQbNmxISUlh1w9nZ2er\n1eqUlBR+DuMZFcG7J/AKEkJwYkw2KJFITp06RRe6WLGfEwLZ6KEj7C4yQUFBp0+ftjoExeSE\nv/3tb/l2GAZgLJ988snly5eVSuW+ffv4XEbBK2gsBMBPSAjBWTHZIP1HO82+kBPy1ocffnj9\n+nWFQrF3797+/v78/Hy9Xj/qx8BgMNy+fVulUnEVKsAMpNPpkAoCrbCwsLCw0NPT8/z58xKJ\nhOtwAGAq4QwhOCV2pehbb72l1WrtHOxGFxke6u7unjVrVl5eHt1FJjAwUKFQbNy4cayPgaur\na3BwMIcBA8xAxIxch5eExkIAZENCCM7H6tygUqkct9kXusjwCoaOAABMCTQWAuADJITgfEpL\nSy9dusTuIuNIA2g6GfD19Y2Pj5/2kGFaYegIAMBLGhkZKS4uzsnJqa2tlUql6enpKKoHIBUS\nQnA+QUFBJpNp//797J6iDuaEpI5cBzYMHQEAeElCobCyslKj0SiVyiNHjmCyAgDB0FQGiFJd\nXX38+PHh4WE7PWaAJzB0BADgJaGxEAAf4AkhEMWR54TAE/arQ/G4GABgXGgsBMAHSAiBNMgJ\ngYETgwAAAAD2ISEEAiEnBAZyQgAAAAA7hOP/CIATioyMzMzMlEgkmJ8Lnp6eJ06cWLBgQVlZ\n2f3797kOBwAAAGAGQVMZIFlHR4e/vz/XUcCMgC4yAAAAALaQEALATGc2m4eGhmbPns1+sa2t\nzWQysUePAAAAAMBEoWQUAGY0s9mck5OTlZX13XffMS/29fUdPXo0Ozu7tbWVw9gAAAAAnB0S\nQgCYuehs8N69e52dnd3d3czrBQUF3d3dgYGBPj4+HIYHAAAA4OyQEALADMVkg+7u7seOHQsM\nDKQoqru722KxVFVV+fr6ZmVlSaVSrsMEAAAAcGJirgMAABiFVTZInxXU6XQZGRlRUVFCoXDb\ntm2zZs3iOkwAAAAA54YnhAAw4zDZoEQi+f3vf890jnFzc3NzcysrK+vp6RGJRKP+W51ON42R\nAgAAADg3JIQAMLMw2SBFUcPDw7du3WL+ipkoSFFUeXn5yMiI1b+tqKg4dOjQ5cuXpzNgAAAA\nAOeFhBAAZhB2peiBAwckEsk//vGP/Px85geYnPC///3vn//8Z6vBOT09PS9evGD3IwUAAAAA\nO0QffPAB1zEAAFCUzblBpVIZHBx869YtrVY7PDy8cuVK+sdmzZq1bt26+/fvazSa7u7umJgY\ngUBA/1VYWNjKlSs3bdrE3ZsAAAAAcCZICAFgpigtLb106RK7i4y/v7/9nFCtVlvlhN7e3py9\nAQAAAABng4QQAGaKoKAgk8m0f/9+posMNamcEAAAAAAchIQQAGYKgUAQERHh6elp9bojOeGP\nf/xjutkMAAAAADgOCSEAOAH7OaGvr298fDy3EQIAAAA4I4FVjz4AgBmrurr6+PHjw8PDiYmJ\n+/bt4zocAAAAAKeHJ4QA4DTGek4IAAAAAJODOYQA4EwiIyMzMzMlEolEIuE6FgAAAACnh5JR\nAHA+HR0d/v7+XEcBAAAA4PSQEAIAAAAAAPAUSkYBAAAAAAB4CgkhAAAAAAAATyEhBAAAAAAA\n4CkkhAAAAAAAADyFhBAAAAAAAICnkBACAAAAAADw1P8BVAHJOIPZmAAAAAAASUVORK5CYII=", - "text/plain": [ - "plot without title" - ] - }, - "metadata": { - "image/png": { - "height": 180, - "width": 600 - } - }, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Warning message:\n", - "“\u001b[1m\u001b[22mUsing \u001b[32msize\u001b[39m for a discrete variable is not advised.â€\n", - "Warning message:\n", - "“\u001b[1m\u001b[22mRemoved 5 rows containing missing values (`geom_point()`).â€\n", - "Warning message:\n", - "“\u001b[1m\u001b[22mUsing \u001b[32msize\u001b[39m for a discrete variable is not advised.â€\n", - "Warning message:\n", - "“\u001b[1m\u001b[22mRemoved 5 rows containing missing values (`geom_point()`).â€\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAAFoCAIAAADIFpV9AAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdeUBU1dsH8HPvrDDAsIOyLxoqKqKYmoq444KKC+47uVaWvf20xbSyzdIW\nrVRMs7LCVFxwQcMFzQXELVEQEARk32GY/b5/jE2ExszohRng+/mnO+c+555nVGieueeeQzEM\nQwAAAAAAAKDtoY2dAAAAAAAAABgHCkIAAAAAAIA2CgUhAAAAAABAG4WCEAAAAAAAoI1CQQgA\nAAAAANBGoSAEAAAAAABoo7jGTsDIysrKkpOTjZ0FAAAAAACAEbT1gjAjI2P79u39+/c3diIA\nAAAAAADNau/evW29ICSE+Pn5vfTSS8bOAgAAAAAAoFkdO3YMzxACAAAAAAC0USZ3h7CkpOSX\nX35JTk6urKwUi8VdunRZtmyZmZmZ5qxarY6JiTlx4kRxcbG9vf3w4cPDw8Np+p+yVmcAAAAA\nAAAAaJhWQZidnf3mm28qFIqgoKB27drV1NTcvXtXIpFoC8KoqKgjR47069cvLCwsJSVl9+7d\nJSUlixcv1l5BZwAAAAAAAABomFBBqFarN2zYYGlpuW7dOicnp8cDcnJyYmNjg4ODV65cSQgZ\nPXo0j8c7duxYaGioh4eHPgEAAAAAAAB6ys3NdXNzGzduXExMjLFzaSomNJcyKSnpwYMHc+bM\ncXJyqqurk8vlDQISEhIYhhk7dqy2JSwsjGGYc+fO6RkAAAAAAABtyvr16ymKoigqNTXV2LmY\nIhO6Q3j16lWKoszNzV955ZX79+9TFNW5c+fIyEhvb29NQHp6OofD8fHx0Xbx8vLi8/kZGRl6\nBgAAAAAAQNvBMMyOHTsoimIYZvv27Z999plB3R0dHRMSEuzs7JooPVNgQgXhw4cPORzOhx9+\nGBgYOGnSpOLi4ujo6DfffPOLL75wdnYmhJSVlYnFYg6Ho+1CUZSNjU1paanmpc4AjS+++KKg\noEBzLBQKm/yNAQAAAACAMcTFxd2/f3/u3LnHjh374YcfPvzwQz6fr393Pp/f6ncsN6Epo3V1\ndUqlskuXLv/73/8GDBgQHh6+atUqiUSyb98+TYBMJuPxeA168fl8mUymZ4DGpUuXTv3t3r17\nTfNuAAAAAADAyLZv304IiYyMnDFjRklJyYEDBx6POXbs2LBhw9q3by8QCNq1a9e/f/8NGzZo\nTuXm5lIUNX78+AbXHD9+vJeXl5mZmbW1dXBw8N69e5vhvTQRE7pDKBAICCEhISHaloCAABsb\nm7/++ksbUFdX16CXXC7X3uXTGaDx1VdfKRQKzfGdO3cSEhLYexMAAAAAAGASCgsLDx061LFj\nx379+llZWW3cuHHbtm0RERH1Y3bv3j1nzhxnZ+dx48Y5OjoWFxffvn07Kirq//7v//7rsosW\nLerdu3dISIiTk1NRUdGRI0emTJnyySefvPHGG03/nthnQgWhZm6ujY1N/UZra+uysjLNsa2t\nbXZ2tkql0k4KZRimvLzc399fzwANR0dH7fHDhw+b5t0AAAAAAIAx7dy5U6FQzJ07lxDi7+8f\nGBh4+vTp9PR0X19fbczWrVs5HM7Vq1fbt2+vbSwvL2/kstnZ2W5ubtqXEokkODh47dq1kZGR\nDWqZFsGEpox26NCBEFJSUqJtYRimtLRULBZrXvr4+KhUqszMTG3A/fv35XK5dhUZnQEAAAAA\nANAWMAwTFRVF0/Ts2bM1LXPnztU0NojkcDhc7r/ukzVe12mqQYZhKisrCwsLq6qqJkyYUFdX\n10InHppQQdi3b18ul3v8+HG1Wq1pOX/+fFVVVWBgoOblgAEDKIo6fPiwtsvhw4cpihowYICe\nAQAAAAAA0BbEx8dnZGQMGzbMxcVF0zJ9+nQ+n79r1y7t42OEkGnTpsnl8i5duixfvvz333/X\nrj3ZiGvXro0bN04sFltbWzs7O7dr1+6tt94ihOTl5TXRe2lSJjRl1N7efurUqT/99NObb77Z\np0+f4uLiY8eO2dvbT5w4URPg7u4+atSo2NhYhULh7++fkpKSkJAwcuRIT09PPQNakKysrOLi\n4mYYyNfXtyXe2gYAAAAAaMS2bdsIIZr5ohp2dnZjx47dt2/fwYMHJ02apGlcvny5jY3Nli1b\nvv322y1bthBC+vbtu2HDhhdeeOGJl01OTu7fv79QKFyyZEn37t01exycOnXq888/b7CSZUth\nQgUhIWTKlCk2NjaHDh368ccfhULhgAEDZs+erZ0ySgiJjIy0s7OLi4u7fPmynZ3drFmzwsPD\n619BZ0BLUVRUZND2iQzD3Llzx9zc3NDq19nZGQUhAAAAALQmxcXFMTExhJBp06ZNmzatwdlt\n27ZpC0JCyIwZM2bMmFFVVXXx4sWYmJgdO3aEhobevn27/oOCWhs3bqyrqzt06NDQoUO1jVev\nXm2a99EcTKsgJIQMGzZs2LBh/3WWpulJkybV//szNKCl6NKlS/2nXXVSqVS1tbWOjo6Gzo+1\nsLAwMDUAAAAAAJP2ww8/yOXynj17BgQENDh16NChU6dO3b9/38vLq367lZXViBEjRowYYW1t\n/fHHH8fHx8+ZM+fxK2dlZRFC+vTpU78xPj6e5TfQjEyuIAQNkUgkEon0j1epVBYWFpaWlra2\ntk2XFQAAAACA6dOsHPPNN9/07t27wal33nnngw8+iIqKWr9+PSHk5MmTISEh9ReV0SxyaW5u\n/sQre3t7X7hw4eTJkxMmTNC07Nmz5/GC8OOPPz5z5szLL788atQolt5TUzGhRWUAAAAAAACe\n0ZkzZ1JTU7t27fp4NUgIWbBgAUVRO3fuVCqVhJBp06a5urpGRES88cYbq1evHjx4cFRUVJcu\nXcaMGfPEiy9fvpzD4UybNm3OnDlr1qwJCwubPXv25MmTG4Rdv379xIkTOTk5rL871qEgBAAA\nAACA1mP79u2EkIULFz7xrKen59ChQ/Pz8zV7E3zwwQd9+/ZNSkrSrCtTWlr6wQcfnD9/3szM\n7Inde/fuferUqd69e8fExHz55Ze1tbVxcXFhYWENwtLS0ng83vDhw1l9Z02CYhjG2DkYU2Ji\n4pEjR9atW2fsRJ6VSqWKjo52cnIaPHiwsXMBAAAAAGi7ysrKHBwcFi9erFm21JSNGjUKdwgB\nAAAAAABYc/r0aYFA8Pbbbxs7Eb2gIAQAAAAAAGDNxIkTJRJJu3btjJ2IXlAQAgAAAAAAtFEo\nCAEAAAAAANooFIQAAAAAAABtFDamh2aiUCiaZ0lbHo9HUVQzDAQAAAAA0NKhIIRmcu7cuaKi\nIv3jGYaRyWQcDofH4xk0UGhoqLW1tYHZAQAAAEDLk5ub6+bmNm7cuJiYGGPn0lKhIIRmYmtr\nS9MGTFGuqam5c+dO+/bt/fz8DBqIy8W/agAAAIAWQyqV1t8FnqZpGxub7t27L1iwYPr06UZM\nrI3AR2doJj169DAovqKioqamxsfHp3fv3k2UEgAAAACYCD6fP2/ePEKIQqFIT0+Pj4+Pj49P\nSkrauHFjI70cHR0TEhLs7OyaK81WCAUhAAAAAAAYmZmZ2Xfffad9efz48dGjR3/xxRcvv/yy\np6fnf/Xi8/n9+/dvjvxaL6wyCgAAAAAApmXkyJGBgYEMwyQmJhJCrl+/TlHU3LlzMzIypk6d\n6ujoSNP0pUuXcnNzKYoaP368tqM2Mj09PTw83NbW1srKatSoUWlpaYSQ/Pz8uXPnOjk5mZmZ\n9e/f/+rVq/UH3b59+/jx4728vMzMzKytrYODg/fu3Vs/4IlpbNmyhaKosLCwBm+BYZiOHTua\nm5uXl5c31R8TG3CHEAAAAAAATI5mgfr6q8fn5OQ8//zz9vb2I0eOrK2tFQqF/9X3wYMHffv2\n9fX1nT59+t27d48dO3b9+vVz586FhITY29tPnDjxwYMHsbGxw4YNy8zM1K5HuGjRot69e4eE\nhDg5ORUVFR05cmTKlCmffPLJG2+8Uf/iDdJ44YUXgoKCjh49mpOT4+bmpg07ffr0vXv35syZ\nY2Njw/IfDatQEAIAAAAAgGk5duzYtWvXKIoKCgrSNsbHxy9fvvyLL77gcDialtzc3Cd2P336\n9Lp169asWaN5GRkZGRUV1bt379mzZ2/atElTZL7zzjsffPDB1q1b//e//2nCsrOz61d0Eokk\nODh47dq1kZGR9Yu6x9NYunTpvHnzduzYsXbtWm3Y1q1bCSGLFi161j+LJoYpowAAAAAAYGR1\ndXWLFy9evHjxggULgoODR48erVarV6xY4eHhoY2xt7f/5JNPtGVYIzw8PN566y3ty7lz52oO\nPvroI+0tR03j9evXtWGaapBhmMrKysLCwqqqqgkTJtTV1SUkJNS/+ONpRERE2NraRkVFqVQq\nTUtRUVFMTEzXrl379u1r0J9D88MdQgAAAAAAMDK5XK65pUbTtLW19aBBgxYsWDBjxoz6MQEB\nAebm5vpcrUePHvULNhcXF0JIly5d6u9voWmsf4/x2rVra9euPX36dHV1df2r5eXlNZ6GmZnZ\n3LlzN27cGBsbq3mYcOfOnXK5fPHixfpka1woCAEAAAAAwMjEYnFFRUXjMe3bt9f/avVfavap\nfmKjQqHQvExOTu7fv79QKFyyZEn37t3FYjGHwzl16tTnn38uk8l0prFkyZJNmzZt3bo1LCyM\nYZjt27eLRKKZM2fqmbARoSAEAAAAAIAWoP4CM6zbuHFjXV3doUOHhg4dqm1ssAxpI2n4+voO\nHTr0+PHj2dnZaWlpGRkZCxYssLKyarqE2YJnCAEAAAAAoK3LysoihPTp06d+Y3x8vP5XWLp0\nqVqtjoqKainLyWigIAQAAAAAgLbO29ubEHLy5Elty549ewwqCMeOHevq6rpt27ZDhw4FBgbW\nXx/VlKEgBAAAAACAtm758uUcDmfatGlz5sxZs2ZNWFjY7NmzJ0+erP8VOBzOiy++WFRUpFAo\nWsrtQcLWM4TLly83KP7111/39PRkZWgAAAAAAIBn1Lt371OnTq1ZsyYmJoYQ0qtXr7i4uIcP\nH+7du1f/i8yfP3/NmjWWlpbTp09vskxZxk5BuGXLFoPiZ86ciYIQAAAAAACEQiHDMI3HBAQE\nPDHG1dW1QfsTIx8PI4RwudwGjYMGDTp37lyDsPorhf5XGlo3b94khMyYMcPCwqKRMJPC2iqj\nMTExL7zwgs4wmUzm6urK1qAAAAAAAAAm4tNPPyWELFu2zNiJGIC1glAsFtvb2+sMk0qlbI0I\nAAAAAABgdMnJycePH7906dKZM2ciIiL8/f2NnZEB2CkIL1682LlzZ30iBQLBxYsXW9afEQAA\nAAAAwH/5888/33rrLWtr62nTpn3zzTfGTscw7BSEDfbraARFUfoHA5iyGzduyOXyZhioZ8+e\nNI0FgQEAAABM1PLlyw1dZdN0sDZlFKCtycrKkkgk+sdXVVXl5uY6OjrqM7m6vsDAQANTAwAA\nAADQS5MUhAzDnDp16vLly2VlZWq1uv6pL774oilGBGh+wcHBDf55N+7hw4ea+dLPPfecQQPh\n9iAAAAAANBH2C8Lq6urQ0NALFy488SwKQmg1rK2tDYqXSCQWFhZisdjW1raJUgIAAAAAMAj7\ndx7efffdixcvfvjhhykpKYSQI0eOnD17dvjw4UFBQVlZWawPBwAAAAAAAE+H/YLwwIEDU6ZM\nWb16tZeXFyHEzs5u4MCBR48eZRhm8+bNrA8HAAAAAAAAT4f9gjAvL2/AgAHk7wefFAoFIYTD\n4UydOnXv3r2sDwcAAAAAAABPh/2CUCQSaYpAPp8vFAofPnyoabeysiooKGB9OAAAAAAAAHg6\n7BeE3t7eqampmuPu3bv/+uuvDMMolcrffvvN1dWV9eEAAAAAAADg6bBfEA4fPnzfvn2am4QL\nFy6MiYnx9fXt0KHDH3/8MW/ePNaHAwAAAAAAgKfDfkG4atWqP/74Q7M/28KFCz/77DOhUGhh\nYbF27dpVq1axPhwAAAAAAAA8Hfb3IRSLxWKxWPty5cqVK1euZH0UaKCioqKkpITD4UgkEnNz\nc2OnAwAAAAAALQD7BSE0s8rKyj///PPo0aNZWVlmZmZqtdrDwyMoKIjLxV8uAAAAAAA0pglr\nBrVaXV1dzTBM/UZra+umG7ENkkql8fHxt2/fDgoKIoSIxWKJRHLw4EGFQjFw4EBjZwcAAAAA\nACaN/WcI1Wr1t99+26lTJzMzM2tra5t/Y324Nu7OnTtJSUk+Pj4cDkfTYmZm1qlTp/379xcX\nFxs3NwAAAAAAMHHs3yH84IMP3n33XUdHx7Fjx9rb27N+faivqKjIwcGhQSOfzxeLxQUFBY+f\nAgAAAAAA0GK/INy+fXtgYGBCQgKWNmkGCoXiic8Kcrlczc4fAAAAAAAA/4X9KaOFhYXTp09H\nNdg8RCJRXV3d4+11dXUikaj58wEAAAAAgBaE/YLQ19e3srKS9cvCE7m7uxcUFDS4GVheXh4Q\nEODm5masrJ4RwzCZmZl//vnntWvXrly5cu3atScWvQAAAAAA8IzYLwhXrFixe/fuqqoq1q8M\nj/P29h47duytW7cKCwvlcrlEIsnJyUlNTQ0ICGihN2nVanVCQsLmzZsTExOLi4szMzP3799/\n9OjRsrIyY6cGAAAAANDasPMMYUxMjPbY0dHRzc2tW7duS5Ys8fHxafCE2/jx41kZETQoigoO\nDnZycsrIyMjKyrKysurZs+esWbPatWtn7NSeUlpa2qFDhwICAhQKRUlJia2trY+PT1pamkAg\nGD16NEVRxk4QAAAAAKD1YKcgnDBhwuONq1ateryxwbaE/yU1NfWNN95gGGb9+vVdu3bVtqvV\n6piYmBMnThQXF9vb2w8fPjw8PJymaf0DWh+Kojp16tSxY8eqqipnZ+fBgwcbO6NnkpGR4erq\nyuPx6s+DdXd3P3XqVFBQkJOTkxFzAwAAAABoZdgpCPfu3cvKdTQ0OxkKBAKpVNrgVFRU1JEj\nR/r16xcWFpaSkrJ79+6SkpLFixfrH9CKtY67Z9XV1RYWFg0aaZoWiURVVVUoCAEAAAAAWMRO\nQThp0qTa2lq2lrWMjY0tLCwcNWrU/v3767fn5OTExsYGBwevXLmSEDJ69Ggej3fs2LHQ0FAP\nDw99AsD00TStVqsfb1epVBwOp/nzAQAAAABoxVibS+ng4DB+/Pjdu3eXl5c/y3XKy8t//vnn\nmTNnisXiBqcSEhIYhhk7dqy2JSwsjGGYc+fO6RkAps/e3v7x9WOkUqlEIrG3tzdKSgAAAAAA\nrRVrBeH//d//paenz5kzx8nJacSIEVu3bi0sLHyK60RFRTk5OYWGhj5+Kj09ncPh+Pj4aFu8\nvLz4fH5GRoaeAWD6unTpkp+fX1JSom2RyWRpaWkRERFWVlZGTAwAAAAAoPVhZ8ooIWTdunXr\n1q27d+/evn379u/fv3jx4qVLl/br1y88PDw8PFzPGZs3btw4f/78Rx999MRlYMrKysRicf15\ngxRF2djYlJaW6hmg8fLLL2dnZ2uOXVxcHBwcDH2z0HScnJxWrFiRmJh44cKF/Pz82tra4uLi\niRMnPv/888ZODQAAAACgtWGtINTo0KHDqlWrVq1alZOTs3///v3797/++uuvvfZaz549NZWh\nn5/ff/VVKpXfffddcHBw586dnxggk8l4PF6DRj6fL5PJ9AzQqK2tra6u1hw/vm4NGJ2Xl1f7\n9u39/PyOHTvm4+MTEhJiZ2dn7KQAAAAAAFqhptqPwc3N7ZVXXjl79mxBQcG2bdvs7e3Xrl3b\nqVOnzp07Hzly5Ild9u/fX15ePm/evP+6pkAgqL8VgYZcLhcIBHoGaOzYsSP+b0uWLDH4vUHT\nEwgE7n9DNQgAAAAA0ESafIM+BweHyMjI48ePFxcX//jjj35+fnfu3Hk8rKqqKjo6eujQoVKp\nND8/Pz8/X3MTr7S0ND8/X7N7oa2tbWVlpUql0vZiGKa8vFxbMOgMAAAAAAAAAC2Wp4w2QiwW\nz5w5c+bMmU88W1VVJZfLDx06dOjQofrtGzduJIRER0cLhUIfH5+kpKTMzMwOHTpozt6/f18u\nl2tXkdEZAAAAAAAAAFrNVxA2zs7O7n//+1/9lsTExPj4+GnTprm7u/P5fELIgAEDoqOjDx8+\n/Nprr2liDh8+TFHUgAEDNC91BgAAAAAAAIAW+wWhUCh8YjtFUWZmZh4eHiNGjHj99dcb7Cln\nZmb2wgsv1G8pKioihPj7+3ft2lXT4u7uPmrUqNjYWIVC4e/vn5KSkpCQMHLkSE9PTz0DAAAA\nAAAAQIv9gnDMmDF37txJSUlxc3Pr2LEjISQ1NTU3N7dz586urq5paWmffPLJTz/9dPnyZRcX\nF0MvHhkZaWdnFxcXd/nyZTs7u1mzZoWHhxsUAAAAAAAAABrsF4SvvvpqaGjoTz/9NH36dIqi\nCCEMw/z000/Lli2Liorq27fvnj17Zs2a9e6770ZFRTVynQkTJkyYMKFBI03TkyZNmjRp0n/1\n0hkAAAAAAAAAGuwXhKtWrZo7d+6MGTO0LRRFzZo168qVK6tXrz5z5sz06dPj4+NPnDjB+tAA\nAAAAAACgP/a3nUhOTu7Wrdvj7d26dUtKStIc9+nTp7CwkPWhAQAAAAAAQH/sF4Q8Hu/69euP\nt1+7do3H42mOZTKZSCRifWgAAAAAAADQH/sF4ahRo7777rsdO3ZoN4hXqVTbt2/funXr6NGj\nNS1XrlzByp8AAAAAAADGxf4zhBs2bLh06dLChQtXrVrVoUMHhmHS09NLSkp8fHw+/fRTQohU\nKn3w4MH06dNZHxoAAAAAAAD0x35B6OLicu3atc8+++zgwYM3b94khHh7ey9ZsuT111+3srIi\nhAiFwtOnT7M+bitz++z9vLvF+ser1eoHydXlYkZ574pBA3Uf3sHJy8bA7AAAAAAAoDVgvyAk\nhIjF4vfff//9999viou3EddOpF347Zbh/apukYcGdXDwtEFBCAAAAADQNjVJQQjPbuj8Xr1G\n++kMy0x+2K6jnZmFQC5VfPtijNCav+ircYSQwvtlNE07eFjrvIKLnwML6QIAAAAAQAvEWkEo\nlUr1CRMKhWyN2Lo5+9o5+9rpDDu358bVo6mv/jyFK+AQQjh82u8Fj3uXcw58cm7KmsF+L3g0\nfaYAAAAAANBSsbbKqJl+2BoONOZvGm3rYvX51F+rS2o1LelJeVsW7h+x+Pl+k7saNzcAAAAA\nADBxbE4ZFQqFffr04XA4LF4TGsflcxZ9M27r0oNbFh4ghKjk6s3zfh+x+PnQZX2MnRoAAAAA\nAJg61gpCHx+fjIyMtLS0uXPnzp8/38fHh60rwxOVF1TfT360fkzvsE5xW68QQqQV8l5j/Jy8\nbJKPphJCaC7tP8iby0eJbhIYhpFKpWq12tiJAAAAAAA8wlpBeO/evTNnzuzYsWPTpk0fffTR\noEGDFixYEB4ejmmiTeR63L34769qXyrqlJqDzOSHWTfyNccUTdm7Wbt2wrIxRlZVVZWcnHzn\nzp2YmJjS0tKCgoKAgAB7e3tj5wUAAAAAbR1rBSFFUSEhISEhIRUVFXv27NmxY8fMmTOtra2n\nT5++YMGCwMBAtgYCjZDZgSGzH/2ppiflbZm3jxDC4dN8M+6rP0dYOYiMmh38o7Ky8tSpUykp\nKQKBwNfXt66uLjExsaysLDg42MnJydjZtWZKpbKkpKQZBuLz+ba2ts0wEAAAAADr2N92wtra\neunSpUuXLr1+/fqOHTt+/vnnb775ZsOGDa+//jrrYwHRVIPz9w2eH3h08yWhmGfvbr1pxm+t\noyZkGGNnwIbk5OSUlBRfX9+ysjKaps3MzFxcXLKzsxMTE8eMGWPs7Fqz2tra06dPG9Slqqqq\nrq7O1taWx+Pp38vR0XHIkCEGZgcAAABgEppwH0JfX9+AgIBLly4lJSXV1NQ03UBtmaYaHL6o\nd8jcHkc3XyIUpVljxgRrwsrCGoVcpX98VVX11a+L6KlW3u0qDRrI2tmCyzOVxyYVCkVhYWH7\n9u0btLdr1y4uLq5///7W1rr3ioSnIxAIOnfubFCX27dvl5eXe3t7W1pa6t9LJDKhHzQAAAAA\ngzRJQXjhwoUdO3ZER0fX1tb27ds3KioqIiKiKQaCA5+cDV3WZ/ii3tJamaaFy+e8uDnsuyUx\nF6JvmdRao9+/Gpt2OcfQXme/unP2qzsGdXk7do6Ln6k8NimVSi9cuNCnT8O/CA6Hw+Px6urq\nUBA2HaFQ2L17d4O6yOVyiqL8/f3x9wIAAABtBJsFYUFBwe7du7///vvU1FRHR8fFixcvWLCg\nU6dOLA7RdpzakXT77H2dYXwz3p0L2XcuZKtVakKItEL+5ey9mlNpl3P0KcBGv9zPt5fLM2ar\njw7Pu1nYmesM++t0poWtuWc35+qK2nsXc82s+Z36eVWXSjKS8jwD2lk7Wei8gpmlgI182SEQ\nCPr16yeVSoVCYf12tVqtVCoFAhNKFQAAAADaINYKwnHjxh09epRhmOHDh69fvz4sLMygh3Cg\ngYKM0rsXsg3tpZKrDe01cEaAoaM8nTGv9NMnrDS3ctOMaJpDjXwp6N7FXFt3UcjsHpvn7xu7\not/IpSZ0w1NPfD7f3t7+6tWrHh4e9duLi4tDQkJsbGyMlRgAAAAAAGGxIDx06JBQKBw/fryL\ni8vFixcvXrz4xLDPPvuMrRFbtynvDA7/X7D+8SqVKiYmxsHBYeDAgQYNJBDxDUytadm5il/9\necqmGdFVZTWEEHmtcvP8fSOXPN8Sq0GNHj16lJeXZ2Vlae4HqlSq/Pz87Ozs8PBwiqKMnd2/\nyOXyZhiFoih8WwQAAABgIticMiqVSn/99dfGY1AQ6olvxuObGfChWaVScc1ovohrLhbqjjZJ\nNeV1ZXlVmuOIdwf/8MYJQkjJ/ZqB07t3Huj14K9CQghPyG3na2fMLA1nb28/aNCgxMTE33//\nvaioqLy8fPLkyZMmTXJ3dzd2av+iUqn27dtnUBelUqlUKnk8HodjwCo+ZmZm48BmIqAAACAA\nSURBVMePNzA7AAAAAGgSrBWEiYmJbF0K2qZ9689cOnC7QSOjZs7+dP3sT9c1L7l8zofnF1nq\n8SyiSXF0dBw9enSHDh3i4+N79uzZq1cvU7s3SAihKMrZ2dmgLtnZ2ZmZmf7+/o6Ojvr34vNN\n66Y0AAAAQFvGWkHYq1cvti4FbdOcz0LnfBaqOU5PzP1qzu8KmZLLpwOGd5y3cTTNMbkKylDm\n5uZisVgkEplgNUgIoWk6JCTEoC537tzRrJrj5ubWRFkBAAAAQJOijZ0AQEPpibmb5+8LmvAc\nIcTe2/L+9fydr8WqVa1il3oAAAAAAFPCTkG4a9eugoICfSJVKtWuXbuKi4tZGRdaH001OHLJ\n80ET/AghHD796s9TUBMCAAAAADQFdqaMzps37/Tp0/o8gKRQKObNm3fx4kUHB1PZOhyax/cr\njty/nq8zrDSvytxKcCH61pkfrxFCCu5WfjEzWq1SJx9LTf3zgUCke6GdZTsmOvvYspAxAAAA\nAEBrx9ozhCkpKQ223n6i5lnXHkyQtFYhqZLpDBNa8BmGSKpkDMMQilA0peklEAlUKrU+V2DU\nahbSBQAAAABoA1grCJctW8bWpYAQkpOTU1ZWpn+8Wq3Ozs6uqamxszNsVwZPT0+xWGxgdk8j\n8psxDGPAnM+KioqvF0Y/P7Xj8EmDDBoIe9wBAAAAAOiJnYLw66+/Nijey8uLlXFbsfz8/IyM\nDP3jGYYRCoVyuTwlJcWggWxtbZunIDx37lxRUZH+8VKpVNkl705eXfW+UoMGCg0Ntba2NjA7\nAAAAAIC2iJ2CcPny5axcB7T8/PyaZ+PyZqudbG1tadqwRYw8PT2fYiAul7X73gAAAAAArRs+\nOpsoKysrKysrY2fBph49ehg7BQAAAAAA+BfsQwgAAAAAANBGoSAEAAAAAABoo1AQAgAAAAAA\ntFEoCAEAAAAAANooLCoDpkuZ/gfHrTclsDR2ItCQVCpNSUm5evXqnTt3GIbp1q2bn58f1ncF\nAAAAaHGa8A6hSqVquotDW1C7L1KZecbYWUBD1dXVx48f37dvX2ZmZmVlZWpq6o8//hgXFyeT\nyYydGgAAAAAYhuWCsKys7N133+3Zs6eFhQWXy7WwsOjZs+fatWvLy8vZHQhaJ4aRxCxTl2dp\nXxKG0RxI49crsy8aLzP4x+XLl2/evOnv729nZ2dubu7g4NC9e/cLFy5cv37d2KkBAAAAgGHY\nLAhv3LjRuXPn9957Lzk5maZpFxcXmqaTk5PXrVvn7+9/69YtFseC1omimLry6q0h/9SEhBCG\nkRx+RXr+S8rc1miJwd9qamoOHTrk4eFRv5GiKHd39+zsbLVabazEAAAAAOApsFYQ1tXVTZw4\nsbi4+LXXXktPT6+qqsrNza2qqkpLS1uxYkV+fv6kSZMwowx0EkX8yPXsX/1dsLoskxBNNbhC\nfv1Xyxf/4Dg8Z+zsgNTU1HC5XD6f36BdJBIlJCRIJBKjZAUAAAAAT4e1RSB+++23jIyMLVu2\nLF26tH57hw4dNm3a5OXl9corr+zdu3fmzJlsjQgtCyOrJmqlPpHmYzdJYpZVfxdMGLXs0rfK\n3KsWc2NosStTp9fEY0pgRWjOsyUL/4nD4ajVaoZhKIqq3655ZhjrygAAAAC0LKx9ejt06JCn\np+fixYufeHb58uWff/75wYMHURC2WVVf9FCXZRjaS131kBBS/U1//btYLDzJ6zDU0IFAT7a2\ntv369SstLbW2tq7fXlpaOmLECKFQaKzEAAAAAOApsDZl9ObNm0OGDKHpJ1+QpumhQ4dizYk2\nTSVvbQO1SRwOp3Pnzunp6TU1NdrG8vLyBw8edO3a1YiJAQAAAMBTYO0OYWFhYYN1Jhpwd3cv\nKipiazhocSxePEVk1XqFMow04XNF6gmKw6Wt3dWVeeYTt9JWLnoORDt2fvosQQ9dunSZOXNm\namrq5cuXy8vLlUplSEjI0KFDG/8NAAAAAAAmiLWCsLa21szMrJEAkUhUXa1fPQCtEce+o15x\nDCM5vEJx7w/LxWdrdoUJB78tv7VPEvOS5aLTtK13E+cIeqEoqkePHh07drS3t7927dqAAQMC\nAgIwWRQAAACgJWJtyiij2S/umWOgjZMcXiG//ovli39wnLsSQghFi6bs5Hr0rd42RF2RY+zs\n4B8ikcjFxcXV1dXFxQXVIAAAAEALxeaSgHv37r179+5/ncU+hKAPdWXOP9WgBs0VTf1JcmiF\nqjiVtnYzXmoAAAAAAK0NmwXhlStXrly5wuIFwSCqwtu0pTNlbmfsRJ6Jxaz9/3qt2duA5pqP\n32yUfKARjJopvSslBiwBCwAAAACmhbWCMDExka1LwdOpO/Ia77lRgv6vGDsR1piFfsR172vs\nLOA/VTysvf1T6dh5mAoOAAAA0FKxVhD26tXrGa+Qm5t75syZq1ev5ufnc7lcNze38ePHP//8\n8/Vj1Gp1TEzMiRMniouL7e3thw8fHh4eXn+vC50BrYw0YSPvuVCOYydCCGHUDKPStMtv7aME\nFryOI4yZ3DPjd59q7BTYxKiZpK+KfDfIjJ3IkzFqJidF9zrA5QXVV2NTQ2YHcnh0aXYNISQ/\nrYyqEUhr5Kd3Jw+eGygw5zd+BQ6XdvFzYCdpaHsUUiXDMHwznrETAQAAaCXYnDL6jKKjo8+f\nP9+9e/cePXrIZLLz58+vX79+2rRp06ZN08ZERUUdOXKkX79+YWFhKSkpu3fvLikpWbx4sf4B\nrYy64kHN1hCLRacf1YSEEELkV3+o3b/IYvYBIyYGWiU5lfZuYkIIwzCSIoWsVqFpL8+vFjta\n0BzKqNn9Q6lQfTTuRz2DEw/d0R7/sOSU9vj6iXs6+4qdLD7+s9X+SEJTO/zFBaVcNWXNYGMn\nAgAA0Eo0bUEok8nu3LlTVVXVrVs3a2vrxoODg4MXLFggFos1L6dNm7ZixYq9e/eOGzfO3Nyc\nEJKTkxMbGxscHLxy5UpCyOjRo3k83rFjx0JDQzUboOkMaH3Mx2ySqJTVWwdZRv6haZHf+LV2\n/yLR5J2850KNmxsQQmrKJOuGfx/x7pD+U7vVb085l/XdkpiVv0716OpsrNwaoDl0gyT/i1yq\n/Cs+U2DOo4WkNKvavbtDWU4NTVNdBnlzuLrvxptbYUlSMEzG1Tyxo4XmixWFTKmUP5oKUZpb\nWZ5f7RvkatTsAAAAWjY2C8Jjx47t2rWLz+dHRkYOHDgwLi5u/vz5eXl5hBA+n//OO++8/fbb\njXTv2bNn/ZcWFhZ9+vQ5dOhQQUGBt7c3ISQhIYFhmLFjx2pjwsLC4uPjz507N2vWLH0CWhCm\ntpjRbxt34YBXGVlV9bZBHGt3ZVaC4u5R89BPue7Pq8sy9elOWThRfNGzJdtGbZ6/r7pUojPM\npp3lnrdPHt1yUWDBJYQc+zj55Ke3irMrrJ0t9rx9Up+BXo+exhM0+c18DpeesX64nsFVJZIv\nZkbXVkkIIVXFEicv2+U7JwpFOiaLAjRw4bdbx7+9pDOstkIqk8jFjhYcLl1TXkcYcvdCtkqp\nriyqEZjzRNaNbYGrMSwyaOCMADZSBgAAaG1Y+5R59uzZ0aNHa3YajI6Ojo2NDQ8PNzc3Hzdu\nnFwuT0hIeOedd/z8/CZNmqT/NauqqgghNjY2mpfp6ekcDsfHx0cb4OXlxefzMzIy9AxoQWr3\nzlfcOWJQF2VtKcm7RgiRHF5BDq/Qs5dowrf8Ppi/9zQeppaUF+hVtBNCyh8+iix7UPOoJb+6\nPF+v7ozaVFZtOfHdZUnVo2cgO/Z1u/DrDUKItFrhMdL52JZHH+sd3K31vNMIoJAptf+iGkHR\nFM2hKwprBCK+tFZOEULRlLRWTnNoiqb1uYJCpmIjXwAAgFaItYJw06ZNIpHol19+8fT0XLRo\n0axZszw8PC5cuKCZKXr//v0ePXp88803+heEeXl5Fy5cCAwM1BaEZWVlYrGYw+FoYyiKsrGx\nKS0t1TNAo7a2VqV69OFAJjPRFT6IrKZ5xmHktc0zUOvz4YVFjQcoZEqFVKk5vnsh+/tXY1VK\nNc2hw157YcC07pp2Lp/TUpbHYBhSWyGtq370I6OUqwh59ACktFpGcx5NFpVUSY2TH7RAg2b3\nGDS7hz6RDEN+XXPyetw9tYrHqBlzsbBLsNe8jaO0//AAAADg6bBWEF69ejUiImLMmDGEkHXr\n1g0bNmz16tXa5wa9vLymTZv266+/6nk1iUTy0Ucf8Xi8+uvByGQyHq/hR2c+n68t6nQGaCxY\nsCA9PV1z/Nxzz/n6+uqZVXMSDl/HK7qrZ7AyN1GetIu2cCQ8M3VNkXDAa7RVez378joMe9oc\nQYeN037LupHfoFGtUsdsSIjZkKB5KbIWbkhaTpnKyjKNoSgSvipYc1xXJftq7u9CS15NqYon\n4FQW1i76blwzzGuFtqauWpZ9s0BzHDCiY0VB9c3TmRQhdq5W/Sb5p13K0Zzy6OpsZiUwXpoA\nAAAtGGsf4AoKCrRzNTWP/Lm7u9cP8PDwqKys1OdSUql03bp1hYWFa9eudXb+Z8kNgUBQV1fX\nIFgulwuFQj0DNPr06ePp6ak5FgqFmmmupobrNZDrNVCfSPmNX+XJP4oidsuTvud2HKkuuy+7\n9K1l5B8cZ/+mThIa9/IPk2orHt0uS0/M/enNEyqFmubQo17q+/z4zpp2oQXfRKpBtUp98PPz\n+kQqZaqko6k0TcxsBDWlUgdvcdatgvdG7AwY0UGf2zVmFvyRS/s8c74sKysru3379uXLlx88\neMDlcv38/Dp37lx/ugEYxb0ruXvfj9e+VCnVhCEMIUVZ5Xve+ecR3IlvDgoY3sEYCTZUkFFW\nofdM8mfR/jkHK3vzZhgIAABaPdYKQqVSqb07x+fzCSFc7r8uzuVy9Sm9ZDLZ+++/n56e/s47\n73Tp0qX+KVtb2+zsbJVKpf2UxjBMeXm5v7+/ngEaK1b883xdYmLikSOGPapnUuRXd9fuf1E0\n9Wd+14nypO8JRZmP+5qolTXbh1osPsNx8DN2gq3ZeyN3VRbpNbNXpVTLJIpHK3BS5MiXf8Zt\nvcLl61tsfPznYp6wyW++qZTquK1XnqJj5pUCQkhted2pqCR94q0cRaZWED58+PD8+fNpaWk1\nNTVSqTQzMzMpKWnw4MFDhgxp8HsMmlm3IT7dhjz6qrE0t3LTjGiaS1OEUSvVS3+Y3M7Xzrjp\nPe70rqvn9txohoEWfjW25+jnmmEgAABo9Uzrs45cLv/ggw9SUlJWr14dENBwRTgfH5+kpKTM\nzMwOHR59E3z//n25XK69M6kzoPVRpB3XVIP/NFGU+YRv6/jmyozTKAiblG17S55Ad1EnrZEX\nZ1fYOFsILLkFaeXW7c05FLfkQaXIRmhpq98X/M1yC5GiSbd59jrDpBWqohsS134WNI8qya14\neFLpPcnMwlKkkKgfXqpx6WfBFeq4SSg0N62pfSqV6vLly7m5uT4+PhkZGbW1tfb29i4uLvHx\n8e3atevWDQvkNKHCzLK8u8X6RFaXSmK/uujoaS0pq2QYlaufw2eTfh71cj8bZ0t9urfvaO/c\nLNVjpwGeQksD/oUzaubk9kSbdpZBYZ10R9fj7GNrYGoAAABPxmZBuHfv3rt37xJCJBIJIeTr\nr7+OiYnRnr1161bj3RUKxYcffnjr1q033nijd+/ejwcMGDAgOjr68OHDr732mqbl8OHDFEUN\nGDBAz4DWRzRtzxNaKcpszMZmz6XNWf79RJ0xNWWSNwdsm7wmJGR24IPsBx8Njg5dFdh/RO+b\npzK2v3Ro8Xfj3bs4NUOq+qA5dK8RXXTHEUIiHv23Ik+y/2TigPG9Ht38nKBX78cf9DWuwsLC\nhISEXr161W/kcDiurq7Z2dkoCJvUzT8y9n98Vv/46jJJaNcjHI7qyPlxhJDf15/Rs+O4lf1H\nNktBGDC8g0GTV1VK9cntiXau4glv6PWMAAAAAOvYLAivXLly5co/U87i4uIM6r5169bk5OSO\nHTvm5OT89ttv2vaBAwe2a9eOEOLu7j5q1KjY2FiFQuHv75+SkpKQkDBy5EjtA4E6A1o3fu8X\nOY6GfccMTc3C1vzNg7MevzXRbajPmuPzbF2sjJLVE9E0HRQUZFAXZYBKpLDt07drE6XUPGpr\na83MzKjHHuU0Nzevra1lGObxU8CWDr1d9SmEck/HShTWHYb2o2hKdP0kxSgnvDGQYZj0Py6Z\n0SWug8fqvIJvb2xeD9BqKaTKnJQi70B9l9MDgAZYKwgTExOf8QqFhYWEkLS0tLS0tPrt3t7e\nmoKQEBIZGWlnZxcXF3f58mU7O7tZs2aFh4fXD9YZ0Irxu002dgrwBNpqkKIooQ1HYP7oh87B\nw9p4SbGDy+P0m9yyq0FCCI/HUyqVj7crFAoul4tqsEl5dm/n2b2dzrA6t9/l17+3nDKWtvO9\n8ZY5pZb3W9RbXXa/T/lGfteJZmOeMKMEANqO9MTcH1ed0LkXFAD8F9YKwgYTrp7C+++/rzOG\npulJkyY1spmhzgAAY6FoqvdKZ5GdUHcoNCMHB4e6ujqJRGJu/q9HOktKShqsawXGYhb6sbqm\nqHpriOWi02IHEVHz1OXZ1duHcN37mI361NjZAYAR5KQUpV58MHRBL0KImmHUfy9bWFUiORWV\nOOGNgRSNr/MA9IUtfQGgTROJRLNnz757925NzaM1YxmGyc3N7dixY9euLf7+ZytB0aLJ33N9\nh1RvDXFoRzu041VvC+G6Bomm/Uxo01oaDQCaB4/POf7NpQYPIVeVSDbN+C0/vZRgcgeAIdj8\nX+mxY8domh4xYgQhpKioaP78+fXPduvW7cMPP2RxOAAAVgQGBlIUde/evbNnz1ZXVyuVypEj\nR/bp08fausVP6zVx0tMfSc983GgIQ9Qq7SGjksuTfyKEEJpWVBdWvCt+dIriNP75TzBgpdnQ\nNc+eMAA0tZoyyUn9NjHqNsT3zO5raZdz7FzF0hrZb+v+SDx8V2jBd/axjdlwTmd3OxergTMa\nLmgP0DaxVhDeuHFj9OjR3377realRCKJjY2tHxAbGztx4sSePXuyNSIAACtomu7Zs2fnzp2t\nrKzu3bs3ZswYLy8vmsYEiianfJjMSKuepqdaxagl+oer8q4+zSgA0OxqyqUGbYqbfbMg+2YB\nIeTM7mvEkE1xvQPboyAE0GCtINyxY4eDg8O8efPqN+7cuXPkyJGEEKVS2a1btx9++AEFIbQa\nBw8e1OywoqeKiorMzMzCwsIbNwzbt3rKlCkcjr672MNTMzMzc3BwqKystLOzQzXYPAS9X6TN\n9N1Pj5HVKO4cJhRFCEXUSl6nsZRQ33V6eV3GP22OzaGuWmbsFABMhZ2r1eqDsxoJUKvUSbGp\naqVa87KmTJIUm8ao1WJHUcCwDjT30W9vR0+bxtcdFZib1h5IAEbEWkF45syZYcOG8fn8+o3W\n1tbOzs6a47Fjx547p/sOPkBL4eDgIJMZ8DHO2dnZz8/vKQbCQpfNhlEzsiqV7jhgSZF55yyn\n2fpE8iQFHrdektoFKQXWlFpJqRUWafFZ/b6Si/TaT8JD5GHK+05Ia+XGTgEas+OVIxFrh1jY\nmBk7kTaBJ+C6+ze2Q69MoqguvaaUP/pdrZSrKJowakJzOdXlddowBw/rxq8DAFqsFYT379+f\nOLGxfbo9PT3r71MP0NL169fP2CkAy/L/qrgZVTI+wth5tBnV1dUPHjzQGWYmLwlKf7/M3OeG\nwzynv77iENXDriv9a2pczy1N7PBOLV/3Zz5ra2tXVxMqCb+cFd0l2Hvown+tzq1UqL5fEevW\n2TF0WR9jJQZajJrRLlOZdOTuyCXPawrC+u3QFAoyytYN//4pOpY/rCp/+M8U9OSjqdHvxTcS\n7x3Y/v/2Tn+KgQBaH9YKQqlUyuP9c/Pdw8OjurrazOyfr9PMzc3r6uqe1BUAwGiKH1QUpJd2\nHexDCFEp1cyjWUhEJlEkHbn7whQsNNqEOnTo4O3trTNMtm8B8RviMPF7H5qTWrCHUiv6TJxE\nmHDZgRdDVJcEE3frvIKpTboe/XK/zfP3KeXKYS8+2kRRqVBtX36oIL0sYs1g4+YGhJDaCunb\nwdte3DKuU3+P+u0FGWVfzPwtcnOYT08XY+XW6gnMeX4veOiOI0SlUGX/VcgTcK2dLQozytw6\nOz74q1DsaOHoZaNP93Z/7xIMAKwVhLa2tnl5edqXFEVZWFjUD8jNzbWzw88eADQTtYqR1uie\n01uYWbZt6aHw1cHPj++skKoIw9RVyRhp9Y6XDstlyoDhHXTO2KW5tFDE1xEET8LhcPQp1fhT\nfyDUo+eCaJqmCK15PIE/dTdh1NpTLYhvkOvy7ydunr9PrWYIIYQhUS8dLkgve3VPhNjJQldv\neCZlD6vUKkZn2OB5vb558cCMD4b5BrkSQioKaqpKJTtfi+3Yx83KwaIkp1LnFexcrHAv8SnY\ntLN8ZfdknWHVpZKN03/r2Ntt0bfjUi89+HHViTf2zchJKfpyVrRbZ8fwVcHNkCpAq8FaQdij\nR48TJ06o1eonLsagVqtPnDjRo0cPtoYDAGhcQUbp+6G79AyOfi9eO7novZAfte2v99yss2+H\n3q6v/TLV8ARBb/VKvmrL54hK8cRTLYu2JiSEVJdK8u+Vvronwtr0qsGirHJpTXM84ujsY8s3\na45FPjZO+600V3c5p/HD/x3THGxesE9zcPVI6tUjqfr03XTjZaEFvipqKnl3i939nWZ9NILL\n/+dLJbfOjq/8OGX/x2cxsxfAIKwVhBEREfPnz9+0adPKlSsfP7tp06Z79+69+eabbA0HANA4\n/ecdEUJqyuvy7hZzeLRSphKI+IQQd38nDlevYsPlOfunzxIMVOQQrFardceZqvO/3jzx3WXt\nS6GIL5Mo5HUKpVz5ecQvmkaaS0d+HebaycFIOf7LL2tO3b2Q3QwDrT40y71LcywBEjTWr6Zc\n3wdYCtJLM64+ZBiG5tAOHtYdglyJ3lUGh9dSv61oEfxe8Hjib3i3zo763GAEgPpYKwhnzpy5\nZcuW119//fbt20uXLg0ICOByuUql8vr16998883OnTt79eo1Y8YMtoYDAGicnau48Y8FjJq5\nFZ+plCs1L3NuFx7feoUQIjDnjl85QPD3LFAnHzuUfMCWzgM8za0EmmOVSv3HjquVxbWEIj6B\nLgEjOmjaKZpy8LA2Xo7/0mu0n0FLNdaW112IvmXnJu456jmDBrKyFxmY2lMa9/qAxgO+WxRz\nLzFX+5Lm0iqFilEz1aWS5ONpmkZLO/N3T8zDPSgT4eHvNOZlLPMG8PRYKwh5PN7BgwfHjh27\nc+fOnTt3UhRlbm4ukUgYhiGEBAYGHjx4sP6qMwAAxiWpkh7amCCTPJp/qPllRQiRS5RHt1zS\nhgWOem7CGwONkB+0RrYuVrYuVoQQpUIV9dJhzQ6EYgfRzfiM9s/Zj1xqcuuLvhCh17pK96/n\ne3R1pjlUQXrphehbdq5izU9NYWaZha2ZyNqENmxIT8pTypSNBHQb6uPT89H+ddWldWd+vqZS\nEIqQ7sN82vk8WgqBb8ZLvahjgdyOfdxoDm4SNgcLW/P+U7sZOwuAFoy1gpAQ4uLicvny5d27\nd+/du/evv/6qrKxs3769v7//lClTZs2ahWoQAJqTTKK4f+1h4zGT3grRHChlyoMbL7jZpw7s\nEPfLlXndBvt0HeKjDWt8ypyZlcCjq/OzJwxth6YazL9X+vLuyW8P3MYVcJd/NVbzPKEJ1oT6\n+H7FEZ9eLrM/Ca3fmJ6Ut2X+vlmfjAwM7WisxB63a+VR/Z8h1FIzzMXfbxvUBc8QAkBLwWZB\nSAjh8XgLFixYsGDBE89eu3YN68oAQPMoza38cvZenWEcSsXjKqQKISHEr12Fi3WuWqmO/yE5\n/odkkaC2VqZ7GpspLypTeL+8MKOs21Af3aHQjH783/H8e6Wv7YmwsDPXtPgGuS7ZNuGbyANi\nJ4u+E/2Nm95TePXniI3Tf9v5amzosuc1LZnJD7fM3zc0MsikqkFCyMDp3WsrpTrDaiukSUfu\n2LtZdxnoFbftSt9J/pWFNXf/fNB9mK+eE3rrL3YCTYqpq1Dci+N3m2LsRABaKpYLwieqrKzc\ns2dPVFRUcnKydlIWAECTsrA1H76ot84w+7qTXhVf/3z9Fa/Bwar7eRRFBc/tXpkvsX6wLbjz\nuYt2R4iufSfs3cQspcy+22fv3zyVjoLQ1AQM7xD+v2Cxk4VK+c8COc/1dV/x0xS6ZT6WZuti\n9dqeiI3Tfzvw8TlCiLRa9vXc34dGBo1+qa+xU2tIn18L0hr52mE7gsZ2mv7+MIqm4rZdGTKv\np4ufw+kfkg98em7VgZntO+K5YhOizLlcd/hVFIQAT61pC8Lz589HRUXt3btXIpGIRKLJk7Hu\nEwA0Eyt7c32e/UuOdcw+fGlRyHeWL045v8eaZJGRLwUJb2yXnDj9+19LIw8G69yHsNkUZZVf\nP3FPZ1j2rYLaCmnnAZ6EkIykvLKHVXFbrxBCCjPL8lJL9Lld4+Ln0CXY65nzhf/UY+S//hao\nv/+ReQW0M0Y6z0RSKdVuyjf13SG7Vx0nhOSkFPWf2q1riPeDvwoJIXwh17lFbQLON+NFvDsk\nYETHBj/+IXMCHb1sbJwtjZQXO+qqZN+/Frtk6wSaYzK/3QynvH9Ofut38zEbCc0l9W42qIpT\npXHviKb/2nL3pAFofk1SEBYXF+/evTsqKuru3buEkBEjRixatGjkyJFmZib0WDkAACEkcLQf\nGRUnObi8ZtsQoWASIYS59JX0wqdWC2Jf9Akxdnb/kn+v9MCn5/QMrr/iRf1e2bcKdPbtN7kr\nCsLmJHZopgU2m8LvH565+PtfDRoZNZOw50bCnhualxwuvT5hkdixxbxNmkPVL9p5Qi5P+Ojz\nUpeBLfVHQylXaWax1pTX/XU6UylXajZ+1La3LLSttyLlcG1NkWjqT9pGCuxqNwAAIABJREFU\nVXFqzdYQXqcxqAYBDMJmQahWq0+dOhUVFXXw4EG5XB4YGPjWW2+tX79+8eLF48ePZ3EgAACd\nVCVpNTtCdcf9jVHUdaj5lggZcnotsXSu/X2hnh25br1F0395qhwN49HNOfLrsfpEluZVHf36\nom+Qa87twsri2qGRQWd2Xe09rrOeZZ6dCU+CbZVa9O4Fsz8ZOfuTkZrjjKt5X8/5XVan4Aq4\nAUN9520a1TqW2fzk4hKzvzcLaaEe3C78ctbeV3ZPbrCJyJ3z2VuXxKw7tUDsZGGs3J4OLXa1\nXHy2emtI7Z5p/F5zieZ3/rbBPL9Q8/DvjJ0dQAvDWkH43nvvff/999nZ2Q4ODkuXLp03b163\nbt2ysrLWr1/P1hAAAPpTVzxgKnMaDWEY1b9Wn9d+Kmeq8/+ZgUTRFN3Y1+cq0kyPRls7WQTq\nvbdbp/6eX86KVqvUhJAzu69NfDNk0Gys6QVNKONq3uZ5+/pN9j+9+5p7F8f7N/J3vnq0ddSE\n3IeniGg44bTgxdLduzgFzwz4Ylb0y7smaXcBuXM++9tFB8a83M+0qkGVQq3jV/c/RBE/1P4y\nXV2eRVSymm8Hcr0HCkNWq8uz9OrMFdJW7Z86TYDWhLWC8N133/X19d2/f/+YMWOwwwQAGB1t\n4cyoFCxciFEzKnUj5ymxGwujsKE0tzJmQ4Ja/ahAdevidPd8FiHE0cv2XmKudq/toLF+AcM7\nGCtJaJU01eCwF4MCR3Y8vfsaV8DVrDHTOmrCml1jrVbc4DjrtSVjM2PUzJ53TuoZbO8q/izi\nl47PuxFCti45ePfPbHd/p+IHFT+/Faezr9CCP3H1oGdJVU+KrAs12wybrq+ueFRAym/uld/U\nvbi0BmXZzvptHVsTAbQRrBWE9vb26enpb775Zlpa2qxZs9q3x5cuAGBMHGd/m0/0vXcnPfeZ\n9OTa0o5zzFN/E/qPo+/FWrwYz3Hq3KQZsk5gznPwsNYuXKld6oPmUPWXQrWybzGPckFLsW3p\nweGLeocu61OQXqppsXWxeuXHyZum/3bl4J0+4V2Mm56hGHlNXewbZiPXU2Y2hBDCMI+WLVEp\n6k68JegdSdubylcqDMOc//WmQV3unM8mhKQkZBFCsm4UZN3Q/VwxIcTSzrx5CkKdCzuzNk6j\nUz+MS5kRr0g7aRb6kbETgbaCtYIwLy/vwIED27dvX7169VtvvTVixAjNrFG2rg8A0EQ01aDF\n3MMPb183pyhqxGc8gaBm2+AWVxNa2JqHvdZfc3z73P3TPyRb2JlXl0rK86qUctWkt0JMZ8VU\naGXWnJinnYio5eBuveb4PO1yLC0IxeGrilKqtw+1jDz1qCYkhKgUtb9MU+ZdEwxcadTs/oWi\n6ffPRDYe89Xc32tKJdqXslqFWq2muZTAjK9tbNfBbt7G0Y1cpNk2ROF59rdeW6ZnsKo0o3bX\nWI5TJ1X+X4Qv4rbrZj4pitD6/ZPTM6zZqJWEYTQzk1WFKcrsP7VnGKWU4gqNlxm0fqz9MPD5\n/IiIiIiIiMzMzB07duzatWvy5MkikYgQ8vAh7sgDEMKoKz9ob/lyEi12NXYq8A/F7RjpybUW\n849yvQaS29cJIYSizMdvlqjkNTtGiFc/aLavq3XSc9sJQkjh/bLLB1L8B3lnJucRQnqN8bvw\n680Htwr8Q3z0eTfYdgK0Dnxy7sHtQv3j5RIFIeRhavGXs/Wduacx7b2hjp42uuOaB4dvMf9o\nzc4x1dsGW0aeIoQQtbo2eo4yN8ly0RnawklX/+bDqJkvZ0U3HqNUqPh/l+VKuUqtVhNC1EqG\nw6U43Ed3ycofVjd+HZGN2aoDM9lIWRea808R3ihVSVrtD+N4fqN4/pMk+xZq1piRHFgqmv6L\nyRV7epCe+VR++4DlwrgGb7/u+JuK1GNWr1wzVmLQFrD/A+Pt7b1+/fr33nsvNjZ2+/btx44d\nW7Zs2WeffTZp0qTJkycHBQWxPiKA6WIYVd5VjmsvQghh1OqaQkZaRcSEEKIquMWx70i4LXvl\nulaA6x1s+Uoyx/7fu/NRtPnE7cq8JNOpBomB204QQm6cStccnP3pGiEkPSkvPSlPn47YduKp\nyesUSrlK/3jN/F61Ui2plBo0EN+cx+U1x4S3B7cL717INqjL/AHb/0gZdvdCnUG9pLVyg+Kb\nGsUzt5h3pGbnmOrtQwkhdSfeVBWlWC46Q9t4Gju1BhhJlUzPUJVSLZMoeAKuQqbkCri1FTKB\niPf3E54q0ujfmKk9CKouy6z5bhCv02jz8K2KtDhCCG3tbvlifPXWQbW/zmqelZ/ZJRiwQpF+\nqnrbEMvIfx4KrYt7R3bxG4uFuh/yBHgWTfUNCofDCQsLCwsLy8vL27lz544dOzZs2LBhwwaG\naabl+ABMASMprd46SDj4LWHI6vrt8hu/1UbPsVp2idM+wFi5sUJddp+2bdmVA2Vmw/n761gV\nz1LOsXg0742iuK6m9QVWOz/bye8P0Bn28G6pok7p0cOJEHLvYt7Du2XB87oSQioLah/eLe00\nyF3nFZy8WtIe4iZl34dnzv29+Z7+Mq89XBm42aAuC78a23O0vkvOPovF341XKXSXuExZOmXj\no/kCRf7td52WDqCfG0cIYWryicCS4ulexFJo0UzfjlWssWJk1Yb2UqQeI4RUfmzArzvx2wW0\nZZPfS6Q59OfJy/WJ1KwpOvntkK4h3msGR31+ddnxby+f2X3tpZ0TPbu3a+o8WaeuKeL3XmA2\nbF39LQdpGw/LRWekf7xPGHWL24qw3ncQw/jdI4imGrzwtcXCOK7b/7N3nwFRXGsDgM/MVpZe\nBVFEmqCCBaUIKioqFswXS3LVxK6JSTS2RAWVEBMwXm9EjeVKNIkmaiyJBBARu4JSpItINyx9\nYWkLy7b5fkzuZgO6uyAyhfP8wmEW3td5OTNn5sw5HkRHB3XW9tsHTBsv9riVRAfSO974I3Vr\na+tdu3YFBwffvHkzMjLyTf86CCIVRNdMb3V86+lZQCHnTtmBb5RkXxJdXK67IJLyvcH64qYD\nw4y/FlNxcM5Lic1G5Q4L68bahX1LgrTVICUad2O4AAYANaAEAFArrhNJpdWgGEEQYAVMrP7a\nrp4uCgBweP2A+6EB9qbOPkP64BcZmPH64LcAADg8FgCaZw5vOhrAcl3Im3sQIIgURTg8FsuQ\nK6/KajnlzwuMYI9Z2gehagtTN2kwXdWUNBz/4Pf/+2zS1BVj61404hvnbfGVSxVHVl4JvblK\nz6SPKqq3MG28mDZef/0DQZSjOVDjIbyF3xMW1ssoGkqkz+O13Jk1/K2OR8fEd78BAMjKU7m+\nG+T8J3L+E20+i5rZsxxn9DxQSBNFfRFqOBgf26VorlQ0V+HbsbZ6TC5F9S0Jje619NFlHIIg\n06dPnz59et/8OggiD6atj96quNbTs/CrEGlBfPv1nboLItlj3yc6tJ7ARAJpfizbfTkAAFNI\ngUL+19WVQtaReorjvgIOgn1zDA0NR40a1a2PtNQ/Rk0bXF1dGYxuDC80NibNq1xUM3XF2Kkr\nxhIdBQH0Vl5riZwGpGLe28fxLfKqrJZIf/aY99ijlxAbWycGW/OAQqZ5PwCAQt4Ws0VemaFo\nqmBYjQIKqe67ZxEdIy1/Eapn3vMoe5uRpf5HkfOdJ3QeIPD29kmOnoN4htSesIQ5ZAJvAXkf\nOXSk/SS+9WXPPiu+u1/7nVETe8PtRT37RZA22n5fD1Cm7rLfVef4UTTxW/7rxx6zVGd6KIGx\nvSaa3NeHoL7XcnIKJhKo20MhB4q/hlohOkbtN0MBAO0xW1H9AeJbX4lvfQUAAAgKGBr+DPU/\nSUFYnafvIwrW0dwWvVle+0xn1r6/typkogvvyf5MZo9ajMAO4Rujr68/fHj3Zj2trq7WN9Vx\ncXFhMmFrD/VEx8MIee0zbfZk2flJ0n+Sld7HRLXi+/+WV2aipo5A2tb2+4fafJw7NRg10jye\n+fVp+1sUctGF9+TVOfrrHzbtG8pbcLI9bqfo8mr9tTcRHvXGVHN4LGVvkMVlsrhMlPnXiMqR\nfnbExdU7EI4+axhpx3YApo2nxjGfmPTvaWCx1hqFSIBhCMpio8a2f4/BYbARteNxmEMmvHaw\nkDq6//qlJXKa6Ke3dJdH4VsUTfyW/05hWI3SmbqL2NheE7xEgKAekpU+UPb3ugNTtFSDFq3W\nffrrA1IReTqEqImd/rpbLZHTgULG9lgDAAAKuejKKtmLR/of3EG4BkQHCP2DrjB3SG0qAIuI\nDgSiKml+rLTwpvb7471H2YvHAAB5dY68OkfLD3I8PwB90iHUikIuOveurDJT/8MHqNFgAADC\n5Oqt+KP1hzkt38/QX3cb4Rpq/BmkZaAr+vJf3zDRjwEg70J8dMJyns1ynq1xt2ZBGyZXsLO+\n6Ug8Umf6nqIixdp+INbeyFsZX1eDWDma9UGokHqInoX+2lt4nxCgTEzc1PLfKQwrN70lF/D1\nQqgLdgghqIc4Hmuxtnotd1Y08WXlyUChQFAmauHMsHDR/hehbP0eBfimMAaO0V+b0BI5XdHe\nAAAQXV4tK0vU/+AOakL528x0IhaLS0pKmp/ftWjOyMrKsrOzgwNBoR7gTv6c475czQ7ix/+V\nlT3U8FMQlPfWIZSrbrAlYkya3iAAmKQVk0n0193Be4M4hK2rtzK27co6ReOfDEtXAsPrCblE\nXvf8r7A7WrDWakwhRfAl7yozGFajSTWjcv+UEpXXcWvPBPtE/XUJ/Cu/MTBUb2VMy+k5f37p\nGVO+feOvHxAdIJ2JH0bISh+o20OhALK/5uFFdM1lZUmYvENakIDyTEBHa+uPgX/txuKp/1Pi\neKxlDQvonaB7FewQQlAPKV+V0UiSfUn06/u6C0+JLq7kLfqx7ep6ttu73GkkG10gETWGa7gg\nw+RSoJwoGFNIUn8EAEgyfwUsnaaD/3u3DUERtYNgEa6B4fbS1w4XeiXxnfC2gjv3zVanPMly\naa3WR9qvRUU1NjZum8wzrk3UX6/2nEdiIpGotLQ0Ly8PwzAHB4ehQ4fiS91Cb5T43v5uPSF8\nOUzRdnWD+l0MNj4BPLI8A0G4hnor/njJdrau7uJf+j6e1yeve958ZLzuotOdXukUPzgojt9l\nsL2Y0vNhkFze/bJTm2I07uY+6OEUx7vHbqwTRCePG1Q0fEDHNs/TmGTm+14nffW/3TpWqvEn\njJszbPFeOFtHT0jSfpBXZffgg4rWGkVhNxYFQQ2sYIcQgvqjv3qDCyLZoxeLLq5kWI/5a44Z\nAEjVJ8QUMqytoUcfVQCp6B8/Sv3u4uYe/RYIyF4kiRNCNO6GyTqwP1O9yhJddYciiiouJnqf\n9RvXoE43pU42wLX1e82XC0ynAO6krb0Rcq+pqKhISkrKysri8/kYholEolGjRnl7ew8aNIjo\n0GiO5TxHy4f/WFu9ND8WNXVUNL5gDBghr8xAjYcyh2peKAWH6JKlN9gVb8FJ1NxJ834kxrB0\n1X33rOjX94FCzhzijW/seBghjt+luzwK9gbfKAYL5Rlofru+qsPtQt5wgdhI0ibB5AoMA7IO\nmVzGjircNNDwT21+AptH7VGLBOL6bpK+eKx2FwzI/1orFZO0SQvi5eJ2BEWZ+qZM+6kAxUdf\nI4DBVv+L2G7v9Ea8vQ92CCHoDcJEdfizQfaYpcp57Zi2PnorY1pPz2EOm0mele4Qtp7u0ova\n7o0pOpKOympyQbsQsPVZ9n7aT5pKnvchKQdrrdXyWQ0KAAcATstT/J86rX99AWqypTVafJw8\nr3IBAABoa2tLTEysrKwcMWKEWCzGMGzEiBF4F3HOnDnwOeEbxfD6BFFoXqdBUZ0t/nEWY9xa\nzuwDbQeHMydsYpnYi38MUCgwduARbYYjIizyXstyPNYSHUIvYLstAgCIfn2fN/MrAEBH0nfi\nhFDd5VEsR3+iQ6O5Yd42e+9qKKGGimaFAgMAYBiIiUjsyE6VyNl6JrzVhwOVa8wYmuuyuPC6\n/Y1gj1upzYqCP22Lc/Xk2leuYzn6V2a8AKYjB/OeYKLaW4LP9MyNp61y74NQ3xBYWBD0BiG6\n5kY7/0T0LDptZw6dZLijBCHN+CgAAEAZ+OWCZgq56OJyReMLvfd+bY2cYfDBzZZTsxnmTjpz\nDrzhEPs7lvMcoy80P8XNycmJi4tzGWIxtuw/7PZaFpDKEXa27SeFHRa2trYzZmixShXJpoot\nLi7Ozs4eMWKE6sYBAwbk5OQ4Ozu7ubkRFVh/8ODBg+pqzZNgTXn6cZWRV36bl+LSpUktLSkP\nHtSbyfUHbRuf8fWTWnalsY/GnxAQEABfc+0Juaz1pJ/6Xf5aIggAAADD0Lot7nMAgPj6TtTU\nXnx9h/g6AAAgKFPDirIcQ71Vsb0RMdQZP6/268AzqlsQ4J75YrRM0fzvhX8PUQ74yPOtrdo+\ncoe6pfhJRVWh5lkh9DiNBnc3VugNEw4O5olXt9TKmscdscxcNqhxQzXn+MMLmgedDvO2MR+i\n7dI1fQl2CCHozfq7N4gwmDaeiO5f85UjuiRaoqob/rfChP6H9zCZGADAsBqtvya+JXI6QJn/\nWIsC6nUMFqKj7opZXp3TenaBlbj93XYRq5iFAAUTSAEAMgZ3WMXPDnI5q4HVnM/jTtzMmfBJ\nXwXdCxobGw0MXjKBrYGBQWNjY9/Ho0ZVVZVQKOyDXzRo0KCX/p/0Oi07aSUGRzp4Ay0BaGtr\nk8lkHR0dlpaWAFgWDDwNmLqWDM3L3MGVUXoIk0nLEnvyOYVCXlfYjQ8gaA9+C6SNQcMtInI+\nlUvlAACZVH52+/VniS9kUkTPmPtR5PwBdib4bjoG1F4ukszSYvLvnsnQuNuaySeqJFa/xgfK\nL99e5tNRVV9/NyZNj7tyzeT/dtz+6penml8OXHVwDuwQQlD/hiD6H6sfoU4B8qoseXWO/gd3\nUGNbeV0+vpFh7a6/NqH150XciVu6Pg6F+gxq5sibtU9UW3MrLm6ozVDz5gxryUMAsA6mYanF\nvKpagaurq6mTk8YVscgGecWAQwzT8L5q3+Pz+UVF3VgYGsOwkpISLpdrbW3drV+kp6fXNx3C\n0aNHd2v/5ubmmoxBQ0Z4uE2Z8oZCgv4BZWke3IEplO8syOuLFbXPMIUcoCjTavTf06iiTPVd\nPkqvtEEsLSeVwXW0SRVyBYIgAAFikfTf75zn6LJRVKs5YOGkMj02bq6z9TDNt+ll0lEo02yC\nrSDpUg4AgMFgcHXZk1fPrDcLsALypQzNbbLtKKteCPcNgB1CCIK6gWHtbrDl6Uu3G24v6ft4\n+hV5ZWbHY81z2xpi2ISBEsD/fYCiQoYwWZhUR9rgWPGLXDLQWsqVFf0pK9LwIiJziA/bfVkv\nRd0LjI2Nm5qaBg8e3Gl7U1OTiYkJISG9ioODw4ABA7TfX6FQ1NfXm5qa+vhoHlSpysyMTAPO\n/ynNfocdXISmz6AM7V//7ngYIS1I4C08Lbq4nPfOT22X1+j6btL+DXCoZ9g6TLPBmrvTGIYJ\nypsQBAx0NGtrFrc1iwcMNWmobG5v7rAYasziaL5i1zfl9Ua8/ZG9u7W9u7q7cpk3Cu/9nAkA\nAKARAGBhb9rQZlLfamDlZFb8pKIYAAAAyqheGDzFysH0zcfb+2CHEIKgHkL1B3K8PwYoeaeC\noBmFsKwj+aQ2eypnDGQBBQCAJRexABjLaASZeR1a/SYZqTqEdnZ2Y8aMefHixcCBA5Ubq6qq\nRo8ebW9vT2BgXRkbG3frRTiFQmFmZmZubm5jQ66JfCD66XgY0X49WHd5FMPEFgDAHjkfYXBE\nv74PAIB9wjfKYfygnVGa/4fjTyQnXcrdcu5dwwF6d89kpMc933L+X5gC+yX4RvnTWm1+AvTm\nmNsYufgMwb/GMJB9uzjmyf8BANxH6tuM+OsmIIIi+iZUnTYPdgghCOohhGvA+7/viI6iH2Ha\n+RlsTNO4m/RZjPjOPs7c/9QxBlXePGzcmo8EfGtlrIPFbUJN7LR5z5Nc0x0BoKOj4+vriyBI\nWlpabW0thmHZ2dnu7u4+Pj46OlQ9+wIAMAxraGioq6sDALS2turp6REdEURb8soMvDfIcvRX\n1P81qpnttghgctHFFUyHaajBQPU/AXrT/JaNnbR0tI7+P+b0QlBkadjM5jrRqz4F9YqkSzlP\n75dpuXN5Xq2wsgUAwGQz0uMKBPxmU+u/BouWZWuYgmvK8rEO47r3gkDfgB1CCIIgakB0jBjW\nWsxqjaBMpwCmjacNAM1P4xn8atsJ85lMJmbnJSt9oNVPIB9LS8s5c+aMGDEiOjoaw7B58+bZ\n2tpyuRSeYqGpqSkxMfH69etlZWU6OjqPHj169913PTw8WCRefUEjDMOamprq6+uNjIwkEgmb\nrWFJLqjPMKxGv3T1efaofzHtJqP6JH2vqV/hqKwiaGJtYGn/vynoEGBoQfnFdeSCAiCTMCxH\nEh3Iy5Xn1aZfe97dT8kkcgDAi6yqF1lVWn5k9HQHAGCHEIIgCHrDGAPHKL9WoCzsf1PJI7rm\nrJHzCQqqF3C5XGdn54KCAoVC4ezsTHQ4r0UsFt+6dSsvL2/8+PED0RqMN8DScUxsbKxEIplC\n2blYBAJBcnJydHR0RUWFnp5ec3MzvijIq+YEgvoUgih7g4iOMWPQOOR/K2jD3iAJuU2zd5tG\nrvHwr6nw5BdYR7NLqLaT6/SxORsnTFs1TuNuN/6bkh5XsPLbOQPsjH8OumEz3HzSe2Ny75Rc\nCb+7aNfU4ZNsNf4E0r7nCTuEEARB1CAUCrs1gyUAIF1k36rg+aSlMRgM7T9lZmY2dOjQbkYH\ndUN+fv6TJ09GjhyJYdhUZnIFZi/mejs7O0dFRbm4uFhadn6MQ37Nzc137twpLi52d3dnsVgW\nFhaNjY1nz55dsmTJ2LFjiY4O+geEZ2qwIZXoKCD6a4g/xDUdyBu3CADQ0S5BpH9NdduWEyt+\nkWMydweh0f2DnrGOnrHmFxCsnEw3v/+u9TAzAACby+QZcs0GG/otG2NibYAgQJupg0gLdggh\nCKInhULR1tbWrY+0tbWJxWKRSNStJdEYDEbfvMkmEom62yEEDDbbyKqkpKRbT2kUCgXsEL5R\nrOSDLkbKmegwfEp5Fos1Qa+sJe2c5dwtxIXWQzk5Oc+ePXN0dGxvb8e3GBgY4E90hw0bpqtL\n+QFvEAR1V9b9OlfpNrm0Q9/7PeVGUWZU+7lFWYr10+YSGFoPTVn29+0tBAUo46+VWmjwOBd2\nCCEIoqeWlpZr16516yN8Pr+hoQEA0K2X0ywsLKZNm9a94HrEwsJi5syZffCLOByO5p2g1yCX\ny2Y0nEgzMWnU+Xt5BhtBwjBpbC3aF4e419XU1Jibd17FS1dXNyMjw8PDw84OrkIBQfQhk8gl\n7VKNu43ZuP1OUMvE31d2tLYrZBgqx4RJv8mvLk6q+ZfPV1+2NYk1/gQWl6nNehuEmL99sq4W\nDxWpgqT/yxAEQa+JxWJ1dyr/nk393zfrgwMA2Gw22ZbdgzqRFsTLKzM17sbk6tUyrD2Lviw3\n9tNFmpnYC53SgwOa0p8iw21FxeK732j8CawRbzHMSfQipVQqfel0OCwWSyrVfOEIQRCF3P8l\n89JXd7Tbd3D1oH8txD6S1NqjCCb77V/XcuY+LnKL84vU5sNzN/nM2eD9OqG+OQPsaHU6hh1C\nCILoicfjdXexbwh6TdKnVzsen9C4m3ISjyH1CQAFZopG0FQMABiJ5YC0nHYtfhFqMpRUHUIe\nj1dbW9t1aKhYLObxSDqJAgRBPTNM9J+9Cy6r2QEBGAAK1X86WT4HAGAYMndU1NxRUf/7DooB\nda8ztEtmAEDSeWhoBnYIIQiCIKh3cHw/ZY1coGYHec1T2YtHAACBQFBRUTGQKTSS1wAAqpi2\n9R0sR0cnPT09gKDsEf+H8NTdfmZYufZu5K/JxsYmMTGx0xPsmpoab29vKs6RA0GQGsamoKO8\nJ0/+EQRDAKayQfHKXfFfZIyp3wHqLbBDCEEQBEG9A2HxUJ6xmh0UCALa6wEAZroIb5CJvFEE\nRAAAYKTHtbS2YDM6QHsHQBkIW0f9z1GuGUASw4cPnzx58v37901NTaVSaVtbW1lZWVVV1fz5\n8ym9siIEQV09Nwm9X/W2+n0UMgXemRvIzphm/u2L+iEowAabvnhY/0GpeCK+D4OJqv8h3t4j\nPHohXkgz2CGEIAiCoN4hvhOuzZBRHAsAZVdJpzEfNOYrb7lLn8er/6zu0l/Zbu/0KMY3gsVi\n+fv7DxgwoKCg4MWLF/r6+p6eniNHjrSwsCA6NAiCepmwsjk/8YU2ezoNeD5twk/Xsuea6gq4\nLHFysfdCj//WpjVk/qnVajQO4we9XqSQtmCHEIIgCIJ6B9PWF2AaBkHh5LX58heJTAf/lrI0\nuY65gR5PUZ3LdJ6N6mnVg2KYkm6WcxaLNXbsWAcHB5lM5ujo6OnpSXREEAS9EZOWjvaaP0Lj\nbuKnsYrfgx7VLZ33w6GyIytRWev4I8fvBhsuGP/fBbsDeO6ab2mxuLCf0kfo9h+tUCiuXr0a\nHx9fV1dnZmY2Y8aM+fPno6iGR9IQBEEQ9PpKeeMqjQdq3M2s/A/rF49Lx37dZDreuGhdndye\n5brVinva7PnvxR7/aTNw0vgTRrAGk/bRG4PBIDoECILeICabwWRr/jPPio6rEyyf8d1Rrh77\nTyaCYIihhd6swwfjNjLMYq77TF3WB6FCWqJbh/D777+PiYmZMGHCvHnz8vLyzpw5IxAIPvzw\nQ6LjgiAIguivubm5urpa424mNU+f2G4SyGxATY0Vl6ujo8Ovrq7Wn21vLpXw06tNNC9kYm9P\nuieEEARBqlw/O8zhsTs95WPrsOYc/batuYOoqKCXolWHsLy8PDY2dvLkyVu3bgUAzJkzh8Vi\nxcXFzZo1a8iQIURHB0EQBNHc2LFjR40apcWOC1z+95X4zI82du5qz/1YAAAgAElEQVSevvjc\npAsAANoMtWQyaXX6hiCIfvRM/l5ypt16gbRNhH/NZDMMzOBqNORCqzPKgwcPMAwLDAxUbpk3\nb97t27fv37///vvvExgYBEEQ1B8wGIzuDphEJm1BjW0ZbHLNGgpBENSLvD5cTHQIkDq06hAW\nFRUxGAzVgTRDhw5ls9nFxcUERgVBEARBr8Jymkl0COrcuXNHm0GwSmKxOC8v78WLFyUlJd36\nRQEBAcbG6lbagCAIgt4QWnUIGxoaDA0NVe/OIghibGxcX1+vutvjx49bW1vxr2tra/s0RAiC\nIAiiDn19fYlE0q2PDByoeVqdruBUNBAEQUShVYewo6Oj6wK4bDa7o+Mfr65GREQUFRXhXw8b\nNszBwaGP4oMgCIIgShk3bhzRIUAQBEFvFq06hBwOp729vdNGiUTC5XJVtyxZskQoFOJft7W1\ndWswDARBEARBEARBEG3QqkNoYmLy4sULuVyuHHmCYZhQKBw5cqTqbvPmzVN+nZqaGhMT06dR\nQhAEQRAEQRAEkQOtVmy3t7eXy+WqL7KXlpZKJBK4XhMEQRAEQRAEQVBXtOoQTpw4EUGQ6Oho\n5Zbo6GgEQSZOnEhgVBAEQRAEQRAEQeREqyGjNjY2s2fPjo2NlUqlI0eOzMvLe/DgQUBAgK2t\nLdGhQRAEQRAEQRAEkQ6tOoQAgLVr15qamt64cSM5OdnU1PT999+fP38+0UFBEARBEARBEASR\nEd06hCiKLly4cOHChUQHAkEQBGkglUo7LQukkVgsVigUyrVktcRms9lsdrc+AkEQBEH9BN06\nhBAEQRBVFBcXZ2RkdOsjhYWFGIZhGNatT7m5uY0YMaJbH4EgCIKgfgLp7mmVZlJTU3fv3m1n\nZ0d0IBAEQf1OR0dH18Vj3wQdHR0Oh9MHvwiCIAiCqCUzM7O/dwg7OjoEAgHRUUAQBEEQBEEQ\nBBGgv3cIIQiCIAiCIAiC+i1arUMIQRAEQRAEQRAEaQ92CCEIgiAIgiAIgvop2CGEIAiCIAiC\nIAjqp2CHEIIgCIIgCIIgqJ+CHUIIgiAIgiAIgqB+CnYIIQiCIAiCIAiC+inYIYQgCIIg6HXJ\nZDKRSER0FBAEkQtsGSgBdgghCIIgCHotcrl83759u3btam1tJToWCILIArYMVAE7hBAEQRAE\nvRYEQXR0dIqLi3fv3g2v/CAIwsGWgSpghxAinfz8fAzD8K/5fH5ISEhzczOxIb0m+mVEPzQ7\nRjRLB9AxI5pBUXTz5s2TJ0+m05UfrDqoj9Gv5GjZMtAS44svviA6Bgj6W3p6+p49eyorK728\nvCoqKoKDg0tLS9vb28ePH090aD1Ev4zoh2bHiGbpADpmREsIgnh5eVVVVWVkZGRmZvr6+rLZ\nbKKD6jlYdVAfo2vJ0axloCsm0QFAvUMgEJw5c6agoMDCwiIwMJC6zYejo+OQIUPu3r0rFouf\nP38uFArd3NxWrVpFdFw9R7+MlGDVkRPN0gF0zEhJJBJduXIlNTW1o6PD0dFx0aJFtra2RAfV\nc/jTAADAvXv3du/evXfvXj09PaKD6iFYdRRCj5MRjUuOTi0Djh4lpwpRPpuGqKuxsXHz5s31\n9fXKLbNmzfrggw9QlJJDgltaWnbt2lVaWgoAcHNz2717N4fDITqo10K/jACsOnKjWTqAjhkB\nACorK/fs2VNbWwsA0NHRaW9vZzKZGzdu9PPzIzq0nhAKhWfOnMnKykIQpK6uDgBgb29P6Ss/\nWHWUQKeTES1Ljn4tA51KTonCoUNKZ86cqa+vt7e337Nnz9atW83MzOLi4iIiIija2xeJRI2N\njfjXxsbGNBhaQL+MAKw6cqNZOoCOGYnF4tDQ0NraWnt7+8OHD//6668zZ86UyWQHDx4sLy8n\nOrpuEwgEW7ZsuXXrFoqifn5+CxcutLCwoPpbQ7DqKIFOJyP6lRwtWwY6lZwSfIeQDo4dO2Zg\nYHDgwIEhQ4bY2tr6+fmlp6dnZWVVV1d7eXkhCEJ0gN3DZrNzc3PNzMz09PQyMzMpmoUq+mUE\nYNWRG83SAXTM6MqVK0lJSUOHDt23b5+Zmdn169d//fVXAMCaNWs8PDyIjq7bDh06VFBQ4Ozs\nvH//fnd391GjRgUEBFRUVGRlZVH3rSFYdZRAp5MR/UqOli0DnUpOCXYI6eC3336bO3fuqFGj\n8H9yuVwfHx+KVqdQKBSLxf7+/n5+fpMmTcrMzMzIyOiURXJysoGBAVXGUdAvIxxtqk4oFIpE\nIn19/QkTJtDjGNGv5OiXEQDg9OnTDQ0NX375pZmZWXx8/PHjxzEMW7Nmzbx58wAAN27csLa2\nZjKp8Z6/XC4/dOiQQqEIDQ01NTXFNzIYDG9v77S0tOLiYipe+cGqowo6nYxoVnK0bBkAjUpO\nFewQUpVQKPz+++9//vnntLS05ubmkSNHDhs2TPldKlZnQ0PDoUOHjh49+vDhwwkTJhgaGnI4\nHB8fH2Wb6OHhgaLonTt3Dhw4kJaWNm3aNJKft+iXEc2qTvUAeXp6GhoaMhgMSh8j+pUc/TJS\nunjxop6e3rJly27cuHHs2DHV6/KWlpY9e/YUFBRQ5bUumUx24cIFJpO5bt061e0oinK53EeP\nHgmFQgpd+cGqIzpMzWh8MqJTydGpZaBZyXUFO4SUJBQKt2zZkpub29TUVFlZ2d7e3tTUNH36\ndNX3WVWrc+jQoYMHDyYwYI2qqqq2b99eUFBgYGAwd+5ce3t7Ho8HAFBtEzMyMnJzcy9cuIBh\n2OzZs0ePHk101OrQLyOaVd2rDhCg7DGiX8nRLyNVKSkpVVVVbDb75MmTqtflAICTJ08WFhZ6\neHiMHTuW2CC1xGAw7t6929zc7O3tbWRkpPqtpqamO3fujB8/Pjc319LS0sHBgaggtQSrjvxV\n109ORjQoOdq0DDQruZeCHUJKOnHiRF5enp2d3SeffDJmzJiCgoLKysr6+noPDw/VexJ4dVpa\nWk6ZMoXAaDWSSCRBQUE1NTXOzs5hYWHu7u7KS3MAAIfDmThxYmFhYV5eXllZGYqiK1asWLRo\nEYEBa0S/jAC9qk79AQIUPEb0Kzn6ZdSJXC5PSkrKyMgAAKhel8fHx1+4cIHL5W7durVTWZKZ\nTCbLzMwsLy/38/NTvUiKiooqLCz84osvRo4cSf5HT7DqKFF1/edkRIOSo0fLQKeSexW47ATF\nCAQCU1PTFStWsFisw4cP4w1HQ0NDcHBwRUWFv7//hg0bKPecOi4u7vjx45aWlhEREcqmMCsr\nKysry8zMbObMmQwGA8OwxMTE8vJyb29v8q+YRLOM6Fd12hwgAACFjhHNSg7QMSOFQoFhGF5a\n+D937NiRn59vbW399ddfm5iYiMXiS5cuXb58GcOwzz77bOLEicQG3C1yufzzzz8vLCx0d3f/\n9NNP8acBcXFxJ06cMDQ0/OGHH5SJkxmsOpJXXf88GVGr5DqhestAv5J7FQoMQYaUKioqgoKC\n3N3dGQxGQECAsu0wMTEJCwsLCgq6efMmAIBy1fn8+XMAwJw5c/CM+Hz+sWPHcnNzGQyGXC5P\nTEz86quvEATx9fUlOlJt0SkjWladlgeIKscI0KvkcHTKSCAQnDp1KjU1VSqVDho0KCAgYM6c\nOSiKBgcHh4SElJSUrFq1ysLCoqGhQSKRIAiycuVKkl+XAwDwu8nKv3oGg7Fnz56QkJAnT56s\nWbPG3t5eKBRWV1cDAJYtW0byaz4lWHVER61Ofz4ZUaLkcHRqGWhZcq8Ch4xSiVwuv3//flZW\nVltb2/jx41XfZ9XR0fHx8UlNTc3KyhIIBJ2eYpMcn8/PyspiMBh2dnaxsbEHDx40MTEJDg5e\nsWLFw4cPS0pKxo0bp5yfihLolBEtq45OBwgHMyItoVC4bdu258+fy+VyAEBzc3N6enp2dran\np6eBgYGfnx+GYXw+v76+XqFQuLm5bdmyheTX5XV1dd9++21ERMTVq1fr6upcXFzwCSG4XK6f\nn59EIikuLq6urm5tbeXxeGvWrJk5cybRIWsLVh2ZwZMRydGvZaBlyb0KHDJKMUKhMCgoqKKi\nwt7e/sCBA51urii/u2vXLgqtKSQWi0NCQp49ewYA0NfXX7p06axZsxAEwTDso48+qqio2L9/\nv7OzM9FhdgPNMqJf1dHsAAGYEYl9++23d+/edXZ2Xr9+va2tbWFh4ffff5+fn+/k5BQWFoZf\nMGEY1tLSoqOjw2KxiI5XA3xyhfr6euUWS0vLL7/80tLSUrlFLBaXlpZiGGZnZ8flcokIs4dg\n1ZEcPBmRFl1bBvqV3KvADiH1KOvvpWOXhUJhUlLSnDlziApPI5FIdOXKldTU1I6ODkdHx0WL\nFtna2srl8idPnsjl8lGjRikfykdHR0dGRhobG58+fZrM4wrol1FX9Ku6wYMHU/oAwYzInxH+\n8smyZcu4XO7hw4d1dHTw7VKpNDQ0NDs7e+HChcuWLSM2yO767rvvbty44ejouH79ej09vYsX\nL968edPMzCwsLEz1yo8SaNl007LqVMGTETnRqWXohOolpyXYISS7l56x1FcnmVVWVu7Zs6e2\nthYAoKOj097ezmQyN27c2GmOKQzDrly5cvbsWfK/5k6/jF5ackBTm0hm2hwjCh0gADOiQkbK\nl0/S09NnzJixZMkS1e8KBIK1a9ey2eyzZ8+SfwEuHN7TWLt2rUKhOHz4sJ6eHr79/Pnz58+f\np9yVH/2abkC7qoMnI/KXHKBdy0Czq27twXcISa2ysnL79u2pqalNTU1yuby4uDghIWHAgAEu\nLi5UHLssFot37NhRU1Njb28fGhq6du3ahoaGwsLCx48f+/r6Ghoa4rtlZGR89913CQkJCIKs\nWLEiICCA2LDVoF9Gryo5W1tbio6Y1+YYUegAAZgRFTICKi+ftLe3jxw50tXVVfW7PB7v8ePH\ndXV1Hh4elHhBqKKiYvv27eXl5TU1Nf7+/u7u7spv4amlpKQ8evTI09NTeTlIZvRrunF0qjp4\nMqJEydGsZaDZVXe3oJp3gQgiFotDQ0Nra2vt7e0PHz7866+/zpw5UyaTHTx4sLy83NjYOCws\nzNra+ubNm0eOHKHEk96oqKiqqqqhQ4eGh4fb2tpev379xo0bAIDVq1crV/BsbGw8fvx4Tk6O\npaVlaGjo/PnzCQ1ZA5plpL7kAAC0rDoKHSAczIj8GQGVPxYAwP3792Uymep3MQxrbm4GACgU\nCmLi6yYej8fj8W7evFlbW6schai0ePHixYsXCwSCoKAgfP5AkqNZ061Em6qDJyOqlBydWgb6\nXXV3DwaR1YULFwIDAzdu3Nje3o5hWFxc3Lx58wIDA6OiopT7NDQ0fPjhh4GBgcnJycRFqq3N\nmzcHBgbirxRfv369Uzrx8fF4pnV1dYmJifjqSSRHs4y0KTmMjlVHlQOEgxlRiPKP5T//+Y9c\nLlduj4mJCQwMfPfdd8ViMYHhdYsyl08//VQmk3Xd4dy5c4GBgVevXu372LqLZk13JzSoOngy\nIjLQbqJNy0C/q+5ugR1C8tLyjNXQ0BATE0NgnNpbtWrV6tWrMQyLj4/vlE5zc/OCBQtCQkKI\njK/7aJaRliWHwaojFMyIzORyeadLIuUFxLZt2x48eJCdnX3y5Ek8zWvXrhEVZ88oczl06NBL\nr1lzcnL6PqoeoHfJYdSvOngyohZ6tAz0u+ruFjhklLyamposLCxsbW1v3Lhx7NgxDMPWrFkz\nb948AEBLS8vJkyf37dsHADA2Nib57EZ8Pr+kpAQAYGlp2dzcHBUVdfToUdV0AAA//vijRCJR\njtUhOfplhNOy5ADpq055gABdjhHMiLhItSUQCL755pt33nln/vz5H3/8cXR0ND4wTznQ6Pnz\n5/v37w8ODo6OjtbX19+wYcOsWbOIjlodDMOys7NjY2PT0tLw5ew0DpoaOXIkEZFqi2ZN96tK\nDlC56nDwZERaXZsFQP2WAUebq+6egZPKkFdKSkpVVRWbzT558mSntuPkyZOFhYUeHh5jx44l\nNkiNGhsbd+zYkZCQ4OHhoaurm5SUlJGRAQBQTSc+Pv7ChQtcLnfr1q3KOZdJi34ZKdGv5AwN\nDeVyOdWPEcyI/BmpWQecw+Eo58BoaWnx9PQMDg5+7733HB0diY5andra2pCQkMuXLz958uTe\nvXsPHjxwcnIyNTWl6HwegHZNt/qSAyoLZ1Oo6pTgyYicXtUsAFos1E6Pqusx+ISQYPn5+cpb\nKXw+PyQkBH/nGwAwefJksVh86tSpTnUZHx+fkJDA5XLfeustYoLujrNnzwoEAltbWwsLC39/\nf3x9VWtra19fXwCAWCw+e/bssWPHAAAbNmwwMzMjOFwt0CCjV1Ud/UoOAEDRY6QKZkT+jH74\n4Yf6+npnZ+dDhw5FRUUdOHDA2dk5Ly8vNDRUIpEAlTvoycnJv/32G8kXFmtqatqxY0dhYaGx\nsfHChQsDAwNramqCg4PT09MBNefzALRoulVpLDlAhaqDJyMKVZ36ZgFQpGWg/VV3j8EnhERK\nT0/fs2dPZWWll5dXRUVFcHBwaWlpe3v7+PHjAQBDhw7NzMwUCATW1tYrV67U0dERi8Xnz5//\n6aefAACbN292cXEhOgN1BAKBjo7OsWPHDA0Nw8PDuVwugiAeHh5ZWVl//vnnH3/8cfv27V9+\n+SUnJwdBkJUrV86cOZPokDWgR0Zqqo5+JQcAoOIxUoIZUSWj48ePGxkZ7d+/39zcHEEQU1NT\nPz+//Pz8vLw8hUIxatQoQKk76Pv27SsuLnZxcQkPD/fw8KitrU1NTZXJZElJSQ4ODlZWVqq5\nODg44NNakhY9mm4l7UsOkLvq4MmIQlUHtGgWwD/rjYQtA72vul8T7BASSU9PLz09PSMjo6ys\n7OLFi0Kh0M3NbdOmTUwmE1C87VBdmiYgIEB5cuJyuX5+fhiG8fn8+vp6hULh5ua2ZcsW8i+9\nSpuM1FQdLUsOUPAY4WBG1MrI399fdTQRg8Fwc3OLiYkpKSl566238IczZLs6l8lkCoUCRf8x\nVig/P//MmTNmZmbh4eEGBgbXr18/ceIEhmFTp04tKirq1CccMGDAlClTiIpfG7RpunHdLTlA\nvqpTgicjclbd6zQL4H/1Rs6WgcZX3a+PSXQA/Zq+vv7evXt37dr1+PFjAICbm9vu3bvx0f84\nQ0PDffv2Xbx4MSEhobq6GkEQNze3pUuXkv8uhXJpGgBAp2EqXC532bJl77//fktLi46ODovF\nIijG7qFNRuqrjpYlB6h2jHAwIyJi7B7VjLoyMzMbMmRISUlJWVmZk5MTvhEfVRUUFJSUlLRw\n4cKBAwf2Ybz/IJPJ8DkSdu7cqXo4cnJyAABr167V19d/9OjR8ePHlQOoOjo6EhMT8fjHjh1L\nickVaNN043pQcoBMVacKnoxIWHWv3ywAEk+7QuOr7tcHnxASTCgUxsTEiMViAICzs7Ovr2+n\nW3dMJnPUqFFvv/323Llzly5dOn36dHNzc4KC7QbV19kbGhpmzpzZ6W4TgiAcDoeErzS8Cp0y\nUl91dC05QKljBGBGVNApo4CAANWMMAy7dOlSW1ubv7+/6ttB+Ke8vb2HDBlCRNR/kUgk8fHx\nWVlZpaWlPj4+yshdXFza2trmzp3b2tq6e/duiUSyePHihQsXAgDKysoqKyvFYnFiYuKkSZP0\n9PQIjF9LdGq6QU9LDpCm6jqBJyNCIlSD9s0CXa+6Xx/sEBKMzWbn5uaamZnp6ellZmZWV1d7\neXl1Hc5B2rZDDWWbyOfz6+rqPD09STJMpcdok5E2VQdLjgxgRuSnzKiysrKmpkY1o2vXrj14\n8IDH461cuRIfkqT6KRMTEyLi/RuTyZw4cWJubm6niz8EQcaOHYuiaGxsbGpq6pgxYzZs2IB/\n5Oeff+ZyuevXrx84cKCXlxeh4XcDzaquZyUHyFF1ncCTEdnQvlmg8VX3a4IdQiIJhUKxWOzv\n7+/n5zdp0qTMzMyMjIxO1ZmcnGxgYKD6RJtClG1idnY2qV5d6DEaZETvqqPBAeoEZkR+yoxy\ncnIyMjJ4PF5TU9Mff/xx/vx5AMCaNWvwqQVJ6FUXf7jbt28XFxe/8847dnZ2AIDY2Nj4+Hhn\nZ+d3332XEquKqaJZ1VG35FTBkxE50bhZoHfJvSbYISRGQ0PDoUOHjh49+vDhwwkTJhgaGnI4\nHB8fH2V1enh4oCh6586dAwcOpKWlTZs2revdPlKRyWS3b9+Ojo5OSUlpbm4eNGgQHjBpX2fX\niH4Z9ZOqo+4BAjAj0hOJRBcuXPj++++vXr2an59vbW1tZGQEVJqF0tLSxMTE27dvFxQUGBgY\nrFu3juRTEai5+Gtubk5OThYKhebm5jExMefPn0cQZP369fgc+qRFv6b7pVVH3ZID8GREPjKZ\nrL29nc1m4/+kX7NAv5LrdQg51wmht6qqqqCgoPr6ekNDw3nz5k2ZMkU51r+lpWX37t0lJSVO\nTk4DBw68e/cuAGDx4sWLFy8mMmJNqqqqvvrqq/LycuUWCwuLzz77bNiwYfg/hUJhUFBQRUWF\nv7//hg0bSNsmKtEyo35VdZQ7QABmRPqMKisr9+zZU1tbCwDQ0dFpb29nMpkbN2708/PDd1Bm\n5OnpuXz5cktLS6pcUojF4pCQkGfPnnl4eCgnk5DL5SEhIdnZ2crdVqxYMX/+fOLC1Ix+Tbf6\nqqNiycGTEXGRvpxcLg8PD6+vr9+7d6/qG4B0ahZoVnJvAnxC2NckEklQUFBNTY2zs3NYWJi7\nuzuPx1N+l8PhTJw4sbCwMC8vr6ysDEXRFStWLFq0iMCANcLXKq2qqrKyslq4cKGHh0dHR0dp\naem9e/dGjBiB3zQi+dI0ndAvo35YddQ6QABmRPqMxGLxjh07ampq7O3tQ0ND165d29DQUFhY\n+PjxY19fX0NDQ6DSLDx79qyjo+Olr6aQ00sfCKAo6uvry2QypVKpnZ3d2rVrp06dSnSk6tCv\n6dZYdZQrOXgyImfJpaWlZWRkZGZm+vr6qn9OSLlmgX4l96ZgUN+6du1aYGDg2rVrRSKRcmNm\nZuZPP/0UGxsrk8kwDFMoFA8ePDh37lxpaSlhgb6MVCo9duxYTU2N6sZjx44FBgZu3bq1vb1d\nufHSpUuBgYFLly5tbm5WbmxoaIiJiem7cLVAv4xeqt9WHTkPEMyI/Bl1deHChcDAwI0bN+Lp\nxMXFzZs3LzAwMCoqqtOeDQ0NH374YWBg4KFDhxQKBRHB9lB7e/vnn38eGBi4d+9evFkgrX7S\ndGtZdRQqOXgyIie5XH7gwIHAwMBNmza1tLSofotCzcJLUbrk+hJ8QtjXYmNjS0tL3333XVdX\nVwAAn8/ft2/fr7/++vz589TU1Ly8vKlTpyIIYmNj4+rqir+dQhIKhWL//v137tx5+vTpzJkz\nlbchIyIiJBJJcHCw6gjy4cOHV1RUFBQUoCiqXJVVR0dHdWUkwtEvo1fpt1VHwgMEMyJ/Ri91\n+vTphoaGL7/80szMLD4+XnUZLgDAjRs3rK2tKfSumkKh6Lr2tPrJJMij/zTdWlYdJUoOB09G\n5IQgiJeXV1VVlZbPCYmNtluoW3J9jEoHldL4fH5RUREAYNCgQQCArKys8vLyc+fObdq0CcOw\niIiIc+fOWVpa5uTkFBYWEh3sy0VFRT169EhPT091EDyGYa2trQAAGxubTvvPnj0bAJCent7H\ncWqPfhmpUpYcgFVHJjAj8mf0Uk1NTRYWFra2tjdu3Dh27JjqdXlLS8vJkyfx1Zxx+Drg1tbW\nSUlJVVVVxEUN5HI59s+ZAgQCwTfffPPOO+/Mnz//448/jo6OVigUyu9yudzQ0FAXF5eUlJTw\n8HC5XN7nIWvWT0oOdKfqyFNyXcGTESWgKLp58+bJkycXFxfv3r0bzwtHiWahExpcdfcx2CHs\nC2KxODg4+PfffwcAzJ0718XFJS0t7eOPP46NjV21alVYWJidnR2Xy8Vf2FU9N5PKrVu3AACb\nNm2ys7Pj8/mPHz8GACAIYmVlBQDo+hfF5XIBAG1tbX0eqbbol5GSaskBWHVkAjMieUb5+fnK\nHhSfzw8JCWlubgYAWFpaNjc3R0VFHT16VPW6HADw448/SiSSwYMHq/4c/AL9q6++GjhwYB+n\noCSTycLDw48cOaLMSCgUfvbZZ4mJiRKJBMOw8vLyyMjIoKCglpYW5adUL/6SkpIIil2dflJy\noJtVR4aS6wqejPo80p4QCoWHDh1as2ZNXl4eAEB9n5CczYIqelx19zHYIewLXC7XzMzs0aNH\nTU1NXC43LCxs165dO3fujIyMnD17Nn6rKSYmpqKiwtjY2NHRkeh4Xw5/DZfFYvH5/ODg4G++\n+QafZmrGjBkAgFOnTkkkEtX97927BwAYOnQoEcFqhX4ZKamWHP5PWHUkATMic0bp6ek7d+48\nePAghmF4OhkZGb/88gsAYPLkyWKx+NSpU52uy+Pj4xMSErhc7ltvvdXppxkbGzs4OPR1DipE\nIlFFRcXNmzeVfcIffvihvr7e2dn50KFDUVFRBw4ccHZ2zsvLCw0NVT1M+MXfxo0bJ06cSFz4\nr9RPSg50v+oIL7mu4MmIiGC7RyAQbNmy5datWyiK+vn5LVy40MLC4lV9QtI2C6rocdXdx+A7\nhH2Ew+EkJibq6+sPHz4cRVFra+vBgwezWCwAAIZhV65c+fHHHwEAGzZssLW1JTbUVzE2Nr5/\n/35aWtrdu3eFQqGrq+v8+fOZTKajo2N6enpRUdHTp0/d3Nx0dXUxDIuNjT137hyCIBs2bFBO\n70s29MtIlWrJAQBg1ZEEzIjMGenp6aWnp2dkZJSVlV28eFEoFLq5uW3atInJZA4dOjQzM1Mg\nEFhbW69cuVJHR0csFp8/f/6nn34CAGzevNnFxYXo8DvjcrmdXi07fvy4kZHR/v37zc3NEQQx\nNTX18/PLz8/Py8tTKBTKV+wAAEwmE194moT6SckBAKhYdRhu6TEAACAASURBVF3BkxHRsWtw\n6NChgoICZ2fn/fv3u7u7jxo1KiAgoKKiIisrq+v7hKRtFjqhwVV3H4PrEPYRmUy2evVqFosV\nGRmp+rZ3RkbG5cuXc3JyEARZvnw5yddyOXPmzOXLlwEAzs7Oe/fu5XA4+PampqaQkJCSkhIU\nRW1sbJqamoRCIQBg5cqVb7/9NpERa0K/jJReVXIAVh3RYEZkzqilpWXXrl2lpaUAADc3t927\nd780HQsLi4aGBolEgiDIihUrSJsO+OcyaOnp6TNmzFiyZInqDgKBYO3atWw2++zZs8orP5Lr\nJyUHKFt1quDJiMzkcvk777wjlUqPHj2qOgJZLpdv27atuLjY3t6+0/qElECPq+6+BJ8Q9hEU\nRcVicXJyMr72Jb6xsbExPDy8pKTE0tLy888/nzJlCrFBqldZWRkZGSkWiwEAHR0d48aNMzY2\nxr/F5XL9/PwkEklpaWl9fb1YLDYxMfnkk09mzpxJaMga0C8jVS8tOQCrjmgwI5JnJBQKY2Ji\n8HScnZ19fX2VFxN4OvjQvvr6eoVC4ebmtmXLFpIPoFKdgrK9vX3kyJH4bHtKPB7v8ePHdXV1\nHh4epqamRMWpvf5TcoCyVacKnozITCaTXbhwgclkrlu3TnU7iqJcLvfRo0dCobDTc0JKoMFV\ndx+DTwjfCD6fX15e7unpqTo5b2Nj46pVq8aMGbN7927lRoFAUFBQ4O3tTdpJopXa2tr27NnD\n5XJHjx595swZfX39vXv3dho8IBaLy8vLWSzWkCFDYEZ9SfuSA7DqCAUzInlGEokkLCxMKpWK\nRKKSkhI/P7/Nmzd3ihnDsJaWFh0dHXwAEiUonxMOHDjwu+++w0ck4jAMW716tUAg2L9/v7Oz\nM4FBaqkflhygTtXBkxElqk7VBx98UFVVdfjw4U6DJ7Oysnbv3j1+/PjU1NSPP/6YzP1bWl51\n9zH4hLD3NTY2fvbZZwkJCbdv35bJZIMHD8Zvq3C53MrKyqSkpGnTpunq6uI783i8wYMHU6Iu\nWSyWr6+vn5+fm5sbfkc5MTFxzJgxyptkAAAmk2lqampkZAQz6kvdKjkAq45QMCMCQ9VIKBSK\nxWJ/f38/P79JkyZlZmZmZGRUV1d7eXkpI09OTjYwMDAwMMBnqCOzyspKBoOB9x+UzwkrKytr\namo8PT2VGV27du3Bgwc8Hm/lypWqHUXS6p8lx+VyORwOyasOnowoUXWdyGSyzMzM8vJyPz8/\n1Q5VVFRUYWHhF198MXLkSD8/P+IC1ICuV919DHYIex+Xyx0/fjyCIPiqlzExMXV1dZaWloaG\nhubm5vHx8RwOR/XdffLDHyMjCMJisfDLBWdn51c1iNRCj4zoV3Kq6HGMVMGMSKihoeHQoUNH\njx59+PDhhAkTDA0NORyOj4+P8gLdw8MDRdE7d+4cOHAgLS1t2rRpJO871dbWbt++PSUlxdfX\nt1OfMCcnJyMjg8fjNTU1/fHHH+fPnwcArFmzhhKPB3Gw5MgJnoxITiaT3b59Ozo6OiUlpbm5\nedCgQUwm08nJKT09PT8/v6ioaPTo0fiCGXFxcefPnzcyMlqyZEnXVRZJhd5V12dgh7CXCYVC\nkUhkaWnp7u4+d+5cCwuLmpqatLS0a9eu5eXl2djY1NTUZGdnz5s3T/U2DGnV1dV9++23ERER\nV69eraurc3FxUQ4ip26D+CoUzYhmJaceRY+RGjAjMqiqqtq+fXtBQYGBgcHcuXPt7e3xKeZV\nL9AzMjJyc3MvXLiAYdjs2bNHjx5NdNQacLncgoKCzMzM7Ozsrn3C0tLSxMTE27dv41mvW7eO\nzOPB1IMlRxLwZERyVVVVQUFBCQkJpaWlJSUlKSkp9+7dGzZsmLm5uZeXV1ZWVl5eXmxs7JMn\nTy5dunT37l0AwLp168i2kEkn/arq3ijYIew1qnf7PD099fT0mEymg4NDQEDAmDFjpFJpeno6\nPltxe3v7kCFDSH7HBQAgFAq3bdtWVFSEYZhUKi0qKkpMTBw/frxysikqNojqUSsj+pUcn8+v\nra01MTFRsw+1jhH9MtIGtTKSSCRBQUE1NTXOzs5hYWHu7u74pTmOw+FMnDixsLAwLy+vrKwM\nRdEVK1YsWrSIwIC1hKKot7d3eXn5q/qELS0tnp6ewcHB7733HtVX4oIlRyz6nYy0Qa2qa2pq\n2rFjR1VVlZWV1cKFCz08PDo6OkpLS+/duzdixIjBgwfj8+IUFxdXV1e3trbyeLw1a9aQ+T5R\n/6y6Nwd2CHvHq+724czMzLy9vQMCAvT19SsrK0UiUVNT07Rp0wgMWBunTp3Kzc11dHTctWvX\nggUL2tvbs7OzHz16hP/h4fsoG0RLS0tKLIikEVUyol/JicXizZs3NzQ0+Pj4qN+TKseIfhlp\nj0IZ3bhx4/bt25aWlvv27TMwMMA3ZmVl3bhxo6Kiws7OjsPhTJkyxcbGxsbGZu3atd7e3sQG\nrD2NfcJnz56NGTNGda556oIlRxT6nYy0R6Gq++GHH7KyspycnP7973+7uro6OTlNmzaNxWKl\np6enpqZOnz5dV1d37Nix8+bNGzdunL+//8qVK8mcUX+uujcEzjLaCyQSyaZNm/h8vrOz886d\nO9XfJcIw7NixY/Hx8REREaRd31MgEJiamq5du1ahUBw+fFjZ/Tt//vz58+fNzMzCwsIsLS2V\n+z9//nzYsGEEBftGkDwj+pUcbuvWraWlpT/88IOhoaHGnUl+jHDUzUgmk3V0dKhO/9ADpMro\nVSIiIm7fvr169eq33noLAMDn848dO5abm8tgMORyuaur61dffUWVGQhEIlHXQyaXy//9738n\nJSU5OTl9+eWXyssmoVCYlJQ0Z86cPg/zDYIl18foejLqFkpU3dKlS1taWr799ttOQ0APHDhw\n//79hQsXLlu2jKjYugtW3ZsAB9T2glu3bvH5fEtLyy+++EJZl1lZWWfOnLl27ZpcLlfdGUGQ\nGTNmAABu3LhBQKxdyGQymUymuqWiomLr1q1HjhwBAEyfPl11NdLFixcvXrxYIBAEBQVVV1cr\nt5O/KewukmdE6ZJTIzAwUCaTJSQkaLMzyY8RjqIZyeXyffv27dq1q7W19XV+DnkyUmPQoEEA\ngKysrPLy8nPnzm3atAnDsIiIiHPnzllaWubk5BQWFhIdo1b4fP5HH30UHR3daTuDwfjss88c\nHR0LCgr27NnT1taGbzc2NqZZbxDAkutzdD0ZdQv5qw7DMLwx7zpscvbs2QCA9PR0AsLqKVh1\nbwLZZ6yihOfPnwMA5syZg9957XS3LzExsdPdPn19fQDAs2fPiApYSSaT7du3DwCwc+dO5WTW\nPB6Px+PdvHkTAKCjo9PpI4sXLwYAnD9/PigoqNNzQqjPULfk1PP19f3hhx+uX7++YMECqtwg\nV4+iGSEIoqOjU1xcvHv37r1796reFaKfuXPnpqampqWlpaWl6evrr1q1atasWQiCYBiGt4oK\nhYLoGDXg8/kSiQT/84+MjAQABAYGqu7AYDAWLVoUFhaG9wlVnxNCfY8GJadE15MRzSAIYmVl\nVVlZWVhYOGLECNVv4XOKKu8TUQKsujcBPiHsBd2626dQKH788UcAABm6UjKZrKWlJS8vT/Vx\nn7GxcVhYmLW1NQDg7t27ne61AJXnhMnJyX0aLvQ/1C059ZhMZkBAQG1t7ZMnT4iOpXdQNCMU\nRTdv3jx58mS8T/iazwlJjsvlhoWF7dq1a+fOnZGRkbNnz8avJGJiYioqKoyNjUk+4UpjY+Oe\nPXt2796NoujXX39tYGAQGRnZ9TkhPpTUw8OjoKDg4cOHREQK/YXqJaeKricj+sGfkp06dUoi\nkahuv3fvHgBg6NChxITVI7Dq3gT4hLAXdOtuX3FxcXJyMo/HI8NwbS6XGxoaWltba21tXVNT\nY2ZmhgeM9wmDgoJKSkqOHj26YcOGTg83Fi9e7OrqOnLkSIIC14py+USiA+l91C05VXw+v7y8\n3NPTU3Uy6FmzZl26dCkuLm7cuHEExtYzdMoI7xMCAO7du0f754QMBsPDw0P5TwzDrly5cvbs\nWQDAmjVrSL4U+NmzZwUCgaurq4WFBYfD+frrr4ODg7s+J8Qv+z755JOnT59qnOWIWGKx+Pff\nf3/48OHy5ctVjwudULrkVNHjZARofcGAmzdvXmJiYmFhYUhIyObNmy0sLDAMi42NvXr1KoIg\nb7/9NtEBdgNtqo5U4KQyvUMulz958kQul48aNUo5FCc6OjoyMtLY2Pj06dOq7XtKSoqRkZGT\nkxNBwb5EVVXVjh07HB0dVceOCoXCoKCgiooKf3//rn1C8pDL5SiKqoZXV1d34sSJ9PR0Docz\nefLk999//1XXshUVFfizUMqhesk1NjZ++umnQqHQwsJi9uzZM2bMUB6jgwcP3r17NzIy0sLC\ngtggu4V+GQEAFArFwYMH7927Z29v/6o+IXX/iF4qIyPj8uXLOTk5CIIsX758/vz5REf0Svjs\nXytWrGCz2YcPH1aO8H/x4kVwcHBzc/O77767ZMkSBEHwlsHMzOz06dPExqxRVVXVl19+WVFR\ngXeZtm7dqlz8VhWdqo5CJfdSVD8ZaXnBQK2Sk8lkd+/effr0KYIgLi4ukyZN4nA4TU1NISEh\nJSUlKIra2Ng0NTUJhUIAwMqVK6nVIQTUrzoSgstO9A4URa2trQcPHoxP6o3f7cMfUm/YsMHW\n1lZ1Z2tra1NTUyLCfCUWi5WWlpaVlVVaWurj44M/31BOTZ6VlSUQCDw8PEjYJ8Rfg8zKylKG\np3H5RKW7d+/u2bNHV1eX/G+Ed0X1khMIBEOHDjUxMXn+/HlqampMTExdXZ2lpaWhoaG5uXl8\nfDyHwxk1ahTRYWqLz+e3trbOmDEDQRB6ZCQUCk+ePBkZGSkQCNra2oRCYWZmpq+vb6erc0r/\nEXXV2NgYHh5eUlJiaWn5+eefT5kyheiIXqmiomL79u3l5eU1NTUBAQGqpWVkZOTu7v7o0aMn\nT55cu3YtJiYGHyO6bt06kg8M6+jo2LFjR2VlpYODQ1hY2KxZs176rIxOVUehknsVSp+MtLxg\noFbJvWoBemtra3yxwdLS0vr6erFYbGJi8sknn5B5scFXoXTVkRPsEPa+jIyM7777LiEhAUGQ\nFStWBAQEEB2RZkwmc+LEibm5uZTrE7a0tPz++++q4WmzfCLuyZMnmZmZw4YNc3V1JSr+XkG5\nkmtsbNyxY0dycvL69euXLl1qYWFRU1OTlpZ27dq1vLw8Gxubmpqa7OzsefPmqY69JC08nYSE\nBH9//6lTp86dO5fqGQkEgm3btj19+lRPT8/Pz2/48OECgYDP53ftE9LmjwjH5XK9vb1dXFzW\nr19vZWVFdDjqyOXy+/fvZ2Vltbe3jx07ttOKYUZGRj4+PqWlpeXl5W1tbWw2e/Xq1eS/7Lt6\n9erDhw8HDx68f/9+NVPJ06nqKFRy2qDcyUjLCwYKlZz6BegHDhyILzbo5eU1d+7c5cuXDxky\nhOiQXxflqo6c4JDRXtbY2Pj5559XV1dbWlp+9NFHo0ePJjqibhCLxSEhIc+ePfPw8Hjp2NFd\nu3aR8I2OTkNbtV8+EQCQl5c3fPhwIqLuNVQsuSNHjiQkJLi6uu7Zs4fD4eAb8/Pzr127lpiY\nKJVKURRVKBSff/65r68vsaFq46XpACpnFB4e/ujRI2dn59DQUHwgokQiOXjwYGJiYtexozT4\nI6IoZdNnY2Nz6NChlz5M+/PPP+vr6x0cHPB59khu8+bNxcXFQUFBXl5e6veEVUdC1DoZdXe9\nZaqU3PHjx+Pi4pycnL766it8BlEAwOXLl8+cOWNgYHD8+HFKNAXao1bVkRl8QtjLqHK3D8Ow\nnJyctLS05ubmAQMG4E8t1D8nHDBgADlHs3R6jFlTU+Pv7+/u7q7cAb+ll5KS0vW2n7m5OQER\n9yqqlBxOIBDo6OgcO3bM0NAwPDxceboCAJiZmXl7ewcEBOjr61dWVopEoqampmnTphEYrUZq\n0gHUzAgAIJfLDx06pFAoQkNDlcNsGAyGt7d3WlpacXFxp+eENPgjoihl08fn8+vq6jw9PbuO\n4DA0NLSyslK9T0FmFy5caG9vX7FiBT4nqqqEhIT6+nrlS1yw6kiIQicj1RHXWl4wUKXkIiIi\nJBJJcHCw6ivrw4cPr6ioKCgoQFGUQm8uaINCVUdysEPY+3g83uDBg8k2tFJVbW1tSEjI5cuX\nnzx5cu/evQcPHjg5OeFXfmr6hGR+H1e1TygSiTw8PJydnVV3UNMnpAESlpxMJmtvb+/0vpma\nt56UuFzu8OHDAwMDhUIhfrDUjBzrS10z0iYdQOKMXkUmk124cIHJZK5bt051O4qiXC730aNH\nr3qfkCTy8/NNTU3xPwc+n/+f//zH3d2dKj2i7lI2fdnZ2eQc1d8tSUlJAoFg7NixnS7sMAw7\nceJEdHT0nDlzyFl1EI6EJ6OXUo64ptkFA4ZhZ86cAQCsXbu205ABIyOjmzdvisVi+o2opErV\nkRwF3maBehc+vrywsNDY2HjhwoWBgYE1NTXBwcHp6en4DvhaFC4uLikpKeHh4V3XISQnuHwi\necjl8n379u3atavT+nU8Ho/H4928ebO+vl79vOoIguCLJt24cePNxqqdl2akfTqAfBmpwWaz\nraysZDJZWVlZp2/hXdnx48cXFxcnJiYSEJwm6enpO3fuPHjwIIZhfD4/ODg4IyPjl19+ITqu\nXoNhWKcXPZRN382bN48cOULp10D8/PwAAGfPnu20VFpUVNTz589tbW0pdGkOkRmdLhj4fL5y\nnVt8AXoAgOpCfDgqLkAP9SX4hLDf2bdvX3FxsYuLS3h4uIeHR21tbWpqqkwmS0pKcnBwwJsS\n1eeENjY2VHnnWHmzHH9tpuvNcldXV1dX10mTJhEVYf+RlpaWkZHR6TmS8gC1tLQ0NDTMnDlT\nzQwrUqk0OjpaJpPNmjWrr6JWp2tG3UoHkC8jNWQyWWZmZnl5uZ+fn2pSUVFRhYWFX3zxxciR\nI/Frd7LR09NLT0/PyMgoKyu7ePGiUCh0c3PbtGkTk0mxRXflcjmCIJ1W0/n2228jIiKuXr1a\nV1fn4uLS9S+LtLN/acnOzi4jI6OoqCg3N9fFxcXAwEAsFl+8ePHnn39GEGTTpk1kXlpaIBCc\nOHHip59+SklJ0dPTo9ASBf0TPS4YMAzbtm1bSkpKQEAA3spJJJLMzMwXL15MmTJF9U7l1atX\n8/PzXV1dJ06cSFy8EHnBDmH/kp+ff+bMGTMzs/DwcAMDg+vXr584cQLDsKlTpxYVFXXtE1pZ\nWZHzvcFX0XhhRLmF4KgIQRAvL6+qqio1fUI1bz0BABQKxdGjR8vLy11cXMhw9npVRlqmA8iX\nkXpOTk7p6en5+flFRUWjR4/Gby3HxcWdP3/eyMhoyZIlNjY2RMf4chwOx8fHJyMjIzc3VywW\nu7m57d69+1XjRSsqKgwMDPo4Qm30YDUd1abPwcGBor0RFEU9PT2zsrIKCgpiY2OvX79+/vz5\n7OxsBEFWrlxJznsQuMbGxq1btz579qylpaW6uvr+/fuNjY3u7u5dGwTSVl0/RIMLBgRBRCJR\ncnIyiqJubm4AAEdHx/T09KKioqdPn7q5uenq6uIL0J87dw5BkA0bNpiZmREdNURGsEP4SrS8\n23fnzp3s7OxPP/3U3t7+0aNHERERGIatWbNm+fLlf/75Z1lZWac+oZ2dHdEhdxt1b5bTqeS0\n6ROqeevp/9u796CmrjQA4DcvCKBEwAf4AAR5iCDylKACvpD4qHbXLmOdVljrawqd+tjiitp2\nqshYdyu1Vapu7YpjtbodO4KopBgsYoEQSQwPAwoWAmKDEVAJIY/94+7cTQOEgGjOvfl+f7Uk\nzJzrPdxzv/P4vvr6+u+++87Ozu6jjz5C5OVp0JjQ9CEuBK/IBDqdHhUVJRaLq6ur8/LyKioq\nLly4IBAIMAzbuHHjtGnTLN1AU5RKZW5urkqlwjDM399/7ty5/d4RlAuLDa+aDuLZv8zEZrPx\n9jc3N3d0dOh0umnTpn3wwQeIX9Tx48erqqq8vb1TU1PDw8Pr6uokEsmjR4+ioqIMux/Kvc4Q\nlQYjgkajKSwsvHz5cllZWWdn5+TJk5lMJnlfGAh+fn4CgaCysjI2NnbUqFHE01smk+Xm5paU\nlJw/fx7f4Z+cnIzydCQlex2JQEDYPzNn+0g01dfc3KxQKKKjo1+8eLF8+fJnz57t2bNHrVav\nWbNm9erVGIY1Nja2tLSoVKpbt27FxMSQ+qgGGR/x1JtgNicmHOgGubi4eHl58Xg8pOpoDxoT\nmuhvaF6RCWw2Gy9hfP/+/UePHj179sze3v69995DrZadVqsVCoUTJ04k/s1tbGykUunYsWNH\njRpVWVnZ96Uch3JhMTabbdSjTpw4YWdnd/DgQVdX11GjRs2ePRvrL+kF4tm/zMRkMoODg998\n882EhITExMQVK1agnzzw6NGjjo6Ohw4d8vDw8PT0jIuLE4lEYrHYqPuh3OsI1BuMsIFrtY8d\nO5aMLwzt7e22trb4fn4Gg+Hi4nLz5s3ff/8dj/eIpzeJCtBT762bdCAg7J85s31kmerDDApn\nz549e/78+XQ6PS8vr7y8PCQkJDU1Ff/OmTNn2Gz2li1bJk6cOGgNKPSRbgMVxSaYlUrl8ePH\nT5w4oVAoXrx40Tcv5aBj8KRJk4iaBygwfUXmvFKgcEVDysDJZDLxEsbh4eGLFi1KTk42qn5u\ncQKBICMjIz8/3/DfnMFgREdHx8XFxcTEVFZW3rlzx+jvqLS01NHRMSQkJDg4eMGCBRa9ggG9\nTDUdaqDRaHZ2dmTJKfrjjz8uX76cSDWMh/R9Y8KAgACUex2OYoMRNlit9vHjx5PrhaG5uTkt\nLa2goMDV1XXixIkYhrm7u1dVVVVUVPj7+xM7vMhVgJ5ib91kBAFh/8yZ7SPFVB/uxIkTUqnU\nz89v6dKl+LHjwsLC+/fv/+Uvf8E3hebl5V27ds3f3z8xMTEwMNDS7R0Z5NpARaUJZoVCsWPH\njqqqqlGjRsXFxQUEBCgUiubmZhMxIeJjsDlXhP7liESivXv3trS0REVFyeXy9PT0hoaG7u7u\niIgIE7/FZDLHjRs3btw4pPKyaLXa7OzsnJyc58+fc7ncVatWGQbbDAaDwWDg5wmJmDAyMpJO\np9+4cePQoUNCoXDhwoWIrztZeTUd9CmVypMnT545cwav6BsYGGj4njpQTIh+OTsqDUa4U6dO\nicViX1/fzz//PCgoyNfXd+HChSwWSyQSlZeXL1682NbWlkQvDD/++OOdO3devHghEAjq6up8\nfHxGjx49bdq0a9euyWSyhIQEIhMYk8l0cXEZM2YM+mueFHvrJiMICPtnzmwfKab6Biqc3dnZ\nWVpaqlQqx40bl5ub+/3339NotC1btqB/hHpISLSBikoTzFlZWTKZzN/f/+DBg2FhYcHBwQkJ\nCXK5XCwW9xsToj8Gm3lFiF8OZTJwYhiWlZXF5/PZbPbWrVvXrl3r7Ozc79cMY0I808y5c+f0\nev3SpUtnzZr1mts8DIaZbDs6OhYvXmyUyZaICcePH28ULoJXSqlUbtu2TSqVdnR0tLS0dHd3\n971Bho/xqVOnTpkyxYINNh+VBiOcmbXayfLC4OPjw+fzx48fv3Llyhs3buTm5nZ3d0dGRnZ3\ndwuFQgcHBzI+Cijz1k1eEBD+3zBm+xCf6jNRONvDw6Ompqa6ulogEMhkMgzDkpKSYmNjLddY\na0TJCWatVpuVlaXT6T799FNi0YbBYHC5XKFQeP/+/b4xIeJj8JCuCOXLGVIGTpTdvn07JyeH\nyWTu27fPcBdlv2xtbefNm1dXV1ddXd3Y2Ein05OSkt56663X09RhUyqVz58/t7e3p0ZyfOrJ\nzs6urq728vJKSUkJCQmRyWQtLS19bxD+GHd1dUVzkohAycEIR71a7TY2Ng4ODgUFBXPnzt28\nefOTJ0/y8/N//vnnyMjI+vp6sVi8aNEiOzs7SzdzcNR76yY1CAj/h5KzfVqt9ubNm2KxuLu7\nOzQ01PD8D51Onzt3LpPJ7O3t9fLy2rBhA4KTLkM670Q6lOxyGIZpNJpz584xmcyNGzca/pxO\np7PZ7Nu3b/c9T4g4Kl2RmRk4EXfs2LHHjx8nJib2fcluamqqqalRq9VOTk7ED21sbObPn+/u\n7u7u7r5hwwYul/t62zs0T548ycrK+vrrr4uLi/GNoBRIjk9qGo2mu7ub+OvG991kZ2fjO9w8\nPT29vLxiY2MHukFsNtvHx8dCbTcLVQcjHI1GKyoq6urqCgkJMfpL6erqunr1qq2t7YoVKyzV\nPDM1NzeXlpZ6eXnhXcvb21soFP76668rV66MjY0NCQmprq7m8/m9vb29vb2dnZ3oZ4Kgdq8j\nIwgI/4dis30404WzGQxGYGDg4sWLY2JiEDxLM7zzTiRCyS6HYRiDwRAIBJ2dnVwud8yYMYYf\ndXR03LhxIyIiQiqVurq6Il69gEClKzIzAyfivv32W7VavX79esOdorW1tZmZmTk5Ob/88svV\nq1dlMllERATxEk+j0dzd3YOCgozuIGpaW1vT0tJkMpmjo+Py5cu9vb3t7e0xcmZOxpmTSh7l\nzIF4Tci8vDx8xofYd/P48WMej0fsuyHvDcKoOxgRyF6rvbe3d9euXXw+XygUenh4jB07lkaj\neXh45OXl9fT0hIWFjR07dsmSJc7OzrW1tT09PVFRUeifsqN8ryMdCAgpONtnyPzC2aih0nkn\nI9TuchiGaTSaysrKpqamuLg4wzmIn376qa6u7pNPPgkMDES5xnRf1LgipVKpUqkWLVo0aAZO\nxNfhCwsLOzs7fX19vb29MQxTqVSnTp06evRoe3v7pEmT8JQ/TU1N9fX1CG58MEGtVu/ataut\nrc3f3z8jIyMsLAyPBnFkDDnMSSWPcuZAPBosKyvr9LL5/gAAHsRJREFU7e3F54OIfTcvXryI\niIgwbDMZbxAlByOVSnXhwoXs7Oxx48bhExBkr9XOYDDmzZvX1dVVUVFRUFDQ2trq5+c3ZcqU\nR48e8fn8OXPmcDgcGo02bdq0+Ph4b2/vZcuWWbrJplCy11GAtQeElJztM2Jm4WzUDPW8E8pz\nzIasocv5+vqKRKLa2tr6+vpZs2bhqYzy8/O///77MWPGvP322+7u7pZu49CQ/YoMdyFGR0dz\nOJxBM3AiPvNSUVEhkUj0en1NTc3hw4crKys5HM7777+fkpISExPD5XL5fH5LS8uMGTMmTJhg\n6caa6/r164WFha6urpmZmcTTTCwWX79+XS6Xe3l52dvbI57J1og5qeSRzRxIRIOjRo3at28f\nXkHUdJof9FMNG6LkYITXGywpKXn+/LlarZ49ezaDwSBvrXYCm82ePXt2eHh4Y2NjRUXF1atX\naTTaihUrrl+/3tjYSMx82djYID4YUbLXUYO1B4QUm+0bCEmvxfzzTijPMRuxhi5HjL7V1dV5\neXkVFRUXLlwQCAQYhm3cuBH9fZV9kfqKBtqFSN4MnD4+Pk+ePLl3755EIsHPSMfExOzZs4fI\nrcfhcO7evdvW1ubt7Y3+M4GQl5fX0NCQmJiIh0bNzc2ZmZnnz5+/d+9eeXl5dXX1ggULEM9k\na8ScVPJoZg40igbx+kw44kH98OHDvjvcSHSDqDcY9fT07Ny5s6WlZdq0aRkZGTwej9ggSsZa\n7X25uLgsXrx4woQJ1dXVpaWlZWVlkydPvnv3rqenJ1nO11Gv11GGtQeEVJrtM40Uf2larVYo\nFE6cOBFvm/nnnZCdY+7LSrocMfrev3//0aNHz549s7e3f++998g1+hoi6RWZ3oVI0gycNBot\nMjLSz8+Pw+GEh4dv2rSJx+MRNXUwDNNoNKdPn1apVDweb/LkyRZs6pA0NzeLxWIGg+Hl5ZWX\nl/fFF184Ozunp6cnJSUVFxc/ePAgPDzcxcUF5Uy2RswsYIBa5kAiGmSxWAcOHMB3JhsyPZ6S\n5QZRbzC6dOlScXHxlClTDh48aJhWCke6Wu39otFoXl5eCQkJGo3mzp07bW1tGIbJZLJly5YZ\n1aRBE/V6HWVYe0CIUWi2b1CI/6UJBIKMjIz8/HxifGUwGNHR0eacd0JzjnkgVtLliNE3PDx8\n0aJFycnJhnluyQjxK9JoNDqdzuidYNBdiLa2tiTKwGnIzc0tNDQ0MDCQw+EYfXT+/HmhUOjk\n5LRp0yajRPMo8/LykkqlEonkypUrDx8+XLdu3ebNm52dnZlMZn5+fldX16JFixA/7IQNt4AB\nOohoEMMwnU43evRow4pNBFLMsQ6KYoPRiRMnlEplSkqKp6fnQN8hUa12E1gsVkhIyLx581pb\nW1tbW994442ZM2daulHmolivowwICDGMKrN95kDzL02r1WZnZ+fk5Dx//pzL5a5atcqw2huD\nwTDnvBNqc8ymWU+Xw2/NuHHjED+TZj40rwh/iy0uLp4zZ45hTGjOLkSyZOA0U35+/nfffYdh\n2LZt28i1AsBkMhcsWODj4zNnzpwNGzYEBATgj4Xc3FyBQODk5PTXv/4V8UUAsqeSN9wp+s47\n70ilUqlU2tvbaw0xIQUGo3PnznV3dyclJTk4OBh9VFBQgCedskjDXhFHR8e4uLjZs2eTrgwp\nlXodZUBA+D9kebIbFUTCMKy5uVmhUPTdHTEQBP/SsrKy+Hw+m83eunXr2rVrDVPJE8h73mkg\n5O1y2NB7HXjV1Gr1tWvX7t+/Hx0dbZhdycxdiBZs+Qjq6en55ptvzp07h2HYunXr4uPjLd2i\nIaPT6ZMmTZoyZQqLxcIwTK/X/+c//8Hj29TUVBPrHq9fv08GUqeSNzo3yOVyfXx8bt26ZWZM\niOC+GzORZTAaVElJiUKhCA0NNaqkpdfrs7OzL1++vGzZMvSrxQ4VSQdiyvQ6yoCA8P/Q751G\nBZEwDHv69OnOnTsLCgoiIyP77psihdu3b+fk5DCZzH379oWFhZn4JknPO5lAxi6HUaLXUQ+T\nyZw3bx6Xy50yZUpbW5udnR2+JkONXYiD0mq1eXl5mZmZVVVVtra2W7du5fF4lm7Uy7pz585X\nX31VUFBAo9GSkpISEhIs3aL/6/tkoEAq+evXr1+6dMkwi4ybm5uZMSFq+26GCv3ByBy9vb1C\nobCpqWnBggWGe8V/+uknPp/v5eWFfgF6q0KNXkcZEBD+AcqzfX0LImEYduLECalU6ufnt3Tp\nUqQ2sJnv2LFjjx8/TkxM7DuaNjU11dTUqNVqYgLMxsaGpOedBkK6LoeRv9fV1ta6uLjgA09z\nc/M//vGPsLAwxCvvmYPJZHI4HDynaHV1Nb53lAK7EM1Bp9Nv3rwpkUi4XG5aWhr6yaUG9fTp\n0wMHDjx48MDV1fWjjz5CKtjo+2SgRip5b29vtVqdnJxsmFPUzJgQtX03w4DyYGQmLy+vO3fu\n1NfXS6XS6dOnOzo6qlSqH3744cyZMzQa7cMPP3R1dbV0G8EfUKDXUQZNr9dbug3IUSqVJSUl\nSFX27JsCW6FQuLi4JCUl2djYfPnll3Z2dpZu4zCtXbu2q6vriy++MMzkVltbe/LkSZlMhv9v\nWFjYjh07+p4KoAxSdDkMwyjQ60Qi0WeffTZv3rytW7fK5fL09HSlUsnj8bZs2WLppo0MlUr1\n8ccf19TUREZG/v3vf++bUgXfhZiTk6PX6//2t7+RogaXmeRyOeLvE83NzWq12jDeMEGhUMhk\nMi6Xi1QQ1e+TQalU7tq1Sy6XYxj23nvvvfHGG4a/Qny6aNGi1NRUpC7HTCKRaP/+/b29vatX\nr3733Xct3ZxXCMHBaEg6Ojo+/vjjBw8eYBjm5OTU1dWl0WhoNFpycvKqVass3bo/qK2t9fPz\nI6YmT5w4sX37dlKUUx5xZO911EDBFULqnbLrOwAT07FtbW0JCQn9zlmSRWFhYWdnp6+vLx4Q\nqlSqU6dOHT16FD//HRAQoFAompqa6uvryZJEdBjQ73KYQT1ZUve6UaNGiUSiO3fuNDY2/vDD\nD0qlcubMmR9++CEZlzr7he8dlUqlYrG4oaHBKMcMyrsQXx5q71JGg9FQ91rb29tPmTIFqfBp\noOp8lE8lb846ITWgNhgNFZvNxpfTm5ubOzo6dDrdtGnTPvjgA6TW2DEME4lEe/fubWlpiYqK\nwqcmGxoauru7IyIiLN00CyB7r6MGqgWE1Dtl129BJKKyZ3d3d2hoaL+57+VyOWqvRwOpqKiQ\nSCR6vb6mpubw4cOVlZUcDuf9999PSUmJiYnhcrl8Pr+lpWXGjBkTJkywdGOpb6AaXNTodXh2\nIjwvkUqlmjlz5p49e0zsF0X/ivoaKCZEeRci9fQdjMi+19p0dT7Kp5K3npiQ7JhMZnBw8Jtv\nvpmQkJCYmLhixQqjHDMoGOrUJBlHIkAulAoIqXfKbqCCSIbTsU+ePFmyZInRKSCBQLB3714H\nBwfDAlBo8vHxefLkyb179yQSCR5sxMTE7Nmzx9/fH/8Ch8O5e/duW1ubt7c3+pdDdiZqcJG3\n12m1WqFQOHHiRPwNValU5ubmqlQqDMP8/f3nzp070CIMslc0qH5jQjabzeVyp0+fvmXLFgTf\nkKjEaDDSaDR2dnZHjx7lcDgHDhxgs9mWbuCQmVOdj/Kp5CEmJBEajWZnZ4dsTtEhTU2SdyQC\nJEL6XAIEo60snp6eCoVCr9cLhcIJEybs3r2bdEkjDK9o/fr1LBbr4sWLp0+fxj91cnLKyMiY\nNGnSb7/9duTIEaOzoO3t7Tqd7tmzZ5Zo+NDQaLSUlJRPPvlk5cqVa9eu/eqrr3bs2GG4lqvR\naB4+fIhh2Pjx4y3XTFNqa2uJf//m5uaPP/64s7PTsk0aHtNdDiNnrxMIBJs2bdq3bx/RYGdn\n56lTpwYFBXl5eRUVFX3xxRcDHaVG84qMaDQaPp+flZX15ZdfFhQU9PT04D9ns9mffvrp9OnT\ny8rKDhw4oNVqMQwbO3ZsdHQ0UrsQqcdoMGKxWNu3bz9y5AidTo+PjyfjydtBnwwE4hHB5/P7\nPiIoIDQ0ND09ncVi4XVBABi258+fP336FP9vJycnE7ErKUYiQHYUWSGk3ik7cwoiEdOxEonE\naDo2ICAgODiYRIfu3NzcQkNDAwMD+27rPX/+vFAodHJy2rRpU98MGRZHmZMAZtbgIlGv02q1\n2dnZOTk5z58/53K5q1atwgvuMRiM6OjouLi4mJgYvLLlo0ePoqKiiAspLS11dHS0tbVF7Yr6\nam1t3bVrV0FBQUNDw4MHD8rKyoqKivz8/PBKEqbPE4JXoe9gZM5eawzhLWFDrc5Hrsyiw+Dm\n5oafZbB0QwakUCiys7P//e9/43eNjIc2rYGNjY1UKh07duyoUaMqKyuNhiFD6I9EGIZpNJrC\nwsLLly+XlZV1dnZOnjyZdJvyrBwVAkJKnrIzsyCSiaF33LhxlryAEZKfn48XZd62bZuHh4el\nm9MPypwEML8GF1l6XVZWFp/PZ7PZW7duXbt2rbOzM/ERg8FgMBj4ph0iJoyMjKTT6Tdu3Dh0\n6JBQKFy4cCGTyUTqiox0dHTs3LmztbXVzc1t9erVkZGRPT09DQ0NRUVFM2bMwFfUDWNCd3d3\nNP+IKKPfwWjQvdYY2lvChlGdjwJZZEwbPXq0pZswoKdPn27fvr2mpqarq+vRo0c3b958+vRp\nWFhY30gD2cHISpg/NYkhNrb2ZXpqkgBdDmWkDwipesrO/IJIVJ2O7enp+eabb86dO4dh2Lp1\n6+Lj4y3dov5R5iTAkGpwod/rbt++nZOTw2Qy9+3bFxYWNtDXDGNC/CaeO3dOr9cvXbp01qxZ\nr7PBw3Dq1CmxWOzr6/v5558HBQX5+vouXLiQxWKJRKLy8vLFixfj/RCPCd3c3Mibz4MUzDl/\n29zc/Pvvv8+ePdvo76WioqKystLPzw/BCorDq85HgSwyJHX8+PGqqipvb+/U1NTw8PC6ujqJ\nRNJ39QnlwcgQtdedzJ+atHRLTTFnahIjT5ezWuQOCA23srzzzjtSqbTfSKnfMRjlARjDMBqN\nNmvWrL6lMgaNCSkwHavVavPy8jIzM6uqqmxtbbdu3crj8SzdqD8YdpISlHvdkLochnyvO3bs\n2OPHjxMTE/u+jzY1NdXU1KjVavxibW1t582bV1dXV11d3djYSKfTk5KS3nrrLUu0emgOHz6s\nVqvT09MNj9cGBATI5XKZTEan04mbxWQyzax9B4bH9GCEmdxrjaG9JWyoTwYCBbLIkNHRo0cd\nHR0PHTrk4eHh6ekZFxcnEonEYrFRTIjyYESwnnUna5iaJEWXs2YkDgit7ZQdwURMSI3pWDqd\nfvPmTYlEwuVy09LSUHt2CASCjIyM/Px8okdR7CRAX6ZjQjR73bfffqtWq9evX2+4U7S2tjYz\nMzMnJ+eXX365evWqTCaLiIiwsbGxsbGZP3++u7u7u7v7hg0bUD4dRNDr9XhWjw0bNhidrR0z\nZgyfz1epVBQrM4isoZ6/7XddHfEtYf2CrJsI+vHHH5cvX07cCzabPWfOnL4xIfqDkbWtO1F+\nahL9LmflSBwQWvMpu4GulDLTsWFhYTExMUuXLkVq2u/lk5RgpO11JmJCNHtdYWFhZ2enr68v\nfo5LpVKdOnXq6NGj7e3tkyZNCggIUCgUTU1N9fX1+PhEo9Hc3d2DgoLwcjXoo9FoRUVFXV1d\nISEhRgl4u7q6rl69amtru2LFCks1z6qMyPlbkoKYEAVKpfLkyZNnzpwRCoWdnZ2BgYGG0dFA\nMSHig5EVrjtRfmoS8S5n5UgcEFr5KTvKD8NIhYK4EUlSYsH2vyTSdbmKigqJRKLX62tqag4f\nPlxZWcnhcN5///2UlBQ8SSCfz29paZkxY8aECRMs3djhUKvVlZWVDx8+nD9/vuFIfOnSpdra\n2qCgoHnz5lmwedZj2OdvEdxrPQykezJQjFKp3LZtm1Qq7ejoaGlp6e7u7ujoWLx4sWHeBMOY\ncOrUqVOmTLFgg81knetOyE5NdnR0VFZW/v777+PHjzfsWjA1SRkkDgit+ZQdjrjSoKAgCsyN\nIc4akpQMikRdzsfH58mTJ/fu3ZNIJHi24ZiYmD179vj7++Nf4HA4d+/ebWtr8/b2JsVeo76p\n5H18fEQiUX19fVVV1cyZMx0cHPR6fV5e3tmzZ2k0WmpqqtFJG/CKDO/8LZp7rYeHRE8G6snO\nzq6urvby8kpJSQkJCZHJZC0tLe3t7UZz33hM6OrqSopeB+tO6NDpdGfPns3MzCwqKhIIBMXF\nxWFhYYaJdmFqkhpIHBCaQPlTdgT0CyJRhjUkKTEHWbocjUaLjIz08/PjcDjh4eGbNm3i8Xhs\nNpv4gkajOX36tEql4vF4kydPtmBTzdFvKvmIiAgulysWi2UyWW5ubklJyfnz52/duoVhWHJy\nMozBKCDdXuthI8uTgdQ0Gk13dzdRwVyhUNjZ2WVnZ+NZZDw9Pb28vGJjYwfaD8Vms318fCzU\n9v7BuhPiNBrNwYMHr169qtPpXF1daTSaQqEQi8Xx8fFE7AdTk9RAzYAQs4JTdgSUCyJRCeWT\nlJiPRF3Ozc0tNDQ0MDCQw+EYfXT+/HmhUOjk5LRp0yajGWgEDZRKPi4ubv78+Wq1uqGhob29\nXaVSOTs7p6SkLFmyxNJNBv9jPTsqSfRkICM8d1FeXt7cuXNtbGzkcnlaWlpTU9Pjx495PB7p\nzqnCuhP68C5XWlpqb2+flpa2efNmHo9XWVnZ2Ng4ffr0iRMn4l+j0+lRUVEwNUl2lA0IMWsa\nhsFrQPkkJVYlPz//u+++wzBs27ZtpKjVbiKV/Ny5c0NDQ994442oqKjly5evW7eOFFdkVWAw\nAi+JyGTb29vL5XLHjBmj1Wpv3rwpFotfvHgRERFhuO8d/ZgQ1p3QZ5g8ef/+/YGBgRiGsVgs\nBoNRWloaGxtLBIQYhrHZ7Li4OJiaJDUqB4QYHGwAI4rySUqsQU9PzzfffHPu3DkMw9atWxcf\nH2/pFpll0FTyLBbLxcVlzJgxqL35ARwMRmDYjOqaTJ06FTOI+rq6uvpmkUE5b4I1rDtpNJrC\nwsLLly+XlZV1dnZOnjy535RyyFZQNOpyhumyrl279ttvv9Hp9H/9619XrlxRKpXTp09nMBhM\nJhOmJkmN4gEhBgcbwAihXpISa6PVavPy8jIzM6uqqmxtbbdu3crj8SzdKFOGl0oeIAsGIzAM\nJl7Niajv4cOHfbPIoJk3wRrWnVpbW3ft2lVQUNDQ0PDgwYOysrKioiI/Pz+jJU2UKyjqdLri\n4mK5XO7g4LBkyRIiaq2oqPj22281Gk1LSwuHw2lubq6qqhKJRLGxsXjEy2QyYWqSpKgfEGJw\nsAGMBIolKbFCdDr95s2bEomEy+WmpaUhvkpD1VTyVg4GIzAkRPjEYrEOHDiAH1gwZHp3KGp5\nE6xh3amjo2Pnzp2tra1ubm6rV6+OjIzs6elpaGgoKiqaMWOGYYIclCso0un06OjohoaG+/fv\nl5SUREZGOjo6SiSSjIwMjUYTGxu7f//+lStXRkRE/Prrr62trd3d3SayrwNSsIqAEICRQpkk\nJdYpLCwsJiZm6dKlaO7SMUTJVPIAAPMR4ROGYTqdbvTo0f2ePkX/xCDBGtadTp06JRaLfX19\nP//886CgIF9f34ULF7JYLJFIVF5evnjxYltbW/ybiFdQNIoJ7e3tDx8+3NPTw+PxUlNT8VS3\nzs7Ozs7Ot2/fbmtr+9Of/mTpJoOXAgEhACOAdElKrBb6oSAFUskDAF6S4WLaO++8I5VKTWQk\nIktMaA3rTocPH1ar1enp6YaLgQEBAXK5XCaT0el0wzuIeAVFw/tVXl6u1Wp5PN7mzZsNe1dv\nb+/169fpdDplamtZLQgIAXgpJE1SAtBE9lTyAICXZ7S1ksvlDpqlFuUsMoaove6k1+tPnz6N\nYdiGDRuMNgqNGTOGz+erVKqEhAQLtW44iPsll8tZLNYHH3xgtD3q4sWLdXV1wcHBcXFxFmoj\nGBn0wb8CAOiPVqu9fPnyhg0brl27Zmtru2PHjj//+c+WbhQgN3t7e3t7ez6fr1AoiPLTOCcn\np4yMjEmTJvH5/CNHjuj1eks1EgDwSvH5fKODdqGhoenp6SwW6+LFi3jI0Rf+iNi0aVNkZOTr\nbe/QMJnMnTt3RkZGKpXKr7/+Go8Gjdad8IBWrVZbrpmmdHR0/Prrr3fu3NFqtYY/p9Fobm5u\nGIbV1dUZ/QqeceDFixevrZEjhbhfvb29u3fvlsvlxEc3bty4cuUKjUZLTEy0YAvBiIAVQgCG\niVxJSgApkDeVPABgpHh7e6vV6uTkZMO0K+ZUs0Qti8xAyLvupNPpzp49m5mZWVRUJBAIiouL\nw8LCDJNFqdXqysrKhw8fzp8/33CR8NKlS7W1tUFBQYgXzOhXv3t9BQJBVlaWXq9HvwoIMAcE\nhAAMH4mSlACyIGMqeQDACKLRaLNmzXJycjL6uTkxIVkQMUZTU9Pt27fxGAP/6MaNGzk5OTQa\n7cMPP0Sq+rxGozl48ODVq1d1Op2rqyuNRlMoFGKxOD4+noj9fHx8RCJRfX19VVXVzJkzHRwc\n9Hp9Xl7e2bNnaTRaamoqUldkPqOYUKvVHj9+XKfTrVmzBk4PUgMEhAC8FAgFwYgjVyp5AMBr\nQ8mYkBTrTvjBztLSUnt7+7S0tM2bN/N4vMrKysbGxunTpxPlE+l0elRUlFgslslkubm5JSUl\n58+fv3XrFoZhqF3RUBneL7FYrNfr16xZs2bNGku3C4wMCAgBAAA5kEUGANAvCseEyK47Gab5\n2b9/f2BgIIZhLBaLwWCUlpbGxsYSASGGYWw2Oy4uTq1WNzQ0tLe3q1QqZ2fnlJSUJUuWWO4K\nRobhXl+IBimGBpkJAAAATUqlcteuXXK5fNGiRampqRATAgBwIpFo//79vb29q1evfvfddy3d\nnJdiWHERwzDUIg2jpK+GBzuPHTv2888/x8TESKVSBoMRHR2dmJhI5ANTqVRNTU0sFsvDw4NK\nT2+NRnP79m1Sr3aCviDLKAAAIMows2h5ebmlmwMAQAWRd5TFYlm6LS+LyGOJoRcNGmKxWERZ\neQzDKioqrl27plari4uLbW1tW1paLly4sHPnTpVKhX8BLxLr6elJpWgQwzAmkwnRIPXACiEA\nACBNqVSWlJQsW7bM0g0BAKCltbUVr3NAASivOxGLhMQknUQi+eyzz3p6emJjY7ds2WJvb19f\nX//pp592dHQsX75848aNlm4yAEMDASEAALxCGo2mp6fHwcGB+Elzc7NarTbcdwQAAABlhjHh\n22+/ffLkyb4VFAUCwT//+U8Oh5OTk2PZ1gIwVLBlFAAAXhX8HWL37t3Pnj3Df/L06dO9e/fu\n2bOnqanJsm0DAABgJmJfq1Kp/Prrr/tGgxiG4bVh1Wq15ZoJwDBBQAgAAK8EMaPc1tamUCjw\nH+bk5CgUCk9Pz/Hjx1u2eQAAAMxneNaRxWItX77c6HBgYWEhhmEBAQGWaR8ALwECQgAAGHlG\niek8PT0VCoVerxcKhRMmTNi9e7dhcgIAAADoI2LC3t7e3bt3y+Vy4qMbN25cuXKFRqMlJiZa\nsIUADA8EhAAAMML6pimXy+Xbt28/cuQInU6Pj4+3s7OzdBsBAAAMmeHeUbwsEIZhAoEgKytL\nr9cnJSX5+/tbuo0ADBkEhAAAMJKIaJDFYn322Wd48hh7e3t7e3s+n9/e3s5gMPr9RcPJZgAA\nAGgyigkvXrx4+PBhnU63Zs2aN99809KtA2A4GJ988oml2wAAABRhWGFZp9ONHj06ODgYwzA7\nO7s5c+aUl5d3dXU9efJkyZIldPof5uMEAsHevXsdHBz8/Pws03QAAADmodPp0dHRDQ0N9+/f\nF4vFer0e5QqKAAwKVggBAGBkGO4UXb9+PYvFunjx4unTp/FPiQJWv/3225EjR4xK/rS3t+t0\nOiIZKQAAAJQZ5piBaBCQHawQAgDACDA6N8jlcn18fG7duiWVSnt7e43WCSUSiUKhiIyMJJLU\nBQQEBAcHL1iwwKIXAQAAwFz4OqG7u/uyZcss3RYAXgoEhAAAMAKuX79+6dIlIosMhmFubm4m\nYkKxWGwUE44bN86SFwAAAGCI6HS6h4eHpVsBwMuCgBAAAEaAt7e3Wq1OTk7Go0HcUGNCAAAA\nAIDXDAJCAAAYATQabdasWU5OTkY/HzQmnDZt2qRJkyzRZAAAAAAACAgBAOAVMxETTpgwYf78\n+ZZuIAAAAACsF80o0x0AAIBXQSQS7d+/v7e3d/Xq1e+++66lmwMAAAAAgGGwQggAAK9Hv+uE\nAAAAAACWBXUIAQDgNQkNDU1PT2exWCwWy9JtAQAAAADAMNgyCgAAr1lra6ubm5ulWwEAAAAA\ngGEQEAIAAAAAAACA1YItowAAAAAAAABgpSAgBAAAAAAAAAArBQEhAAAAAAAAAFgpCAgBAAAA\nAAAAwEpBQAgAAAAAAAAAVgoCQgAAAAAAAACwUv8Fb3m9Cg84iDQAAAAASUVORK5CYII=", - "text/plain": [ - "plot without title" - ] - }, - "metadata": { - "image/png": { - "height": 180, - "width": 600 - } - }, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Warning message:\n", - "“\u001b[1m\u001b[22mUsing \u001b[32msize\u001b[39m for a discrete variable is not advised.â€\n", - "Warning message:\n", - "“\u001b[1m\u001b[22mRemoved 4 rows containing missing values (`geom_point()`).â€\n", - "Warning message:\n", - "“\u001b[1m\u001b[22mUsing \u001b[32msize\u001b[39m for a discrete variable is not advised.â€\n", - "Warning message:\n", - "“\u001b[1m\u001b[22mRemoved 4 rows containing missing values (`geom_point()`).â€\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAAFoCAIAAADIFpV9AAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdd0BT5/oH8PckJCTsvfdw4mBIceCoiqKC1oW4Z13c1lbr1Vat3mpve129\nWrUK1tHWqlRFBHFv60LcFJEhS/YmIfv8/kh/KRetJHogQb6fv5L3POe8zwkdeXLeQdE0TQAA\nAAAAAKDtYWk7AQAAAAAAANAOFIQAAAAAAABtFApCAAAAAACANgoFIQAAAAAAQBuFghAAAAAA\nAKCNQkEIAAAAAADQRulpOwEtq6ioSElJ0XYWAAAAAAAAWtDWC8LMzMzo6Og+ffpoOxEAAAAA\nAIAWFRsb29YLQkJIhw4d/vGPf2g7CwAAAAAAgBaVlJSEOYQAAAAAAABtlM49ISwrK/v1119T\nUlKqq6tNTU07d+68cOFCPp+vPKpQKOLi4k6fPl1aWmplZRUSEjJ69GgW66+ytskAAAAAAAAA\nUNKtgjAnJ+fzzz+XSqU9evSwt7evq6tLS0sTCoWqgjAmJiYhIaFXr17h4eGpqan79+8vKyub\nN2+e6gpNBgAAAAAAAICSDhWECoVi/fr1xsbGa9assbW1fTkgLy8vMTGxX79+ixcvJoQMHz6c\nw+EkJSWFhoa6urqqEwAAAAAAAKCm/Px8Z2fnkSNHxsXFaTuX5qJDYymTk5Nzc3OnTZtma2tb\nX18vkUgaBVy9epWm6bCwMFVLeHg4TdNXrlxRMwAAAAAAANqUdevWURRFUdTTp0+1nYsu0qEn\nhHfv3qUoysDA4OOPP87OzqYoqlOnTnPmzPHw8FAGZGRksNlsT09P1Snu7u5cLjczM1PNAAAA\nAAAAaDtomt69ezdFUTRNR0dHb9iwQaPTbWxsrl69amlp2Uzp6QIdKghfvHjBZrO//vprPz+/\nsWPHlpaWHj58+PPPP//uu+/s7OwIIRUVFaampmw2W3UKRVHm5ubl5eXKt00GKH333XdFRUXK\n1zwer9lvDAAAAAAAtOHMmTPZ2dnTp09PSkrat2/f119/zeVy1T+dy+W+8zuW69CQ0fr6eplM\n1rlz53/+85/BwcGjR49etmyZUCg8cuSIMkAsFnM4nEZncblcsVisZoDSzZs3z/2/Z8+eNc/d\nAAAAAACAlkVHRxNC5syZM2nSpLKysmPHjr0ck5SUNHjwYAcHB319fXt7+z59+qxfv155KD8/\nn6KoUaNGNbrmqFGj3N3d+Xy+mZlZv379YmNjW+BemokOPSHU19cnhAwYMEDV0r17d3Nz88eP\nH6sC6uvrG50lkUhUT/maDFDasmWLVCpVvv7jjz+uXr3K3E0AAAAAAIBOKC4ujo+Pb9euXa9e\nvUxMTDZt2rRr166IiIiGMfv37582bZqdnd3IkSNtbGxKS0ufPHkSExPz2Wef/d1l586dGxgY\nOGDAAFtb25KSkoSEhPHjx3/77bdLly5t/nting4VhMqxuebm5g0bzczMKioqlK8tLCxycnLk\ncrlqUChN05WVlT4+PmoGKNnY2Khev3jxonnuBgAAAAAAtGnPnj1SqXT69OmEEB8fHz8/v4sX\nL2ZkZHh5ealidu7cyWaz79696+DgoGqsrKx8zWVzcnKcnZ1Vb4VCYb9+/VavXj1nzpxGtUyr\noENDRr29vQkhZWVlqhaapsvLy01NTZVvPT095XJ5VlaWKiA7O1sikahWkWkyAAAAAAAA2gKa\npmNiYlgs1tSpU5Ut06dPVzY2imSz2Xp6//Oc7PV1nbIapGm6urq6uLi4pqbmgw8+qK+vb6UD\nD3WoIOzZs6eent6pU6cUCoWy5dq1azU1NX5+fsq3wcHBFEWdOHFCdcqJEycoigoODlYzAAAA\nAAAA2oILFy5kZmYOHjzY0dFR2TJx4kQul7t3717V9DFCSGRkpEQi6dy5c1RU1G+//aZae/I1\n7t27N3LkSFNTUzMzMzs7O3t7+y+++IIQUlBQ0Ez30qx0aMiolZXVhAkTfv75588//zwoKKi0\ntDQpKcnKymrMmDHKABcXl2HDhiUmJkqlUh8fn9TU1KtXrw4dOtTNzU3NAAAAAAAAaAt27dpF\nCFGOF1WytLQMCws7cuTI8ePHx44dq2yMiooyNzfftm3bjh07tm3bRgjp2bPn+vXre/fu/crL\npqSk9OnTh8fjzZ8/v1u3bso9Ds6dO7dx48ZGK1m2FjpUEBJCxo8fb25uHh8f/9NPP/F4vODg\n4KlTp6qGjBJC5syZY2lpeebMmVu3bllaWk6ZMmX06NENr9BkAAAAAAAAvNtKS0vj4uIIIZGR\nkZGRkY2O7tq1S1UQEkImTZo0adKkmpqaGzduxMXF7d69OzQ09MmTJw0nCqps2rSpvr4+Pj5+\n0KBBqsa7d+82z320BN0qCAkhgwcPHjx48N8dZbFYY8eObfj30zQAAAAAAADebfv27ZNIJP7+\n/t27d290KD4+/ty5c9nZ2e7u7g3bTUxMhgwZMmTIEDMzs2+++ebChQvTpk17+crPnz8nhAQF\nBTVsvHDhAsM30IJ0aA4hAAAAAADA21OuHLN9+/aYl8ydO7fh0jJnz56VyWQNz1UucmlgYPDK\nK3t4eCjPUrUcOHDg5YLwm2++GTp06MmTJ5m7p+aCghAAAAAAAN4dly5devr0aZcuXQIDA18+\nOmvWLIqi9uzZo6wDIyMjnZycIiIili5dunz58vfffz8mJqZz584jRox45cWjoqLYbHZkZOS0\nadNWrVoVHh4+derUcePGNQq7f//+6dOn8/LyGL87xqEgBAAAAACAd0d0dDQhZPbs2a886ubm\nNmjQoMLCQuXeBGvXru3Zs2dycrJyXZny8vK1a9deu3aNz+e/8vTAwMBz584FBgbGxcX997//\nFQgEZ86cCQ8PbxSWnp7O4XBCQkIYvbNmQdE0re0ctOnOnTsJCQlr1qzRdiIAAAAAAPAuqKio\nsLa2njdvnnLZUl02bNgwPCEEAAAAAABgzMWLF/X19VesWKHtRNSCghAAAAAAAIAxY8aMEQqF\n9vb22k5ELSgIAQAAAAAA2igUhAAAAAAAAG0UCkIAAAAAAIA2CgUhAAAAAABAG4WCEAAAAAAA\n2jorKys3NzdtZ6EFKAgBAAAAAFrayJEjKYraunXry4du3rypp6fXrl07gUDQ8olBW4OCEAAA\nAACgpcXExNja2i5dujQ1NbVhu0AgmDx5MkVRP//8s6GhobbSg7YDBSEAAAAAQEuztrbes2eP\nSCSaNGmSRCJRtS9atCgzM3PVqlWBgYFaTA/aDhSEAAAAAABaEBoaunDhwvv3769YsULZEh8f\nHxMT06tXr88//1zZcvDgweDgYBMTEz6f36VLl2+++UYsFquukJCQQFHU6tWrG13ZzMzMy8tL\n9fb+/fsURU2fPj0vL2/ixIlWVlZ8Pr9Hjx4nT55sdKJcLt+4cWOHDh14PJ6zs/OiRYvq6urU\nmVyXlJQ0ePBgBwcHfX19e3v7Pn36rF+/vmHAjRs3xowZY2dnx+VyHRwcJk+enJaW1ugiN2/e\nHD9+vOoiISEhhw8fbhjw+k9D/dtUKBTfffddx44dlbf5ySef1NXVvXxT0dHRo0aNcnd35/P5\nZmZm/fr1i42NbRig6jEzM3PChAk2NjYsFmvbtm0URYWHhze6Gk3T7dq1MzAwqKysfP2H2cL0\ntJ0AAAAAAEAbtX79+gsXLmzcuHHYsGGdOnWaPXu2sbHxTz/9xGazCSFLly5dv369jY3N5MmT\nDQ0NExMTly9ffurUqbNnz3I4HE37ysvL69Gjh6Oj4/jx40tKSuLi4sLCwi5duhQcHKyK+fDD\nD3/88Uc3N7eoqCgWi3X06NG7d+/K5fLXX3n//v3Tpk2zs7MbOXKkjY1NaWnpkydPYmJiPvvs\nM2VAdHT0vHnzLC0tR4wYYWNjk52dHRsbGxcXd/78+ffee08Z88MPPyxcuJDD4YSHh3t5eZWU\nlCQnJ2/fvn38+PHKADU/DXVuc/78+bt27XJ1dY2KiqIo6ujRo8nJyS/f5ty5cwMDAwcMGGBr\na1tSUpKQkDB+/Phvv/126dKljT7Y9957z8rKaujQoQKBoHfv3soqNC8vz9nZWRV28eLFZ8+e\nTZs2zdzcXM0/WQuh27bbt2+vWrVK21kAAAAAQBt17949Lpfr7Ow8ZMgQQsiPP/6obL9y5Qoh\nxN3dvaSkRNkilUpDQ0MJIevWrVO2nDhxghDy5ZdfNrqmqampp6dnwy6U3/xXrFihUCiUjT/9\n9BMhJCwsTBV27tw5Qki3bt3q6uqULUKhMCAggBDi6ur6mlvo1asXm80uKCho2FhRUaF8kZqa\nyuFwhgwZIhQKVUcfPHhgZGTUtWtX1Vs2m21hYZGamtrwInl5eep/Gmre5sWLFxvdpkAg8PX1\nffk2c3NzG74VCAQBAQF8Pl91a6oeo6KiZDKZKnLPnj0v/12Ule3vv//+t5+jNoSGhqIgREEI\nAAAAANr07bffKuuK0aNHqxqnT59OCNmzZ0/DyNTUVIqi3N3dlW81KghdXFykUqmqUaFQmJqa\n2traqlqmTp1KCImLi2t4qVOnTqlTEHK53OLi4lcejYqKIoRcvny59H+NHDmSEPL8+XOapufN\nm0cI2bJly991oc6noeZtTps2jRBy7NixhpdKTEz8u9tUKBRVVVVFRUWFhYXr1q0jhBw/frxh\nj1ZWVgKBoOEpQqHQwsLC0dFRVSUWFxdzudwuXbr83Q1qS2hoKOYQAgAAAABo05IlS+zs7Agh\nGzZsUDWmpKQQQgYMGNAwsmPHjvb29tnZ2VVVVZr24uvrq6f313wxiqKcnJwazmdTljcNh1YS\nQvr06dPklSMjIyUSSefOnaOion777beioqKGR2/cuEEI6devn/X/On78OCGksLCQEHLz5k1C\niPKJ3yup/2moeZt9+/ZteKlGb1WRI0eONDU1NTMzs7Ozs7e3/+KLLwghBQUFDcO6d+9uYGDQ\nsIXP50+fPr2goEBZZxJC9uzZI5FIlHWvrsEcQgAAAAAAbWKxWPr6+oQQPp+vaqyuriaEKAvF\nhuzt7V+8eFFdXW1mZqZRLy/H6+npNZw4V1NTo6enZ2Fh0TDG0NCwyd0voqKizM3Nt23btmPH\njm3bthFCevbsuX79+t69exNCysvLCSHx8fEN706lY8eOhBBlRefo6Ph3Xaj/aTR5m9XV1S/f\nppGRUaPbTElJ6dOnD4/Hmz9/frdu3UxNTdls9rlz5zZu3NhwJRtCiIODw8sJz58/f/PmzTt3\n7gwPD6dpOjo62tDQcPLkyX93g1qEghAAAAAAQOeYmpoSQoqKilxdXRu2Kx+pKY+yWCxCiEwm\naxgglUoFAoGVlZWmPZqYmOTk5FRUVDQslgQCgTpXmzRp0qRJk2pqam7cuBEXF7d79+7Q0NAn\nT544OzsrU7Wzs+vRo8ffna6s4goKChoujtqQOp+GmkxNTV++zbq6uka3uWnTpvr6+vj4+EGD\nBqka7969+/IFKYp6udHLy2vQoEGnTp3KyclJT0/PzMycNWuWiYmJ+nm2GAwZBQAAAADQOcpl\nTi5dutSw8enTp4WFhe7u7soKSrleZV5eXsOYe/fuNSoR1dS9e3dCyLVr1xo2Nnr7eiYmJkOG\nDNmxY8fixYtra2svXLhACAkKCiKEHDx48DUnKmOSkpL+LkCdT0NNykspV6lRafSWEPL8+XNV\nYirKO1LTggULFApFTEzMzp07CSFz585V/9yWhIIQAAAAAEDnzJw5kxDy1VdfKYdcEkJkMtni\nxYtpmp41a5aypUuXLjwe7/jx46ppe9XV1Z9++umb9ahcVGb16tVCoVDZIhKJVq1a1eSJZ8+e\nbVSClpWVEUKUM+uioqL09PS2bt3aqJqqq6s7dOiQ8vWCBQvYbPbq1asbbU6Yn5+vfKHOp6Em\n5aIyq1evFggEyhahULhy5cpGYR4eHspbU7UcOHBAo4IwLCzMyclp165d8fHxfn5+r3lAql0Y\nMgoAAAAAoHP69u376aefbtq0qXPnzmPHjjUwMEhMTExNTQ0ODlbt72dkZKScq9a9e/ewsDCJ\nRHL27Fl/f/83G5o4aNCgadOm7du3z8fHZ8yYMRRFHTt2zM7OzszMTDk29e9ERkbq6en169fP\n1dWVzWbfunXr4sWLnTt3HjFiBCHEx8dn586dc+fOHTRoUEhIiK+vr1wuT0tLu3DhgpubW0RE\nBCGkS5cuW7dujYqK6t69e3h4uLe3d3l5eXJysrGxsXKXCHU+DTUNGDBgzpw50dHRqts8evSo\ng4NDo8eMUVFRBw4ciIyMjIiIcHV1vX///smTJ8eNG9dob/rXYLPZH374obKi1tnHg4SpglC5\nmKz6lixZ4ubmxkjXAAAAAADvpI0bN/r5+W3fvn3fvn1SqdTLy2vt2rWLFy/mcrmqmPXr15uY\nmOzdu3ffvn0ODg6zZs1auXKljY3Nm/W4e/fuzp07R0dHb9myxdraesyYMatXr7axsWk0c6+R\ntWvXnj59Ojk5OSEhgcPhuLq6rl27duHChapVZGbOnOnn57dp06ZLly5dvHjR0NDQwcFhypQp\nympQaf78+V27dt2wYcOlS5fi4uKsrKy6du06e/ZsjT4NNf3www8dO3b84Ycftm7dam1tPW7c\nuK+++qpReRIYGHju3LlVq1bFxcURQgICAs6cOfPixQv1C0Llja9atcrY2HjixImaJtliKJqm\nGbjKq2ZSvsaNGzcajcfVljt37iQkJKxZs0bbiQAAAAAA6JwHDx507959woQJv/76q7ZzaX2S\nkpKGDRs2b968HTt2aDuXVxs2bBhjQ0bj4uKUC8u+nlgsdnJyYqpTAAAAAABgSllZWcOVNoVC\noXJA5gcffKC9pFqx//znP4SQhQsXajuR12GsIDQ1NVVncVuRSMRUjwAAAAAAwKDVq1dfunSp\nf//+dnZ2L168OHnyZE5OTmho6Lhx47SdWmuSkpJy6tSpmzdvXrp0KSIiwsfHR9sZvQ4zBeGN\nGzc6deqkTqS+vv6NGzd0/EMBAAAAAGiDhg4dmp6e/ttvv1VWVurp6bVv3z4qKurjjz/WdIJY\nG/f7779/8cUXZmZmkZGR27dv13Y6TWBmDmHrhTmEAAAAAADQNg0bNgz7EAIAAAAAALRRzbIP\nIU3T586du3XrVkVFhUKhaHjou+++a44eAQAAAAAAQFPMF4S1tbWhoaHXr19/5VEUhAAAAAAA\nADqC+SGjX3755Y0bN77++uvU1FRCSEJCwuXLl0NCQnr06PH8+XPGuwMAAAAAAIA3w3xBeOzY\nsfHjxy9fvtzd3Z0QYmlp2bdv35MnT9I0/f333zPeHQAAAAAAALwZ5gvCgoKC4OBgQgiLxSKE\nSKVSQgibzZ4wYUJsbCzj3QEAAAAAAMCbYb4gNDQ0VBaBXC6Xx+O9ePFC2W5iYlJUVMR4dwAA\nAAAAAPBmmC8IPTw8nj59qnzdrVu3gwcP0jQtk8kOHTrk5OTEeHcAAAAAAADwZpgvCENCQo4c\nOaJ8SDh79uy4uDgvLy9vb+/z58/PmDGD8e4AAAAAAADgzTBfEC5btuz8+fPK7Qdnz569YcMG\nHo9nZGS0evXqZcuWMd4dAAAAAAAAvBnm9yE0NTU1NTVVvV28ePHixYsZ7wUAAAAAAADeEvNP\nCAEAAAAAAKBVYP4JoYpCoaitraVpumGjmZlZ8/UIAAAAAAAA6mO+IFQoFDt37tyyZUtWVpZE\nIml0tFF9CAAAAAAAANrCfEG4du3aL7/80sbGJiwszMrKivHrAwAAAAAAACOYLwijo6P9/Pyu\nXr1qYGDA+MUBAAAAAACAKcwvKlNcXDxx4kRUgwAAAAAAADqO+YLQy8ururqa8csCAAAAAAAA\ns5gvCBctWrR///6amhrGrwwAAAAAAAAMYmYOYVxcnOq1jY2Ns7Nz165d58+f7+npqaf3P12M\nGjWKkR4BAAAAAADgLTFTEH7wwQcvNy5btuzlRjW3nXj69OnSpUtpml63bl2XLl1U7QqFIi4u\n7vTp06WlpVZWViEhIaNHj2axWOoHAAAAAAAAgBIzBWFsbCwj11FSKBQ7duzQ19cXiUSNDsXE\nxCQkJPTq1Ss8PDw1NXX//v1lZWXz5s1TPwAAAAAAAACUmCkIx44dKxAIDA0NGblaYmJicXHx\nsGHDjh492rA9Ly8vMTGxX79+ixcvJoQMHz6cw+EkJSWFhoa6urqqEwAAAAAAAAAqjI2ltLa2\nHjVq1P79+ysrK9/mOpWVlb/88svkyZNNTU0bHbp69SpN02FhYaqW8PBwmqavXLmiZgAAAAAA\nAACoMFYQfvbZZxkZGdOmTbO1tR0yZMjOnTuLi4vf4DoxMTG2trahoaEvH8rIyGCz2Z6enqoW\nd3d3LpebmZmpZgAAAAAAAACoMDNklBCyZs2aNWvWPHv27MiRI0ePHp03b96CBQt69eo1evTo\n0aNHqzli88GDB9euXfv3v//9ymVgKioqTE1N2Wy2qoWiKHNz8/LycjUDlD766KOcnBzla0dH\nR2tra01vFgAAAAAA4B3A8PKb3t7ey5Ytu337dm5u7qZNm1gs1pIlS9zc3AICAr7++uu0tLTX\nnCuTyX744Yd+/fp16tTplQFisZjD4TRq5HK5YrFYzQAlgUBQ+/9eXrcGAAAAAACgjWiu/Ric\nnZ0//vjjy5cvFxUV7dq1y8rKavXq1R07duzUqVNCQsIrTzl69GhlZeWMGTP+7pr6+vpSqbRR\no0Qi0dfXVzNAaffu3Rf+3/z58zW+NwAAAAAAgHdCs2/QZ21tPWfOnFOnTpWWlv70008dOnT4\n448/Xg6rqak5fPjwoEGDRCJRYWFhYWFhbW0tIaS8vLywsFC5e6GFhUV1dbVcLledRdN0ZWWl\npaWl8m2TAQAAAAAAAKDC2BzCJpmamk6ePHny5MmvPFpTUyORSOLj4+Pj4xu2b9q0iRBy+PBh\nHo/n6emZnJyclZXl7e2tPJqdnS2RSFSryDQZ0Io8f/68tLS0BTry8vIyNzdvgY4AAAAAAEDX\ntFxB+HqWlpb//Oc/G7bcuXPnwoULkZGRLi4uXC6XEBIcHHz48OETJ058+umnypgTJ05QFBUc\nHKx822RAK1JSUqLR4qg0TT979ozP5zs7O2vUkZ2dHQpCAAAAAIC2ifmCkMfjvbKdoig+n+/q\n6jpkyJAlS5ZYWVk1PMrn83v37t2wpaSkhBDi4+PTpUsXZYuLi8uwYcMSExOlUqmPj09qaurV\nq1eHDh3q5uamZkAr0rlzZy8vL/Xj5XK5QCCwsbHRtPo1MjLSMDUAAAAAAHhHMF8Qjhgx4o8/\n/khNTXV2dm7Xrh0h5OnTp/n5+Z06dXJyckpPT//2229//vnnW7duOTo6anrxOXPmWFpanjlz\n5tatW5aWllOmTBk9erRGAa2FoaGhoaGh+vFyudzIyMjY2NjCwqL5sgIAAAAAgHcJpVyvhUHX\nr18PDQ3dsWPHxIkTKYoihNA0/fPPPy9cuPD06dM9e/Y8cODAlClTZsyYERMTw2zXb+DOnTsJ\nCQlr1qzRdiJvSy6XHz582NbW9v3339d2LgAAAAAA0AoMGzaM+SeEy5Ytmz59+qRJk1QtFEVN\nmTLl9u3by5cvv3Tp0sSJEy9cuHD69GnGuwYAAAAAAAD1Mb/tREpKSteuXV9u79q1a3JysvJ1\nUFBQcXEx410DAAAAAACA+pgvCDkczv37919uv3fvHofDUb4Wi8UaTZADAAAAAAAAxjFfEA4b\nNuyHH37YvXu3aoN4uVweHR29c+fO4cOHK1tu377dGlf+BAAAAAAAeJcwP4dw/fr1N2/enD17\n9rJly7y9vWmazsjIKCsr8/T0/M9//kMIEYlEubm5EydOZLxrAAAAAAAAUB/zBaGjo+O9e/c2\nbNhw/Pjxhw8fEkI8PDzmz5+/ZMkSExMTQgiPx7t48SLj/QIAAAAAAIBGmC8ICSGmpqZfffXV\nV1991RwXBwAAAAAAAEYwP4cQAAAAAAAAWgXGnhCKRCJ1wng8HlM9AgAAAAAAwNtgrCDk8/nq\nhNE0zVSPAAAAAAAA8DaYnEPI4/GCgoLYbDaD1wQAAAAAAIBmwlhB6OnpmZmZmZ6ePn369Jkz\nZ3p6ejJ1ZQAAAAAAAGgOjC0q8+zZswsXLgwYMGDz5s3e3t7vv//+L7/8Ul9fz9T1AQAAAAAA\ngFmMPSGkKGrAgAEDBgyoqqo6cODA7t27J0+ebGZmNnHixFmzZvn5+THVEbRSFRUVEomkBTqy\nsrLS02uW/VQAAAAAAN4xzH9vNjMzW7BgwYIFC+7fv7979+5ffvll+/bt69evX7JkCeN9QSty\n7969kpIS9eNlMll5eTmfzzcxMdGoo9DQUDMzMw2zAwAAAABoi5rxQYqXl1f37t1v3ryZnJxc\nV1fXfB1Bq+Dq6mplZaV+fG1tbUFBgbW1dadOnTTqCFubAAAAAACoqVkKwuvXr+/evfvw4cMC\ngaBnz54xMTERERHN0RG0Il5eXhrFV1VV5eXleXp6duvWrZlSAgAAAABo45gsCIuKivbv3//j\njz8+ffrUxsZm3rx5s2bN6tixI4NdAAAAAAAAAFMYKwhHjhx58uRJmqZDQkLWrVsXHh7O4XCY\nujgAAAAAAAAwjrGCMD4+nsfjjRo1ytHR8caNGzdu3Hhl2IYNG5jqEQAAAAAAAN4Gk0NGRSLR\nwYMHXx+DghAAAAAAAEBHMFYQ3rlzh6lLAQAAAAAAQAtgrCAMCAhg6lIAAAAAAADQAljaTgAA\nAAAAAAC0g5mCcO/evUVFRepEyuXyvXv3lpaWMtIvAAAAAAAAvDFmCsIZM2akpaWpEymVSmfM\nmJGZmclIvwAAAAAAAPDGGJtDmJqayuPxmgyTSCRM9QgAAAAAAABvg7GCcOHChUxdCgAAAAAA\nAFoAMwXh1q1bNYp3d3dnpF8AAAAAAAB4Y8wUhFFRUYxcBwAAAAAAAFoMtp0AAAAAAABoo1AQ\nAgAAAAAAtFGMLSoDWiSVSvPz8/Py8sRicXFxsY2NDUVR2k4KAAAAAAB0HQrCVtbhwVcAACAA\nSURBVK+oqOj333///fffnz9/zufzHzx4EBoaGhwczOfztZ0aAAAAAADoNBSErVtNTc2VK1fy\n8/O7d+8uFotNTU07dOhw/fp1mqZDQkLwnBAAAAAAAF4Dcwhbt6dPn6amptrb26tqPzab7e3t\nffr06RcvXmg3NwAAAAAA0HHNWBDK5fLmuzgolZWVWVhYNGpks9mmpqbl5eVaSQkAAAAAAFoL\nhgvCioqKL7/80t/f38jISE9Pz8jIyN/ff/Xq1ZWVlcx2BEoKhYLFesUfkcVioSAHAAAAAIDX\nY3IO4YMHD4YMGVJcXEwIMTY2dnR0rKmpSUlJSUlJiY6OPnXqVJcuXRjsDgghxsbGdXV1lpaW\njdrr6upMTEy0khIAAAAAALQWjD0hrK+vHzNmTGlp6aeffpqRkVFTU5Ofn19TU5Oenr5o0aLC\nwsKxY8eKxWKmugMlDw+PoqIioVDYsLGoqCgwMNDJyUlbWQEAAAAAQKvAWEF46NChzMzMrVu3\nbty40dPTU9Xu7e29efPm7777Lj09PTY2lqnuQMnJyWnKlCmPHj16/vx5bW1tZWVlenq6o6Nj\nUFCQvr6+trMDAAAAAACdxtiQ0fj4eDc3t3nz5r3yaFRU1MaNG48fPz558mSmegQlf39/Ozu7\nrKys6upqS0vLgQMHtmvXDuNFAQAAAACgSYwVhA8fPhw4cOArFzghhLBYrEGDBl25coWp7qAh\nR0dHOzu7/Px8W1vbgIAAbacDAAAAAACtA2NDRouLi11dXV8T4OLiUlJSwlR3AAAAAAAA8JYY\nKwgFAgGfz39NgKGhYW1tLVPdAQAAAAAAwFtirCCkaZqRGAAAAAAAAGgZTO5DGBsbm5aW9ndH\nHz16xGBfAAAAAAAA8JaYLAhv3759+/ZtBi8IAAAAAAAAzYexgvDOnTtMXQoAAAAAAABaAGMF\n4dvvdpCfn3/p0qW7d+8WFhbq6ek5OzuPGjXqvffeaxijUCji4uJOnz5dWlpqZWUVEhIyevTo\nhntdNBkAAAAAAAAASkwOGX1Lhw8fvnbtWrdu3Xx9fcVi8bVr19atWxcZGRkZGamKiYmJSUhI\n6NWrV3h4eGpq6v79+8vKyubNm6d+AAAA6IiaMmFVUUusPm1ma2RibdgCHQEAALQ6zVsQisXi\nP/74o6ampmvXrmZmZq8P7tev36xZs0xNTZVvIyMjFy1aFBsbO3LkSAMDA0JIXl5eYmJiv379\nFi9eTAgZPnw4h8NJSkoKDQ1VboHYZAAAAOiOW8eeHP3mcgt0NHJxn6ELglqgIwAAgFaHyYIw\nKSlp7969XC53zpw5ffv2PXPmzMyZMwsKCgghXC535cqVK1aseM3p/v7+Dd8aGRkFBQXFx8cX\nFRV5eHgQQq5evUrTdFhYmComPDz8woULV65cmTJlijoBAACgO9y62YfMDdTolCsH7tNyut8U\nX43O8vBz0CgeAACg7WCsILx8+fLw4cOVOw0ePnw4MTFx9OjRBgYGI0eOlEgkV69eXblyZYcO\nHcaOHav+NWtqaggh5ubmyrcZGRlsNtvT01MV4O7uzuVyMzMz1QwAAADd4R3o5B3opNEpyQlp\ncqn8g6V9myklAACAtoaxgnDz5s2Ghoa//vqrm5vb3Llzp0yZ4urqev36deVI0ezsbF9f3+3b\nt6tfEBYUFFy/ft3Pz09VEFZUVJiamrLZbFUMRVHm5ubl5eVqBigJBAK5XK58LRaL3/SOAQAA\nAAAAWjfGCsK7d+9GRESMGDGCELJmzZrBgwcvX75cNW/Q3d09MjLy4MGDal5NKBT++9//5nA4\nDdeDEYvFHA6nUSSXy1UVdU0GKM2aNSsjI0P5un379l5eXmpmBdCQUChUKBQt0JGRkVEL9AIA\nAAAAbRBjBWFRUZFqrKZyyp+Li0vDAFdX1+rqanUuJRKJ1qxZU1xcvHr1ajs7O1W7vr5+fX19\no2CJRMLj8dQMUAoKCnJzc1O+5vF4ymGuoDvkcvmTJ0+ePn1648aN/Px8sVjs4+OjelCsO86e\nPSsUCtWPl8lkIpFIX1//5Z8tXm/8+PENn3sDAAAAADCFsYJQJpOpvuZyuVxCiJ7e/1xcT09P\nndJLLBZ/9dVXGRkZK1eu7Ny5c8NDFhYWOTk5crlc9eWYpunKykofHx81A5QWLVqken3nzp2E\nhASN7hSalUwmO3/+/IULFywsLEQiUVlZ2eXLlwsLC4ODg+3t7bWd3f9wcHCQSCTqx5eUlGRl\nZXl5eTX6raRJFEVpmBoAAAAAgFp0aB9CQohEIlm7dm1qaury5cu7d+/e6Kinp2dycnJWVpa3\nt7eyJTs7WyKRqJ5MNhkAui81NfXChQtdunQRi8X5+fnGxsaenp75+fm3bt0KCwvTqQdlPXr0\n0Cg+Pz9fJBJ169atU6dOzZQSwDtPoaBpBYZ1AAAAMIbJgjA2NjYtLY0QohxHt3Xr1ri4ONXR\nR48evf50qVT69ddfP3r0aOnSpYGBr1iIPDg4+PDhwydOnPj000+VLSdOnKAoKjg4WM0A0H05\nOTlOTk6NCj87O7srV64EBgY6OGDteIA2TVQrVshbYu4uAABAG8FkQXj79u3bt2+r3p45c0aj\n03fu3JmSktKuXbu8vLxDhw6p2vv27ascK+ji4jJs2LDExESpVOrj45Oamnr16tWhQ4eqJgQ2\nGQC6TyAQGBgYNGqkKIrP5wsEAq2kBADadf/MMzNbI7du9oSQhg8Hc58Ul+VW+4W201ZiAAAA\n7wDGCsI7d+685RWKi4sJIenp6enp6Q3bPTw8VJPH5syZY2lpeebMmVu3bllaWk6ZMmX06NEN\ng5sMAB2np6cnk8lebm84SRUA2pSy3Op9nyX9Y+9YD9+/xgg8f1C4ZdpvQ+e/p8XEAAAA3gGM\nFYQBAQFveYWvvvqqyRgWizV27NjXbGbYZADoOFtb27S0NBMTk4aNAoHA19fXxsZGW1kBgBYN\nmh2gkCu2TI1dGPPnD3y5T4q/n3mkz4SuIXNfMb8AAAAA1Kdbi8oA+Pj4FBYW5ubmqjaxrKur\nS09PnzBhwstDSQGgjVAWfttmH1XQNFHQW6bG9hrXZfSyftrOq7G6ynpRnQaLD78xY0sDfQMM\nmgAAAAYwWRAmJSWxWKwhQ4YQQkpKSmbOnNnwaNeuXb/++msGu4N3krm5eb9+/W7evHnq1KkX\nL15UVlZ6eXlFRkb6+vpqOzUAaGnVxXWPLmYpXxuY8joFu987nU4o4h3obONmfu3gQ+Whzv3d\nze2MtZfmX05sunblwIMW6Gj2ljD/4e1boCMAAHjnMVYQPnjwYPjw4Tt27FC+FQqFiYmJDQMS\nExPHjBnj7+/PVI/wrrK1tQ0LC/Px8UlISPDy8ho4cCCPx9N2Um+rvLw8PT09IyODz+dbWlra\n2tpqOyOAVqA4u+LuyaeqtyKBhBBCaFJXWd+w3dLJVEcKQs8AJ4Umu2LQNH390CMTa8OuAzXb\nHsna1UzD1AAAAF6NsYJw9+7d1tbWM2bMaNi4Z8+eoUOHEkJkMlnXrl337duHghDUwWKxLC0t\nbWxsrK2tW3s1SNP03bt39+/fz2KxioqKioqKLl26NGbMmF69eunUtooAOqhdkEu7IBfl69wn\nxVumxrI5bELo4qyKhTGjvd9z1m56Lwsc2TFwZEf14+UyxfVDj2zczCetC2m+rAAAAF6DsYLw\n0qVLgwcP5nK5DRvNzMzs7OyUr8PCwq5cucJUdwCtRVpa2q+//tqtWzeRSCSXy11dXa2trRMS\nEng8nqZb20Mbdzvpceyaiy3QUccBLjP/PbIFOlKfshrsNa7LlV8f0HLFsKie22Yf1c2aEAAA\noHVhrCDMzs4eM2bMawLc3Nwa7lMP0BbQNJ2Wlubm5mZgYCASiZSNXC7Xy8srKyurW7dujX5D\nAXgNoUAoqpNqdIpcrKBpoqdPEYpS/6y6at3a81O5w0T/qb7hn/a58usDQkjI3ECJSLb9w2Mf\n7R3n7muv7QQBAABaMcYKQpFI1HCbOFdX19raWj6fr2oxMDCor69nqjuAVqG+vv7ChQsvPwk0\nMjK6efPmgAEDsJcGqK/v6IBe4d01OmXtyN2l6YJ/XZ5taMJvOvr/6dpg5jsn0t6f7jdiUe+G\njSM+7sXWY92OT0VBCAAA8DYYKwgtLCwKCgpUbymKMjIyahiQn59vaWnJVHcArQJN04QQFov1\n8iGKohQKRYtnBK0Yi8XS9JGyqEZGCOFyua36WfS4FQNe2R66MKiFM2kmchn+UwAAAFrziu+p\nb8bX1/f06dN/9wVXoVCcPn0aOwdAW2NgYNC/f//a2tpG7fX19YGBgaamplrJCt5t2fcL02/l\n/fmmwYKX1cV1t+NStZISg7j6ehz9d20H3Zoy3RqjCwAAbQpjBWFERERmZubmzZtfeXTz5s3P\nnj0bP348U90BtAoURXl4eDx//lwq/Wvql0KhyMrKcnJyajimGoAp5fnV38848vj/t+9Tqiqu\n2xh58MnV51pKijEcnp4eV7dGtL6Bc7uTX6SXvdx+71R6oz8cAABAc2OsIJw8ebK/v/+SJUtm\nzpyZnJwsk8kIITKZLDk5eebMmUuWLAkICJg0aRJT3QG0Fl27dh06dOj9+/dzc3OrqqpevHhx\n7969Pn36YIlRaCYBIzpEfDlw18L4h+cylS1VxXWbIg/aelhM+fcQ7eYGSjWlgs2TDhc8LSOE\nRAQe6GJ9jRBy89iTHz9JVI4zBwAAaDGMDbzhcDjHjx8PCwvbs2fPnj17KIoyMDAQCoXK/7f5\n+fkdP3684aozAG0Em83u37+/h4fHgwcPbt686ePjExgY6OHh8cqJhQCM6B3RhRAS89EJPT5F\nCNkx+5i9t9Xc7SPfgWdrtoa5CrlM21m8rfCp5gqJx3eTD3+0dwxfX8ijBMkJab98fmbGWv/O\n/vrazg4AANoWJmdiODo63rp1a//+/bGxsY8fP66urnZwcPDx8Rk/fvyUKVNQDUKbRVGUq6sr\nm80WCATdunXz8vLSdkbwbhILpSknn6pWKPEf1v7WsSeEEA6f06W/x82jT5Tt7YKcbdzMtZbl\n2/Gx+Z1Fa7b3hg4SnVw8xE5BwpZsmX5kbGcil8j3fZY0e00nt6cTJZZRvP7LtJ0gAAC0IQxP\nzedwOLNmzZo1a9Yrj967dw/rygAANJOKFzWXf7lPK/4ccyiXypUvpELp9dhHDSNbV0Eourye\nZWTL9Z/aqF1y/1dF5XPegOVayerN5D4pTruWo6dY1u5FVCDr83yPjwgh4npp8FAj+wdTSvjv\nPX/an06/3WtcFyNzzDEGAICW0BJrtVVXVx84cCAmJiYlJQWzI9T04MGD3Nxc9eMVCkVKSoqZ\nmZlAoNlqdQEBAfb22MUL4F1g72W57Nhk5evKotrNEw+x9VkysaK6VDh+1cCugzy1m97LasqE\nVUWN1+B9mZ7Qlnd6jjivQuoVqVDQhNC5j4s5WbH6NxeL+/wgfVzc5BXMbI1MrA2ZSPltlefX\n5DwuJoTkUauC9VeF2H4rqFUYcgX+essKxL53a+bQxaWEkG6DvVEQAgBAy2jegvDatWsxMTGx\nsbFCodDQ0HDcuHHN2t27RCaTSSQSjU4JCgoihGh6FrbCA3j3KKtBWw8LUX19bYl49LK+MR+d\nmL0lTNdqwoRdl67uVmsnjPb2kydJPju97aqNiVSPLU+MWjy2x6HDyeMfHCon5KcmT+89rcPk\nVSPeOt+mic6ulqYnvSbAi1Z4ef055LW+hjKuybLny71sMkUynqttkZf+qj/jTuq/vlDmvb+S\n07El7ggAAN55zVIQlpaW7t+/PyYmJi0tjRAyZMiQuXPnDh06FIvsq8/f39/f31/bWTCpOLtS\nLNCgWK2tra17IS1n1eUaNP3zf0P2XpYc3ru2TRmA+qqK6zZPPOTQzmrO9+HL+24jhAR+0JGt\nx4r56MSH28N9+ntoO8G/uDjV9n8/Q71YzkPh4DDf42ViS0JT/m53Hgv6m3sZ9/dS63QH5xYa\nByF5FCsvVnezRw75a6lvnp6QlD9Rf7UcaeZ5FIQAAMAIJr83KxSKc+fOxcTEHD9+XCKR+Pn5\nffHFF+vWrZs3b96oUaMY7KgtuHLgwdMbGgwZfWODZwe4dWuJr0oHvjjz12bZakshJfEkRaNT\nViROc+xgrWlHbyDjTr5MIlc/vrS0tCpTnEeXsSpzNOqoXZALi01pmB20XXfi/3DxsZ2xaThb\nj2VpUOzqmEcI6TupO8WiLuy5q1MFoZ/Z750tdmp0ig2vRPmiq9H5ruS8mmfpmxJCWmLfI/2+\nS+RZl5sMK82tzkopaOdnZlh9XVIvpSiKa2peUO9Tli/oFOxmYNL0QqP63SKYyBcAAIC5gvBf\n//rXjz/+mJOTY21tvWDBghkzZnTt2vX58+fr1q1jqos2JfdxUcrJpy3QUcCIDm7dWqAf0uV9\nTxt3DdaxqCqrfXwu29BS33dwe406MmypiTc/LkqsVGP6UyMPSRkhtzU65b+PP+bysUgvqGvw\nnL+2uPQ0/8PN6KHydXBkt+DIFvm3XX2slnqY31Id6QfMIAEzmgy7tCTJb6yeUdoMdoew9LP3\nS2Xtgp1fOFtJM0xWP9G36Tceq68BAEDLYez/kV9++aWXl9fRo0dHjBiBHSbe3qglwUPnB6kf\nLxPL1wz50d3XYebm4Rp1ZGxpoGFqb2jQ7AB1wm4ceewX2l7fgJOWnP34XLaZo8GkdSGEkCdX\nsm3dLaycTZs5TQ10HeWi0SDYF+llubcqrTsYePZw1KgjCo8HQRPi29GKsgx+6DeEolicv7a7\nlP5xQvIw1jBivxZza0T/vQ/1XNT9D50s57r49+11PCdCEaP6fG7AdI73YDXPZdv5vGmOzWLK\nMq/aXQP03IJ5Y/fTZ7vIFFzjOWdrowcPMP3aKCJR29kBAEDbwlhBaGVllZGR8fnnn6enp0+Z\nMsXBwYGpK7dNRhYGRhYaxEtFMkIIR19Pp0omTdE0ubT/3s0jTxbEjG7YfuPI4wMrzn60d6xO\n3R2/nYQWCtWP1xfJyC2ib09z22twFiGkZcaLKhSKxMSW+CbK4/EGD1b3ezw0VPK88v7pZ02G\n8SXG7Qujc+9l5VguUUgURJ9c3JtiI7/pWfx5jtVnZTubfkDt2MG6cz93JlJuAtu6PdtarSEA\nkgcHxTd/MIzY++LSAUohtRu/VfDTWD1HP/2gec2dZHMQHJ6u5zXIcNyPcjkhhHB5ehTf3HjW\nqdrogaJL/+GH/EvbCf5l75KTmckFLdDRgugP7L2tWqAjAABohLGCsKCg4NixY9HR0cuXL//i\niy+GDBmiHDXK1PWhLaAosuin8f+dFvv9jN9C/vHnsLcbRx4f+OLstA2h3u85aze9Rnr16iWX\nazCHMI2d9yz2cocOHXoP6KxRRywWq+kgbcjLy8vOzu7UqZOVFb7GtYTCZ+XH/nNFnUhrk9mz\ng3eS+3niOhtiTDIO7Xmv574TD8NvZZoR0vQVeo3r0jIFoZok938VxM4wjPiJ23UcuXSAEMLp\nMNww8kDdr5GUvhHXd7K2E9SY0bTjlIEloShCFIQQNodNCKEMrYwX3iCtfHMmuVReWVSnb8g1\ntsAycgAArQNjBSGXy42IiIiIiMjKytq9e/fevXvHjRtnaGhICHnx4gVTvcA7j2+i//G+cf+d\nFhv376uEEGGlRFkNBozooO3UGrO21mzpmiKzWkKIsbGxnZ1d82T0VlgsVlhYmEanPHnyxMDA\n4P3333dxcWmmrKAhj3Zk6TdqjvF2o0WL/NP+KyJ5Crl4mu1+ofPYfu8F91PvZAMn3VqnlxaW\nG0X+yvH5oGEjx+cDo8mxivIsbWX1NijDv35DKa6yk1rY/tnOaaEx/OqbvmGYRvFFGeVrhuzx\nC2039duhzZQSAAAwi/n/63t4eKxbt+5f//pXYmJidHR0UlLSwoULN2zYMHbs2HHjxvXo0aPp\nS0CbVPisrPBZufJ1/8nd4zZeI4RU5QsGTPNjsSjlEjt6+npdBnhQLMyp07KysrL79+8/fPjw\n9OnT9fX1nTt39vX1NTY21nZe7zhOTpxZ8mcanWJAqv98kXvQIPegmmfplfUiPQdqllxz0u8V\n9cp2TkfNfsLQTUmPRnj1cNJ2FgC6ojS3asvU2BboyMXHds734S3QEYDua66fgdlsdnh4eHh4\neEFBwZ49e3bv3r1+/fr169fTrXwwDDSfm0dTU5L+WlhVLPxzvZYH5zIens9UvubwOB5+DkYt\ntY4ovFJxcfHly5czMjIUCoWnp2dNTc3FixdLS0sHDx5sYmKi7ez+IpPJysrKWqAjLpdrYaHJ\nlN83xeIYtkAvhBCKa9QyHb2BQrtQWiHvpO00AKCZ0ApaWCPW6BSJSCYTy3hG+hpNuRdpsiwc\nwLut2ccFOTo6rlix4osvvjh37lx0dHRzdwet1wf/7PvBP/sqXycnpO1dkkQI4fD1zO2Mo/aM\n1TfA0rXNSy5THPzynDqRubm5lZWVhoZmQqGQ1FpXv+Dq6xv/fvNZVkKtOqtJGZjwVH/oZiUQ\nCC5evKjRKTU1NfX19RYWFhotlWxjYzNwYEs8T+P4TzVtP0TNYFnWZeGx+dVm3Yig2Iwt1PMc\nyB+yllBqfVui9HX3Ya/QwFmhUGg7i7+VcSe/KLNC/XiFgiaE1JQKrh18qFFHHXq76tQiWwBM\nsXEz35jy6kEBf+fg6vOXf7r3yS/jXXxsmykrgHdbC00UoShq8ODBWFoQ1JGckLbvs6TB8wNO\nbbll6W4kFcu/n/HbO1ATKp+OiwVSbSfyagq5QpOvpFQtUa6ValyZJydESIheVnpZFmn6iZyp\nrVHLFIRyEdEr0uzBXX1BfUVFraW3qR6Pp/5ZNGmheV8U15CyUGtbeenTJOGxBfwRm/LTnvBE\nl/lzEutjBokufWsweqeaNSG8mTvxf1w58EDTs0qeV/7yxRmNTpm9JQwFIQAAMEK3Vg4AUFaD\nU/8Tamyvf2rLLRab+njfuP9OjW29NWF1icDUxpCQPytCiejPgrCmTGhswded+ZB6HPby41Oa\nDCsrK/vpp586depECMm8VlL9kNgF6zl0sVAoFI8ePYqKijIwaKI6Yuu10KKpomrphe8fvcGJ\npZeb3tqhIe9Ap0GRPd+go2YiTT9Tt/8Dg5Fb9QPnkLSFhBCWVXuj2Wdrd71P6RvzR2zUdoLv\nsh7hHZ07t8QzCteuurg2FQAAtEYoCN8pcqkGuyDopmP/uTJz83Dfoe3SkrOVLXwT/X/sHbN1\nxpHHF7P8h6u1ZZnuqKsQrui3a/LXQ9774H8mPaXfyts+++gnv0Tozrc6ikWpM9jGqIKjMKo3\ntNejKErPkBBCOKaUkQNHJBL1Dg3w6O7I5XKbPVf1mNoYTVoXotEp53++VfRH9fuzfe3dNVhC\n1sS6hab2qUshMxy3h9s9smEb287HeO5F6R8ntJVUG+HVwwkrxOi4MztvC6pFLdBR2KLeelx2\nC3QEAPCWUBC+U2rKNNvxvCWJBBKFrOmZP1+cmEoIEVaLxHWSWX133hWMF1aLKIr6aO9YZXuT\nV9B0WnmzMrIwmLl5+I+fJNI0rXq8mXEnf/vso0Pnv6c71aD6zM3N+/fvn5OTY2v7P9VjcXGx\nv7+/7lSDhBBDM16fCepuhSqVSrOzs+W/iQghHCdJu/ftbGxsmjO7ZsTp8Nc+ATShVGNE2bad\n2baa7YEJ8O65cuBBeX51C3QUuiAIBSEAtAooCFu3U9tvdhno5di+8bbgt4//wTfmdnnfUytZ\nvdKOOcfSb+U1GWZpXFpe++fDmc9Cy8UZLxb7fU8IMeFVi2R8iazpemNF4jTHDprtENisfIe2\nm0nIj58kKouTqqK672ceGTr/vaELgrSd2pugKMrX1/fSpUuqFoVCkZeX5+Hh4evrq7283kpd\nXd3FixevXbtWW8YjxPjmzZsXk09NnTrV399f26m9ObFYnJ2dfbPGSSTu3fvhQ09PT1PTVj/l\nTCwWV1VVKRQKsVisr6+v7XSgVZq/6wONRtM8u53/27qLwRO794noolFHXH7rm+MAAG0TCsLW\nTVgj/m7SoUU/j7dxM1c1Xjv48NCa8wuiR2sxsZe5dLFlNT15jB5vszZLFJxcM1Umk7E4lIWr\nUQd3V0tO9mCLzTdqPsypb3qmlr6hrjykkssUYoGEENK+p8ukdSE/Lz9NCLl/Oj1kbmDfSd2V\nTzs5PD2Ofiv719DNze3TTz+9d+/ew/gr+sTh+fPnHwwNCQgIsLJq/MNEq0DT9LVr1+7du9et\nW7eUR3kCQhwdHQ1sXX755Rdzc3MPD7UWcdE1FRUVly9fvn37dllZmVAoLDl2zMfHx9fXt127\ndtpO7Q1JJJI7d+7k5eUdOXKEEMLj8ZydnQMCAlAWgqZe/gn19aqK6wghenosrGAJAO+qVvZN\nFBr54J/95FL5pomHFsb8Wf5dP/zo8L8uzN4a1rGPq3Zza2TM8v7qhMkL2/OjB/kO8ZIEfync\nyPbr79a+h3dt9Hx9/7mjWttiGBsjfs2+X9ioUSZTnNx28+S2m8q3hmb89ckLW926j66uri4u\nLhUpijs5WaNGjRo+fIC2M3pz5eXlSUlJPXr0oBr8GQwMDJycnJ49e9YaC0KZTHblypWnT592\n7dr1yZMn1dXV7du3r6io+P7771euXGltrUPPz9VE0/SlS5cuX77s6enp7e1N07RQKDx58mRd\nXV1ISAjV6v79Aa2SSqVNboksqZee2nY7ZH4PniFXJpMRQmRyuUQiUcjps7vuBIR1sHRqes9V\nnRpCDwDwGigIWzeKImNXvE8I2TbrKCGkvk58aPX5WVtGdBvkpe3U3hDbvpvxnHO10YNosZgQ\noldXUBs9SN9/WmtcGnHh7jH1tX/urpvzsGjvkpMyiZzFZo1a2td3iLeyncvn6Mi3WYVCcfny\nZY1OKS4uJoQ8f/5co+3+uFxu7969NUuuOVVVVRkaGrLZjaf6GBsbV1VVFBV+/AAAIABJREFU\naSWlt5Sfn3/t2jU/P7+GjWZmZjY2Ns+ePWuNBWFOTs7p06d9fX1VfyY+n9+xY8ezZ8+2a9fO\n3d1du+lB65KUlCQQCF4fo5DRD06X3Tn7qMt0q4qMekLIs/T032LL0o9WVmWJy3nP9U2anhw4\nduxYjXY0hTcmFurofk5v7M6JtLuJafN+GKXtRKCtQEHYWmXfL3z2/1PyTKyN7D0tMu+9qCuv\nDxrdqTiz4kzmbeWhXuO7GJnztZfmX4RH58ry774ugqYJ/eeqM5SBJZ0czaPlvIf/JYaW0owL\n0u/+f34aq4n/DRtN/JVl5c1Axm/N0IxnaMYjhGTcyf9p2Snfod534tN8+rvHb7xqbMEPGq1b\ny3vQNF1UVKTZOXKKECKTyTU6kc/XiX8gVSiK+rvHBa300VNVVZWJicnLyZuamlZWVmolpbdU\nWFhoaWnZqGhns9mWlpaFhYU6VRCWlpZWV7fEgiV2dnZGRkYt0FFubm5dXZ368ZV5dYSQqqqq\n1NRUjTry8PDgabL/5xuztrY2NjZuOuyfNlc2P0v7pdr+PQNCCE3TeadEtTmygcs6GtmoNVCZ\nxWqJLXZomrTMGjksFmXh2PRzUa0QVNVrOwUGVJcI5DK5hYMJIURQWa9aRU8mlRc+K3fu1FrX\nOXtX0fQ7ta0vCsLWqqq4LudxseqtRCJXtUtEMuVrFkWJ6iQ6UhBKHhymRZo9b6EIIYSmBaVy\nQan6Z8kLH+hIQaiUcSdfuYqMrYfFnfg0GzfzoNGdf/wkkRCiUzUhm80eM2aMRqccz7qee/Fu\nUFCQX6gGM9N0rcoyNzcXCARSqZTD4ZAGhWFVVZWbm5vW0moeuvbhq+nPv85LOByORCJp+Xxe\n4/nz5xkZGerH0zSdm5vL4/EaLdvbpN69e7dMQZiZmanRLz7VBUJCyIsXLx48aGJYZiP29vYt\nUxD27KnurqHBwcFbp/9WeE1ACJEUsSUyybIjU61dzZozO43RCsXK/tEt0JGxpcF/bi9ogY7U\n9PB85vndyfN2juIb/099nvZ77uE151cmTdedbX7VdPfk09M7bi76JcLey5KiJXx2FSFEJpHv\nnH+8vla85HBkk1eAlrR3yUlPP4e+k7prOxFmoCBsrXyHeKuGHV4//OjQ+fOEEL6xfu7j4o/3\nj9PBue/cbuPVf0JIS+sV5Rk0rSAUxTKwZJk4/hlDEUI18YSQbd+NgXQZUldZ//3MI8P+0TPk\nw8B7p9KVjb5D281Q0HsWn3TqYO2kS7/5qTPjJedh0Y55cYt+Gm/nacFmswghenp6XC732e38\nnfPjvjwz09iyiY3pdY2FhcXIkSMvX77crl07ufDPLxC1tbUFBQUTJkzQbm5vxtzcvKamhqbp\nRuVfdXW1ubn5352ly/h8vkj0ii1nRCKRgYFu/fPm5eWlUWmnUCjKy8stLS01HUfdYms4de7c\n2dNTgwWr8/4oekCuGBkZaXpHhoa6sp9nSlJ6We6fP1927ud+Yd9dQkhNUf3AGf6q/4zzjLg6\n80WQ8hum2Q69JdmV+X+UuPnaW9hr8MSPb6xbUyLbBTmf/uHW1um//WPvWFVj2u+5Oz48Fv5p\nH52qBp/eyFWuKtckiUi2NnSvqY2hj9XlQKu7K/qxa8sEcpnC1MZQnbK/+xBvNddrgDeTn1pi\n7Wau3EWsvkaseopbVVwnl8otnVrxUt4oCFu964cfHVp9fvqG0BvffC019nIM6v3fqbE6WBMa\njN6pZqT8xf3a6EFUj3n19w/XdZxik7Ffz7O/QdjmZk2vmRia8RcfilSN9PCyTadoP0KI37D2\n9t6W1m6t79u5Sxe77oO9NkUe/OSX8arGZ7fzt806ErowqNVVg4SQooxyXpV1r169zp49K6o3\nJcTg+fPn0qK6GZNnPT1T7DzLWdsJaszJyalv376PHz9u+ISzoqKipKSkfXvNvjjqCGdn5/Ly\ncicnp4ZPkEQiUVlZmYuLixYTe5m5ubn6VXddXV12dnZFRQVFURKJxNXVVQennGm6IaekgiaE\n8Pl8XfvTqO/F09LCzArla5omtHK0CkWKc6rYBTXKdp4hl1bQulB1sNjUnK1hGp1y/se7v60r\nGTjDP2B4h2bKqgXwDLkf7Ru3bfbR7yYdNrI0IITkPin5be2FYVFBA2fq1o5BcqlCWCNuMsze\nNMfGWpJe4F5VIpAbiykiryquUygUluYiT5P7jwoDm7yC5J2bS6lrjm+8JhJIon4co9pZmhBS\nmlO1eeKh4IndQhe2yu3ElFAQtm7KHSbmfB/esberIvZGvlg0csVKmiZbp//2yYEIh3atbxsA\nZTWo7z9N3GcluX9YZuigXGOGENIaa0KKIqpqkCLyGcExyXr9lG/tvVvfX4cQQlEkYvUgQsjm\nSYe7DPAghBRnVvyy/MyQee8NmfeetrN7E/V1ksNfXgz7pPfHH3/8w+PjleXigQMH+vfuuifq\nNJevN3BmQKsbZclms/v27UvT9PXr1ysqKgQCQWpqavfu3UNDQy0sLLSd3Zuws7ObMGFCbGys\ni4uLVCpVKBQlJSW5ubkRERF2dnbazu4NZWVlJScnP3jwICsry8DAIC8vr1evXn379m2lT3GV\nFAqFcikm0f+xd+ZxTZxPA59NQg4I9yGIInIJKqCigIKK9UIFbBW1ar3F1lqtR1stiNRq0fqz\nVWzVvlK11VY8W62gAq03eIAciqggoHJDIBAICSHJvn9sm6agJKCS3fX5/gWbJzDzmWdmn3mO\neaRSiURCtgPDWhK08u+1TaUCP7z2AihxAOAY6DVUi5f/FMrlk2uhrBMQ1zBqqrRKATj6est+\nnLJ78W+FmWUAcOLLvyYuH0rCN1HfEfbfZHzUTgPiICj2+DSW/L4y8Of4P4wgJwVwMOnGX7x1\niPHlGbhFv6DAOYbm+up5COIVkh7/8NGNZxqb8c14T+5WbBgV2y/AQfLs3iNhRekjwd2/Cows\nDWpKRb9GJGn8C37T3e09bV6FyK8YlBBSG+OMVR9HTXca7djyz7lBDINp60e5KWPrkiu7u3yp\nW/E6DI437B/PGbKQN3Fb8z8FHpk2noaLkxtix7DsfNmeM3QrYEfBmxskSRt4YzdiXCMMwzDA\nefosAAClXJIcxfEOY5ja61jEjqPKCW+cug8AiT/cnrDMl7oTY70H2Hx0YOruRacmtPgaGBgI\nobl7tx4/rUhisZkf/jiFctkggYmJycSJE/v165eUlFRdXf3OO+84ODh0zZGz14SPj4+pqWl+\nfn5xcTGO4w4ODoGBgdS9VrG2tnbnzp19+vTp16+fSCQyMjLq16/f/fv3ASAoKKhtzVtKUFlZ\nefPmzcRTFwF6FuU9O3PmjJOT06BBg7qmtsorh8gGH9145jvH+dLuHNsBxi1CJbFBkeo5oaRR\nBv+khVRE0tC8Z/FvqnIJuBInqoyyeXoZ5/Myzv+9rbffyN4hq/11JmVHKH1QFT35MK7EB/cO\nCWl5r+HWe8b6OAA0C0qaD0fmNZn8ctBbvjV2wjJfqmhEOQrulF4/elf79jdO5swZdvxpTa+r\n8aMAQPCsTrXPvH1cfHqihBDx6ukz/T3x70tb+luB0z87RnBc8sdHPZkXDUMjdSpap8Awow9T\nGeatz6swuw8wWp2DcUla36w9mHqKZzcaDwTyF17496FSLo6bJS9J5/it0J1kHQbHYevbh1U7\n5gFAnylcM2nHjotRqSfupZ64Rzzs4Wb1/t7JOpKxkzh791i2f+ruRae4xiwAOL0lhW/M++jg\nVK4BhYd9enp6Tk5Oz549MzU17du3L4tF7WiPYVifPn369OlDrBAGB3dsjxzZyMvLs7S0NDMz\nU1W4xTDM3t7+2rVrnp6eVKxmVPy4/EbGtadPn/br1y8nRWTANWxsbDx+/Li0ocXXz5vFpliK\niyvxw2sv5F4v8lxsmXT2vB70zH2YO2bpoEdHGr5bcHLFz9Mot1BT+rD6p0/PL/2/t4kilirK\n8gQ/Lj/78eHpxlZkOcOpEa4Be/hMT1VCWPVEWPKwGgCYLIb35L4q09i6kuWKHYVc2Sxur/yV\nma3R9vRlxM+yjAMzGSuznnoxGYolo/YZO7n1mPP716y/d8urv4LbwtRjUq5nkoRxS7yHTu3f\nToOWZnlNicik/BeJsXcD1jtp320MUzIx3GFg9+GzBxjVXcIxhsR8lEUvE0a7O8lJe86Q2kME\nBHvwAgBojJvJC/0FANg8VtMfK2T3ThqG/cXs1lfX0nUG9WywidNNzvl7hxvDkJIbwzAWl78o\nsXF/YOOBQEavXQAAuFJ8bJ68+LbhkksMPrnOebYPhsHML8c0i8RMcZHc0KUsT3B1d4EhT4Qx\n8Akf+pjZGrNED+SGroaWZFmGkkgkOTk57TTAlXjB9SpFy9+ljFxGW9+LL2azmhtqxb39zU5+\n93cOb2bHt3Rur0i9oaGhqyuFj+JQCyaTSdFaqeoIhUJj49bDAgzDiKtBqJgQfjv9uJ69ZOC0\nXsS1EwBgYGDQy8Lp14+uytezA2aS60yXRqSNsoqnNU39H1eIpI6Ojs9yZOYW5oK6KqFDoYFw\nUPUTIanqgWmDjbO5VS+THbOOrTry70absjzBzveOD5rYh0LZIABgDMz77b9HOPm3S05+damb\ng1nF4xrjbvzbp3NXHJpGXPhEHp4cjWHd3thOAwzDWUy56lcWA/PqdRMAlDiz+Zmo/qu/6+op\nlEylsr319kauR79tV1+FyK8ecZ1EIceNLEhaaMDUxtDUpr0XfXJs2m9brwS63/DqHXP6yvvV\n9TbQA3DACzPL+NXnQ72PHrs5O7eiaXXcu06Dbdv5O6QFJYQkRSl8ijcJtGnJtPHgBayVnJxt\nom9kyk2VZYkM3tkLimZFabslPf+BYeaI8bqiiLZEIlEoOrBBRSwWX7Nd7cBz6NAVWACgr69P\nqh1KGNeYv+hC4/5Ay+wwAOgh3C1vKjFccolhRqLL07TE3tNGUZYp2h3cMDjm7I7mvp5WAODo\n1f309uufrKtmZ2wz/vwJZkCWs5Eymaz9CwDkEuX9c7UK2T+1bXFwsCyYPOC376+vzUl6qmpm\n7sbrhbX3nrCyskIJIeJV8aJbMUmO53yr9P8rK0oUmfT9O/w2CeR5cWK2jbznEHLd06ANPCPO\ngMWWWLa1jY3Nk5JqJqYAYJibm4Mr2NjwbPqY61rADsNgMhbFBP/0yblv3j3qPsoRAOqrxDFf\nn/Ac6zQjarSupeskqnpmwuzrwbZ7jT68+se313fNPUG2nFBfWczldeauSAam4Ok1ad+ezSrs\nxH/pGi7svSVtlM3+apyuBXk+xblV1U/au6fX3NYo7LtgwIPkhVuW8X78OfUDAGBgDP9BhYFO\nx2tcvho2avIwAFFVY8a5R+38HfsBNq1W6UkCSghJSuORGYpntzr0FXO+AECAN0Hjrx04aMcb\nv5n7VkQHpesMqampVVVV2reXSqV5eXkCgaCsrKxD/2jChAkmJl0x/qiL5OMysfbtiZuSTJpS\nlE1Q/7WD9l80+aIW45GlzgSz+8CGwTt4qR/NmhNZ09Ib6sF3Sv9Btrux1IOy4DjMgCxbdACA\nz+ePHz++/TaT3gYQV0LdM6mx58GPEvkSpR5LBgrGsHc8Rs7pC0UXwUnDXwAAqu/GRHQ9JiYm\nIpHI0vI//oLjuEgkomhRGV43hstMfv5RsVSkBwC4HO4eEJg5c1uca+QKucavkw2ZTFZbW6sy\nUETIF4crVwL0MDMzu3bt2ogRI1rZjhIwmNj87RN/+uTc7TO5AHDhh5uDJ7rO2jyOoivuTzOf\n/PzhoeBVk0Yv9Pr9wwQLvgC4rA9j3/lu/snDS/e8/+sqMtSAJbCeGq7w17zLPe3Mw9zrT0I/\nGYBd/by5USZratbnNnJHR167yC1/XDM7WnMqZUSybUf3LhYYWRr0crcGAFBIMcXf+13L8gQV\nBbUdusH4dZN64t7lQ5natMSg/8QBRTMHflcpsrY0LO/XI+nUrdDM4wyAs9p8feGOSWYhKCFE\naA2Dze+a494Yu4s2ilhZWXX00uHOVYzourrtyi46kY8DTpbXGkBlYe23G2Sz533hJNwE7IUA\nYFx2yAIO32J/eWldZVRiM8+Io/GPdA1MJlObopotgrTGo5OvFX/I5gy26mYKAO9uHHNqU5Jn\nw0YLgwqjIe8CRYdLCBLj7OwcFxdnbm6uvnH02bNnfn5+PXtS7KYTXIlLGprZGFfBlvabZZZz\nSAAALTUMK3dO73GGWdlSplJPJmlh88hytGn9yNiaEg3LNRiG97YoLKz++wgDN1QqeSC7erMU\nAHqaKzb775PJNQe6HdkrSFJ+Zvei30SCf6YvcWhpVgCAUq58llO59e3DxGPbPpZztwXqSsJO\nYCC8umr8NybjJqo/5BqwP5h3V5q6F2AlAFlCN2ZgwXIYpbGZ1wf+A9+rlB0ez7B0q2L3Y4jO\nWby9ren0soBZx2Tdl7FMqVezt7JIeGBVwvKfQh0GdndoPoThDQBvl+RW7ZxzImDuQFIlhAGm\n28bMSGmnAQZKwBWAg1KhxDCMwVDaWxQBAI6xpgw+OWXwKQYTI37V0PGUjQBfvErRXxEoISQp\n/LA/tW2K401/rJBlHXtWwpPzevQ2vMOfGafX/53XKV1ncHd317UIr5hCzwT58y7LbguGK7uV\nfqMnyuHiggZlTz0+v9Ruk5KpbXAfrNclR5BbpA0/aZrCVMi4LS3rZskMDLhK3N5J8AMAmBd+\ny+jmNox71iOoqeWXX+VMFjDaG/kxuMYGc06+QsFfErl1wOWSOaOtv9efcSRxHwMAevU1+2RB\norggN9vm5+EoG0S8BiwsLJYvX56RkXH//v3a2lqJRKJUKocMGTJ8+HDKLTgfWnvh5m/3//nt\nn5MOSqjKbqrKbgKw/ubcbwwmFn39A5IcVOvuYqFxPyEbE890PJRV4XvpWQhx2IFtCnwDPXfL\ntAmOx357sr5WpvmWRfKsUPnNcG+slRA/i6rFgqKyoP6nz+fNGBjowv8nzTC3JeOqRTtYvDVX\n0pLXEDuGvzhJda5YkrRBkfaD6QdJGJlOjmgJSy5o/Hksw9yRP+eUwa9blFV6nCGLQKkQH5nB\nf+8kmAbpWsB/qS0TVRW1t8GSwMGyaNg43s7Zxyev8ec3NjKVTdfi7v6+9YrXcG5f+6cPUzSf\ntbOwM7Ho2RVDIB4IFAqt9nwxiZ71z9Z+DJczid6nBADAoL3qQQDAYWpVjLTrodiLB9EaIhvM\nPsabnyT7YnqtzLH/O4sb42aSMyekGSdj8oUVDRqbMTDltCFHFRZPYq8uWR349S+X3w7y/EOv\nZM3Bq4ub5VotmQ6YNpbNeu01+pQKqfyxVtMQHAD5fwKaUlF5HwC4AAqRFt/HmKQYFf5D3q3i\nYmw8N2RI82/vWeoFYQDsy4vZ8qKGt89e3fnQPwwtECJeC87OzlZWVi4uLqdPnzYzMxs/fnzv\n3r05HLIssGvPjC9GT1oxTKFQpKamXk++1XzbWCEFwMDAReEe0nPw4MHdunVjshgkyQYB4MNY\nrV6O6QmcAVeX2QzkpvImwjOwGoMPNSno//RYoevq9/8X9bqFfLUMGOdM/FBRULtj9jEHF6a3\nw837jCXX4rJX/TqjawbcrwPe+M0A0PjjOCuT2dAA7Kxtzfn7+YsSWXaku4pQG2RZRxnd3Pgz\n44DFsXG2kElMAIDjswQwTHp1u54biRLCrMT8E5svaWw2ul+Sb++bOez3T0ZfnuRZx9WTnlqf\nZG5Q48f4Iedn94TsUo1/IWil36TlQ1+FyBowXHoN5M0am0lEzVw+u+XBH02/f1DXbM3SNzZk\nPOPP/U1p1h/HcTZX8z6ILtuX11FQQkhtJAmfyO4eN1xyUWnyd00L9uAFOI43xs3kzz2t14dK\n2z8ox9ufjZBJWtpvg+HKHk/XcpuqnjjFBQ6zgqyvx374lpj9bq+CDz6bffKJ0/8pGZrXCbum\nYjtDT5/jt1xDI6UClH+rrCjPaXl2GwMFYEyW40imqjwskw1Ye1OzGLuLypAqyjJFMYM0NrMD\nmNMNWs4CAPQzOAUA8Oy8EsAy2ffDflC3br7Gv8C08zVaduMlpUXQA5FI1NTUgSIQ3bp1s7a2\nNjc3NzExEQo1z7irMDEx6egm/NcE14BNXNDiI/e9vqPI3IlVlSNmW+DyUo5ehXm/wSTaFdYh\n+o6akVpX1/duRH+OCACsxPf611/Otf+wb9CnuhatMyjKs+sPTvkpaZ7HaF9Lo1qohWGh7rmp\nlUeW/G+O38/GK24xjLrrWsa/UQifSuNXa2iklAP+dz0wBt/KTfADzgPs/i6mnW/zxc1/j+uZ\nLIB2X0bmDvoT//cqRH41cIevguGr2j7neIdxvMO6Xp52sHO3Hve+dzsNmiUt1U/qymFJKc76\nYGzs8VxCL8zeoWWW54Eaeb+nxh/1HcG0sDNu/3onR68uqtiJ6emDnuYKqPo8kN090fT7Bwah\nP9b8thfv7sPpxW48NNUwLJlpS7Fayq1ACSG1wQytDZdcYnbrq5T+e2qfM2QhxuH/u56NeD14\nT3bT2AZvqhXHYfpTU7uZ2IFSLsyCQRNdmN364tJr4hMLfUbzmd36dYGoWsFk64fs0rKt9Nq3\nsoxfn3aLsK/8UuD2tUVeBGfIIvaAWa9VwI6iFFV0zT/ChU+65h8hyM+jR4/ar23bChzHa2pq\nxGLxpUuap9vV8fPzs7PTvGuxy6gsEu6ae3LAaBffGX2yN7xfyhn5zsa5u+ae4HK5U9aN1LV0\n/0G0w11ZX9JeC1wJOA4AXoArmbhHcwoA+Lf8qWRy3EsPYLsO1gEAhrU/8wUAxuuekuf6XBFu\nf/+RxTzf761WzfrrQC0AYAxszuputd/FpOf5+WPm5Dmgpqi6L8v5raPfwgBAqZQ/ud6Br3AM\nSZUQqsOy8wUSFxy27WNh0q29ud0nWeWPb5fgOJ5cOW1Ed1mo6zePSl1YTPm7/b4pb3RMLl6o\nxJswwAZP6uPs096paX3SVCUgkGUfEx+fZzDtAHvALOvsYyw7C+6oz3G5tGF/oOGSi0xrCp+N\nQgkhteGO/HeqEscxwP9+P7E9putIIsR/wPTN+IsuPOc515g/51TXy/NKkF77VpoYyZ//R2NS\nLQCIrQJ7DeghPj4PAEiVEzKt+7M9pmnbGlfKn92Ui6pxhYLJxFm9fBlG2k5MMqw0Tw0g3hB6\n9OhhYNCxHUEDBgzoxD/qmlrK2rNr3on+I3vP/mpcwd1nA+wymusc7fp1W7Z/6nfzT9q5dxs8\niUT3sigEj0Gu1fFv+O8CE0PRDIpm7QfpuExMnoRQj6uHj9trpLercd8oLmMNAHCbHokPrDAc\nHsaseY/JItGJO6ZVP3b/Ke23wdVWCJWCR/LqAsABYzJYvXwx7t+ugTGYgLW3vwYz70C57y6G\n2WMws8dgXUvxQgr2reUUHGmngTEGcxybieoqGAALmgf2ugMALQo9a87D95xWAQDg0HKJLbzY\n3qmMcttg94j9r1Dyl6Tl0XmDaQfZA2b++wjD9IN2YCyu/PFfKCEkEUql8vTp04mJidXV1RYW\nFuPGjZsyZQqpbqV7fSRkB3frjwamJIbB0g/ZxSDxG0gb5CVp0sRI/oKzLMe3IOkE8ZDtOQMU\nsqYTi/ScxmB8stzXzDDpaTD7uFZNFS2Nv04HPf0cxsd24lje2C/g1lr+rE/1+r39mmVE0A0b\nGxsbGxtdS/EqycrK0mYv67KRmyr7hl2+wq4qFHoBSCSSS5cuMeXij6fGCqrKL10aq/EvDB48\n2NCwvQs/XxVs96l4Y6WWjZUNlYrK+4ArgcFkGtsyLDqwAxbjdcnZPByX3dNcposN4OsOgE9U\nCp+4FW0AgB65YSyXt1i9hvr3KoD8Ag2lMAAwFkevb8irkFgDTNNeBlpPmEqSIuVF1x7pvW8r\n+pXtswjLO8BfnMTq2d5uRsTLY4494BpWd+KLeswWPaaGszbqSBm5nfgvrw+D6T895ymG8SZs\n7WpRXjV0Swh//PHH+Pj4YcOGhYSE5ObmHjp0SCAQfPDBB7qWq8Mc//LirdMdcwNJg40gTbRm\n0Pcd+tb87RPc33LU3A7xKtB8SI/0sGy9jNYWMAytWz1nD5rDchpNnmywAyhaGn+drqi8b7jk\nUsvXBwFA7jzL1Maw8ci7/FlHUU6IeMMRCoUVFZp3X7Osg/re3VxX/1GD1BMAmCyGoLRwSOFW\nJWCFbGe5Fn9BLu+i6woN3v1Fy5ay7KPi4/Obx+3iJH4k9N9mlh6tZ+3BC/rmtYrXYRTN4l87\ntieIGPkxlE0tD+NbHsZr+zUG03QLua6UlCRFNqd8x1+UKI69BAAyz7XGlgaNP45DOeHrxmr2\nt4rSDI3NaktFiT/cdh3M78M8IW1S4DjG5bY81ZuZmSIeu8TbqpfmbQ5GJF5z4wxZxDDtpWsp\nXhm0SgiLi4sTEhJGjhy5Zs0aAJg0aZKent758+cnTJjQqxfFbGZort81hb84+mS5GwpBDTCG\nKhtUMIxLhT3wf/bkkKcmQYeQ3TtBZIMM43/3iHKGLATAxafCTPpORmVGEW8yw4cPVyqVWjSc\nKs/wGvDHMlf/GHE+2NmbDqmLBXMLzpyzk7XbNtl1V8hqB5ENGkw72GQ5AhI/khv3Ngz7syF2\nDACQKyfEmMDVdOGqsuXfA2m4AuRSABwHDNPj/bsrFsM03BjUVfXAtKQl5/fm1O//yf3+PoLL\nG7cJFC2NByaabKjSeMgT0WmY3fppUwHh2rlLVn5WrozPWHZvPX3QgrU0Og1ysb97vG7ct5dv\nW7z3zvguEPX1QbP5YlolhNeuXcNxPDj437vUQkJCLl68ePXq1Tlz5uhQsE4wYZnvhGW+upYC\ngWiPFqbp7r8+XjKF2i9d9oBZbPdpwGw9EuIMWcQZNBdlg68VhUJBXPKmPXK5XKlUymQaN7j9\nByaTyWR2RbVe+oFV3sWaarVpqWduj/l9jF9djrP13LCf8WYrXuBXnw0qAAAgAElEQVQWrDJL\n2/9k5wOcrtgyqg14U23TiYUG7/7Kdp8KpX8Xx2d2H2C4OKkhdoxe/3dY9v66lVCFEpjhv3yu\nZePuJqULR+x7UDbEy/52dvHA3hYFP175oKbRQpvvGprrb4t4CUFfNaw+441W3WMY92j1nDdh\nK3vIQpQNkoGpyxwa/m8hy87H4N1fIOpdAEw/ZBcoFQNz1gxfeVHX0iH+A60SwsePHzOZTEfH\nfzdA9u7dm81mFxQU6FAqBIISyFsUuxd1rLBbbakIABK+u3H1SLb23+Kb8BbtItF9SgCgygbF\nmE1+RZ++bZ4jXhP5+fmZmZkd+kpOTg6O4y0tHTiFAgAeHh79+pGmoi+laDgQiDd24LAQBsBj\nywEkyiqB+NBk7b/In3VUz3NGxwXsMH/88YdYrPkGapbbbnmODHLi6uvrZwCkpqbeKZYCANP5\nG0XqM7gRp/EvhIaGdsmyJ+bqp9UeKDO9orFm+wsko4sNxnrB7Vy9lYawf+nYH5Nqo0Ty1qcA\n2tJl9R6lYlnulSKtmz8CgMoKhrnSvDrlqeBZnfrz9jEw5fUZSqJSvfRDenEzq/cIg2kHgME0\nszXGmjHAMP23dzdhDOmfGw1mH9O1gIh/oVVCWFtba2xsrD4NjGGYqalpTU2NerObN282NjYS\nP1dVVXWpiAgEWcGV+MOUp534YunDjp0sN263VrVuEWN2FzJC+2puiHg16OvrW1trHomq09H2\nBHw+eXsdyWHZDJBXtnugXdkCCtXRMlwpbQClHDDA2HyM+c8NYxgGLE23Jpq0Xup5TZiYmHA4\nHchtzMzMRCKvnm5ecrZph/4R1iX7CxhM7ONDmsspK4VPRDHvc7yX+k38emjN4/pt8OGPUzHm\nLPGJhVMKthmtuovxOqbd66OuojF2+dkOfolxHT6Ey1c79B2HQd0/PUGiytj0Q39qrOpnc1sj\nIC6IxDD9tztW7QLRBdAqIWxubm47G8dms5ubm9Wf7Ny5U3VPVJ8+fZycnLpIPgSCxOhxWHsL\nPtG1FK+SsjzBpgk/deKLXwX93KH2zt49Vse924l/hLCzsyPVZXqItvAXJ2nZEpfWN+4fr2xW\nCgsK6vgjHZTn9Kfu+099dnIwYsSIDn9n/HiK1SFoA8Yx0g+JYQ/67/EZBtNg2oHm9IOgR55r\nCMHQnPfOZx23Ucdp/yY9xKuFZe8HsiZdS4F4IbRKCDkcjkQiafVQJpNxuf+ZmJw1a5aqiHZT\nU5M29dMQCATl4OjrabmT6iWx7aPVCRwEgsYQ2SBgDFngUXz3kFro5z59uvj4fAAgYU74BoLp\nm/2bDTLZgDEwoh4Yg8nxXqxDwdpiYMIb9z6qEUo32O6huhYB0R60SgjNzMyePn2qUChUu0Zx\nHBcKhf3791dvFhLy70U6aWlp8fFa11xGIBDUwbyHsTY7qRAIxMvTeGAiYAz+wgvikr+Pd7I9\n34UWqfjEAoaRDcshQJfCIf4Lw8TOeF0RsLroTCACgSA/tKrC5OjoqFAoCgsLVU+KiopkMpl6\nmRkEAoFAIBCvFvaQhfyFF7D/3jDBHjyfP+c3zNBGV1IhXgTDBG3VRiAQ/0KrhHD48OEYhp09\n++9Z5LNnz2IYNnz4cB1KhUAgEAgEveEMWaTKBpVKhvKf/Ud6rhOZln10JxcCgUAgNEOrLaN2\ndnYTJ05MSEhoaWnp379/bm7utWvXAgMD7e3tdS0aAoFAIBBvBAeuLek3aYiupUAgEAiEttAq\nIQSAsLAwc3PzpKSkW7dumZubz5kzZ8qUKboWCoFAIBCIN4V6iTFOr/1HCAQCQW/olhAyGIzQ\n0NDQUFTLCIFA0A25XC6VSjv0FYlEIpVKGxsbWawORHs9Pb0OXdSGQCAQCASCutAtIUQgEAi6\nUlFRce3atQ595enTp2KxOCEhgcHowIqNg4ODj49PB6VDIBAIBAJBSTAcx3Utgy5JS0uLjIx0\ncHDQtSAIBAKhgZaWFrFY3AX/iM1m6+vrd8E/QtAPWVNLYWaZsRXfxtlc17IgEAgEQjNZWVlv\nekLY3NwsEAh0LQUCgUAgEHRAoVCKqsQcHkvfhKdrWRAIBAKhFW96QohAIBAIBAKBQCAQbyyo\nDhgCgUAgEAgEAoFAvKGghBCBQCAQCAQCgUAg3lBQQohAIBAIBAKBQCAQbygoIUQgEAgEAoFA\nIBCINxSUECIQCAQCgUAgEAjEGwpKCBEIBAKBQCAQCATiDQUlhAgEAoFAIBCtkcvlYrFY11Ig\nENQG+RElQAkhAoFAIBAIxH9QKBRbt25dv359Y2OjrmVBIKgK8iOqgBJCBAKBQCAQiP+AYRiP\nxysoKIiMjERjWQSicyA/ogooIaQ8Dx8+xHGc+LmkpCQqKkokEulWpJeEfhrRD/rZiGYa0Uwd\nWoJsRHIYDMaqVatGjhyJxrKILoN+YQH5EVVgfvHFF7qWAdF5MjIyNmzYUFZW5uvrW1paGhER\nUVRUJJFIhgwZomvROgn9NKIf9LMRzTSimTq0BNmIEmAY5uvrW15enpmZmZWV5e/vz2azdS0U\ngrbQNSwgP6IELF0LgHgpnJ2de/XqdfnyZalU+ujRI6FQ6OHhsXDhQl3L1Xnop5EKgUBw6NCh\nvLw8Kyur4OBg6oZ4+tmIZhrRTB11kBORH7FYfOrUqbS0tObmZmdn52nTptnb2+taqM5DrG8A\nwJUrVyIjIzdt2sTn83Ut1MtCMxsBXSIDjcMC/fyIHl1OHUy1No2gKA0NDevXry8qKgIADw+P\nyMhIDoeja6FeCvppBAB1dXWrVq2qqalRPZkwYcL777/PYFBy2zb9bEQzjWimDgFyIvJTVla2\nYcOGqqoqAODxeBKJhMVirVixIiAgQNeidQahUHjo0KHs7GwMw6qrqwHA0dGR6mNZmtkI6BUZ\naBkW6OdHdOpyKigsOoJALBbX1dURP5uamtJgIZ5+GgHAoUOHampqHB0dN2zYsGbNGgsLi/Pn\nz+/cuZOiMzL0sxHNNKKZOgTIiUiOVCrduHFjVVWVo6Pjrl27jh07Nn78eLlcvmPHjuLiYl1L\n12EEAsHq1av/+usvBoMREBAQGhpqZWVF9XNQNLMRAZ0iA/3CAi39iE5dTgU6Q0h52Gx2Tk6O\nhYUFn8/PysqqqKjw9fXFMEzXcnUe+mkEAHv27DEyMtq+fXuvXr3s7e0DAgIyMjKys7Mpqh39\nbEQzjWimDgFyIpJz6tSp1NTU3r17b9261cLC4sKFC8eOHQOAxYsXe3t761q6DhMTE5OXl+fq\n6rpt2zYvLy9PT8/AwMDS0tLs7GzqnoOimY0I6BQZ6BcWaOlHdOpyKlBCSG2EQqFUKh0zZkxA\nQMCIESOysrIyMzNb9chbt24ZGRlRZdcB/TQi+O2334KCgjw9PYlfuVyun58fRSMIzWwkFArF\nYrGhoeGwYcNooxGdDKQCORHJOXDgQG1t7ZdffmlhYZGYmLh3714cxxcvXhwSEgIASUlJtra2\nLBY1KhcoFIqYmBilUrlx40Zzc3PiIZPJHDp0aHp6ekFBAUXHsnSykQraRAb6hQW6+hFtupw6\nKCGkKrW1tTExMbt3775+/fqwYcOMjY05HI6fn58qgnh7ezMYjEuXLm3fvj09PX306NEkj/L0\n00goFP7444+//PJLenq6SCTq379/nz59VJ9SMYLQzEbq6vj4+BgbGzOZTNpoRAMDAXIiKthI\nxfHjx/l8/ty5c5OSkvbs2aOeaTQ0NGzYsCEvL48qB9XkcvnRo0dZLNaSJUvUnzMYDC6Xe+PG\nDaFQSMWxLG1sRLPIQNewQCc/olmXawtKCClJeXn52rVr8/LyjIyMgoKCHB0d9fX1AUA9gmRm\nZubk5Bw9ehTH8YkTJw4YMEDXUrcH/TQSCoWrV6/Oycmpr68vKyuTSCT19fVjx45VP3OsHkF6\n9+7ds2dPHQqsEZrZ6EXqAO00oqg6gJyICjZS5/bt2+Xl5Ww2e9++feqZBgDs27cvPz/f29t7\n0KBBuhVSS5hM5uXLl0Ui0dChQ01MTNQ/qq+vv3Tp0pAhQ3JycqytrZ2cnHQlZCegh41oFhlo\nHBZo40c063LPBSWE1EMmk4WHh1dWVrq6ukZHR3t5eakGsgDA4XCGDx+en5+fm5v75MkTBoMx\nf/78adOm6VBgjdBPIwD44YcfcnNzHRwcPvroo4EDB+bl5ZWVldXU1Hh7e6vPGxERxNraetSo\nUTqUViM0s1H76gDtNKKcOgTIichvI3UUCkVqampmZiYAqGcaiYmJR48e5XK5a9asaeVoZEYu\nl2dlZRUXFwcEBKgP+86cOZOfn//FF1/079+fEotp6tDDRnSKDLQPC/TwIzp1uReBrp2gHufP\nn9+7d6+1tfXOnTtVgSM7Ozs7O9vCwmL8+PFMJhPH8ZSUlOLi4qFDh5L/fiGaaSQQCMzNzefP\nn6+np7dr1y5Co9ra2oiIiNLS0jFjxixfvpxyewloZiNt1AEAmmlEIXWQE5HfRgCgVCpxHCec\nhfh13bp1Dx8+tLW1/eqrr8zMzKRS6YkTJ06ePInj+Keffjp8+HDdCtwhFArFZ599lp+f7+Xl\n9fHHHxPrG+fPn//hhx+MjY0PHjyoUpzM0MxG9IsM9AsLraC6H9Gvy70ICmxBRrTi0aNHADBp\n0iSiX5aUlOzZsycnJ4fJZCoUipSUlM2bN2MY5u/vr2tJtYVOGpWWloaHh3t5eTGZzMDAQFV8\nNzMzi46ODg8P//PPPwGAchGETjYCrdWhn0aUUAc5ka4l1YxAINi/f39aWlpLS0uPHj0CAwMn\nTZrEYDAiIiKioqIKCwsXLlxoZWVVW1srk8kwDFuwYAHJMw0AIObHVZ2KyWRu2LAhKirqzp07\nixcvdnR0FAqFFRUVADB37lySj2KBjjaiZWSgU1ggoJMf0bLLvQi0ZZR6lJSUZGdnM5lMBweH\nhISEHTt2mJmZRUREzJ8///r164WFhYMHD1ZVc6IEdNJIoVBcvXo1Ozu7qalpyJAh6meOeTye\nn59fWlpadna2QCBotdOA5NDJRkA7dYBeGiEnIjlCofCTTz559OiRQqEAAJFIlJGRcffuXR8f\nHyMjo4CAABzHS0pKampqlEqlh4fH6tWrSZ5pVFdXf/vttzt37jx9+nR1dbWbmxtR4oLL5QYE\nBMhksoKCgoqKisbGRn19/cWLF48fP17XImuAfjYCmkYG2oQFoKMf0bLLvQi0ZZR6SKXSqKio\nBw8eAIChoeHs2bMnTJiAYRiO4x9++GFpaem2bdtcXV11LWYHoJlGQqEwPDy8tLTU0dFx+/bt\nrSbAVJ+uX7+eQvc+0cxGNFMHaKcRciIy8+23316+fNnV1XXp0qX29vb5+fk//vjjw4cPXVxc\noqOjiSEgjuMNDQ08Hk9PT0/X8mqAKBdRU1OjemJtbf3ll19aW1urnkil0qKiIhzHHRwcuFyu\nLsTsGDSzkQr6RQbahAVa+hHQscu9CJQQUgCxWHzq1Km0tLTm5mZnZ+dp06b17Nnzzp07CoXC\n09NTtYR99uzZ2NhYU1PTAwcOkHkVvq069vb2CoWCuhq1RRUjnru/XCgUpqamTpo0SVfiaYR+\nNqKZEwEdNWoF1Z0I6Ggj4jjN3LlzuVzurl27eDwe8bylpWXjxo13794NDQ2dO3euboXsKN9/\n/31SUpKzs/PSpUv5fP7x48f//PNPCwuL6Oho9bEsVaCljdShemSgX1ggoJkfqUP1LqclKCEk\nO2VlZRs2bKiqqgIAHo8nkUhYLNaKFSvUizLhOH7q1KnDhw+T/1C4NuoApTSCF6RP7UcQMkM/\nG9HMiYCOGtHMiYCONlIdp8nIyBg3btysWbPUPxUIBGFhYWw2+/Dhw+S/UoyAyJ3CwsKUSuWu\nXbv4fD7xPC4uLi4ujopjWZrZ6LlhATQN0MkM/cIC0M6P6Pcy0hJ0hpDUSKXSdevWVVZWOjo6\nbty4MSwsrLa2Nj8//+bNm/7+/sbGxgCQmZn5/fffJycnYxg2f/78wMBAXUv9QrRRByilEQCU\nlZWtXbs2LS2tvr5eoVAUFBQkJyd369bNzc2NivvL6WcjmjkR0FEjmjkR0NFGoHacRiKR9O/f\n393dXf1TfX39mzdvVldXe3t7U+LIU2lp6dq1a4uLiysrK8eMGePl5aX6iFDt9u3bN27c8PHx\nUQ1wyQ+dbPSisGBvb0/R41u0DAs08yP6vYy0h6G5CUJ3nDlzpry8vHfv3lu2bLG3t79w4UJS\nUhIALFq0iLjysq6ubu/evffu3bO2tt64ceOUKVN0LXJ7aFQHqKaRVCrduHFjVVWVo6Pjrl27\njh07Nn78eLlcvmPHjuLiYlNT0+joaFtb2z///PO7776jxGo8/WxEMycC2mlEPycC2tmIQGUL\nALh69apcLlf/FMdxkUgEAEqlUjfydRB9fX19ff0///yzqqpKta9SxcyZM2fOnCkQCMLDw4mK\niJSANjZqPyyAmqYUigy0DAt08iNavow6AI4gMatWrQoODibO4F64cCEkJCQ4OPjMmTPEp4mJ\niRKJpLq6OiUlhbhriORoow6O4xTS6OjRo8HBwStWrCAkP3/+fCulcByvra394IMPgoODb926\npTtJtYV+NqKZE+G004h+ToTTzkbqqGzxzTffKBQK1fP4+Pjg4OAZM2ZIpVIditchVLp8/PHH\ncrm8bYMjR44EBwefPn2662V7GWhgI23CAk61yEDXsEAbP6Lly0h7UEJIahYuXLho0SIcxxMT\nE1v1S5FINHXq1KioKF3K10Fopg6udfpUW1sbHx+vQzm1h342QhqRHPo5EU4vGykUilaDPNWQ\n6JNPPrl27drdu3f37dtHqHnu3Dldydk5VLrExMQ8dxR+7969rpeqQ7Q1EE59G2kZFnBKRQY6\nhYVW0MCPcJq+jLQHbRklHSUlJYWFhcTP1tbWIpHozJkzu3fvxnF88eLFISEhxEc//fSTTCZT\n7eIjMyqN6KGOOvX19VZWVvb29klJSXv27FFXqqGhYd++fVu3bgUAU1NTMlegonGXA6QR6aGH\nEwEdbSQQCL7++uvp06dPmTJl2bJlZ8+eJbYaqrZOPXr0aNu2bREREWfPnjU0NFy+fPmECRN0\nLXV74Dh+9+7dhISE9PR04oI+jdvA+vfvrwtJteJFBgIq24hAy7AApI8M9AsLbZ0IKO5HKmjz\nMuocqKgMuairq1u3bl1ycrK3t7exsbFCoUhNTc3MzAQA9diRmJh49OhRLpe7Zs0aVZFicqKu\nkYGBAdXVacXt27fLy8vZbPa+fftaxfd9+/bl5+d7e3sPGjRIt0K2D727HNKI/NDAiYCONmrn\nZnMOh6Oq6tHQ0ODj4xMREfHee+85OzvrWur2qKqqioqKOnny5J07d65cuXLt2jUXFxdzc3OK\nVihp30CgdnE2hWykAoUFcvIiJwJaXNROj17XadAKIbk4fPiwQCCwt7e3srICgDFjxhAXktra\n2vr7+wOAVCo9fPjwnj17AGD58uUWFha6FVgj6hpRVJ2HDx+qprtKSkqioqKIc/kAMHLkSKlU\nun///laxIzExMTk5mcvlTp48WTdCaw29uxwgjcgBvZ0IaGGjVhw8eLCmpsbV1TUmJubMmTPb\nt293dXXNzc3duHGjTCYDtTWBW7du/fbbbyS/Kq2+vn7dunX5+fmmpqahoaHBwcGVlZUREREZ\nGRlAzQolGg0EVLDRiyIDCgskpH0nAor4Ee1fRp0GrRCSBYFAwOPx9uzZY2xsvGXLFi6XCwAY\nhnl7e2dnZz979uyPP/64ePHir7/+eu/ePQzDFixYMH78eF1L3R5tNaKiOhkZGRs2bCgrK/P1\n9S0tLY2IiCgqKpJIJEOGDAGA3r17Z2VlCQQCW1vbBQsW8Hg8qVQaFxf3888/A8CqVavc3Nx0\nrcELeRO6HCCNSACNnQjoYiN1CI327t1rYmKybds2S0tLDMPMzc0DAgIePnyYm5urVCo9PT2B\nUmsCW7duLSgocHNz27Jli7e3d1VVVVpamlwuT01NdXJysrGxUdfFycmJKNRJTrQ3EJDbRu1E\nBhQWSIhGJ4L/9jcS+hG9X0YvCUoISYH6RS6BgYGqUA4AXC43ICAAx/GSkpKamhqlUunh4bF6\n9WqS31X6Io0opw6fz8/IyMjMzHzy5Mnx48eFQqGHh8fKlStZLBZQOb6/OV0OkEa6hq5OBDSy\nkYpWt4qp749iMpkeHh7x8fGFhYWTJ08mlptIlW/I5XKlUslgtN769PDhw0OHDllYWGzZssXI\nyOjChQs//PADjuNvvfXW48ePW+WE3bp1GzVqlE7k14aOGghIZiN12okMKCzokOf6kZZOBP/0\nN3L6EY1fRi8PS9cCIADULnIBgLabOrhc7ty5c+fMmdPQ0MDj8fT09HQhY8doRyNqqWNoaLhp\n06b169ffvHkTADw8PCIjI4kTGgTGxsZbt249fvx4cnJyRUUFhmEeHh6zZ88m+UzSG9XlAGmk\nU+jqREAjG6lQ16gtFhYWvXr1KiwsfPLkiYuLC/GQ2CcWHh6empoaGhravXv3LpT3X+RyOVHy\n4fPPP29li3v37gFAWFiYoaHhjRs39u7dq9oS1tzcnJKSQsg/aNAg8peL6ISBgDQ2akX7kQGF\nBZ3wIj/S3omAxGVXaPwyennQCiEpUD/8XVtbO378+LZznBiGcTgcEp4BeC4aNaKQOkKhMD4+\nXiqVAoCrq6u/v3+r6VUWi+Xp6fnOO+8EBQXNnj177NixlpaWOhJWW97ALgdII91BSycCetmI\noJVGgYGB6hrhOH7ixImmpqYxY8aon3civjV06NBevXrpQmoAAJlMlpiYmJ2dXVRU5Ofnpy62\nm5tbU1NTUFBQY2NjZGSkTCabOXNmaGgoADx58qSsrEwqlaakpIwYMYLP5+tKfi3pnIGAHDZq\nS/uRAYWFrudFfkQbJ6Lry+jlQQkhWVBFkJKSkurqah8fH5Js6ug0tNGIzWbn5ORYWFjw+fys\nrKyKigpfX9+2upA2vr8I2hhIBdKItNDViYBGNlKh0qisrKyyslJdo3Pnzl27dk1fX3/BggXE\nJiv1b5mZmelC3r9hsVjDhw/PyclpO5bFMGzQoEEMBiMhISEtLW3gwIHLly8nPvrll1+4XO7S\npUu7d+/u6+urO/E7QOcMBCSwUVu0iQwoLHQlL/Ij2jgRjV9GLwlKCEmEKoLcvXuXVBv9Ow0N\nNBIKhVKpdMyYMQEBASNGjMjKysrMzGwVQW7dumVkZKS+64Aq0MBArUAakRB6OxHQwkatUGl0\n7969zMxMfX39+vr6P/74Iy4uDgAWL15MFEskG+3khAQXL14sKCiYPn26g4MDACQkJCQmJrq6\nus6YMYMS96SpoKiBWkHvyEDdsNC+H1Haiejd5V4SlBDqBrlcfvHixbNnz96+fVskEvXo0YOY\nzCPt4W+N0E+j2tramJiY3bt3X79+fdiwYcbGxhwOx8/PTxVBvL29GQzGpUuXtm/fnp6ePnr0\n6LYzsqTiuTairoEAaUR63hAnAioHOrFYfPTo0R9//PH06dMPHz60tbU1MTEBNY2KiopSUlIu\nXryYl5dnZGS0ZMkSMhdXaH8sKxKJbt26JRQKLS0t4+Pj4+LiMAxbunQpcSsAaXmujShqIII3\nJDJQKCzI5XKJRMJms4lf2/EjijoR/brcKwcj5z0h9Ka8vHzz5s3FxcWqJ1ZWVp9++mmfPn2I\nX4VCYXh4eGlp6ZgxY5YvX07aCKKClhqFh4fX1NQYGxuHhISMGjVKdR6joaEhMjKysLDQxcWl\ne/fuly9fBoCZM2fOnDlTlxJron0bUc5AgDQivUZvmhMBBW1UVla2YcOGqqoqAODxeBKJhMVi\nrVixIiAggGig0sjHx2fevHnW1taUGCRJpdKoqKgHDx54e3ur18ZQKBRRUVF3795VtZw/f/6U\nKVN0JKZWtG8jKhroTYsM5A8LCoViy5YtNTU1mzZtUj8B+Fw/oqIT0a/LvQ7QCmFXQ9zsWV5e\nbmNjExoa6u3t3dzcXFRUdOXKlX79+hFTLCS/yKUV9NNIJpOFh4dXVla6urpGR0d7eXnp6+ur\nPuVwOMOHD8/Pz8/NzX3y5AmDwZg/f/60adN0KLBGNNqIWgYCpBHpNXoDnQioFuikUum6desq\nKysdHR03btwYFhZWW1ubn59/8+ZNf39/Y2NjUNPowYMHzc3Nzz1sQ0JetL7BYDD8/f1ZLFZL\nS4uDg0NYWNhbb72la2HbQ6ONKGegNzAyUCIspKenZ2ZmZmVl+fv7t79OSDknol+Xe13giNdG\nS0vLnj17Kisr1R/u2bMnODh4zZo1EolE9fDEiRPBwcGzZ88WiUSqh7W1tfHx8V0nrhbQT6Pn\ncu7cueDg4LCwMLFYrHqYlZX1888/JyQkyOVyHMeVSuW1a9eOHDlSVFSkM0Gfx8vYiJwGQhqR\nX6O2vLFOhFPHRkePHg0ODl6xYgWh0fnz50NCQoKDg8+cOdOqZW1t7QcffBAcHBwTE6NUKnUh\nbGeQSCSfffZZcHDwpk2biC5HObS0EYUM9MZGBpKHBYVCsX379uDg4JUrVzY0NKh/RHU/onSX\n60rQCuHrQqlUbtu27dKlS/fv3x8/frxq0m7nzp0ymSwiIkJ9v3Xfvn1LS0vz8vIYDIbqDlMe\nj6d+j5DOoZ9GLyIhIaGoqGjGjBnu7u4AUFJSsnXr1mPHjj169CgtLS03N/ett97CMMzOzs7d\n3Z04b0MSXtJGJDQQ0oj8Gj2XN9aJgDo2OnDgQG1t7ZdffmlhYZGYmKh+sRgAJCUl2draUuiE\npFKpbHWbtsYaM+RHSxtRwkAEb2xkIHlYwDDM19e3vLxcy3VC3UrbIajb5boYKhmVWpw5c+bG\njRt8Pl99yziO442NjQBgZ2fXqv3EiRMBICMjo4vl1B76aaROSUnJ48ePiZ979OgBANnZ2cXF\nxUeOHFm5ciWO4zt37jxy5Ii1tfW9e/fy8/N1KuwLoZ+NkFG5n7wAACAASURBVEbk10gdlR8h\nJyI/9fX1VlZW9vb2SUlJe/bsUc80Ghoa9u3bR9xPTUDcbG5ra5uamlpeXq47qUGhUOD/rX0g\nEAi+/vrr6dOnT5kyZdmyZWfPnlUqlcRHXC5348aNbm5ut2/f3rJli0Kh0IXInUd7G5HHQG1B\nr1dKwGAwVq1aNXLkyIKCgsjISEIvAir6EQ1eRl0MSghfF3/99RcArFy50sHBoaSk5ObNmwCA\nYZiNjQ0AtO1/XC4XAJqamrpcUm2hn0YqpFJpRETE77//TvwaFBTk5uaWnp6+bNmyhISEhQsX\nRkdHOzg4cLlc4lC1arRBNuhnI6QR+TVSoe5HyInIw8OHD1UZVElJSVRUlEgkAgBra2uRSHTm\nzJndu3erZxoA8NNPP8lksp49e6r/HSLl2Lx5c/fu3btYBRVyuXzLli3fffedSiOhUPjpp5+m\npKTIZDIcx4uLi2NjY8PDwxsaGogG6mPZ1NRUXUneDi8yEHTQRmQwUFvQ67XLJe0MQqEwJiZm\n8eLFubm5ANB+TkhOP1KHHi+jLgYlhK8L4tCqnp5eSUlJRETE119/TRRlGjduHADs379fJpOp\nt79y5QoA9O7dWxfCagX9NFLB5XItLCxu3LhRX19P/BodHb1+/frPP/88NjZ24sSJxHRgfHx8\naWmpqamps7OzrkV+PvSzEdKI/BqpUPcj5EQkISMj4/PPP9+xYweO44RGmZmZv/76KwCMHDlS\nKpXu37+/VaaRmJiYnJzM5XInT57c6q+Zmpo6OTl1tQ5qiMXi0tLSP//8U5UTHjx4sKamxtXV\nNSYm5syZM9u3b3d1dc3Nzd24caPKUsRYdsWKFcOHD9eh8M+lHQNBx22kcwO1Bb1edSFsxxAI\nBKtXr/7rr78YDEZAQEBoaKiVldWLckJy+lEr6PEy6mLQGcLXhamp6dWrV9PT0y9fviwUCt3d\n3adMmcJisZydnTMyMh4/fnz//n0PDw8DAwMcxxMSEo4cOYJh2PLly1XFcMkG/TRSh8PhpKSk\nGBoa9u3bFwAYDIatrW3Pnj319PQAAMfxU6dO/fTTTwCwfPlye3t7nQr7QuhnI6QR+TVSR92P\nkBORAT6fn5GRkZmZ+eTJk+PHjwuFQg8Pj5UrV7JYrN69e2dlZQkEAltb2wULFvB4PKlUGhcX\n9/PPPwPAqlWr3NzcdC1+a7hcbqvDcnv37jUxMdm2bZulpSWGYebm5gEBAQ8fPszNzVUqlaqD\nnSwWi7hHm2y0YyAAoKKN2oJer7qWXQMxMTF5eXmurq7btm3z8vLy9PQMDAwsLS3Nzs5ue56Q\nnH7UFhq8jLoYdA/ha+TQoUMnT54EAFdX102bNnE4HOJ5fX19VFRUYWEhg8Gws7Orr68XCoUA\nsGDBgnfeeUeXEmuCfhqpkMvlixYt0tPTi42NbXUcPzMz8+TJk/fu3cMwbN68eSS/b4d+NkIa\nkV8jFS/yI+REOqShoWH9+vVFRUUA4OHhERkZ+VyNrKysamtrZTIZhmHz588ns0bqF7tlZGSM\nGzdu1qxZ6g0EAkFYWBibzT58+LBqLEta2jEQUNZG6qDXK5lRKBTTp09vaWnZvXu3+g5khULx\nySefFBQUODo6trqfkBLQ42XUlaAVwtdFWVlZbGysVCoFgObm5sGDB5uamhIfcbncgIAAmUxW\nVFRUU1MjlUrNzMw++uij8ePH61RkDdBPI3UYDIZUKr116xZxOanqeV1d3ZYtWwoLC62trT/7\n7LNRo0bpUEiN0M9GSCPya6TOc/0IOZFuEQqF8fHxhEaurq7+/v6q4RGhEbFZsaamRqlUenh4\nrF69muRbwtSLakokkv79+xP1A1Xo6+vfvHmzurra29vb3NxcV3JqSTsGAsraSB30eiUzcrn8\n6NGjLBZryZIl6s8ZDAaXy71x44ZQKGy1TkgJaPAy6mLQCuHroqmpacOGDVwud8CAAYcOHTI0\nNNy0aVOrpXapVFpcXKynp9erVy/SFolWQSeNSkpKiouLfXx81Ksn19XVLVy4cODAgZGRkeqN\nBQJBXl7e0KFDyawRAZ1sRIA0IrNG2vsRciIdIpPJoqOjW1paxGJxYWFhQEDAqlWrWomN43hD\nQwOPxyO2VFEC1Tph9+7dv//+e2KPJQGO44sWLRIIBNu2bXN1ddWhkNqgjYGAOjZCr1eqRAYV\n77//fnl5+a5du1ptnszOzo6MjBwyZEhaWtqyZcvInN/S8mXUxaAVwteFnp6ev79/QECAh4cH\nMVuZkpIycOBA1ZQSALBYLHNzcxMTE0r0S9poVFdX9+mnnyYnJ1+8eFEul/fs2ZOY9+JyuWVl\nZampqaNHjzYwMFC119fX79mzJ5k1UkEbG6lAGulQ1PbpkB8hJ9IVQqFQKpWOGTMmICBgxIgR\nWVlZmZmZFRUVvr6+KuFv3bplZGRkZGRE1NwjM2VlZUwmk8iIVOuEZWVllZWVPj4+Ko3OnTt3\n7do1fX39BQsWqCeKJER7A3G5XA6HQ3IbodcrVSKDOnK5PCsrq7i4OCAgQD2hOnPmTH5+/hdf\nfNG/f/+AgADdCagBur6MuhiUEL5G9PT0iFeRq6vri8IHtaCHRlwud8iQIRiGEdeSxsfHV1dX\nW1tbGxsbW1paJiYmcjgcVSkCykEPG6mDNCIn9PMjYr8MhmH0MFBtbW1MTMzu3buvX78+bNgw\nY2NjDofj5+enSjm8vb0ZDMalS5e2b9+enp4+evRokudOVVVVa9euvX37tr+/f6uc8N69e5mZ\nmfr6+vX19X/88UdcXBwALF68mMzLg/QzENAxLKhDg8ggl8svXrx49uzZ27dvi0SiHj16sFgs\nFxeXjIyMhw8fPn78eMCAAcSFGefPn4+LizMxMZk1a1bbWxZJBb17XZeBEsIugrrh40VQVCOh\nUCgWi62trb28vIKCgqysrCorK9PT08+dO5ebm2tnZ1dZWXn37t2QkBD1eTKKQlEbtQPSiCTQ\nzI+qq6u//fbbnTt3nj59urq62s3NTXVahqIGKi8vX7t2bV5enpGRUVBQkKOjI1E0Xz3lyMzM\nzMnJOXr0KI7jEydOHDBggK6l1gCXy83Ly8vKyrp7927bnLCoqCglJeXixYuE1kuWLCHzDjda\nGohmYaF9qBgZysvLw8PDk5OTi4qKCgsLb9++feXKlT59+lhaWvr6+mZnZ+fm5iYkJNy5c+fE\niROXL18GgCVLlpDtIpNWvFG97rWCEsKug3Lho6SkpKqqyszM7EUNqKWR+nSsj48Pn89nsVhO\nTk6BgYEDBw5saWnJyMggyklLJJJevXqRfEpMS6hlI41dDqimkTZQSyP6+ZFQKPzkk08eP36M\n43hLS8vjx49TUlKGDBmiqqpHLQMBgEwmCw8Pr6ysdHV1jY6O9vLyIpINAg6HM3z48Pz8/Nzc\n3CdPnjAYjPnz50+bNk2HAmsJg8EYOnRocXHxi3LChoYGHx+fiIiI9957j8x3i9HPQPQLC9pA\nrchQX1+/bt268vJyGxub0NBQb2/v5ubmoqKiK1eu9OvXr2fPnkRdnIKCgoqKisbGRn19/cWL\nF5N5VuXN7HWvD5QQdimq8GFtbU3y64OkUumqVatqa2v9/PzaaUYVjV40HUtgYWExdOjQwMBA\nQ0PDsrIysVhcX18/evRoHQr8CqGKjbTsckAdjbSHKhrR0o/279+fk5Pj7Oy8fv36qVOnSiSS\nu3fv3rhxgxhhEG2oYiCCpKSkixcvWltbb9261cjIiHiYnZ2dlJRUWlrq4ODA4XBGjRplZ2dn\nZ2cXFhY2dOhQ3QqsPRpzwgcPHgwcOFC9ej4JoZmBaBkWtIRCkeHgwYPZ2dkuLi7/+9//3N3d\nXVxcRo8eraenl5GRkZaWNnbsWAMDg0GDBoWEhAwePHjMmDELFiwgs0Zvcq97TaAqozrg0aNH\nffr00bUUmlmzZk1RUdHBgweNjY3bb0lyjWQy2cqVK0tKSlxdXT///PP2p/FwHN+zZ09iYuLO\nnTupcgGrNpDcRgTadzkgmUZyuby5uVm9WEInIJVGbaGfHwkEAnNz87CwMKVSuWvXLlX6FxcX\nFxcXZ2FhER0dbW1trWpPcgOp2Llz58WLFxctWjR58mQAKCkp2bNnT05ODpPJVCgU7u7umzdv\npkpNBbFY3NatFArF//73v9TUVBcXly+//FI1EBQKhampqZMmTepyMTsGnQxEv7DQCSgRGWbP\nnt3Q0PDtt9+22gK6ffv2q1evhoaGzp07V1eydRTU614HaEOtDiB/4CAIDg6Wy+XJyckaW5Jc\no7/++qukpMTa2vqLL75QBY7s7OxDhw6dO3dOoVCoN8YwbNy4cQCQlJSkA1lfGyS3EYH2XQ7I\npJFCodi6dev69esbGxtf5u+QR6PnQmk/ksvlcrlc/UlpaemaNWu+++47ABg7dqz6tcszZ86c\nOXOmQCAIDw+vqKhQPSe5gVT06NEDALKzs4uLi48cObJy5Uocx3fu3HnkyBFra+t79+7l5+fr\nWkatKCkp+fDDD8+ePdvqOZPJ/PTTT52dnfPy8jZs2NDU1EQ8NzU1JX82CDQyEFA8LLwqyB8Z\ncBwnXk9tt01OnDgRADIyMnQgVmdBve51QPaKVQgd4u/vf/DgwQsXLkydOpUqs5XP5dGjRwAw\nadIkYiK51XRsSkpKq+lYQ0NDAHjw4IGuBH5joWiXwzCMx+MVFBRERkZu2rRJPbWgE9T1I7lc\nvnXrVgD4/PPPVVX79fX19fX1//zzTwDg8XitvjJz5kwAiIuLCw8Pb7VOSH6CgoLS0tLS09PT\n09MNDQ0XLlw4YcIEDMNwHCfUVyqVupZRAyUlJTKZjOhasbGxABAcHKzegMlkTps2LTo6msgJ\n1dcJyQ8NDKSCumHhjQLDMBsbm7Kysvz8/H79+ql/RNQUVc2qUALU614HaIUQ8UJYLFZgYGBV\nVdWdO3d0LctL0aHpWKVS+dNPPwEAtYaA9ICiXY7BYKxatWrkyJFETviS64Skhbp+JJfLGxoa\ncnNz1Zf7TE1No6OjbW1tAeDy5cutJpVBbZ3w1q1bXSruS8PlcqOjo9evX//555/HxsZOnDiR\nGBvFx8eXlpaampqSueAKANTV1W3YsCEyMpLBYHz11VdGRkaxsbFt1wmJraTe3t55eXnXr1/X\nhaSdhOoGUoe6YeFNg1gl279/v0wmU39+5coVAOjdu7duxOoUqNe9DtAKYedRXVqla0FeDSUl\nJcXFxT4+PuqVeSdMmHDixInz588PHjxYh7K9JB2aji0oKLh165a+vj4J99NLpdLff//9+vXr\n8+bN8/b21rU4LwuduhyREwLAlStX6LpOSF0/4nK5GzdurKqqsrW1raystLCwIAQmcsLw8PDC\nwsLdu3cvX768VTyfOXOmu7t7//79dSR452EymeohAsfxU6dOHT58GAAWL15M8svNDx8+LBAI\n3N3draysOBzOV199FRER0XadkBjIfvTRR/fv39dYiYpsUNpA6lA3LLSCZiO6toSEhKSkpOTn\n50dFRa1atcrKygrH8YSEhNOnT2MY9s477+hawA5Am15HKlBRGc0oFAoGg6EeJqqrq3/44YeM\njAwOhzNy5Mg5c+Y8d/BXWlpKTD+Tn7q6uo8//lgoFFpZWU2cOHHcuHEqjXbs2HH58uXY2Fgr\nKyvdCvkyKBSKO3fuKBQKT09P1c6is2fPxsbGmpqaHjhwQP0FfPv2bRMTExcXFx0J+3zKy8u/\n/PLL0tJSYiSxZs0a1VVp6lCl19GyyymVyh07dly5csXR0fFFOSFVDPRcqO5H5eXl69atc3Z2\nVt87KhQKw8PDS0tLx4wZ0zYnpAGZmZknT568d+8ehmHz5s2bMmWKriV6IUSZn/nz57PZ7F27\ndqm28j59+jQiIkIkEs2YMWPWrFkYhhG9zsLC4sCBA7qV+eWhkIGeC9XDAv1GdAAgl8svX758\n//59DMPc3NxGjBjB4XDq6+ujoqIKCwsZDIadnV19fb1QKASABQsWUCshBOr3OhKCrp3QAHH4\nJDs729vbmxgoaLy0iuDy5csbNmwwMDAg/2njkpKSxsbGcePGYRj26NGjtLS0+Pj46upqa2tr\nY2NjS0vLxMREDofj6empa0k7D4PBsLW17dmzJ1GjnJiOJXYRLF++3N7eXr2xra2tubm5LsR8\nIc3NzevWrSsrK3NycoqOjp4wYcJzp5Ap1OsEAkHv3r3NzMzo0eWEQuG+fftiY2MFAkFTU5NQ\nKMzKyvL392+VtFPIQM+F6n6kp6eXnp6enZ1dVFTk5+dHLE2rbizIzs4WCASqUE8P6urqtmzZ\nUlhYaG1t/dlnn40aNUrXEr2Q0tLStWvXFhcXV1ZWBgYGqru/iYmJl5fXjRs37ty5c+7cufj4\neGKP6JIlS6i11a0tFDLQi6B0WKDfiA5efAG9ra0tcdlgUVFRTU2NVCo1MzP76KOPyHzZ4Iug\ndK8jJygh1EBDQ8Pvv/+uPlDQ5tIqALhz505WVlafPn3c3d11KL9G6urq1q1bl5ycPGbMmLfe\neisoKMjKyqqysjI9Pf3cuXO5ubl2dnaVlZV3794NCQlR39pHXTIzM7///vvk5GQMw+bPnx8Y\nGKhriTRz+vTp69ev9+zZc9u2be1UWKZWr7t169bSpUtnz55N9S4nEAg++eST+/fv8/n8gICA\nvn37CgSCkpKStjkhVQykDVT0IxaLNXz48JycnDcnJ+RyuUOHDnVzc1u6dKmNjY2uxWkPhUJx\n9erV7OxsiUQyaNCgVnegmZiY+Pn5FRUVFRcXNzU1sdnsRYsWUXEg2woKGUgbKBcWaDaiA00X\n0Hfv3p24bNDX1zcoKGjevHm9evXStcgvC+V6HTlBW0Y102pDkfaXVuXm5vbt21dHUmvLd999\nl5yc7O7uvmHDBg6Ho3r+8OHDc+fOpaSktLS0MBgMpVL52Wef+fv761DUV0JdXd1nn31WUVFh\nbW394YcfDhgwQNcSacWqVasKCgrCw8N9fX3bb0ndXkfdLrdly5YbN264urpu3LiR2OQmk8l2\n7NiRkpLSdu8oJQykEYr6EYFUKo2Kinrw4IG3t/dz946uX7+eBmd0qYjKBHZ2djExMc/dB/Hs\n2bOamhonJyeiciCCPFArLHT0GlKqhO69e/eeP3/excVl8+bNRAVRADh58uShQ4eMjIz27t1L\nM8ehVq8jM2iFUDOtJo8rKyvHjBnj5eWlakDMGN2+fbvVrJKlpaVuJNYOgUDA4/H27NljbGy8\nZcsWVeAgsLCwGDp0aGBgoKGhYVlZmVgsrq+vHz16tK6kfVVQdDr26NGjEolk/vz5be9oTk5O\nrqmpUZ1toG6vo2iXUygUMTExSqVy48aNqk0pTCZz6NCh6enpBQUFrdYJSW4gLaGQH+E4fu/e\nvfT0dJFI1K1bNwaD0f46Ybdu3ai4bY8eqN62JSUl1dXVPj4+bZdqjY2NbWxs1KcvESSBQmFB\nfX8yPUZ0Knbu3CmTySIiItQP4fft27e0tDQvL4/BYFDoLIY2UKjXkRyUEGqFek4oFou9vb1d\nXV3VG7wogpAEuVwukUjUt661c1pDnf9v786jmjrXxfG/OwOEQUYHcEDKDAIqCBJUwJk4dLjX\nc1nW1Sq3dVqFXqd78IjadlWFZXtO4Xhqae2tPeK12nq77FIKSg4Gq1CmQNIwyCBYEhANhEEl\nhIR8/9jrt39pAjGgsoc8n7/OAVzr3d3vfvd+3uF5eDxeSEjIxo0bVSoVfmlm9ivShb29/Zw5\nc+i1JaykpESpVEZERBiNd3q9Picn5+rVq+vXrx81xwxZTLscsqzX0a7LabXaixcvcjicHTt2\nGP6cxWLxeLzS0tKxzhPSHS2eo4cPH37wwQeXL1+uqqoqLi7+5ZdfAgIC3N3dzcSEVEs80NDQ\n4O7ujv93lsvlf/3rXyMjIxkcDhFvW6lUyrDtu9aAFsMCMtifTMcvOjP0ev25c+cQQtu3bzda\nYHdxcREKhWq1mnk7KunS6yiOBudzKIK+Rat0Ol1mZubhw4cNy6MRRZm7u7ufmeEawzC8gs2N\nGzdeblvBGBISEhBCubm5RhWEfvrpp7t373p7e1PqjTVql0Pj6XU06nI2Njaenp5arbatrc3o\nV3goGxUV1dLScufOHRIaZ93wszRNTU2urq6bNm3auHFjV1dXenq6WCxG/18tiuDg4PLy8oyM\nDNMhnQrEYvFf/vKXzz77TK/Xy+Xy9PT06urq//3f/yW7XS+SXq83OrpCvG2FQuGpU6fgYAt4\n4ej7RWdKLpcTlXvxAvQIIcNCfDg6FqAHkwlWCMeBmLnEzzCYzlyGhYWFhYXFxcWR1cKxVFZW\nVldXGy5TENcyMDDQ09Ozdu1a89k7hoeHr169qtVqBQLBZLUa/P98fHyqq6ubm5tlMllwcLCT\nk5Narf7+++/Pnz+PYdiePXuoVnHVtMuhcfY6GnU5rVZbU1PT3t6ekJBgeEU//fRTU1PThx9+\nGBoaiof0YDJlZma2tLQEBwdnZGRER0c/fPiwoqJCq9WWlJT4+fl5enoarhN6eXlRMLmCo6Oj\nWCyurq5ua2v7/vvvVSpVeHj4nj17OBz61RDW6XQYhhkVcPrb3/6WlZV15cqVR48eBQcHm44V\nNErzo1Qqc3Jy/vnPf5aXlzs6OtKoRIF1ou8XnSG9Xn/gwIHy8vLExER8WNBoNDU1Nffv31++\nfLnhxOuVK1caGhrCwsKWLVtGXnsBdUFAOD7PfEtRsHIahmExMTGdnZ1jxYRmTmvgRkZGPv/8\n8/b29uDgYBhKSMFisRYvXiyRSBobG/Py8goKCr777jupVIphWHJyMtWCjbG6HLK419GrywUE\nBIjF4oaGhubm5gULFuATsfn5+d99952Li8ubb77p5eVFdhutTkNDw7lz56ZOnZqRkeHk5FRQ\nUJCTk6PX61esWNHc3GwUE3p6elLz3KCtre2SJUuqq6tlMplarQ4PDz9y5IiZ/aIKhcLJyWky\nW2ihCRRwMnzb+vn5UTy+6u3t3b9/f319/cDAwIMHD27dutXb2xsZGWk6vlH2HlkhOn7RGcEw\n7MmTJ2VlZSwWKzw8HCHk7+8vFoubm5tra2vDw8MdHBzwAvQXLlzAMCw1NXXq1KlktxpQEQSE\n40bHmctnxoTmT2s0Nzd/++23dnZ2f/7zn6nzJrO26Vgej4d/s8rl8r6+vpGRET8/v/fff5+a\nH7KWxIRmeh01u9xYWCxWTEyMRCKpq6vLy8urqqr64YcfRCIRQmjHjh1+fn5kN9Acpj5HN2/e\nlEql//Vf/+Xr61taWpqVlaXX6999992tW7f+/vvvbW1thjGhj48P2e0dk0qlunbtmlqtRggF\nBQUtXbp0rDcOlUulTayAE43S/Hz11Ve1tbW+vr6pqamLFi1qamqSSqUPHjyIiYkxvF9UvkeG\nGDksaLXaoqKiq1evlpeX9/f3z549m8Ph0PGLzkhgYKBIJKqpqYmPj3d0dCTeR42NjdeuXSsp\nKbl06RJ+ZiE5OZnKE6yM7HU0AgHhRNBxBHlmTGjmWtzd3X18fAQCAXVKAFvndCyHw5k/f/4b\nb7yRmJiYlJS0ceNGKufUsiQmHKvXUbDLmcfj8fCCvy0tLQ8ePHj8+LG9vf27775L8TppFj5H\nNHqI5HK5Uql0dXUNDg5++vTphg0bHj9+fOTIEY1Gs3nz5k2bNiGE2traOjo61Gr1nTt34uLi\nKHX+FiGk0+kqKytnzpyJ3wUbGxuZTDZ16lRHR8eamhrTGINA5VJpPB7P6JE/c+aMnZ3dyZMn\nPTw8HB0dFy9ejEZL40HBND+jOn36tJOT06effjp37lxvb++EhASxWCyRSIzuF5XvEYGRr9ex\narVPnTqVjl903d3dtra2+AkFNpvt7u5+69atR48e4fEe8T6iUQF65r2MaAcCwgmi124WlUr1\n1VdfnTlzRqlUPn361CjtoSWj4axZs4iU+lTAsOnYccEwzM7OjuIpK813OWRBr6NClxtXgkcO\nh4MX/F20aNGqVauSk5ONKmtTkCXPEY0eot7e3oMHDxYWFkZHR7u4uERERLBYrLy8vIqKioUL\nF6ampuJ/dv78eR6Pt3v37pkzZz6zsOckE4lEJ06cyM/PJx4KNpsdGxubkJAQFxdXU1NTXV1t\ndIPKysqcnJxsbW1DQkLmz5+/YsUKci9hLBMu4EQLP/7444YNG4jMyXgAbBoTUvwe4Zj3ejVf\nq3369On0+qKTy+VpaWmFhYUeHh4zZ85ECHl5edXW1lZVVQUFBeHTxMT7iC4F6Bn2MqIjCAgn\nji67WZRK5YEDB2prax0dHRMSEkJCQpRKpVwuHysmpP5oiJg1Hcs8lnQ5RPleJxaLjx492tHR\nERMTo1Ao0tPTW1tbBwcHo6KizPwrDoczbdq0adOm0SLthyXPEY0eojNnzshkssDAwHXr1hH/\n/YuKilpaWv7jP/4D3xeal5d3/fr1oKCgpKSk0NBQUtv7BzqdLicnJzc398mTJ3w+//XXXzcs\na8lms/HzhERMGB0dzWKxbt68+emnn1ZWVq5cuRLve+RehXl0L+BkRKVSff311+fPn8erXIaG\nhhp+p44VE1L8HiEmvl7Pnj0rkUgCAgI++eSTsLCwgICAlStXcrlcsVhcUVGxevVqW1tbunzR\nIYR+/PHH6urqp0+fikSipqYmf3//KVOm+Pn5Xb9+vbGxMTExkchtxuFw3N3dXVxcqL/mybCX\nER1BQPhcaLGbJTs7u7GxMSgo6OTJk5GRkfPnz09MTFQoFBKJxDQmpMVoiJg1Hcs8FnY5RO1e\nx6QEj2Ox5DmixUOkVCrt7OxOnz7t7OyckZGB5/XB9ff3l5WVqVSqadOmXbt27bvvvsMwbPfu\n3VRLF5GdnS0UCnk83t69e7ds2eLm5mb6N4YxIZ5p5uLFi3q9ft26dQsWLJj8Nk+AYarhvr6+\n1atXG6UaJmLC6dOnG4WLlKJSqfbt2yeTyfr6+jo6r1cZDgAAIABJREFUOgYHB00vx/CBeuWV\nV+bMmUNigy3HvNerhbXaafFFhxDy9/cXCoXTp09/7bXXbt68ee3atcHBwejo6MHBwcrKSgcH\nByo/OGNhzMuIviAgZDidTpednT0yMvLRRx8Zzjfz+fzKysqWlhajmJDKoyFTp2MZZlxdDlG4\n1403wSNdTOA5ovhDpFAo0tLS2tvbu7q6EhMTiU8K3Ny5c+vr6+vq6kQiUWNjI0Jo27Zt8fHx\nJDV2dKWlpbm5uRwO59ixY4a7KE3Z2touW7asqamprq6ura2NxWJt27btT3/606Q1dcJUKtWT\nJ0/s7e2Zke4/Jyenrq7Ox8cnJSVl4cKFjY2NHR0dppeDP1AeHh4UnPMyxODXK/NqtdvY2Dg4\nOBQWFi5dunTXrl09PT35+fn/+te/oqOjm5ubJRLJqlWr7OzsyG7mszHvZURrVh0QjuuAEE1p\ntdqLFy9yOJwdO3YY/pzFYvF4vNLSUtPDXdTE4OlYhmFMl0PjSfBIF4x8jnQ63a1btyQSyeDg\nYEREhNHRTRaLtXTpUg6HMzw87OPjs337dgpOMH/xxRcPHz5MSkoyDRva29vr6+s1Go2rqyv+\nExsbm+XLl3t5eXl5eW3fvp3P5096e8enp6cnOzv7888/v337Nr4RlF7p/rVa7eDgIDFe4cvR\nOTk5+A43b29vHx+f+Pj4sS6Hx+P5+/uT1HaLMHJYIGAYVlxcPDAwsHDhQqN+NTAwUFBQYGtr\nu3HjRrKaZyG5XF5WVubj44N3LV9f38rKyl9//fW1116Lj49fuHBhXV2dUCgcHh4eHh7u7++n\n2uloU8zudXRkvQHhxA4I0Q6bzRaJRP39/Xw+38XFxfBXfX19N2/ejIqKkslkHh4eFE+Oz7Dp\nWGRZhmU6JtRiTJdD40nwSBfMe47QH3ch9vT0rF271mgXIpvNDg0NXb16dVxcHDUT837zzTca\njeadd94x3Cna0NCQmZmZm5v7yy+/FBQUNDY2RkVF4WEJhmFeXl5hYWFGjxgFdXZ2pqWlNTY2\nOjk5bdiwwdfX197eHtEnWTdeQTEvLw+fwyKWox8+fCgQCIjlaLpczqgYOSwYonut9uHh4UOH\nDgmFwsrKyrlz506dOhXDsLlz5+bl5Q0NDUVGRk6dOnXt2rVubm4NDQ1DQ0MxMTHUP2XH+F5H\nO9YbEFrDASGcVqutqalpb29PSEgw/E766aefmpqaPvzww9DQUKpVNjfEvOlYZFmGZfom1KJ7\nl8OpVCq1Wr1q1SpLEjyS21RLMPI5IhCf43K5/NGjR4sXL6bR5zhCqKioqL+/PyAgwNfXFyGk\nVqvPnj17+vTp7u7uWbNm4WmZ2tvbm5ubKbi8aYZGozl06FBXV1dQUNCJEyciIyPxaBBH/SAK\njwbLy8uHh4fxGS5iOfrp06dRUVGGgzP1L8cUI4cFtVr9ww8/5OTkTJs2DZ9ppXutdjabvWzZ\nsoGBgaqqqsLCws7OzsDAwDlz5jx48EAoFC5ZssTZ2RnDMD8/vzVr1vj6+q5fv57sJpvDyF7H\nANYbEI7rgBAdF2oIAQEBYrG4oaGhubl5wYIFeLqF/Pz87777zsXF5c033/Ty8iK7jWNi5HQs\nsizDMn0TatG6y6E/7nCLjY11dna2JMEj2a02h6nPkSHiWqRSKR2vpaqqSiqV6vX6+vr6rKys\nmpoaZ2fn9957LyUlJS4ujs/nC4XCjo6OefPmzZgxg+zGWurGjRtFRUUeHh6ZmZnEO1Qikdy4\ncUOhUPj4+Njb21M21TARDTo6Oh47dgyviWo+KQ7FMycbYeSwgNcbLCkpefLkiUajWbx4MZvN\npm+tdgKPx1u8ePGiRYva2tqqqqoKCgowDNu4ceONGzfa2tqIeSIbGxuKv14Z2euYwXoDQmTx\nASH6LtTgiKGwrq4uLy+vqqrqhx9+EIlECKEdO3ZQfNsew6ZjCZZkWKZvQi1ad7mxdrjROsEj\nU58jI/S9Fn9//56enrt370qlUvwwZFxc3JEjR4hsgc7Ozr/99ltXV5evry+N3kR5eXmtra1J\nSUn4rJZcLs/MzLx06dLdu3crKirq6upWrFhBzVTDRtEgXrMER3Sz+/fvm+5wo+bljIp5w8LQ\n0NDBgwc7Ojr8/PxOnDghEAiIDaJ0rNVuyt3dffXq1TNmzKirqysrKysvL589e/Zvv/3m7e1N\nl/N1zOt1jGFFAaFOp6usrJw5cybRwyw8IETfhRoCMRS2tLQ8ePDg8ePH9vb27777LvWHQiZN\nxxqyMK83fRNq0bTLmd/hRt8Ej0x9jkzR9JMCw7Do6OjAwEBnZ+dFixbt3LlTIBAYFs/QarXn\nzp1Tq9UCgWD27NkkNnVc5HK5RCJhs9k+Pj55eXmfffaZm5tbenr6tm3bbt++fe/evUWLFrm7\nu1Mt1TARDXK53IyMDHwfryHz3YxqlzMW5g0LV65cuX379pw5c06ePEkkYSLQrlb7qDAM8/Hx\nSUxM1Gq11dXVXV1dCKHGxsb169cbnZ2mJub1OsawloBQJBKdOHEiPz/fcOxms9mxsbHPPCC0\ncOFCmi7UGCKGwkWLFq1atSo5OdkoFx9lMWY6dmJ5vemL4l1Oq9WOjIwYvUGfucPN1taWXgke\nCYx5jp6Jvp8Unp6eERERoaGhzs7ORr+6dOlSZWWlq6vrzp07jVLnU5mPj49MJpNKpT///PP9\n+/e3bt26a9cuNzc3DoeTn58/MDCwatUqqh3fIqJBhNDIyMiUKVOMCpngaDr1YIRhw8KZM2dU\nKlVKSoq3t/dYf0OjWu1mcLnchQsXLlu2rLOzs7Oz89VXXw0PDye7UZZiWK9jDOYHhDqdLicn\nJzc398mTJ3w+//XXXydqoyGE2Gw2m81+5gEhaiammwAOhzNt2rRp06ZR/MiTEQZMx1pthmVq\ndjn8m+/27dtLliwxvAWW7HCjUYJHIwx4jizEsE+K/Pz8b7/9FiG0b98+eq1pcDicFStW+Pv7\nL1myZPv27SEhIXiXu3btmkgkcnV1/c///E9KLWsY7hR96623ZDKZTCYbHh62hpiQAcPCxYsX\nBwcHt23b5uDgYPSrwsJCPEUTKQ17SZycnBISEhYvXkzxop2mmNTrGIP5AWF2drZQKOTxeHv3\n7t2yZYthUm9DdDkgZFQQCSEkl8uVSqXp7giGocur1/QG4SDDMqVoNJrr16+3tLTExsYa5ouy\ncIcbiS1/TvR9jsY70DHjk2JoaOjLL7+8ePEiQmjr1q1r1qwhu0XjxmKxZs2aNWfOHC6XixDS\n6/X/93//h8e3qampZlZyJp/RuUE+n+/v73/nzh0LY0J6LUcbosuw8EwlJSVKpTIiIsJoEl+v\n1+fk5Fy9enX9+vXUr387XjT9/GNMr2MMhgeEpaWlubm5HA7n2LFjkZGR5v+Y+geEjAoiIYR6\ne3sPHjxYWFgYHR1tusuIYag/fJjeIAQZlimJw+EsW7aMz+fPmTOnq6vLzs4OX6ag4w638aLj\nc2RVAx1Op9Pl5eVlZmbW1tba2tru3btXIBCQ3ajnVV1d/Y9//KOwsBDDsG3btiUmJpLdoj+4\ncePGlStXDLPIeHp6WhgT0n05mvrDgiWGh4crKyvb29tXrFhhuLP6p59+EgqFPj4+1C9Ab1WY\n0esYg+EB4RdffPHw4cOkpCTTkbq9vb2+vl6j0RhOrtjY2FD2gJBpQSSE0JkzZ2QyWWBg4Lp1\n6yi1Je8lofJ07Kg3iAEZlhsaGtzd3fHmyeXyv/71r5GRkbSovGceh8NxdnbGc4rW1dXhe0dp\nt8NtYmj3HFnbQIcQYrFYt27dkkqlfD4/LS2NvinNCL29vRkZGffu3fPw8Pjzn/9MwfDJ19dX\no9EkJycb5hS1MCZkwHI0lYcFC/n4+FRXVzc3N8tksuDgYCcnJ7Va/f33358/fx7DsD179nh4\neJDdRvAHDOh1jIHp9Xqy2/ASbdmyZWBg4LPPPjPMEtbQ0PD11183Njbi/zcyMvLAgQOmO84p\nxTQFtlKpdHd337Ztm42Nzd///nc7Ozuy2zh5VCpVSUkJpUqvjpWjXKVSHTp0SKFQIITefffd\nV1991fBfEb9dtWpVamoqBWNCsVj88ccfL1u2bO/evQqFIj09XaVSCQSC3bt3k920F0OtVn/w\nwQf19fXR0dF/+ctfTNN14DvccnNz9Xr9f//3f9OiYpWFaPEcWfNAhxBSKBQU/0KSy+UajcYw\ngjJDqVQ2Njby+XwKjnXmicXi48ePDw8Pb9q06e233ya7OS8RBYeFcenr6/vggw/u3buHEHJ1\ndR0YGNBqtRiGJScnv/7662S37g8aGhoCAwOJydYzZ87s37+fviWvnwfdex0zMHyFsKioqL+/\nPyAgAA8I1Wr12bNnT58+jZ8tDgkJUSqV7e3tzc3NVE4iavqRRKw7dXV1JSYmjjpnyWBUm461\npGIVTTMsOzo6isXi6urqtra277//XqVShYeH79mzhzGrNPjeUZlMJpFIWltbjXLMUHmHG/NO\n2cFAZ4pqX4dGvW68W3nt7e3nzJlDu2gQWbZOyAxUGxbGi8fj4YvPcrm8r69vZGTEz8/v/fff\np9qKtFgsPnr0aEdHR0xMDD7Z2traOjg4GBUVRXbTSED3XscMDA8IEUJVVVVSqVSv19fX12dl\nZdXU1Dg7O7/33nspKSlxcXF8Pl8oFHZ0dMybN2/GjBlkN3YUoxZEIip7Dg4ORkREjJrNX6FQ\nUO1jgpEsr1hFxwzLeLIlPM2SWq0ODw8/cuSImf2idOx1Y8WEVN7hxrxTdjDQUZ9pr7OqrbzW\nExPSHYfDmT9//htvvJGYmJiUlLRx40YKJoof72QrDHTgZWN4QOjv79/T03P37l2pVIp/VcTF\nxR05ciQoKAj/A2dn599++62rq8vX19ewKBxFjFUQyXDdqaenZ+3atUbnmkQi0dGjRx0cHCh4\nUUzyQipWUW1uTKfTVVZWzpw5E2+kSqW6du2aWq1GCAUFBS1dunSsCX769rpRY0Iej8fn84OD\ng3fv3k2p7wnmnbKDgY76jHqdVqu1s7M7ffq0s7NzRkYGj8cju4GTAWJCGsEwzM7OjrI5Rcc1\n2QoDHZgEtM+OYB6GYSkpKR9++OFrr722ZcuWf/zjHwcOHDCcPtdqtffv30cITZ8+nbxmjs5w\nA9U777zD5XIvX7587tw5/Leurq4nTpyYNWvW77//furUKaOzoN3d3SMjI48fPyaj4c/Q0NBA\ntFYul3/wwQf9/f3kNmlizN8gI8T9EgqFpveLOkQi0c6dO48dO0Y00s3N7ZVXXgkLC/Px8Sku\nLv7ss8/GajyVex1Bq9UKhcLs7Oy///3vhYWFQ0ND+M95PN5HH30UHBxcXl6ekZGh0+kQQlOn\nTo2NjaXUDjejfZXe3t5KpVKv11dWVs6YMePw4cO0y/fD1IGOSYx6HZfL3b9//6lTp1gs1po1\na6zqYGdERER6ejqXy8WraAAwYU+ePOnt7cX/t6urq5nYFQY6MAkYvkKI8/T0jIiICA0NNd1J\ndenSpcrKSldX1507d5rmkyCRJQWRiOlzqVRqtO4UEhIyf/58Ch6MZMy++eesWEXBzKI6nS4n\nJyc3N/fJkyd8Pv/111/HC+6x2ezY2NiEhIS4uDi8UOeDBw9iYmKIxpeVlTk5Odna2lK21xE6\nOzsPHTpUWFjY2tp679698vLy4uLiwMBAvJKE+fOEVMC8U3ZMHeiYxLTXWbKVFzF3k5unpyd+\n3oTshoxJqVTm5OT885//xO8aBU+nA4SQjY2NTCabOnWqo6NjTU2N0YvVEC0GOq1WW1RUdPXq\n1fLy8v7+/tmzZ9Nur4qVs4qAcCz5+fl4edx9+/bNnTuX7Ob8gYUFkczEGNOmTSPzAsbAmH3z\nz1OxippZZLKzs4VCIY/H27t375YtW9zc3IhfsdlsNpuNb3EhYsLo6GgWi3Xz5s1PP/20srJy\n5cqVHA6Hmr0O19fXd/Dgwc7OTk9Pz02bNkVHRw8NDbW2thYXF8+bNw/fI2AYE3p5eVFqWGDk\nKTumDnSMMWqve+ZWXsT0TW5Tpkwhuwlj6u3t3b9/f319/cDAwIMHD27dutXb2xsZGWkaaVB5\nZLAGlk+2IsoPdOYnWwnQ5ajMSgPCoaGhL7/88uLFiwihrVu3rlmzhuwWGbO8IBLF152MMGbf\n/PNUrKJgFpnS0tLc3FwOh3Ps2LHIyMix/swwJsRv4sWLF/V6/bp16xYsWDCZDZ6As2fPSiSS\ngICATz75JCwsLCAgYOXKlVwuVywWV1RUrF69Gu+HeEzo6elJqRvE1FN2TB3omMHMGWnidsjl\n8kePHi1evNjodlRVVdXU1AQGBjKggiK9fPXVV7W1tb6+vqmpqYsWLWpqapJKpaarTxQfGQjM\nXneyfLKV7JaaY8lkK6JPl7NaVhcQ6nS6vLy8zMzM2tpaW1vbvXv3CgQCshs1CgzDFixYYJpB\n/pmfSlRbd0LPkaSEyp8U47pBRqiWRQYh9MUXXzx8+DApKck0Cmpvb6+vr9doNPjF2traLlu2\nrKmpqa6urq2tjcVibdu27U9/+hMZrR6frKwsjUaTnp5ueGA4JCREoVA0NjayWCziZnE4HAvr\nqk0Owz17b731lkwmG/XxH/XTnMoPEWLWQMcw5nsdMruVF9FkkxsjnT592snJ6dNPP507d663\nt3dCQoJYLJZIJEYxIcVHBpz1rDtZw2QrLbqcNbO6gJDFYt26dUsqlfL5/LS0NDr2SzOfSlRb\nd0IIiUSiEydO5OfnE18MDNs3b4qOmei++eYbjUbzzjvvGO4UbWhoyMzMzM3N/eWXXwoKChob\nG6OiomxsbGxsbJYvX+7l5eXl5bV9+3Yqn6Uh6PV6PE/J9u3bjU4Lu7i4CIVCtVpNqTKDBKs9\nZUevgY5hLDwjbX7ZluKb3Jjqxx9/3LBhA3GPeDzekiVLTGNC6o8M1rbuxPjJVup3OStndQEh\nQigyMjIuLm7dunX0nVIa61OJUutOz5+kBNH2k4J2MWFRUVF/f39AQAB+RkitVp89e/b06dPd\n3d2zZs0KCQlRKpXt7e3Nzc34aI5hmJeXV1hYGF7zgPowDCsuLh4YGFi4cKFRSuGBgYGCggJb\nW9uNGzeS1TwzrPmUHS0GOkay/Iw0bOWlApVK9fXXX58/f76ysrK/vz80NNQwOhorJqT4yGCF\n606Mn2yleJezctYYECKE6BsKEqgfcryQJCUktv85Uf8GGamqqpJKpXq9vr6+Pisrq6amxtnZ\n+b333ktJScFT6gmFwo6Ojnnz5s2YMYPsxk6ERqOpqam5f//+8uXLDd9bV65caWhoCAsLW7Zs\nGYnNG4uVn7Kj3XPEDOM6Iw1becmlUqn27dsnk8n6+vo6OjoGBwf7+vpWr15teJzYMCZ85ZVX\n5syZQ2KDLWSd606UnWzt6+urqal59OjR9OnTDbsWfSdbgRErDQiZgXg9h4WFUW1uzBqSlDwT\nlW+QEX9//56enrt370qlUjxlZVxc3JEjR4KCgvA/cHZ2/u2337q6unx9fWmxM8c08bq/v79Y\nLG5ubq6trQ0PD3dwcNDr9Xl5eRcuXMAwLDU11ehcCkXAKTsaPUeMMd4z0rCVl0Q5OTl1dXU+\nPj4pKSkLFy5sbGzs6Ojo7u42mhLCY0IPDw9a3CNYd6KOkZGRCxcuZGZmFhcXi0Si27dvR0ZG\nGibapelkKzACASG9UbYgkjUkKbEEZW+QEQzDoqOjAwMDnZ2dFy1atHPnToFAwOPxiD/QarXn\nzp1Tq9UCgWD27NkkNtUSoyZej4qK4vP5EomksbHx2rVrJSUlly5dunPnDkIoOTmZjm8s6zll\nR5fnyBqYiQlhK+/LptVqBwcHiQrmSqXSzs4uJycHzyLj7e3t4+MTHx8/1jYBHo/n7+9PUttH\nB+tOFKfVak+ePFlQUDAyMuLh4YFhmFKplEgka9asIWI/mk62AiMQENIeNQsiMT5JieWoeYNG\n5enpGRERERoa6uzsbPSrS5cuVVZWurq67ty502i+loLGSryekJCwfPlyjUbT2tra3d2tVqvd\n3NxSUlLWrl1LdpMnyHpO2dHoOWI82MdLCjzTT15e3tKlS21sbBQKRVpaWnt7+8OHDwUCAe1O\ndcK6E/XhXa6srMze3j4tLW3Xrl0CgaCmpqatrS04OHjmzJn4n7FYrJiYGCZNtlonCAjBS8H4\nJCVWJT8//9tvv0UI7du3j1K12sdiJvH60qVLIyIiXn311ZiYmA0bNmzdupUWV2QGfJ2DyQe9\nbpIReV+Hh4f5fL6Li4tOp7t165ZEInn69GlUVJThTn7qx4Sw7kR9hqmGjx8/HhoaihDicrls\nNrusrCw+Pp4ICBFCPB4vISGBSZOtVggCQvCyMD5JiTUYGhr68ssvL168iBDaunXrmjVryG6R\nRZ6ZeJ3L5bq7u7u4uFDtO2li4JQdmHzQ6yaNURWQV155BRlEfQMDA6ZZZKh8nNga1p20Wm1R\nUdHVq1fLy8v7+/tnz549apI8ylZQNOpyhsmlrl+//vvvv7NYrP/5n//5+eefVSpVcHAwm83m\ncDgMm2y1NhAQgpeCeUlKrI1Op8vLy8vMzKytrbW1td27d69AICC7UeZMLPE6Y8ApOzD5oNdN\nAjOf5kTUd//+fdMsMtQ8TmwN606dnZ2HDh0qLCxsbW29d+9eeXl5cXFxYGCg0ZImlSsojoyM\n3L59W6FQODg4rF27lohaq6qqvvnmG61W29HR4ezsLJfLa2trxWJxfHw8HvFyOBwmTbZaFQgI\nwUvBsCQlVojFYt26dUsqlfL5/LS0NIqvADA18fq4wCk7MPmg171URPjE5XIzMjLwIxiGzO8O\npdpxYmtYd+rr6zt48GBnZ6enp+emTZuio6OHhoZaW1uLi4vnzZtnmCCHyhUUWSxWbGxsa2tr\nS0tLSUlJdHS0k5OTVCo9ceKEVquNj48/fvz4a6+9FhUV9euvv3Z2dg4ODprJJw9oAQJC8BIx\nJkmJdYqMjIyLi1u3bh0197QYYmTidQCANSPCJ4TQyMjIlClTRj2rSf0TgwRrWHc6e/asRCIJ\nCAj45JNPwsLCAgICVq5cyeVyxWJxRUXF6tWrbW1t8b+keAVFo5jQ3t4+KytraGhIIBCkpqbi\nqW7d3Nzc3NxKS0u7urr+7d/+jewmg+cCASEgAe2SlFgt6oeCDEi8DgAARgwX09566y2ZTGYm\nfw9dYkJrWHfKysrSaDTp6emGi4EhISEKhaKxsZHFYhneQYpXUDS8XxUVFTqdTiAQ7Nq1y7B3\nDQ8P37hxg8ViMaZamNWCgBBMKpomKQHURPfE6wAAYMpoayWfz39mTlcqZ5ExxOx1J71ef+7c\nOYTQ9u3bjbY+ubi4CIVCtVqdmJhIUusmgrhfCoWCy+W+//77Rhu+Ll++3NTUNH/+/ISEBJLa\nCF4M1rP/BIAXQafTXb16dfv27devX7e1tT1w4MC///u/k90oQG/29vb29vZCoVCpVBLFmnGu\nrq4nTpyYNWuWUCg8deqUXq8nq5EAADAuQqHQ6KBdREREeno6l8u9fPkyHnKYwge9nTt3RkdH\nT257x4fD4Rw8eDA6OlqlUn3++ed4NGi07oQHtBqNhrxmmtPX1/frr79WV1frdDrDn2MY5unp\niRBqamoy+id4DoWnT59OWiNfFOJ+DQ8PHz58WKFQEL+6efPmzz//jGFYUlISiS0ELwSsEIJJ\nQq8kJYAW6Jt4HQAAxuLr66vRaJKTkw3TrlhS+5FqWWTGQt91p5GRkQsXLmRmZhYXF4tEotu3\nb0dGRhqmVtJoNDU1Nffv31++fLnhIuGVK1caGhrCwsIoXjBjVKPu9RWJRNnZ2Xq9nvpVQIAl\nICAEk4dGSUoAXdAx8ToAAJiBYdiCBQtcXV2Nfm5JTEgXRIzR3t5eWlqKxxj4r27evJmbm4th\n2J49eyhVfV6r1Z48ebKgoGBkZMTDwwPDMKVSKZFI1qxZQ8R+/v7+YrG4ubm5trY2PDzcwcFB\nr9fn5eVduHABw7DU1FRKXZHljGJCnU731VdfjYyMbN68GU4PMgMEhGBSQSgIXjh6JV4HAIAJ\nY2RMSIt1J/xgZ1lZmb29fVpa2q5duwQCQU1NTVtbW3BwMFE+kcVixcTESCSSxsbGa9eulZSU\nXLp06c6dOwghql3ReBneL4lEotfrN2/evHnzZrLbBV4MCAgBALQHWWQAAFaCwTEhZdedDNP8\nHD9+PDQ0FCHE5XLZbHZZWVl8fDwRECKEeDxeQkKCRqNpbW3t7u5Wq9Vubm4pKSlr164l7wpe\nDMO9vhANMgwGuRYAAMygUqkOHTqkUChWrVqVmpoKMSEAgKnEYvHx48eHh4c3bdr09ttvk92c\n52JYcREhRLVIwyjpq+HBzi+++OJf//pXXFycTCZjs9mxsbFJSUlEhjO1Wt3e3s7lcufOncuk\n95FWqy0tLaX1aicwBVlGAQAMYZhZtKKiguzmAADAy0LkHeVyuWS35XkReSwR9aJBQ1wulygr\njxCqqqq6fv26RqO5ffu2ra1tR0fHDz/8cPDgQbVajf8BXvbW29ubSdEgQojD4UA0yDywQggA\nYBSVSlVSUrJ+/XqyGwIAAC9XZ2cnXueAAai87kQsEhLTjlKp9OOPPx4aGoqPj9+9e7e9vX1z\nc/NHH33U19e3YcOGHTt2kN1kAMYHAkIAAIVotdqhoSEHBwfiJ3K5XKPRGO7SAQAAACaTYUz4\n5ptvfv3116YVFEUi0d/+9jdnZ+fc3FxyWwvAeMGWUQAAVeBv3MOHDz9+/Bj/SW9v79GjR48c\nOdLe3k5u2wAAAFgtYl+rSqX6/PPPTaNBhBBe7Vaj0ZDXTAAmCAJCAAAlEPOvXV1dSqUS/2Fu\nbq5SqfT29p4+fTq5zQMAAGDNDM86crncDRs2GB0OLCoqQgiFhISQ0z4AngMEhAAA8hmlcfP2\n9lYqlXq9vrKycsaMGYcPHzY8yg8AAABMPiKlzoMKAAACvUlEQVQmHB4ePnz4sEKhIH518+bN\nn3/+GcOwpKQkElsIwMRAQAgAIJlpUm+FQrF///5Tp06xWKw1a9bY2dmR3UYAAADgD3tH8UJH\nCCGRSJSdna3X67dt2xYUFER2GwEYNwgIAQBkIqJBLpf78ccf48lj7O3t7e3thUJhd3c3m80e\n9R8aTs0CAAAAk8MoJrx8+XJWVtbIyMjmzZvfeOMNslsHwESwP/zwQ7LbAACwUob1iEdGRqZM\nmTJ//nyEkJ2d3ZIlSyoqKgYGBnp6etauXcti/WH2SiQSHT161MHBITAwkJymAwAAsFYsFis2\nNra1tbWlpUUikej1eipXUATgmWCFEABADsOdou+88w6Xy718+fK5c+fw3xLlnn7//fdTp04Z\nFcjp7u4eGRkhkpECAAAAk8kwxwxEg4DuYIUQAEACo3ODfD7f39//zp07MplseHjYaJ1QKpUq\nlcro6GgipVtISMj8+fNXrFhB6kUAAACwXvg6oZeX1/r168luCwDPBQJCAAAJbty4ceXKFSKL\nDELI09PTTEwokUiMYsJp06aReQEAAACsHovFmjt3LtmtAOB5QUAIACCBr6+vRqNJTk7Go0Hc\neGNCAAAAAADwnCAgBACQAMOwBQsWuLq6Gv38mTGhn5/frFmzyGgyAAAAAAADQUAIAKAWMzHh\njBkzli9fTnYDAQAAAACYAzPK3QcAAFQgFouPHz8+PDy8adOmt99+m+zmAAAAAAAwE6wQAgCo\naNR1QgAAAAAA8GJBHUIAAEVFRESkp6dzuVwul0t2WwAAAAAAmAm2jAIAKK2zs9PT05PsVgAA\nAAAAMBMEhAAAAAAAAABgpWDLKAAAAAAAAABYKQgIAQAAAAAAAMBKQUAIAAAAAAAAAFYKAkIA\nAAAAAAAAsFIQEAIAAAAAAACAlYKAEAAAAAAAAACs1P8DHfiEUy6lx9sAAAAASUVORK5CYII=", - "text/plain": [ - "plot without title" - ] - }, - "metadata": { - "image/png": { - "height": 180, - "width": 600 - } - }, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Warning message:\n", - "“\u001b[1m\u001b[22mUsing \u001b[32msize\u001b[39m for a discrete variable is not advised.â€\n", - "Warning message:\n", - "“\u001b[1m\u001b[22mRemoved 8 rows containing missing values (`geom_point()`).â€\n", - "Warning message:\n", - "“\u001b[1m\u001b[22mUsing \u001b[32msize\u001b[39m for a discrete variable is not advised.â€\n", - "Warning message:\n", - "“\u001b[1m\u001b[22mRemoved 8 rows containing missing values (`geom_point()`).â€\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAAFoCAIAAADIFpV9AAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdd0BT5/oH8PdkkbDCniIbFRAVcYtcrQsVtG4cVYvWUfprb+1Q22u1am9b\nrXpr1SpYrbbWXUQQcStVVBA3AoKADNnISCDz/P6IzeViS4IeSJDv56/kzXPO+xzb2jx5F0XT\nNAEAAAAAAICOh6XrBAAAAAAAAEA3UBACAAAAAAB0UCgIAQAAAAAAOigUhAAAAAAAAB0UCkIA\nAAAAAIAOCgUhAAAAAABAB8XRdQI6VllZmZqaqussAAAAAAAAdKCjF4TZ2dmRkZGDBw/WdSIA\nAAAAAABt6vDhwx29ICSEdO3a9b333tN1FgAAAAAAAG0qPj4eawgBAAAAAAA6KL0bISwvL//t\nt99SU1Orq6uFQqGPj8+7774rEAhUnyqVyujo6ISEhLKyMisrq5EjR06cOJHF+m9ZqzEAAAAA\nAAAAVPSrIMzLy1uxYoVMJuvTp4+9vX1dXV16erpYLFYXhFFRUbGxsQMHDgwNDU1LS9u7d295\nefmiRYvUd9AYAAAAAAAAACp6VBAqlcr169ebmJisXr3a1tb2xYD8/Py4uLigoKClS5cSQsaO\nHcvlcuPj44ODg52dnbUJAAAAAAAA0FJBQYGTk9P48eOjo6N1nUtr0aO5lCkpKU+ePJkzZ46t\nrW19fb1UKm0SkJiYSNN0SEiIuiU0NJSm6cuXL2sZAAAAAAAAHcq6desoiqIoKiMjQ9e56CM9\nGiG8efMmRVGGhobvv/9+Tk4ORVHe3t4LFixwc3NTBWRlZbHZbHd3d/Ulrq6uPB4vOztbywAA\nAAAAAOg4aJretWsXRVE0TUdGRm7YsKFFl9vY2CQmJlpaWrZSevpAjwrCoqIiNpv91Vdf+fv7\nT548uays7NChQytWrNi8ebOdnR0hpLKyUigUstls9SUURZmbm1dUVKjeagxQ2bx5c3Fxseo1\nn89v9QcDAAAAAABdOH36dE5Ozty5c+Pj43/++eevvvqKx+NpfzmPx3vtTyzXoymj9fX1crnc\nx8fn008/DQwMnDhx4rJly8Ri8dGjR1UBEomEy+U2uYrH40kkEi0DVK5du3b2T48ePWqdpwEA\nAAAAAB2LjIwkhCxYsGDmzJnl5eW///77izHx8fEjRoxwcHAwMDCwt7cfPHjw+vXrVR8VFBRQ\nFDVhwoQm95wwYYKrq6tAIDAzMwsKCjp8+HAbPEsr0aMRQgMDA0LI0KFD1S09e/Y0Nze/f/++\nOqC+vr7JVVKpVD3KpzFA5fvvv5fJZKrXDx8+TExMZO4hAAAAAABAL5SUlMTExHh5eQ0cONDU\n1HTjxo07d+6cNm1a45i9e/fOmTPHzs5u/PjxNjY2ZWVlDx48iIqK+vjjj//utgsXLuzbt+/Q\noUNtbW1LS0tjY2OnTp36zTfffPLJJ63/TMzTo4JQNTfX3Ny8caOZmVllZaXqtYWFRV5enkKh\nUE8KpWm6qqrK19dXywAVGxsb9euioqLWeRoAAAAAANCl3bt3y2SyuXPnEkJ8fX39/f0vXLiQ\nlZXl4eGhjtmxYwebzb5586aDg4O6saqqqpnb5uXlOTk5qd+KxeKgoKBVq1YtWLCgSS3TLujR\nlFFPT09CSHl5ubqFpumKigqhUKh66+7urlAoHj9+rA7IycmRSqXqXWQ0BgAAAAAAQEdA03RU\nVBSLxXrrrbdULXPnzlU1Nolks9kczv+MkzVf16mqQZqmq6urS0pKampq3nzzzfr6+nY68VCP\nCsIBAwZwOJxTp04plUpVyx9//FFTU+Pv7696GxgYSFHUiRMn1JecOHGCoqjAwEAtAwAAAAAA\noCM4f/58dnb2iBEjHB0dVS0zZszg8Xh79uxRLx8jhISFhUmlUh8fn4iIiCNHjqj3nmzGrVu3\nxo8fLxQKzczM7Ozs7O3tP/vsM0JIYWFhKz1Lq9KjKaNWVlbTp0//5ZdfVqxY0b9//7Kysvj4\neCsrq0mTJqkCOnfuPGbMmLi4OJlM5uvrm5aWlpiYOHr0aBcXFy0DAAAAAACgI9i5cychRDVf\nVMXS0jIkJOTo0aPHjx+fPHmyqjEiIsLc3Hzr1q3bt2/funUrIWTAgAHr168fNGjQX942NTV1\n8ODBfD5/8eLFPXr0UJ1xcPbs2e+++67JTpbthR4VhISQqVOnmpubx8TE7Nu3j8/nBwYGvvXW\nW+opo4SQBQsWWFpanj59+vr165aWlrNnz544cWLjO2gMAAAAAACA11tZWVl0dDQhJCwsLCws\nrMmnO3fuVBeEhJCZM2fOnDmzpqYmKSkpOjp6165dwcHBDx48aLxQUG3jxo319fUxMTHDhw9X\nN968ebN1nqMt6FdBSAgZMWLEiBEj/u5TFos1efLkxv/8WhoAAAAAAACvt59//lkqlfbu3btn\nz55NPoqJiTl79mxOTo6rq2vjdlNT01GjRo0aNcrMzOzrr78+f/78nDlzXrxzbm4uIaR///6N\nG8+fP8/wA7QhPVpDCAAAAAAA8OpUO8ds27Yt6gULFy5svLXMmTNn5HJ542tVm1waGhr+5Z3d\n3NxUV6lb9u/f/2JB+PXXX48ePfrkyZPMPVNrQUEIAAAAAACvj4sXL2ZkZHTv3r1v374vfhoe\nHk5R1O7du1V1YFhYWKdOnaZNm/bJJ58sX7582LBhUVFRPj4+48aN+8ubR0REsNnssLCwOXPm\nrFy5MjQ09K233poyZUqTsNu3byckJOTn5zP+dIxDQQgAAAAAAK+PyMhIQsj8+fP/8lMXF5fh\nw4c/ffpUdTbB2rVrBwwYkJKSotpXpqKiYu3atX/88YdAIPjLy/v27Xv27Nm+fftGR0f/5z//\nEYlEp0+fDg0NbRKWmZnJ5XJHjhzJ6JO1CoqmaV3noEvJycmxsbGrV6/WdSIAAAAAAPA6qKys\ntLa2XrRokWrbUn02ZswYjBACAAAAAAAw5sKFCwYGBp9//rmuE9EKCkIAAAAAAADGTJo0SSwW\n29vb6zoRraAgBAAAAAAA6KBQEAIAAAAAAHRQKAgBAAAAAAA6KBSEAAAAAAAAHRQKQgAAAACA\nDqSgoICiqAkTJmiMtLKycnFxaf2MdKyDPObfQUEIAAAAAPA6SElJmTdvnpubm0AgMDU19fPz\n+/jjjwsLC3WdF+g1FIQAAAAAAO0bTdOffvppnz59fv75ZxsbmxkzZowfP76hoWHDhg1eXl5H\njhzRdYKgvzi6TgAAAAAAAF7JmjVrvv32WycnpyNHjvTt21fd/vPPPy9cuHD69OlnzpwZOnSo\nDjMEvYURQgAAAACAdiw3N3fNmjU8Hu/kyZONq0FCyJw5c7Zs2aJQKBYvXqxUKpu5iVKp3Lx5\nc7du3fh8vpOT0z//+c+6ujpteo+Pjx8xYoSDg4OBgYG9vf3gwYPXr1/fOCApKWnSpEl2dnY8\nHs/BwWHWrFnp6elNbnLt2rWpU6eqbzJy5MhDhw41Djhw4EBgYKCpqalAIOjevfvXX38tkUjU\nn96+fZuiqLlz5+bn58+YMcPKykogEPTp0+fkyZMv95iRkZETJkxwdXUVCARmZmZBQUGHDx9u\nHKDuMTs7e/r06TY2NiwWa+vWrRRFhYaGNrkbTdNeXl6GhoZVVVXa/JG2MYwQAgAAAAC0Y7t3\n75bL5W+99Zavr++Ln4aHh3/11VcZGRmXLl1qZpBw8eLFO3fudHZ2joiIoCjq2LFjKSkpCoWi\n+a737t07Z84cOzu78ePH29jYlJWVPXjwICoq6uOPP1YFREZGLlq0yNLScty4cTY2Njk5OYcP\nH46Ojj537ly/fv1UMT/++OO7777L5XJDQ0M9PDxKS0tTUlK2bds2depUVcAnn3yyfv16Gxub\nWbNmGRkZxcXFLV++/NSpU2fOnOFyuepk8vPz+/Tp4+joOHXq1NLS0ujo6JCQkIsXLwYGBrb0\nMRcuXNi3b9+hQ4fa2tqWlpbGxsZOnTr1m2+++eSTTxqH5efn9+vXz8rKavTo0SKRaNCgQaoq\nND8/38nJSR124cKFR48ezZkzx9zcvPk/T92gO7YbN26sXLlS11kAAAAAALykYcOGEUJ+/fXX\nvwuYP38+IWTNmjWqt/n5+YSQ8ePHqwMuXLhACOnRo0ddXZ2qRSQS9erVixDi7OzcTNcDBw5k\ns9mFhYWNGysrK1Uv0tLSuFzuqFGjxGKx+tM7d+4YGxv7+fmp37LZbAsLi7S0tMY3yc/PV724\nfPkyIcTV1bW0tFTVIpPJgoODCSHr1q1Ttdy6dUtV2nz++edKpVLVuG/fPkJISEjISzzmkydP\nGr8ViUQBAQECgUD9aOoeIyIi5HK5OnL37t2EkC+++KLx5arK9urVq3/756g7wcHBmDIKAAAA\nANCOPX36lBDSuXPnvwtQfVRUVPR3AXv27CGErFq1ysjISNViaGi4du1abXpns9kczv/MOlSP\ng23btk0mk61YsUIkEpX/ycHB4Y033rh7925eXh4hZPv27QqFYtWqVd26dWt8k06dOqle/PTT\nT4SQlStXWltbq1o4HM53331HUVRUVFSTx/ziiy8oilK9nTlzplAovHHjxks8pmp8j6bp6urq\nkpKSmpqaN998s76+PjExsXGYlZXVN998w2az1S3Tpk2zsLCIiopSjzqqxiq7d+8+YMAADX+U\nOoKCEAAAAACgHaNpmhCiLoT+TjMBqvGuIUOGNG5s8vYvhYWFSaVSHx+fiIiII0eOFBcXN/40\nKSmJEBIUFGT9v44fP07+rGOvXbtGCFGN+P2l1NRUQkiTya7dunWzt7fPycl59uyZurFXr16N\nS1OKojp16tR42Z72j3nr1q3x48cLhUIzMzM7Ozt7e/vPPvuMENLkDI+ePXsaGho2bhEIBHPn\nzi0sLIyLi1O17N69WyqVLlq06O8eUOewhhAAAAAAoB2zt7dPT0/Py8sbNGjQXwY8efJEFfZ3\nd6iuruZwOBYWFo0bjY2N1SNpfyciIsLc3Hzr1q3bt2/funUrIWTAgAHr169XZVJRUUEIiYmJ\nEQgEL16rGhJUVXSOjo7N5EYIsbOza9Jub29fVFRUXV1tZmamalG/UONwOI3XB2r5mKmpqYMH\nD+bz+YsXL+7Ro4dQKGSz2WfPnv3uu+8a72RDCHFwcHgx4cWLF2/atGnHjh2hoaE0TUdGRhoZ\nGc2aNevvHlDnUBACAAAAALRjgwcPvnDhQkJCwowZM178VKlUnj17lhDyd+UiIUQoFObl5VVW\nVjYulurq6kQikZWVVfO9z5w5c+bMmTU1NUlJSdHR0bt27QoODn7w4IGTk5NQKCSE2NnZ9enT\n5+8uV1VxhYWFHh4ef5cbIaS4uNjZ2blxu2qAUfWplrR8zI0bN9bX18fExAwfPlzdePPmzRdv\n+JeDrh4eHsOHDz916lReXl5mZmZ2dnZ4eLipqan2ebYxTBkFAAAAAGjH5s6dy2azDxw48ODB\ngxc/3bVrV25ubpcuXYKCgv7uDqqNVVTbt6g1eds8U1PTUaNGbd++fenSpbW1tefPnyeE9O/f\nnxBy4MCBZi5UxcTHxzef28WLFxs3ZmRkPH361NXV9cVRwWZo+Zi5ubnqxNRUT6SlJUuWKJXK\nqKioHTt2EEIWLlyo/bVtDwUhAAAAAEA75ubmtmLFCqlUGhwcnJyc3Pijffv2vffee2w2e9u2\nbSzW337znzNnDiFk1apVIpFI1SIWi//1r39p7PrMmTNyubxxS3l5OSFEtbIuIiKCw+Fs2bKl\nSTVVV1d38OBB1eslS5aw2exVq1Y1OZywoKBA9eLtt98mhKxZs0Y1AZUQIpfLly5dStN0eHi4\nxgxf4jHd3NxUj6Zu2b9/f4sKwpCQkE6dOu3cuTMmJsbf37+ZAVJ9gCmjAAAAAADtm6rI2bhx\nY79+/fr16+fj4yOVSq9du/bo0SOBQPDbb7+pjqb4O0OHDl2wYEFkZKSvr++kSZNUB/Q5ODho\nHH8LCwvjcDhBQUHOzs5sNvv69esXLlzw8fEZN24cIcTX13fHjh0LFy4cPnz4yJEje/XqpVAo\n0tPTz58/7+LiMm3aNEJI9+7dt2zZEhER0bNnz9DQUE9Pz4qKipSUFBMTE9UpEUOGDPnwww83\nbtzo4+MzefJkQ0PDuLi4tLS0wMBA9WmHWtLyMSMiIvbv3x8WFjZt2jRnZ+fbt2+fPHlyypQp\nTc6mbwabzX7nnXdWrlxJ9H54kDBVEEZERLQo/qOPPnJxcWGkawAAAACADo7FYn333XfTpk3b\nunXr5cuXb926xeVyXVxcli5d+sEHH6iPcGjGjz/+2K1btx9//HHLli3W1tZTpkxZs2aNxm/s\na9euTUhISElJiY2N5XK5zs7Oa9eufffdd9W7yLz99tv+/v4bN268ePHihQsXjIyMHBwcZs+e\nraoGVRYvXuzn57dhw4aLFy9GR0dbWVn5+fmpzk5U+e677/z9/bdt2/bzzz/LZDIPD4+1a9cu\nXbqUx+O19A9Km8fs27fv2bNnV65cGR0dTQgJCAg4ffp0UVGR9gWh6sFXrlxpYmLylws79Qql\n2qb2Ve+iaZfbJpKSkprMytWV5OTk2NjY1atX6zoRAAAAAAB4TcTHx48ZM2bRokXbt2/XdS7N\nGTNmDGNTRqOjo5vZuUhNIpFo8xMFAAAAAABAO/Xtt98SQt59911dJ6IZYwWhUCjUuCktIaSh\noYGpHgEAAAAAAPRHamrqqVOnrl27dvHixWnTpvn6+uo6I82YKQiTkpK8vb21iTQwMEhKSmoX\nfzQAAAAAAADau3r16meffWZmZhYWFrZt2zZdp6MVZgpC7RcEUhSlJ6sHAQAAAAAAGBQREdHS\n7TZ1DucQAgAAAAAAdFCtcg4hTdNnz569fv16ZWWlUqls/NHmzZtbo0cAAAAAAABoKeYLwtra\n2uDg4CtXrvzlpygIAQAAAAAA9ATzU0a/+OKLpKSkr776Ki0tjRASGxt76dKlkSNH9unTJzc3\nl/HuAAAAAAAA4OUwXxD+/vvvU6dOXb58uaurKyHE0tJyyJAhJ0+epGn6hx9+YLw7AAAAAAAA\neDnMF4SFhYWBgYGEEBaLRQiRyWSEEDabPX369MOHDzPeHQAAAAAAALwc5gtCIyMjVRHI4/H4\nfH5RUZGq3dTUtLi4mPHuAAAAAAAA4OUwXxC6ubllZGSoXvfo0ePAgQM0Tcvl8oMHD3bq1Inx\n7gAAAAAAAODlMF8Qjhw58ujRo6pBwvnz50dHR3t4eHh6ep47d27evHmMdwcAAAAAAAAvh/mC\ncNmyZefOnVMdPzh//vwNGzbw+XxjY+NVq1YtW7aM8e4AAAAAAADg5TB/DqFQKBQKheq3S5cu\nXbp0KeO9AAAAAAAAwCtifoQQAAAAAAAA2gXmRwjVlEplbW0tTdONG83MzFqvRwAAAAAAANAe\n8wWhUqncsWPH999///jxY6lU2uTTJvUhAAAAAAAA6ArzBeHatWu/+OILGxubkJAQKysrxu8P\nAAAAAAAAjGC+IIyMjPT3909MTDQ0NGT85gAAAAAAAMAU5jeVKSkpmTFjBqpBAAAAAAAAPcd8\nQejh4VFdXc34bQEAAAAAAIBZzBeEH3zwwd69e2tqahi/MwAAAAAAADCImTWE0dHR6tc2NjZO\nTk5+fn6LFy92d3fncP6niwkTJjDSIwAAAAAAALwiZgrCN99888XGZcuWvdio5bETGRkZn3zy\nCU3T69at6969u7pdqVRGR0cnJCSUlZVZWVmNHDly4sSJLBZL+wAAAAAAAABQYaYgPHz4MCP3\nUVEqldu3bzcwMGhoaGjyUVRUVGxs7MCBA0NDQ9PS0vbu3VteXr5o0SLtAwAAAAAAAECFmYJw\n8uTJIpHIyMiIkbvFxcWVlJSMGTPm2LFjjdvz8/Pj4uKCgoKWLl1KCBk7diyXy42Pjw8ODnZ2\ndtYmAAAAAAAAANQYm0tpbW09YcKEvXv3VlVVvcp9qqqqfv3111mzZgmFwiYfJSYm0jQdEhKi\nbgkNDaVp+vLly1oGAAAAAAAAgBpjBeHHH3+clZU1Z84cW1vbUaNG7dixo6Sk5CXuExUVZWtr\nGxwc/OJHWVlZbDbb3d1d3eLq6srj8bKzs7UMAAAAAAAAADVmpowSQlavXr169epHjx4dPXr0\n2LFjixYtWrJkycCBAydOnDhx4kQtZ2zeuXPnjz/++Pe///2X28BUVlYKhUI2m61uoSjK3Ny8\noqJCywCV//u//8vLy1O9dnR0tLa2bunDAgAAAAAAvAYY3n7T09Nz2bJlN27cePLkycaNG1ks\n1kcffeTi4hIQEPDVV1+lp6c3c61cLv/xxx+DgoK8vb3/MkAikXC53CaNPB5PIpFoGaAiEolq\n//TivjUAAAAAAAAdRGudx+Dk5PT+++9funSpuLh4586dVlZWq1at6tatm7e3d2xs7F9ecuzY\nsaqqqnnz5v3dPQ0MDGQyWZNGqVRqYGCgZYDKrl27zv9p8eLFLX42AAAAAACA10KrH9BnbW29\nYMGCU6dOlZWV7du3r2vXrg8fPnwxrKam5tChQ8OHD29oaHj69OnTp09ra2sJIRUVFU+fPlWd\nXmhhYVFdXa1QKNRX0TRdVVVlaWmpeqsxAAAAAAAAANQYW0OokVAonDVr1qxZs/7y05qaGqlU\nGhMTExMT07h948aNhJBDhw7x+Xx3d/eUlJTHjx97enqqPs3JyZFKpepdZDQGtCO5ubllZWVt\n0JGHh4e5uXkbdAQAAAAAAPqm7QrC5llaWn766aeNW5KTk8+fPx8WFta5c2cej0cICQwMPHTo\n0IkTJz788ENVzIkTJyiKCgwMVL3VGNCOlJaWtmhzVJqmHz16JBAInJycWtSRnZ0dCkIAAAAA\ngI6J+YKQz+f/ZTtFUQKBwNnZedSoUR999JGVlVXjTwUCwaBBgxq3lJaWEkJ8fX27d++uaunc\nufOYMWPi4uJkMpmvr29aWlpiYuLo0aNdXFy0DGhHfHx8PDw8tI9XKBQikcjGxqal1a+xsXEL\nUwMAAAAAgNcE8wXhuHHjHj58mJaW5uTk5OXlRQjJyMgoKCjw9vbu1KlTZmbmN99888svv1y/\nft3R0bGlN1+wYIGlpeXp06evX79uaWk5e/bsiRMntiigvTAyMjIyMtI+XqFQGBsbm5iYWFhY\ntF5WAAAAAADwOqFU+7Uw6MqVK8HBwdu3b58xYwZFUYQQmqZ/+eWXd999NyEhYcCAAfv37589\ne/a8efOioqKY7folJCcnx8bGrl69WteJvCqFQnHo0CFbW9thw4bpOhcAAAAAAGgHxowZw/wI\n4bJly+bOnTtz5kx1C0VRs2fPvnHjxvLlyy9evDhjxozz588nJCQw3jUAAAAAAABoj/ljJ1JT\nU/38/F5s9/PzS0lJUb3u379/SUkJ410DAAAAAACA9pgvCLlc7u3bt19sv3XrFpfLVb2WSCQt\nWiAHAAAAAAAAjGO+IBwzZsyPP/64a9cu9QHxCoUiMjJyx44dY8eOVbXcuHGjPe78CQAAAAAA\n8Dphfg3h+vXrr127Nn/+/GXLlnl6etI0nZWVVV5e7u7u/u233xJCGhoanjx5MmPGDMa7BgAA\nAAAAAO0xXxA6OjreunVrw4YNx48fv3v3LiHEzc1t8eLFH330kampKSGEz+dfuHCB8X4BAAAA\nAACgRZgvCAkhQqFwzZo1a9asaY2bAwAAAAAAACOYX0MIAAAAAAAA7QJjI4QNDQ3ahPH5fKZ6\nBAAAAAAAgFfBWEEoEAi0CaNpmqkeAQAAAAAA4FUwuYaQz+f379+fzWYzeE8AAAAAAABoJYwV\nhO7u7tnZ2ZmZmXPnzn377bfd3d2ZujMAAAAAAAC0BsY2lXn06NH58+eHDh26adMmT0/PYcOG\n/frrr/X19UzdHwAAAAAAAJjF2AghRVFDhw4dOnTos2fP9u/fv2vXrlmzZpmZmc2YMSM8PNzf\n35+pjqCdqqyslEqlbdCRlZUVh9Mq56kAAAAAALxmmP/ebGZmtmTJkiVLlty+fXvXrl2//vrr\ntm3b1q9f/9FHHzHeF7Qjt27dKi0t1T5eLpdXVFQIBAJTU9MWdRQcHGxmZtbC7AAAAAAAOqJW\nHEjx8PDo2bPntWvXUlJS6urqWq8jaBecnZ2trKy0j6+trS0sLLS2tvb29m5RRzjaBAAAAABA\nS61SEF65cmXXrl2HDh0SiUQDBgyIioqaNm1aa3QE7YiHh0eL4p89e5afn+/u7t6jR49WSgkA\nAAAAoINjsiAsLi7eu3fvTz/9lJGRYWNjs2jRovDw8G7dujHYBQAAAAAAADCFsYJw/PjxJ0+e\npGl65MiR69atCw0N5XK5TN0cAAAAAAAAGMdYQRgTE8Pn8ydMmODo6JiUlJSUlPSXYRs2bGCq\nRwAAAAAAAHgVTE4ZbWhoOHDgQPMxKAgBAAAAAAD0BGMFYXJyMlO3AgAAAAAAgDbAWEEYEBDA\n1K0AAAAAAACgDbB0nQAAAAAAAADoBjMF4Z49e4qLi7WJVCgUe/bsKSsrY6RfAAAAAAAAeGnM\nFITz5s1LT0/XJlImk82bNy87O5uRfgEAAAAAAOClMbaGMC0tjc/nawyTSqVM9QgAAAAAAACv\ngrGC8N1332XqVgAAAAAAANAGmCkIt2zZ0qJ4V1dXRvoFAAAAAACAl8ZMQRgREcHIfQAAAAAA\nAKDN4NgJAAAAAACADgoFIQAAAAAAQAfF2KYyoEMymaygoCA/P18ikZSUlNjY2FAUpeukAAAA\nAABA36EgbPeKi4uvXr169erV3NxcgUBw586d4ODgwMBAgUCg69QAAAAAAECvoSBs32pqai5f\nvlxQUNCzZ0+JRCIUCrt27XrlyhWapkeOHIlxQgAAAAAAaAbWELZvGRkZaWlp9vb26tqPzWZ7\nenomJCQUFRXpNjcAAAAAANBzrVgQKhSK1rs5qJSXl1tYWDRpZLPZQqGwoqJCJykBAAAAAEB7\nwXBBWFlZ+cUXX/Tu3dvY2JjD4RgbG/fu3XvVqlVVVVXMdgQqSqWSxfqLf4gsFnR/c+EAACAA\nSURBVAsFOQAAAAAANI/JNYR37twZNWpUSUkJIcTExMTR0bGmpiY1NTU1NTUyMvLUqVPdu3dn\nsDsghJiYmNTV1VlaWjZpr6urMzU11UlKAAAAAADQXjA2QlhfXz9p0qSysrIPP/wwKyurpqam\noKCgpqYmMzPzgw8+ePr06eTJkyUSCVPdgYqbm1txcbFYLG7cWFxc3Ldv306dOukqKwAAAAAA\naBcYKwgPHjyYnZ29ZcuW7777zt3dXd3u6em5adOmzZs3Z2ZmHj58mKnuQKVTp06zZ8++d+9e\nbm5ubW1tVVVVZmamo6Nj//79DQwMdJ0dAAAAAADoNcamjMbExLi4uCxatOgvP42IiPjuu++O\nHz8+a9YspnoEld69e9vZ2T1+/Li6utrS0vKNN97w8vLCfFEAAAAAANCIsYLw7t27b7zxxl9u\ncEIIYbFYw4cPv3z5MlPdQWOOjo52dnYFBQW2trYBAQG6TgcAAAAAANoHxqaMlpSUODs7NxPQ\nuXPn0tJSproDAAAAAACAV8RYQSgSiQQCQTMBRkZGtbW1THUHAAAAAAAAr4ixgpCmaUZiAAAA\nAAAAoG0weQ7h4cOH09PT/+7Te/fuMdgXAAAAAAAAvCImC8IbN27cuHGDwRsCAAAAAABA62Gs\nIExOTmbqVgAAAAAAANAGGCsIX/20g4KCgosXL968efPp06ccDsfJyWnChAn9+vVrHKNUKqOj\noxMSEsrKyqysrEaOHDlx4sTGZ11oDAAAAAAAAAAVPaqUDh06dOzYMTMzszFjxgQFBRUVFa1b\nt+63335rHBMVFbVnzx5XV9fw8HBPT8+9e/fu3LmzRQEAAAAAAACgwuQawhdJJJKHDx/W1NT4\n+fmZmZk1HxwUFBQeHi4UClVvw8LCPvjgg8OHD48fP97Q0JAQkp+fHxcXFxQUtHTpUkLI2LFj\nuVxufHx8cHCw6ghEjQEAAAAAAACgxuQIYXx8/LRp02bPnn358mVCyOnTp93d3Xv16hUUFGRr\na7t27drmL+/du7e6GiSEGBsb9+/fXy6XFxcXq1oSExNpmg4JCVHHhIaG0jSt6k6bAAAAAAAA\nAFBjbITw0qVLY8eOVZ00eOjQobi4uIkTJxoaGo4fP14qlSYmJv7rX//q2rXr5MmTtb9nTU0N\nIcTc3Fz1Nisri81mu7u7qwNcXV15PF52draWAQAAAAAAAKDGWEG4adMmIyOj3377zcXFZeHC\nhbNnz3Z2dr5y5YpqpmhOTk6vXr22bdumfUFYWFh45coVf39/dUFYWVkpFArZbLY6hqIoc3Pz\niooKLQNURCKRQqFQvZZIJC/7xNDRyWQy1S8grY3H47VBLwAAAADQATFWEN68eXPatGnjxo0j\nhKxevXrEiBHLly9Xrxt0dXUNCws7cOCAlncTi8X//ve/uVzuokWL1I0SiYTL5TaJ5PF46qJO\nY4BKeHh4VlaW6nWXLl08PDy0zAqgsZMnT4rFYu3j5XJ5Q0ODgYHBi/+WNm/q1KmNf+ZoPXV1\ndW3QC0VRRkZGbdARAAAAAGjEWEFYXFysnqvp5uZGCOncuXPjAGdn5+rqam1u1dDQsHr16pKS\nklWrVtnZ2anbDQwM6uvrmwRLpVI+n69lgEr//v1dXFxUr/l8ftsM8oD2FArFgwcPMjIykpKS\nCgoKJBKJr6+veqBYf1hbW7dohLmsrCwzM9Pd3b3xv9XaoCiqham9DIVCceLEiRZdIpPJJBIJ\nn8/ncFrwN4lAIJgwYUILswMAAACAVsFYQSiXy9XjHqoZbk2+I3I4HG1KL4lEsmbNmqysrH/9\n618+Pj6NP7KwsMjLy1MoFOrREpqmq6qqfH19tQxQ+eCDD9Svk5OTY2NjW/Sk0Krkcvm5c+fO\nnz9vYWHR0NBQXl5+6dKlp0+fBgYG2tvb6zq7/zFw4MAWxRcUFCgUih49enh7e7dSSq+Coqgm\nP+JolJubW1RU5OfnZ2Njo/1VmAELAAAAoD9a99iJlpJKpWvXrk1LS1u+fHnPnj2bfOru7p6S\nkvL48WNPT09VS05OjlQqVY9MagwA/ZeWlnb+/Pnu3btLJJKCggITExN3d/eCgoLr16+HhIS0\nzczJjonFYg0aNKhFl1hYWLBYrICAACcnp1bKCgAAAABaFZMF4eHDh9PT0wkhqoVVW7ZsiY6O\nVn9679695i+XyWRfffXVvXv3Pvnkk759+74YEBgYeOjQoRMnTnz44YeqlhMnTlAUFRgYqGUA\n6L+8vLxOnTo1Kfzs7OwuX77ct29fBwcHXSUGAAAAAPD6YbIgvHHjxo0bN9RvT58+3aLLd+zY\nkZqa6uXllZ+ff/DgQXX7kCFDVHMFO3fuPGbMmLi4OJlM5uvrm5aWlpiYOHr0aPWCQI0BoP9E\nIpGhoWGTRoqiBAKBSCTSSUqMaGhoKCoqKiwstLa2dnFxefEZAQAAAADaHmMFYXJy8iveoaSk\nhBCSmZmZmZnZuN3NzU29eGzBggWWlpanT5++fv26paXl7NmzJ06c2DhYYwDoOQ6HI5fLX2xv\nvEi13cnMzLx9+/b58+dLS0vT09PLy8u7du364qRoAAAAAIA2xlhBGBAQ8Ip3WLNmjcYYFos1\nefLkZg4z1BgAes7W1jY9Pd3U1LRxo0gk6tWrV4t2LtEfubm527Zt8/Ly6t69e3p6urOzc21t\n7b59+zgcTpPtjgAAXgN7Pzk1dK6/k3e7/BsbAKADYuk6AYD/4evr6+XlVVhYqN6Ttq6uLiMj\nw9PTs51Os7x//76zs3PjYzOMjY09PDwePnyoUCh0mBgAAFMaRFL166yUgvL856dMyRrkSgXO\ndgIA0GtMriGMj49nsVijRo0ihJSWlr799tuNP/Xz8/vqq68Y7A5eS+bm5kFBQdeuXTt16lRR\nUVFVVZWHh0dYWFivXr10ndrLaGhoSEhIeHH8XCgUXrly5R//+Ie1tbVOEgMA0EZKXHplQY3G\nsJM/JHn1c/Lo04kQUl8juXP6UVlulbhG8seBO10HOnf2tdV4h/6TfE2t2uWvfgAA7R1jBeGd\nO3fGjh27fft21VuxWBwXF9c4IC4ubtKkSb1792aqR3hd2drahoSE+Pr6xsbGenh4vPHGG3w+\nX9dJvSTVesgXT8ugKIrNZrfrEcKSkpLMzMysrCxbW1sjIyMLCwtdZwQAzLty8F76lTxtIu9d\neHzvwmPV6+vRaer2myczbp7M0Hh518HOKAgBAHSCsYJw165d1tbW8+bNa9y4e/fu0aNHE0Lk\ncrmfn9/PP/+MghC0wWKxLC0tbWxsrK2t2281SAgRCASBgYHPnj0zMTFp3C6VSmUymbGxsa4S\nexUKheLKlSvHjh2Ty+Xl5eUVFRXR0dFz5szBf90Ar583Px0iftagTWRhetnx7/7w/YfrrYRH\n9p6W9dUSK2ez4CX9WWxKm8ttXMw1BwEAQCtgrCC8ePHiiBEjeDxe40YzMzM7OzvV65CQkMuX\nLzPVHUC7wGaznZ2d79y54+Pj07g9Ly8vNDS0nRaEqampcXFxvXr1KisrIyKuh4e7QCDYv3+/\nkZFR165ddZ0dgC5lZ2cXFxe3QUddunSxsrJqg446+2ie7anSdZBz5+52P8w7Qggpz6/2/Ydb\n+H/GsTnYqgAAQN8xVhDm5ORMmjSpmQAXF5fG59QDdBA9e/asqKi4dOmSQCAQi8UVFRVVVVUB\nAQH9+vXTdWovQyqVZmdne3h48Hg8WTVRJDoSf2JoaOji4pKent6lSxeK0mo0AOC1VFlZ+eTJ\nE+3jaZq+d++ekZGRu7t7izpycnJqYWqt5dfPTv9x4G6TRlmD/NapzIguG1VveQLul+fnC22M\n2jw7AADQjLGCsKGhofExcaq99QUCgbrF0NCwvr6eqe4A2gsDA4MRI0Y4OTndu3evpqbG1dU1\nICDA29u7nU6FLcwpvnro/oApPoQQWkkITVTbwZqaCM/8dGNo0DChuamGWwC8vvz9/Xv06KF9\nvFKpVCgU1tbWw4YNa1FHHA6Te8K9itAPBweGPX/kmnLxL5+eqi4XUSxqyMyeAyc/P1mHzWWj\nGgQA0FuM/R/FwsKisLBQ/ZaiqCbT4QoKCiwtLZnqDqAd4XK53bt3Nzc3pyiqR48e3t7eus7o\n5UnEMlma6eP4ardgobqRVpJHR6rpPFOFXKnD3Jqora29ePFiG3RkaWk5cODANugI9B+bzX5x\nE6lmKJVKDofD4XCaLLjQHxKxTCFrbvsrNodl5SQkhDwrqTv4xVk7T8vqcpGDl9W1I/eMhPw3\n3n6+tFhcrWEhIt/YQMvVhgAAwCzGCsJevXolJCQolUoW6y8WDCiVyoSEhHZ6cgBAR6BUKM9G\npWgMk8lknfqYPr0hqi2QUWaEEFKeLH/yuLT+mdy5v2Xy0QyNU0YNDLlBs9vir4LirMqTH2je\n2/DV2XY1HRiHghBeTz8uitZyl1GV8oJqQkhhehkh5OQPSSd/SNLywuUxs7VfrwgAAAxirCCc\nNm3a22+/vWnTpqVLl7746aZNmx49erRixQqmugMAZinkyt+/bcG2T9V5EpJHCCGlV+WqltyL\n1bkXEzVeKLQ1bpuC0MxSqM3pZ40VZ1dI6+U2ruZ8oxYM1zj52LQwNYB2Q8si7XFqkYER18HL\niqKo7JuFNi7mJpaGouqGgrRShy5WJhaaz5No0X90AADAIMYKwlmzZm3duvWjjz568ODBkiVL\nevbsyeFw5HL57du3t23btnv37oCAgJkzZzLVHYDOlZWVteggwbKysmfPnpWXl7d0E0JbW9s2\n2KmFzWEv2BLSfEzunacNdVKFUllUWFiQW6woMqBpQrFptn2Di3tnOzs7iqJMrIwcuzS3+SGX\n30Zrn6w7my0/Pltj2LOSuvL8aiNH1r179+LXPSUFLLuRVO9/dPHx9s1KKuoxwqMNUgXQW29+\nOkSbsMzr+R4Bjiw2ixCycljU2P8b2GuUJyGkMKPcxNIQBwwCAOgzxr6Zcbnc48ePh4SE7N69\ne/fu3RRFGRoaisVimqYJIf7+/sePH2+86wxAe3f16lWxWKx9fF1dXd61SoX8XuPVttqYOnVq\ni1YlvRwWm/If06X5mD8O3RNV1RNCaJprIbAtY1cTOc3isK0MHaQVrCcVpYQQx67WIf8c1NrZ\nMujpo4qt849SfqVOARZKhZIQ1rNnz6J/Px63NpXVwPMb7oFtUwE08ur3311P+UY8gfHz4b7m\nfx4CAAB9wORP9Y6OjtevX9+7d+/hw4fv379fXV3t4ODg6+s7derU2bNnoxqE14ynp6dMJtM+\nnlbSqV+fDZ7ay6xTy3bba5uDHORSxaf9t2sfLxHLaAUhhCikdHleLe/Pcb/y/OqlZ35o5kJT\na6MvEua9QqYM8+jn4D3V6v4BpYG7BYtVTggxMjSqS+KWF1aHbRiCahCgpT79fRaOHwQAaEcY\nnrvF5XLDw8PDw8P/8tNbt25hX5nW8zRZxPUR6TqLDkSbzULrayS/fXF2yudDTSwNlQolIWe9\nunSx97CUNcgPfnluxPw+tm4WbZCqlgxNDbSMrK0Q00qlkRlPVCUxseTXVTbQXJaRuUDzlYQI\nTPRrpVBJSUm26E7XyT4ZR6vYphQhpOB8vVxEPKcbVohKdZ3dq3pwOefR9YIJHwfqOhHoQFAN\nAgC0L22xmKe6unr//v1RUVGpqamqGaSg0Z07d1p0urFSqXycVFr6tNyghdtbBAQE2Nvbt+wa\nIIQQkpVcIJdqWEOoVNClOZXfvPnrxOVBqjlUObeKKvKrT2z8Q1wr6f4Pt6qntRo78urfuQ12\nY+fw2GsuLtAYppArd/3fiYKHZf/cPy3tXvoviy8tOTCOUy/YPPtwjxEekz8b2tp5MisruSAv\n5wn7mTHXldVpsPGTi7WEkPoyhec4c0WdtOhe1UPLXGtnc9Wu+u2FXKYghHC4bEJIUWbZ41v/\nnaIsEcsMDDFZQ7/knKmW+fDIcF3nwRxZxilO536UwFzXiQAAgFZatyD8448/oqKiDh8+LBaL\njYyMpkyZ0qrdvU7kcrlUKtUYdntXibWvoWM/E0KIUCi0tBFIpVJaST84WGbiYOAcpPlbrFKp\nRwfHtS8/fRBXVay5nFOJjIhRvdi3LEHd+OPi49pc+5/77/ME+vIlvjCjrCy/+p/7p5nbm5B7\nzxs7edt8sG9K1Puxoxb1M7FsN7tH1FXV73o/tkEslUiM065XqtsVUvLoxDOaplms+qxjsX1C\nuk5frRff1uvr68vKyjSG/bE37dGVwsHvuz15mvvkanVRRvXOnTsdHTs9vSgtSqucu13zsxgb\nG1tY6NHY9eunoU5qYMRTTUgWFclrLZ+f0SeXKmia5hroy6HzhJDExMTS0hYMldM03f/ue1mO\nMyusBrSoozfeeMPMzKyF2QEAAANa5f86ZWVle/fujYqKSk9PJ4SMGjVq4cKFo0ePFgi0mlEG\nhJDevXv37t1bY5inWXZkRIy/v//g6X4Fxw/7+LkOm+C/6/1YeTln3pYp5vYmbZBqhzVqcT+J\nSHPRTghRKpTXox9Wl9bV10oMhXwujz14up/2NR6b2+o7ymivs4/tZyfeerG9k7fNqjNvt30+\nr8LYXPDvq4saGhqOHz9eWVFVeFJe+aiBlhOipD1CzJ/x80eMGKFXJ86nJKQdW6vF0SA0kdQq\nDkckE56cKFiUQpD6n/Kb0kqWks0zZW+aeFTjDTwG27+7eToDGcPf2DL3SKdu1tO/HNG4sb5G\n8p85h32GuOrVtkwcDofH0zzN2/PRlvxOExsEjmKxWNLQUFFRznPgEZrunP9btbB7tbC7xju0\nzWJpAAB4EZMFoVKpPHv2bFRU1PHjx6VSqb+//2effbZu3bpFixZNmDCBwY46gvit126ffqRN\npLm9yf7Pz5zcmlRfIynOrojfek0iltm6mv+4KFqbyyctD/Lq3/nVku2ggmb1bD7g3E83i7Mr\nVK/dejvcPZNFCJE2yLoPc6sue77a08hM0H7Xdxlb8R0HGqs2mm+/+Hx+F6+uUe+dYDcI+FZy\nXnWdYV/bjKOVPtNcu3fX/C22LfEN+LRM8582TdMUh1AyFpHxCE0TmiJSHkUTwlHScopWar6D\ngNduhnn1TVZyQXF2pcYwn3+4nt2VUvSovE9oN0mNoipXfGFP6vk9NykWy9hC8MeBuxrv0HWQ\nc9vMZB4wQKuBPvHRGPv0NcYLL4h4djX3Dbp16+Y9bpz4eIS08rzJ1FVsaw07GANAY/Ksc7JH\nZwTBX+s6EegoGCsIv/zyy59++ikvL8/a2nrJkiXz5s3z8/PLzc1dt24dU110KLUV4vL8ai2D\neYbcqqd1hKYlIhmhCN+I96ykTstrJeIW7JMJLUKxGv3gTdNK1QJaJaEbzdJtg8WBrYcn4LiP\nEbb3n/XlMkXSj49NWJbdl1gU/HZ8Yq/T31aE9Zk56O6Bp1mDnvYarUfD7H2CffoE+2gMe/jw\n4S+//NLNy/v+vsqaJw20grB5rB5vW9WQsp49/d544402SLXDSo55eHn/HS2Ds5ILs5ILCSGi\nkupDqedVjYe+PK/NtfO/D9Grpa2GE3eKo5fUbR9CZsQQQghNi2P+T3r3sMk751ANAmhFKSe0\nkrB5hBBF6UN5XpL6E1omprj4nQ5aEWMF4RdffOHh4XHs2LFx48bhhIlXN3XlsKkrhzUTcOXQ\nvcu/3la/ra+RlD15RtO0g6cVh/d8hiGLzXrr29H2Hpatm2tHdWr79fpaSfMxhkI+IUQpV6ae\nylTKlYQQroDz4NLjgJBuqr09FHLl799qmAQY+uHgNti1j6bpu3c1j0s0lpOTk5eXZ2FhUVmp\neUhEjcPh+PhormrazP3fzxpVXlx25CtjS/6vZxPZlGLRokX+QT43fJLTtn/Zc9Qv7ajifXK/\n5NtJvyrkSkLMr5CnhBBCKEKIokGZuq2UEJJFbh0ht8YvHTx6SX+dZvra6hPazcnHVsvgmnLR\n2V0p9TUSik1ZdTIbOqeX9qsHnf3sXjbHlqGldUSh1e+GglHriFwi/WUcm1aY5f4urX1sPDea\nJexE11dpczllYEpYejQ9HqCNNVz8Vnr/qMmCs002ZKqPXybLTDB9/5auEoOOgLGC0MrKKisr\na8WKFZmZmbNnz3ZwcGDqzh1T3r3iimZHCKVimbPv868dNE0ykvJUrw1NDdQVIMWintwreZpZ\n3sx93Ho7mtkaM5Fyh3P5l9vabyqjVl8jIYRc2teCv9nHvjegDQpCpVKZlpbWokvEYjGfzy8q\nKmpRQSgQCNqmIKyprk26kKwxzESSMdZje3Y0p8xmbEO9lBByLyW9oiK3S8ZyhwDZ6ehzRFNF\naGZu2i8ogJmkX02nbjaf/j4rOys7ISHB1dWt8Ept2V0xTSi+JafLBLNndVXu7u79+vWz7oyt\nO1qLR59OHn06NRNweseNF38DohV0WV6VemyQxaY+OjjDtZde7P9cu7mnoiK7RZfwCSElN2hC\narcN1v4q4zkxXO+QliXXVpKO3g8Y11WvNvuB149B4AeyrLO1O4eZLDirbqxP+FxyfYdxeEIz\nFwK8Osb+dissLPz9998jIyOXL1/+2WefjRo1SjVrlKn7dzSJv925cvCe5rgXZKUUZqX8d5d5\njZOX3tk2vtcoz5foCN7ePFbjsRMKuTLmuz/ENQ0TlwXxjXjfzz0y++tRptZGJzZfEVU1TF7x\nD76x5t0aOLy2+BbCYrGGDm2LQyPY7DYaBCjOrohemqpNpJfdW7Nk3987klMvNiedSOrODN9B\nP9VyG366/I5Yqrl0t/YybpuCMDM5L/7HaxrDZDJZRSYtulYqr6VoNiEKIhMr7v1SoRSK5Fml\nRVcvaryDV79Owe/o0b4m7UhdVX1DXXN7Tfn8w83uz9/spPWyE5uvluZUUizSdZBL0Myeqnnm\nLBZlZC5oftWAiaXh63aCiB4Pxe/95FRnXzvHLla6TgReZxTX0HhebN3ucbWRw3k9phNVNZi0\n1Tg8gePUV9fZwWuOsS+aPB5v2rRp06ZNe/z48a5du/bs2TNlyhQjIyNCSFFREVO9dBz9Jvi4\n+Gn+eZhW0leP3Ct7Uj08POB6dJqDl5XQ2ujy/jv+wV5e/Zy06cjJu4UHF8Kfmh8HUKmvkTh4\nWU1aEWRsoTqYnrj2crD3sOwyoPORtRfsvaxsXfXlqC6Kouzs2mgSWtuwcbAcONVXu1jfVOIy\nrteafGqEAc19b8JBDiHXWZt6TtBqAaG1cxsNuBVkF6dfzNcmkk1MZIQQQj+fMlpPE0JIqWFh\n6TNCnmm8XEFkKAhfzomNf2i/hlCNVpKHibkPE3O1v2T+9yG9x7bF2jzjxYlEVq9VKE3Xn/tS\n+jC2QaYkpq6GDfmG039lW3lo2RHL1PHls2Rafa1k37KEqSuH/XcGDU0TQqT1st9Wnh35Th97\nTxSHoC1FeYbsvlb7/BFCOB5DpSl7Gi78mxAiL0g26PO2PPuCPPuCNteybLryvMe/fKLQgVGt\ndFK8QqGIi4uLjIyMj49XKBSurq6TJ0+eMmVKnz59WqO7l5acnBwbG7t69WpdJ/KSfv4oPiul\n4J/7p1k4mP7nrcM+Qa7DwwPunsuOjIiZu2FM23xdaCXPnj2Lj493d3fv2/c1+WFMqVC+67Xx\ni4R5dljV2Sbk+dfrfhrTfAwtbzSYo1QQeQMhNKFYhCtQD1hQLHbzS5vY1l1Mllx95Xw1e1ZV\nnfMoV2PY/VNPUo899p1lXSUrfnimkF1l6jHZyNzUouCkgmfAHrNC83k2ltYWnV21+kUJmrhx\n/OGjG5qLdrlMcf9CDotFvINcb51JN7QwcPN2unc+29zB1LNPJ23GygLDenT21XaxYlt4vovM\nISrseO3PE2p6feBCPZHdP2b8znm2rbeuk/sfnwdFVhRou2fbq9h05/+0mQMCr7360180nPuy\nDTpiWbgLP81qg47gNTNmzJjWmorGZrNDQ0NDQ0MLCwt37969a9eu9evXr1+/vpXqzw6ry8DO\noUsHNzlv0O8N9/d2T2qbeYagPRabFf79OGsXfRkSfO3RtSW0uAWLGxtdqSRS0X/faQpXlGa8\nTC8tZ2Yu7NW3h8YwJ3uX0XMDrTubKRSKeNOraZfy3v9oioGBgXS+rCC9zK2XHi3wFolEtbUt\nXoj7EkxMTFQzVlpb3/Hd+o7vpjHsh3lH7dzMI3ZP5vLZFZl/CD07ha8PeZpVsXnmQRtX8xEL\n9OuXU22oqkGTd86LBE6EEEJRhhN+ECskdVEjTBZdZlm66zrB/3LwsjIy42sMo2lSnv9M1iA3\ntTauLKw2thDIJQqFQmnraq7lWTv/s9E0dGCczv00zvmkZeLn/7OhCF1bohSX0zTF4vJY5i6E\nxSE0TSiKsHkUq7mvdhxnPTo4F9qXVq8ZHB0dP//8888+++zs2bORkZGt3V1H03/ifzfnYLNZ\n6q1HcLSgfgoY21XXKXQgHLcgo5mHtAym5ZKGC1/T4nJaJiayBl7vt7heo7S8lmVs/bI5tgr1\naQRsNtvCxkxoXm5gYEAI4Qm4elUNEkLy8/Nv3WrZ1nnl5eU0TVtbt+zP3M/PT6/2tg355yA7\nD0sDQ65SqQxyOF5N+RGy2N7D8tNjs5TKdvmzKV1fZfLOebatD6mped5EsQwnRdbHL1dU5uhV\nQbgk8k0tIxVyZWRETO6dYkIIl8cxszV+f99UY3NBa2YHryGWx2i2fXP7xquc++lm+pW8+WG3\nyd2dxcIZVHGKnbOdsqHqmvLfKedKP/xtuuaOuNinF15SGw0iURQ1YsSIESNGtE13HdPMf480\nNNX8qydAB0HxhTy/KdpE0lJR3e5xFIcnCNlUH7/McOaPor0TOY7+BgOWtHaSrS3A9Wb3QccJ\n0fYbcBuztrbu0UPzmGdjFy5cUCqVLb3Kxka/FkvbVu/n1Iwkhr6EEBaLZnOfDyUZV56huHxC\nxuo0u5dhNP2Xxm+fTwaiWIIx3+gkn1dxdldKyePnkwuMzQUKuYIQUlshXL+x7AAAIABJREFU\n9hrgdHxDoqqdb8ybuOwf7ehMGtChtMs52xb8rk3kCJ9TDVeu/pS4wMniia+jbOV/Rs0ZtKsz\nd8GZnIVL/X/QeHn/N33mbAh+5XyhI8KswteHuZ0enaAN0F7Q0rq6n8bQUrHJO+fkuVcIIdwu\nwUYzD9b9OpWweQZ95+s6wRZTPntCaCXL3IUQQjc8Iw3PR2xoWb2i5D6nkx5NR7S0tLS0bNmS\n2qysLKVS6e2tX8vSWoquLa7dOczknXOUjY+xHZdjZ0gIkd7cKzr2jvGsI7rO7lVlOs40teqp\n6yxensDEQHWELCFEIVeqlxPzjXgGRs/XBAqwOBC0JrQ19h+jeU8Hd268D+f6vuT3qujOrgZF\nhBArN/t91+YvHLn3nbFHL0vWarxDmx1PCoSQ+xcfWzqavjb7S6EgBIAOTZZxiigVJgvOND4L\nmOsdajzrsDh2qUGfcI3nEOob6b2jDRe/fj5/70+0TFy3O4QQYvLOOd2lBs8Jgr+h5ZLanW8Y\nhZ9WlRvSOwdEx94xmrKb222crrN7VSXCACODdnzW5aCp3VUvpPWy7e/8bmDIraskZnbGD//I\n++f+aTi5Vz/V10gEpga6zuKvdfaxXbBF8xmbykpfWvH+u3yX7+ccoSVKQkhFfvW7P83w7P1/\nioKULq5DWj9TaIE7B07Y+Xrae2rYu669QEEI+ivjaJVFmJi8JpuMEkKI5OoPvL7zKQ5m9uoR\nXvfJvO6TX2zndgsRdtPTY7Kbxx/8gbLyce2Ooeraj5aJ6/aE0uKKxucdtzt1dXWPHz++nfhQ\noVC4ubm5ubkZG7fbr+YUZRiymRAi2jWSQ8wN6x6LDu0zmrKb1zNM15m9/jaGHah6qnkrI5qm\na8rEtFIpMOETQuqq6pUK5edDdgptjLTcVObzk3Nft7Mi9dWj6/n7liV8eaH9TehQKcos/8/s\nQ3KZUvWWpomFBVeq4BGK7FgS82fU3VGL+o585zX6StQO/favM95DXHuM8CCE9BD8qqwLIGQM\nIeTkD0lGZoKgWe14ZgQKwteH5Np2tkMvTuf+uk7klUjrZTzB8/+DVudK60obVK9lEjmHy27f\nm7Yp5eLj73Hch+nbJuwvjRaV1e1902TRZUJp9fVI/7FtfXi95+g6i1dGUYah3xNCane+YdBn\nHqEVdXtCaVG5yYKzlFF7ndySn5+flJR07969kusKWkEOGx3u3r37gAEDnJz063iMuqiR8seX\nmg2haVrZ6J3SjC4jokxCsUQHZ4sOzlY1UxSr+ZPa+SO/5P/j01dPmHEikaiystLKykoul3M4\n+vgdo75WIq6RaAyTiKQ0TQyMuAqF6p8XxeFxFHJZVXEd35hHaTFxQG+3VZdLFRf33RoeHqDr\nRF5JdUldaW6VZz8nQohUIpdK5Kp2uUxx71x2r9FeOs2uZWzdLN7ePI7+c0Opmyczrh6qv/uk\nl6WrycRPg3j85/8dvTazE9svf7vTx/6lpOlFPUd6EopWrZY+viGx9Oyecf83mBAUhKAHZPeP\n0bL6dl0Q0jRZMXhnyAcDg2b3atxeWVizaebBkH8O1mY/d71CiytFB2YaTtzBMvuffV/phmrx\nkXD+iNWNJ/W1DzRN11dRhhaEEKW4Qp57hSjlhM0jhNDiSlV7+8WycBWMbIvTol6O7NFpyeWN\nzcfQkto/N/QgFIvdcGkDoSjC5rNtvev2hD5v5xlpOFnReaBg+EpGcmbEyW1XswszlTbV3t7e\n1dcf0Qri7e1ZXFwcs/Ocs43HuPcG6zrB/1KKK2mFVHPci2hl4xNOaKLQEF7/7GV6aU1VVVXX\nrl2Ljo4uLCy8fPnys2fPunXr5uPjo03t1JY+i9X8o0+DSHpk3YU3PxliZCYghCx23/DRwemO\nXa3lMsXv31weMqOHrVs7/ruu6mnt0a8uDpnRQ/3za3tUklO5Zd7ROeuDA8b9d/tuuUwRGRFT\n8riq50hP/fkFubpUlJ1SoGXw3XPZqSczDM0M6yrrlTLFsX9fDH63P9eAQwjReBMLR1OXHvav\nmm6HdOzrS1cO3dMYFuR+f87Ayz+tUO5Z6jrdX5yfnR/lvbm73Y0JvQ8f+w8383ORxjvMXDfS\nP1gff61AQdi+1UWN5PpMaLoXokImOjCL3SmAH/SxjvJ6SRRFwjeP3b4oWknTvULdVI2VRTWb\nZh7s7GsbME7zmmx9Q/GFFM+4dsdQk4UXWKbPd/ynG6rrdo0iFItl7qzb9F6CvCC5LnK48dvx\nHJdBjduldw+JD84RLs+jjPVrO8fXiSLrgiwzocWX0YQoRYqCZO2vUFbltE1BWF8rET1r0BhW\nLXqWdqjcbaSwgaug5SyiIA1VCmmWYXZ8uXm4VXm+5kPGjYT8tllfZBJ+ipbUaAyrqqr6/vvv\nhzjU93r2e7nCRMkysGDXneVPtvTqP2zYMDZb897xlLE+nUpPSG1t7blz5zIzM/+fvTOPi6r8\n/vi5s8/AsIsggsgmuOCCAioq5oYL9NVcUsvcsMUst9RARbTA/PpNsdJ+mllaai6lgQtipimo\ngOwhgoDGDgPDNsww2/39cW2aUJkBlbv4vF8vX6/hzjMz5/N6nnu851nO8fHx4fF43bp1k0gk\nhw4dWrBgQUdTwlIBgQnvjah/Cs9gGPEPOFz2rI1jybPrySiVhucgqoqkZ/97Y370BBMLgUql\nevQpNl5f2Xx04+UFOyaZWhkup8HjdUUqHa0GVzQbXsLt6WU7d+uE79deUDS2iiwFuBZvlMiO\nrL9YVSR998B0eZPhb2BxWAKTrlD0V07lgRWxHfqIqk4OADV/NQDAd2svGPkp/+n9UEDYOXhC\nrsiI/yNSambwBKwlY/7v4B+hOI7jam3f7qn/GXryUtHC0lYfkZnhH+JQtTQIRtktDV1DSkpK\nXFxcZGQk2YZ0EtW9C7LDM4TT/scf/l7zNxM4fSYLRqxo/nG2pjJH/PZVlrkD2Qb+w7cr44oz\nKoxpqVKoGyUyoRlf3tTKN+GqWjQcHltsIzLyh5YffM3OlUpzt1qN7KcF6oeJ4qWXG/7rLl5+\nSx67EjDMdPFFTGCE86Aeims7FJe3mi6Kw8R2jTu9LKNalbm/yo6/YTJjP89nAdnWMRlN1V3V\n3V8NtwMAAFyjUt75HpdV4zgArhH4hmJiYxPQsW37cvt2xfnJhAMpP29vf4Pl8+HVNQFB71Fo\n98TNmzf/it89vvWXbMdloqLYCp5bLyuevTTpsGrGzHc39+7dm2wDO8zNmzcvXbrk4eEhl8vT\n09NtbW3d3Nyam5vNzMyCg4NFImMdODXJvHy/f6CLrtIvpdBq8YO7jhhupsbvn2vAlbhrsHmr\nTHXvp4YBS6xwFVZwtl5ow+k9wdzgxn++gL9g+ZznY3S7VBbWRU78tgt+yGVIj49OzuuCH6r5\nqz79Qr7BZn/lVGUm3B8xq791T/OitPKyezWj5g5UtaoTT2TzhNwRM/sb/IYeHjb9x7o8D5MR\nbcn5vejmz38Sr/vzjvRmnauo694oN+vnmHtH+cFf6jEAwMKwaatGdu9t2e43UZEpU6agFUJ6\nw+0z2eStM7LD00GrAQDQapp/nK2p+pNq0SAAKGQqY45tEPBEvJbGVsChtUnF4rLZPLbxn8W1\nWsONnge4ogFwo35LFBLT8su7TQdeAYCWU0sxntBk/inANbhcaszHMYEFpRJdCsasA4DmQ9NE\n0/cCgDLnZ9mJhSga7ALY3b3Y3Y3aNU1kkcF4Jvyh61T3r7C7921N/1G87De23YAXbWSH6O5i\nZUw2dolEUltby1bxGktVgOMAOGAscQ+ulq+0tra2sTF8rsbOrWPFLV403Hs/j1P8nNVreYW5\nrxvEAsDdHm8Crp1fe7LuwRSgYUBYWVn5eLFHU1PTtLQ0X19fSoW49+/fN2ZJTR9uD7iXn9fR\nH/L09GSxXngMiWu1aXurjW+f9a2EeJF98FGtxdYGTXqh4W8QmHEXLO+EgR2GL+J6jjSwfaal\nsVV34q6lUVFb2gA4sLns7i6WbM6jFRiugKM7ffdE7LvKLXRzspj4tuFkMJX3a4Pe9evZ1xYA\nrh5Ob2lUEJ96ZaFPYVpZ/0AU6b1Amr+doi662k4DB632NRO9nfy41tmmGABwYA3jxwzjxxCX\nsW849e0+sAleCRO8svHZDX7uoICQomhq8vAmo9bTMA5PMHGL/PxHLNNurXWFoFYJgz/X1uZr\naw1PRwEA27Y/Ztrt2Yw1ivcOGCiN/WP4pbS/p9DYHBaXx1W1qgAD/SxtbA5r04WFYmtKTDY3\nbLXtxGEhTVUOADREd2CzqHmEhCV68f9vaVTyy9uMb8529JedXAIAsmNvcj2naCT35fFGbTLE\n+CbUTIbBGB7lFJVJxKGXlek/AIAuxwzVYkLvca7e41zbaVCWV3P1SLpYI6qUlIltRSwuVl/Y\nCoBZOHMF1hyptMnUQigy44+eP8ixL532KpvVpd+wfFNu4ac78AkYdtfhrdqGFmdJGsAsUq3r\nDK2trVzuEw6kcbncjkZfL5rc3FyZzPBRHx0tLS0VFRVWVlaWlh2b+Hd3d++CgJDFYgW87m1k\nY61a++cfD2QNcnWrhs1nWXQz9RzRy8izdoKuKr1obmvafpEGeWPrzjnHWuWqfy5hGOA4CwP9\n/LGDJ7q/FhbYzvewKLbkqz9vxRVwOPxHj+hCMz6KBl80tQUFZlp5+22eeJ9goP3X2oBa3f7G\ny4rs/N6vdNi8LgAFhBRF9v1/NDX3OvQRTf2j08ayH2Yb/ynhmI8EU3Z06Ic6R1xMUsX92nYa\nqFrVTv27//1a8zCrEgBwwMTWIkt7MXEdY2HHtxioovbahjFWDl2yFVNgBsp2nyq0mn+5Ca0G\niKwRLP37DgO2gdsQw7pix7lWJVNc6UBA+A+4WnX3V+O3MgLGRgHhC6X12k5cJhEv+w3TzSMQ\neUdxbcvJJeIVyaRa10EwDMMwMzMzGxub5uZmFs4f4XaDzdZkKSe0tLRYW1ubmZlhVEtaYgR1\nIz7JTkhw+/dFHOCCwu/9YW+TY9OzIRKJampqTExM2lxXKBRU2y86dOhQtVptfPvKysqWlhYP\nDw8Pj46lgjDmLOizg7Gw+Z9ObL/NsU0JzX8f1u092D7najEAcLhspwF28uZH4bqts8Wra0a9\nUFONpPqBtHNbRlVKjUr5zxpO0qmcpFM57bTvsi2jnWD4a/19jNg9gXheFDgfzIrPNaZlQ7Ws\nlyg5ZNDPtc22Sq3Q1rT8h6QFCpGXkcfUgyZTMhxEASFlYTv44Mrm9lpo1aD+ZxclrpThWjUA\njnGFGPvvQYlhwBW2n7ucZdtFeTsLbpfk3y7p8MdwvKqorqqozvhPTFneRSeFLDbXGNkSVzQ0\nHwwCDNQPb3E9p2qqcsTLfmdZUWgPFQCwOEKux6T22+AqOWgfTcpqW2q1kgLAccBYbFuvf85D\nsvkYpz23iPFpeXKSRvAD1/HHfIRx/50iAsNE//mKaqkps34rvH3G8P/BPGiyNjWTVanr/1JY\nD5JwWJqGNKVZT761vTm01MtAfGHf7fa/YViw56CJ7s/J6ueAh4fH0aNHLS0traysUtX9W3k9\nuuP4gwcPRo8eTbVCGkbi6Oh48+ZNa+t/7WWoqanx9/e3szP28GrX0KNHjw61Z7PZNjY29vb2\nTk5OhltTEjs36/qqR08UimYlsdkSx3GL7qbcv5ehbJ2pcvDJmC2jBDiOl+VJlHKVjaN59QOp\nbW+rigKJvZu1Wbe2ExNPpMu2jHYCFhvrsiVZBACMf3v0+LdHG2x2bk9S5YUD/xl8xnT24crD\nn+PdhpoNsX6Lv+eb35dM3LiC1gu5KCCkKCZzfzS2qUZFnBtki+1Ytl6qtCOCCVv5I1e8SOs6\nw+JdU/Wn7p5GfVXzt6vienjYBK0c+uVbvwyd7erm4fLjxoRJ7/j6TzeqQoOFHbVqVf8dDWKm\nC+PqI62FQdGKq9ub9o+lXEzI4ZsuuWhkW2X2KdnxN4RB0fILG4STPlFc+dR0URzHJfAFmocw\nGowj0L1m2bhzHP4p4oIJLciw6KlUFdWlnTe8FWLmsOMWovq8siWAcx/VZsChpbzZt/cXzU2m\nPyUbnuN39OoGVAoIraysVq5cmZqampmZWVRlJhJpK9QZI0eOHDVqVNcsKz13+vXrFxAQkJSU\nRFQgVCgUJSUlZWVlISEhT9xKShc0Gk1NTU11dbVEIlEqlV2TZrNDaDX4ZzN+MLKxRqWpKpYS\ne1W0Ku2N41nde1uy2CwAyEt8ePVwejufNbEQfPB9V2xmtrQXf3jY8A+pVZpvVsSKzPjhcQuq\nU2/U/7LL95vMlF/vHl5/cfJyf/1aFAjE88JOlTB88FHTuT/yBsyEw58DgHDSJ6BRhsL/VUrG\nAKCAEEEWf0eD4mW/t5xcyO7Wh7fgF9nh6QBAtZjQvLvhOA3HYc+Cky6DeyzeNbWxqTHQ7SJP\nNMd/RrDYRvR/75x19raj3ewLrlYQFSZMF1/EeCIAABbbZM73sqNzmw6MN1t+k45FGoho0GTG\nfraTr/zCBsHoNcBiNx+ahmJCCsL1nMr1nEq2FU8lcMHgkbMNn2nMuTCS//uc9W+ctHj30p0t\n51la9c7kJfX/N0VW2qgZ93//+3q4wW/gtptbghRcXFxsbW379u17+vRpa2vroKCgXr160Td2\n4vF4EyZMsLW1zc/Pv3jxYs+ePQcPHvzmm2/a29M4Cf7Dhw9TU1MvXrxYXV2dnp5eVVXVr1+/\nfv2oVjwW/yunqhMfUyu1ANrSu8ZudaHI6X0dWRfz6opLVh9dZN7dVKKotBc/BIBhIV4AEPvp\nWZ8pfahThxDBGLx6l3MmHuUNeA0A/i5GA8IpO4ArdDMxttQkNaHc/5GIDiE7uahNhQmuxyST\nN0/LDs/ATGx4g+aSa15HwTCY9+lED7+exITlQLuUv1T+ANBvdO91p+aZ2VJr6c8oNCq2k79w\nwlZMYAbav0+tsDgm847JL23GlTLa/X+lqciSHX/DZOY3vMFvaGoepd0TjFkH6tbm70LM1xdh\nJoZTPiIQBFw+R7djrR2a5Tze1NPih+9pT05ns9gYaPFfZov5DXVTfm6q5InMBQa/gZqYmpr2\n7ds3Ozu7W7dubm5uhj9AbXg83rBhw/r06aPRaNzd3YcPNxyoU5mysrLPP//cxcVl0KBBeXl5\nTk5OtbW1Bw8eXLZsmacnhVafWGzWvsK1Bps117V8NuNHy14mTtP4507FC1I9WgPuTp48pfCk\nTKuEtSfm0q5Iff9eua4Bn5rCOIC++tcHmMe5T9qOYR+1f14GgegEohn/p3vd3cWK0+vRfnjh\nBLqWr9OBAkJ6w+0zWTj5szYVJrh9JpsujQd2V1Rhfs7guP2NcRqLnay+rwIAYMDhYQCAy6Xm\nV6fzAz4Emw7ky6ECGF8sCt6t+wswDIikcyyOMCiKPLs6D6ubh9l7iWwHnzbXBeM2cdzGYyIq\nVYBEUJ7qW0flmacMNNKq3QCHMqhnWZtU3PYQyABA+YAvsxtuXhJtDvBwH/bvRE1PQNDv1e4B\nbz0vsxHtw+VyuyC75osmKyvL0dHR1ta2ru7RIXYLCwtXV9fs7Gx3d3fa7exVKTVuo+zSG69w\nK108+7iblOdoBg4pqywpt3swzGqiRt1F5ZqeI7wBM9VF15r2jxWH/mZhK1bzOQCguP65ImGL\n6aJYMFhXEYF4NszHrWBZdiBjPMVBASG94Q2e/88fLA7GejTDx+lt+GhsFyOXyzUaw2cIsRGr\nm3+cw5nxncxuFM+UJerObZaUqX98FdhcZc/RyuZ2E+0AAIBIJKLoswiLbbr4ItuaQgeZOgHG\nEeiiQYxnioms4O8kqJxe9F4QQHQ92tQDZiVXO/SRR7vAVCrTkgTjP9UqrwIUECKMRqlU1tfX\nP17i0tLSMjExccyYMY8XXaQ45rYm4sEql9LeNjY29ZKc10d8/yMMsO7eQ61WW/cFoZiGM8gY\nJnr1CwBoOjBOPCFSIeYrrn+uiN9kuiiW40rRRI4vMzV/1WuUGqqVhH0WuF7TyDbheYICQuYg\nmnXon0yP1CMpKam62pjiuRYO9m/1O7Ug2/5tT7Wq+N6flnfHaDH2HdcN6vjfjfmhyZMnW1hQ\nK3OGDq6HgeTg9IJl3tNiswTol/MfQRXEQ+Yoof0idbheOmUt1BWCqgUAA44ArNz+WQTg8Nvf\nHiam2/55BLmoVKqkpCQ/P7821zEM43A4KpXqiZ+iMvUPs0SJkbZDVuMAXBMcFI+W1XtYmfB+\nW6cYPlhgSZXTntqmytakL4xsjAnM2RaOLbGrANfKL2zge89S3f9Ndd9AeSoClpkDf/h7z2Ap\nogNcO5KuaFa+EW0gmTmCLFBAyBxYYmql9m6DA7fO2qS9OoT/YDJAKpjtW/g1zhWM0iRouOKq\nvqHubBmAUaWEOdpWw40QzwsUDSKeAZMR75iMeMeYlrhKLvs+RKtpZTsNx3CtuioH4whMl1zA\neDQ8WoygPEKhcNSoUfX19WKxGAD8uNnVuD0AqNVqpVJpakq/Uadmi1w5ZfBgV1rv1brJE66m\nZehfOxtY8lacTZ2TuOryNMWVTh6paE0/anxjjC9GAeELJfGnbLNuogGvuAKAUFvG/rvye17S\nX5X3awMXDG7304guBQWEiC7C7rdluKJjNdAwbTNL1cyR1zjd+sj4T/F724HVzA5ah0AgqMuj\naLChzHTZFcWVT0GjFC9NaPpmQvPBySgmRLwIWCxWz549s7Ozvby8AGAq99rPmiEAvUtKSiZP\nnmxubk62gR1GaGm/WzH9HcFFn+L/XedOAgCuVjG0aLsax/IHfdpXTJUihADAsfEwXBRXrQCc\nKEED2oZSrfQBAACLzbb3xrh/FyFkc7F2TxdTq/ITE+EKOPuX/7okZtqgie49lWcxaAIIvXv9\nwb53zszaOJZs6xD/AgWEiC6C3WOgtvZ+ey00qn/ycAKOtzbhWjUAYDwxxv47+xmGAcfAPCZm\n5tB+AwQCQS/ksSu1TVXid65hJt2IK5jQQrzkYtOB8fJfPxTNPEiueQjmgcvr+/25RTZwztX0\nP4VCIQA0NzeX3Ls30MvVv+JrTUUPtv1Asm3sGGKxePTk136+Y/ua6sgIxSkACKzdj3MFJ7DX\nAhxdKVXvhGXtZnxRXOLcoDAoqjVxD7ffdGX2SXHob2y7/i/UQkRdeWN1sdRgs+6yX2fN036z\nInbycn+b5la2VnXp6+TYmMTg11S91GfyEg2f7rFxsrBxpN/8Cx1BASGiixC/fdXIlriiofmb\nicDmautLuH1fbU3ebzLnMLfff16kdQgEgroIAtdjQktM+K9FDExkLX77Ki6TkGUVgsFgAjOO\nifWwgm22k77IKK6DXLC2tvYfNqpP5kY2aFlWVKqIq26Vhhu139MPgDgTSSyp2yj/AiW8C9Fw\nLlp6zvDHMQ7f4lNF5+18AeiyyOBqJQD8k2MGxYQvmIz4gpOfGE7rMNAp67WhJ7y6z4uL0U4d\nWC/gKn6J+8Pd7t5gxfex34ekFJ80+A3TVo6cugLlq+sKUECIoBa6aNB08YXGXd5c9/HsHoOa\nj75uOu84igkRiJcT/edvlokNrnmUhwYTmGMCNHmMeAFgLJPXf5CdWOic+L7tf45DLvgN8bbL\n3YZrlaZLEzC+mGz7SAD/e4smRVDdjVPEbzJdFMdxHau6dxHg77yjuKb5m4nm4aWo8sSLw3Wo\nw/R17WWzl0nlD7Ir5bjjban5HP8Dlg+XgAoAsKHe5a+6H77TML/BNsjDFpz62YptTNr5Hteh\naM9XF4ECQgSVwPHmbyYCm6d/Log/bDHg2uajr4uXJnB6jyLXQAQCQS6C8RFkm4CgN7iiAXCj\nyu6Jgne1nFnOP/UaAJjf3orz+aYLfgYMw+WGN8sBACaw6Iq0Wxy+xZY6I9virY2ywzMUchmn\n7p7WypVv5SSa8yPGNTKhDLVSiHGcA8Qf3mF38/zXVQwT/WeveugiFA2+UIRivsGdnBqlBsfh\nrjJAo9FO7HXwfpUbC8NDnL5Krn39z4YJABrAQGQhbP97RObUyXbEcJgWEGq12jNnzsTHx9fU\n1NjY2EycOHHGjBkUrUqHeBwM4/mG8ga93iZLBN93KUtsxzKjSlJsBAKBQNAUaaQtpm2/2Mm/\nIMIgbl2eBqDhM1fjP2j6cQnXomcHresMbXZTPw1c0SD7YTZwBI2jN1ud+U9L8BFu/NstJxea\nLDiDcYUv2sjnDia0YAst/n5tiYn+LnCHYRxHX9LMejloOLbUsfbXdho4YbiPM66bQ8AA72OX\nBwA4jvlZ/+Bn/QNxHX+A4cXtTTTUJ4+FLZeej9GIdmFaQPjNN9/ExcWNGDEiJCQkNzf38OHD\nEonknXeMSmuOoAJ836X//MHmwt/pZBhWABSBQCAQpKBmCdjtrhBioAX8338CAAAOmP4qGW5o\nDUoLFJqMxlubmg9MAA7PdPGF6uxbAIALrMShl5v2vyI7PN10Yazuf1s6wnHyM1uVRbYVLxGW\nlmp2vdpwu8fAMBz7991l4Ics6Ffzk6YwKiAsKSk5d+7cmDFj1qxZAwBTp07lcrkXLlyYPHly\nr169yLYO0WHEob+xzHqQbQUCgUAgmIPlFomRx+Fwpaz1h//grU3a8nS2xxRtVbZwSQJmaWyt\nAh6P9wxmPmfwpkpWNw/R9H36ByAxU1vxsistZ5bjigbMxIZE8xD0wuads8Y0u3vj4b63f1mw\nnOdWvrZW2wfXaq3Z98qdtn69m7v0i+CB491etJ0I46HQ9NWzc/36dRzHg4ODdVdCQkJwHP/j\njz9ItArRaVgWjsBik20FAoFAvLwQpdg7hFqtVqlUHf1Ul+Us4XK5PCPggkr543RQNpuFXgYA\nk6BPuS5jFN9O5DSXGvNxSkWDAMCycTd5/YfH0+FgprYmb5xE0SDiRfAwq2LhBwK38rXCyZ81\ns11bwN5k9nc9/tr87mr1w6xKsq1D/AtGrRDev3+fzWa7uv6zxb9OX4EKAAAgAElEQVR37948\nHq+wsJBEqxAIBAKBoCnXr1+vrOzAo5tCocjNzS0rKyspKenQDwUFBVlaUqY8ukbZfHASaFTi\nZVceZbJlsUxmH5Idf7Np/yvi5TdZYqqcacdx/Pjx4x36iKSqwkI7qenib5aWacZ/SiAQTJ8+\nvYPWIV5qxk1okn2/Wjj5M/7IFXDxGgDwBr4OKoX9L++4z+vYoEW8aBgVENbV1Zmbm7PZ/6wp\nYRhmaWlZW1ur3+zWrVvNzc3E6+rq6i41EYFAIBAI+tCJIM3Z2bkTP8ThUOiBBNeo2A4+wolb\n/1XXhMUxef0HeUIEKGXkmfYErKysOtzeq59tB3+FamueCOqjKU0VBu/i+70NAN1drKCVCwC8\noQuBxVaX3UG1xCgFhfzvs9Pa2srltj0VzePxWltb9a/s3r37/v37xOs+ffq4uaFNzAgEAoFA\nPIFBgwaRbQIJYDwTUUiM3t/YozIGLLZw0idkWfVEMAybNGkS2VYgEE9AMPZj3WszGxNo1RCv\neUPeJMkixFNhVEDI5/Plcnmbi0qlUiD4VxmTefPmSaWPigi1tLR0aDMMAoFAIBCIlwrTxRfZ\ntp6G2yEQiKfAHzwfVyvItgLxVBgVEFpZWT18+FCj0eh2jeI4LpVK+/fvr98sJCRE9zolJSUu\nLq5LrUQgEAgEAkEfuB4TyTYBgaA37J5DyTYB0R6MyjLq6uqq0WiKiop0V4qLi5VKpX6aGQQC\ngUAgEAgEAoFAEDAqIBw1ahSGYbGxsborsbGxGIaNGjWKRKsQCAQCgUAgEAgEgpowasuok5PT\nlClTzp07p1Kp+vfvn5ube/369aCgoM5lPEMgEAgEAoFAIBAIZsOogBAAQkNDra2tL126dPv2\nbWtr6zfffHPGjBlkG4VAIBAIBAKBQCAQVIRpASGLxZo5c+bMmTPJNgSBQCAQLx2tra0qlcr4\n9lqtVqFQyOVyXXVcIxEIBJQq3IdAIBAI+oL+O0EgEAgE4vmQlZWlq3NrDDiOFxUVVVRUdDQg\nHDlypJOTUwetQyAQCATiCWA4jpNtA5mkpKRs2rTJxcWFbEMQCAQCQXvkcnlra2sX/JCJiQmX\ny+2CH0IgEAgEs8nIyHjZA8LW1laJREK2FQgEAoFAIBAIBAJBAi97QIhAIBAIBAKBQCAQLy2M\nqkOIQCAQCAQCgUAgEAjjQQEhAoFAIBAIBAKBQLykoIAQgUAgEAgEAoFAIF5SUECIQCAQCAQC\ngUAgEC8pKCBEIBAIBAKBQCAQiJcUFBAiEAgEAoFAIBAIxEsKCggRCAQCgUAgmI9arZbJZGRb\ngXi5QKOOFqCAEIFAIBAIBILhaDSa7du3b9y4sbm5mWxbEC8LaNTRBRQQIhAIBAKBQDAcDMOE\nQmFhYeGmTZvQ0zmia0Cjji6ggJD25OXl4ThOvC4tLY2IiGhsbCTXpGeEeYoQ1Idho45hcgAp\nQiCeGRaLtWrVqjFjxqCnc8rCPLeARh1dYG/ZsoVsGxCdJy0tbfPmzeXl5f7+/mVlZeHh4cXF\nxXK5fNiwYWSb1kmYpwhBfRg26hgmB5AiBOI5gWGYv79/RUVFenp6RkZGQEAAj8cj2yjEI5jq\nFtCoowUcsg1APBPu7u69evW6evWqQqG4d++eVCr19vZevHgx2XZ1HuYp0iGRSA4fPpyfn29r\naxscHEx3Fw8MUsSwUccwOYAU0QrGuAUdMpns9OnTKSkpra2t7u7us2bNcnZ2JtuozkOs2ADA\ntWvXNm3atG3bNlNTU7KNelaY0UcMdgvMG3XMc3SYbm0aQVOampo2btxYXFwMAN7e3ps2beLz\n+WQb9UwwTxEA1NfXr1q1qra2Vndl8uTJb7/9NotF123bDFPEsFHHMDmAFNEEhrkFACgvL9+8\neXN1dTUACIVCuVzO4XA++OCDwMBAsk3rDFKp9PDhw5mZmRiG1dTUAICrqyvdn86Z1EeMdAvM\nG3XMc3SAzhAyAJlMVl9fT7y2tLRkwEI88xQBwOHDh2tra11dXTdv3rxmzRobG5sLFy7s3r2b\nvjMyDFPEsFHHMDmAFNEEhrkFhUIRGRlZXV3t6uq6Z8+en376adKkSWq1eteuXSUlJWRb12Ek\nEsnq1at/++03FosVGBg4c+ZMW1tbup/sYlgfMc8tMHLUMczREaAzhLSHx+Pl5OTY2NiYmppm\nZGRUVlb6+/tjGEa2XZ2HeYoAYO/evWZmZjt37uzVq5ezs3NgYGBaWlpmZiZ91TFMEcNGHcPk\nAFJEExjmFk6fPp2UlNS7d+/t27fb2NhcvHjxp59+AoClS5f6+vqSbV2HiYmJyc/P9/T03LFj\nh4+Pz8CBA4OCgsrKyjIzM+l7sothfcQ8t8DIUccwR0eAAkJ6I5VKFQrF+PHjAwMDR48enZGR\nkZ6e3mZE3r5928zMjC67DpiniODnn3+eNm3awIEDiT8FAsHIkSNp7UEYo0gqlcpkMrFYPGLE\nCGaMOubdREgRXWCMWyD49ttv6+rqtm7damNjEx8fv2/fPhzHly5dGhISAgCXLl1ycHDgcOiR\ni0Gj0cTExGi12sjISGtra+Iim80ePnx4ampqYWEhTZ/OmdRHzHMLTB11DHN0BCggpCt1dXUx\nMTFfffXVjRs3RowYYW5uzufzR44cqfMgvr6+LBbr999/37lzZ2pq6rhx4yjuE5mnSCqVfvPN\nNz/88ENqampjY2P//v379Omje5eOHoRhivSHnJ+fn7m5OZvNpvWoY95NhBRRXxHD3II+J06c\nMDU1XbBgwaVLl/bu3asfaTQ1NW3evDk/P58uB9XUavXx48c5HM6yZcv0r7NYLIFAcPPmTalU\nSsenc2b0EfPcAgGTRh2DHR0BCghpSUVFxfr16/Pz883MzKZNm+bq6ioSiQBA34Okp6fn5OQc\nP34cx/EpU6YMGjSIbKvbg3mKpFLp6tWrc3JyGhoaysvL5XJ5Q0PDhAkT9M8c63uQ3r17Ozo6\nkmiwQRim6GlDDmg76ph3EyFF1FfEMLfQhuTk5IqKCh6Pt3//fv1IAwD2799fUFDg6+s7ZMgQ\nco00EjabffXq1cbGxuHDh1tYWOi/1dDQ8Pvvvw8bNiwnJ8fOzs7NzY0sIzsBA/qIeW5BB2NG\nHbMdHQEKCOmHUqkMCwurqqry9PSMiory8fHRPcgCAJ/PHzVqVEFBQW5u7oMHD1gs1sKFC2fN\nmkWiwQZhniIA+Prrr3Nzc11cXN5///3Bgwfn5+eXl5fX1tb6+vrqzxsRHsTOzm7s2LEkWmsM\nTFLU/pADGo465t1ESBH1FQGz3MLjaDSapKSk9PR0ANCPNOLj448fPy4QCNasWdPGdVAZtVqd\nkZFRUlISGBio/yB79uzZgoKCLVu29O/fn/qLaW2gex8x0i3ow4xRx2xHR4DKTtCPCxcu7Nu3\nz87Obvfu3TrHkZmZmZmZaWNjM2nSJDabjeN4YmJiSUnJ8OHDqV+Nh2GKJBKJtbX1woULuVzu\nnj17CEV1dXXh4eFlZWXjx49fsWIFvfYSME+RMUMOAGg06hh2EwFSRHlFzHMLAKDVanEcJ25/\n4s8NGzbk5eU5ODh8+umnVlZWCoXi5MmTp06dwnH8o48+GjVqFLkGdwiNRrNu3bqCggIfH58P\nP/yQWLG5cOHC119/bW5ufujQIZ1wKsOwPmKYW3gcuo86Rjq6J0KDLciINty7dw8Apk6dSozL\n0tLSvXv35uTksNlsjUaTmJj4ySefYBgWEBBAtqXGwiRFZWVlYWFhPj4+bDY7KChI59+trKyi\noqLCwsIuX74MADTyIMxTBEYPObqMOmDWTUSAFFEZ5rkFiURy8ODBlJQUlUrVs2fPoKCgqVOn\nslis8PDwiIiIoqKixYsX29ra1tXVKZVKDMMWLVpE8UgDAIgZf10XsNnszZs3R0RE3LlzZ+nS\npa6urlKptLKyEgAWLFhA8edyYGgfMcktEDBp1DHP0bUD2jJKP0pLSzMzM9lstouLy7lz53bt\n2mVlZRUeHr5w4cIbN24UFRUNHTpUl82JFjBJkUaj+eOPPzIzM1taWoYNG6Z/5lgoFI4cOTIl\nJSUzM1MikbTZaUBZmKcImDXkCJAi6sMkRQxzC1KpdO3atffu3dNoNADQ2NiYlpaWlZXl5+dn\nZmYWGBiI43hpaWltba1Wq/X29l69ejXFI42amprPP/989+7dZ86cqamp8fLyIpJ2CASCwMBA\npVJZWFhYWVnZ3NwsEomWLl06adIksk02APP6iIBJboF5o45hjq590JZR+qFQKCIiIu7evQsA\nYrF4/vz5kydPxjAMx/H33nuvrKxsx44dnp6eZJvZARimSCqVhoWFlZWVubq67ty5s80EmO7d\njRs30qVKEvMUMWzIAVJEBximiElu4fPPP7969aqnp+e7777r7OxcUFDwzTff5OXleXh4REVF\nEQ+1OI43NTUJhUIul0u2vQYgEmDU1tbqrtjZ2W3dutXOzk53RaFQFBcX4zju4uIiEAjIMLNj\nMKyPdDDGLTBy1AGzHF37oICQBshkstOnT6ekpLS2trq7u8+aNcvR0fHOnTsajWbgwIG6JezY\n2NgDBw5YWlp+++23VF6Ff1yOs7OzRqOhr6LH0fmIJ+4vl0qlSUlJU6dOJcu8TkB3RQy7iQAp\nQoooAN3dAvx9QGjBggUCgWDPnj1CoZC4rlKpIiMjs7KyZs6cuWDBAnKN7ChffvnlpUuX3N3d\n3333XVNT0xMnTly+fNnGxiYqKkr/6ZwuMKyPmOoWGDbq9GGAozMGFBBSnfLy8s2bN1dXVwOA\nUCiUy+UcDueDDz7QT8qE4/jp06ePHDlC/SPUxsgBWimCp4S47XsQKvNEOWDIJ1IZht1EgBQh\nRWTAMEcHegeE0tLSJk6cOG/ePP13JRJJaGgoj8c7cuQI9YukERCxU2hoqFar3bNnj6mpKXH9\n2LFjx44do+PTOcP6iHluARg36pjn6IwEnSGkNAqFYsOGDVVVVa6urpGRkaGhoXV1dQUFBbdu\n3QoICDA3NweA9PT0L7/8MiEhAcOwhQsXBgUFkW31UzFGDtBKEQCUl5evX78+JSWloaFBo9EU\nFhYmJCR0797dy8uLjvvLnybH2dmZpjvmGXYTAVKEFJEBwxwdge6AkFwu79+//4ABA/TfFYlE\nt27dqqmp8fX1pcUhrrKysvXr15eUlFRVVY0fP97Hx0f3FiEtOTn55s2bfn5+ukd26sOkPmKe\nWwDGjTpGOjojYRlugiCPs2fPVlRU9O7dOzo62tnZ+eLFi5cuXQKAJUuWECUv6+vr9+3bl52d\nbWdnFxkZOWPGDLJNbg+DcoBuihQKRWRkZHV1taur6549e3766adJkyap1epdu3aVlJRYWlpG\nRUU5ODhcvnz5iy++oP5qfPtyAIB2ioBxNxEgRUhRl8MwR6dDZzkA/PHHH2q1Wv9dHMcbGxsB\nQKvVkmNfBxGJRCKR6PLly9XV1bp9lTrmzp07d+5ciUQSFhZG5HikBUzqI4a5BQImjTqmOjpj\nwREUZtWqVcHBwcQZ3IsXL4aEhAQHB589e5Z4Nz4+Xi6X19TUJCYmEpV5KI4xcnAcp5Gi48eP\nBwcHf/DBB4TlFy5caCMKx/G6urp33nknODj49u3b5FlqFMbIwWmlCGfcTYQjRXSAYYoY5uja\noLP8f//7n0aj0V2Pi4sLDg6eM2eOQqEg0bwOodPy4YcfqtXqxxscPXo0ODj4zJkzXW/bs8CM\nPmKYW9DBmFHHbEdnEBQQUprFixcvWbIEx/H4+Pg247KxsfG1116LiIgg074OwjA5uNEhbl1d\nXVxcHIl2GomRcnD6KMKZOOqQIurDMEUMc3QajabNY6vuIW/t2rXXr1/Pysrav38/IfP8+fNk\n2dk5dFpiYmKeGFdkZ2d3vVUd4vEOwhnRRwxzC/owYNThjHN0HQVtGaUcpaWlRUVFxGs7O7vG\nxsazZ89+9dVXOI4vXbo0JCSEeOu7775TKpW6nZZURqeIGXL0aWhosLW1dXZ2vnTp0t69e/VF\nNTU17d+/f/v27QBgaWlJiwxURsoByiti8E0ESBFVYZ4iHYxxdBKJ5LPPPps9e/aMGTOWL18e\nGxtLbDXUbQa7d+/ejh07wsPDY2NjxWLxihUrJk+eTLbVTwXH8aysrHPnzqWmphLV+cCIjf39\n+/fvckuN5WkdBLTtI+a5BeaNOh2McXSdAyWVoRb19fUbNmxISEjw9fU1NzfXaDRJSUnp6ekA\noO874uPjjx8/LhAI1qxZo0tSTE30FZmYmNBdThuSk5MrKip4PN7+/fvb+Pf9+/cXFBT4+voO\nGTKEXCONhxlymH0TIUXUhHmK9GGGZ2insjmfz9clzWpqavLz8wsPD3/jjTfc3d3JtvqpVFdX\nR0REnDp16s6dO9euXbt+/bqHhweRWIWmCcDa7yDQ00WXPmKeW2DeqNOHGY6u06AVQmpx5MgR\niUTi7Oxsa2sLAOPHjycKkjo4OAQEBACAQqE4cuTI3r17AWDFihU2NjbkGmwQfUU0lZOXl6eb\n7iotLY2IiCBOsQPAmDFjFArFwYMH2/iO+Pj4hIQEgUDw6quvkmN0uzxNEU3ltIHZNxEgRZSE\nAYqY5+jacOjQodraWk9Pz5iYmLNnz+7cudPT0zM3NzcyMlKpVILeKsft27d//vlnKhd/a2ho\n2LBhQ0FBgaWl5cyZM4ODg6uqqsLDw9PS0ogGdEyAYbCDgFZ9BIxwC/owY9Qx3tF1GrRCSBUk\nEolQKNy7d6+5uXl0dLRAIAAADMN8fX0zMzP/+uuvX3/99cqVKz/++GN2djaGYYsWLZo0aRLZ\nVrfH44roKCctLW3z5s3l5eX+/v5lZWXh4eHFxcVyuXzYsGEA0Lt374yMDIlE4uDgsGjRIqFQ\nqFAojh079v333wPAqlWrvLy8yFbQlnYU0VGOPi/DTQRIEcVghiLmOTp9iD7at2+fhYXFjh07\nunXrhmGYtbV1YGBgXl5ebm6uVqsdOHAg0GeVY/v27YWFhV5eXtHR0b6+vtXV1SkpKWq1Oikp\nyc3Nzd7eHv6txc3NjUjUSU2M7yCgSR8xwy20gQGjjtmO7hlBASEl0C/kEhQUpHN8ACAQCAID\nA3EcLy0tra2t1Wq13t7eq1evpnit0qcpop0cU1PTtLS09PT0Bw8enDhxQiqVent7r1y5ksPh\nAD39ezuK6ChHx8tzEwFSRBkYo4h5jk5Hmzpp+ju+2Gy2t7d3XFxcUVHRq6++Siw3USreUKvV\nWq2WxfrXZq68vLzDhw/b2NhER0ebmZldvHjx66+/xnH8lVdeuX///uNP5927dx87dixJCgzT\n0Q4CivXR49DdLTB41DHY0T07HLINQADoFXIBgMe3QAgEggULFrz55ptNTU1CoZDL5ZJhY8do\nRxG95IjF4m3btm3cuPHWrVsA4O3tvWnTJuI8A4G5ufn27dtPnDiRkJBQWVmJYZi3t/f8+fMp\nO5PUviLaydHxUt1EgBRRA8YoYp6j06HfR49jY2PTq1evoqKiBw8eeHh4EBeJnW9hYWFJSUkz\nZ87s0aNHF9r7D2q1mkhi8fHHH+uPruzsbAAIDQ0Vi8U3b97ct2+fbodba2trYmIiYTwRWVE/\nAUYnOggo00dPhNZugdmjjsGO7tlBK4SUQP+odF1d3aRJk9rMzQAAhmF8Pp/iO+Z1GFREIzlS\nqTQuLk6hUACAp6dnQEBAm8lIDoczcODA6dOnT5s2bf78+RMmTOjWrRtJxhpF+4poJ4fgJbyJ\nACkiGyYpYp6jI2jTR0FBQfp9hOP4yZMnW1paxo8fr3+Ci/jU8OHDe/XqRYbVAABKpTI+Pj4z\nM7O4uHjkyJE6s728vFpaWqZNm9bc3Lxp0yalUjl37tyZM2cCwIMHD8rLyxUKRWJi4ujRo01N\nTcky3ng610FAjT56IrR2C4wfdUx1dM8OCgipgs6DlJaW1tTU+Pn5UWoLRCdgjCIej5eTk2Nj\nY2NqapqRkVFZWenv7/+4Fsr698cxRhGN5OhgzJDTgRRRH8YoYp6j06Hro/Ly8qqqKv0+On/+\n/PXr10Ui0aJFi4htY/qfsrKyIsPeR3A4nFGjRuXk5LR5OscwbMiQISwW69y5cykpKYMHD16x\nYgXxkR9++EEgELz77rs9evTw9/cn0fgO0bkOAgr00dOgr1tg/KhjsKN7RlBASCF0HiQrK4uC\n2+I7AQMUSaVShUIxfvz4wMDA0aNHZ2RkpKent/Egt2/fNjMz0991QGWYp0gfBgy5NiBF1IcB\nipjtFkCvj7Kzs9PT00UiUUNDw6+//nrs2DEAWLp0KZH+kWo87emc4MqVK4WFhbNnz3ZxcQGA\nc+fOxcfHe3p6zpkzhxZl3/ShaQe1A33dAoNHHeMd3bOAAkJyUKvVV65ciY2NTU5Obmxs7Nmz\nJzH1RfGj0u3APEV1dXUxMTFfffXVjRs3RowYYW5uzufzR44cqfMgvr6+LBbr999/37lzZ2pq\n6rhx4x6fv6QUzFP0xFFH3yEHSBHlQY6O+m5BJpMdP378m2++OXPmTF5enoODg4WFBej1UXFx\ncWJi4pUrV/Lz883MzJYtW0bldBHtPJ03Njbevn1bKpV269YtLi7u2LFjGIa9++67RJEDKvPE\nPqJpBxHQ3dGp1Wq5XM7j8Yg/mTfqmOfonjsYNeuEMJuKiopPPvmkpKREd8XW1vajjz7q06cP\n8adUKg0LCysrKxs/fvyKFSso60F0MFJRWFhYbW2tubl5SEjI2LFjdacXmpqaNm3aVFRU5OHh\n0aNHj6tXrwLA3Llz586dS6bFhmCkonZGHe2GHCBFlFeEHB313UJ5efnmzZurq6sBQCgUyuVy\nDofzwQcfBAYGEg10feTn5/fWW2/Z2dnR4rFPoVBERETcvXvX19dXl+1Do9FERERkZWXpmi1c\nuHDGjBnkmWkU7fcRHTuI7o5Oo9FER0fX1tZu27ZN/wQgY0Yd8xzdiwCtEHY1RGXPiooKe3v7\nmTNn+vr6tra2FhcXX7t2rV+/fsQUC8ULubSBeYqUSmVYWFhVVZWnp2dUVJSPj49IJNK9y+fz\nR40aVVBQkJub++DBAxaLtXDhwlmzZpFosEGYp8jgqKPXkAOkiPKKkKOjvltQKBQbNmyoqqpy\ndXWNjIwMDQ2tq6srKCi4detWQECAubk56PXR3bt3W1tbn3h8iII8ccWGxWIFBARwOByVSuXi\n4hIaGvrKK6+QbakBDPYR7TqIGY4uNTU1PT09IyMjICCg/XVC2o065jm6FwWOeGGoVKq9e/dW\nVVXpX9y7d29wcPCaNWvkcrnu4smTJ4ODg+fPn9/Y2Ki7WFdXFxcX13XmGgHzFD2R8+fPBwcH\nh4aGymQy3cWMjIzvv//+3LlzarUax3GtVnv9+vWjR48WFxeTZqjR0FrRs4w6ag45pIjiipCj\no75beCLHjx8PDg7+4IMPiD66cOFCSEhIcHDw2bNn27Ssq6t75513goODY2JitFotGcZ2Brlc\nvm7duuDg4G3bthEdRDuM7CNqdhDDHJ0+Go1m586dwcHBK1eubGpq0n+L7qOOeY7uBYFWCF8U\nWq12x44dv//++59//jlp0iTdFNfu3buVSmV4eLj+fuu+ffuWlZXl5+ezWCxdDVOhUKhfdYd0\nmKfoaZw7d664uHjOnDkDBgwAgNLS0u3bt//000/37t1LSUnJzc195ZVXMAxzcnIaMGAAcTqF\n4tBX0TOOOgoOOaSI4oqQo6O+W3ga3377bV1d3datW21sbOLj4/VLpQHApUuXHBwcaHTmU6vV\ntqkP3n62D1pgZB9RsIMY5ujagGGYv79/RUWFkeuE5FrbIZjn6F4QdOpUenH27NmbN2+amprq\nbxnHcby5uRkAnJyc2rSfMmUKAKSlpXWxncbDPEX6lJaW3r9/n3jds2dPAMjMzCwpKTl69OjK\nlStxHN+9e/fRo0ft7Oyys7MLCgpINdYomKGIeaMOKaK4IobJaQMz3MLTaGhosLW1dXZ2vnTp\n0t69e/Ujjaampv379xMVtwmIyuYODg5JSUkVFRXkWQ0ajQb/dzYHiUTy2WefzZ49e8aMGcuX\nL4+NjdVqtcRbAoEgMjLSy8srOTk5Ojpao9GQYXLnMb6PqNNBBMz2DADAYrFWrVo1ZsyYwsLC\nTZs2EboI6DjqdL6OeY7uBYECwhfFb7/9BgArV650cXEpLS29desWAGAYZm9vDwCPjz+BQAAA\nLS0tXW6psTBPkQ6FQhEeHv7LL78Qf06bNs3Lyys1NXX58uXnzp1bvHhxVFSUi4uLQCAgDlXr\n/m+mLIxRxLxRhxRRXBHD5OjDDLeQl5enC59KS0sjIiIaGxuJP+3s7BobG8+ePfvVV1/pRxoA\n8N133ymVSkdHR/2vIkKOTz75pEePHl0pQR+1Wh0dHf3FF1/oREml0o8++igxMVGpVOI4XlJS\ncuDAgbCwsKamJqKB/tN5UlISWZa3w/PqIyp0kA4GewYAkEqlMTExS5cuzc3NBYD2Y0Jqjjp9\n9H0dTR1d14MCwhcFcWiVy+WWlpaGh4d/9tlnRFKmiRMnAsDBgweVSqV++2vXrgFA7969yTDW\nKJinSIdAILCxsbl582ZDQwPxZ1RU1MaNGz/++OMDBw5MmTKFmA6Mi4srKyuztLR0d3cn22QD\nMEYR80YdUkRxRQyTow8D3EJaWtrHH3+8a9cuHMeJDkpPT//xxx+Jd8eMGaNQKA4ePNgm0oiP\nj09ISBAIBK+++mqbL7S0tHRzc+tSDf9GJpOVlZVdvnxZFxMeOnSotrbW09MzJibm7NmzO3fu\n9PT0zM3NjYyM1I094un8gw8+GDVqFInGP5Hn20ekd5AOBnsGiUSyevXq3377jcViBQYGzpw5\n09bW9mkxITVHXRv0fR0dHR0poDOELwpLS8s//vgjNTX16tWrUql0wIABM2bM4HA47u7uaWlp\n9+/f//PPP729vU1MTHAcP3fu3NGjRzEMW7FihS4ZLtVgnrP41BkAACAASURBVCJ9+Hx+YmKi\nWCzu27cvALBYLAcHB0dHRy6XCwA4jp8+ffq7774DgBUrVjg7O5NqrFEwQxHzRh1SRHFFDJPT\nBrq7BVNT07S0tPT09AcPHpw4cUIqlXp7e69cuZI4Gdi7d++MjAyJROLg4LBo0SKhUKhQKI4d\nO/b9998DwKpVq7y8vMhW0BaBQNDmsNy+ffssLCx27NjRrVs3DMOsra0DAwPz8vJyc3O1Wq3u\nqCqHwyEqg1MN5vURAYM9Q0xMTH5+vqen544dO3x8fAYOHBgUFFRWVpaZmfn4eUJqjrrH0fd1\ntHN0pIDqEL5ADh8+fOrUKQDw9PTctm0bn88nrjc0NERERBQVFbFYLCcnp4aGBqlUCgCLFi2a\nPn06mRYbgnmKdKjV6iVLlnC53AMHDrQ5vJ6enn7q1Kns7GwMw9566y2K19vRwRhFzBt1SBHF\nFTFMjj4McAtNTU0bN24sLi4GAG9v702bNuk6CP7dR7a2tnV1dUqlEsOwhQsXUrmP9EvVpaWl\nTZw4cd68efoNJBJJaGgoj8c7cuSI7umcsjCyj4ChnkGj0cyePVulUn311Vf6+3U1Gs3atWsL\nCwtdXV3b1CekBU/zdXRxdF0PWiF8UZSXlx84cEChUABAa2vr0KFDLS0tibcEAkFgYKBSqSwu\nLq6trVUoFFZWVu+///6kSZNINdkAzFOkD4vFUigUt2/fJoqT6q7X19dHR0cXFRXZ2dmtW7du\n7NixJBrZIZihiHmjDimiuCKGyWkDA9yCVCqNi4sjOsjT0zMgIED/aY/oI2KzYm1trVar9fb2\nXr16NcU3uekn1ZTL5f379ycyIuoQiUS3bt2qqanx9fW1trYmy04jYWQfMdUzqNXq48ePczic\nZcuW6V9nsVgCgeDmzZtSqbTNOiEteKKvo5Gj63rQCuGLoqWlZfPmzQKBYNCgQYcPHxaLxdu2\nbWuz1K5QKEpKSrhcbq9evUhPqWwQJikqLS0tKSnx8/PTz55cX1+/ePHiwYMHb9q0Sb+xRCLJ\nz88fPnw4UtT1MGnUESBFFFfEJDmMdAtKpTIqKkqlUslksqKiosDAwFWrVj1uM47jTU1NQqGQ\n2CRGC3TrhD169Pjyyy+JPZYEOI4vWbJEIpHs2LHD09OTRCONgZF9xCTP0Ia33367oqJiz549\nbTZPZmZmbtq0adiwYSkpKcuXL6dyfGu8r6OLo+t60Arhi4LL5QYEBAQGBnp7exNze4mJiYMH\nD9ZNKQEAh8Oxtra2sLCgxbhkjKL6+vqPPvooISHhypUrarXa0dGRmPcSCATl5eVJSUnjxo0z\nMTHRtReJRI6OjkgRKTBm1OlAikg01RgYI4eRbkEqlSoUivHjxwcGBo4ePTojIyM9Pb2ystLf\n319n+e3bt83MzAQCAZ/PJ7IIUpny8nI2m01ERLp1wvLy8qqqKj8/P52o8+fPX79+XSQSLVq0\nSD9QpCDM6yMCxniGx1Gr1RkZGSUlJYGBgfoB1dmzZwsKCrZs2dK/f//AwEDyDDRAh3wdLRwd\nKaCA8AXC5XIJx+3p6fk090EvmKFIIBAMGzYMwzCiLGlcXFxNTY2dnZ25uXm3bt3i4+P5fL7u\n4D4tYJ4iACA2L2AYxoxRpw9SRHGYIYdhbqGuri4mJuarr766cePGiBEjzM3N+Xz+yJEjdfGG\nr68vi8X6/fffd+7cmZqaOm7cOIoHTgBQXV29fv365OTkgICANjFhdnZ2enq6SCRqaGj49ddf\njx07BgBLly6l8vIgI/tIHwZ4BrVafeXKldjY2OTk5MbGxp49e3I4HA8Pj7S0tLy8vPv37w8a\nNIgomHHhwoVjx45ZWFjMmzfv8SqLlIJhvo4sUEDYRdDXfTwNmiqSSqUymczOzs7Hx2fatGm2\ntrZVVVWpqannz5/Pzc11cnKqqqrKysoKCQnRnyejMsxTVFNT8/nnn+/evfvMmTM1NTVeXl66\nows0HXXtgBRRHJrKYZhbqKioWL9+fX5+vpmZ2bRp01xdXYkaAPrxRnp6ek5OzvHjx3EcnzJl\nyqBBg8i22jACgSA/Pz8jIyMrK+vxmLC4uDgxMfHKlSuE8GXLllF5zx5T++hp0NEzVFRUhIWF\nJSQkFBcXFxUVJScnX7t2rU+fPt26dfP398/MzMzNzT137tydO3dOnjx59epVAFi2bBlFyn48\nDYb5OhJBAWHXQTv3UVpaWl1dbWVl9bQG9FKkP3np5+dnamrK4XDc3NyCgoIGDx6sUqnS0tKI\ndNJyubxXr14UnxIDJioCAKlUunbt2vv37+M4rlKp7t+/n5iYOGzYMF2KM3qNOmOglyKDbgHo\npsgg9JLDPLegVCrDwsKqqqo8PT2joqJ8fHyISIOAz+ePGjWqoKAgNzf3wYMHLBZr4cKFs2bN\nItFg42GxWMOHDy8pKXlaTNjU1OTn5xceHv7GG29QuVoag/uoHejlGRoaGjZs2FBRUWFvbz9z\n5kxfX9/W1tbi4uJr167169fP0dGRyItTWFhYWVnZ3NwsEomWLl1K5TkI5vk6ckEBYZeicx92\ndnaULbZDoFAoVq1aVVdXN3LkyHaa0UXR0yYvCWxsbIYPHx4UFCQWi8vLy2UyWUNDw7hx40g0\n2CDMU0Rw8ODBnJwcd3f3jRs3vvbaa3K5PCsr6+bNm4S7J9rQZdQZD10UGekWgD6KjIQuchjp\nFi5dunTlyhU7O7vt27ebmZkRFzMzMy9dulRWVubi4sLn88eOHevk5OTk5BQaGjp8+HByDe4Q\nBmPCu3fvDh48WL8eAAVhdh+1A108AwAcOnQoMzPTw8Pjv//974ABAzw8PMaNG8flctPS0lJS\nUiZMmGBiYjJkyJCQkJChQ4eOHz9+0aJFVFbESF9HLijLKAncu3evT58+ZFthmDVr1hQXFx86\ndMjc3Lz9lhRXpFQqV65cWVpa6unp+fHHH7c/jYfj+N69e+Pj43fv3k3ZAqzMUwQAEonE2to6\nNDRUq9Xu2bNHF/4dO3bs2LFjNjY2UVFRdnZ2uvYUH3WdgBaKjHcLQDFFarW6tbVVP41KR6GU\nnMdhpFsAgN27d1+5cmXJkiWvvvoqAJSWlu7duzcnJ4fNZms0mgEDBnzyySc0ShEhk8keH4Qa\njea///1vUlKSh4fH1q1bdY+2Uqk0KSlp6tSpXW5mx2BYH3UUinsGgvnz5zc1NX3++edttoDu\n3Lnzjz/+mDlz5oIFC8iyraMw1deRC9pQSwLUdxwEwcHBarU6ISHBYEuKK/rtt99KS0vt7Oy2\nbNmicxyZmZmHDx8+f/68RqPRb4xh2MSJEwHg0qVLJNhqHLRWpFar1Wp1m4tlZWVr1qz54osv\nAGDChAn6NXDnzp07d+5ciUQSFhZWWVmpu07xUdcJaKHIeLcAVFKk0Wi2b9++cePG5ubmTn8J\ndeQ8EVq7hXbo2bMnAGRmZpaUlBw9enTlypU4ju/evfvo0aN2dnbZ2dkFBQVk22gspaWl7733\nXmxsbJvrbDb7o48+cnd3z8/P37x5c0tLC3Hd0tKS+tEgMKuPOgHFPQMA4DhOuL7Ht01OmTIF\nANLS0kgwq7Mw1deRC53yOyG6mICAgEOHDl28ePG1116j9dzevXv3AGDq1KnEtGubycvExMQ2\nk5disRgA7t69S5bBBqGvIrVavX37dgD4+OOP9bONi0QikUh0+fJlABAKhW0+NXfuXAA4duxY\nWFhYm3VCRBdDU7eAYZhQKCwsLNy0adO2bdv0ZxwYA33dQvtMmzYtJSUlNTU1NTVVLBYvXrx4\n8uTJGIbhOE74EK1WS7aNhiktLVUqlURfHDhwAACCg4P1G7DZ7FmzZkVFRRExof46IfVhRh8x\nGAzD7O3ty8vLCwoK+vXrp/8WkVNUNwdBC5jq68gFrRAingqHwwkKCqqurr5z5w7ZtjwTHZq8\n1Gq13333HQBQOeqgryK1Wt3U1JSbm6u/1gcAlpaWUVFRDg4OAHD16tU2M3ygt054+/btrjMX\n8Rg0dQssFmvVqlVjxowhYsJnWSekLPR1C+0jEAiioqI2btz48ccfHzhwYMqUKcSjXlxcXFlZ\nmaWlJZWzrRDU19dv3rx506ZNLBbr008/NTMzO3DgwOPrhMRWUl9f3/z8/Bs3bpBhaSdhQB8x\nHmKV7ODBg0qlUv/6tWvXAKB3797kmNUpmOrryAWtEHYeXZ00sg15PpSWlpaUlPj5+eln5p08\nefLJkycvXLgwdOhQEm17Rjo0eVlYWHj79m2RSETl/fT0VSQQCCIjI6urqx0cHKqqqmxsbHTr\nhERMGBYWVlRU9NVXX61YsaLNzTV37twBAwb079+fDMONQqFQ/PLLLzdu3Hjrrbd8fX3JNuc5\nwCS3QMSEAHDt2jVGrhPS1y0YhM1m699QOI6fPn36yJEjALB06VLqVzY/cuSIRCIZMGCAra0t\nn8//9NNPw8PDH18nJB7N33///T///NNg3iaqQfc+YtgT3eOEhIQkJiYWFBRERESsWrXK1tYW\nx/Fz586dOXMGw7Dp06eTbWAHYLCvIxGUVMYwGo2GxWLpu4mampqvv/46LS2Nz+ePGTPmzTff\nfOKDRVlZGbHiQX3q6+s//PBDqVRqa2s7ZcqUiRMn6hTt2rXr6tWrBw4csLW1JdfIZ0Gj0dy5\nc0ej0QwcOFC3Dyc2NvbAgQOWlpbffvut/n9XycnJFhYWHh4eJBlrFHRXVFFRsWHDBnd39zZ7\nR6VSaVhYWFlZ2fjx4x+PCalMRUXF1q1by8rKiAejNWvW6Mon6oPcArlotdpdu3Zdu3bN1dX1\naTEhjfqoDXR3C8aQnp5+6tSp7OxsDMPeeuutGTNmkG1RexC5shYuXMjj8fbs2aPbD//w4cPw\n8PDGxsY5c+bMmzcPwzCim2xsbL799ltybX526NVHzHuiAwC1Wn316tU///wTwzAvL6/Ro0fz\n+fyGhoaIiIiioiIWi+Xk5NTQ0CCVSgFg0aJF9AoI4eXwdV0MKjthAOLIU2Zmpq+vL/FsarBO\nGsHVq1c3b95sYmJC/dPGpaWlzc3NEydOxDDs3r17KSkpcXFxNTU1dnZ25ubm3bp1i4+P5/P5\nAwcOJNvSzsNisRwcHBwdHYmM3sTkJbGLYMWKFc7OzvqNHRwcrK2tyTCzA9BdEZfLTU1NzczM\nLC4uHjlypG4BSpdsPTMzUyKR6O47itPa2rphw4by8nI3N7eoqKjJkyc/cUYcuQUSkUql+/fv\nP3DggEQiaWlpkUqlGRkZAQEBbeJ2GvXR49DdLRikvr4+Ojq6qKjIzs5u3bp1Y8eOJdui9igr\nK1u/fn1JSUlVVVVQUJD+zWJhYeHj43Pz5s07d+6cP38+Li6O2CO6bNkyem3eexx69RHznujg\n6QXoHRwciGKDxcXFtbW1CoXCysrq/fffp3KxwafBeF/X9aCA0ABNTU2//PKL/rOpMXXSAODO\nnTsZGRl9+vQZMGAAifYbpL6+fsOGDQkJCePHj3/llVemTZtma2tbVVWVmpp6/vz53NxcJyen\nqqqqrKyskJAQ/W1j9CU9Pf3LL79MSEjAMGzhwoVBQUFkW/Ss0FERh8MZNWpUTk4OM2LCM2fO\n3Lhxw9HRcceOHe2kwEZugSwkEsnatWv//PNPU1PTwMDAvn37SiSS0tLSx2NCuvSRQejoFgwi\nEAiGDx/u5eX17rvv2tvbk22OATQazR9//JGZmSmXy4cMGdKmqpuFhcXIkSOLi4tLSkpaWlp4\nPN6SJUvo+GjeBnr1EcOe6MBQAfoePXoQxQb9/f2nTZv21ltv9erVi2yTnxVG+rquB20ZNUyb\nPWzG10nLzc3t27cvSVYbyxdffJGQkDBgwIDNmzfz+Xzd9by8vPPnzycmJqpUKhaLpdVq161b\nFxAQQKKpz4X6+vp169ZVVlba2dm99957gwYNItuiZ4XWihQKRURExN27d319fZ+2d3Tjxo3U\nP4+3atWqwsLCsLAwf3//9lsit0AK0dHRN2/e9PT0jIyMJLbtKZXKXbt2JSYmPr53lBZ91D60\ndgtMQufHnJycYmJinrhx4K+//qqtrXVzcyNyISK6ho5WvqWLW9i3b9+FCxc8PDw++eQTIoMo\nAJw6derw4cNmZmb79u1j2DBDvu55gVYIDdNmvaKqqmr8+PE+Pj66BsSMUXJycptZpW7dupFj\nsXFIJBKhULh3715zc/Po6Gid4yCwsbEZPnx4UFCQWCwuLy+XyWQNDQ3jxo0jy9rnBb0mL42B\nRopwHM/Ozk5NTW1sbOzevTuLxTK4Tti9e3eK7zgiOH78uFwuX7hw4eMlpxMSEmpra3WHT5Bb\n6Ho0Gk1MTIxWq42MjNRtHGKz2cOHD09NTS0sLGyzTkjxPjIGGrkFZqN7figtLa2pqfHz83t8\nv4O5ubm9vb3+zAviRaO/m5cZT3Q6du/erVQqw8PD9Q949+3bt6ysLD8/n8Vi0WifvzEgX/e8\nQAGhUejHhDKZzNfX19PTU7/B0zwIRVCr1XK5XH9bVDtnG/QRCAR9+/YNDg6WSqWEtHa2w9EF\nkUjk6OhI/V2IxkMLRdXV1REREadOnbpz5861a9euX7/u4eFhbW3dfkxIl1PgSUlJEolkyJAh\nbf5DwnH866+/jo2NnTp16hNzzJDIy+MW1Gr18ePHORzOsmXL9K+zWCyBQHDz5s2nnSekNZR1\nC3l5edbW1oRhpaWl//vf/3x8fBgcDumeH7KysuiyB57x6Hbz0vGJrh1wHD98+DAAhIaGtlmO\ntrCwuHz5skKhYN6OSsr6OnpBg7MfFIG+ddI0Gs327ds3btyoX3pLVwe8trbWYD5oDMOICjaX\nLl16sbYiGApxqqGgoMDS0nLmzJnBwcFVVVXh4eFpaWnwdy0KLy+v5OTk6Ojox28u6hMYGAgA\nR44caVPi6ezZs/fu3XN2dqbaI8VL5RZ4PJ69vb1arX7w4EGbt4hQdtiwYYWFhYmJiSQY95KR\nlpb28ccf79q1C8fx0tLS8PDw9PT0H3/8kWy7nic4jrc5jKN7frh8+fIXX3yBjuqQDn2f6B6n\ntLRUVxWWKEAPAPqF+AjoWIAe0ZWgFcIOoJvnI3b8Pz7PN2DAgAEDBowePZosC59Gampqenq6\n/hS4TktTU1NdXd2kSZPazwyhUqliY2PVavXkyZO7ymoEc9i+fXthYaGXl1d0dLSvr291dXVK\nSoparU5KSnJzc7O3t9dfJ3RycqLdMXcXF5f09PT79+/n5OR4eXmZmZkpFIoTJ0788MMPGIat\nXLmSgiVxXyq3oFarMzIySkpKAgMD9UWdPXu2oKBgy5Yt/fv3J6J6xAvF1NQ0LS0tPT39wYMH\nJ06ckEql3t7eK1eu5HDoVxVZo9FgGNamJNXnn3++e/fuM2fO1NTUeHl56dac6ZgrSyKRfP31\n199//31ycrKpqSmNii4YA32f6PTBcXzt2rXJyclBQUHETaRUKjMyMh4+fDh27P+3d+dBTd7p\nA8DfNwcEUG4UPAC5QQ45JSiHF4JHtbt2Geu0wnpPoVu1W/2J2naqyFh3C7UqVbd2xfGobseO\nICgpBItQrkBiOAwoKJfYYDhUQgjJ7493JpMmEAOo75Hn89cuxJnv2/flyft8j+dZpD6vd/36\n9cbGRj8/v8jISPzGC4gLEsLxeWVMJ2BXLhRFw8PDu7q6xnr503G2AaNQKE6cONHW1ubt7Q2h\nBIxXY2Pj+fPnbW1tjxw5Ym5unp+fn5WVpVQqFy9e3NzcrJETOjg4kOLQoAYajTZ//nw+ny8S\niXJzc/Pz8y9duiQQCFAUTUpKImCmYWhhwcPDg8fjNTY2Njc3z5s3D5ssz8vLu3TpkqWl5fvv\nv+/o6Ij3GA2CsbHxggULampqhEKhVCr19/c/cOCAjv2iHR0d5ubmb3OEeppASyr19wc3NzeC\n51e9vb27d+9uaGgYGBh48uTJnTt3ent7g4ODtQMCYe/RK5HxjU4DiqIvXrwoLy+n0Wj+/v4I\ngri7u/N4vObm5rq6On9/fzMzM6wB/cWLF1EUTUlJsbW1xXvUgIggIRw3Ms7zvfLlT/fZhubm\n5h9//NHExOSzzz4jTtyn3uQl9a4IU1RUJBAI/vGPf7i6upaVlWVkZCiVys2bN2/cuPHx48et\nra3qOaGLiwve450gFouFpbLt7e19fX0KhcLNze3jjz8mbH5LybAwFhqNFh4ezufz6+vrc3Nz\nq6urr169yuVyEQTZunWrm5sb3gPUhWKRQSKR5OTkSKVSBEG8vLwWLlw41ncokZu/TawlFYlq\nZZ0+fbqurs7V1TUlJSUkJKSpqUkgEDx58iQ8PFz9fhH5HmmQy+WFhYU3btyoqKjo7++fNWsW\ng8Eg4xudBk9PTy6XW1tbGx0dPWXKFFWsE4lEOTk5paWlV65cwfbDJyUlEXnyjmKBjnQgIZwI\nMkaQV7786bgWGxsbFxeX+Ph44jTMpd7kJfWuqL29XSwWW1lZeXt7v3z5ctWqVc+fPz9w4IBM\nJlu/fv26desQBGltbe3s7JRKpXfv3o2KiiLaQbvxYjAYAQEB7777blxcXEJCwurVqwle9Ixi\nYUE3FouFNWV+8ODBkydPnj9/bmpqunnzZoJ3ftMzMhA5LIyMjFRVVc2YMQMbs5GRkVAotLW1\nnTJlSm1trXaOoULk5m8sFkvjb+TMmTMmJiZHjx61t7efMmXK/PnzkdEKk5ClVtbJkyfNzc2P\nHTvm5OTk7OwcExPD4/H4fL7G/SLyPVI3Vq92W1tbMr7R9fT0GBsbY7vf6XS6jY3NnTt3/vjj\nDyzfU8U6EjWgp0CgIztICCeIXHs/JBLJ6dOnz5w5IxaLX758qVFST59oOHPmTFW5diKg3uQl\nxa5I1dk8LCzM0tIyKCiIRqPl5uZWVlYGBgampKRgH7tw4QKLxdqxY8eMGTNe2cGPLFAUNTEx\nIX69SmqEhXGVrGQwGFhT5pCQkKVLlyYlJWn0CicgfSIDkcMCl8tNS0vLy8tTPUV0Oj0iIiIm\nJiYqKqq2trampkbjcsrLy83NzY2NjX18fAICAhYvXozvJYxlwi2pSOHnn39etWqVqtQwlgBr\n54QEv0cY3b3ap02bRq43uvb29j179hQUFNjb28+YMQNBEEdHx7q6uurqai8vL2wWUhXryNKA\nnuyBjgIgIZw4suz9EIvFn376aV1d3ZQpU2JiYnx8fMRicXt7+1gvf8SPhgjlJi8Ryl3RmTNn\nhEKhp6fnihUrVOUiCgsLHzx48Le//Q3bF5qbm3vr1i0vL6+EhARfX19cx2twqBEWeDzewYMH\nOzs7w8PDOzo6UlNTW1paBgcHQ0NDdfwrBoNhZ2dnZ2dHikIm+kQGYoaFkZGRrKys7OzsFy9e\nsNnstWvXqjeBpNPp2HlCVU4YFhZGo9GKioqOHTtWVVW1ZMkS7E7hexW6kb0llQaJRHL27NkL\nFy5g3WJ9fX3V37zHygkJfo8QBDl37hyfz/fw8Pj666/9/Pw8PDyWLFnCZDJ5PF5lZeWyZcuM\njY3J8kaHIMjPP/9cU1Pz8uVLLpfb1NTk7u4+depUNze3W7duiUSiuLg4Vd0sBoNhY2NjaWlJ\n/DVP8gY6yoCEcFJIsfcjMzNTJBJ5eXkdPXo0ODg4ICAgLi6uo6ODz+drv/yRIhoi1Jq8xFDm\ninR0Nu/v7y8vL5dIJHZ2djk5OZcuXUJRdMeOHcQ/uE891AgLVCpZORZ9IgMxw0JmZiaHw2Gx\nWDt37tywYYO1tbX2Z9RzQqzSzOXLl5VK5YoVK+bNm/f2xzwB6rV5+/r6li1bplGbV5UTTps2\nTSNdJBSJRLJr1y6hUNjX19fZ2Tk4OKh9OeqP35w5c2bPno3jgPWnZ692UrzRIQji7u7O4XCm\nTZu2Zs2aoqKinJycwcHBsLCwwcHBqqoqMzMzIj9mYyFvoKMMSAgpbmRkJDMzU6FQfPnll+qz\ns2w2u6qq6sGDBxovf0SOhtSbvKTeFenubO7k5NTQ0FBfX8/lckUiEYIgiYmJ0dHROA3WcFEm\nLIy3ZCVZTCAyEC0slJWVZWdnMxiMQ4cOqe+i1GZsbBwZGdnU1FRfX9/a2kqj0RITE9977723\nNtQJk0gkL168MDU1pUYDg6ysrPr6ehcXl+Tk5MDAQJFI1NnZqX052ONnb29PzEkibdTr1W5k\nZGRmZlZQULBw4cLt27c/e/YsLy/v119/DQsLa25u5vP5S5cuNTExwXuYr0aBQEclBp0Qjuvw\nCUnJ5fLLly8zGIytW7eq/5xGo7FYrLKyMo2DQ4RFvclL6l0RgiAjIyN37tzh8/mDg4NBQUEa\nB7RoNNrChQsZDMbw8LCLi8uWLVtgqg8XlAkLyHhKVpIFNSLDqVOnnj59mpCQoJ02tLW1NTQ0\nyGQyKysr7CdGRkaLFi1ydHR0dHTcsmULm81+6+Mdn2fPnmVmZp44caKkpATbCEquBgZyuXxw\ncFD1141t68jKysL27Dk7O7u4uERHR491OSwWy93dHaexjxuKosXFxQMDA4GBgRp3YWBgID8/\n39jYePXq1XgNT0/t7e3l5eUuLi7YjXB1da2qqvr999/XrFkTHR0dGBhYX1/P4XCGh4eHh4f7\n+/uJfyafGoGOSgw3IZzY4RPSodPpXC63v7+fzWZbWlqq/6qvr6+oqCg0NFQoFNrb2xO88Dr1\nJi+pd0WIHp3N6XS6r6/vsmXLoqKiCF6BE9GvCjYZi55RJiwg4ylZSRbUiAw//PCDTCbbtGmT\n+k7RxsbG9PT07Ozs3377LT8/XyQShYaGYmkJiqKOjo5+fn4aDyQBdXV17dmzRyQSmZubr1q1\nytXV1dTUFCFP+XGsg2Jubi4246Pa1vH06dP4+HjVtg6yXI4+yN6rfXh4eN++fRwOp6qqysnJ\nydbWFkVRJyen3NzcoaGh4OBgW1vb5cuXW1tbNzY2Dg0NhYeHE/+UHTUCHZUYbkJoCIdPMHK5\nvLa2tq2tLSYmRv3t/Jdffmlqavriiy98fX0J2DhbS1921QAAHz5JREFUhXqTl9S7InX6dzYn\nOH2qYJO36BnZwwJGIpFIpdKlS5fqU7IS36Hqg0qRobCwsL+/38PDw9XVFUEQqVR67ty5kydP\n9vT0zJw5Eyti1NbW1tzcTK5tAjKZbN++fd3d3V5eXmlpacHBwVg2iCF+EoVlgxUVFcPDw9h8\nkGpbx8uXL0NDQ9VDGfEvZ1RSqfTq1atZWVl2dnbYLB7Ze7XT6fTIyMiBgYHq6uqCgoKuri5P\nT8/Zs2c/efKEw+EsWLDAwsICRVE3N7fY2FhXV9eVK1fiPWRdqBToqMRwE8JxHT4h4yKAioeH\nB4/Ha2xsbG5unjdvHlbkIy8v79KlS5aWlu+//76joyPeYxwT9SYvqXdF2vTsbE5w+lTBJm/R\nM1KHBeTPe/YiIiIsLCz0KVmJ96h1oV5kqK6uFggESqWyoaEhIyOjtrbWwsLio48+Sk5OjoqK\nYrPZHA6ns7Nz7ty506dPx3uw+rp9+3ZhYaG9vX16errqrYDP59++fbujo8PFxcXU1JSwtXlV\n2eCUKVMOHTqEdRDVXRSH+KWGNWD9BktLS1+8eCGTyebPn0+n08nbq12FxWLNnz8/JCSktbW1\nuro6Pz8fRdHVq1ffvn27tbVVNatiZGRE8NBNvUBHGYabECJ6Hz4h7yIARhUK6+vrc3Nzq6ur\nr169yuVyEQTZunUrwbeEUW/yknpXNCoKXIs+VbDJW/SM1GFhrD17pC5ZSbHI4O7u/uzZs/v3\n7wsEAuxQcVRU1IEDB1T1Dy0sLO7du9fd3e3q6kqi79bc3NyWlpaEhARsDqi9vT09Pf3KlSv3\n79+vrKysr69fvHgxMWvzamSDWO8fjOoBe/TokfaePWJezqiGhob27t3b2dnp5uaWlpYWHx+v\n2iBKxl7t2mxsbJYtWzZ9+vT6+vry8vKKiopZs2bdu3fP2dmZLOfrKBboqMSAEsKRkZGqqqoZ\nM2aonjA9D5+QdxFARRUKHzx48OTJk+fPn5uamm7evJn4oZBik5cIFa9oLGQP7no2AiFv0TOS\nhgXde/bIW7KSYpEBRdGwsDBPT08LC4uQkJBt27bFx8erN6GRy+Xnz5+XSqXx8fGzZs3Ccajj\n0t7ezufz6XS6i4tLbm7uN998Y21tnZqampiYWFJS8vDhw5CQEBsbG6LV5lVlg0wm88iRI9g+\nXnW6wzXRLmcs169fLykpmT179tGjR1Uli1RI16t9VCiKuri4xMXFyeXympqa7u5uBEFEItHK\nlSs1TuwTE8UCHZUYSkLI5XLT0tLy8vLUIx2dTo+IiHjl4ZPAwECSLgKoU4XCkJCQpUuXJiUl\naVSAJCzKTF6qUO+KxkK64D6xRiDkRfCwIJfLFQqFxlvOK/fsGRsbk6tkpQr1IoODg0NQUJCv\nr6+FhYXGr65cuVJVVWVlZbVt2zaNZgBE5uLiIhQKBQLBzZs3Hz16tHHjxu3bt1tbWzMYjLy8\nvIGBgaVLlxLtQJoqG0QQRKFQTJ06VaMhEIbsU3gIgpw5c0YikSQnJzs7O4/1GRL1ateByWQG\nBgZGRkZ2dXV1dXW98847/v7+eA9KX9QLdNRA/YRwZGQkKysrOzv7xYsXbDZ77dq1qr5bCILQ\n6XQ6nf7KwyfEL4eoJwaDYWdnZ2dnR/DjNBqoMXmpjnpXNBYSBXeDrYJNzLCAvcWWlJQsWLBA\n/Rbos2ePRCUrNRhIZMjLy/vxxx8RBNm1axe5VmkYDMbixYvd3d0XLFiwZcsWHx8f7Abl5ORw\nuVwrK6u///3vhFqoUd8p+sEHHwiFQqFQODw8TMmc8PLly4ODg4mJiWZmZhq/KigowAoa4TKw\nN8Tc3DwmJmb+/PkEb3GpzUACHblQPyHMzMzkcDgsFmvnzp0bNmxQL4GtjiyHTzTaByEI0t7e\nLhaLtXdHUAzZv6i0keWKtB85ZJxPHdGC+6hXhEAVbIKRyWS3bt168OBBRESEek0vPffs4Tjy\nSSJLZJiYoaGh77///vLlywiCbNy4MTY2Fu8RjRuNRps5c+bs2bOZTCaCIEql8n//+x+W36ak\npOhYm3r7NM4Nstlsd3f3u3fv6pkTkmJbh7rS0lKxWBwUFKQxia9UKrOysm7cuLFy5Uri91Yd\nL5K+/lE70JERxRPCsrKy7OxsBoNx6NCh4OBg3R8m/uETjfZBCIL09vbu3bu3oKAgLCxMe08O\nxVAvfBD/irQfOYTkT92oVwRVsAmIwWBERkay2ezZs2d3d3ebmJhgCy9k3LM3XsSPDBMwMjKS\nm5ubnp5eV1dnbGy8c+fO+Ph4vAc1WTU1Nd99911BQQGKoomJiXFxcXiP6E9u3759/fp19Soy\nDg4OeuaEpNjWoWF4eLiqqqqtrW3x4sXq+5B/+eUXDofj4uJC/Ab0BoWSgY68KJ4Qnjp16unT\npwkJCdpxra2traGhQSaTqU+uGBkZEfbwiXb7IARBzpw5IxQKPT09V6xYQajtXm8IqScvR0Xk\nKxr1kUPI/NSNekUUqILd2NhoY2ODDa+9vf1f//pXcHAwKTrv6cZgMCwsLLCaovX19djeUdLt\n2ZsYIkeGiaHRaHfu3BEIBGw2e8+ePeQt0qbS29t75MiRhw8f2tvbf/bZZwRMn1xdXWUyWVJS\nknpNUT1zQkJt69CTi4tLTU1Nc3OzUCj09vY2NzeXSqU//fTThQsXUBT95JNP7O3t8R4j+BPq\nBTryQpVKJd5jeIM2bNgwMDDwzTffqNfUamxsPHv2rEgkwv5vcHDwp59+qr3jnFC0C0aLxWIb\nG5vExEQjI6Nvv/3WxMQE7zG+PRKJpLS0lOCtV8eFgFc0ao1yUj91Y1Vdl0gk+/bt6+joQBBk\n8+bN77zzjvq/Uv126dKlKSkpBMwJeTzeV199FRkZuXPnzo6OjtTUVIlEEh8fv2PHDryH9npI\npdLPP/+8oaEhLCzs//7v/7QLkGB79rKzs5VK5T//+U9SdBXTEwEjwyR1dHQQ/J2vvb1dJpOp\nZ1A6iMVikUjEZrMJGBl04/F4hw8fHh4eXrdu3Ycffoj3cF6bvr6+zz///OHDhwiCWFlZDQwM\nyOVyFEWTkpLWrl2L9+j+pLGx0dPTUzWRd+bMmd27d5O35fVkUC/QkRHFVwgLCwv7+/s9PDyw\nhFAqlZ47d+7kyZPY2WIfHx+xWNzW1tbc3EzkIqLaL7KqNY3u7u64uLhRZ/gojKSTlzoQ7YpG\nzZ1I/dTp04OLpFWwp0yZwuPxampqWltbf/rpJ4lE4u/v/8knn5Br8VYHbO+oUCjk8/ktLS0a\nNWYIu2dv8odvEeJFhskj2vuuxm0a7354U1PT2bNnky4bRPRbJyQjFouFLdW2t7f39fUpFAo3\nN7ePP/6YaOu3PB7v4MGDnZ2d4eHh2EReS0vL4OBgaGgo3kPDAfUCHRlRPCFEEKS6ulogECiV\nyoaGhoyMjNraWgsLi48++ig5OTkqKorNZnM4nM7Ozrlz506fPh3vwY5i1PZBqs6eg4ODQUFB\no1aK7+joINpXLyCFsTpWkfep078HFxmrYGMFsbBSWFKp1N/f/8CBAzr2ixLzHuk2Vk5I2D17\n1Dt8S0nat4m8++EngKo5IYPBCAgIePfdd+Pi4hISElavXk3AQvHjncgjY9wG5ELxhNDd3f3Z\ns2f3798XCATYi2xUVNSBAwe8vLywD1hYWNy7d6+7u9vV1VW94RhBjNU+SH1N49mzZ8uXL9c4\nM8Plcg8ePGhmZkbAiwJEpqNjFUmfutfSg4to85cjIyNVVVUzZszABimRSHJycqRSKYIgXl5e\nCxcuHGvJgpj3SB+j5oQsFovNZnt7e+/YsYM473zUO3xLSRq3SS6Xm5iYnDx50sLC4siRIywW\nC+8Bvg1UzQkRBEFR1MTEhLA1Rcc1kUfeuA1IhPQn73VDUTQ5OfmLL75Ys2bNhg0bvvvuu08/\n/VR9alYulz969AhBkGnTpuE3zNGpb3LbtGkTk8m8du3a+fPnsd9aWVmlpaXNnDnz8ePHx48f\n1zgL2tPTo1Aonj9/jsfADU5jY6Pqv397e/vnn3/e39+P75AmRvcjh5DwqXvlFalTXR2Hw9G+\nOuLgcrnbtm07dOiQapDW1tZz5szx8/NzcXEpLi7+5ptvxho8Ae+RNrlczuFwMjMzv/3224KC\ngqGhIeznLBbryy+/9Pb2rqioOHLkyMjICIIgtra2ERERxNmzp7E5GWtCIBaLlUplVVXV9OnT\n9+/fT4F6P2SncZuYTObu3buPHz9Oo9FiY2PJdTp6koKCglJTU5lMJtZFA7w1L1686O3txf63\nlZWVjtyVFHEbkB3FVwgxDg4OQUFBvr6+2rt0rly5UlVVZWVltW3bNu1aBTjSp32Qak1DIBBo\nrGn4+PgEBAQQ+WCkWCzOysr673//i10jAY9m6YkyJwH07FhFoqdukj24CFhZdGRkJCsrKzs7\n+8WLF2w2e+3atVjDPTqdHhERERMTExUVhTVTffLkSXh4uGrw5eXl5ubmxsbGRLtH2rq6uvbt\n21dQUNDS0vLw4cOKiori4mJPT0+sk4Tu84S4o97hW0rSvk3k3Q//Wjg4OGAnaPAeiGExMjIS\nCoW2trZTpkypra3VCNrqiB+3EQSRy+WFhYU3btyoqKjo7++fNWsW7IMgF4NICMeSl5eHNZPd\ntWuXk5MT3sP5Ez3bB+l4f7Wzs8PzAnTq7e3dvXt3Q0PDwMDAkydP7ty509vbGxwcrB0Kif8d\nTJmTAPp3rCLLUzeZHlzErCKTmZnJ4XBYLNbOnTs3bNhgbW2t+hWdTqfT6dg2JFVOGBYWRqPR\nioqKjh07VlVVtWTJEgaDQah7pKGvr2/v3r1dXV0ODg7r1q0LCwsbGhpqaWkpLi6eO3cuto9D\nPSd0dHQkTuim3uFbShr1NpF0P/xrNHXqVLyHYHD0n8hDCPbdqk33RJ4KBDoiM9CEcGho6Pvv\nv798+TKCIBs3boyNjcV7RJr0bx9E8DWNUZ0+fbqurs7V1TUlJSUkJKSpqUkgEGhPj5HiO5gy\nJwHG1bGKFE/dZHpwEbCKTFlZWXZ2NoPBOHToUHBw8FgfU88Jscfy8uXLSqVyxYoV8+bNe5sD\nnoBz587x+XwPD4+vv/7az8/Pw8NjyZIlTCaTx+NVVlYuW7YM+8vCckIHBwfi3CDqHb6lJH1u\nU3t7+x9//DF//nz1mFZdXV1bW+vp6UmB9onkQu11J/0n8vAeqS76TOQhEOgIz+ASwpGRkdzc\n3PT09Lq6OmNj4507d8bHx+M9qFGgKDpv3jzt6uSvzAmJtqYxqpMnT5qbmx87dszJycnZ2Tkm\nJobH4/H5fI2ckLDfwRMu6UHYK0LG+cghZHjqxntF6ohWRQZBkFOnTj19+jQhIUE7C2pra2to\naJDJZNjFGhsbR0ZGNjU11dfXt7a20mi0xMTE9957D49Rj09GRoZMJktNTVU/1O3j49PR0SES\niWg0mupmMRgMPTvFvQXqWxA/+OADoVA41h8LJBs40v82EX8/vIEwnHUnQ5jIg0BHcAaXENJo\ntDt37ggEAjabvWfPHjI+lzpyQqKtaYzl559/XrVqleprmMViLViwQDsnJOZ3MJfLTUtLy8vL\nU70xUOwkgDbdOSFZnjp1ZKyt98MPP8hksk2bNqnvFG1sbExPT8/Ozv7tt9/y8/NFIlFoaKiR\nkZGRkdGiRYscHR0dHR23bNlCitNBSqUSq/ezZcsWjRPdlpaWHA5HKpUSp82gCvUO31LSeG8T\nwffDGwJDW3ei/EQeBDqCM7iEEEGQ4ODgqKioFStWkHdKaayckGhrGuokEsnZs2cvXLhQVVXV\n39/v6+urHr7HygkJ9R08+ZIeCMGuSH86ckIiP3U6kC4nLCws7O/v9/DwwE49SaXSc+fOnTx5\nsqenZ+bMmT4+PmKxuK2trbm5GfvGRVHU0dHRz89P1faA4FAULS4uHhgYCAwM1Cj7PDAwkJ+f\nb2xsvHr1aryGNxbqHb6lpNdym8DbZIDrTpSfyINAR2SGmBAiCELeVFCFXK+zEolk165dQqGw\nr6+vs7NzcHCwr69v2bJl6mdp1HPCOXPmzJ49G8cBj+q1lPTAcfyTRK5HTh+ku6Lq6mqBQKBU\nKhsaGjIyMmpray0sLD766KPk5GSsSCCHw+ns7Jw7d+706dPxHuxEyGSy2traR48eLVq0SP3d\n4vr1642NjX5+fpGRkTgOb1TUO3xLSRO+TcTcD28IDHPdibATeX19fbW1tX/88ce0adPU39xI\nOpEHtBloQkgNqi8zPz8/gs+NZWVl1dfXu7i4JCcnBwYGikSizs7Onp4ejfchLCe0t7cn4BZE\nQyjp8UokeuT0RKIrcnd3f/bs2f379wUCAVayMioq6sCBA15eXtgHLCws7t27193d7erqSord\nU9q9Z9zd3Xk8XnNzc11dnb+/v5mZmVKpzM3NvXjxIoqiKSkpGmeHiIB6h28paWK3iYz74akB\n1p2IQ6FQXLx4MT09vbi4mMvllpSUBAcHq5elJeNEHtAGCSG5EbB9kFwuHxwcVLVYFYvFJiYm\nWVlZWBUZZ2dnFxeX6OjosebIWSyWu7s7TmPXxRBKeuiDgI/cJJHlilAUDQsL8/T0tLCwCAkJ\n2bZtW3x8PIvFUn1ALpefP39eKpXGx8fPmjULx6HqY9TeM6GhoWw2m8/ni0SinJyc0tLSK1eu\n3L17F0GQpKQk0r1VQLJBCtTbD08isO5EcHK5/OjRo/n5+QqFwt7eHkVRsVjM5/NjY2NVuR8Z\nJ/KANkgISY9Q7YOwg/u5ubkLFy40MjJSdWR++vRpfHw8qfdNUb6kh/4I9ci9FiS6IgcHh6Cg\nIF9fXwsLC41fXblypaqqysrKatu2bRpz6gQ0Vu+ZmJiYRYsWyWSylpaWnp4eqVRqbW2dnJy8\nfPlyvIc8EZBskALpdo9TAKw7ER/2RldeXm5qarpnz57t27fHx8fX1ta2trZ6e3vPmDED+xiN\nRgsPD6fMRJ7BgoQQvDaqMm7Dw8NsNtvS0lLVkfnly5ehoaHq29hIlxNSvqQHILW8vLwff/wR\nQZBdu3YRp1e7Djp6zyxcuDAoKOidd94JDw9ftWrVxo0bSXFFY4FkgxTgNr1NsO5EfOqFeQ8f\nPuzr64sgCJPJpNPp5eXl0dHRqoQQQRAWixUTE0OZiTzDBAkheD00inrPmTMH+XNHZu0qMqQ7\nS0P5kh6AjIaGhr7//vvLly8jCLJx48bY2Fi8R6SXV/aeYTKZNjY2lpaWBJ8q0geJjqoaMrhN\nb4chrDvJ5fLCwsIbN25UVFT09/fPmjVr1JJyhO2gqPFGp16K6datW48fP6bRaP/5z39u3rwp\nkUi8vb3pdDqDwaDSRJ4BgoQQvAY6Yocq63v06JF2FRkSnaWhXkkPQHYjIyO5ubnp6el1dXXG\nxsY7d+6Mj4/He1C6TKz3DDWQ5aiqgYPb9KYZwrpTV1fXvn37CgoKWlpaHj58WFFRUVxc7Onp\nqbGkSeQOigqFoqSkpKOjw8zMbPny5aqstbq6+ocffpDL5Z2dnRYWFu3t7XV1dTweLzo6Gst4\nGQwGZSbyDA0khGCyVPGdyWQeOXIE21GpTvfuULKcpaFYSQ9AATQa7c6dOwKBgM1m79mzh+Br\nGtToPTMZJDqqasjgNr05hrDu1NfXt3fv3q6uLgcHh3Xr1oWFhQ0NDbW0tBQXF8+dO1e9QA6R\nOyjSaLSIiIiWlpYHDx6UlpaGhYWZm5sLBIK0tDS5XB4dHX348OE1a9aEhob+/vvvXV1dg4OD\nOqqvA1KAhBBMiiq+IwiiUCimTp066tEL0p0YHAtlSnoAaggODo6KilqxYgUx9x2po0DvGQDA\nZBjCutO5c+f4fL6Hh8fXX3/t5+fn4eGxZMkSJpPJ4/EqKyuXLVtmbGyMfZLgHRQ1ckJTU9OM\njIyhoaH4+PiUlBSskry1tbW1tXVZWVl3d/df/vIXvIcMJgUSQjBx6rN9H3zwgVAo1HEcnzI5\n4ahIV9IDUAbxU0HK9J4BAEyGIaw7ZWRkyGSy1NRU9cVAHx+fjo4OkUhEo9HUX5AI3kFR/X5V\nVlaOjIzEx8dv375dPVwPDw/fvn2bRqNRpreWwYKEEEyQxt4PNpv9yhJtpKsiow+SlvQA4O2g\nUu8ZAMAkUXvdSalUnj9/HkGQLVu2aGwUsrS05HA4Uqk0Li4Op9FNhOp+dXR0MJnMjz/+WGN7\n1LVr15qamgICAmJiYnAaI3g9aK/+CACj4XA4GicBgoKCUlNTmUzmtWvXsJiozcrKKi0tbdu2\nbWFhYW93vK/fyMjIjRs3tmzZcuvWLWNj408//fSvf/0r3oMCgFhMTU1NTU05HI5YLMbe9lSw\naDBz5kwOh3P8+HGlUonXIAEAbw2Dwdi7d29YWJhEIjlx4gSWDWqsO2HzxTKZDL9h6tLX1/f7\n77/X1NSMjIyo/xxFUQcHBwRBmpqaNP4JVnHg5cuXb22Qr4vqfg0PD+/fv7+jo0P1q6Kiops3\nb6IompCQgOMIwWsBK4RgglxdXWUyWVJSkvq5cH1aOZGliswrkaukBwC4oFjvGQDA5JF33Umh\nUFy8eDE9Pb24uJjL5ZaUlAQHB6sXIpLJZLW1tY8ePVq0aJH6IuH169cbGxv9/PwI3jBjVKPu\n9eVyuZmZmUqlkvhdQIA+ICEEE4Si6Lx586ysrDR+blDtfUlU0gMAvFCm9wwA4HVR5RhtbW1l\nZWVYjoH9qqioKDs7G0XRTz75hFDd5+Vy+dGjR/Pz8xUKhb29PYqiYrGYz+fHxsaqcj93d3ce\nj9fc3FxXV+fv729mZqZUKnNzcy9evIiiaEpKCqGuSH8aOeHIyMjp06cVCsX69evh9CA1QEII\nXj+DygkhFQTglajRewYA8BqRa90Jq5tQXl5uamq6Z8+e7du3x8fH19bWtra2ent7q9on0mi0\n8PBwPp8vEolycnJKS0uvXLly9+5dBEGIdkXjpX6/+Hy+Uqlcv379+vXr8R4XeD0gIQRvhEHl\nhACAV4IqMgAADWRZd1Kvonf48GFfX18EQZhMJp1OLy8vj46OViWECIKwWKyYmBiZTNbS0tLT\n0yOVSq2trZOTk5cvX47fFbwe6nt9IRukGBTO8YM3h8fjHT58eHh4eN26dR9++CHewwEA4Ewi\nkezbt6+jo2Pp0qUpKSmQEwIA1BsaIwhCtExDo6a6et2EU6dO/frrr1FRUUKhkE6nR0REJCQk\nqKpnSaXStrY2JpPp5OREpVgnl8vLyspIvdoJtEGVUfAGqeqOMplMvMcCAMCfemXRyspKvIcD\nAMCfqo4lQrxsUB2TyVS1lUcQpLq6+tatWzKZrKSkxNjYuLOz8+rVq3v37pVKpdgHsJaqzs7O\nVMoGEQRhMBiQDVIPrBCCN66rqwsrxAwAAAiCSCSS0tLSlStX4j0QAABREHndSbVIqJrSEggE\nX3311dDQUHR09I4dO0xNTZubm7/88su+vr5Vq1Zt3boV7yEDMD6QEAIAABgHuVw+NDRkZmam\n+kl7e7tMJlPfSQUAAFSinhO+//77Z8+e1e6gyOVy//3vf1tYWGRnZ+M7WgDGC7aMAgAA0Bf2\nVrR///7nz59jP+nt7T148OCBAwfa2trwHRsAALwhqn2tEonkxIkT2tkggiBYJ1WZTIbfMAGY\nIEgIAQAA6EU1R97d3S0Wi7EfZmdni8ViZ2fnadOm4Ts8AAB4c9TPOjKZzFWrVmkcDiwsLEQQ\nxMfHB5/xATAJkBACAAB4NY1Se87OzmKxWKlUVlVVTZ8+ff/+/erlFgAAgHpUOeHw8PD+/fs7\nOjpUvyoqKrp58yaKogkJCTiOEICJgYQQAADAK2gXXu/o6Ni9e/fx48dpNFpsbKyJiQneYwQA\ngDdOfe8o1kQHQRAul5uZmalUKhMTE728vPAeIwDjBgkhAAAAXVTZIJPJ/Oqrr7DiMaampqam\nphwOp6enh06nj/oP1afPAQCAGjRywmvXrmVkZCgUivXr17/77rt4jw6AiaB/8cUXeI8BAAAA\nQan3jFYoFFOnTg0ICEAQxMTEZMGCBZWVlQMDA8+ePVu+fDmN9qcZRi6Xe/DgQTMzM09PT3yG\nDgAAbwaNRouIiGhpaXnw4AGfz1cqlUTuoAjAK8EKIQAAgNGp7xTdtGkTk8m8du3a+fPnsd+q\nWnI9fvz4+PHjGk2Menp6FAqFqhgpAABQiXqNGcgGAdnBCiEAAIBRaJwbZLPZ7u7ud+/eFQqF\nw8PDGuuEAoFALBaHhYWpyu75+PgEBAQsXrwY14sAAIA3BVsndHR0XLlyJd5jAWBSICEEAAAw\nitu3b1+/fl1VRQZBEAcHBx05IZ/P18gJ7ezs8LwAAAB4w2g0mpOTE96jAGCyICEEAAAwCldX\nV5lMlpSUhGWDmPHmhAAAAAAgOEgIAQAAjAJF0Xnz5llZWWn8/JU5oZub28yZM/EYMgAAAADG\nDRJCAAAA46MjJ5w+ffqiRYvwHiAAAAAA9IVq1IUDAAAA9MHj8Q4fPjw8PLxu3boPP/wQ7+EA\nAAAAYCJghRAAAMBEjLpOCAAAAABygT6EAAAAJigoKCg1NZXJZDKZTLzHAgAAAICJgC2jAAAA\nJqWrq8vBwQHvUQAAAABgIiAhBAAAAAAAAAADBVtGAQAAAAAAAMBAQUIIAAAAAAAAAAYKEkIA\nAAAAAAAAMFCQEAIAAAAAAACAgYKEEAAAAAAAAAAMFCSEAAAAAAAAAGCg/h+BY9YYtTMs0AAA\nAABJRU5ErkJggg==", - "text/plain": [ - "plot without title" - ] - }, - "metadata": { - "image/png": { - "height": 180, - "width": 600 - } - }, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Warning message:\n", - "“\u001b[1m\u001b[22mUsing \u001b[32msize\u001b[39m for a discrete variable is not advised.â€\n", - "Warning message:\n", - "“\u001b[1m\u001b[22mRemoved 8 rows containing missing values (`geom_point()`).â€\n", - "Warning message:\n", - "“\u001b[1m\u001b[22mUsing \u001b[32msize\u001b[39m for a discrete variable is not advised.â€\n", - "Warning message:\n", - "“\u001b[1m\u001b[22mRemoved 8 rows containing missing values (`geom_point()`).â€\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAAFoCAIAAADIFpV9AAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdZ1wU19cH8Dvbl15WUFA6mig2bBgLmlhRiB1RjAWJNTFGk2isWGPMY0li\nx1hi7CaoIIoGCxpUFLDEoFKiiEiXuuwuu/O8WLPhTyyrzjAL+/u+yGfm7t1zDq4QDzNzL0XT\nNAEAAAAAAADjw+O6AAAAAAAAAOAGGkIAAAAAAAAjhYYQAAAAAADASKEhBAAAAAAAMFJoCAEA\nAAAAAIwUGkIAAAAAAAAjJeC6AI4VFhYmJiZyXQUAAAAAAAAHjL0hTEtL27ZtW9euXbkuBAAA\nAAAAoFYdOnTI2BtCQsg777zzySefcF0FAAAAAABArYqOjsYzhAAAAAAAAEYKDSEAAAAAAICR\nMrhbRvPz8/ft25eYmFhcXGxpadmiRYtp06ZJpVLtqxqNJiIi4tSpU3l5eTKZrE+fPkOGDOHx\n/m1rXzkBAAAAAAAAtAyrU3rw4MGMGTPi4uKaN28+ZMiQTp06PXr0qKKiQjchPDx8586drq6u\nISEhnp6eu3fv3rp1a/UIr5wAAAAAAADwIo8ePaIoatCgQS8ZqU8M6AqhRqNZvXq1ubl5WFiY\nvb39fydkZmZGRUX5+vrOmjWLEDJgwAChUBgdHd2/f39nZ2d9JgAAAAAAQO1Yvnz5/PnzCSEp\nKSnNmjVjI0Vqaqqnp2dgYOD+/fvZiG8MDOgK4bVr1x4+fDh27Fh7e3u5XK5UKmtMiIuLo2na\n399fNxIQEEDT9IULF/ScAAAAAAAAtYCm6e3bt1MURQjZtm0b1+W8FTs7u7i4uJUrV3JdCCsM\nqCG8fv06RVEmJiYzZswIDAwcPnz43Llz09PTdRNSU1P5fL67u7tuxNXVVSQSpaWl6TkBAAAA\nAABqQUxMTEZGhvZiz65du/57sacOEYlEXbt2fffdd7kuhBUG1BA+fvyYz+evWLHCwcHhiy++\nGDt2bEZGxtdff/3kyRPthMLCQktLSz6fr3sLRVHW1tYFBQV6TtD69NNPP/zHjh072P/KAAAA\nAACMi/aqYGho6OjRo/Pz83/77bcaEyIjIymKWrx4cY1xKysrDw+P6iPR0dG9e/d2cHAQi8WN\nGjXq2rXr6tWrCSHffPONp6cnIeTAgQPUP/bs2UMISU5Opihq3LhxaWlpI0eOtLOz4/F4ly9f\n1hY2aNAgV1dXqVRqZWXl6+t76NChl38tz32G8A3iGCYDeoZQLpdXVVW1adPmq6++0o64ubkt\nXLjwyJEj06ZNI4QoFAqhUFjjXSKRSKFQaI9fOUGrvLy8tLRUe1xZWcn4FwIAAAAAYMxycnKO\nHTvWtGnT9957z8LCYs2aNVu3bg0MDHyDULt37x47dmzDhg0//PBDOzu7vLy8P//8Mzw8/Isv\nvvD39xcKhbNnz/bx8dH2C4SQLl266N6bmZnZqVMnmUzWr1+/8vJyiURCCJk0aVLHjh179uxp\nb2+fm5sbGRk5YsSIVatWffnll69VGFNxOGdADaFYLCaE9OzZUzfSpk0ba2vr27dv6ybI5fIa\n71IqldqPVp8JWtu3b9cdJyQkREZGMvQVAAAAAAAA2bFjh0qlGjduHCHEy8vL29v77Nmzqamp\nNS796WPLli18Pv/69esODg66waKiIkJIixYtxGLx7NmznZ2dg4OD//ve2NjY6dOnr1u3rvot\nhA8ePGjSpInutKKiwtfXd/HixaGhodbW1voXxlQczhnQLaO2traEkBp/fFZWVmVlZdpjGxub\n4uJitVqte5Wm6aKiIu0b9ZkAAAAAAACsomk6PDycx+N99NFH2pFx48ZpB98sIJ/PFwj+5zqW\nnh2XTCZbtWpV9W6QEKLt4miaLi4uzsnJKSkpGTx4sFwuj4uLe62qmIrDOQNqCLV3AOfn5+tG\naJouKCiwtLTUnrq7u6vV6urLzGRkZCiVSt0qMq+cAAAAAAAArIqNjU1LS+vdu7ejo6N2ZNSo\nUSKRaOfOnSqV6nWjBQUFKZXKFi1aTJ8+/fDhw7rlRfTRpk0bExOTGoNJSUkffvihpaWllZVV\nw4YNGzVqNG/ePEJIVlbWaxXGVBzOGVBD2LlzZ4FAcPLkSY1Gox25ePFiSUmJt7e39rRbt24U\nRR0/flz3luPHj1MU1a1bNz0nAAAAAAAAq7Zu3UoI0d4vqmVra+vv75+Tk3P06NHXjTZ9+vQ9\ne/Z4enpu2rRp+PDhjRo1eu+99y5duqTPe6vfZaqVmJjYpUuXuLi4KVOm/PLLL5GRkdHR0do9\nzGssO/JyTMUxBAb0DKFMJhs5cuSePXu+/vprHx+fvLy86OhomUw2dOhQ7QQnJyc/P7+oqCiV\nSuXl5XXnzp24uLh+/fq5uLjoOQEAAAAAANiTl5cXERFBCAkKCgoKCqrx6tatW4cNG6Y95vF4\nhJCqqqrqE1QqVXl5uUwmqz44evTo0aNHl5SUxMfHR0REbN++vX///n/++Wf1R/ieS7sLYnVr\n1qyRy+XHjh3r1auXbvD69euv8RUyGscQGFBDSAgZMWKEtbX1sWPHfv75Z4lE0q1bt48++kh3\nyyghJDQ01NbWNiYm5sqVK7a2tmPGjBkyZEj1CK+cAAAAAAAALNFuOdiuXbs2bdrUeOnYsWNn\nzpzJyMhwdXUl/zwHmJmZWX1OUlJSjRZRx8LCom/fvn379rWysvrmm29iY2PHjh2rfT6w+hoi\nL/f3338TQnx8fKoPxsbG6vl2xuMYAsNqCAkhvXv37t2794te5fF4w4YN0/1e4Q0mAAAAAAAA\nS7Qrx2zcuLFjx441XlqwYMGyZcvCw8OXL19OCGnZsqVEIjl69OiTJ08aNmxICCkuLv78889r\nvOv06dM9e/asvqiMds0R7cOB2sUjHz58qGd5bm5uly5dOn369ODBg7Uje/fufYNGTs8433zz\nzblz5z799FM/P7/XTVFrDK4hBAAAAACAuujcuXN3795t2bLlf7tBQkhISMjy5ct37NgRFhYm\nEAjMzMymTJmydu3aNm3a+Pv7K5XK06dPt2vXzsLCovq7goKCBAKBr6+vs7Mzn8+/cuXK2bNn\nW7RoMXDgQEKIhYVFp06drly5EhQU9M477/D5/EGDBnl5eb2owunTp+/duzcoKCgwMNDZ2Tk5\nOfnEiRPDhw9/3T3l9YyTnJx86tQpXdNomAxoURkAAAAAAKi7tm3bRgiZOHHic191cXHp1atX\ndna2bg3I1atXL1q0SCKR7Nq16/z58yEhIUeOHKnx4N+yZcs6d+587dq1DRs2bNq0qaCgYNmy\nZRcvXpRKpdoJe/bsGThw4KlTp8LCwhYsWJCcnPySCjt27HjmzJmOHTtGRESsX7++vLw8JiYm\nICDgdb9SPePcu3dPKBT26dPndePXJoqmaa5r4JJ2Y/qwsDCuCwEAAAAAgPqjsLCwQYMGkydP\n3rBhA9e1vJCfnx+uEAIAAAAAADDs7NmzYrF4/vz5XBfyCmgIAQAAAAAAGDZ06NCKiopGjRpx\nXcgroCEEAAAAAAAwUmgIAQAAAAAAjBQaQgAAAAAAACOFhhAAAAAAAMBIoSEEAAAAAIA66dGj\nRxRFDRo0iOtC6jA0hAAAAAAAwJnKykqqGj6fL5PJPvjgg71793JdmlEQcF0AAAAAAAAYO5FI\nNH78eEKISqVKTU2NjY2NjY29du3amjVrXvIuOzu7uLg4W1vb2iqzHkJDCAAAAAAAHJNKpZs3\nb9adnjx5csCAAevWrfv0009dXFxe9C6RSNS1a9faqK/+wi2jAAAAAABgWPr16+ft7U3TdEJC\nAiEkOTmZoqhx48alpaWNHDnSzs6Ox+Ndvnz5v88Q6mampqYOGTLExsbGwsLCz8/v3r17hJDs\n7Oxx48bZ29tLpdKuXbtev369etJt27YNGjTI1dVVKpVaWVn5+voeOnSo+oTnlrFhwwaKogIC\nAmp8CTRNN23a1MTEpKioiK0/JibgCiEAAAAAABgcmqYJIRRF6UYyMzM7deokk8n69etXXl4u\nkUhe9N6HDx927tzZw8Nj1KhRKSkp0dHRycnJFy5c6Nmzp0wmGzp06MOHD6Oionr37p2enm5l\nZaV916RJkzp27NizZ097e/vc3NzIyMgRI0asWrXqyy+/rB68RhldunTp0KHDiRMnMjMzmzRp\nopt29uzZ+/fvjx071tramuE/GkahIQQAAAAAAMMSHR2dlJREUVSHDh10g7GxsdOnT1+3bh2f\nz9eOPHr06LlvP3v2bFhY2MKFC7WnoaGh4eHhHTt2/Oijj9auXattMhcsWLBs2bItW7Z89dVX\n2mkPHjyo3tFVVFT4+vouXrw4NDS0elP33zKmTp06fvz47du3L168WDdty5YthJBJkya97Z8F\ny3DLKAAAAAAAcEwul0+ePHny5MkhISG+vr4DBgzQaDSfffaZs7Ozbo5MJlu1apWuDXsJZ2fn\nefPm6U7HjRunPVi5cqXukqN2MDk5WTdN2w3SNF1cXJyTk1NSUjJ48GC5XB4XF1c9+H/LCAwM\ntLGxCQ8PV6vV2pHc3NyIiIiWLVt27tz5tf4cah+uEAIAAAAAAMeUSqX2khqPx7OysurRo0dI\nSMjo0aOrz2nTpo2JiYk+0dq2bVu9YXN0dCSEtGjRQiqV1hisfo0xKSlp8eLFZ8+eLS0trR4t\nKyvr5WVIpdJx48atWbMmKipK+zDhjh07lErl5MmT9amWW2gIAQAAAACAY5aWlk+fPn35HAcH\nB/2jVT8VCAQvGlSpVNrTxMTErl27SiSSKVOmtG7d2tLSks/nnzlz5v/+7/8UCsUry5gyZcra\ntWu3bNkSEBBA0/S2bdtMTU2Dg4P1LJhDaAgBAAAAAKAOqL7ADOPWrFkjl8uPHTvWq1cv3WCN\nZUhfUoaHh0evXr1Onjz54MGDe/fupaWlhYSEWFhYsFcwU/AMIQAAAAAAGLu///6bEOLj41N9\nMDY2Vv8IU6dO1Wg04eHhdWU5GS00hAAAAAAAYOzc3NwIIadPn9aN7N2797UaQn9//8aNG2/d\nuvXYsWPe3t7V10c1ZGgIAQAAAADA2E2fPp3P5wcFBY0dO3bhwoUBAQEfffTR8OHD9Y/A5/M/\n/vjj3NxclUpVVy4PEjSEAAAAAAAAHTt2PHPmTMeOHSMiItavX19eXh4TE6NdMlR/EyZMIISY\nm5uPGjWKnTKZh0VlAAAAAACAMxKJhKbpl89p06bNc+c0bty4xvhzZ/53GiFEIBDUGOzRo8eF\nCxdqTKu+UuiLytC5efMmIWT06NFmZmYvmWZQcIUQAAAAAACAAd9++y0hZNq0aVwX8hpwhRAA\nAAAAAODNJSYmnjx58vLly+fOnQsMDPTy8uK6oteAhhAAAAAAAODN/fHHH/PmzbOysgoKCtq4\ncSPX5bweNIQAAAAAAABvbvr06dOnT+e6ijeEZwgBAAAAAACMFBpCAAAAAAAAI4WGEAAAAAAA\nwEgx8wzh694yO3v2bBcXF0ZSAwAAAAAAwJthpiHcsGHDa80PDg5GQwgAAAAAAMAtxlYZjYiI\n6NKlyyunKRSKxo0bM5UUAAAAAAAA3hhjDaGlpaVMJnvltMrKSqYyAgAAAAAAwNtgpiGMj49v\n3ry5PjPFYnF8fLyXlxcjeQEAAAAAAOCNMdMQ+vj46DmToij9JwMAAAAAAAB7sO0EAAAAAACA\nkWLsGcLqaJo+c+bMlStXCgsLNRpN9ZfWrVvHRkYAAAAAAAB4Xcw3hKWlpf3797906dJzX0VD\nCAAAAAAAYCCYv2V00aJF8fHxK1asuHPnDiEkMjLy/Pnzffr06dChw99//814OgAAAAAAAHgz\nzDeEv/3224gRI+bOnevq6koIsbW17d69+4kTJ2ia/vHHHxlPBwAAAAAAAG+G+YYwKyurW7du\nhBAej0cIUalUhBA+nz9y5MhDhw4xng4AAAAAAADeDPMNoampqbYJFIlEEonk8ePH2nELC4sn\nT54wng4AAAAAAADeDPMNoZub2927d7XHrVu33r9/P03TVVVVBw4caNy4MePpAAAAAAAA4M0w\n3xD26dPnyJEj2ouEEydOjIiI8PDw8PT0/P3338ePH894OgAAAAAAAHgzzDeEc+bM+f3337Xb\nD06cOPG7776TSCRmZmaLFy+eM2cO4+kAAAAAAADgzTC/D6GlpaWlpaXudNasWbNmzWI8CwAA\nAAAAALwl5q8QAgAAAAAAQJ3A/BVCHY1GU1paStN09UErKyv2MgIAAAAAAID+mG8INRrNli1b\nvv/++/T0dKVSWePVGv0hAAAAAAAAcIX5hnDZsmWLFi2ys7Pz9/eXyWSMxwcAAAAAAABGMN8Q\nbtu2zdvbOy4uzsTEhPHgAAAAAAAAwBTmF5XJyckZNWoUukEAAAAAAAADx/wVQg8Pj+Li4rcM\ncvfu3S+//JKm6eXLl7ds2VI3rtFoIiIiTp06lZeXJ5PJ+vTpM2TIEB6Pp/8EAAAAAAAA0GK+\nU/rss892795dUlLyxhE0Gs2mTZvEYvF/XwoPD9+5c6erq2tISIinp+fu3bu3bt36WhMAAAAA\nAABAi5krhBEREbpjOzu7Jk2atGrVasqUKe7u7gLB/6QYNGjQK6NFRUXl5OT4+fn9+uuv1ccz\nMzOjoqJ8fX21O90PGDBAKBRGR0f379/f2dlZnwkAAAAAAACgw0xDOHjw4P8Ozpkz57+Dr9x2\noqio6JdffhkzZsx/t6yIi4ujadrf3183EhAQEBsbe+HChTFjxugzAQAAAAAAAHSYaQgPHTrE\nSBxCSHh4uL29ff/+/Y8ePVrjpdTUVD6f7+7urhtxdXUViURpaWl6TgAAAAAAAAAdZhrCYcOG\nlZeXm5qavmWcGzduXLx4ceXKlc9dBqawsNDS0pLP5+tGKIqytrYuKCjQc4LW8uXLs7KytMeW\nlpYikegtywYAAAAAAKiLGFtltEGDBtolPf39/a2trd8gQlVV1ebNm319fZs3b/7cCQqFQigU\n1hgUiUQKhULPCVq3bt1KTU3VHjdr1szDw+MNqgUAAAAAAKjrGGsIv/jiiyNHjowdO1YoFPbs\n2XPIkCGDBg2yt7fXP8Kvv/5aVFQ0fvz4F00Qi8VyubzGoFKplEgkek7Q2r59u1qt1h7fvHnz\n9OnT+hcJAAAAAABQbzC27URYWNjt27fv3bu3ZMmSoqKiyZMnOzg4dOvWbe3atQ8ePHjl20tK\nSg4ePNirV6/Kysrs7Ozs7OzS0lJCSEFBQXZ2tnYpGhsbm+LiYl0vRwihabqoqMjW1lZ7+soJ\nWqamphb/eO7mFgAAAAAAAMaA4X0IPT0958yZc/Xq1YcPH65Zs4bH482ePdvFxaV9+/YrVqxI\nSUl50RtLSkqUSuWxY8cm/ePw4cOEkDVr1kyaNEl7z6e7u7tarU5PT9e9KyMjQ6lU6laReeUE\nAAAAAAAA0GF+Y3qtJk2azJgx4/z580+ePNm6datMJlu8ePG7777bvHnzyMjI/863tbX96n+9\n//77hJCgoKCvvvpKu+5Lt27dKIo6fvy47l3Hjx+nKKpbt27a01dOAAAAAAAAAB3GniF8kQYN\nGoSGhoaGhhYXFx8/fvzXX3/966+/Bg4cWGOaVCrt0qVL9ZHc3FxCiJeXV8uWLbUjTk5Ofn5+\nUVFRKpXKy8vrzp07cXFx/fr1c3Fx0XMCAAAAAAAA6LDeEOpYWloGBwcHBwe/TZDQ0FBbW9uY\nmJgrV67Y2tqOGTNmyJAhrzUBAAAAAAAAtCjtei1GKyEhITIyMiwsjOtCAAAAAAAAapWfnx/z\nVwhr7PGgQ1GUVCp1dnbu27fv7NmzZTIZ46kBAAAAAABAf8wvKjNw4EB3d3eFQmFnZ9e1a9eu\nXbs2aNBAoVC4ubl16NDh6dOnq1atatOmTVZWFuOpAQAAAAAAQH/MN4QzZ87MzMzcs2fPgwcP\nzpw5c+bMmYcPH+7evTszM3Px4sUZGRm//PJLdnb2okWLGE8NAAAAAAAA+mP+ltE5c+aMGzdu\n9OjRuhGKosaMGXP16tW5c+eeO3du1KhRsbGxp06dYjw1AAAAAAAA6I/5K4SJiYmtWrX673ir\nVq2uXbumPfbx8cnJyWE8NQAAAAAAAOiP+YZQKBQmJyf/dzwpKUkoFGqPFQqFqakp46kBAAAA\nAABAf8w3hH5+fps3b96+fbtardaOqNXqbdu2bdmyZcCAAdqRq1evYrN4AAAAAAAAbjH/DOHq\n1asvX748ceLEOXPmeHp60jSdmpqan5/v7u7+7bffEkIqKysfPnw4atQoxlMDAAAAAACA/phv\nCB0dHZOSkr777rujR4/evHmTEOLm5jZlypTZs2dbWFgQQiQSydmzZxnPCwAAAAAAAK+F+YaQ\nEGJpabl06dKlS5eyERwAAAAAAAAYwfwzhAAAAAAAAFAnMHaFsLKyUp9pEomEqYwAAAAAAADw\nNhhrCKVSqT7TaJpmKiMAAAAAAAC8DSafIZRIJD4+Pnw+n8GYAAAAAAAAwBLGGkJ3d/e0tLR7\n9+6NGzduwoQJ7u7uTEUGAAAAAAAANjC2qMz9+/djY2N79uy5du1aT0/P999//5dffpHL5UzF\nBwAAAAAAAGYx1hBSFNWzZ889e/Y8fvz4xx9/LC4uDg4OdnBwmDZtWmJiIlNZAAAAAAAAgCnM\nbzthZWU1derU69evJyUlBQcH79u3r127dt999x3jiQAAAAAAAOBtsLgPoYeHR5s2bbQPE5aV\nlbGXCAAAAAAAAN4Ak6uM6ly6dGn79u0HDx4sLy/v3LlzeHh4YGAgG4kAAAAAAADgjTHZED55\n8mT37t0//fTT3bt37ezsJk+eHBIS8u677zKYAgAAAAAAAJjCWEP44YcfnjhxgqbpPn36LF++\nPCAgQCgUMhUcAAAA3pj6cZLyxgGuq2CGuNtMnpk911UAANQfjDWEx44dk0gkgwYNcnR0jI+P\nj4+Pf+40rC4DAABQy9RPbleeW8V1FcwQeY8haAgBAJjD5C2jlZWV+/fvf/kcNIQAAAC1TODZ\ny2ziaVZTKJP2KK/vkvRdJmjSidVEPGsXVuMDsK3qwR8Cp86EorguBOAZxhrChIQEpkIBAAAA\ng3jmjXjmjVhNoX4YTwgROLQRevZiNRFAnUZXFpdu7GI5L4tn4cB1LQDPMNYQtm/fnqlQAAAA\nAAD1Ay1/WnlxnbTnXCIQE1pDCCEaNSGEaKoqz34j7vQxZWbHbYVg5FjchxAAAAAAwNhRlOrG\ngbKfh5Iqxb+DmqryfaMV134iFP41Dhxj5grhzp07+/Xr17Bhw1fOVKvVP//884ABAxo0aMBI\nagAAAACAt6fJv195gZXVLvhNOqj+iixe7Slw8yWEyKO/UmcmaMqeCN/1l5+ax0ZG8Xuf8Bt6\nsREZ6h9mGsLx48efPXtWn4ZQpVKNHz8+Pj4eDSEAAAAAGA5Nabbiylb24tPyImXiHkKIMnmf\ndkR3wDhh8w/REIKeGHuG8M6dOxKJ5JXTlEolUxkBAADAQGjKcrkuAeBt8R29LT69xmxM1b0Y\nujRbe0yrKlRJ+zWqcsIXiduMpCSW2nHKRCZ8dwCzeXm2HswGhHqMsYZw2rRpTIUCAIC6q0qp\nVspVXFfBDKm5mOJhafgX0pRmV92LEbUbSwh5tlSGllqpuLJV3OljwhdxVRvAG6BEZnzHdszG\nVFzdrim4/+yEprVPDFI8vqb4ESl5/CyvZWMJ03kB9MdMQ/jDDz+81nxXV1dG8gIAgKGJ23/j\nYFgs11UwY+Ufk63szbiuwnDRitKKYzPU+felfZf9O6pWlu0Zrsm7K+owgUJDCHVK1YM/ynYM\nZC8+rSwnahUhhK6qVKXHUWJTQihCCHl0/emfNszmMh19QOjZm9mYUF8x0xBOnz6dkTgAAFDX\n2TSyeKeLM6spcv8uKswqcW7ZUGohZjWRQMRnNX5dx5c1Nf84tjS8N1H/8zyIpqpszwh17l/m\nH5+lhCacVgfw+ngCSmrNUmy6LJfQGp6lo6b4EWXuQJfn0VVKnpk9SzvUU3whG2Hrq+KVzuZT\n4nhWTlwXwg3GbhmFOklTRXj4OwAATGrd26N1b3afXTmy8tyZ8GvDF/R0b+fIaiJ4Jb6jt/nE\n06XhvflWToSQyrPfaCoKzD8+y7PERwN1j6BJR8uv0piPq1GX7xtV9SjB4uOzlMTi6WIbi2nx\nhC8o2/I+z9bd7KPfCJo3Lqizb/IbtSKEEJrWPH1IVxY/G89L4du4GdUd72gGjJfy2k7lnxFm\nYyO4LgQAAOoe5a0jdEWB9ljsM6Xy/LeEEHVeiqTHXFVKlHac36CZdpF9AGOmKc3WlDw2//gs\nz9qZlhdpB3nmjcwmxZbvHaUp+psn8+S2QoOmUdOKEsaj0vKi0o2dJb5fibt8QmiaEEIrSmh5\nkeruifJDIWYTTggc2jKelBKZGmafiYbQuGiKHhBazbNxI4TQlcW6bzBaJVdn3xQ4deK0OgAA\nqCM0akX8Brryn3+l0fSzR6FoWnnzoG6WoHF7NIQAPMvG5lPinjNu3sh80tnar6duUef8WbKu\nNUvB5acXyU8v0h6XbuyqGy/b+gEb6UyDfhG1GcVG5LeEhtC4qP6MkMcuN//4d37DlrpBWlVR\n9tMAQvHMP/6dw9oAAKDO4PHNP/5n6SC1smzPCE1hGq1WEloj9Hhf6vctp8UBGC5KYints4Rn\nbs91IXUGJTYTevZiKTgtf6p+nESZNtCUPuGZNqDlBTxZU55lY5bS8cxfvWc7J9AQGii6PI9W\nlDIeVvjuwKrHSaVbepgG/kxXFJAquTr3z4rDoXRlsWngz5rCdMYzEorPs2Z3eQkAAOCMWlm2\nZ4Q6946wxYfK67ulfZfJz4QRQtATAjwfxZN8sIDrIuoSno2b2cTTzMak5UW6e3fVmQnlB8YS\nQuiKQknvxaK2o59NEpnyzIylb0dDaKDKI+eoEn9iL37Zjmf7n5b8n9ezg+/Z2QDHRGa9KI+V\nyAAAwC3tDhO5KeaTzlXGLieE8GzdzSZEl4X3IXzR/+xFAQBgMMp2+lf9fanGIPl8qv4AACAA\nSURBVE2r5TEL5TELtaeUxNJqcaF238h6j8WGUK1W8/lYsPsNJSWbkketmIxIEYmwkiK09kxm\nnmcpLSaEVqrFWUWOGs2zT0pRJdZomPyrr+aZ9WAwHAAAGIyqR9c1TzPNJp3lWTjoBgVNOppN\njCnfHyzpPpuSWnFYHgDAc5l/HEsry7XHqvunK/YH02oVxRNKenwp7j7r2SSBxEi6QcJ4Q1hY\nWLh+/frIyMi7d++Wl5ebmpo2a9bM399/xowZ1tZs7etSLyk8PvozqxuDAW2FGf1tv+ZR6hrj\nIr7CVfbvnaLJpYE3y4YymFdqLu7BYDgAAEKqVDV/lAEnBM6dLWYkPme8SUfLL+7Vfj0AUP9o\n8u+X7Q1iKThdWawpSKdMbUl5HhGbyc+urLy2g2feiKV00r7LhM36sRT8bTDZEN64caNv3745\nOTmEEHNzc0dHx5KSksTExMTExG3btp08ebJly5avDAJaXRyOdGhx8NXzXs8/z/LRtKb0CV1V\nSRGaUHyeRSPdGrjeNgneJIHBlJSJDSEBDAYEACjNr+C6BKiJklhyXQIA1EO0WsnKIheEELWK\nVpZTQinRVBFCiEZNiUzpkmy1vIgSSNhISCvL2Aj79hhrCOVy+dChQ/Py8j7//POpU6e6u7tr\nx+/fv79x48b169cPGzbs5s2bYrGYqYz1G62q0D3tymRYDU0ITVTlhNBqjYBH1DyRQFOSRYnM\nNTTF47NwZZyH24YBgAEZydlXIu4Mn9+TL+ARQnQ3wOdnFkesvjB+zQDtOHCFEkq5LgEA6iG+\nfQurxYWMh6UrCoqXNzYZtk3cIYTQdNEcnvnUi/yGLavSz5XtGGg24YTAyYfxpAaLsYbwwIED\naWlpGzZsmDp1avVxT0/PtWvXurq6zpgx49ChQ8HBwUxlrN9MAtabBKxnPOy5ny5ZXg5x8hDa\nTD93dOInTSRXvX64o4qZVfrH7lO588bt+oLxjAAAjLBxsLhzPmN7blnI9/5WVPrn/VcRMio/\ns3jtqAMeHRuz8vssAACopygTW4sv7vGsmtQYF7j1sPjinvGsL6rF2P9Bjx075uLiMnny5Oe+\nOn36dCcnp6NHjzKVDt5MJ6dYW9uq9REfPc589st1lUK9/bdu94o6DWq7n9vaAABewsJCPfMH\nr0cpeds/PS6gyqVCeUle+foxB13bNhw93YKiuK4PAADqlH+7QYriO7SlTGyfjVs4GNsNbow1\nhDdv3vzggw94vOcH5PF4vXr1Sk5OZiodvBlpjy8bL7ndoq/3uuCDGrWGELLt0+OlBfJ2q49a\nTj7LdXUAAC+kfpRA7es5c4XNo5S8J/fzCSEHwn53bmUf9H5MxZ6hRK3kukAAAKirLGYkVl8t\n2dgwdstoTk6Os/PL9h93cnLKzc1lKh28LpomWSl52ibQZ4hXaUHFwyRzgW3jopLSUct6F2aV\nFBJCiNzO1VpiKuK4VgCoy1R/RijiNzAYkNbQuQ+KaA0tpu3Mfhse0t6lrFgpESpGtvre3qRA\nEV9UTHnmz/eRmImt7M0YzEsIMQ3aR5nKmI0JAABgUBhrCMvLy6XSlz1QbmpqWlpaylQ6eF2Z\nf+asGrJHo6arjTW7+7gZIUXrx/y7nOnAGe8N+PS92i8PAOoNzdNM1f0zzMa0qXZsQaVbWBFC\niLNVinZlGSv6L0ITUkJUJcymJXSVon7ci6pKOaHbbZklmtJsQkjFsc+omEWsJjILPsizcWM1\nBQCAUWGsIaRpmpE5wBInL/sN955ttamqrNr48W/3Ex6plWozW5OZe0Y4NMWvwAGAGeJOH4u8\nGV4/TF2QRpSlhJDSvIprG9a3b3SGEFqlFidWhvT8ZChfSBFCeJaNKROGf5TVm60UaGUZW+u2\nV0tCSazoigK6ooDdNLg9GACAUUzuQ3jo0KGUlJQXvXrr1i0Gc8Eb03aDpQUVNo3M8x48bdvX\nc13wwc/QEwIAUwRiSsDkDkO0sqxssy+terb3YPt/dgwW8hWdTDdW/LTx2anXYLMxvzKYtz4R\ntRohajWC6yoAAMAQMdkQXr169erVqwwGBMbpusHP9oxYPXwfIWTInB58AQ89IQAwhS7L1RRn\nMhvTfMqFkvyKn7862cTLrrd3vPLGEYpUEUpAui/Zu7HCzs1m8JfdKYqos64zm5ffsBXhC5mN\nCQAAYFAYawgTEhKYCgXsOR2eUFpQ8dnPw82snz3wSVFkxMIPNGp695cn50Rgl0gAeFvKGwcq\njn3KRuQxrQkhRHWDPHuuj64i578e1YIQQkp/YCMhsfz6Ec/SkZXQAAAAhoGxhrB9+/ZMhQL2\n9J7YoffEDkLJ/3zuFEVGhvWSl1RyVRUA1Cf8xu0kPb5iI7Iq9Ywm5y9Rm5Gpl1Mbknh1i1Bz\nOr3q/hlh8w95Mg82MlJiczbCAgAAGA4mbxkFw1e9FRRJ/z2mKGJiKeGiIgCobwTO7wmcmV+s\nWPXXcUXCT+bTr/AbeuXeXmtbfK2y1deN2jkq4jfKT3xlNWov4WPLHAAAgNfGbkOoUCj++uuv\nkpKSVq1aWVlZsZqrnolYHXc96oUr9DCiOLecELK0/w6KYnFZdVMrKe5EBYC3J2zmZ/nFPUpq\nRQjh8f/9qSXuPFXUeiS6QQAAgDfDZEMYHR29c+dOkUgUGhravXv3mJiYCRMmZGVlEUJEItGC\nBQvmz5//krc/evTo3Llz169fz87OFggETZo0GTRoUKdOnarP0Wg0ERERp06dysvLk8lkffr0\nGTJkCI/H038C6FjamXJdAgCA3nh8bTdICKnkyTILnRr88wplYvOiNwEAAMDLUUztDXj+/Pme\nPXtqo4lEoqioqEGDBpmYmLz33ntKpTIuLq6srOzQoUPDhg17UYQ1a9ZcvHixdevWrq6uCoXi\n4sWLRUVFQUFBQUFBujlbt26NjIx87733WrZseefOnbi4OD8/v8mTJ+s/oYaEhITIyMiwsDBG\n/hAAAKAWHFl57kz4tdkHg9zbYcUXAACAN+fn58fYFcK1a9eampru27fPxcVl0qRJY8aMcXZ2\nvnTpkvZO0YyMjLZt227cuPElDaGvr29ISIil5bNdgIOCgj777LNDhw59+OGHJiYmhJDMzMyo\nqChfX99Zs2YRQgYMGCAUCqOjo/v37+/s7KzPBAAAAAAAANBh7F7K69evBwYGDhw40MvLKyws\n7MmTJ5MmTdI9N+jq6hoUFJSUlPSSCO3atdN1g4QQMzMzHx+fqqqqJ0+eaEfi4uJomvb399fN\nCQgIoGn6woULek4AAAAAAAAAHcYawidPnri7u2uP3dzcCCFOTk7VJzg7OxcXF79WzJKSEkKI\ntbW19jQ1NZXP5+uyEEJcXV1FIlFaWpqeEwAAAAAAAECHsVtGq6qqhEKh9lgkEhFCBIL/CS4Q\nCF7recWsrKxLly55e3vrGsLCwkJLS0s+n6+bQ1GUtbV1QUGBnhO0tm3blpeXpz3GejMAAAAA\nAGC0DHQfwoqKipUrVwqFwurrwSgUCl3PqSMSiRQKhZ4TtH7//ffU1FTtcbNmzTw8WNnOGADA\nOF2LSjm9NYHVFEVPSgkhP885JTap+TOfWdN/Gmpua8JqCgAAeImnOWVR3//BdRXM6DKipUvr\nRlxX8RxMNoSHDh1KSUkhhFRUVBBCfvjhh4iICN2rt27d0jNOZWVlWFhYTk7O4sWLGzZsqBsX\ni8VyubzGZKVSKZFI9JygtWLFCl2LmJ6efvXqVT0LAwCAVyotqHh4O6cWEuWkF7KdQl2lYTsF\nAAC8RHmR/OL+m1xXwYymnZrU/4bw6tWr1ZurmJiYNwiiUCiWLl2ampq6YMGCFi1aVH/Jxsbm\nwYMHarVad1MoTdNFRUVeXl56TtDSPuKoVVZW9gZFAgDAi/T8yLvnR95cVwEAAPWBnYv13KNj\nWE1x/8qjwyvO+ga3eW94S1YT2Ta2fPUkLjDWECYkMHCDkFKpXLZs2Z07d+bOndumTZsar7q7\nu1+7di09Pd3T01M7kpGRoVQqdavIvHICAAAAAMBzFeeW34qtJysRtvB1tW5kznUVDBBKBE5e\n9qymePqkjBBiZW/GdiKDxVhD2L59+7eMoFKpVqxYcevWrS+//LJjx47/ndCtW7eDBw8eP378\n888/144cP36coqhu3brpOQEAAAAA4Lly/y76Zd6b3OBmgKZtH1I/GkKoBQa0qMyWLVsSExOb\nNm2amZl54MAB3Xj37t0bNWpECHFycvLz84uKilKpVF5eXnfu3ImLi+vXr5+Li4t25isnAAAA\nAAA8l52L9ejlfVhNkZ70OP7w7Q4B7zbt1ITVRI7NGrAaH+oTJhvC6OhoHo/Xt29fQkhubu6E\nCROqv9qqVasVK1a85O05OTmEkHv37t27d6/6uJubm7YhJISEhoba2trGxMRcuXLF1tZ2zJgx\nQ4YMqT75lRMAAAAAAP7L0s6068hW7OagSPzh202a27GeCEBvjDWEN27cGDBgwKZNm7SnFRUV\nUVFR1SdERUUNHTq0Xbt2L4qwdOnSV2bh8XjDhg0bNmzYG08AAAAAAKg1GrUmPSnbo72j9pgQ\nUqVUa19KT3rs5GUvEPJf9n4AljG2Lfv27dsbNGgwfvz46oM7duzIzs7Ozs7OzMy0trbetWsX\nU+kAAAAAAAxfSX7Fj+MPx2ypuc/Z+T3J60YfLHpcyklVADqMXSE8d+5c7969RSJR9UErKyvd\nRoL+/v4XLlxgKh0AAADoqfypvOBRCddVMKORh61QYkArIAC8kpW92fQdw34cf1hdpTG1frY5\n9sX9N4+sODfxB/8GzlbclgfA2I/UjIyMoUOHvmSCi4tL9X3qAQAAoHbcPpuxc/YJrqtgxsKT\n4xp5yriuAuD1eLR31PaEzTo7EUIe3Hpy58LfE3/wb/UBtkYD7jHWEFZWVgqFQt2ps7NzaWmp\nVCrVjZiYmMjlcqbSAQAAgJ4cmsn6THrOfk4MSk/MSk3I8u7fVObE7uUOU2sTVuMDMKswq6Ss\nSE4IEUkEwxe8v2/haULIrdj0IXN8rezNHt7OIYSYWEpkTQx0y3IwBow1hDY2NllZWbpTiqLM\nzMyqT3j06JGtrS1T6QAAAEBPTZrbNWlux2qKEz/GpyZkdR7q5dXTjdVEAHXLpkm/Pforr8ag\nRq05vPys7rSBk9WSsxNrty6AfzHWELZt2/bUqVMajYbHe85CNRqN5tSpU23btmUqHQAAAACA\ngZsXOVZ3fHH/zf2LzqirNHwhf8AnnftP8+GwMKiB1tBcl8AZxlYZDQwMTEtLW7t27XNfXbt2\n7f3790eMGMFUOgAAAACAuuLi/psHl8R2CWxJCPEZ2uLU5ivRGy5zXRQQQghNE0KI9s5e48RY\nQxgcHNyuXbvZs2dPmDDh2rVrVVVVhJCqqqpr165NmDBh9uzZ7du3Hz16NFPpAAAAAADqBG03\nOPEHf8d3GhBCbB0spu8Yhp6QQ4oK1W/fXlBUqHQj2rZQo6ajN1wueFTMWWVcYKwhFAqFR48e\nbdu27Y4dOzp06CASiczMzEQiUYcOHXbs2OHt7X306NHqq84AAAAAANR7hVklB5fETtr0YfU1\nRT3aO04NH3Jq85Xs+/kc1ma0eHzqbvzDH8cfrt4TatT0z1+djNt7gy/kc1hb7WOsISSEODo6\nXrlyJTw8vG/fvg4ODhRFOTg49O3bd/v27ZcvX3ZwcGAwFwAAAACA4bNxtFh1ZUoLX9ca4007\nNVn5x2Rso8IJoVgwY/fwKpXm+7GHVIoqQghN0z/POXk3/uHMvYFW9mavjFCfMLy1q1AoDAkJ\nCQkJee6rSUlJWFcGAAAAAIyK1FysPdBeehJKBTXGofZJzcWf7hr2/djDkev/IISkXHqgKFfN\n3BvYwJndvXMMEMMN4XMVFxfv3bs3PDw8MTGRpo13AR8AAAAAMFi5fxed3pbAdgpCSPLJ+zlp\nhawm6jnW26Eprj0+X2L0vfyHT7XHXj1cz+9OJoTkPyx+f5x30sl72nGJubj7qNaclVi72G0I\nL168GB4efujQoYqKClNT0+HDh7OaDgAAAADgzRTnll/cf7MWEqVdz0q7nvXqeW+hdW8PNIQv\nkpWS9yT9WUNO04SmCCGEUCTnwVN+Vol2XGwi7DayFcWjOKqxVrHSEObl5e3evTs8PDwlJYUQ\n0rdv30mTJvXr108qlbKRDgAAAADgLbm0brj0XCjXVTDDQmbCdQmGy39mF+2BdhUZoiGEEBNL\ncWl++Sc7h0lMRVwWxwUmG0KNRnPmzJnw8PCjR48qlUpvb+958+YtX7588uTJgwYNYjARAAAA\nGBR5qYLrEgDellAskDWx5LoKqCXabvBu/MOAWV33Lohp3cvj0V95P4w7bIQ9IWOrjC5ZssTN\nza1v377nzp2bOnXqjRs3rl+/PnHiRKbiAwAAgEHRqDVF2aXaY1VlVfWXjG0XLwCoW2jNs25w\n5t5AiwamhBCBSPDJjmHqKs2P449U34vCGDDWEC5atEgoFP76669ZWVlr165t1aoVU5EBAADA\nAGUkZy/u/dPd+Ic1xs//nBTWd4e8BNcMAcBAyUsVhY9LZu77nzVFpRbiGbuGSy3EeX8XcVhb\n7WOsIZTJZKmpqV9//fWaNWseP37MVFgAAAAwTO7tHAM+77ox9LeUP/7tCS/uv3lk5fmJ3/tL\nLbCePgAYKBNLycy9gQ2cau4wIbUQTwsf0ri5HSdVcYWxhjArK2v//v2Ojo5z5851cnIaMGDA\n4cOHlUolU/EBAADA0HwwoV3A5103ffxb0ZMyQsidC38fXBI78Qf/Vh+4c10aAIBeKIoQQkwt\njfd3WIwtKiMSiQIDAwMDA9PT07dv375z587hw4ebmpoSQnDBEAAAoJ5RylVVSjUhpPPQFspK\nVdS6S4SQuL3JH63u79HesaK4khAikgoFIj7HhQIA6IEvNN4fVsxvO+Hm5rZ8+fIlS5ZERUVt\n27YtOjp62rRp33333bBhw4YPH96hQwfGMwIAAEBt0qjprzptqiyveR9QVZXmp5lRulOPDo1n\n7R9Zu6UBAMDrYWtjej6fHxAQEBAQkJWVtWPHju3bt69evXr16tU0TbOUEQAAAGoHj08tPTex\nsvzZQnzXIlOOr72oUdMCkSD4m77u3g7acVMrCXc1AgCAXhh7hvBFHB0d58+fn56eHhMTM3z4\ncLbTAQAAQC0wszGRNbGUNbFMufTgxA/xzbu5EkJ8BjffOy8mP7NY+5LU3HifyQEAqCtYbwi1\nKIrq3bv3wYMHaycdAAAA1IKL+29qV5GxbWxBCGnd20O7xkz1dUcBAMCQ1VJDCAD6UGddl8cs\n5LoKAAC9pCc+PrgkdtLmD6uvKfrBhHYDZ7y3edJv2IcQAKBOYOsZQgB4A+rsW6qUKGmfJVwX\nAgDwak4t7RecHPffjbx6h3Zo2dMN+xACANQJaAgBOKaI36BM3GMWcpKSWP7P+OVNiks/WMy6\nw1VhdUJ+ZnH+w6dcV8GMpj5OPD7FdRUAr0Eg5Ou6QaH4f/5F0dDDlouKoCZ1zh2+fXOuqwAA\ng4aGEIBjonbjlDcPlW5933ziad2gIn6jPHKW6ZgjHBZWJ1w9euf42ktcV8GMdbdmiE2EXFcB\n8IZwPdAAaYoflaxpYbW0jBKZcl0LABguNIQAHKNEpmbjo8p2DCgN7y1uP4EQori6TR45yzT4\noPAdP66rM3Tu7Rz7TOrIaoobp1Nz0gu7jPAytTZhNRFfiIe6AeBt0RUFyuR94s7TCEURTRUh\nhGjUhBCiqVL88aOo40RKZMZthQBgaNAQAuhLcXGdInEPW9FpjTo/tSLyc0JIxZHJPFs3+ekw\n+ekwNlJRfIH5tMtsRK59zTo7NevsxGqKzNs5OemFH0xo38hTxmoiAIC3R6sqK2OXq5/cMhm8\n+d9RTVX5vtFVjxJE7cZxVhkAGCo0hAD6UqXFqrOu104uTUEqi9EpXIl6hYRjf53Zfu3TXcNM\nraTVx69Fpfy26sLyCx9zVRgA1Bt/Xsj46bMoNiLbmoaOyf/+yq+3Lmb0md6VzO+2ud+7h5pY\np/18bcbTA6z8WvOTHUNdWjdiIzJA9v387wL3s5pCXaWhKCp6w5XT4ddYTTR6eR/v/k1ZTfFm\n0BAC6Isva6riugZm8PhcV2DoWvf2uHTw1rrggzN+HqEbvBaVsmt29Eer+nFYGADUGyJ1fhuX\n22xE1qg1Cdn9OjeOlJk+IYSM9N5sa5oXn+XvJMty4WezkZGv7kUIGkJgBV/IlzWxfPW8ukBs\naqArBaAhBNCXuOtnojZBLAVX/vmb4vxqkdfQqqzrlNiMVlaYDNpISSzYyYalLF9BJBVO3TZ4\nY+hv68ccNLGQEELuXPg74ru44BV9OwS8y3V1AFAfuNhlyTy3sJqisVWG7r/vu+xjL5G59WhC\n3mEvPhgzOxfruUfHcF1FPYeGEEBfPMvGxLIxG5EVV7cpzv+fafBhurygKu+u2aQLZTsGVETN\nNp94mjKxYSMjvJKuJ3xw8wkhJGL1heCV/ToNxurtAMAMujyX6xIYo6ko5LoEAHhzaAgBOKa8\ndUR+9FPTMUeE7/hlHlyjflxiITI1G3us7Kd+ZT8PNZ90lusCjUtZYcWaoAMqRZX2lKZphVxF\nCBFJhZHrL0Wuf7bFhXf/ZoO/6s5ZlQBQ9/EathJ69mIpeHFumSb3TxNxJY+oNERYXmkidGhh\nbsvWUsl8mSdLkQGgFqAhBNBXRlJ21t08xsMK5AJ+k02K5MYk+aYqMatRhfLi/puEEJ7l/4nz\nL8r332Q8I0VRXQJbMh62fjC1kg76snvVPw1hRtLj33dcJ4SIpIL+03wkpiLtuENTrDgKAG9F\n4ORjVm37WUYoKlRqlZpo1GbHQxQVf28/81Go74bNsdM+7rdX3KQpz28DoXhCsUAowT//AOBf\n+IkAoK/Ek3fPsLj8VAwhpFWTHBtP6pd5Mf8MUtpxZvEFPDSEL0LxqFYfuGuPE0/cPbcnuZGH\n7PH9fOtG5md3Jc74eYSZtfTlEQAAuLKo1/bS3JLAjnsdbTLDz0+mKEIIySux/SFybGjJ5r8i\nUiKuD3Fo1mD+iXEcFwoAhgQNIYC+vPs1s3dl/ok+jYa+uO9mUXZJr5D2F/eZ77rYbPBXvvev\nZt6Lz3x/vLdtY+ZX1qIoLCrzaokn7u6YdSJ4Rd+bxy42UiX0CVv/6zcX1o85iJ4Q6qLMO7nX\nIlNYTZGWmEUI+ePI7fsJj1hN9MGE9hYytm59rOuW/B6iyrqtOvaLcFh8v07lMf93mBDC4/H6\nzh1j025Ux9+Cu6wZKpKxu3crANQ5aAgB9OXatpFrW1aW1e4yomX4J8fj9t+UmEnys6RPc0rT\nrmXN3DsC2zpxJeWPhztmnRjzTb+OH76bHb2z5bu/C8WCqdsGbwj59Ydxh7HcGdQ5j+/mx2y5\nWguJkqLvsZ3CZ3BzNIQvIpIKRR5tyec34g/fPrzi3Ht93Qgh7QPe2b/wjPi7/u1ns7LLBQDU\ndWgIAbjHF/Am/uAf/snx2+fSCSHxh/+csXsYukEONdBcnjvtD4eB06oPiqTCyWGNCw9/SQga\nQqhj3uniPGP3cK6rYIaNYz3ZkYw98Ydv711wOmT9wMd/ZV481915pLtrx6a7ZkcTQtoPxOYQ\nAFATGkIAzuT+XRTWZ4dGrakxXlmmWDXkF93p++PbDZ/fs3ZLqzNUiipVZRXjYSWuHfmX5hXv\nGCYcskdD04SQylJF2Z041X5/8w5TK4orGc9ICJFaSHAzL7DE0s7U0s6U6yqgNjy+l6/tBtv0\n8XyUknvipn/wSF7noV6EJru+iPbo0NjK3ozrGgHAsFA0TXNdA5cSEhIiIyPDwsK4LgSMVNbd\nfLVKrT2+8EvyH4dv0xravIHpmBV9LO2e/T+7gZOV1ELMXY0G7cSP8cfXXmIjspmkNLT75sIK\nm8S/O/RteWLf5eAJ3bYmZHQ6eWsAG+kIIetuzRCbCFkKDgCG5m78wz1zT7ERWV2l4Qt4hJCK\n4sqKEoWZtVRiJqo+zrjQDQFOLezZiAwAbPPz88MVQgAuOTZ7tnvBsTUXE6Pv2btZP0ktdGpu\ndyAsduYvI9hYUaaecZPdH/vhZZaCl1AdXM3jXOwj+ZR88gebijUu9m62Y93YSsenphGChhDA\nWFSp1BUlClZT0IRQPEqjodlOpKmqeasLANQhaAgB9FX0pLQ0v4KNyBd+Sb4WdXfk4g9ObblK\nCPENbvv79murR+wbvay37johkyhSb36V6yy+bC88Uju5bHj3bHgsLpjBp7YTgvVLAYxFi+6u\n/5c4nesqAADQEALoLXbHdTb3ISS7vojWHmwM/fWfg9/YSMQX8H68+zkbkTkgrkcPw1Cs3MoF\nAAAA8BJoCAH05drGoevIVoyHVVZWqVVqqbmYEJKTUZh9r6BNX09CCK2hy4rk5rbMr67O49ef\nxkPUbhy/cQeWgmsK0+W/LxXYtVAXZlBCMWXaQNJ9NuGzdVcnJcTlQQAAAKhtaAgB9OXdv6l3\n/6asprhxOvXsrsTRy/uwmqU+4ds359s3ZyOyOut6xa+TJJ2nCZw7V0TOMp/2R9nW95VJe8w+\n+o0IsMYPAAAA1BP150IBQD3QurfHjJ9HcF0FEHX2jdKtH4jfmyb1W6Ud4ZnZm4XEqAtSy/YF\ncVsbAAAAAIPQEAIYFuxEZwjoKoW07zJpn6XVB3mWjuYfn+XLmnFVFQAAAADjcMsoAEBNgiYd\nBU06PjuheLrlXniWjtL+KzkrCwAAAIBpuEIIAPAyAo8PTEf+zHUVAAAAAKxAQwgA8DKUyFTg\n5MN1FQAAAACsQEMIAAAAAABgpNAQAgAAAAAAGCk0hAAAAAAAAEaqvq0yqtFoIiIiTp06lZeX\nJ5PJ+vTpM2TIEB4PfS8AAAAAAEBN9a1TCg8P37lzp6ura0hIiKen5+7du7du3cp1UQAAAAAA\nAIaoXl0hzMzMjIqK8vX1nTVrFiFkwIABQqEwOjq6f//+zs7OXFcHAAAAXCjuewAAIABJREFU\nAABgWOrVFcK4uDiapv39/XUjAQEBNE1fuHCBw6oAAAAAAAAMU71qCFNTU/l8vru7u27E1dVV\nJBKlpaVxWBUAAAAAAIBhqle3jBYWFlpaWvL5fN0IRVHW1tYFBQXVpx07dqyoqEh7XFFRUasl\nAgAAAAAAGIx61RAqFAqhUFhjUCQSKRSK6iN79+5NTU3VHjdr1szDw6OW6gMAAAAAADAk9aoh\nFIvFcrm8xqBSqZRIJNVHPvvss7KyMu1xbm7u3bt3a6k+AAAAAAAAQ1KvGkIbG5sHDx6o1Wrd\nXaM0TRcVFXl5eVWf5uPjoztOSEhAQwgAAAAAAMapXi0q4+7urlar09PTdSMZGRlKpbL6MjMA\nAAAAAACgVa8awm7dulEUdfz4cd3I8ePHKYrq1q0bh1UBAAAAAAAYpnp1y6iTk5Ofn19UVJRK\npfLy8rpz505cXFy/fv1cXFy4Lg0AAAAAAMDg1KuGkBASGhpqa2sbExNz5coVW1vbMWPGDBky\nhOuiAAAAAAAADFF9awh5PN6wYcOGDRvGdSEAAAAAAACGrl49QwgAAAAAAAD6q29XCN+ASqUq\nKSnhugoAAAAAAIBaRdM0RdM012Vw6c6dOytXruS6CgAAAAAAAA4Ye0MIAAAAAABgtPAMIQAA\nAAAAgJFCQwgAAAAAAGCk0BACAAAAAAAYKTSEAAAAAAAARgoNIQAAAAAAgJFCQwgAAAAAAGCk\n0BACAAAAAAAYKTSEAADPV1VVVV5eznUVAAAAACxCQwgA8Bxqtfqbb76ZP39+WVkZ17UAAAAA\nsAUNIQDAc1AUJZVK09LSFixYgJ4QAAAA6is0hEYnJSWFpmnt8aNHjxYtWlRSUsJtSYAPxQDx\neLyZM2f6+vqiJzQo+GYxQPhQAPSB7xQwWPzFixdzXQPUnsTExIULFz5+/NjHxycrK2vevHkZ\nGRlyubxDhw5cl2a88KEYLIqifHx8srOzk5KSkpOTu3btKhKJuC7KqOGbxQDhQzFk5eXl+/fv\nDw8Pj4iISElJcXR0tLKy4rooI4XvFEOWn5+/efPmXbt2Xb161czMzNHRkeuKapuA6wKgVnl6\nejo7O587d66ysvLu3btFRUWtWrWaMGEC13UZNXwohkx7nZAQcv78+QULFixdutTMzIzroowX\nvlkMED4Ug/X48eOFCxfm5uYSQqRSaVxcXHx8/KefftqjRw+uSzNG+E4xWE+fPv3iiy8KCgoI\nIY8fP05OTu7fv/+kSZN4PCO6j5LSXbwGI1FaWjp//vyMjAxCSKtWrRYsWCAWi7kuytjhQzFM\nRUVFu3fvvnHjBkVReXl5hBB3d3f0hNzCN4sBwodigCorK2fMmJGdne3u7j5jxgwXF5cNGzac\nOnWKoqgff/yxSZMmXBdojPCdYpi+//77M2fOuLu7jx49ury8fNeuXfn5+T169Jg5cyZFUVxX\nV0twhdDolJeXP336VHtsbW2NW+AMAT4UA5Sfn6/9laGdnZ2vry9N0xcuXNA+T4iekEP4ZjFA\n+FAM0NGjR7Ozs11dXVeuXCmRSE6ePBkTE0MICQkJQTfIFXynGKbr16/b2dktX77cxMSEENKm\nTZv58+efO3eOEGI8PSGeITQ6IpHo9u3bMpnMzMwsOTn5yZMnPj4+RvLX3WDhQzFA69evv3fv\n3jvvvPPtt9+2a9eudevW/fr1y8rKunHjBp4n5BC+WQwQPhQD9NNPPxUWFi5ZskQmk506dWrT\npk00TU+cODEgIIAQEhMT4+joKBDgqkCtwneKYfr1118HDhzYunVr7alEIunSpUtiYuKNGzeM\n5zNCQ2hcioqKKisre/Xq1aNHj+7duycnJyclJdX4637lyhULCwvcxlBr8KEYILVavX79eo3m\n/9u787imrq1x+DsDEGIEIohBBBEEwQIOlEhEEBUVFe1tq/Xj9VZxoK2P8tQZC4L1qsC1tkXr\nQMWp6lWcWq0iMlzEARwIgQACAoptEsZACIjEkHB+f5z3yZsbnNpCziFZ37/a5NjPapZ7J+uc\nvdfu3r59u7W1Nf4ijUbj8Xh8Pv/JkydQExICBgsJQVLI6fz58ywWa8mSJRkZGQcPHtSuBtvb\n22NjYysrK2EzoT7BSCEVmUx25MiR06dP8/n8trY2T0/PUaNGad41wpoQCkJj0dLSsnfv3gMH\nDty9e3fixImWlpZmZmb+/v6aKYnL5VKp1Js3b+7Zs4fP50+bNg3uHfY1SAppqVSqlJQUOp3+\n2Wefab9OpVIZDMa9e/dkMhnUhPoEg4WEIClk9vDhw7q6OlNT08OHD2tXgwihw4cPV1VVcbnc\n8ePHExukkYCRQjYymWz9+vWlpaVyuby2trazs1Mul0+fPl27i4x2TThixAiDX2gNBaFRqKur\ni4yMrKystLCwCA0NdXFxwddJa09JhYWFpaWlKSkpGIbNnj177NixREdt4CApZEaj0XJyctra\n2ng8nk6XdrlcfvPmTV9f39LSUg6HM3LkSKKCNB4wWEgIkkJyarU6Ly+vsLAQIaRdDaanp6ek\npDAYjA0bNuApA30KRgoJJSUllZWVOTs7r1mzZty4cZWVlbW1tc3NzVwuV/tJIF4TcjicKVOm\nEBitfkCXUcOnVCrXrl0rFovd3d2/+uorNputc0FHR0d8fHxxcTFCiEqlLl269MMPPyQiUiMC\nSSG/X3755fjx456enjt27KDRaJrXf/zxx9TU1MOHD9fU1PB4PAIjNBIwWEgIkkJ+3d3dW7Zs\nwc8e3LVr16BBgxQKxYULFy5evIhh2KZNmwICAoiO0fDBSCEbqVRqbW0dFhZmYmKyb98+vDhv\naWmJjo6WSCTBwcEREREGvzr0laAgNHxpaWmHDh3icDiJiYma24FCoVAoFNrY2MycOZNGo2EY\nlpubKxKJeDyek5MTofEaBUgKCeGToeabQK1Wb968uaqqysfH58svv8SfE6alpSUlJVlaWh4/\nfly7SgR9BwYLCUFSSKi7uxvDMO15SS6Xb9u27enTp1Qq1dbWtqWlRalUUiiUsLAwqDr0A0YK\nqUgkkqioKB8fn6KiotmzZ8+fP1/zlkwmi4qKMuaaENYoG77Hjx8jhObMmYNPRmKx+ODBg6Wl\npTQaTa1W5+bm7ty5k0KhTJo0iehIjQgkhVSampqSkpIEAoGZmdnkyZM//fRTFotFo9FiY2O3\nbdtWUFCwcuVKFxcXmUxWX1+PEFqyZAlUg3oDg4WEICmkIpVKjx49mp+f39XVNWzYsJCQkDlz\n5lCpVEtLy4SEhPPnz2dmZtbX11MoFG9v78WLF3t4eBAdsrGAkUIqTCaTyWRmZWUhhHT2/7PZ\n7Li4uKioKPxdI6wJqW+/BPRzw4YNQwgJhUKRSHTmzJm1a9diGJaYmHjmzBkOh1NSUlJVVUV0\njEYHkkIeMpls8+bN+fn5arX6xYsXaWlp69evxws//OfUBx98QKFQysvL6+vrmUzmqlWrgoOD\niY7aiMBgISFICnnIZLJNmzbl5uYqlUoMw0QiUXJyclRUVHt7O0KIwWAsWbLk5MmTp0+fvnjx\n4s6dO6Ea1CcYKaSCV3329vYIoZs3b6rV6le+m5WVlZ+fT1CMhIEnhIYvNDQ0Pz+fz+fz+fyB\nAwcuX7581qxZFApFs7aku7ub6BiNDiSFPP797383Nze7urquWrWKxWKdP38+KysrKioqLi6O\nw+EwGIwVK1YsXry4pqYGwzBnZ2cGg0F0yMYFBgsJQVLI4/jx483Nze7u7qtWrXJycqqqqjpy\n5EhZWdn27dvj4uLwxyAUCsXCwoLoSI0RjBSy0TwJfPLkyYEDB3SeBOLv5uXlcblcAoMkBOwh\nNEAdHR2XLl3Kz89/+fKlq6vrggULHBwcCgoK1Gr1mDFjNKvYr169mpyczGazjx07Buvf+hok\nhYTwzeXh4eHd3d379u1jsVj462fPnj179qyNjQ1eExIbpLHpOVKcnJzUajUMFgJBUsgJn8GW\nLFnCYDD27dtnbm6Ov97V1bV9+/bi4uL58+cvWbKE2CCNCoyU/gJ2DPYEx04Ymtra2sjIyPz8\nfLlcrlarnzx5kpmZaWdn5+/v7+DgYGJighDCMOzSpUsnTpxACEVERMAm5r4GSSEhiUQSGRkp\nEokaGhqCg4N9fHw0b3l5eSGEHj58eO/evQkTJmgKRdDXXjlShgwZ4uzsbG9vD4OFEJAUctKZ\nwbRPFKTRaN7e3teuXXv69OkHH3wA9YZ+wEghp46OjpSUlCNHjly+fBlvumtlZWVubu7v75+f\nny8UCqVSqc5pE8YJCkKDolAotmzZ0tDQ4OLisn379vDw8JaWlqqqqvv370+aNMnS0hIhVFhY\nuH///szMTLzVWEhICNFRGzhICjmp1erbt28LhcKOjg4ul+vu7q79LtSE+vcuIwXBYNEvSApp\naWawzs5OT09PfMrSYDKZ9+/fb2pq4nK51tbWRAVpPGCkkNPrqnQnJyeoCXVAUxmDcuXKlbq6\nuhEjRsTHxzs5Od24cSMjIwMhtGLFCgcHB4RQa2vroUOHSkpKOBzO9u3bP/roI6JDNnyQFHLS\n3lyek5Ojs7kcIbRo0aJFixZJpdIHDx4QEaDReetIQTBY9A6SQlraM9jt27dVKpX2uxiGtbW1\nIdiipi8wUkhIoVBs3769sbHRxcVl3759586dmzlzpkql+v7770UiETL6LjK6MGBA1q1bN3fu\nXLz7xY0bN+bNmzd37twrV67g76anp3d2djY1NeXm5uIHFgE9gKSQWUtLyxdffDF37ty9e/e+\n8vMvKSnRf1TG6V1GCoZhMFj0CZJCcpoZ7Ntvv1Wr1ZrXr127Nnfu3IULFyoUCgLDMx4wUkgo\nJSVl7ty5//u//4t/+GlpaTp5wbW0tFy7do2gGEkEnhAaFLlcbmtr6+TklJGRcfDgQQzDVq5c\nOW/ePIRQe3v74cOHExISbGxsJk6caORPxvUJkkJm2jcIf/jhB6xHky1PT09CAjNC7zJSEEIw\nWPQJkkIq3d3dr2uUn5OTExkZeffu3ZKSkuTk5MOHDyOEli5damZmRlCwxgVGCgnhq3vWrVvH\nYDDS09MPHTqknZeMjAyFQoEQYrPZc+bMIThWEoBjJ/o9sVisVCqdnZ0RQhwOp6qq6sqVK8eO\nHdP+e48QOnHihFKp1CxdAH0KkkJCGIaVlJSIRKIhQ4aMGzdO02gBjqMlEIwUEoKkkNDrjp5H\nWjPY48ePd+/ejV9vYWGxdOnS6dOnExq14dMMFhgpJPTWKj0vLw8aqWhAU5n+rbW1dcuWLZmZ\nmVwu19LSUq1W5+XlFRYWIoS056P09PSUlBQGg7FhwwZN12PQRyApJNTY2Lht27aLFy8WFBTc\nunXrzp07bm5uml4LsLmcEDBSSAiSQkIymWzjxo2PHz/GHw+2tbUJBILi4uIJEybgDwA1M1h7\ne/uECROio6P/8Y9/uLq6Eh24gdMeLAMGDICRQjYPHz6sq6szNTU9fPiwTpV++PDhqqoqLper\n3Z7XyMGS0f7t1KlTUqnUycnJ1tYWIRQcHIw3S7S3t580aRJCSKFQnDp16uDBgwihiIgIGxsb\nYgM2BpAUspHL5Vu2bKmqqmKz2fPnz587d25DQ0N0dLRAINBcA5vL9Q9GCglBUkhIc/T83r17\nr1y5smfPHnd3d/zoeaVSiV+jmcEePHjw888/w1ETeqA9WGCkEKWiokKz10MsFm/btg1vp4QQ\nmjx5skKhOHr0qE41mJ6enpmZyWAwPvjgA2KCJiU4mL6/wk+kDQsLMzU11T6RVi6Xb9u27enT\np1Qq1dbWtqWlRalU4g2OP/zwQ2JjNniQFHL6+uuvBQKBh4dHdHS0hYVFWlpaUlIShmGmpqZR\nUVHaNwhlMlleXh5sJ+hrMFJICJJCQn/06Hk4bls/XjlYYKTon0Ag2LFjR0BAwLp16yQSSXR0\ntEwmmzVr1qpVqxBC3d3dW7Zswc8e3LVr16BBgxQKxYULFy5evIhh2KZNmwICAoj+PyARWDLa\nL2mfSBsSEjJmzBjNWwwGIygoCMMwsVjc3Nzc3d3t7e29fv16+Hvf1yAphFOpVN3d3fi+Go2K\nioqTJ0/a2NjEx8dbWFjcuHEDrwanTp1aXV2dl5c3cuRIOzs7/GJzc3M3NzciYjciMFJICJJC\nQn/i6HlY/a4HrxssMFL0j8ViCQSCwsLCZ8+enT9/XiaTeXt7r127lk6nI4QoFAqXyxUKhb//\n/vuvv/6anZ3973//u6SkhEKhLFu2bObMmUSHTy7QVKZfYjKZTCYT74HRc2UIg8FYsmTJp59+\n2t7ebm5ubmJiQkSMRgeSQiyVSoW3cfvqq6+0P/+SkhKEUHh4+MCBA+/du6fdZ+zly5e5ubl4\nPwbYSKA3MFJICJJCQtpJ6cnGxmb48OFPnz599uyZ9m0sTY+ZvLy8+fPnDx06VF/xGos3DBYY\nKXo2cODAHTt2bN269f79+wghb2/vmJgY7c66lpaWCQkJ58+fz8zMrK+vp1Ao3t7eixcv9vDw\nIC5qkoI9hP2S9om02dnZPc/URghRKBQLCwuYj/QGkkIslUrV3t7+8OHD+Ph47Q//448/njdv\nHpfLbWtr27dvH4ZhixYtwvcS2Nvbs9lstVodFxdXX19PXOzGBUYKCUFSSOhPHz2P/8GdO3dC\nNdgX3jpYYKToU0dHR2trK/7PbDbb1NRU5wK8Sj958uTp06cvXry4c+dOqAZfCZaM9lealSFi\nsbipqWnChAmwMoRwkBQC0en0gICA0tJSoVBYU1Pj7++Prx2lUCjjx4+nUqmpqan5+fnjxo2L\niIjA/8jp06cZDMaqVauGDh3q5+dHaPjGBUYKCUFSSEiTlNra2oaGBu2kXL9+/c6dO0wmc9my\nZfgCOZ0/OGjQIL3HayxgsJCHqalpaWmpjY0Ni8UqKiqqr6/38/PrmQ4KhWJmZgbNlt4ACsJ+\nQ6VSZWdnX7169eHDh21tbcOGDWOxWPiUVFxcDLsFCAFJIZXX1YS47OzsJ0+efPLJJ/gBa6mp\nqenp6e7u7gsXLoTT5/sajBQSgqSQUEdHR0pKypEjRy5fvow3w7Czs8OTUlJSUlhYyGQy5XL5\nr7/+evbsWYTQypUr8eaWoO/0HCl0Ol1TE8JgIZBMJlMoFMHBwUFBQYGBgUVFRYWFhTo14YMH\nDywsLLTXkYJXgoKwf6irq4uKisrMzKypqXn69OnDhw9v3bo1atSoYcOGwQ5yokBSSOgNNWFb\nW9uDBw9kMtngwYOvXbt29uxZCoWyatUqvL0+6DswUkgIkkJCtbW1kZGR+fn5crlcrVY/efIk\nMzNzyJAhHh4eeFJqampyc3Ozs7MrKystLCw+++wzaIzR1143UmxsbKCFD4FaWlr27t174MCB\nu3fvTpw40dLS0szMzN/fX1MTcrlcKpV68+bNPXv28Pn8adOm9XyQDrRBQdgP4Keo1dXV2dnZ\nzZ8/n8vlvnz5sqam5tatW++9956joyNMSfoHSSGt19WEw4cPLy8vLysry8nJqaysRAiFhYVN\nnjyZ6HgNHIwUEoKkkJBCodiyZUtDQ4OLi8v27dvDw8NbWlqqqqru378/adKkIUOGwNHz+vfm\nkWJraws1ISHq6uoiIyPx2yKhoaEuLi5MJhMhpF0TFhYWlpaWpqSkYBg2e/bssWPHEh012UFB\nSC4qlerHH38cPnz4gAEDNC8eP35cKBS6ubl98803Xl5ebm5u06ZNMzExEQgE+fn506dPt7S0\n1ExJI0eOxPc6g94CSel3XlkTUqnUSZMm0en0rq4uZ2fn8PDwqVOnEh2pQYGRQkKQlP7i0qVL\neXl5I0aMSEhIsLGxuXHjxrlz5xBCK1eu5HK5SGvfWnl5+cuXL1+5UQr8aX9upJiZmWnXhDBY\n9ECpVEZFRTU0NLi7u8fFxfn4+ODVIM7MzCwgIKCqqqqsrOzZs2dUKjUsLGzBggUEBtxfQEFI\nIt3d3bt377558+ajR49mzpypmesTExOVSmV0dLT22rbRo0dLJJLKykoqlTpmzBh8ShoyZMiU\nKVMICt8wQVL6i+7ubu1DCF9ZE9JoNE9Pz+nTpwcGBmrOHgS9AkYKCUFS+pFjx461tLT885//\ntLGxSU9P1z4gByGUkZFhb28/cOBAeB7VF/7KSEH/V6vDYNGPjIyM7OxsDoeTkJBgYWGBvygU\nCjMyMiQSibOzs5mZ2ZQpUxwdHR0dHcPDw3k8HrEB9xdw7ASJXLly5d69eywWKyIiQjMfYRj2\n/PlzhJCjo6PO9bNnz0YICQQC/F/ZbPacOXP0GK9RgKSQjVqtxjBM+xWpVPqvf/3rk08++eij\nj1avXn316lW8DzuDwdi+fbuHh0fPsyhAr4ORQkKQlH5ELpfb2to6OTllZGQcPHhQuxpsb28/\nfPgwfs6q5syDrKysH374QWcyBH/OXxwpCAaLHj1+/BghNGfOHPzBoFgsjoqKiomJ+eWXX5KS\nkmJjYzEMo1AokyZNWrRokZOTE8Hh9h9QEJLIf/7zH4TQ2rVrnZ2dxWIxfs4mhULBH2VUVVXp\nXM9gMBBCL1680HukRgSSQioqlSo+Pl77Z5BMJtu0aVNubq5SqcQwTCQSJScnR0VFtbe3I6gJ\n9QhGCglBUvoRDofT1tZ25cqVAwcOaFeDCKETJ04olUoHBwf8XzU1YV5eXl1dHXEhGw4YKSQn\nFourq6vxfx42bBhCSCgUikSiM2fOrF27FsOwxMTEM2fOcDickpKSnvkC7wIKQhLB73aYmJiI\nxeLo6Oh//etfxcXFCKEZM2YghI4ePapUKrWvv3XrFkJoxIgRRARrLCAppNLR0SGRSLRvjR8/\nfry5udnd3X3v3r1XrlzZs2ePu7t7WVnZ9u3b8dRo14R5eXlE/x8YLBgpJARJIZuKigrNzSyx\nWLxt2zb8cHmE0OTJkxUKxdGjR3WqwfT09MzMTAaD8cEHH2j+O3D0fO+CkUJmCoUiOjr6l19+\nwf81NDTUw8ODz+evXr06NTV1+fLlcXFxzs7ODAYDP2YQXyIE/ijYQ0gibDb79u3bfD4/JydH\nJpN5eXl99NFHdDrd1dVVIBBUV1c/evTI29t7wIABGIalpqaeOXOGQqFERETY2NgQHbvBgqSQ\nCoPB0NlCc+jQISsrq927dw8ePJhCoVhbWwcFBVVUVJSVlXV3d+MbPPD9hHZ2drDBo+/ASCEh\nSAqpCASC2NjY2tpaPz8/iUQSHR1dU1PT2dnp6+uLEBoxYkRRUZFUKrW3t1+2bJm5ublCoTh7\n9uxPP/2EEFq3bp2Hh4f2fw2Onu9FMFLIjE6n3717t6SkJCQkhMFg0On0qVOnurq6+vv7h4eH\njx49Gl/le+3atZycHDabvXz5cu0jiME7osACdFI5efLkxYsXEULu7u47duzQnKQpl8u3bdv2\n9OlTKpXq6Ogol8tlMhlCaNmyZR9++CGRERsBSArZyGSyqKgoiUQSHBwsEAhmzJjx97//XfsC\nqVQaHh5uamp66tQpU1NTouI0NjBSSAiSQh7t7e0xMTFPnz718/N7/PixTCbz9vaOiYl5ZVJs\nbW1bWlqUSiWFQgkLC4Ok9DUYKWSWk5Pz3XffLVmyZP78+T3fxTDs0qVLp06dwjBs06ZNAQEB\n+o/QAMATQhKpra1NTk5WKBQIoZcvX77//vtsNht/i8FgBAUFKZXKmpqa5uZmhUIxaNCgNWvW\nwKG0fQ2SQkLabb47Ozs9PT29vLy0L2Aymffv329qauJyudbW1kTFaVRgpJAQJIVU8EPS8OPR\nFAqFTjWI/i8pGIaJxeLm5ubu7m5vb+/169fDD9y+BiOF5IYNG5aRkVFTUzN37lydzrqFhYX7\n9+/PzMzEb52EhIQQFWR/B08ISeTFixexsbEMBmPs2LEnT54cOHDgjh07nJ2dta9RKBQikcjE\nxGT48OHQb1oPICmkpXlOOHTo0P3799PpdM1bGIatWLFCKpXu3r3b3d2dwCCNB4wUEoKkkE19\nfX1kZCT+iGny5Mnr169/5WeOYVh7e7u5ubmJiYneYzRGMFLI7+zZs2fPno2NjX3//fc1L7a2\ntm7evLm+vp7D4fzP//wPnD7/V8ATQhIxMTGZNGlSUFCQt7c3/ogjNzd33LhxmjtVCCE6nW5t\nbW1lZQXzkX5AUkiltraWRqPhP5I0zwlra2sbGhomTJig+fyvX79+584dJpO5bNky7UIR9B0Y\nKSQESSEbU1PT0tJSGxsbFotVVFRUX1//yvPlKRSKmZkZ3iED6AGMFFIRi8WPHj2yt7fX/qgd\nHByuXr36/PnzyZMna15kMBg8Hs/Dw2PVqlVwtvBfBAUhKeDPaSkUiomJCf771d3d/XWzEtAz\nSApJNDY2RkZGPnz4cNKkSTo1YUlJSWFhIZPJlMvlv/7669mzZxFCK1euhMeD+gQjhYQgKeQh\nk8kUCkVwcHBQUFBgYGBRUVFhYaFOTfjgwQMLCwvtdaRAP2CkkERra+umTZsyMzOzs7NVKpWD\ngwPeCIDBYNTW1ubl5U2bNm3AgAGa65lMpoODA1Tpfx0UhARramr67rvvEhMTL1++3NTU5OHh\noemBAbMSCUFSCMRgMCorK4uKioqLi3vWhDU1Nbm5udnZ2ZWVlRYWFp999hns8SAQjBQSgqQQ\npaWlZe/evQcOHLh79+7EiRMtLS3x/YSampDL5VKp1Js3b+7Zs4fP50+bNg2WNhAIRgqBGAyG\nr68vhUJ5/Phxfn7+tWvXmpqaOByOpaXl4MGD09PTzczM8P7hoHdBQUgkmUy2cePG6upqDMO6\nurqqq6tzc3N9fX1ZLBZ+AcxKJARJIQqVSuXxeCKR6HU1YXt7+4QJE6Kjo//xj3+4uroSHa+x\ng5FCQpAU/aurq4uMjMRvVIWGhrq4uOCn3mnXhHinmZSUFAzDZs+eDVuhCAcjhRAymayjo4PD\n4fj4+ISGhtra2jY0NPD5/OvXr5eVlTk6OjY0NBQXF8+bNw8OluiaIpfVAAAgAElEQVR1UBAS\n6ejRo6Wlpa6urlu3bv344487OzuLi4vv3bs3YcKEnjUhh8PROYYI9DqxWNzY2PjWw50gKUR5\na01YXl4+btw4BwcHoiMFCMFI0S+YvkhIqVRGRUU1NDS4u7vHxcX5+Pjg1SDOzMwsICCgqqqq\nrKzs2bNnVCo1LCxswYIFBAYMNGCk6JP2U3T8NzCdTh85cmRISMi4ceO6uroEAgF+SmRnZ+fw\n4cMdHR2JDtnQQJdRYkilUmtr6/Dw8O7u7n379mnKP7yNko2NTVxcHIfD0Vz/+PHjUaNGERSs\nsVAoFJ9//rmnp+emTZve5XpIih50dHRo7xbAqdXqb775Ji8vz83N7Z///KfmB5ZMJsvLy5sz\nZ47ewwRvAiNFD2D6Iqe0tLRDhw5xOJzExETNTCUUCoVCoY2NzcyZM2k0GoZhubm5IpGIx+M5\nOTkRGi/QBSNFD+rq6qKiopqbmy0tLefNmzdlyhQbGxuda+RyeWZm5o0bNxobGz09PePi4ggJ\n1YDBE0ICSCSSyMhIkUjU0NAQHBzs4+OjeQs/Tu3hw4c6zwl7jg3Q6+h0+t27d0tKSkJCQhgM\nxluvh6T0NbFYvGHDBjqdrvN9jD8nFAgEVVVVOs8J3dzcCAoWvBaMFD2A6YucUlNTa2pqFi5c\niH+5i8XihISEc+fO4fujysrKpk6dSqFQHB0dvby8rKysiI4X6IKR0tfe/BRdg8FgjB49eu7c\nuTKZDP+FDOt4exeswe1bKpVKpVLpvMhkMplMZlZWVmNjo7m5uc67ixYtWrRokVQqjYqKqq+v\n11ekACGE5s6dq1KpMjMziQ4EIISQWq1Wq9XJyclXr17VeYtGo+ELqyorK2NjY1+8eEFEgACQ\nCExfJDRs2DCEkFAoFIlEZ86cWbt2LYZhiYmJZ86c4XA4JSUlVVVVRMcIAJH+85//iMViDofz\n9ddfa2o8oVB48uTJ69evq9Vq7YspFMqMGTMQQhkZGQTEatCgIOxDKpUqISEhISFB5y80m82O\ni4uzt7dHCOXk5Oi8i7RqwgcPHugvXIDQpEmT2Gz2jRs3YCk1scRi8dOnT4cPH75r1y4LC4tX\n1oT4UlIul1tZWXn37l0iwgSARGD6IqHQ0FAPDw8+n7969erU1NTly5fHxcU5OzszGAz8mMHu\n7m6iYwSASI8fP0YIzZkzB38wKBaLo6KiYmJifvnll6SkpNjYWJ0JbeDAgQih8vJyQqI1YLBk\ntA8plcr09PQnT55MnDjRwsJC+y1ND4zff/+9ubmZy+XqHKLi5eXl5eUVGBio35CNHZVKVSgU\nDx48cHNzGzp0KNHhGKnW1tYtW7ZkZmZyuVxHR0cfH5/c3Nx79+6xWCzttaMXLlx48uRJfHy8\nm5vblClTCAwYADKA6YuE6HT61KlTXV1d/f39w8PDR48ejX/XX7t2LScnh81mL1++HPolAmMm\nFouFQiGNRnN2dk5NTf3+++8HDRoUHR0dFhZ29+7dp0+fvv/++9bW1vjF3d3dBw4cEIlEHh4e\nAQEBxEZuYKAg7EN0Oj0gIIDH4zk4ODQ0NJibm2vP+5qaUCgUSqXSnjWhra2t3kM2LmKx+NGj\nR/b29tqfvIODw9WrV58/fz558mQCYzNmycnJpaWlo0aNmj17Np1Ot7Ky0tSE3d3dXl5eFArl\n6tWrFy5csLGxWbhwIXQb0wP8Hi0c/kseMH31F1Qq1d7e3sHBAd/qjGHYpUuXTpw4gRCKiIiA\nLjJ9TaVSZWdnX7169eHDh21tbcOGDYMzHknF2dm5tLS0uLj4+vXrv/3229KlS7/44otBgwbR\n6fS0tLT29vbg4GDNTs7q6uoTJ06Ym5tv3rxZ50EL+Iugy6g+1NXVbdmyxdXV9auvvsJXiWjI\nZLKoqCiJRBIcHBwREQG/t/SmtbX1yy+/lMlktra2s2fPnjFjhqaFz/fff5+Tk5OcnAw1uZ7h\n3XfDwsJMTU337dunvcP2t99+i4mJaW1ttbCwMDU1lUqlCKG1a9dOnTqVuHgNkFqtplKp2hNR\nU1NTUlKSQCAwMzObPHnyp59+qhkp2iQSCb4MHugBTF/9VGFh4cWLF0tKSigUytKlSz/66COi\nIzJwdXV1O3fuFIlEmldsbW03bdrUs3EozGAEUqvVBQUFarV6zJgxmo4yV69eTU5OZrPZx44d\n0/7l/PDhQysrK2gg1+vgCaE+mJiY8Pl8oVBYU1Pj7+//h54Tgr4gFoufP38+Y8YMCoWCd3u7\ndu1aU1MTh8OxtLQcPHhwenq6mZnZmDFjiI7UiGh33w0JCdH58K2srPz9/WtqakQi0YsXL0xN\nTVesWDFz5kyiojVI+LZnoVComYhkMtnGjRurq6sxDOvq6qqurs7NzfX19dWpCXNycmJjYwcM\nGAD92fVDKpWOGDFi0KBBMH31I62trfHx8U+fPuVwOJs3b4aF7n1NLpdv2bKlrq7Ozs5u/vz5\nXC735cuXNTU1t27deu+997TvmMAMRqw/9BTd3t5es4IU9CIoCPUBXztaWlr61ppw5MiRcI+q\nr2m2qAUHB0+dOjU0NNTW1rahoYHP51+/fr2srMzR0bGhoaG4uHjevHmwu0Nv1Gr17du3hUJh\nZ2fn+PHjex4EPGDAgGnTpvn7+0+YMGH58uV4G3fQi9rb23/55Rftm1NHjx4tLS11dXXdunXr\nxx9/3NnZWVxcrHMoDkKooKCgqKho1KhRkBQ9wGewBw8erFq1avHixTB99RcMBoPH43l4eKxa\ntcrOzo7ocAzf8ePHhUKhm5vbN9984+Xl5ebmNm3aNBMTE4FAkJ+fP336dDMzM/xKmMHIo7Cw\ncP/+/ZmZmRQKJSwsLCQkhOiIjAUUhHryLjXhkCFD4JahHuhsUaPT6SNHjgwJCRk3blxXV5dA\nIMjJyZHJZJ2dncOHD4f9aXqjuTPS3t7e0tIyc+bMV/6ctbS0tLOz03yRg17EYDB0FiwkJyeb\nm5vv3r2bw+GwWKwJEyagVx2UOnr06DFjxsDyXf3QnsEYDAZMX/0Ik8l0cHCAdUD6kZiYqFQq\no6OjtR8Gjh49WiKRVFZWUqlUzVN0mMFIAp6iEwgKwr6CYVhJSQmfz29raxsyZAiVSn1rTQhL\novuaVCo1Nzc/ePCgpaVlfHy8zvHNNjY2PB4vJCRk4MCBtbW1HR0dcrl82rRpREVrhDQ1oVgs\nbmpqmjBhAvxy0jOdRewNDQ3BwcE+Pj6aC/A76D1rwsGDBxMTsTF5wwwG0xcA2jAMO3nyJEIo\nPDxcp3eDlZVVVlaWQqHQfvoEMxgZwFN0AkFB2CcaGxu3bdt28eLFgoKCW7du3blzx83Nzdra\n+s01IehFKpWqs7PT1NRU88qbt6hpMBiM0aNHz507VyaT4T95NSelgr6g075SU5AUFxfDrlpC\naNeEHR0dXC7X3d1d+4LX1YSgt/ScvtC7zWAwffW1iooKa2trfFISi8Xffvutj48PLFggIQqF\ncuvWrfb29nHjxuk0WGpvb79x44aZmdncuXOJCg+8DjxFJwoUhL1PLpdv2rRJLBaz2ezQ0FAX\nF5eioqKcnJyRI0fa2dlBTagHarU6ISEhNTV10qRJmh9Vb92ipo1CobDZ7IyMDCqV+v777+sl\nagOnVqspFIpO+8rvvvsuMTHx8uXLTU1NHh4eeLKg0xLhtJfvyuXy6dOn60xTmprQ1tZWp1wE\nf9Erpy/0R2YwmL76iEAgiI2Nra2t9fPzk0gk0dHRNTU1nZ2dvr6+RIcGXkGpVBYVFf32229T\npkzRfkh4+fLliooKLy8vOMgOAA0oCHtfQkLCkydPPDw84uPjuVxuY2Njfn6+SqXKy8vrWRM6\nOjoOHz6c6JANEJ/PLywsLCoq0vyoesctahpdXV1Xr15VqVSzZs3SV9QG64+2r4SakHCaFPz+\n++/Nzc09U+Dl5eXl5RUYGEhUhAas5/SF/uAMBtNXX2CxWAKBoLCw8NmzZ+fPn5fJZN7e3mvX\nroVz7cjJ1dVVIBBUV1c/evTI29t7wIABGIalpqaeOXOGQqFERERoTrcDAEBB2MsqKipOnjxp\nY2MTHx9vYWFx48aNpKQkDMOmTp1aXV2tUxPa2dnBltm+QKFQ/Pz86urqXlcTvnWLWnd394ED\nB0QikYeHB9xE/Ov+RPtK6L5LuLeW5XDSXV943fSF3nkGg+mrj5iZmfn7+xcWFpaWlioUCm9v\n75iYmDesF5VIJHB2NoGoVKqfn59QKKysrLx27VpeXt65c+dyc3MRQsuWLYOhAYA2KAh72c2b\nN4uLi7/88ksXF5d79+4lJiZiGLZy5cqlS5f+/vvvz549064JnZ2diY7XYL21JnzzFrXq6uoT\nJ06Ym5tv3rwZvtH/uj/XvhK67xIOHtUS4l1qwjfMYDB99SK1Ws3n84cOHapZ2nDt2jWFQoEQ\ncnd3nzRp0utGBBxtRwYMBiMoKEipVNbU1DQ3NysUikGDBq1ZswbOsO1rUqk0KSnpp59+evjw\nIYvFglu65AcFYe8Qi8VSqZTNZnt4eLx48SI0NPT58+cxMTFKpXLRokXz589HCD179qy2tlah\nUOTm5gYGBkInhr721prwDb9xra2tnZ2dZ82aNWLECCJiN0B/rn0ldN8lHNSEhHiXmvB1GYHp\nq7fk5OTExcWlpaVpPmdTU9PS0lIbGxsWi1VUVFRfX+/n5/fKEQFH25EEnU4fP378vHnz/Pz8\nQkNDly5dCvt0+lpra+uGDRvKy8vb29vr6+tv377d2trq4+PTc6TAU3TygIKwF2gOOudyuVZW\nVuPHj6dSqampqfn5+ePGjYuIiMAvO336NIPBWLVq1dChQ/38/IiN2eDJZLLDhw8nJydLpdIX\nL17IZLI/WhPa29tbW1sTEbvBgvaV/RQs39WzN09f6B1mMJi+/iK1Wp2UlHTq1KmOjg4ej/e3\nv/0N/zxpNNrEiRODgoICAwOLiooKCwt1asIHDx5YWFiYmZnB0XakQqfTra2trays4H6WHhw+\nfPjRo0cuLi4RERHvv/9+VVVVcXFxz7sn8BSdVKAg7AU6B53jL2ZnZz958uSTTz7B14Wmpqam\np6e7u7svXLjQ09OT0HgNn1Qq3bhx46NHj1gsVlBQ0OjRo6VSqVgsfl1NCL9x9QbaV/ZTsHxX\nb95l+kIwg/WxvXv3ZmVlMRiMdevWLV68eNCgQZq3aDQajUbD9xNqakIul0ulUm/evLlnzx4+\nnz9t2jQ6nQ5H2wHjdPDgQQsLiz179gwfPtzJySkoKEggEAiFQp2aEJ6ikwoUhH/JG44Jbmtr\ne/DggUwmGzx48LVr186ePUuhUFatWgVtGPRg7969lZWV7u7uu3fv9vHxGTNmTEhIiEQiEQqF\nPWtC+I2rHzKZrKOjg8lkQvvKfgqW7+rHO05fCGawPnPv3r1Tp07R6fSdO3dqL2vXoV0T4p1m\nUlJSMAybPXv22LFj9RkwAKTy888/h4aGas5KxZsI9KwJ4Sk6qUBB+Oe9+Zjg4cOHl5eXl5WV\n5eTkVFZWIoTCwsImT55MULBGRK1W7927t7u7e/v27ZpFUzQajcfj8fn8J0+e6NSE8Bu3r7W0\ntOzdu/fAgQN3797FF4JC+0oAXukPTV8IZrC+cejQocbGxoULF/astEUiUXl5uVKpZLPZCCEz\nM7OAgICqqqqysrJnz55RqdSwsLAFCxYQETUARJLJZEeOHDl9+jSfz29ra/P09NReCPq6mhCe\nopMHFIR/3puPCaZSqZMmTaLT6V1dXc7OzuHh4XAXRD9UKlVKSgqdTv/ss8+0X6dSqQwG4969\nez035IC+U1dXFxkZWVlZaWFhERoa6uLiwmQyEbQq0buKigpra2v8QxaLxd9++62Pj88bOuYD\nQsD0RQbHjh1TKpUrVqzQXilaUVGRkJBw6tSpO3fu3Lhxo7Ky0tfX19TU1NTUdMqUKY6Ojo6O\njuHh4Twej8DIASCETCZbv359aWmpXC6vra3t7OzsuSVEuyYcMWKEg4MDgQGDnqAg/PPeekww\njUbz9PScPn16YGCgnZ0dUXEaGxqNlpOT09bWxuPxrKystN+Sy+U3b9709fUtLS3lcDgjR44k\nKkgjoVQqo6KiGhoa3N3d4+LifHx88GoQBzWh3ggEgtjY2NraWj8/P4lEEh0dXVNT09nZ6evr\nS3Ro4L/A9EUG2dnZbW1tbm5uLi4uCCGFQnH8+PGDBw82Nzfb29vjuzpFIlF1dTV+n5dCoTg6\nOnp5eemkDPQ6OMyAnJKSksrKypydndesWTNu3LjKysra2tqeW0LwmpDD4cAqdxKCgvAvefeD\nzoE+qVSqoqIikUgUFBSkXaVfuXKlqqrq66+/9vT0DAoKIi5AY5GRkZGdnc3hcBISEjStpYVC\nYUZGhkQicXZ2ZjKZ0BhDD1gslkAgKCwsfPbs2fnz52Uymbe399q1azVNsHRAK3ACwfRFBgUF\nBcXFxRiGlZeXJyYmFhUVWVparl69es2aNYGBgTweLysrq7a29r333hsyZAjRwRoLOMyAhPBW\nGklJSXgXGScnJ2dn58mTJ7/uVi+DwXB1dSUwYPA6UBD+Ve940DnQJzc3N4FAUFFRUV1dPXbs\nWLzZT1pa2tmzZ62srP7+9787OjoSHaNRSE1NrampWbhwId5DTCwWJyQknDt37vHjx/n5+WVl\nZVOnToXGGHqAd7/A+14oFApvb++YmJjXrReFVuDEgumLcK6uri0tLY8fPy4uLsZ3hQQGBsbE\nxGj6HltaWpaUlDQ0NLi4uMAw0Rs4zIBsNK00GhsbZ82apWmlAct/+qNX3x4GfwibzY6Li4uK\nisrKykIIRUREwF99YtFotNjY2G3bthUUFKxcudLFxUUmk9XX1yOElixZQqPRiA7QWAwbNgwh\nJBQKx48ff+fOnZ9//tnV1TUxMdHOzu7LL78sKSmpqqpyc3Njs9lz5swhOlhDo1arCwoKfH19\n8emoo6OjtbUVf4vNZr9hB1pzc3N3d/fz58/1FCj4bzB9EY5CoaxZs2bixImFhYUsFmvixIk6\n+51UKtVvv/2GoP2VfhUUFNja2u7atQvfejB27NitW7fm5OQghNatW6f53QUzmN4wmUwmk4n/\n9NX5ToEfxv0OPCHsHXA7hGwYDEZQUJBSqXzy5El9ff3z58+ZTObKlStnzpxJdGhGxNnZubS0\ntLi4+Pr167/99tvSpUu/+OKLQYMG0en0tLS09vb24OBgGxsbosM0QDk5OXFxcWlpaZrpyNTU\ntLS01MbGhsViFRUV9bytrgGtwAkH0xcZ2NnZjR8/3tPT09LSUuetc+fO8fl8Npv9+eefQ4mu\nN3CYAdm8+WBhOCu1f6FgGEZ0DIZDJpNFRUVJJJKtW7dyuVyiwwEIIaRQKGpqajAMc3Z21j4o\nEugH/pxKrVaPGTNG01Hm6tWrycnJbDb72LFj8HOqd6nV6h9//PHGjRsIIR6Pt2DBAk33EaVS\niRB6+fJlTEzM06dPg4KCtG+rP3jwwMPDAzbekApMXySUlpaWlJSEYVhUVJSfnx/R4Rg4mUx2\n+vTpysrKwYMH19TUfPjhh/PmzdO+QC6Xb9269bffftOZ0IDeaH76BgcH93wSKJPJ8vLyYBEQ\n+UFB2Mvgrz4Ab4Bh2KVLl06dOoVh2KZNmwICAoiOyNB8//33N2/eZDAYERERr/t429vbNTXh\nl19+SaPRbt68uXfvXgcHhz179sBZFAC80suXL48cOZKeno4QWrp06ccff0x0RAYOP8ygublZ\n84qLi8uePXt0biNqasKvvvoKjv0gxJtrQtAvQEH4X1Qq1cuXLwcMGKB5RSwWK5VKZ2dnAqMy\ncj2TgiAv/VNhYeHFixdLSkooFMrSpUs/+ugjoiMyNPfu3YuPj6fT6XFxcZoGGK+kqQnd3NyG\nDh2K78NZtGjRokWL9BQrAP2HWq2+fv36hQsXWltbzczMIiIiAgMDiQ7K8OG3t5ydnRcvXtzW\n1nby5EmZTPbKkkMul+fl5c2aNYuoUAHUhP0d7CH8/6lUqoSEhNTUVM2Zv62trVu2bMnMzORy\nuT13EQA96JkUBHnpn1pbW+Pj458+fcrhcDZv3gw9RfvCoUOHGhsbFy5c2PPjFYlE5eXlSqWS\nzWYjhMzMzAICAqqqqsrKyp49e0alUsPCwhYsWEBE1ACQHZVKvX37dnFxMY/Hi4yMxNsmg16k\nUqk6Ozs13/JwmEG/A600+jvoMvr/wQsP/KhTqVTKYrEQQqdOnZJKpV5eXtBJjBCvTAqCvPRP\nVlZWcXFxlZWVPB4Pvif6CN75UGcDc0VFxZEjRyorK/F/9fHx2bhx44ABAwYMGLBjx47c3FyR\nSMTj8ZycnPQfsMGrqKgYNWoU/hdeLBYnJydv2LABNmr2R+Hh4bNnz4bGGH0B/65vbm7esWMH\ni8WSSCRRUVE+Pj40Gi0kJESz+XzQoEHQuJLMtDuL+vn5QSuN/gWeECL034XHzp07R4wYgd+d\nOnjwoKWlZXx8POzm17+eSUH/d9cQ8kIUnZu4CCGxWCyVSvGHTm/FZDIdHBzgK7zvZGdnt7W1\nubm5ubi4IIQUCsXx48cPHjzY3Nxsb28/evRoqVQqEomqq6vxFnwUCsXR0dHLy8vKyoro2A2Q\nQCCIjY2tra318/OTSCTR0dE1NTWdnZ2+vr5Ehwb+DKjk+4Lmu76rq4vH41lZWanV6tu3bwuF\nwhcvXvj6+mofJwiPoUgODhbuv6Ag1C08nJ2dNUdtNjQ0hISEaHoc65BIJPD10Ed6JgVpHYH6\nhrxAUvoOrKnuFwoKCoqLizEMKy8vT0xMLCoqsrS0XL169Zo1awIDA3k8XlZWVm1t7XvvvTdk\nyBCigzVwLBZLIBAUFhY+e/bs/PnzMpnM29t77dq1dPqr1+bA9AWMzSvv/MJhBv2aubm5m5sb\n0VGAP4z69ksMmmYyMjEx2bFjB154aI7abG5ufl1P/JycnNWrV1+9elW/8RqFVyYFvUNeICl9\nR5OUhoYGqVSKv4iv3XVycoK1uyQxe/bsGTNmKBSK06dPnzx5srm5OTAwcP/+/UFBQfgFDg4O\nHh4e6P8Wl4I+NXDgwB07dowYMeL+/ft4NRgTE/O6Jq4wfQFj88o7vzh88aG9vf2TJ08OHDig\n0/4Qf/fzzz+HRYkA9BajLgg1kxFCqKurKzc3F39dMxMhhLKzs9Vqdc8/29zc3N3d/fz5c30G\nbAxelxT0DnmBpPQRna9tJycnqVSKYRifzx8yZMjWrVvhoAKSoFAoa9as+frrrz/44IPFixfv\n379/48aN2g9vVSoVXgpCDd9H1Gr1w4cPNb9fOzo6Wltb8X9ms9nay611wPQFjMrr7vxqaL7x\ns7Kyfvjhh541IZzvBUAvMt4lo9q/cT/99NPS0tLS0tKuri58IaJmTYJYLG5qapowYYLOOvXR\no0ePGTMG34cDesubk4LelhdISl/402uqAVHs7OzGjx/v6enZcx3vuXPn+Hw+m83+/PPPX7f8\nAfxpOTk5cXFxaWlpmt1NpqampaWlNjY2LBarqKiovr7ez8/vlbueYPoCxkP7zm93d/fAgQNf\n+T0COwYB0BsjLQh1fuPyeDxXV9fc3NxX1oTFxcWvnIkGDx5MUPiG6V2Sgt6WF0hK79K+iRsf\nH4+3KtHs+O/s7Bw/fjy+BFEH7IYiobS0tBMnTiCE1q9fP3z4cKLDMShqtTopKenUqVMdHR08\nHu9vf/ubtbU1QohGo02cODEoKCgwMLCoqKiwsFCnJnzw4IGFhQX+jB2mL2AM3nrnVxvUhISQ\nSqVJSUk//fQTnibYqGkMjLQgzMjIuHz5svaydTs7uzfUhDAT6cE7JgVBXvTldTdxtXf8t7S0\nzJw5U3vHP0IoJycnNjZ2wIAB2t3hAIFevnz5448/pqSkIISWLl06Y8YMoiMyNHv37s3KymIw\nGOvWrVu8ePGgQYM0b9FoNBqNZmZm5u/vr6kJuVwulUq9efPmnj17+Hz+tGnTXtdpBgBD8o53\nfrVBFxk9a21t3bBhQ3l5eXt7e319/e3bt1tbW318fHr+0II7v4bESAtCFxcXpVK5bNky7WXr\nUBMS692TgiAvfe+vrKkuKCgoKioaNWoUHN9MOLVanZqampCQ8OjRIzMzs3Xr1s2aNYvooAzN\nvXv3Tp06RafTd+7c6ePj87rLtGvCwsLC0tLSlJQUDMNmz549duxYfQYMAFHe/c6vNjjMQJ8O\nHz786NEjFxeXiIiI999/v6qqqri4uOdyd7jza2CMtCCkUChjx47teXjaW2tCuDvVd/5QUhDk\npS/9xTXVsBuKPKhU6u3bt4uLi3k8XmRkJJTofeHQoUONjY0LFy7s+WtVJBKVl5crlUp8ZjMz\nMwsICKiqqiorK3v27BmVSg0LC1uwYAERUQNAgD9051cbHGagNwcPHrSwsNizZ8/w4cOdnJyC\ngoIEAoFQKNSpCeHOr4Ex0oLwDd5QE8LdKaK8uSaEvPS6v76mGnZDkYePj09gYODs2bNhbU8f\nOXbsmFKpXLFihfZK0YqKioSEhFOnTt25c+fGjRuVlZW+vr6mpqampqZTpkxxdHR0dHQMDw/n\n8XgERg6Anv3RO79A/37++efQ0FBNChgMhr+/f8+aEO78GhgoCF/hdb994e4Ugd5QE0Jeeh2s\nqTYwUAr2qezs7La2Njc3N7zrkkKhOH78+MGDB5ubm+3t7UePHi2VSkUiUXV1Nf7jiUKhODo6\nenl5WVlZER07AGQBNSGBZDLZkSNHTp8+zefz29raPD09tReCvq4mhDu/hgQKwleDiYmEICl6\nA2uqAfhDCgoKiouLMQwrLy9PTEwsKiqytLRcvXr1mjVrAgMDeTxeVlZWbW3te++9N2TIEKKD\nBYCk4FueEDKZbP369aWlpXK5vLa2trOzUy6XT58+XbtdnHZNOGLECAcHBwIDBn0BCsLX0kxM\nXl5esEKaJCAphIM11QDocHV1bWlpefz4cXFxMX4cS2BgYCaDZc8AAAOkSURBVExMjLu7O36B\npaVlSUlJQ0ODi4sLNGAA4A2gJuxTKpWqs7PT1NRU+8WkpKSysjJnZ+c1a9aMGzeusrKytra2\nublZZ8kPXhNyOBz4ojdIFAzDiI6B1Orq6uzs7IiOAvwXSArhBALBrl27urq65s+fv2TJEqLD\nAYB4AoGgsLCQxWJNnDhR5/a5SqVavnx5a2trdHT0hAkTiIoQgP4C/4qZP3/+okWLiI7FcODt\n4pqbm3fs2MFisRBCUqnU2to6LCzMxMRk3759TCYTIdTS0hIdHS2RSIKDgyMiImAbiJGAJ4Rv\nMXDgQKJDALogKYSDm7gA6LCzsxs/frynp6elpaXOW+fOnePz+Ww2+/PPP6fRaISEB0A/Ymdn\nh6+1JjoQw6FpHt7V1cXj8aysrCQSSWRkpEgkamxsnDVrFhzrZeSob78EAAB6GD9+fHR0tImJ\niYmJCdGxAEBeaWlpKSkpCKFVq1bBYAHgHcE6oF6kc5SUk5MTQojJZDKZzKysLKlUqrOIlM1m\nx8XF2dvbZ2Vl/fDDD7CW0BjAklEAwJ8Hy3cBeJ2XL18eOXIkPT0dIbR06dKPP/6Y6IgAAEZH\npxrUbh4uk8mioqIkEomLi8uePXt01i9o3t26dSuXy9V74ECvoCAEAAAAepNarb5+/fqFCxda\nW1vNzMwiIiICAwOJDgoAYHQ01aCJicnu3bvxo3G0aaq+V+4YlMlkeXl5c+bM0WPIgBiwZBQA\nAADoTTQarb6+vrW1lcfjJSYmQjUIANA/TTWIEOrq6srNze15zZtXh7LZbKgGjQQ8IQQAAAB6\nn0QigWM5AQCE0F4punDhwpMnT76hMfibnxMCYwBdRgEAAIDeZ2FhQXQIAABjpLNvkMfjvbkx\nOHQWBVAQAgAAAAAAYCAyMjIuX76s3UXmrYdFadeEI0eOhNUNxgYKQgAAAAAAAAyEi4uLUqlc\ntmyZdk/Rd6wJhwwZMmXKFP3GC4gHewgBAAAAAAAwfAKBYNeuXW/YTwiMEzwhBAAAAAAAwPC9\n9TkhME5QEAIAAAAAAGAUoCYEPUFBCAAAAAAAgLGAmhDogIPpAQAAAAAAMCLjx4+Pjo42MTEx\nMTEhOhZAPGgqAwAAAAAAgNGpq6uzs7MjOgpAPCgIAQAAAAAAAMBIwZJRAAAAAAAAADBSUBAC\nAAAAAAAAgJGCghAAAAAAAAAAjBQUhAAAAAAAAABgpKAgBAAAAAAAAAAjBQUhAAAAAAAAABip\n/wfzv79uLikVUAAAAABJRU5ErkJggg==", - "text/plain": [ - "plot without title" - ] - }, - "metadata": { - "image/png": { - "height": 180, - "width": 600 - } - }, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Warning message:\n", - "“\u001b[1m\u001b[22mUsing \u001b[32msize\u001b[39m for a discrete variable is not advised.â€\n", - "Warning message:\n", - "“\u001b[1m\u001b[22mRemoved 8 rows containing missing values (`geom_point()`).â€\n", - "Warning message:\n", - "“\u001b[1m\u001b[22mUsing \u001b[32msize\u001b[39m for a discrete variable is not advised.â€\n", - "Warning message:\n", - "“\u001b[1m\u001b[22mRemoved 8 rows containing missing values (`geom_point()`).â€\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAAFoCAIAAADIFpV9AAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdd1wUV9cH8DvbKEtvUqSDDVDsRkViYkMFiQ2xxB5QeRKjxmhiTcTEmGje\nGDUKBiXGRlREECuoaLCCJRIkICIiTUA6W+f9Y5INwbbqLEP5ff/avXv3nDP4PPlwmLn3UjRN\nEwAAAAAAAGh9eFwXAAAAAAAAANxAQwgAAAAAANBKoSEEAAAAAABopdAQAgAAAAAAtFJoCAEA\nAAAAAFopNIQAAAAAAACtlIDrAjhWWlqakpLCdRUAAAAAAAAcaO0NYVZWVlhYWP/+/bkuBAAA\nAAAAoFFFRUW19oaQENKhQ4f//e9/XFcBAAAAAADQqOLj47GGEAAAAAAAoJVCQwgAAAAAANBK\nNblHRh8/frx3796UlJTy8nJDQ0M3N7d58+bp6OgwnyqVyujo6BMnThQXF5uZmQ0ZMmT06NE8\n3r9t7UsnAAAAAAAAAKNpdUo5OTkfffRRUlJSp06dRo8e3bt374cPH9bU1KgmhIeH79y509HR\ncebMma6urpGRkdu3b68f4aUTAAAAAAAAnufhw4cURfn7+79gpCVpQncIlUrl+vXr9fX1V69e\n3aZNm6cn5ObmxsXFeXt7L1y4kBAyYsQIoVAYHx/v4+Njb2+vzgQAAAAAAGgcoaGhy5YtI4Sk\np6e3b99eEykyMzNdXV0DAgL27dunifitQRO6Q3jt2rUHDx5MnTq1TZs2tbW1Uqm0wYSkpCSa\npn19fVUjfn5+NE2fP39ezQkAAAAAANAIaJresWMHRVGEkLCwMK7LeSMWFhZJSUlfffUV14Vo\nRBNqCK9fv05RlK6u7kcffRQQEDBu3LilS5feu3dPNSEzM5PP5zs7O6tGHB0dRSJRVlaWmhMA\nAAAAAKARnDx5Mjs7m7nZs2vXrqdv9jQjIpGof//+HTt25LoQjWhCDeGjR4/4fP7atWutra0/\n+eSTqVOnZmdnf/bZZwUFBcyE0tJSQ0NDPp+v+gpFUcbGxiUlJWpOYHz44Yej/hEREaH5KwMA\nAAAAaF2Yu4KzZ8+eNGnS48ePDx8+3GBCbGwsRVGrVq1qMG5kZOTi4lJ/JD4+fvDgwdbW1lpa\nWlZWVv3791+/fj0h5Ouvv3Z1dSWE7N+/n/rH7t27CSE3btygKGratGlZWVkTJkywsLDg8XiX\nLl1iCvP393d0dNTR0TEyMvL29o6KinrxtTxzDeFrxGmamtAawtraWrlc7unp+emnnzIjTk5O\nK1asOHjw4Lx58wghEolEKBQ2+JZIJJJIJMzrl05gVFdXV1ZWMq/r6upYvxAAAAAAgNassLAw\nJiamXbt2ffv2NTAw2LBhw/bt2wMCAl4jVGRk5NSpUy0tLUeNGmVhYVFcXHznzp3w8PBPPvnE\n19dXKBQuWrSoT58+TL9ACOnXr5/qu7m5ub179zYzMxs2bFh1dbW2tjYhJCgoqFevXgMHDmzT\npk1RUVFsbOz48ePXrVu3ePHiVyqMrTica0INoZaWFiFk4MCBqhFPT09jY+M//vhDNaG2trbB\nt6RSKfNPq84Exo4dO1Svr169Ghsby9IVAAAAAAAAiYiIkMlk06ZNI4S4u7t369YtMTExMzOz\nwa0/dWzbto3P51+/ft3a2lo1WFZWRghxc3PT0tJatGiRvb395MmTn/5uQkJCSEjI999/X/8R\nwpycHFtbW9Xbmpoab2/vVatWzZ4929jYWP3C2IrDuSb0yKipqSkhpMGPz8jIqKqqinltYmJS\nXl6uUChUn9I0XVZWxnxRnQkAAAAAAKBRNE2Hh4fzeLz333+fGZk2bRoz+HoB+Xy+QPCf+1hq\ndlxmZmbr1q2r3w0SQpgujqbp8vLywsLCioqK9957r7a2Nikp6ZWqYisO55pQQ8g8Afz48WPV\nCE3TJSUlhoaGzFtnZ2eFQlF/m5ns7GypVKraRealEwAAAAAAQKMSEhKysrIGDx5sY2PDjEyc\nOFEkEu3cuVMmk71qtMDAQKlU6ubmFhIS8ttvv6m2F1GHp6enrq5ug8HU1NRRo0YZGhoaGRlZ\nWlpaWVl9/vnnhJC8vLxXKoytOJxrQg3hW2+9JRAIjh8/rlQqmZELFy5UVFR069aNeevl5UVR\n1NGjR1VfOXr0KEVRXl5eak4AAAAAAACN2r59OyGEeV6UYWpq6uvrW1hYeOTIkVeNFhISsnv3\nbldX161bt44bN87Kyqpv374XL15U57v1nzJlpKSk9OvXLykpac6cOb/++mtsbGx8fDxzhnmD\nbUdejK04TUETWkNoZmY2YcKE3bt3f/bZZ3369CkuLo6PjzczMxszZgwzwc7Obvjw4XFxcTKZ\nzN3dPS0tLSkpadiwYQ4ODmpOAAAAAAAAzSkuLo6OjiaEBAYGBgYGNvh0+/btY8eOZV7zeDxC\niFwurz9BJpNVV1ebmZnVH5w0adKkSZMqKiqSk5Ojo6N37Njh4+Nz586d+kv4nok5BbG+DRs2\n1NbWxsTEDBo0SDV4/fr1V7hCVuM0BU2oISSEjB8/3tjYOCYm5pdfftHW1vby8nr//fdVj4wS\nQmbPnm1qanry5MnLly+bmppOmTJl9OjR9SO8dAIAAAAAAGgIc+Rg9+7dPT09G3wUExNz+vTp\n7OxsR0dH8s86wNzc3PpzUlNTG7SIKgYGBkOHDh06dKiRkdHXX3+dkJAwdepUZn1g/T1EXuz+\n/fuEkD59+tQfTEhIUPPrrMdpCppWQ0gIGTx48ODBg5/3KY/HGzt2rOrvCq8xAQAAAAAANITZ\nOWbLli29evVq8NHy5cvXrFkTHh4eGhpKCPHw8NDW1j5y5EhBQYGlpSUhpLy8fMGCBQ2+derU\nqYEDB9bfVIbZc4RZHMhsHvngwQM1y3Nycrp48eKpU6fee+89ZmTPnj2v0cipGefrr78+e/bs\nhx9+OHz48FdN0WiaXEMIAAAAAADN0dmzZ+/evevh4fF0N0gImTlzZmhoaERExOrVqwUCgZ6e\n3pw5czZu3Ojp6enr6yuVSk+dOtW9e3cDA4P63woMDBQIBN7e3vb29nw+//Lly4mJiW5ubiNH\njiSEGBgY9O7d+/Lly4GBgR06dODz+f7+/u7u7s+rMCQkZM+ePYGBgQEBAfb29jdu3Dh27Ni4\nceNe9Ux5NePcuHHjxIkTqqaxaWpCm8oAAAAAAEDzFRYWRgiZNWvWMz91cHAYNGhQfn6+ag/I\n9evXr1y5Ultbe9euXefOnZs5c+bBgwcbLPxbs2bNW2+9de3atc2bN2/durWkpGTNmjUXLlzQ\n0dFhJuzevXvkyJEnTpxYvXr18uXLb9y48YIKe/Xqdfr06V69ekVHR//f//1fdXX1yZMn/fz8\nXvVK1YyTkZEhFAqHDBnyqvEbE0XTNNc1cIk5mH716tVcFwIAAAAAAC1HaWmpubl5cHDw5s2b\nua7luYYPH447hAAAAAAAACxLTEzU0tJatmwZ14W8BBpCAAAAAAAAlo0ZM6ampsbKyorrQl4C\nDSEAAAAAAEArhYYQAAAAAACglUJDCAAAAAAA0EqhIQQAAAAAAGil0BACAAAAAEBrZ2Zm5uDg\nwHUVHEBDCAAAAADQ2EaNGkVR1KZNm57+6NKlSwKBoF27dtXV1Y1fGLQ2aAgBAAAAABpbeHh4\nmzZtFi9enJaWVn+8urp68uTJFEXt3r1bLBZzVR60HmgIAQAAAAAam7m5eURERF1d3aRJk6RS\nqWp8/vz5WVlZK1as6NWrF4flQeuBhhAAAAAAgAM+Pj7z5s27cePGsmXLmJGYmJjw8PC+fft+\n9tlnzMi+ffu8vLwMDAx0dHQ8PDy+/vpriUSiihAbG0tR1KpVqxpENjIycnFxUb29ceMGRVHT\npk3Lzc2dOHGimZmZjo5Oz549jx071uCLCoXiu+++69Chg7a2tq2t7fz586uqqtRZXBcfHz94\n8GBra2stLS0rK6v+/fuvX7++/oTk5OQxY8ZYWlqKRCJra+vJkyenp6c3CHLp0qXx48erggwZ\nMuTAgQP1J7z4p6H+ZSqVyu+//75jx47MZX788cdVVVVPX1RYWJi/v7+jo6OOjo6RkZG3t3dU\nVFT9CaqMWVlZEyZMsLCw4PF4mzdvpijKz8+vQTSaptu1a6erq1tWVvbiH2YjE3BdAAAAAABA\nK7V+/fqEhITvvvtu+PDhnTp1mjVrlr6+/i+//MLn8wkhixcvXr9+vYWFxeTJk8VicVxc3NKl\nS48fP37q1CmhUPiquXJzc3v27GljYzN+/PiioqLo6GhfX9+zZ896eXmp5nzwwQc///yzg4ND\nSEgIj8c7dOjQ9evXFQrFiyNHRkZOnTrV0tJy1KhRFhYWxcXFd+7cCQ8P/+STT5gJYWFhwcHB\npqamI0eOtLCwyM7OjoqKio6OPnPmTO/evZk5P/3007x584RCoZ+fn4uLS1FR0bVr17Zs2TJ+\n/Hhmgpo/DXUuc86cOdu3b7e3tw8JCaEo6tChQ9euXXv6MoOCgnr16jVw4MA2bdoUFRXFxsaO\nHz9+3bp1ixcvbvCD7d27t5mZ2bBhw6qrq/v168d0obm5uba2tqppiYmJf/3119SpU42NjdX8\nJ2skdOt25cqVFStWcF0FAAAAALRSqampIpHI1tZ26NChhJCff/6ZGT9//jwhxNHRsaioiBmR\nyWQ+Pj6EkNDQUGbk6NGjhJCVK1c2iGloaOjs7Fw/BfOb/7Jly5RKJTP4yy+/EEJ8fX1V006f\nPk0I6dKlS1VVFTNSU1PTo0cPQoi9vf0LLqFv3758Pj8vL6/+YGlpKfMiLS1NKBQOHTq0pqZG\n9enNmzf19PQ6d+6sesvn801MTNLS0uoHyc3NVf+noeZlJiYmNrjM6urqrl27Pn2ZDx48qP+2\nurq6R48eOjo6qktTZQwJCZHL5aqZERERT/+7MJ3t77///tyfIxd8fHzQEKIhBAAAAAAurVu3\njukrRo8erRqcNm0aISQiIqL+zLS0NIqiHB0dmbev1BDa2dnJZDLVoFKpNDQ0bNOmjWrk/fff\nJ4RER0fXD3X8+HF1GkKRSFRYWPjMT0NCQggh586dK/6vUaNGEULu379P03RwcDAh5Icffnhe\nCnV+Gmpe5tSpUwkhhw8frh8qLi7ueZepVCqfPHlSUFCQn58fGhpKCDly5Ej9jGZmZtXV1fW/\nUlNTY2JiYmNjo+oSCwsLRSKRh4fH8y6QKz4+PlhDCAAAAADApUWLFllaWhJCvv32W9VgSkoK\nIWTgwIH1Z3bs2NHKyio7O/vJkyevmqVr164Cwb/rxSiKatu2bf31bEx7U//RSkJI//79Xxo5\nMDBQKpW6ubmFhIT89ttvBQUF9T9NTk4mhHh7e5v/15EjRwgh+fn5hJBLly4RQpg7fs+k/k9D\nzcscMGBA/VAN3qpmjho1ytDQ0MjIyNLS0srK6vPPPyeE5OXl1Z/m6empq6tbf0RHR2fatGl5\neXlMn0kIiYiIkEqlTN/b1GANIQAAAAAAl3g8npaWFiFER0dHNVheXk4IYRrF+qysrB49elRe\nXm5kZPRKWZ6eLxAI6i+cq6ioEAgEJiYm9eeIxeKXnn4REhJibGy8efPmrVu3bt68mRDy1ltv\nrV+/vl+/foSQkpISQkhMTEz9q1Pp2LEjIYTp6GxsbJ6XQv2fxksvs7y8/OnL1NPTa3CZKSkp\n/fv319bWnjNnTpcuXQwNDfl8/unTp7/77rv6O9kQQqytrZ8ueM6cORs3bty2bZufnx9N02Fh\nYWKxePLkyc+7QA6hIQQAAAAAaHIMDQ0JIQUFBfb29vXHmVtqzKc8Ho8QIpfL60+QyWTV1dVm\nZmavmtHAwCAnJ6e0tLR+s1RdXa1OtEmTJk2aNKmioiI5OTk6OnrHjh0+Pj537tyxtbVlSrW0\ntOzZs+fzvs50cXl5efU3R61PnZ+GmgwNDZ++zKqqqgaXuWHDhtra2piYmEGDBqkGr1+//nRA\niqKeHnRxcRk0aNDx48dzcnIyMjKysrJmzpxpYGCgfp2NBo+MAgAAAAA0Ocw2J2fPnq0/ePfu\n3fz8fEdHR6aDYvarzM3NrT8nNTW1QYuoJk9PT0LIhQsX6g82ePtiBgYGQ4cO3bp168KFCysr\nKxMSEgghffr0IYTs27fvBV9k5sTHxz9vgjo/DTUxoZhdalQavCWE3L9/X1WYCnNFapo7d65S\nqQwPD9+2bRshJCgoSP3vNiY0hAAAAAAATc6MGTMIIV9++SXzyCUhRC6XL1y4kKbpmTNnMiMe\nHh7a2tpHjhxRLdsrLy9fsGDB62VkNpVZtWpVTU0NM1JXV7dixYqXfvHUqVMNWtDHjx8TQpiV\ndSEhIQKBYNOmTQ26qaqqqv379zOv586dy+fzV61a1eBwwocPHzIv1PlpqInZVGbVqlXV1dXM\nSE1NzfLlyxtMc3JyYi5NNbJnz55Xagh9fX3btm27ffv2mJiYbt26veAGKbfwyCgAAAAAQJMz\nYMCABQsWbNiwwc3NbezYsbq6unFxcWlpaV5eXqrz/fT09Ji1ap6enr6+vlKp9NSpU927d3+9\nRxMHDRo0derUXbt2ubu7jxkzhqKow4cPW1paGhkZMc+mPk9gYKBAIPD29ra3t+fz+ZcvX05M\nTHRzcxs5ciQhxN3dfdu2bUFBQYMGDRoyZEjXrl0VCkV6enpCQoKDg0NAQAAhxMPDY9OmTSEh\nIZ6enn5+fq6uriUlJdeuXdPX12dOiVDnp6GmgQMHzp49OywsTHWZhw4dsra2bnCbMSQkZM+e\nPYGBgQEBAfb29jdu3Dh27Ni4ceManE3/Anw+/4MPPmA66iZ7e5AQnEOIYycAAAAAgGvM0rj8\n/PwG47t37+7bt6+enp6Wlpabm9uaNWtqa2vrT5DL5StXrrS3txcKhfb29suWLZNIJM88dmLq\n1KkNgnfp0oXP5zeI9s0337i6uopEIhsbmw8//LC0tFQgEHTp0uUFxW/dutXf39/JyUlXV9fQ\n0LBz585r1qwpKyurPyc1NXXKlCm2trYikcjY2NjNzS04ODgxMbH+nAsXLvj7+5ubmwuFQisr\nq6FDh0ZFRan/01D/MhUKxYYNG9q1a8dc5vz58ysrK01NTRscO5GYmOjl5WVgYGBgYPDOO++c\nOXOGOdVw48aNL86owtzh1NfXr6ysfMEPkEM+Pj4UTdNc9qNcu3r1amxs7OrVq7kuBAAAAACg\nybl586anp+eECRP27t3LdS3NT3x8/PDhw4ODg7du3cp1Lc82fPhwrCEEAAAAAABC/ln7p1JT\nU8M8kPnee+9xVFHz9s033xBC5s2bx3UhL4I1hAAAAAAAQAghq1atOnv27Ntvv21pafno0aNj\nx47l5OT4+PiMGzeO69Kak5SUlOPHj1+6dOns2bMBAQHu7u5cV/QiaAgBAAAAAIAQQoYNG5aR\nkfHbb7+VlZUJBIL27duHhIR89NFHzzxqD57n999///zzz42MjAIDA7ds2cJ1OS+BNYRYQwgA\nAAAAAK0R1hACAAAAAAC0XmgIAQAAAAAAWik0hAAAAAAAAK0UO5vKhISEvNL8RYsWOTg4sJIa\nAAAAAAAAXg87DeHmzZtfaf7kyZPREAIAAAAAAHCLtWMnoqOj+/Xr99JpEomkbdu2bCUFAAAA\nAACA18ZaQ2hoaGhmZvbSaXV1dWxlBAAAAAAAgDfBTkOYnJzcqVMndWZqaWklJye7u7uzkhcA\nAAAAAABeGzsNYZ8+fdScSVGU+pMBAAAAAABAc3DsBAAAAAAAQCvF2hrC+miaPn369OXLl0tL\nS5VKZf2Pvv/+e01kBAAAAAAAgFfFfkNYWVnp4+Nz8eLFZ36KhhAAAAAAAKCJYP+R0ZUrVyYn\nJ69duzYtLY0QEhsbe+7cuSFDhvTs2fP+/fuspwMAAAAAAIDXw35DePjw4fHjxy9dutTR0ZEQ\nYmpqOmDAgGPHjtE0/eOPP7KeDgAAAAAAAF4P+w1hXl6el5cXIYTH4xFCZDIZIYTP50+YMCEq\nKor1dAAAAAAAAPB62G8IxWIx0wSKRCJtbe1Hjx4x4wYGBgUFBaynAwAAAAAAgNfDfkPo5OR0\n9+5d5nWXLl327dtH07RcLt+/f3/btm1ZTwcAAAAAAACvh/2GcMiQIQcPHmRuEs6aNSs6OtrF\nxcXV1fXMmTPTp09nPR0AAAAAAAC8HvYbwiVLlpw5c4Y5fnDWrFnffvuttra2np7eqlWrlixZ\nwno6AAAAAAAAeD3sn0NoaGhoaGioertw4cKFCxeyngUAAAAAAADeEPt3CAEAAAAAAKBZYP8O\noYpSqaysrKRpuv6gkZGR5jICAAAAAACA+thvCJVK5bZt23744Yd79+5JpdIGnzboDwEAAAAA\nAIAr7DeEa9asWblypYWFha+vr5mZGevxAQAAAAAAgBXsN4RhYWHdunVLSkrS1dVlPTgAAAAA\nAACwhf1NZQoLCydOnIhuEAAAAAAAoIlj/w6hi4tLeXn5Gwa5e/fu4sWLaZoODQ318PBQjSuV\nyujo6BMnThQXF5uZmQ0ZMmT06NE8Hk/9CQAAAAAAAMBgv1OaP39+ZGRkRUXFa0dQKpVbt27V\n0tJ6+qPw8PCdO3c6OjrOnDnT1dU1MjJy+/btrzQBAAAAAAAAGOzcIYyOjla9trCwsLW17dy5\n85w5c5ydnQWC/6Tw9/d/abS4uLjCwsLhw4cfOnSo/nhubm5cXJy3tzdz0v2IESOEQmF8fLyP\nj4+9vb06EwAAAAAAAECFnYbwvffee3pwyZIlTw++9NiJsrKyX3/9dcqUKU8fWZGUlETTtK+v\nr2rEz88vISHh/PnzU6ZMUWcCAAAAAAAAqLDTEEZFRbEShxASHh7epk0bHx+fI0eONPgoMzOT\nz+c7OzurRhwdHUUiUVZWlpoTAAAAAAAAQIWdhnDs2LHV1dVisfgN49y8efPChQtfffXVM7eB\nKS0tNTQ05PP5qhGKooyNjUtKStScwAgNDc3Ly2NeGxoaikSiNywbAAAAAACgOWJtl1Fzc3Nm\nS09fX19jY+PXiCCXy3/66Sdvb+9OnTo9c4JEIhEKhQ0GRSKRRCJRcwLj9u3bmZmZzOv27du7\nuLi8RrUAAAAAAADNHWsN4SeffHLw4MGpU6cKhcKBAweOHj3a39+/TZs26kc4dOhQWVnZ9OnT\nnzdBS0urtra2waBUKtXW1lZzAmPHjh0KhYJ5fevWrVOnTqlfJAAAAAAAQIvB2rETq1ev/uOP\nPzIyMr744ouysrLg4GBra2svL6+NGzfm5OS89OsVFRUHDhwYNGhQXV1dfn5+fn5+ZWUlIaSk\npCQ/P5/ZisbExKS8vFzVyxFCaJouKyszNTVl3r50AkMsFhv845mHWwAAAAAAALQGLJ9D6Orq\numTJkitXrjx48GDDhg08Hm/RokUODg49evRYu3Ztenr6875YUVEhlUpjYmKC/vHbb78RQjZs\n2BAUFMQ88+ns7KxQKO7du6f6VnZ2tlQqVe0i89IJAAAAAAAAoML+wfQMW1vbjz766Ny5cwUF\nBdu3bzczM1u1alXHjh07deoUGxv79HxTU9NP/+udd94hhAQGBn766afMvi9eXl4URR09elT1\nraNHj1IU5eXlxbx96QQAAAAAAABQYW0N4fOYm5vPnj179uzZ5eXlR48ePXTo0J9//jly5MgG\n03R0dPr161d/pKioiBDi7u7u4eHBjNjZ2Q0fPjwuLk4mk7m7u6elpSUlJQ0bNszBwUHNCQAA\nAAAAAKCi8YZQxdDQcPLkyZMnT36TILNnzzY1NT158uTly5dNTU2nTJkyevToV5oAAAAAAAAA\nDIrZr6XVunr1amxs7OrVq7kuBAAAAAAAoFENHz6c/TuEDc54UKEoSkdHx97efujQoYsWLTIz\nM2M9NQAAAAAAAKiP/U1lRo4c6ezsLJFILCws+vfv379/f3Nzc4lE4uTk1LNnzydPnqxbt87T\n0zMvL4/11AAAAAAAAKA+9hvCjz/+ODc3d/fu3Tk5OadPnz59+vSDBw8iIyNzc3NXrVqVnZ39\n66+/5ufnr1y5kvXUAAAAAAAAoD72HxldsmTJtGnTJk2apBqhKGrKlClXrlxZunTp2bNnJ06c\nmJCQcOLECdZTAwAAAABAiyGpkWWnPuK6CnZYtzMzMBdzXcUzsN8QpqSkTJ069enxzp07R0RE\nMK/79OkTGRnJemoAAAAAAGgxHj948n/vR3FdBTtmbBzR068j11U8A/sNoVAovHHjxtPjqamp\nQqGQeS2RSMTiptgfAwAAAABAE6FvqjskqJdGUxTff5J6IsO1Z1vHbtYaTWTlYqrR+K+N/YZw\n+PDhP/30U9euXadNm8bn8wkhCoXi559/3rZtW2BgIDPnypUrOCweAAAAAABewMBc/N7iARpN\ncet0VuqJjE4DHIbN7aPRRE0W+w3h+vXrL126NGvWrCVLlri6utI0nZmZ+fjxY2dn52+++YYQ\nUldX9+DBg4kTJ7KeGgAAAAAAANTHfkNoY2OTmpr67bffHjly5NatW4QQJyenOXPmLFq0yMDA\ngBCira2dmJjIel4AAAAAAAB4Jew3hIQQQ0PDL7/88ssvv9REcAAAAAAAAGAF++cQAgAAAAAA\nQLPA2h3Curo6daZpa2uzlREAAAAAAADeBGsNoY6OjjrTaJpmKyMAAAAAAAC8CTbXEGpra/fp\n04c5agIAAAAAAACaONYaQmdn56ysrIyMjGnTps2YMcPZ2ZmtyAAAAAAAAKAJrG0q89dffyUk\nJAwcOHDjxo2urq7vvPPOr7/+Wltby1Z8AAAAAAAAYBdrDSFFUQMHDty9e/ejR49+/PHH8vLy\nyZMnW1tbz5s3LyUlha0sAAAAAAAAwBb2j50wMjKaO3fu9evXU1NTJ0+evHfv3u7du3/77bes\nJwIAAAAAAIA3ocFzCF1cXDw9PZnFhFVVVZpLBAAAAAAAAK+BzV1GVS5evLhjx44DBw5UV1e/\n9dZb4eHhAQEBmkgEAAAAAAAAr43NhrCgoCAyMvLnn3++e/euhYVFcHDwzJkzO8UCpmsAACAA\nSURBVHbsyGIKAAAAAAAAYAtrDeGoUaOOHTtG0/SQIUNCQ0P9/PyEQiFbwQEAAAAAAIB1rDWE\nMTEx2tra/v7+NjY2ycnJycnJz5yG3WUAAAAAAACaCDYfGa2rq9u3b9+L56AhBAAAAAAAaCJY\nawivXr3KVigAAAAAAABoBKw1hD169GArFAAANF8Zlx5cPZrOdRXsGP2pt46BFtdVAAAAaJBG\njp0AAIBWKy/j8YV9t7iugh0jPuyLhhAAAFo2dhrCnTt3Dhs2zNLS8qUzFQrFL7/8MmLECHNz\nc1ZSAwBAk9JjRAfnbjYaTXEm4vqV6LQpXw9t29FCo4n0TXU1Gh8AAIBz7DSE06dPT0xMVKch\nlMlk06dPT05ORkMIANAi6ZvqarqPMjDTJYS0cTKxc2+j0UQAAAAtHmuPjKalpWlra790mlQq\nZSsjAAAAAAAAvAnWGsJ58+axFQoAAAAAAAAaATsN4aZNm15pvqOjIyt5AQAAAAAA4LWx0xCG\nhISwEgcAAAAAAAAaDY/rAgAAAAAAAIAbaAgBAAAAAABaKTSEAAAAAAAArRRru4wCu+6cy85L\nL+a6ChYIdQQD3+/GdRUAAAAAAPAMaAibqNQTGRf33+a6ChbomeiiIQQAAAAAaJrQEDZRg2b0\n6DGig0ZTHFp3PvdO4dyw94RaGvyfAV/I11xwAAAAAAB4ExrsBBQKBZ+PZuA1WbqYWrqYajSF\n2EibENKuj52WrlCjiQAAAAAAoGlieVOZ0tLSlStXdu/eXU9PTyAQ6Onpde/efdWqVWVlZewm\nAgAAAAAAgDfE5h3CmzdvDh06tLCwkBCir69vY2NTUVGRkpKSkpISFhZ2/PhxDw8PFtMBAAAA\nAADAm2DtDmFtbe2YMWOKi4sXLFiQmZlZUVHx8OHDioqKjIyM+fPn5+fnjx07ViKRsJUOAAAA\nAAAA3hBrDeH+/fuzsrI2bdr03XffOTs7q8ZdXV03btz4/fffZ2RkREVFsZUOAAAAAAAA3hBr\nDWFMTIyDg0NwcPAzPw0JCbGzszty5Ahb6QAAAAAAAOANsbaG8NatW++++y6P9+wOk8fjDRo0\n6Pz582ylgzcnoqrN9Iu5rgIAAACgSbh/M3/HR7FcV8GOKeuGtetty3UV0Dyw1hAWFhba29u/\nYIKdnV1RURFb6eDNOekm9eiaRMgargsBAAAA4J5SQddUaHbDC7lMIauVC7UFApFmz2ZTyJQa\njQ8tCWsNYXV1tY6OzgsmiMXiyspKttLB65FnnqEllUI3f0IIRZQ86u//WChLMmV/xmn1/4jT\n6gAAAAA449TN+ruUEI2muHT4zq5F8aOXeHtP9tRoIgD1sdYQ0jTNyhxgSG8fVDy8ynpYZUmW\n9M5hYXsffhu3ttrXdQQlstOfK+Tl0ht7eaYuysp81jNSIrH2u8tZDwsAAAAAAG+OzXMIo6Ki\n0tPTn/fp7du3WczV4skzjkuuhGsouOzPWNmfsVYiQkREdnE9M6h4lKp4lMp6LkpsjoYQAAAA\nAKBpYrMhvHLlypUrV1gM2JppeS0Qdg7QUHB59vm6xK+lCi0RVUV0TQRte2p7LSQUpYlclECk\nibAAAAAAAPDmWGsIr15l//nG1oxv0ZFv0ZHFgHTtE8nVHUQpJ4RQIrGoy3iS+ishhGdoL3R6\nW/EohZkmbDeEb92VxbwAAAAAANBksdYQ9ujRg61QoAl0zWP5X6cIrfj7rayGEIoQmshr5Vln\nVNN4hm3REAIAAAAAtBJsPjIKTRnP1EVv5nHmtfLxX5XbB8poHSFVoyzL1hm4VNT9fW7LAwAA\nAACAxqfZhlAikfz5558VFRWdO3c2MjLSaK4WpubgbM1tKsMQMmsG5ZLqA1OrD0zVUBZKbG60\nAudPAgAAAAA0RWw2hPHx8Tt37hSJRLNnzx4wYMDJkydnzJiRl5dHCBGJRMuXL1+2bNkLvv7w\n4cOzZ89ev349Pz9fIBDY2tr6+/v37t27/hylUhkdHX3ixIni4mIzM7MhQ4aMHj2ax+OpP6G5\n4BnZ8226sx9XLlE8vktpGfCMHSoe3Bcoq3Ts3IjkibI0m2fsQOmasJ6Qp2vMekwAAAAAAGAF\naw3huXPnRowYwZw0eODAgbi4uNGjR+vq6o4aNUoqlSYlJS1fvrxDhw5jx459XoQDBw5cuHCh\nS5cuXbt2lUgkFy5cCA0NDQwMDAwMVM0JDw+PjY3t27evn59fWlpaZGTk48ePg4OD1Z/QXGi/\nu0z73Rf1z69HkrxFUXhHd9QmQvEuzZluKklyX3NJS1covRUlu7VfPPk31jMCAAAAAECTxVpD\nuHHjRrFYvHfvXgcHh6CgoClTptjb21+8eJF5UjQ7O7tr165btmx5QUPo7e09c+ZMQ0ND5m1g\nYOD8+fOjoqJGjRqlq6tLCMnNzY2Li/P29l64cCEhZMSIEUKhMD4+3sfHx97eXp0JoPXW3GeO\nizqPE3Ue18jFAAAAAAAAt1h7lvL69esBAQEjR450d3dfvXp1QUFBUFCQat2go6NjYGBgauqL\nzj3v3r27qhskhOjp6fXp00culxcUFDAjSUlJNE37+vqq5vj5+dE0ff78eTUnQH0FUvdr2b24\nrgIAAAAAADjD2h3CgoICZ2dn5rWTkxMhxM7Orv4Ee3v78vLyV4pZUVFBCDE2/nsRWmZmJp/P\nV2UhhDg6OopEoqysLDUnQH1lMrv0BzTXVQAAAAAAAGdYawjlcrlQKGRei0QiQohA8J/gAoGA\nWWGopry8vIsXL3br1k3VEJaWlhoaGvL5fNUciqKMjY1LSkrUnMAICwsrLi5mXjfH/WYAAAAA\nAABY0UTPIaypqfnqq6+EQmH9/WAkEomq51QRiUQSiUTNCYwzZ85kZmYyr9u3b+/i4sJy9QAA\nAAAAAM0Bmw1hVFRUeno6IaSmpoYQsmnTpujoaNWnt2/fVjNOXV3d6tWrCwsLV61aZWlpqRrX\n0tKqra1tMFkqlWpra6s5gbF27VpVi3jv3r0rV66oWVgLU1lSw3UJAAAAAADAJTYbwitXrtRv\nrk6ePPkaQSQSyZdffpmZmbl8+XI3N7f6H5mYmOTk5CgUCtVDoTRNl5WVubu7qzmBwSxxZFRV\nVb1Gkc1XXZWUVtI6BlqEEJlEoRqnlfSToipjS33uSgMAAABo+XiUkusSAP6DtYbw6tWrbx5E\nKpWuWbMmLS1t6dKlnp6eDT51dna+du3avXv3XF1dmZHs7GypVKraRealE+BsZErywTsf7wkw\naqOnGlQq6F2L44vvly0+OInD2gAAAABaNkpZt3zUiixFb64LAfgXaw1hjx493jCCTCZbu3bt\n7du3Fy9e3KvXM45D8PLyOnDgwNGjRxcsWMCMHD16lKIoLy8vNSfA4A963b9VsHHi/o/3BDAj\nSgUd+Wn8X5dzVSMAAAAAwBqlXP7gksChPyGEp5RqCSSU4u8lTvKcZEHb7oQv4rQ+aO2a0KYy\n27ZtS0lJadeuXW5u7v79+1XjAwYMsLKyIoTY2dkNHz48Li5OJpO5u7unpaUlJSUNGzbMwcGB\nmfnSCcAX8Gb/6BcWErNx4n6lkiaE7F1xMvNq3sd7AsztjLiuDgAAAKClUVYWVu0Ypv3ucu23\nP60/LkneUhu70GDBbZ4pNjgELrHZEMbHx/N4vKFDhxJCioqKZsyYUf/Tzp07r1279gVfLyws\nJIRkZGRkZGTUH3dycmIaQkLI7NmzTU1NT548efnyZVNT0ylTpowePbr+5JdOaM3qqqRKhZIQ\nMil0SOTi+D8vPiCEZFx6ODf8PbGhdk15HSFER1+L4lEcFwoAAADQ6OQ5v1dFjNRIaIpXG7+0\n9vRqR6WAENLur3FPlilpWS0lEldsesZjcW9OPGm/0HWwJiJDy8NaQ3jz5s0RI0Zs3bqVeVtT\nUxMXF1d/Qlxc3JgxY7p37/68CF9++eVLs/B4vLFjx44dO/a1J7RaObcLvvbf/fR4eVHVV36/\nqN76zOvjt6B/I9YFAAAA0DTwBJSOsaaCa+nTlQXMH90poqBldZR+G0qoq6FsFL/hSWwAz8Na\nQ7hjxw5zc/Pp06fXH4yIiBg2bBghRC6Xd+7cedeuXS9oCEGj7D0sQ5M+UCpoQohSQR/+5tyt\nM1lKudLExnDm/400MPv7v0f1N5sBAAAAaD0Etr0MP81iN6ayLIeuecy8Vjy6UX0wmBDCU0p0\nfb8TOA5gxikdE56JI7t5AdTHWkN49uzZwYMHi0T/WRRrZGSkOkjQ19f3/PnzbKWD12BibUD+\n2UUm51aBsZV+SW65TXuzXYuONdh3FAAAAADeXNWuUYr8m/++pwmhCCHKmqMLVGM8U2fDxZmN\nXxsAg7WGMDs7e8yYMS+Y4ODgUP+ceuAE0w1mXMr9eE/AjzMOEUKmfTc8cnE8s+8oekIAAABo\nvZRyWlLJbkj9oETVa0lKZG3MIkLkNCXUHbhYa8BC1Ud0bRm7eSmRHsFTo6Ae1hrCuro6ofDf\n/9nZ29tXVlbq6OioRnR1dWtra9lKB6/n9I6rGZdyF+ydYGZryIzwBbxZm3zDQ46G/+/oogOB\n3JYHAAAAwBV5zu+VP3k3QiKKltUmhNYmhGouhd70OGGH4ZqL38KM77lXofTgugrOsNYQmpiY\n5OXlqd5SFKWn95/bTQ8fPjQ1NWUrHbyevmPd+4x2V60YZAiE/A+2+BXnPOGqKgAAAADOUTrG\nQtdBmoisrMhTFt/lW3pUVol0Kq7WiLsaGPMVj1J5xg4aWj1Iic00EbZlomlP+5Tbisdc18EZ\n1hrCrl27njhxQqlU8ni8pz9VKpUnTpzo2rUrW+ng9eiZ/NsKCkT//kvx+Lw2TiZcVAQAAADQ\nJPAtPfRmnWI9rLIsp+LbDuJpscL2PulRyS7X+ua0Xdt3xjD5vbNVESPFU4/w27ixnhRejK4p\nKf/GRW/KQYHzO/XHFY8zqra/K550QGD/Fle1NT7WGsKAgIAZM2Zs3Lhx4cKFT3+6cePGv/76\n67PPPmMrHbw5AzPxo7ut928hTRRN0woJJdDmug4AAABgB8/Y3nB5AaVt2GBc4PS24ed5T49D\nfXRduSzjpCYiCzuOqtwxXPvtxTpF5oQQw9rLdRdL6k6t4lt7Kp/kSssfsp5RYNebZ2THetg3\nx1pDOHny5M2bNy9atOjOnTtz58719PQUCARyufzGjRtbtmyJiIjo0aPHpEmT2EoH0CJJ/zgo\nufiDfjD24wUAAGg5VF0fzdPOLnZSuOk3GIfnUZblVP86XnPx6858yTxca1e2qTaGEELkWYny\nrMQXfuk1iQN/FXlO1ETkN8RaQygUCo8cOeLr6xsREREREUFRlK6ubk1NDU3ThJBu3bodOXKk\n/q4zAMBQPnlA15bxrboQQoikipZWM+O0vE6efUFDixkAAACg8Sl5orBzcya8I+a6kGaDZ2Cl\n4/O15uLLsy/I7sYTWkFTQoFNF5H7GEJRGsrFt/LUUOQ3xFpDSAixsbG5fPlyZGRkVFTUH3/8\nUV5ebm1t7e7uPn78+ClTpqAbhOaOrimh68pZDytLi6k9/rl43A6+bS+6upgoJMrSe7S8rvZg\nEC2t4k85yHpGQigcgAsAAABNHyU21377U3ZjVv86Xv7wuuotzdOiFDWEVtI1pZIrYX/n1TYw\n+PA6oZ6xN0rLw2ZDSAgRCoUzZ86cOXPmMz9NTU3FvjLQfNUlflV3/jsNBa/a8++ZH+XrnJ/5\nmjV8ofFaKfthAQAAANilVNCSCnZDavWfL6wsYl7TFY+qYhcz9wS1uk/lWXZmxiktMeu3ASiR\nmPBF7MZkBcsN4TOVl5fv2bMnPDw8JSWFeYIUoDniW3YWdR6noeCK4rvKwjtEqEtLKnlic1oh\nETh5a2p3GYqvkbAAAAAArFIU3qn4votGUzA3ASmiqD21UqOJWv4awme6cOFCeHh4VFRUTU2N\nWCweN05Tv0wDNAJR9/dF3d9nMyJNy+9foOUS5p30dpSUeVCBL9Id9SOl+/dBIHxLd56+JZt5\nW5Dyouryoiquq2CHbScLiqepdQsAAADNEaWlp6H9FGhZjeLhdUrXtFbooFXye5WWu6GBVFmS\nxbfqovodjF1N9tc5jTSExcXFkZGR4eHh6enphJChQ4cGBQUNGzZMR0dHE+kAmill6b2qX8YQ\npfyfAZrQNCGEri2rORysmqbVO0jH5ysuCmwGLh64dXTjRa6rYMf3tz/S0sVaa9AISY2ssqRG\n42mUMsLT+P+GjSz1BEI85gDQWvBMnDRxOCRdV17xXSdR10m6Y8JyTt+zPe16z2SJ9/xJdee/\nrTu5Uv9/V/ltOrGetMlisyFUKpWnT58ODw8/cuSIVCrt1q3b559/HhoaGhwc7O/vz2IigJaB\nZ+pstOKfR9hltdW7/OT3L9CyOkLTelMOCpwHcltes+Dc3WZIUC+Npkg7l/0wvbjfeHexsa5G\nE/GFrWLlOnDixom/di46ptEUpnqP577zw5cxX2g0CyFkxfFpVq5mms4CAC0bJRLrjPhW1CWA\nUDxmQVtNeR0hRHvAIr55hyZ7K09DWGsIv/jii59//jknJ8fc3Hzu3LnTp0/v3Lnz/fv3Q0ND\n2UoBwK3ak8slv2/WTGyallQTWsnsdEwTunL7u5SWHuFp5qFuvtBoeaFGIje69m/ZtX9Ls2e8\nVpfVPkwvfndGD/wO2nToKPPH99xLSODLpwIhhBATG4Nuw9uzHlZA1RlQOaXK9oQQxcMabWGd\nS4+2BhZiQogF/1aRwoMQ9p+C1tbTYj0mALQ2Mhk5f8317U60QEQIIXKlQEH/vd1LcqptFxOR\noWb/CNy0sPbr5sqVK11cXA4dOjRy5EicMAEtEk/XlGfixH5cWqksySI8Pt+sIy2pUFYV8S06\nKqsK6YpHPFMXSkuf9YQUvzF2kwJgn0LK7M+mrSxsZ5Ve99Q4PI9rr7auvdqyHlaRd71iyxTx\nmDBRtynnNpSRAjI0uJf7QKfa2IWS67sMP71HaRuwnhQA4M0pFfTFA7fuXnoQtGUUoah1sct6\nBdoQQn4LTbx0KK2TlwPXBTYq1n4vNDMzy8zM/OyzzzIyMqZMmWJtbc1WZIAmQqv/fK3+81kP\nK7m4SXIlTP+DM5TYXHptZ93vmww+vEYIqTv7teTKDuY1AMj+PFoTHaIflNjg7zLSG3trDgcb\nrShGT/gCdE2Jsuy+JiLrDPmy+uAsZek9XTlFUURU8UdN1JfSPw6K/TcrS/7SREaeRSdKiC0J\nAOCNaOkKP94z4fvJB34Kiu47zqNaKiaERK9PSj5458NdY81sDbkusFGx1hDm5eUdPnw4LCxs\n6dKln3/++dChQ5mnRtmKD9BSafWdp9UnmPAb3lfXfnuJdv+POSkJ4E0o8q7L/jrNflxaSYnN\nKv6vm1bvD9pI/xTyZSR9S3XGfemtAyKPMXVJG9nPSIjWW3M1cZe+8cnSj1XvZ3WT5P+qPbXK\nhRBCiPnvo5h9k6v2aSqdwYI/+G3cNBQcAFoPAzPd+bvHfz/5wPGfLhNCslLyHj8o/3DXWHuP\n1rWAkLDYEIpEooCAgICAgHv37u3YsWPnzp3jxo0Ti8WEkEePHrGVBYBDRffLSvNYPhq1AWGp\noZaW56OLORrNQiiqQ1/NrruD1kx+//fa+CWai193br01IYRPhLfWSgkhhEhv7ic392sil6jr\n5JbREPLMXLV6f8BuTLqunChkzGtlRZ489wqhacLjCx0HUDrGf08S6lAiMbt5/w0OAPBa0i/m\nPM79+9D5vmPdj2+9TAjJSyseHNQr905R7p0iQoiOvlb3EewvvW6a2F9K5OTkFBoa+sUXX8TF\nxYWFhcXHx8+bN+/bb78dO3bsuHHjevbsyXpGgMaRtPfm6fBGeICzIyFRGk3AF/B+vLtAoymg\nNRO6+etZdNRUdFpZd269LOscRctoiq/j/YnA5V1N5SKEJ24hOwkJ7PoI7PqwGVGpeLLGiq4u\nfnpclpWoeid0HSTWwH7xAABvIvV4xv1bBaq3SoWSEEIocufcPYr6eysssbFON592reR8YE3t\nLcHn8/38/Pz8/PLy8iIiInbs2LF+/fr169fTzMauAM1Q+z52PL5mDwa4eSqz8F6p9+SuWmIN\n7szE47eK/7oBV3hGtjwjWxYD0tKqim870NJ/j9GjaDkhhFB8yeVtksvbmEFhhxHiCb+wmLcl\nkd2JroldyG5MSktfdfuUriml68oJoQmhKLGZalxRcq98nTO7efVnHueZubIbE6DRKBRKQohc\nquC6kFYt8MvBqteHvzlfeK+MEKItFhmYioN+GiXUanV772n8gm1sbJYtW/b555+fPn06LCxM\n0+kANMd9oJP7QA3sMlpPcc6Twnulw+b2Nmqjp9FEAM0IJdITTz5ISyqZt/J75+oSQgkhNF9H\n1/d7yuDvPcz4piw3Hi0JrZDStWWaCi6rJXKJktLi0XU0X4dUFxNZjeb2+KFp/CYNzY+sTi7U\nFhBCFFIFIURaK2swDpw4/M35C/tujZzf7+DaRM+hrvdS87cFH2mFPWEjXS1FUYMHDx48ePDL\npwIAQHMmubipJubDRkjEk5VXH5iq0RSGnz3kGdpoNEXjEHUeL+o8XhORa+OXSi7/pD8n6cKB\nNI+CaY8G325nllq9b5LYf7Oou2b/dQCai9K8ii+GRQRve6/BAv57KY82Tf9t8W8Tcc4tJ5gT\nJj7+NaDkYQUhRKQjnP/LuI2T9m+fFxO0dZRAyOe6wMbTutpfAADQNErPgm/TXROR6doyZWk2\nz9iholSqS+crTd2Ekke0pJJv1o4INHJYOfXU9r9Qnzz7vORKmP4HiXxrT0LSmEGRxxhCK2sO\nTBN2GkXpGHFbIUBTYGJj4Leg/9YPDs/Z5q8aZLrBQTN7oBvkRPWT2rSknPm7x7ftaM40hIQQ\nA3Pxx78GbA2Kzvuz2L5zK9prFA0hAACwSdQlQNQlgPWwZSkn6ShfvYl7RF0mnP14bQ8SWjc4\n3rmrZdW+qTV/JpivvE8JcA5hYxM4eBkuvU+JGj7iLuo8TtjB5+lxgFbrnendCSFbg6L7BXgQ\nQsryK5lucMSHfbkurZUSG+msOD7t6XEDc/GnhyY1ejkcQ0MIAADNQJXCZn9SUM9O7b27/Dso\nl5PIBH+9CtNJRNCKHu5pOihK1fVJBSZ/FbVTHTGBbhCgAaYnPPTNOUJI8sE7w+b0QjfYRDAb\ni+oaaORJk2YBDSEAADQDtj3dhq9d8NOcaCVNy2ltmVKokCvD/hdTlFMxaXcoX6DZHYDhpWQ8\n051Js+Zh2SDAf60ft6cgq1T1llYSQohSoUzYmZKwM4UZNLbUW3ZsGhfVwb8Eotb7d0U0hAAA\n0Dx0GuAQvNX/pznRli5m59M/sS28UFVa+/Hu8YbYlRcAmqrpG0bUlNcxr/PuFu9ZdlJJCEWo\nUQv7O3SxYsa19fDEO3AJDWETVZBZ8qSwSqMpap7UEUIyLj3Q6Na6fCHftVdbzcUHgBaPpsmd\nc/ekNX/v0j5oRo/jP12mlVqFWaWjFvbPup7HjFs4GLftZMFdma2d6ldeAKjPzNaQ2BoSQu6l\nPjrwRUKHfg5/JN7r6GV/8Ktzc7b5d+hnz3WBAGgIm6rTP1+7uP92IyTaMvuwRuPrmeiuvzpX\noylaEoVcyXUJAE2OtFYWvT5JUi1l3tI0IRQhhMhl8hPbrqimub3tNGHVu5xU2GrJJPLHueVW\nLqbkqYO2c9OKbNGfA/zjXuqjTdN+GzSzh76Z7h+J95y6WXfoZ781KBo9ITQFaAibKLcBjmIj\nHa6rYIGWLjZtfwXlRZq9LQzQHGnpCpfF/b00TS5ThM2LqX5SW1cllUuV78zoPvD9btyW15o9\n/LN4Q+C+WZt8uwxyqT9+7MfkU9uvrr0YpKPfejdpAFApL6zaNO23d2f0GPFh3/N7bjCD787o\nTivprUHRy45NNbfDAS3AJTSETVTXYe26DmvHdRXQGDKv5T1+8KTPaDfC3Pr4R2lexeXoNJ95\nfTirDKCJYbrBwuyydn1sb53O8v/E6/C684QQ9IRccfS0CvxiUPj/js76wVc1eHL7lZPbrswN\nH41uEIChZ6obtGXU03cCB83qYeduYYRV0MA1bMsGwL09y0+pthpjlDws3zBxf2F26fO+AtDa\nyKWKbcFHinKeLNgTwKx8duhiFbRl1OGvz5/7JZXr6lqvvuM8Ar8YFP7h0ce55YSQ1OMZxzYl\nzw0f3a63LdelATQVfAFP1Q3y+DxCCF/494aW7frYaXQrBwB1oCEE4JhLD5s5296LXn/+5D+r\noZ4UVn4/+YB9Z8v31w3jtjYghFQUV3NdAhBCSPrvOWX5FR/vHm9grjrrjrh5Owb9NCp+62W5\nTPGC74ImVBRXP84tf5xb3q6Pne/8fn8m3SeEXI1Jn7R2qIm1AfMRdpoBaIA52wALaqBJwd8k\nALjXsb/9nG3vbQ06zCwcDZt31MHTaub3I5i/I0Ljq35SV1VW28bRmPx3qwxaST/4o9C+syV3\npbVe7m87ub/t9PS42wDHr38Pbvx6Wjmlgl45aEddlbTBuEwq/3l+rOqta6+2C/ZOaNzSAADg\n1aAhBOCMpEaWtOemUvH3zqK9/DpejPqDECLSFdp1sjgdfo0Zd+5h49zdhrMqW6WMSw8iFx+f\n9/MYlx7//uRpJf3L0hN3kx+Env+Aw9qAEKJjgMVpHOPxqW+uzJXVyZm3ibtS4jcnK+Q0X8B7\n/5thqtZdS4zT1QAAmjo0hACcqauS3k1+oHrUTSb5+1crWZ08PfmBaprYSAcNYSPrOqxd8YMn\nP07/bW74aGaEpsneFafvnMv+ePd4bmsDQog22owmQKglYNY+ndx+5VTYVfeBzjdPZXpP9vxl\nyYlZP/h2Gezy0ggAANAUoCEE4IyhhXjejr/7jdJHFRsn7tc10Kopryt/XD1gYpchQb24La+V\nG/JBL0LIllmHLJ1MCCHHNiX/dfXhx7vHW7qYcl0aQBNycvsVZheZlGN3uVT1/gAAIABJREFU\nCSEd+zvYdDAP//AoekIAgOYCK5QAuMd0g3Yelma2hoSQ978eFvvD7yfrnbgNjan0UQWzH0Y3\nn/be73fN/bOYEPLn7znTvh0u0BIwH9VWSrguE4B7mVcfxv946X87x9bfU7TvOI8Jqwft+Ci2\ntgL/NwEAaAZwhxCAY6V5FRsm7nfsYjV94/B1Y/YQQlx7tWX2mBFqCwZOxQFrjaricc2KgeEK\nubLBeM2Tuh+mRqne9hntNnW9T+OWBtDkOHWzWZ0wy8BMt8F4v/Ee7m87Yanni+WlF59tKSem\nDAnqhaPVAZovNIQAHMtKedShr93ENYPr7ynK7DuauCsFDWEjMzDT/fHuAuY1raQjPz1+LTZd\nLlWIdATzdozB0WoA9fH4lKobFOr85zcKQwvxs74B/yrJq7iw7xbXVbDjrTHuaAgBmi80hAAc\n6+nboadvh6fHO/a379jfvvHrAQbTDaYl3bd3b5OV8sh7kueWWYdw3DbA8+jo4X7gq3Ht1Xbp\nkSkaTXEtLv3U9qt+C/q7eTtqNFEbJxONxgcAjUJDCNCE6BnrcF0CEFKvG/x49/gDXyQQQt4a\n665vJkZPCABs0dHXsnNvo9EUWSl5hBDTtoaaTgQAzRo2lQFoQrR0hVyXAIQQcuXIn+kXcxbu\nm1B/T9HBs3sODe4dFnKUw8IAAAAA2IU7hAAADXUf2b7zIGcd/YaPwPnM6+M1sQsnJQEAAABo\nAhpCAICGBEK+QMhnXov+e9sWj/UCAABAS4JHRgEAXgQdIAA0U3KpQqxVTStprgsBgCYNDSEA\nAABAC6Ssyl868gtFXQ3XhQBAk4aGEAAAAKCFePRHduTo4MJ7pYQQPi3lUUqKlhFCHvxR8Iv/\nrLK8Yq4LBIAmBw0hAAAAQAvRxor4uO6++tmk/MwS1eCDPwoyvho/pOMhI5weDwBPQUMIAPAi\nQlLZ0foO11UAAKiFb+po/L/zvRwu3lwxofqJhBDyJL/y7toJHra3zT46T4nNuS4QAJoc7DIK\noK6i+2WleRUaTVFZUkMIybz6ULMbmVBUh752GozfspiQP3p0OUrIeq4LAQBQi6BtN5OQs91+\nfPtWRg2xI8Jrqz3s08zmJ/Et3bkuDQCaIjSEAOpK2nvzdPi1Rki046NYjcbnC3g/3l2g0RTN\nnTwrUZZxQmfYWkLxKPrfDfoUxel1CWvFAZEc1gYALYM09dfqQ0HsxpTXyQj5+z9ZPEJ3t/ud\nENLNLlmp4Jd+1+3vSRQl0BI+L8Lr0Xv/sNB1MLsxAaDRoCEEUJf72076JrpcV8ECikdxXUJT\nxzOyk16PpKsf647ZrhpUFKdXbRsodPPnsDAAaDGUT+4TaTW7MQXPWglEEZrPk/9nSCplNy9d\n/pDdgADQmFpaQ6hUKqOjo0+cOFFcXGxmZjZkyJDRo0fzeFgqCSxo/5Zd+7fwpGWrwDN11gs+\nW7VtYM3B2RRpSwihyjOrDowRdhih67+Z6+oAXln6xZwT265oNMXj3HJCyJENF85EXNdooilf\nDTWxMdBoisYh6hxAKE39GlZeWFWUsMfS8KGAksppYX65g9WQQH1TTf1NU+A6REORAaARtLSG\nMDw8PDY2tm/fvn5+fmlpaZGRkY8fPw4ODua6LgDQCGVptqIkS0PBtYeG1sYtcqGN+XyJKGYE\n3763sHOALDNBQ+mEzgMJj6+h4NDKlRdVp1/MaYRED9OKNJ1CUsPy3S2u8ExdtN/+VBORH94p\n/HN7QGe70rsmX7mVLHzYbrvNX/+7/ltyly/3WrmYaiIjADRrLaohzM3NjYuL8/b2XrhwISFk\nxIgRQqEwPj7ex8fH3t6e6+oAgH11Z76QXNup0RQGpIRoEyIhsox4WUa85hIZrSqldIw1Fx9a\ns+4j23u848R1FezQ1tPiuoQmrfRh+Z+h4zvb3TKbf/723ruEkDrd9iYhid1+HJiyYqLBlmix\nkSY3LQOAZqhFNYRJSUk0Tfv6+qpG/Pz8EhISzp8/P2XKFA4LAwAA4JBAyBcY4v5zq6Bd95en\nc7rJPGZP0bvMoMC2h/GcU93DhgslBYQ4clshADQ1LaohzMzM5PP5zs7OqhFHR0eRSJSVpakn\nygCAW9rvrhB6TtJQcGV5bm3cJ09q/r+9O49r6kobB36yQEKMQAARRBBBECzgQolEBFFRUdFO\nWx0/jlPFhXZ8lXFpFQuCdVRgHGcK1oWKVauOorWtFhFZBnEByxYIILuiJWENhEUkhIT7++O+\nk1/e4NaW5F6S5/sXTW7rUx7PSZ57z3kOhy5tZpkaGth5MX0/RRRNteShMHRhWxQAgFisSe+y\nDrTgP1OoVPTfRmIG9t5jDnUQGRkAgKx0qiDs6OgwMTGh0f7/TVAKhcLhcNrb21Uv++mnnyQS\nCf7zixcvtBoiAGBYUc0mUs00crdb0Vb94uo6w3f+8LjQxl5x3GDZLVr6BzLB5VErTiMK9KkC\nAIwAdJOxJQ9nsHlsogMBAJCaThWE/f39BgbqR+sYGhr29/ervnLp0qW6ujr858mTJ0+aNElL\n8QEARojB9rrnX/sbTFnOej8BK/wCITRo4sAO+c/zU/Ne/PAX1bMoAACAtAapRlcLVq9fDauF\nAQCvo1MFIYPB6OvrU3tRJpMxmUzVV7Zv3/78+XP859bW1urqai3FBwAYIQa7hIZeG4wWHlRd\nIEobM5n9cZb0TgyBgQEAAAAADC+dKgjNzMyePXumUCiUq0YxDJNIJG5ubqqXeXt7K38uKCiA\nghAAoIbu4E938Md/xigU7L+v08ZMHvXHc4SEBAAAAACgCTq1E8bR0VGhUDx58kT5Sn19vUwm\nU20zAwAAv0oHck8peY/oKAAAAAAANEKnnhD6+vpevXo1OTl5586d+CvJyckUCsXX15fYwAAA\nI9cAYlc1uRIdBQBA1/xS3pL2db5G/4jWZxKE0J3zfEFmnUb/oOU7fMY6mGn0jwAAaI5OFYR2\ndnZLlixJSUkZGBhwc3OrqKi4f/9+YGCgvb090aEBADQi/0blw+/LNfpHNNW1I4QufJ7OYKn3\nrBpe/5P4vgFDp+ZkAMBrdLY859/SxqaVpyVNT0uaNPpHzF/vqdH/PgBAo3Tty0dISIi5uXl6\nenpeXp65uflHH330wQcfEB0UAEBTxA2dVTnPtPAH1Rc3avqPGFRgb74IAKArXGbZHcgOITqK\n4WFiOYroEAAAv52uFYRUKnXFihUrVqwgOhAAgDYsCPHy/2g60VEMD0MjzT6BBACQiqGRgYWt\nCdFRAACAzhWEAAC9YsCgwzJLAAAAAIDfDL5IoYGBge7ubqKjAAAA8Lakshdyiux573OYvQEA\nI8uLvl45RfZC2gvTF3n09j2XU2R9/S/0MykYhlEwTK93rVRUVMTEwDHTAAAwkvS0v+jt7DOz\nMTFkwm1NAMBI0tfT39X63NhiFMuESXQs4H/198okzT2jzVijOEZEx0IMfS8IAQAAAAAAAEBv\n6dTB9AAAAAAAAAAA3h4UhAAAAAAAAACgp6AgBAAAAAAAAAA9BQUhAAAAAAAAAOgpKAgBAAAA\nAAAAQE9BQQgAAAAAAAAAegoKQgAAAAAAAADQU1AQAgDAy8nl8t7eXqKjAAAAAADQICgIAQDg\nJRQKRWxs7N69e58/f050LAAAAAAAmgIFIQAAvASFQjEyMnr8+HFkZCTUhAAAAADQVVAQ6p2q\nqioMw/CfhULhvn37uru7iQ0JQFJIiEql7tixY86cOVATkgoMFhKCpADwNmCkANKiffHFF0TH\nALSHz+dHRUU1NjZ6e3uLRKKIiIj6+vq+vj4vLy+iQ9NfkBTSolAo3t7eTU1NxcXFJSUls2fP\nNjQ0JDoovQaDhYQgKWTW29ublJR0+vTp69evV1VV2djYmJqaEh2UnoKRQmZisTghIeHbb7/N\nz89ns9k2NjZER6RtdKIDAFrl5OQ0YcKE7OxsqVRaXV0tkUg8PDw2bNhAdFx6DZJCZvhzQoTQ\n3bt3IyMjDxw4wGaziQ5Kf8FgISFICmk1NjZGRUW1trYihIyMjO7fv//w4cO//vWv/v7+RIem\nj2CkkFZnZ+euXbva29sRQo2NjSUlJYsXL/7kk0+oVD1aR0lRPrwGeqKnp2fv3r319fUIIQ8P\nj8jISAaDQXRQ+g6SQk4SieT8+fMCgYBCobS1tSGEHB0doSYkFgwWEoKkkJBUKt22bVtTU5Oj\no+O2bdvs7e2PHz+elpZGoVCOHTtma2tLdID6CEYKOR09ejQzM9PR0XHNmjW9vb3ffvutWCz2\n9/ffsWMHhUIhOjotgSeEeqe3t7ezsxP/mcPhwBI4MoCkkJBYLMZvGVpaWs6ZMwfDsHv37uH7\nCaEmJBAMFhKCpJDQjRs3mpqaJk6cGBMTw2Qyb9++nZ6ejhDauHEjVINEgZFCTkVFRZaWlocO\nHWKxWAihadOm7d27Nzs7GyGkPzUh7CHUO4aGhuXl5RYWFmw2u6SkpLm52dvbW0/+upMWJIWE\n4uPja2pqXFxcDh8+7OnpOXXq1MDAQJFIJBAIYD8hgWCwkBAkhYTOnDnT0dHxt7/9zcLCIi0t\n7eTJkxiGbdq0afny5Qih9PR0GxsbOh2eCmgVjBRy+uGHH4KCgqZOnYr/I5PJ9PHx4fP5AoFA\nf3IEBaF+kUgkUqk0ICDA39/fz8+vpKSkuLhY7a97Xl6esbExLGPQGkgKCSkUivj4+MHBwf37\n95ubm+Mv0mg0Ho9XWFj4+PFjqAkJAYOFhCAp5HT16lU2m7127dr09PQTJ06oVoM9PT1RUVE1\nNTWwmVCbYKSQikQiOX369MWLFwsLC7u7u93c3CZPnqx8Vw9rQigI9UVHR0d8fPzx48cfPHgw\na9YsExMTBoPh4+OjnJK4XC6VSr1z586RI0cKCwvnz58P9w41DZJCWnK5PCkpiU6nf/zxx6qv\nU6lUJpP58OFDiUQCNaE2wWAhIUgKmeXn5zc1NRkaGp46dUq1GkQInTp1qra2lsvlzpgxg9gg\n9QSMFLKRSCQ7d+4sLy/v6upqbGzs6+vr6upasGCBahcZ1Zpw4sSJOr/QGgpCvdDU1BQWFlZT\nU2NsbBwUFOTo6Iivk1adkoqLi8vLy5OSkjAMW7JkybRp04iOWsdBUsiMRqNlZ2d3d3fzeDy1\nLu1dXV137tzx8vIqLy+3srKaNGkSUUHqDxgsJARJITmFQpGbm1tcXIwQUq0G09LSkpKSmEzm\np59+iqcMaBSMFBJKSEioqKhwcHDYunXr9OnTa2pqGhsb29vbuVyu6pNAvCa0srKaO3cugdFq\nB3QZ1X0ymWz79u1CodDFxeXzzz/ncDhqF/T29sbExJSWliKEqFTqunXr3n//fSIi1SOQFPL7\n8ccfz5496+bmduDAARqNpnz966+/TklJOXXqVH19PY/HIzBCPQGDhYQgKeQ3ODi4Z88e/OzB\nQ4cOmZmZSaXS77777tq1axiG7dq1y9fXl+gYdR+MFLIRi8Xm5ubBwcEGBgZHjx7Fi/OOjo6I\niAiRSBQQEBAaGqrzq0NfCgpC3Zeamnry5EkrK6u4uDjl7UCBQCAQCCwsLBYtWkSj0TAMy8nJ\naWho4PF49vb2hMarFyApJIRPhspPAoVCsXv37traWk9Pz23btuHPCVNTUxMSEkxMTM6ePata\nJQLNgcFCQpAUEhocHMQwTHVe6urq2rdv35MnT6hUqqWlZUdHh0wmo1AowcHBUHVoB4wUUhGJ\nROHh4Z6eniUlJUuWLFmxYoXyLYlEEh4ers81IaxR1n3V1dUIoaVLl+KTkVAoPHHiRHl5OY1G\nUygUOTk5Bw8epFAos2fPJjpSPQJJIZW2traEhAQ+n89gMObMmfPRRx+x2WwajRYVFbVv376i\noqJNmzY5OjpKJJLm5maE0Nq1a6Ea1BoYLCQESSEVsVj8zTffFBQUDAwMjB8/PjAwcOnSpVQq\n1cTEJDY29urVqxkZGc3NzRQKxcPDY82aNa6urkSHrC9gpJAKi8VisViZmZkIIbX9/xwOJzo6\nOjw8HH9XD2tC6psvASPc+PHjEUICgaChoeHSpUvbt2/HMCwuLu7SpUtWVlZlZWW1tbVEx6h3\nICnkIZFIdu/eXVBQoFAoXrx4kZqaunPnTrzww79OvffeexQKpbKysrm5mcVibd68OSAggOio\n9QgMFhKCpJCHRCLZtWtXTk6OTCbDMKyhoSExMTE8PLynpwchxGQy165de/78+YsXL167du3g\nwYNQDWoTjBRSwas+GxsbhNCdO3cUCsVL383MzCwoKCAoRsLAE0LdFxQUVFBQUFhYWFhYOHr0\n6A0bNixevJhCoSjXlgwODhIdo96BpJDHv//97/b2dicnp82bN7PZ7KtXr2ZmZoaHh0dHR1tZ\nWTGZzI0bN65Zs6a+vh7DMAcHByaTSXTI+gUGCwlBUsjj7Nmz7e3tLi4umzdvtre3r62tPX36\ndEVFxf79+6Ojo/HHIBQKxdjYmOhI9RGMFLJRPgl8/Pjx8ePH1Z4E4u/m5uZyuVwCgyQE7CHU\nQb29vd9//31BQUF/f7+Tk9PKlSttbW2LiooUCsXUqVOVq9iTk5MTExM5HM6ZM2dg/ZumQVJI\nCN9cHhISMjg4ePToUTabjb9++fLly5cvW1hY4DUhsUHqm6Ejxd7eXqFQwGAhECSFnPAZbO3a\ntUwm8+jRo0ZGRvjrAwMD+/fvLy0tXbFixdq1a4kNUq/ASBkpYMfgUHDshK5pbGwMCwsrKCjo\n6upSKBSPHz/OyMiwtrb28fGxtbU1MDBACGEY9v333587dw4hFBoaCpuYNQ2SQkIikSgsLKyh\noaGlpSUgIMDT01P5lru7O0IoPz//4cOHM2fOVBaKQNNeOlLGjh3r4OBgY2MDg4UQkBRyUpvB\nVE8UpNFoHh4eN2/efPLkyXvvvQf1hnbASCGn3t7epKSk06dPX79+HW+6a2pqamRk5OPjU1BQ\nIBAIxGKx2mkT+gkKQp0ilUr37NnT0tLi6Oi4f//+kJCQjo6O2tran3/+efbs2SYmJgih4uLi\nY8eOZWRk4K3GAgMDiY5ax0FSyEmhUNy7d08gEPT29nK5XBcXF9V3oSbUvrcZKQgGi3ZBUkhL\nOYP19fW5ubnhU5YSi8X6+eef29rauFyuubk5UUHqDxgp5PSqKt3e3h5qQjXQVEan3Lhxo6mp\naeLEiTExMfb29rdv305PT0cIbdy40dbWFiHU2dl58uTJsrIyKyur/fv3f/DBB0SHrPsgKeSk\nurk8OztbbXM5Qmj16tWrV68Wi8V5eXlEBKh33jhSEAwWrYOkkJbqDHbv3j25XK76LoZh3d3d\nCLaoaQuMFBKSSqX79+9vbW11dHQ8evTolStXFi1aJJfLv/zyy4aGBqT3XWTUYUCH7NixY9my\nZXj3i9u3by9fvnzZsmU3btzA301LS+vr62tra8vJycEPLAJaAEkhs46Ojr/85S/Lli2Lj49/\n6e+/rKxM+1Hpp7cZKRiGwWDRJkgKySlnsH/+858KhUL5+s2bN5ctW7Zq1SqpVEpgePoDRgoJ\nJSUlLVu27K9//Sv+y09NTVXLC66jo+PmzZsExUgi8IRQp3R1dVlaWtrb26enp584cQLDsE2b\nNi1fvhwh1NPTc+rUqdjYWAsLi1mzZun5k3FtgqSQmeoNwq+++gob0mTLzc2NkMD00NuMFIQQ\nDBZtgqSQyuDg4Ksa5WdnZ4eFhT148KCsrCwxMfHUqVMIoXXr1jEYDIKC1S8wUkgIX92zY8cO\nJpOZlpZ28uRJ1bykp6dLpVKEEIfDWbp0KcGxkgAcOzHiCYVCmUzm4OCAELKysqqtrb1x48aZ\nM2dU/94jhM6dOyeTyZRLF4BGQVJICMOwsrKyhoaGsWPHTp8+XdloAY6jJRCMFBKCpJDQq46e\nRyozWHV19eHDh/HrjY2N161bt2DBAkKj1n3KwQIjhYTeWKXn5uZCIxUlaCozsnV2du7Zsycj\nI4PL5ZqYmCgUitzc3OLiYoSQ6nyUlpaWlJTEZDI//fRTZddjoCGQFBJqbW3dt2/ftWvXioqK\n7t69e//+fWdnZ2WvBdhcTggYKSQESSEhiUTy2WefVVdX448Hu7u7+Xx+aWnpzJkz8QeAyhms\np6dn5syZERERf/7zn52cnIgOXMepDpZRo0bBSCGb/Pz8pqYmQ0PDU6dOqVXpp06dqq2t5XK5\nqu159RwsGR3ZLly4IBaL7e3tLS0tEUIBAQF4s0QbG5vZs2cjhKRS6YULF06cOIEQCg0NtbCw\nIDZgfQBJIZuurq49e/bU1tZyOJwVK1YsW7aspaUlIiKCz+crr4HN5doHI4WEICkkpDx6Pj4+\n/saNG0eOHHFxccGPnpfJZPg1yhksLy/vhx9+gKMmtEB1sMBIIUpVVZVyr4dQKNy3bx/eTgkh\nNGfOHKlU+s0336hVg2lpaRkZGUwm87333iMmaFKCg+lHKvxE2uDgYENDQ9UTabu6uvbt2/fk\nyRMqlWppadnR0SGTyfAGx++//z6xMes8SAo5ffHFF3w+39XVNSIiwtjYODU1NSEhAcMwQ0PD\n8PBw1RuEEokkNzcXthNoGowUEoKkkNCvPXoejtvWjpcOFhgp2sfn8w8cOODr67tjxw6RSBQR\nESGRSBYvXrx582aE0ODg4J49e/CzBw8dOmRmZiaVSr/77rtr165hGLZr1y5fX1+i/w9IBJaM\njkiqJ9IGBgZOnTpV+RaTyfT398cwTCgUtre3Dw4Oenh47Ny5E/7eaxokhXByuXxwcBDfV6NU\nVVV1/vx5CwuLmJgYY2Pj27dv49XgvHnz6urqcnNzJ02aZG1tjV9sZGTk7OxMROx6BEYKCUFS\nSOg3HD0Pq9+14FWDBUaK9rHZbD6fX1xc/PTp06tXr0okEg8Pj+3bt9PpdIQQhULhcrkCgeCX\nX3756aefsrKy/v3vf5eVlVEolPXr1y9atIjo8MkFmsqMSCwWi8Vi4T0whq4MYTKZa9eu/eij\nj3p6eoyMjAwMDIiIUe9AUogll8vxNm6ff/656u+/rKwMIRQSEjJ69OiHDx+q9hnr7+/PycnB\n+zHARgKtgZFCQpAUElJNylAWFhYTJkx48uTJ06dPVW9jKXvM5ObmrlixYty4cdqKV1+8ZrDA\nSNGy0aNHHzhwYO/evT///DNCyMPDIzIyUrWzromJSWxs7NWrVzMyMpqbmykUioeHx5o1a1xd\nXYmLmqRgD+GIpHoibVZW1tAztRFCFArF2NgY5iOtgaQQSy6X9/T05Ofnx8TEqP7yP/zww+XL\nl3O53O7u7qNHj2IYtnr1anwvgY2NDYfDUSgU0dHRzc3NxMWuX2CkkBAkhYR+89Hz+L948OBB\nqAY14Y2DBUaKNvX29nZ2duI/czgcQ0NDtQvwKv38+fMXL168du3awYMHoRp8KVgyOlIpV4YI\nhcK2traZM2fCyhDCQVIIRKfTfX19y8vLBQJBfX29j48PvnaUQqHMmDGDSqWmpKQUFBRMnz49\nNDQU/1cuXrzIZDI3b948btw4b29vQsPXLzBSSAiSQkLKpDQ2Nra0tKgm5datW/fv32exWOvX\nr8cXyKn9i2ZmZlqPV1/AYCEPQ0PD8vJyCwsLNptdUlLS3Nzs7e09NB0UCoXBYECzpdeAgnDE\nkMvlWVlZycnJ+fn53d3d48ePZ7PZ+JRUWloKuwUIAUkhlVfVhLisrKzHjx//8Y9/xA9YS0lJ\nSUtLc3FxWbVqFZw+r2kwUkgIkkJCvb29SUlJp0+fvn79Ot4Mw9raGk9KWVlZcXExi8Xq6ur6\n6aefLl++jBDatGkT3twSaM7QkUKn05U1IQwWAkkkEqlUGhAQ4O/v7+fnV1JSUlxcrFYT5uXl\nGRsbq64jBS8FBeHI0NTUFB4enpGRUV9f/+TJk/z8/Lt3706ePHn8+PGwg5wokBQSek1N2N3d\nnZeXJ5FIxowZc/PmzcuXL1MolM2bN+Pt9YHmwEghIUgKCTU2NoaFhRUUFHR1dSkUisePH2dk\nZIwdO9bV1RVPSn19fU5OTlZWVk1NjbGx8ccffwyNMTTtVSPFwsICWvgQqKOjIz4+/vjx4w8e\nPJg1a5aJiQmDwfDx8VHWhFwul0ql3rlz58iRI4WFhfPnzx/6IB2ogoJwBMBPUWtqarK2tl6x\nYgWXy+3v76+vr7979+4777xjZ2cHU5L2QVJI61U14YQJEyorKysqKrKzs2tqahBCwcHBc+bM\nITpeHQcjhYQgKSQklUr37NnT0tLi6Oi4f//+kJCQjo6O2tran3/+efbs2WPHjoWj57Xv9SPF\n0tISakJCNDU1hYWF4bdFgoKCHB0dWSwWQki1JiwuLi4vL09KSsIwbMmSJdOmTSM6arKDgpBc\n5HL5119/PWHChFGjRilfPHv2rEAgcHZ2/sc//uHu7u7s7Dx//nwDAwM+n19QULBgwQITExPl\nlDRp0iR8rzMYLpCUEeelNSGVSp09ezadTh8YGHBwcAgJCZk3bx7RkeoUGCkkBEkZKb7//vvc\n3NyJEyfGxsZaWFjcvn37ypUrCKFNmzZxuVyksm+tsrKyv7//pRulwG/220YKg8FQrQlhsGiB\nTCYLDw9vaWlxcXGJjo729PTEq0Ecg8Hw9fWtra2tqKh4+vQplUoNDg5euXIlgQGPFFAQksjg\n4ODhw4fv3Lnz6NGjRYsWKef6uLg4mUwWERGhurZtypQpIpGopqaGSqVOnToVn5LGjh07d+5c\ngsLXTZCUkWJwcFD1EMKX1oQ0Gs3NzW3BggV+fn7KswfBsICRQkKQlBHkzJkzHR0df/vb3yws\nLNLS0lQPyEEIpaen29jYjB49Gp5HacLvGSnov7U6DBbtSE9Pz8rKsrKyio2NNTY2xl8UCATp\n6ekikcjBwYHBYMydO9fOzs7Ozi4kJITH4xEb8EgBx06QyI0bNx4+fMhms0NDQ5XzEYZhz58/\nRwjZ2dmpXb9kyRKEEJ/Px/+Rw+EsXbpUi/HqBUgK2SgUCgzDVF+TMuJgAAAgAElEQVQRi8V/\n//vf//jHP37wwQdbtmxJTk7G+7Azmcz9+/e7uroOPYsCDDsYKSQESRlBurq6LC0t7e3t09PT\nT5w4oVoN9vT0nDp1Cj9nVXnmQWZm5ldffaU2GYLf5neOFASDRYuqq6sRQkuXLsUfDAqFwvDw\n8MjIyB9//DEhISEqKgrDMAqFMnv27NWrV9vb2xMc7sgBBSGJ/Oc//0EIbd++3cHBQSgU4uds\nUigU/FFGbW2t2vVMJhMh9OLFC61HqkcgKaQil8tjYmJUvwZJJJJdu3bl5OTIZDIMwxoaGhIT\nE8PDw3t6ehDUhFoEI4WEICkjiJWVVXd3940bN44fP65aDSKEzp07J5PJbG1t8X9U1oS5ublN\nTU3Ehaw7YKSQnFAorKurw38eP348QkggEDQ0NFy6dGn79u0YhsXFxV26dMnKyqqsrGxovsDb\ngIKQRPC7HQYGBkKhMCIi4u9//3tpaSlCaOHChQihb775RiaTqV5/9+5dhNDEiROJCFZfQFJI\npbe3VyQSqd4aP3v2bHt7u4uLS3x8/I0bN44cOeLi4lJRUbF//348Nao1YW5uLtH/BzoLRgoJ\nQVLIpqqqSnkzSygU7tu3Dz9cHiE0Z84cqVT6zTffqFWDaWlpGRkZTCbzvffeU/534Oj54QUj\nhcykUmlERMSPP/6I/2NQUJCrq2thYeGWLVtSUlI2bNgQHR3t4ODAZDLxYwbxJULg14I9hCTC\n4XDu3btXWFiYnZ0tkUjc3d0/+OADOp3u5OTE5/Pr6uoePXrk4eExatQoDMNSUlIuXbpEoVBC\nQ0MtLCyIjl1nQVJIhclkqm2hOXnypKmp6eHDh8eMGUOhUMzNzf39/auqqioqKgYHB/ENHvh+\nQmtra9jgoTkwUkgIkkIqfD4/KiqqsbHR29tbJBJFRETU19f39fV5eXkhhCZOnFhSUiIWi21s\nbNavX29kZCSVSi9fvvztt98ihHbs2OHq6qr6X4Oj54cRjBQyo9PpDx48KCsrCwwMZDKZdDp9\n3rx5Tk5OPj4+ISEhU6ZMwVf53rx5Mzs7m8PhbNiwQfUIYvCWKLAAnVTOnz9/7do1hJCLi8uB\nAweUJ2l2dXXt27fvyZMnVCrVzs6uq6tLIpEghNavX//+++8TGbEegKSQjUQiCQ8PF4lEAQEB\nfD5/4cKFf/rTn1QvEIvFISEhhoaGFy5cMDQ0JCpOfQMjhYQgKeTR09MTGRn55MkTb2/v6upq\niUTi4eERGRn50qRYWlp2dHTIZDIKhRIcHAxJ0TQYKWSWnZ39r3/9a+3atStWrBj6LoZh33//\n/YULFzAM27Vrl6+vr/Yj1AHwhJBEGhsbExMTpVIpQqi/v//dd9/lcDj4W0wm09/fXyaT1dfX\nt7e3S6VSMzOzrVu3wqG0mgZJISHVNt99fX1ubm7u7u6qF7BYrJ9//rmtrY3L5ZqbmxMVp16B\nkUJCkBRSwQ9Jw49Hk0qlatUg+m9SMAwTCoXt7e2Dg4MeHh47d+6EL7iaBiOF5MaPH5+enl5f\nX79s2TK1zrrFxcXHjh3LyMjAb50EBgYSFeRIB08ISeTFixdRUVFMJnPatGnnz58fPXr0gQMH\nHBwcVK+RSqUNDQ0GBgYTJkyAftNaAEkhLeVzwnHjxh07doxOpyvfwjBs48aNYrH48OHDLi4u\nBAapP2CkkBAkhWyam5vDwsLwR0xz5szZuXPnS3/nGIb19PQYGRkZGBhoPUZ9BCOF/C5fvnz5\n8uWoqKh3331X+WJnZ+fu3bubm5utrKz+53/+B06f/z3gCSGJGBgYzJ4929/f38PDA3/EkZOT\nM336dOWdKoQQnU43Nzc3NTWF+Ug7ICmk0tjYSKPR8C9JyueEjY2NLS0tM2fOVP7+b926df/+\nfRaLtX79etVCEWgOjBQSgqSQjaGhYXl5uYWFBZvNLikpaW5ufun58hQKhcFg4B0ygBbASCEV\noVD46NEjGxsb1V+1ra1tcnLy8+fP58yZo3yRyWTyeDxXV9fNmzfD2cK/ExSEpIA/p6VQKAYG\nBvj3VxcXl1fNSkDLICkk0draGhYWlp+fP3v2bLWasKysrLi4mMVidXV1/fTTT5cvX0YIbdq0\nCR4PahOMFBKCpJCHRCKRSqUBAQH+/v5+fn4lJSXFxcVqNWFeXp6xsbHqOlKgHTBSSKKzs3PX\nrl0ZGRlZWVlyudzW1hZvBMBkMhsbG3Nzc+fPnz9q1Cjl9SwWy9bWFqr03w8KQoK1tbX961//\niouLu379eltbm6urq7IHBsxKJARJIRCTyaypqSkpKSktLR1aE9bX1+fk5GRlZdXU1BgbG3/8\n8cewx4NAMFJICJJClI6Ojvj4+OPHjz948GDWrFkmJib4fkJlTcjlcqlU6p07d44cOVJYWDh/\n/nxY2kAgGCkEYjKZXl5eFAqlurq6oKDg5s2bbW1tVlZWJiYmY8aMSUtLYzAYeP9wMLygICSS\nRCL57LPP6urqMAwbGBioq6vLycnx8vJis9n4BTArkRAkhShUKpXH4zU0NLyqJuzp6Zk5c2ZE\nRMSf//xnJycnouPVdzBSSAiSon1NTU1hYWH4jaqgoCBHR0f81DvVmhDvNJOUlIRh2JIlS2Ar\nFOFgpBBCIpH09vZaWVl5enoGBQVZWlq2tLQUFhbeunWroqLCzs6upaWltLR0+fLlcLDEsIOC\nkEjffPNNeXm5k5PT3r17P/zww76+vtLS0ocPH86cOXNoTWhlZaV2DBEYdkKhsLW19Y2HO0FS\niPLGmrCysnL69Om2trZERwoQgpGiXTB9kZBMJgsPD29paXFxcYmOjvb09MSrQRyDwfD19a2t\nra2oqHj69CmVSg0ODl65ciWBAQMlGCnapPoUHf8OTKfTJ02aFBgYOH369IGBAT6fj58S2dfX\nN2HCBDs7O6JD1jXQZZQYYrHY3Nw8JCRkcHDw6NGjyvIPb6NkYWERHR1tZWWlvL66unry5MkE\nBasvpFLpJ5984ubmtmvXrre5HpKiBb29vaq7BXAKheIf//hHbm6us7Pz3/72N+UXLIlEkpub\nu3TpUq2HCV4HRooWwPRFTqmpqSdPnrSysoqLi1POVAKBQCAQWFhYLFq0iEajYRiWk5PT0NDA\n4/Hs7e0JjReog5GiBU1NTeHh4e3t7SYmJsuXL587d66FhYXaNV1dXRkZGbdv325tbXVzc4uO\njiYkVB0GTwgJIBKJwsLCGhoaWlpaAgICPD09lW/hx6nl5+erPSccOjbAsKPT6Q8ePCgrKwsM\nDGQymW+8HpKiaUKh8NNPP6XT6Wqfx/hzQj6fX1tbq/ac0NnZmaBgwSvBSNECmL7IKSUlpb6+\nftWqVfiHu1AojI2NvXLlCr4/qqKiYt68eRQKxc7Ozt3d3dTUlOh4gToYKZr2+qfoSkwmc8qU\nKcuWLZNIJPg3ZFjHO7xgDa5myeVyuVyu9iKLxWKxWJmZma2trUZGRmrvrl69evXq1WKxODw8\nvLm5WVuRAoQQWrZsmVwuz8jIIDoQgBBCCoVCoVAkJiYmJyervUWj0fCFVTU1NVFRUS9evCAi\nQABIBKYvEho/fjxCSCAQNDQ0XLp0afv27RiGxcXFXbp0ycrKqqysrLa2lugYASDSf/7zH6FQ\naGVl9cUXXyhrPIFAcP78+Vu3bikUCtWLKRTKwoULEULp6ekExKrToCDUILlcHhsbGxsbq/YX\nmsPhREdH29jYIISys7PV3kUqNWFeXp72wgUIzZ49m8Ph3L59G5ZSE0soFD558mTChAmHDh0y\nNjZ+aU2ILyXlcrk1NTUPHjwgIkwASASmLxIKCgpydXUtLCzcsmVLSkrKhg0boqOjHRwcmEwm\nfszg4OAg0TECQKTq6mqE0NKlS/EHg0KhMDw8PDIy8scff0xISIiKilKb0EaPHo0QqqysJCRa\nHQZLRjVIJpOlpaU9fvx41qxZxsbGqm8pe2D88ssv7e3tXC5X7RAVd3d3d3d3Pz8/7Yas76hU\nqlQqzcvLc3Z2HjduHNHh6KnOzs49e/ZkZGRwuVw7OztPT8+cnJyHDx+y2WzVtaPffffd48eP\nY2JinJ2d586dS2DAAJABTF8kRKfT582b5+Tk5OPjExISMmXKFPyz/ubNm9nZ2RwOZ8OGDdAv\nEegzoVAoEAhoNJqDg0NKSsqXX35pZmYWERERHBz84MGDJ0+evPvuu+bm5vjFg4ODx48fb2ho\ncHV19fX1JTZyHQMFoQbR6XRfX18ej2dra9vS0mJkZKQ67ytrQoFAIBaLh9aElpaWWg9ZvwiF\nwkePHtnY2Kj+5m1tbZOTk58/fz5nzhwCY9NniYmJ5eXlkydPXrJkCZ1ONzU1VdaEg4OD7u7u\nFAolOTn5u+++s7CwWLVqFXQb0wL8Hi0c/kseMH2NFFQq1cbGxtbWFt/qjGHY999/f+7cOYRQ\naGgodJHRNLlcnpWVlZycnJ+f393dPX78eDjjkVQcHBzKy8tLS0tv3br17NmzdevW/eUvfzEz\nM6PT6ampqT09PQEBAcqdnHV1defOnTMyMtq9e7fagxbwO0GXUW1oamras2ePk5PT559/jq8S\nUZJIJOHh4SKRKCAgIDQ0FL5vaU1nZ+e2bdskEomlpeWSJUsWLlyobOHz5ZdfZmdnJyYmQk2u\nZXj33eDgYENDw6NHj6rusH327FlkZGRnZ6exsbGhoaFYLEYIbd++fd68ecTFq4MUCgWVSlWd\niNra2hISEvh8PoPBmDNnzkcffaQcKapEIhG+DB5oAUxfI1RxcfG1a9fKysooFMq6des++OAD\noiPScU1NTQcPHmxoaFC+YmlpuWvXrqGNQ2EGI5BCoSgqKlIoFFOnTlV2lElOTk5MTORwOGfO\nnFH95pyfn29qagoN5IYdPCHUBgMDg8LCQoFAUF9f7+Pj86ueEwJNEAqFz58/X7hwIYVCwbu9\n3bx5s62tzcrKysTEZMyYMWlpaQwGY+rUqURHqkdUu+8GBgaq/fJNTU19fHzq6+sbGhpevHhh\naGi4cePGRYsWERWtTsK3PQsEAuVEJJFIPvvss7q6OgzDBgYG6urqcnJyvLy81GrC7OzsqKio\nUaNGQX927RCLxRMnTjQzM4PpawTp7OyMiYl58uSJlZXV7t27YaG7pnV1de3Zs6epqcna2nrF\nihVcLre/v7++vv7u3bvvvPOO6h0TmMGI9aueotvY2ChXkIJhBAWhNuBrR8vLy99YE06aNAnu\nUWmacotaQEDAvHnzgoKCLC0tW1paCgsLb926VVFRYWdn19LSUlpaunz5ctjdoTUKheLevXsC\ngaCvr2/GjBlDDwIeNWrU/PnzfXx8Zs6cuWHDBryNOxhGPT09P/74o+rNqW+++aa8vNzJyWnv\n3r0ffvhhX19faWmp2qE4CKGioqKSkpLJkydDUrQAn8Hy8vI2b968Zs0amL5GCiaTyePxXF1d\nN2/ebG1tTXQ4uu/s2bMCgcDZ2fkf//iHu7u7s7Pz/PnzDQwM+Hx+QUHBggULGAwGfiXMYORR\nXFx87NixjIwMCoUSHBwcGBhIdET6AgpCLXmbmnDs2LFwy1AL1Lao0en0SZMmBQYGTp8+fWBg\ngM/nZ2dnSySSvr6+CRMmwP40rVHeGenp6eno6Fi0aNFLv86amJhYW1srP8jBMGIymWoLFhIT\nE42MjA4fPmxlZcVms2fOnIledlDqlClTpk6dCst3tUN1BmMymTB9jSAsFsvW1hbWAWlHXFyc\nTCaLiIhQfRg4ZcoUkUhUU1NDpVKVT9FhBiMJeIpOICgINQXDsLKyssLCwu7u7rFjx1Kp1DfW\nhLAkWtPEYrGRkdGJEydMTExiYmLUjm+2sLDg8XiBgYGjR49ubGzs7e3t6uqaP38+UdHqIWVN\nKBQK29raZs6cCd+ctExtEXtLS0tAQICnp6fyAvwO+tCacMyYMcRErE9eM4PB9AWAKgzDzp8/\njxAKCQlR691gamqamZkplUpVnz7BDEYG8BSdQFAQakRra+u+ffuuXbtWVFR09+7d+/fvOzs7\nm5ubv74mBMNILpf39fUZGhoqX3n9FjUlJpM5ZcqUZcuWSSQS/Cuv8qRUoAlq7SuVBUlpaSns\nqiWEak3Y29vL5XJdXFxUL3hVTQiGy9DpC73dDAbTl6ZVVVWZm5vjk5JQKPznP//p6ekJCxZI\niEKh3L17t6enZ/r06WoNlnp6em7fvs1gMJYtW0ZUeOBV4Ck6UaAgHH5dXV27du0SCoUcDico\nKMjR0bGkpCQ7O3vSpEnW1tZQE2qBQqGIjY1NSUmZPXu28kvVG7eoqaJQKBwOJz09nUqlvvvu\nu1qJWscpFAoKhaLWvvJf//pXXFzc9evX29raXF1d8WRBpyXCqS7f7erqWrBggdo0pawJLS0t\n1cpF8Du9dPpCv2YGg+lLQ/h8flRUVGNjo7e3t0gkioiIqK+v7+vr8/LyIjo08BIymaykpOTZ\ns2dz585VfUh4/fr1qqoqd3d3OMgOACUoCIdfbGzs48ePXV1dY2JiuFxua2trQUGBXC7Pzc0d\nWhPa2dlNmDCB6JB1UGFhYXFxcUlJifJL1VtuUVMaGBhITk6Wy+WLFy/WVtQ669e2r4SakHDK\nFPzyyy/t7e1DU+Du7u7u7u7n50dUhDps6PSFfuUMBtOXJrDZbD6fX1xc/PTp06tXr0okEg8P\nj+3bt8O5duTk5OTE5/Pr6uoePXrk4eExatQoDMNSUlIuXbpEoVBCQ0OVp9sBAKAgHGZVVVXn\nz5+3sLCIiYkxNja+fft2QkIChmHz5s2rq6tTqwmtra1hy6wmUCgUb2/vpqamV9WEb9yiNjg4\nePz48YaGBldXV7iJ+Pv9hvaV0H2XcG8sy+GkO0141fSF3noGg+lLQxgMho+PT3FxcXl5uVQq\n9fDwiIyMfM16UZFIBGdnE4hKpXp7ewsEgpqamps3b+bm5l65ciUnJwchtH79ehgaAKiCgnCY\n3blzp7S0dNu2bY6Ojg8fPoyLi8MwbNOmTevWrfvll1+ePn2qWhM6ODgQHa/OemNN+PotanV1\ndefOnTMyMtq9ezd8ov9+v619JXTfJRw8qiXE29SEr5nBYPoaRgqForCwcNy4ccqlDTdv3pRK\npQghFxeX2bNnv2pEwNF2ZMBkMv39/WUyWX19fXt7u1QqNTMz27p1K5xhq2lisTghIeHbb7/N\nz89ns9lwS5f8oCAcHkKhUCwWczgcV1fXFy9eBAUFPX/+PDIyUiaTrV69esWKFQihp0+fNjY2\nSqXSnJwcPz8/6MSgaW+sCV/zHdfc3NzBwWHx4sUTJ04kInYd9NvaV0L3XcJBTUiIt6kJX5UR\nmL6GS3Z2dnR0dGpqqvL3bGhoWF5ebmFhwWazS0pKmpubvb29Xzoi4Gg7kqDT6TNmzFi+fLm3\nt3dQUNC6detgn46mdXZ2fvrpp5WVlT09Pc3Nzffu3evs7PT09Bw6UuApOnlAQTgMlAedc7lc\nU1PTGTNmUKnUlJSUgoKC6dOnh4aG4pddvHiRyWRu3rx53Lhx3t7exMas8yQSyalTpxITE8Vi\n8YsXLyQSya+tCW1sbMzNzYmIXWdB+8oRCpbvatnrpy/0FjMYTF+/k0KhSEhIuHDhQm9vL4/H\n+8Mf/oD/Pmk02qxZs/z9/f38/EpKSoqLi9Vqwry8PGNjYwaDAUfbkQqdTjc3Nzc1NYX7WVpw\n6tSpR48eOTo6hoaGvvvuu7W1taWlpUPvnsBTdFKBgnAYqB10jr+YlZX1+PHjP/7xj/i60JSU\nlLS0NBcXl1WrVrm5uREar+4Ti8WfffbZo0eP2Gy2v7//lClTxGKxUCh8VU0I33G1BtpXjlCw\nfFdr3mb6QjCDaVh8fHxmZiaTydyxY8eaNWvMzMyUb9FoNBqNhu8nVNaEXC6XSqXeuXPnyJEj\nhYWF8+fPp9PpcLQd0E8nTpwwNjY+cuTIhAkT7O3t/f39+Xy+QCBQqwnhKTqpQEH4u7zmmODu\n7u68vDyJRDJmzJibN29evnyZQqFs3rwZ2jBoQXx8fE1NjYuLy+HDhz09PadOnRoYGCgSiQQC\nwdCaEL7jaodEIunt7WWxWNC+coSC5bva8ZbTF4IZTGMePnx44cIFOp1+8OBB1WXtalRrQrzT\nTFJSEoZhS5YsmTZtmjYDBoBUfvjhh6CgIOVZqXgTgaE1ITxFJxUoCH+71x8TPGHChMrKyoqK\niuzs7JqaGoRQcHDwnDlzCApWjygUivj4+MHBwf379ysXTdFoNB6PV1hY+PjxY7WaEL7jalpH\nR0d8fPzx48cfPHiALwSF9pUAvNSvmr4QzGCacfLkydbW1lWrVg2ttBsaGiorK2UyGYfDQQgx\nGAxfX9/a2tqKioqnT59SqdTg4OCVK1cSETUARJJIJKdPn7548WJhYWF3d7ebm5vqQtBX1YTw\nFJ08oCD87V5/TDCVSp09ezadTh8YGHBwcAgJCYG7INohl8uTkpLodPrHH3+s+jqVSmUymQ8f\nPhy6IQdoTlNTU1hYWE1NjbGxcVBQkKOjI4vFQtCqROuqqqrMzc3xX7JQKPznP//p6en5mo75\ngBAwfZHBmTNnZDLZxo0bVVeKVlVVxcbGXrhw4f79+7dv366pqfHy8jI0NDQ0NJw7d66dnZ2d\nnV1ISAiPxyMwcgAIIZFIdu7cWV5e3tXV1djY2NfXN3RLiGpNOHHiRFtbWwIDBkNBQfjbvfGY\nYBqN5ubmtmDBAj8/P2tra6Li1Dc0Gi07O7u7u5vH45mamqq+1dXVdefOHS8vr/Lycisrq0mT\nJhEVpJ6QyWTh4eEtLS0uLi7R0dGenp54NYiDmlBr+Hx+VFRUY2Ojt7e3SCSKiIior6/v6+vz\n8vIiOjTwf8D0RQZZWVnd3d3Ozs6Ojo4IIalUevbs2RMnTrS3t9vY2OC7OhsaGurq6vD7vBQK\nxc7Ozt3dXS1lYNjBYQbklJCQUFFR4eDgsHXr1unTp9fU1DQ2Ng7dEoLXhFZWVrDKnYSgIPxd\n3v6gc6BNcrm8pKSkoaHB399ftUq/ceNGbW3tF1984ebm5u/vT1yA+iI9PT0rK8vKyio2NlbZ\nWlogEKSnp4tEIgcHBxaLBY0xtIDNZvP5/OLi4qdPn169elUikXh4eGzfvl3ZBEsNtAInEExf\nZFBUVFRaWophWGVlZVxcXElJiYmJyZYtW7Zu3ern58fj8TIzMxsbG995552xY8cSHay+gMMM\nSAhvpZGQkIB3kbG3t3dwcJgzZ86rbvUymUwnJycCAwavAgXh7/WWB50DbXJ2dubz+VVVVXV1\nddOmTcOb/aSmpl6+fNnU1PRPf/qTnZ0d0THqhZSUlPr6+lWrVuE9xIRCYWxs7JUrV6qrqwsK\nCioqKubNmweNMbQA736B972QSqUeHh6RkZGvWi8KrcCJBdMX4ZycnDo6Oqqrq0tLS/FdIX5+\nfpGRkcq+xyYmJmVlZS0tLY6OjjBMtAYOMyAbZSuN1tbWxYsXK1tpwPKfkejlt4fBr8LhcKKj\no8PDwzMzMxFCoaGh8FefWDQaLSoqat++fUVFRZs2bXJ0dJRIJM3NzQihtWvX0mg0ogPUF+PH\nj0cICQSCGTNm3L9//4cffnBycoqLi7O2tt62bVtZWVltba2zszOHw1m6dCnRweoahUJRVFTk\n5eWFT0e9vb2dnZ34WxwO5zU70Nrb2wcHB58/f66lQMH/BdMX4SgUytatW2fNmlVcXMxms2fN\nmqW230kulz979gxB+yvtKioqsrS0PHToEL71YNq0aXv37s3OzkYI7dixQ/m9C2YwrWGxWCwW\nC//qq/aZAl+MRxx4Qjg84HYI2TCZTH9/f5lM9vjx4+bm5ufPn7NYrE2bNi1atIjo0PSIg4ND\neXl5aWnprVu3nj17tm7dur/85S9mZmZ0Oj01NbWnpycgIMDCwoLoMHVQdnZ2dHR0amqqcjoy\nNDQsLy+3sLBgs9klJSVDb6srQStwwsH0RQbW1tYzZsxwc3MzMTFRe+vKlSuFhYUcDueTTz6B\nEl1r4DADsnn9wcJwVurIQsEwjOgYdIdEIgkPDxeJRHv37uVyuUSHAxBCSCqV1tfXYxjm4OCg\nelAk0A78OZVCoZg6daqyo0xycnJiYiKHwzlz5gx8nRpeCoXi66+/vn37NkKIx+OtXLlS2X1E\nJpMhhPr7+yMjI588eeLv7696Wz0vL8/V1RU23pAKTF8klJqampCQgGFYeHi4t7c30eHoOIlE\ncvHixZqamjFjxtTX17///vvLly9XvaCrq2vv3r3Pnj1Tm9CA1ii/+gYEBAx9EiiRSHJzc2ER\nEPlBQTjM4K8+AK+BYdj3339/4cIFDMN27drl6+tLdES65ssvv7xz5w6TyQwNDX3Vr7enp0dZ\nE27bto1Go925cyc+Pt7W1vbIkSNwFgUAL9Xf33/69Om0tDSE0Lp16z788EOiI9Jx+GEG7e3t\nylccHR2PHDmidhtRWRN+/vnncOwHIV5fE4IRAQrC/0Mul/f3948aNUr5ilAolMlkDg4OBEal\n54YmBUFeRqbi4uJr166VlZVRKJR169Z98MEHREekax4+fBgTE0On06Ojo5UNMF5KWRM6OzuP\nGzcO34ezevXq1atXaylWAEYOhUJx69at7777rrOzk8FghIaG+vn5ER2U7sNvbzk4OKxZs6a7\nu/v8+fMSieSlJUdXV1dubu7ixYuJChVATTjSwR7C/08ul8fGxqakpCjP/O3s7NyzZ09GRgaX\nyx26iwBowdCkIMjLyNTZ2RkTE/PkyRMrK6vdu3dDT1FNOHnyZGtr66pVq4b+ehsaGiorK2Uy\nGYfDQQgxGAxfX9/a2tqKioqnT59SqdTg4OCVK1cSETUAZEelUu/du1daWsrj8cLCwvC2yWAY\nyeXyvr4+5ac8HGYw4kArjZEOuoz+L7zwwI86FYvFbDYbIXThwgWxWOzu7g6dxAjx0qQgyMvI\nZGpqGh0dXVNTw+Px4HNCQ/DOh2obmKuqqk6fPl1TU4P/o1LafM8AAAtySURBVKen52effTZq\n1KhRo0YdOHAgJyenoaGBx+PZ29trP2CdV1VVNXnyZPwvvFAoTExM/PTTT2Gj5kgUEhKyZMkS\naIyhCfhnfXt7+4EDB9hstkgkCg8P9/T0pNFogYGBys3nZmZm0LiSzFQ7i3p7e0MrjZEFnhAi\n9H8Lj4MHD06cOBG/O3XixAkTE5OYmBjYza99Q5OC/nvXEPJCFLWbuAghoVAoFovxh05vxGKx\nbG1t4SNcc7Kysrq7u52dnR0dHRFCUqn07NmzJ06caG9vt7GxmTJlilgsbmhoqKurw1vwUSgU\nOzs7d3d3U1NTomPXQXw+PyoqqrGx0dvbWyQSRURE1NfX9/X1eXl5ER0a+C2gktcE5Wf9wMAA\nj8czNTVVKBT37t0TCAQvXrzw8vJSPU4QHkORHBwsPHJBQaheeDg4OCiP2mxpaQkMDFT2OFYj\nEong40FDhiYFqRyB+pq8QFI0B9ZUjwhFRUWlpaUYhlVWVsbFxZWUlJiYmGzZsmXr1q1+fn48\nHi8zM7OxsfGdd94ZO3Ys0cHqODabzefzi4uLnz59evXqVYlE4uHhsX37djr95WtzYPoC+ual\nd37hMIMRzcjIyNnZmegowK9GffMlOk05GRkYGBw4cAAvPJRHbba3t7+qJ352dvaWLVuSk5O1\nG69eeGlS0FvkBZKiOcqktLS0iMVi/EV87a69vT2s3SWJJUuWLFy4UCqVXrx48fz58+3t7X5+\nfseOHfP398cvsLW1dXV1Rf9dXAo0avTo0QcOHJg4ceLPP/+MV4ORkZGvauIK0xfQNy+984vD\nFx/a2Ng8fvz4+PHjau0P8Xc/+eQTWJQIwHDR64JQORkhhAYGBnJycvDXlTMRQigrK0uhUAz9\nd9vb2wcHB58/f67NgPXBq5KC3iIvkBQNUfvYtre3F4vFGIYVFhaOHTt27969cFABSVAolK1b\nt37xxRfvvffemjVrjh079tlnn6k+vJXL5XgpCDW8higUivz8fOX3197e3s7OTvxnDoejutxa\nDUxfQK+86s6vkvITPzMz86uvvhpaE8L5XgAMI/1dMqr6Hfejjz4qLy8vLy8fGBjAFyIq1yQI\nhcK2traZM2eqrVOfMmXK1KlT8X04YLi8PinoTXmBpGjCb15TDYhibW09Y8YMNze3oet4r1y5\nUlhYyOFwPvnkk1ctfwC/WXZ2dnR0dGpqqnJ3k6GhYXl5uYWFBZvNLikpaW5u9vb2fumuJ5i+\ngP5QvfM7ODg4evTol36OwI5BALRGTwtCte+4PB7PyckpJyfnpTVhaWnpS2eiMWPGEBS+bnqb\npKA35QWSMrxUb+LGxMTgrUqUO/77+vpmzJiBL0FUA7uhSCg1NfXcuXMIoZ07d06YMIHocHSK\nQqFISEi4cOFCb28vj8f7wx/+YG5ujhCi0WizZs3y9/f38/MrKSkpLi5Wqwnz8vKMjY3xZ+ww\nfQF98MY7v6qgJiSEWCxOSEj49ttv8TTBRk19oKcFYXp6+vXr11WXrVtbW7+mJoSZSAveMikI\n8qItr7qJq7rjv6OjY9GiRao7/hFC2dnZUVFRo0aNUu0OBwjU39//9ddfJyUlIYTWrVu3cOFC\noiPSNfHx8ZmZmUwmc8eOHWvWrDEzM1O+RaPRaDQag8Hw8fFR1oRcLpdKpd65c+fIkSOFhYXz\n589/VacZAHTJW975VQVdZLSss7Pz008/rays7OnpaW5uvnfvXmdnp6en59AvWnDnV5foaUHo\n6Ogok8nWr1+vumwdakJivX1SEORF837PmuqioqKSkpLJkyfD8c2EUygUKSkpsbGxjx49YjAY\nO3bsWLx4MdFB6ZqHDx9euHCBTqcfPHjQ09PzVZep1oTFxcXl5eVJSUkYhi1ZsmTatGnaDBgA\norz9nV9VcJiBNp06derRo0eOjo6hoaHvvvtubW1taWnp0OXucOdXx+hpQUihUKZNmzb08LQ3\n1oRwd0pzflVSEORFk37nmmrYDUUeVCr13r17paWlPB4vLCwMSnRNOHnyZGtr66pVq4Z+W21o\naKisrJTJZPjMxmAwfH19a2trKyoqnj59SqVSg4ODV65cSUTUABDgV935VQWHGWjNiRMnjI2N\njxw5MmHCBHt7e39/fz6fLxAI1GpCuPOrY/S0IHyN19SEcHeKKK+vCSEvw+73r6mG3VDk4enp\n6efnt2TJEljboyFnzpyRyWQbN25UXSlaVVUVGxt74cKF+/fv3759u6amxsvLy9DQ0NDQcO7c\nuXZ2dnZ2diEhITwej8DIAdCyX3vnF2jfDz/8EBQUpEwBk8n08fEZWhPCnV8dAwXhS7zquy/c\nnSLQa2pCyMuwgzXVOgZKQY3Kysrq7u52dnbGuy5JpdKzZ8+eOHGivb3dxsZmypQpYrG4oaGh\nrq4O//JEoVDs7Ozc3d1NTU2Jjh0AsoCakEASieT06dMXL14sLCzs7u52c3NTXQj6qpoQ7vzq\nEigIXw4mJhKCpGgNrKkG4FcpKioqLS3FMKyysjIuLq6kpMTExGTLli1bt2718/Pj8XiZmZmN\njY3vvPPO2LFjiQ4WAJKCT3lCSCSSnTt3lpeXd3V1NTY29vX1dXV1LViwQLVdnGpNOHHiRFtb\nWwIDBpoABeErKScmd3d3WCFNEpAUwsGaagDUODk5dXR0VFdXl5aW4sex+Pn5RUZGuri44BeY\nmJiUlZW1tLQ4OjpCAwYAXgNqQo2Sy+V9fX2GhoaqLyYkJFRUVDg4OGzdunX69Ok1NTWNjY3t\n7e1qS37wmtDKygo+6HUSBcMwomMgtaamJmtra6KjAP8HJIVwfD7/0KFDAwMDK1asWLt2LdHh\nAEA8Pp9fXFzMZrNnzZqldvtcLpdv2LChs7MzIiJi5syZREUIwEiBf8SsWLFi9erVRMeiO/B2\nce3t7QcOHGCz2QghsVhsbm4eHBxsYGBw9OhRFouFEOro6IiIiBCJRAEBAaGhobANRE/AE8I3\nGD16NNEhAHWQFMLBTVwA1FhbW8+YMcPNzc3ExETtrStXrhQWFnI4nE8++YRGoxESHgAjiLW1\nNb7WmuhAdIeyefjAwACPxzM1NRWJRGFhYQ0NDa2trYsXL4ZjvfQc9c2XAADAEDNmzIiIiDAw\nMDAwMCA6FgDIKzU1NSkpCSG0efNmGCwAvCVYBzSM1I6Ssre3RwixWCwWi5WZmSkWi9UWkXI4\nnOjoaBsbm8zMzK+++grWEuoDWDIKAPjtYPkuAK/S399/+vTptLQ0hNC6des+/PBDoiMCAOgd\ntWpQtXm4RCIJDw8XiUSOjo5HjhxRW7+gfHfv3r1cLlfrgQOtgoIQAAAAGE4KheLWrVvfffdd\nZ2cng8EIDQ318/MjOigAgN5RVoMGBgaHDx/Gj8ZRpaz6XrpjUCKR5ObmLl26VIshA2LAklEA\nAABgONFotObm5s7OTh6PFxcXB9UgAED7lNUgQmhgYCAnJ2foNa9fHcrhcKAa1BPwhBAAAAAY\nfiKRCI7lBAAQQnWl6KpVq86fP/+axuCvf04I9AF0GQUAAACGn7GxMdEhAAD0kdq+QR6P9/rG\n4NBZFEBBCAAAAAAAgI5IT0+/fv26aheZNx4WpVoTTpo0CVY36BsoCAEAAAAAANARjo6OMpls\n/fr1qj1F37ImHDt27Ny5c7UbLyAe7CEEAAAAAABA9/H5/EOHDr1mPyHQT/CEEAAAAAAAAN33\nxueEQD9BQQgAAAAAAIBegJoQDAUFIQAAAAAAAPoCakKgBg6mBwAAAAAAQI/MmDEjIiLCwMDA\nwMCA6FgA8aCpDAAAAAAAAHqnqanJ2tqa6CgA8aAgBAAAAAAAAAA9BUtGAQAAAAAAAEBPQUEI\nAAAAAAAAAHoKCkIAAAAAAAAA0FNQEAIAAAAAAACAnoKCEAAAAAAAAAD0FBSEAAAAAAAAAKCn\n/h/1IRSsaCMVhAAAAABJRU5ErkJggg==", - "text/plain": [ - "plot without title" - ] - }, - "metadata": { - "image/png": { - "height": 180, - "width": 600 - } - }, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Warning message:\n", - "“\u001b[1m\u001b[22mUsing \u001b[32msize\u001b[39m for a discrete variable is not advised.â€\n", - "Warning message:\n", - "“\u001b[1m\u001b[22mRemoved 6 rows containing missing values (`geom_point()`).â€\n", - "Warning message:\n", - "“\u001b[1m\u001b[22mUsing \u001b[32msize\u001b[39m for a discrete variable is not advised.â€\n", - "Warning message:\n", - "“\u001b[1m\u001b[22mRemoved 6 rows containing missing values (`geom_point()`).â€\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAAFoCAIAAADIFpV9AAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdZ0AUV9cH8Dvb2KUjRYpI1ygl2CsSjQ0UxIqoxB4biXmjJtaIsaSYaPIk\nahSIJWpU1FBFFLGgUQTBBqKCiIhSFKQuu+zuvB8m2RBUXM0si/D/fZq5c/ecs6ToYWbupWia\nJgAAAAAAAND6cDRdAAAAAAAAAGgGGkIAAAAAAIBWCg0hAAAAAABAK4WGEAAAAAAAoJVCQwgA\nAAAAANBKoSEEAAAAAABopXiaLkDDSktL09LSNF0FAAAAAACABrT2hjAnJyckJKR///6aLgQA\nAAAAAKBJhYeHt/aGkBDyzjvvfPTRR5quAgAAAAAAoEnFxcXhHUIAAAAAAIBWCg0hAAAAAABA\nK9XsHhl98uTJ77//npaWVl5ebmBg4OzsvGDBApFIxFxVKBQRERHx8fElJSUmJiZDhw4dM2YM\nh/NPW/vKCQAAAAAAAMBoXp1SXl7ewoULk5KSOnfuPGbMmF69ej18+LCmpkY5ITQ0dNeuXXZ2\ndjNnznRyctqzZ8+OHTvqR3jlBAAAAAAAgJd5+PAhRVF+fn6NjLQkzegOoUKh2Lhxo56e3po1\na9q2bfv8hPz8/NjYWE9Pz0WLFhFCRowYwefz4+LivLy8bGxsVJkAAAAAAABNY/369StXriSE\nZGVldezYUR0psrOznZyc/P39Dxw4oI74rUEzukOYmpr64MGDqVOntm3bViwWS6XSBhOSkpJo\nmvbx8VGO+Pr60jR97tw5FScAAAAAAEAToGk6LCyMoihCSEhIiKbL+U/MzMySkpK++uorTRei\nFs2oIbxy5QpFUdra2gsXLvT39x8/fvyyZcvu3bunnJCdnc3lch0cHJQjdnZ2AoEgJydHxQkA\nAAAAANAETpw4kZuby9zs2b179/M3e94iAoGgf//+nTp10nQhatGMGsJHjx5xudwNGzZYWlou\nWbJk6tSpubm5y5cvLywsZCaUlpYaGBhwuVzlRyiKMjIyevr0qYoTGB9//PGov+3cuVP93wwA\nAAAAoHVh7grOnj178uTJT548+eOPPxpMiImJoSgqODi4wbihoaGjo2P9kbi4uCFDhlhaWmpp\naVlYWPTv33/jxo2EkK+//trJyYkQcvDgQepve/fuJYRcvXqVoqhp06bl5ORMnDjRzMyMw+Fc\nunSJKczPz8/Ozk4kEhkaGnp6eoaHhzf+XV74DuEbxGmemtE7hGKxWCaTubu7f/7558yIvb39\nF198ceTIkQULFhBCJBIJn89v8CmBQCCRSJjjV05gVFdXV1ZWMse1tbWsfxEAAAAAgNasqKgo\nKiqqQ4cOffv21dfX37Rp044dO/z9/d8g1J49e6ZOnWpubj5q1CgzM7OSkpKMjIzQ0NAlS5b4\n+Pjw+fzFixf37t2b6RcIIf369VN+Nj8/v1evXiYmJsOHD6+urhYKhYSQOXPm9OzZc+DAgW3b\nti0uLo6JiZkwYcI333zz2WefvVZhbMXRuGbUEGppaRFCBg4cqBxxd3c3MjK6efOmcoJYLG7w\nKalUyvyjVWUCIywsTHmckpISExPD0jcAAAAAAACyc+fOurq6adOmEUJcXFy6du16+vTp7Ozs\nBrf+VLF9+3Yul3vlyhVLS0vlYFlZGSHE2dlZS0tr8eLFNjY2U6ZMef6ziYmJQUFBP/zwQ/1H\nCPPy8qytrZWnNTU1np6ewcHBs2fPNjIyUr0wtuJoXDN6ZNTY2JgQ0uDHZ2hoWFVVxRy3adOm\nvLxcLpcrr9I0XVZWxnxQlQkAAAAAAKBWNE2HhoZyOJwPPviAGZk2bRoz+GYBuVwuj/ev+1gq\ndlwmJibffPNN/W6QEMJ0cTRNl5eXFxUVVVRUjB49WiwWJyUlvVZVbMXRuGbUEDJPAD958kQ5\nQtP006dPDQwMmFMHBwe5XF5/mZnc3FypVKpcReaVEwAAAAAAQK0SExNzcnKGDBliZWXFjEya\nNEkgEOzatauuru51owUEBEilUmdn56CgoMOHDyuXF1GFu7u7trZ2g8H09PRRo0YZGBgYGhqa\nm5tbWFisWLGCEFJQUPBahbEVR+OaUUPYp08fHo93/PhxhULBjJw/f76ioqJr167MqYeHB0VR\n0dHRyo9ER0dTFOXh4aHiBAAAAAAAUKsdO3YQQpjnRRnGxsY+Pj5FRUWRkZGvGy0oKGjv3r1O\nTk7btm0bP368hYVF3759L1y4oMpn6z9lykhLS+vXr19SUtK8efP27dsXExMTFxfH7GHeYNmR\nxrEVpzloRu8QmpiYTJw4ce/evcuXL+/du3dJSUlcXJyJicnYsWOZCe3bt/f29o6Nja2rq3Nx\nccnMzExKSho+fLitra2KEwAAAAAAQH1KSkoiIiIIIQEBAQEBAQ2u7tixY9y4ccwxh8MhhMhk\nsvoT6urqqqurTUxM6g9Onjx58uTJFRUVFy9ejIiICAsL8/LyysjIqP8K3wsxuyDWt2nTJrFY\nHBUVNXjwYOXglStXXuMbshqnOWhGDSEhZMKECUZGRlFRUb/99ptQKPTw8Pjggw+Uj4wSQmbP\nnm1sbHzixInk5GRjY+PAwMAxY8bUj/DKCQAAAAAAoCbMloPdunVzd3dvcCkqKiohISE3N9fO\nzo78/R5gfn5+/Tnp6ekNWkQlfX39YcOGDRs2zNDQ8Ouvv05MTJw6dSrzfmD9NUQad//+fUJI\n79696w8mJiaq+HHW4zQHzashJIQMGTJkyJAhL7vK4XDGjRun/L3CG0wAAAAAAAA1YVaO2bp1\na8+ePRtcWrVq1bp160JDQ9evX08IcXV1FQqFkZGRhYWF5ubmhJDy8vJPP/20wadOnjw5cODA\n+ovKMGuOMC8HMotHPnjwQMXy7O3tL1y4cPLkydGjRzMj+/fvf4NGTsU4X3/99ZkzZz7++GNv\nb+/XTdFkml1DCAAAAAAAb6MzZ87cvn3b1dX1+W6QEDJz5sz169fv3LlzzZo1PB5PV1d33rx5\nmzdvdnd39/HxkUqlJ0+e7Natm76+fv1PBQQE8Hg8T09PGxsbLpebnJx8+vRpZ2fnkSNHEkL0\n9fV79eqVnJwcEBDwzjvvcLlcPz8/FxeXl1UYFBS0f//+gIAAf39/Gxubq1evHjt2bPz48a+7\np7yKca5evRofH69sGpunZrSoDAAAAAAAvL1CQkIIIbNmzXrhVVtb28GDBz9+/Fi5BuTGjRtX\nr14tFAp379599uzZmTNnHjlypMGLf+vWrevTp09qauqWLVu2bdv29OnTdevWnT9/XiQSMRP2\n7t07cuTI+Pj4NWvWrFq16urVq41U2LNnz4SEhJ49e0ZERPz444/V1dUnTpzw9fV93W+qYpw7\nd+7w+fyhQ4e+bvymRNE0rekaNInZmH7NmjWaLgQAAAAAAFqO0tJSU1PTuXPnbtmyRdO1vJS3\ntzfuEAIAAAAAALDs9OnTWlpaK1eu1HQhr4CGEAAAAAAAgGVjx46tqamxsLDQdCGvgIYQAAAA\nAACglUJDCAAAAAAA0EqhIQQAAAAAAGil0BACAAAAAAC0UmgIAQAAAABakYcPH1IU5efn98qZ\nJiYmtra26q9Iw1rJ13wZNIQAAAAAAC1Bamrq9OnT7e3tRSKRvr6+m5vbkiVLCgoKNF0XNGto\nCAEAAAAA3m40TX/++ec9evTYvXu3mZnZpEmTRo0aVVtb+91333Xo0OHw4cOaLhCaL56mCwAA\nAAAAgP9k7dq13377rbW19eHDh3v27Kkc371795w5cyZOnHjy5MmBAwdqsEJotnCHEAAAAADg\nLXb//v21a9cKBIJjx47V7wYJIVOnTv3pp5/kcvm8efMUCkUjQRQKxQ8//NCpUyehUGhtbf1/\n//d/VVVVqmSPi4sbMmSIpaWllpaWhYVF//79N27cWH/CxYsXx44da25uLhAILC0tp0yZkpWV\n1SDIpUuXJkyYoAwydOjQQ4cO1Z9w4MABDw8PfX19kUjk6ur69ddfSyQS5dWrV69SFDVt2rT8\n/PxJkyaZmJiIRKIePXocO3bszb5mSEiIn5+fnZ2dSCQyNDT09PQMDw+vP0GZMScnZ+LEiWZm\nZhwOZ8uWLRRF+fr6NohG03SHDh20tbXLyspU+ZE2MdwhBAAAAAB4i+3cuVMmk33wwQcuLi7P\nX505c+aGDRtu37599uzZRm4Szps3b8eOHTY2NkFBQRRFHT16NDU1VS6XN556z549U6dONTc3\nHzVqlJmZWUlJSUZGRmho6JIlS5gJISEhc+fONTY2HjlypJmZWW5ubnh4eERExKlTp3r16sXM\n+eWXXxYsWMDn8319fR0dHYuLi1NTU7du3TphwgRmwmeffbZx40YzM7MpU6bo6OjExsYuW7bs\n+PHjJ0+e5PP5ymLy8/N79OhhZWU1YcKE4uLiiIgIHx+fM2fOeHh4vO7XnDNnTs+ePQcOHNi2\nbdvi4uKYmJgJEyZ88803n332Wf1p+fn5vXr1MjExGT58eHV1db9+/ZguND8/39raWjnt9OnT\nd+/enTp1qpGRUeM/T82gW7fLly9/8cUXmq4CAAAAAOANDRo0iBCyb9++l02YNWsWIWTt2rXM\naX5+PiFk1KhRygmnT58mhLz77rtVVVXMSHV1dZcuXQghNjY2jaTu27cvl8stKCioP1haWsoc\nZGZm8vn8YcOG1dTUKK9eu3ZNV1fXzc1Necrlctu0aZOZmVk/SH5+PnNw7tw5QoidnV1xcTEz\nUldX5+XlRQhZv349M5Kens60NitXrlQoFMzgb7/9Rgjx8fF5g6/54MGD+qfV1dXdu3cXiUTK\nr6bMGBQUJJPJlDN37txJCFm9enX9jzOd7Z9//vnSn6PmeHl54ZFRAAAAAIC32OPHjwkh7du3\nf9kE5tKjR49eNmHXrl2EkODgYB0dHWZEW1t73bp1qmTncrk83r+eOlTeB9u6dWtdXd3y5cur\nq6uf/M3S0vL999+/fv16Xl4eIWTbtm1yuTw4OLhTp071g7Rr1445+PXXXwkhX3zxhampKTPC\n4/G+//57iqJCQ0MbfM3Vq1dTFMWcTp482cDA4PLly2/wNZn7ezRNl5eXFxUVVVRUjB49WiwW\nJyUl1Z9mYmLyzTffcLlc5Yi/v3+bNm1CQ0OVdx2Ze5Wurq59+vR5xY9SQ9AQAgAAAAC8xWia\nJoQoG6GXaWQCc79rwIAB9QcbnL5QQECAVCp1dnYOCgo6fPhwYWFh/asXL14khHh6epr+W2Rk\nJPm7j7106RIhhLnj90JpaWmEkAYPu3bq1MnCwiI3N/fZs2fKwS5dutRvTSmKateuXf3X9lT/\nmunp6aNGjTIwMDA0NDQ3N7ewsFixYgUhpMEeHu7u7tra2vVHRCLRtGnTCgoKYmNjmZGdO3dK\npdK5c+e+7AtqHN4hBAAAAAB4i1lYWGRlZeXl5fXr1++FEx48eMBMe1mE8vJyHo/Xpk2b+oO6\nurrKO2kvExQUZGRktGXLlm3btm3ZsoUQ0qdPn40bNzKVPH36lBASFRUlEome/yxzS5Dp6Kys\nrBqpjRBibm7eYNzCwuLRo0fl5eWGhobMiPJAicfj1X8/UMWvmZaW1r9/f6FQOG/evHfffdfA\nwIDL5SYkJHz//ff1V7IhhFhaWj5f8Lx58zZv3rx9+3ZfX1+apkNCQnR0dKZMmfKyL6hxaAgB\nAAAAAN5i/fv3P336dHx8/KRJk56/qlAoEhISCCEvaxcJIQYGBnl5eaWlpfWbpaqqqurqahMT\nk8azT548efLkyRUVFRcvXoyIiAgLC/Py8srIyLC2tjYwMCCEmJub9+jR42UfZ7q4goICR0fH\nl9VGCCksLLSxsak/ztxgZK6qSMWvuWnTJrFYHBUVNXjwYOXglStXng/4wpuujo6OgwcPPn78\neF5e3p07d3JycmbOnKmvr696nU0Mj4wCAAAAALzFpk2bxuVyDxw4kJGR8fzVsLCw+/fvd+zY\n0dPT82URmIVVmOVblBqcNk5fX3/YsGHbtm1btGhRZWVlYmIiIaR3796EkAMHDjTyQWZOXFxc\n47WdOXOm/uDt27cfP35sZ2f3/F3BRqj4Ne/fv68sTIn5RiqaP3++QqEIDQ3dvn07IWTOnDmq\nf7bpoSEEAAAAAHiL2dvbL1++XCqVenl5paSk1L/022+/ffTRR1wud+vWrRzOS//mP3XqVEJI\ncHBwdXU1M1JTU7Nq1apXpj558qRMJqs/8uTJE0II82ZdUFAQj8f76aefGnRTVVVVBw8eZI7n\nz5/P5XKDg4MbbE748OFD5mDGjBmEkLVr1zIPoBJCZDLZokWLaJqeOXPmKyt8g69pb2/PfDXl\nyP79+1+rIfTx8WnXrt2OHTuioqK6du3ayA3S5gCPjAIAAAAAvN2YJmfTpk29evXq1auXs7Oz\nVCq9dOnS3bt3RSLR77//zmxN8TIDBw6cPXt2SEiIi4vL2LFjmQ36LC0tX3n/LSAggMfjeXp6\n2tjYcLnc5OTk06dPOzs7jxw5khDi4uKyffv2OXPmDB48eOjQoV26dJHL5VlZWYmJiba2tv7+\n/oQQV1fXn376KSgoyN3d3dfX18nJ6enTp6mpqXp6eswuEQMGDPj00083bdrk7Ow8btw4bW3t\n2NjYzMxMDw8P5W6HKlLxawYFBe3fvz8gIMDf39/Gxubq1avHjh0bP358g73pG8Hlcj/88MMv\nvviCNPvbg4RgH0LsQwgAAAAALUJycvIHH3xga2urpaWlq6vr4uKyaNEi5YZ+Ss/vQ0jTtFwu\n37RpU4cOHQQCgZWV1SeffFJZWWlsbNz4PoTbtm3z8/Ozt7fX1tY2MDBwc3Nbt25dWVlZ/Tnp\n6emBgYHW1tYCgcDIyMjZ2Xnu3LmnT5+uP+f8+fN+fn6mpqZ8Pt/CwmLYsGHh4eH1J+zdu7dv\n3766urpaWlrOzs7r1q0Ti8X1UxBCpk6d2qC8d999l8vlvsHXPH36tIeHh76+vr6+/qBBg06d\nOsXsarh58+bGMyoxdzj19PQqKysb+QFqnJeXF0XTtEYbUg1LSUmJiYlZs2aNpgsBAAAAAIAW\nIi4uztvbe+7cudu2bdN0LY3x9vbGO4QAAAAAAABs+vbbbwkhCxYs0HQhr4Z3CAEAAAAAAFiQ\nlpZ2/PjxS5cunTlzxt/f38XFRdMVvRoaQgAAAAAAABb8+eefK1asMDQ0DAgI2Lp1q6bLUQka\nQgAAAAAAABYEBQUFBQVpuorXg3cIAQAAAAAAWik0hAAAAAAAAK0UGkIAAAAAAIBWip13CF/3\nSdnFixfb2tqykhoAAAAAAADeDDsN4ZYtW15r/pQpU9AQAgAAAAAAaBZrq4xGRET069fvldMk\nEkm7du3YSgoAAAAAAABvjLWG0MDAwMTE5JXTamtr2coIAAAAAAAA/wU7DeHFixc7d+6sykwt\nLa2LFy+6uLiwkhcAAAAAAADeGDsNYe/evVWcSVGU6pMBAAAAAABAfbDtBAAAAAAAQCvF2juE\n9dE0nZCQkJycXFpaqlAo6l/64Ycf1JERAAAAAAAAXhf7DWFlZaWXl9eFCxdeeBUNIQAAAAAA\nQDPB/iOjq1evvnjx4oYNGzIzMwkhMTExZ8+eHTp0aI8ePe7fv896OgAAAAAAAHgz7DeEf/zx\nx4QJE5YtW2ZnZ0cIMTY2HjBgwLFjx2ia/vnnn1lPBwAAAAAAAG+G/YawoKDAw8ODEMLhcAgh\ndXV1hBAulztx4sTw8HDW0wEAAAAAAMCbYb8h1NHRYZpAgUAgFAofPXrEjOvr6xcWFrKeDgAA\nAAAAAN4M+w2hvb397du3meN33333wIEDNE3LZLKDBw+2a9eO9XQAAAAAAADwZthvCIcOHXrk\nyBHmJuGsWbMiIiIcHR2dnJxOnTo1ffp01tMBAAAAAADAm2G/IVy6dOmpU6eY7QdnzZr13Xff\nCYVCXV3d4ODgpUuXsp4OAAAAAAAA3gz7+xAaGBgYGBgoTxctWrRo0SLWswAAAAAAAMB/xP4d\nQgAAAAAAAHgrsH+HUEmhUFRWVtI0XX/Q0NBQfRkBAAAAAABAdew3hAqFYvv27f/73//u3bsn\nlUobXG3QHwIAAAAAAICmsN8Qrlu3bvXq1WZmZj4+PiYmJqzHBwAAAAAAAFaw3xCGhIR07do1\nKSlJW1ub9eAAAAAAAADAFvYXlSkqKpo0aRK6QQAAAAAAgGaO/TuEjo6O5eXl/zHI7du3P/vs\nM5qm169f7+rqqhxXKBQRERHx8fElJSUmJiZDhw4dM2YMh8NRfQIAAAAAAAAw2O+UPvnkkz17\n9lRUVLxxBIVCsW3bNi0trecvhYaG7tq1y87ObubMmU5OTnv27NmxY8drTQAAAAAAAAAGO3cI\nIyIilMdmZmbW1tZubm7z5s1zcHDg8f6Vws/P75XRYmNji4qKvL29jx49Wn88Pz8/NjbW09OT\n2el+xIgRfD4/Li7Oy8vLxsZGlQkAAAAAAACgxE5DOHr06OcHly5d+vzgK7edKCsr27dvX2Bg\n4PNbViQlJdE07ePjoxzx9fVNTEw8d+5cYGCgKhMAAAAAAABAiZ2GMDw8nJU4hJDQ0NC2bdt6\neXlFRkY2uJSdnc3lch0cHJQjdnZ2AoEgJydHxQkAAAAAAACgxE5DOG7cuOrqah0dnf8Y59q1\na+fPn//qq69euAxMaWmpgYEBl8tVjlAUZWRk9PTpUxUnMNavX19QUMAcGxgYCASC/1g2AAAA\nAADA24i1VUZNTU2ZJT19fHyMjIzeIIJMJvvll188PT07d+78wgkSiYTP5zcYFAgEEolExQmM\nGzduZGdnM8cdO3Z0dHR8g2oBAAAAAADedqw1hEuWLDly5MjUqVP5fP7AgQPHjBnj5+fXtm1b\n1SMcPXq0rKxs+vTpL5ugpaUlFosbDEqlUqFQqOIERlhYmFwuZ46vX79+8uRJ1YsEAAAAAABo\nMVjbdmLNmjU3b968c+fOl19+WVZWNnfuXEtLSw8Pj82bN+fl5b3y4xUVFYcOHRo8eHBtbe3j\nx48fP35cWVlJCHn69Onjx4+ZpWjatGlTXl6u7OUIITRNl5WVGRsbM6evnMDQ0dHR/9sLN7cA\nAAAAAABoDVjeh9DJyWnp0qWXL19+8ODBpk2bOBzO4sWLbW1tu3fvvmHDhqysrJd9sKKiQiqV\nRkVFzfnb4cOHCSGbNm2aM2cO88yng4ODXC6/d++e8lO5ublSqVS5iswrJwAAAAAAAIAS+xvT\nM6ytrRcuXHj27NnCwsIdO3aYmJgEBwd36tSpc+fOMTExz883Njb+/N8GDRpECAkICPj888+Z\ndV88PDwoioqOjlZ+Kjo6mqIoDw8P5vSVEwAAAAAAAECJtXcIX8bU1HT27NmzZ88uLy+Pjo4+\nevTorVu3Ro4c2WCaSCTq169f/ZHi4mJCiIuLi6urKzPSvn17b2/v2NjYuro6FxeXzMzMpKSk\n4cOH29raqjgBAAAAAAAAlNTeECoZGBhMmTJlypQp/yXI7NmzjY2NT5w4kZycbGxsHBgYOGbM\nmNeaAAAAAAAAAAyKWa+l1UpJSYmJiVmzZo2mCwEAAAAAAGhS3t7e7N8hbLDHgxJFUSKRyMbG\nZtiwYYsXLzYxMWE9NQAAAAAAAKiO/UVlRo4c6eDgIJFIzMzM+vfv379/f1NTU4lEYm9v36NH\nj2fPnn3zzTfu7u4FBQWspwYAAAAAAADVsd8Q/t///V9+fv7evXvz8vISEhISEhIePHiwZ8+e\n/Pz84ODg3Nzcffv2PX78ePXq1aynBgAAAAAAANWx/8jo0qVLp02bNnnyZOUIRVGBgYGXL19e\ntmzZmTNnJk2alJiYGB8fz3pqAAAAAAAAUB37dwjT0tLc3NyeH3dzc0tNTWWOe/fuXVRUxHpq\nAAAAAAAAUB37DSGfz7969erz4+np6Xw+nzmWSCQ6OjqspwYAAAAAAADVsd8Qent7//LLL2Fh\nYXK5nBmRy+UhISHbt28fMWIEM3L58mVsFg8AAAAAAKBZ7L9DuHHjxkuXLs2aNWvp0qVOTk40\nTWdnZz958sTBweHbb78lhNTW1j548GDSpEmspwYAAAAAAADVsd8QWllZpaenf/fdd5GRkdev\nXyeE2Nvbz5s3b/Hixfr6+oQQoVB4+vRp1vMCAAAAAADAa2G/ISSEGBgYrF27du3ateoIDgAA\nAAAAAKxg/x1CAAAAAAAAeCuwdoewtrZWlWlCoZCtjAAAAAAAAPBfsNYQikQiVabRNM1WRgAA\nAAAAAPgv2HyHUCgU9u7dm8vlshgTAAAAAAAA1IS1htDBwSEnJ+fOnTvTpk2bMWOGg4MDW5EB\nAAAAAABAHVhbVObu3buJiYkDBw7cvHmzk5PToEGD9u3bJxaL2YoPAAAAAAAA7GKtIaQoauDA\ngXv37n306NHPP/9cXl4+ZcoUS0vLBQsWpKWlsZUFAAAAAAAA2ML+thOGhobz58+/cuVKenr6\nlClTfv/9927dun333XesJwIAAAAAAID/Qo37EDo6Orq7uzMvE1ZVVakvEQAAAAAAALwBNlcZ\nVbpw4UJYWNihQ4eqq6v79OkTGhrq7++vjkQAAAAAAADwxthsCAsLC/fs2fPrr7/evn3bzMxs\n7ty5M2fO7NSpE4spAAAAAAAAgC2sNYSjRo06duwYTdNDhw5dv369r68vn89nKzgAAAAAAACw\njrWGMCoqSigU+vn5WVlZXbx48eLFiy+chtVlAAAAAAAAmgk2Hxmtra09cOBA43PQEAIAAAAA\nADQTrDWEKSkpbIUCAAAAAACAJsBaQ9i9e3e2QgEAAAAAAEATUOM+hAAAAAAAANCcsdMQ7tq1\nq7CwUJWZcrl8165dJSUlrOQFAAAAAACAN8ZOQzh9+vSsrCxVZtbV1U2fPj0nJ4eVvAAAAAAA\nAPDGWHuHMDMzUygUvnKaVCplKyMAAAAAAAD8F6w1hAsWLGArFAAAAAAAADQBdhrCn3766bXm\n29nZsZIXAAAAAAAA3hg7DWFQUBArcQAAAAAAAKDJYNsJAAAAAACAVgoNIQAAAK6UUBEAACAA\nSURBVAAAQCuFhhAAAAAAAKCVQkMIAAAAAADQSqEhBAAAAABoEnJpVehQWlKp6ToA/oGGEAAA\nAABAjWhptfKg7u5JWvyswTiABqmxIZTL5eoLDgAAAADQ/CnK8sq/NKu7e7LBuOz+hfJ1FvKi\nDI1UBaDEckNYWlq6evXqbt266erq8ng8XV3dbt26BQcHl5WVsZsIAAAAAKD54xjZiIavr9rl\nU5cVqxyU5f1Z9auXcMBibltnDdYGQNjamJ5x7dq1YcOGFRUVEUL09PSsrKwqKirS0tLS0tJC\nQkKOHz/u6urKYjoAAAAAALbQ4meyh6nqiMxp66LVfUbV7tHC9z4jhEhSfq09+63AdTzXpm/d\n3QR1ZORZulM6JuqIDC0Paw2hWCweO3ZsSUnJp59+On/+fAcHB2b87t27W7du/fHHH8eNG3f9\n+nUtLS22MgIAAAAAsEVeeL0qdIhaU9QmrieE1CYEE0KkabulabvVlEh3eiz/HW81BYcWhrWG\n8ODBgzk5OVu2bJk/f379cScnp82bN9vZ2S1cuDA8PHzKlClsZQQAAAAAYAulZcB382c3piw7\nga6tt6aooo4QmhCKcPj/DApE/A7D2c1LabdhNyC0YKw1hFFRUba2tnPnzn3h1aCgoO+//z4y\nMhINIQAAAAA0Q7SkvO76waZJRRTSf85qpazn1er2AbsBoQVjrSG8fv36+++/z+G8eJUaDocz\nePDgc+fOsZUOAAAAAIBFHCM7kdfXagquKMuTpP7Kt+lTl3OG7zi47t4ZQdcpXNN31JSOa6au\nyNDysNYQFhUV2djYNDKhffv2xcXFbKUDAAAAAGARx9Ba+N7n6ogsy/uzKnG9aOByrX4fPQtu\noz3+17qbR2riluoGHuG/M0IdGQFUx1pDWF1dLRKJGpmgo6NTWVnZyAQAAAAAgBZGUfGoKmy4\n0HOJ8P1VtPivndi0+n9CCKneO17//25wjB00WiC0dqw1hDRNszIHAAAAAKDF4OiY6k6N4DkM\najCu1f8TrlVXysBKI1UBKLG5D2F4eHhWVtbLrt64cYPFXAAAAAAAbwEu/59ukKdF8bUp/l9P\n1fHsBmisKoC/sdkQXr58+fLlyywGBAAAAABoMSi+tuGaMsIVaLoQgH+w1hCmpKSwFQoAAAAA\noGVCNwjNDGsNYffu3dkKBQAAAAAAAE3gxdsGAgAAAAAAQIvH5juEz5NIJLdu3aqoqHBzczM0\nNFRrLgAAAAAAAHgtbDaEcXFxu3btEggEs2fPHjBgwIkTJ2bMmFFQUEAIEQgEq1atWrlyZSMf\nf/jw4ZkzZ65cufL48WMej2dtbe3n59erV6/6cxQKRURERHx8fElJiYmJydChQ8eMGcPhcFSf\nAAAAAAAAAAxucHAwK4HOnj07dOjQjIyM69ev79+/v0+fPqNHj+ZwOEOGDLG3ty8oKIiPj3dx\ncencufPLIoSGhsbHx9va2vbs2bNdu3YZGRknTpwghLi6uirnhISEHDp0yM3Nbfjw4QqFIjo6\nuqKiov7ri6+c0MCjR4/u3LkzcOBAVn4IAAAAAAAAb4t9+/axdodw8+bNOjo6v//+u62t7Zw5\ncwIDA21sbC5cuMA8KZqbm9ulS5etW7eOGzfuZRE8PT1nzpxpYGDAnAYEBHzyySfh4eGjRo3S\n1tYmhOTn58fGxnp6ei5atIgQMmLECD6fHxcX5+XlZWNjo8oEAAAAAAAAUGLtWcorV674+/uP\nHDnSxcVlzZo1hYWFc+bMUb43aGdnFxAQkJ6e3kiEbt26KbtBQoiurm7v3r1lMllhYSEzkpSU\nRNO0j4+Pco6vry9N0+fOnVNxAgAAAAAAACix1hAWFhY6ODgwx/b29oSQ9u3b159gY2NTXl7+\nWjErKioIIUZGRsxpdnY2l8tVZiGE2NnZCQSCnJwcFScAAAAAAACAEmuPjMpkMj6fzxwLBAJC\nCI/3r+A8Ho+madUDFhQUXLhwoWvXrsqGsLS01MDAgMvlKudQFGVkZPT06VMVJzBCQkJKSkqY\nY6w3AwAAAADQmolPBgsHLKK09DRdiGaod9uJN1ZTU/PVV1/x+fy5c+cqByUSibLnVBIIBBKJ\nRMUJjFOnTmVnZzPHHTt2dHR0ZLl6AAAAAAB4K9B0bcIagetYrrnrqye3RGw2hOHh4VlZWYSQ\nmpoaQshPP/0UERGhvHrjxg0V49TW1q5Zs6aoqCg4ONjc3Fw5rqWlJRaLG0yWSqVCoVDFCYwN\nGzYoW8R79+5dvnxZxcIAAAAAAOBtR9eUVoYO1fHfzW3r/K/x6pKqveO1R37PteqmqdqaHpsN\n4eXLl+s3V8ymEa9LIpGsXbs2Ozt71apVzs7/+ifUpk2bvLw8uVyufCiUpumysjIXFxcVJzCY\nVxwZVVVVb1AkAAAAAAC8pSiREc+6Z9WO93U/PMU1+2tXPLq6pHLH+xw9c86/u8QWj7WGMCUl\n5b8HkUql69aty8zMXLZsmbu7e4OrDg4Oqamp9+7dc3JyYkZyc3OlUqlyFZlXTgAAAAAAgNaO\norT9ttRwuJU7BunNSiCE0OKyyt8nc/TMdaZGUjzhKwO0JKw1hI1s/q6iurq6DRs23Lhx47PP\nPuvZs+fzEzw8PA4dOhQdHf3pp58yI9HR0RRFeXh4qDgBAABaAHnJ3WfhC43nH9N0IQAAoF6K\nsjzxsSXqi88R6lf+3IMQUrVzBCXQoUycag5NVVMurX4f82z7qyn4f9GMFpXZvn17Wlpahw4d\n8vPzDx48qBwfMGCAhYUFIaR9+/be3t6xsbF1dXUuLi6ZmZlJSUnDhw+3tbVlZr5yAgAAqNul\nPzJif/yT9bAURfM5EqlcSAixEGWO6nR21XshzCUtrlgiF7GekRCy5PBkfRNtdUQGAABVKMru\nS6+HN0EiWlJFS6qkN4+qLwW3XY+W3xDGxcVxOJxhw4YRQoqLi2fMmFH/qpub24YNGxr5eFFR\nESHkzp07d+7cqT9ub2/PNISEkNmzZxsbG584cSI5OdnY2DgwMHDMmDH1J79yAgAAvI1s9a4N\nc/jtUNbiUrGFVCwjNKmTyPhaPBfTc++1D9+WvlmuaEa/4gSAt1F5cfWNxBayebWzp52RRUvY\nRIHS0tV0CayhdIw1XcKLUa+1N2Ajrl271qVLl23bts2ZM4cQcv/+fTs7uwZzUlNTu3VrXiv2\npKSkxMTErFmzRtOFAABAYwpuFWcEj3V3yDD++FzMN1HdyfraKXfMa2PFkUEnHy3w3/09h4t9\nZQHgP7l7+eGmgAOaroIdC8LGuLxn/+p5zR5dW153500WqlQpuKSiNuFLSmgoL7zOs+0ne3xD\nNPgLjmF7NaXjte+lvuBvzNvbm7Xfp4aFhZmamk6fPr3+4M6dO4cPH04Ikclkbm5uu3fvbm4N\nIQAAvBWsOpnVLvn96neT3P83QIcEEkJ4d/eJ01aeeDh/1NYN6AYB4L8zszWavH6oOiLLpHKe\ngEsIuXM5PyXy1rtDHJluTTnOOquOpuoI2/QooYHAbbw6IjNrinJNO+p8EPFslY6231bJ5ZDa\nM9/ofXiqtW1IyFpDeObMmSFDhggEgvqDhoaGyo0EfXx8zp07x1Y6AABonqTXDtae3aiOyKaE\n6LtLJYV1XQQ/U4QmaUsr6ky9e5yT7/GoUEc+QvRmHKN0zdQTGwCaHQMznf4T3VgPW1pQsWbY\nzrm/+HXqb6NQKFIib9m4mvef6JadWrBlxpHPjkyycDJhPSk0jq6rYXaY+GdNUYrS9v0fUcgr\nQwbrB13mGNlousamw1pDmJubO3bs2EYm2Nra1t+nHgAAWiRZ7jlF4XVWQ9K0XMYc8Qjhaf1z\nwUBQTBcWy5kTiqI4LL9GqKgu4aIhBID/po2V/rgV72378I8Pt/gqB3OuFGyZcWTIhz3QDWoI\nJXCboDVgEcUXEeULdBSl7beFa9qBcNRy27bZYu3PztraWj6frzy1sbGprKwUif5Z9k1bW1ss\nFrOVDgAAmieu6Tu0vE4DiWma9byU0JDdgADQOnkEvEsI2bEgqu94F0JI6aOKn6cfGfJhD++g\nPpourZWi+CLh+yv/OedwCcUlhBCK0ur/iaaq0hTWGsI2bdoUFBQoTymK0tX916JADx8+NDZu\npkvrAAAAW7T6faTV7yM1Ba++sEMcGZR0b1hP68Sbj7p2ccgw/vgc19xFTekAANjC9IQHg08R\nQi4dzfRa0AvdYHNBUfofpXDNOmm6Do1hrSHs0qVLfHy8QqHgcF7wZr9CoYiPj+/SpQtb6QAA\noLVhusETD+cLLUwISRT5/u9q9EL3/w1AT9gsyCTSm0cF7gGargOgefl23L6ie2XKU+bZRIVc\ncerXK6d+vcIMGrbVXRU3TQPFwd+4lq26SWGtIfT3958xY8bmzZsXLVr0/NXNmzffvXt3+fLl\nbKUDAIBWpTbzpDgy6OTDBaO2fpWwZhMhxOodM9pp3/XNE93+957Z2keEK3hlEFAfeUlW9cFA\nNIQADczYPLKmvJY5Lsgq2b/qhIIQQsjIj/s6dLdixkX6Wi/5NEBTYK0hnDJlypYtWxYvXpyR\nkTF//nx3d3cejyeTya5evbp169adO3d279598uTJbKUDAIDm6cHNoqwLeayHLcutKL75uf0w\nrwsHr5cVVBIrcjnylrGV/lPH1YeS4xy3p6lj54kBU9yFOugzX0pelCG58JO274+Ep0VoWrkw\ng6LysThmsfbY7ZSg5ewoDfBmTKwNiLUBIeRe2qNDXya+09/2ZuK9zh62R785O2frKJeBLWGr\nQLWqKq35M/ymurNcOXbbdaCDQMTyymQNuL7vYOHYHF+gY+1r8/n8yMhIHx+fnTt37ty5k6Io\nbW3tmpoaZuP7rl27RkZG1l91BgAAWqSctII/vlXTJkMGmbf/JIRYGdbWmgnP7bv697hVxvfn\n1ZGvp19nNISN4Oi2leWeq9ozWveDP5SDisrHVdsHcUwcKZ6okc8CtCr30h79NO3w4Nk99IxF\nNxPv2Xe17NTfZvv8SPSEr1ReXK22P1P+5cHNInWnMLLQa+ENISHEysoqOTl5z5494eHhN2/e\nLC8vt7S0dHFxmTBhQmBgILpBAIDWwH2Ik4WDev/AqymvPX/q/YV71L5xsK4RWprGUDomenPO\nVIa8X7V7lHDol4QQRVVRVchgThtbnSnhrW3ddoCXKS+q+mnaYWZN0XP7//pN1qDp3QghO4Ki\nVh2bZmqDBY1fyqS94cI97G9MX1sl2fNZ/IiP+1i9Y3rvyqPoHy+4D3H0DOxSXlR15JuzXvN7\nq6Nzs+zQTLcYYfnGKJ/Pnzlz5syZM194NT09HevKAAC0bEYWekYWeurO0tW7o7pTtCSyB5ek\nqTvVFJxn2UWaFVu925cQuuK7TpSWLkffShy1UE3phINXc/Qt1RQcWrk6iay8uJr1sHK5YtK6\nIXZdLJ/kl1eViQkhNeW1T/LL3QY76pvqymWKJ/nlrCfVN9EWiFrCzRgtbf47/dSyR3zx/WfR\nP1xYEDrGqpMZIcTIUt+4ncGez447e9i9F9iF4lDqSNo8qfdJWUZ5efn+/ftDQ0PT0tJo5c6P\nAAAA0CTkj9IlyTvUmoL5050Wl9HiMklKmPoSCXrNQUMIanL/WuGmgANNkCghLDUhLFWtKRaE\njXF5Dw+jNmbonJ4cLufnmUeHze1FCBFXSDZPOujQ3Srwm+Gtqhsk6m4Iz58/HxoaGh4eXlNT\no6OjM348+zd8AQAA4BU4TfH736ZBvWh3KwBWGJjp9J/opu4sCgXNUX+/0cZSX90pWoDBs7oT\nQiK/P08IuRp/x2WQw/RNIzjc1tUNEjU1hCUlJXv27AkNDc3KyiKEDBs2bM6cOcOHDxeJ8DIG\nAABAU+Oau2r1+lBNwek6cd2tGIonUFQVUyIjiq/N7zBMfS8QUjpmaooMYGZrNHn9UE1XAWoX\n9nHM/euPladMByiVyO9fe7z6/VBmUFtfuDRiSiu5VchmQ6hQKBISEkJDQyMjI6VSadeuXVes\nWLF+/fq5c+f6+fmxmAgAAABUx2vfm9e+tzoiK6qKqnYM4rXvJRyypnJLH4NFtypD3leUP9SZ\nGkHxhOrICADwHw35sMeTB8+Y4/KS6qjvzhNCCE338uusXPdFx0jUSrpBQghrz118+eWX9vb2\nw4YNO3PmzPz5869du3blypVZs2axFR8AAACaFbq6pOqX9zhGdrofRFBcASGE0jXTnZ2gePag\n+rexRCHTdIEAAC/Q3qVtV++OXb07tutsdmL75XadzQgh9l0tT4am6hiJmEsd+7TXdJlNh7WG\ncPXq1Xw+/+jRowUFBZs3b3ZzU/sT2AAAAKBBiqoSnuMg3cAjhKelHOTottWdc5rSNqZltRqs\nDQCgccX3yzZPOujYo937M7oTQqyd2/p80m/r7D9uX3yg6dKaGmsNoYmJSXZ29vLlyzdt2vTo\n0SO2wgIAAEDzxG3bWdtvy1/dIEUR6q/Hqzi6bXX891ACXU0WBwDwcrVV0h8mH3qnn82MzSOU\nj4YOntV9xEd9tn34R2H2U82W18RYe4ewoKDgjz/+CAkJWbZs2YoVK4YNGzZ9+nTcJwQAAGgN\nuKbv6ATs13QVANDSFOaUbpl5hP24NJFJZdkpD78YFCoV1xFCLh25eSMxhxCipc3/ecYRdbxA\nOH7lILfBDqyH/e9YawgFAoG/v7+/v/+9e/fCwsJ27do1fvx4HR0dQghuGAIAALRwPC2B2wRN\nFwEALQ2tUNRUSNQU/J/IFKEJpTyV1UnVkU5WJ1dH2P+OUtNO8XK5PDY2NiQkJC4uTi6X29nZ\njRs3bvz48T169FBHujeWkpISExOzZs0aTRfSUPIfmdmpDzVdBQuEuoKxy97TdBUAAAAAAC9W\n+bRGz1hb01Vohre3t7p2quVyub6+vr6+vgUFBTt37gwLC9u4cePGjRvV1H+2PHdT8i8cvKHp\nKlig20YbDSEAAAAANFutthtkqKshVLKyslq5cuWKFSsSEhJCQkLUna7F8F7QZ8Akd7Wm2P9F\nQt61x4sOBgiEavzXgMNlbeEiAAAAAABgl9obQgZFUUOGDBkyZEjTpGsB2ljpt7HSV2sKSbWU\nEGLd2UxLm6/WRAAAAAAA0Dzh7k3rUpj9tOD2E+ZYIf/n8V1xpSTz3H3N1AQAAAAAABqChrB1\nyU4t+G7C/nvpjwghbXXyutslE0Jqymt/DAw/vSdN09UBAAAAAECTaqJHRqGZ6D/Rraa89n8f\nhC8IHWOpc9faOF1cKdk+L5In4M78caSmqwMAAAAAgCaFO4Sti+T8D/0Mfx4R1HPLrKPyOjkh\n5Jc5EVweZ94nNbKDfpquDgAAAAAAmhQawtZCLlPcufTggbinOOuMa+2GniOdxJUSQohULBs9\n8oEkev4Tfb+sC3kVT2o0XSkAAAAAADQRPDLaWjy++zTkoxiFXKGvNTuwx/9sKx7mEmtCiA33\npP6NQ0euT8uKlxISPXxeryGze2i6WAAAeMs8K6oK/Sh68aEATRcCAACvBw1hM1V7ap00I4LF\ngPqErAr861ghNdcvznA0ySCEtjO5p9Bt7z8inZB0QggR76r4H4tpCUfbSHfWSTYjAgBA80Ar\n6JqKWh1DESGk6mkNs2IZo6q0RrdNq97oGQDgbYGGsJmSF2XIS7LYjEgriExKCE1ooqBpDiFc\nLk0IoQlFVT2QV+cTihBCCIdPuGz+W0ELDViMBgAAbyA3/fGfh2+wHraipDrjbK7ze/b6JtrV\nZWJaQe9bcYIQUpRbmpNS0NOvM0/AZT3pyI/7GrTVZT0sAECrhYawmaK0dIm0Wk3BOVS9RISm\nKMI0ioQQIpcQuYTFXDQfvyEGANCw4vtl5w9cV1Pw6wnZyuP6WS4dzVBHukHTuqIhBABgERrC\nZorvMoZj7Mh62Nt/Pii+X9a7n1SWFVlU2U5AlRuZUFx9q9yavo9znr33QRfWM1JoCAEANM1l\noN2yyMBXz3sjSb9fvxyRYfuuxZ3k/B6+ndKO3Rn5Sd/OHrZqSmdibaimyAAArRMawmaK39GL\n39GL9bBuA2jplZ01EfN1Jx86uyHcWnjZcvlJyW9DHG2eui7ZxxEIWM8IAAAap2MoYt70U4fJ\n64cYmOkc33qJEJJ27Pa07727j3xHTbkAAIB1aAhbl7qMozUR83UD9vNdRvMFRwghlEE7vdmn\nKncMFEfO0Rm/U9MFAgDAW0Ahpxd3+5nZvqg+uUwRtjAmbGEMc+rUy/rT/f5NXh0AALwGNITN\nVPrxO/evF7Ie1qCukCNaX3bMhBw7R9fUEV0SvfkCl88R0t8YZqUWfnuO9Yxa2nzvoD6shwUA\nAA3icKnVJ2bUSWTMafrxOxHfnlMoaL6A98FGL9t3zZlxkZ6W5moEAACVoCFspjLO5V44yP6K\ncH+7TAjp7VhH63BO/Zr696ApM84u3TbaaAgBADRLVieX1tSxG5OvxeVrcQkhKdG3or4779iz\n3Z1L+a7v2+9dGjfzJ1+HrpbMtJryWnbzCnW1OFzq1fMAAEA1aAibqcEzuncfod53MCi5N0dS\ntnBWO7Vm4fLZX3McAABey5WY27sWH1NrijuX8gkhaXF3CCFbZx1VX6Ivjk+zcDJRX3wAgNYG\nDWEzZe5obO5orOkqAACgJTAw03mnnw3rYcWVkgc3iyw7mOgZa0uqpbnXHr/T14YQ8uRBeenj\nCsfuVhwuh/WkWtpY/wwAgE1oCAGaEXGFpPh+mY2buaYLAYAW5Z1+NupoCOtqZcV5z6w6mhBC\nHmYWbxj128I945lLedcL27uaU3i0U9PElRK8yQkAjWP/V3cA8Mauncrev+qkpqsAAFAJX8hj\nukFCiFBPS9/kn41nbdzQDWpexYOH+Z/b1FXXaLoQAGjW0BACaNid5Pyk368xx7SCJvRf4yUP\nnkVtOq+xsgAAXoeJtcHXF+dpugogkmrJrbi//uyoqy4z1SuS1f7VEGbEnJXVyTVXGgA0U3hk\nFEDD+ALekQ1nxBWSoXN6KgdL8p5tnnSws6et5uqCvzzJL0+NvjV8fm9NFwIALUpVmfhhZjHr\nYcX309uljz9xZkV73+nih4W2hOSkFPD0qh+E/9CF/3OG7JSWKfsPD9u4mePBVIC3FxpCAFVd\n+iPjRuI9dUS2edcictP55IhMvpD35GH5lllH7yTn6xiKaiqkIR9Fs56Ow6Fm/jiS9bAtVUFW\nyYVDN9AQAgC77qU92vbhH+qI3M12zKiu6w8svf+43GqJFwldGN3RImtcj4NHUidcO3pZHVtM\nLQmfZP/3RiMA8NZBQwigqoKskrRjt9UX/9GdJ8zBzdP3CCHSmrqyRxXqSMTltZxnxR9kFD24\nUcR+2JtFd1MeDpj0Ll+L9/BWcW219PyB64SQR3eeXI2/4/1RX9YzEkL6jndRx5KMANA8mdkY\n1n8whFU9rxdbTOy9JfG+PyGkt2vO+3YHr1OftvUaMVQ9+Qzb6qonMAA0BYqm6VfParlSUlJi\nYmLWrFmj6ULgLVD9TCyulLIYUFJTd+HgdeUbHeUl1dcTcghNG7cz6ORhq1yPwalHO7suLP/m\n1cTagN2AmnLs54vRmy9ougp2/HBjoZY2X9NVAEATkeen1CbvYDdmdWmVTCL5K/6THG3xDQ5F\nK2hKrPMup40dM84XCbUNddjNKxywiGum3s2TAUBNvL29cYcQQFU6hiIdQxGLASue1FSV1sjl\nf/1SRiFTEIoQmnAF3JryWuU0hZxuMf0b61wG2uubsPw3G0ZdrSxx1xWKorg8TuG90p5+na7E\n3uk6vEOH3tbqSEcI4Wtx1RQZAJqhultR0pRQdmPyCfnXb5UoQgjhULROzVVSc1U5zOavNgkh\nhPCsu6MhBHh7oSEEUNWRr84khKaqNUX7Nnmu1tdir/kW3ytVDqYdu71r8TEWs3B5nJ9vf8pi\nQA1q79y2vXNbNQXvPdb5p2mHi+6VEkLS4+6MW/7eex90UVMuAGhtuI6D+YU3WA4qkxKFjDl8\nlntPW3aPIjRNqBqBo6GN7d+J+YTL8sMIPOte7AYEgKaEhhBAVUbmeu1d2O89KKKQ18kK71UI\ntPm27SvtTXPb2rcpvl+mb6rTpq1ArmD/GcKW9A4h66qfibfO/kMm/es5XoWcrq2SEkJEeloX\nj9y8eOQmM+422HHER300ViUAvP3uFdnt/XWEmoLbiP4c5XI6/vbo4Z2OHr81dkjHiP2H38uv\n7aGmdLO7WbTHmjIAby00hACqGjS926Dp3VgP+zTm29L4H690/s7/24m3dmzg3TobfHLGneT8\nG1/N6+d8zXxdPusZoREiPa0Bk9zrJH/9iv3R3ScFt0sIITw+t/cYZ77WX//PtHY201iJANAi\nyOrkNRUSdUTu2CZllMv+qJuTCp7ZD+909MajXjI5f7TrzvA0RU6ZuzoyKmQKdYQFgKaBhhBA\nw/JoL129P7zbfElXv6ccbF97wMT59LnKFX6aK6x14nA5vUZ3Zo4zzuUeWpvY1tao8F6ptoFW\nakzWRzvHCXUFmq0QAFoG5wF236cFsR728aXzvCP/Jxu4debG2U9v3SC7gr+InyYyXpx/8N3x\nZCVvzmIjR7zsBwD/goYQQMO6+rgSrzNVe8dVbR/EFfkSQmrPbqxNWKM/M9bP/j0NF9fsXTh4\n49z+q6+e9/rEVZIneeWG5rpVT56ZGzyWSdsU55Us7bPN1NaIw6Fe/fnXt/hgAF+I/ycDwH9i\n0bNPne0NvnnDrs/a//O6AT58844aqQoAmjP85QNAVbLcJHnhTTUF5zsNlZTlmRX+otBViE+s\nFPaeLy+6JS+6pY5cFEUJes9VR+SmV15S9eAm+/sQKpU9ruxkmenlFr3p+OfMyMPMYjXlUiha\n9SZAAMAODlfZDeqYmjylTQ10/1qKmW/RWXNlAUDzhYYQQFXimE9lD9W7yighhFnvpfb8D2rN\n0mIaQu+gPt5B7C/uUpx8tjzzT6fpywghd/dv4yfHbMtZTAgRFxbk7tvQmbKFGwAAIABJREFU\nedEW1jMCALBOaGJh9a26focFAC1GS2sIFQpFREREfHx8SUmJiYnJ0KFDx4wZw+FgTUVgAa/T\nCEKx/O8SXVfzz3H1E0VVESEUxeVzjOwI9+//PLkCisPqf6oU9rt7hTZW2oKY9bVnOML3Pqc4\nFLOXF11dUvf78PZG7TRdHQAAAABrWlpDGBoaGhMT07dvX19f38zMzD179jx58mTu3BZyMwQ0\nSzQ4mAwOVlNw5r1B0YAl0rsnOfqWiqc5urNOcvTM1ZQOGsdr10N35vGqMC+ikFl37lydo0NX\nl1TueJ+jZ6ETeFTT1QEAAACwpkXdOsvPz4+NjfX09Fy6dOmIESOWLFkyaNCguLi4vLw8TZcG\n0BimG9SdFs0x60QoSjfwCMfYoWr7QEVloaZLa714tv11Z8bVnv5annmEy6Urd7zP0TPXmRpJ\n8UWaLg0AAACANS3qDmFSUhJN0z4+PsoRX1/fxMTEc+fOBQYGarAwgEZI0/fVJnypOyOOZ+ch\nTd1FCCE8LZ0p4dW7R1XvHqUXlKzh+pq3mj/m110/yG5MWlb7z4lCLrm6jxBCUVxFaXb5lybM\nMMXhEXaf4yVE7/McjtCQ3ZgAAAAAjWtRDWF2djaXy3VwcFCO2NnZCQSCnJwcDVYF0DienYfe\ngj+55q71Bym+SGdalPz+BU1V9bZQPLmtqCltgkQ0LSdS8T+n6sghk6ojKgAAAEAjWlRDWFpa\namBgwOX+s2AGRVFGRkZPnz6tPy0qKqqsrIw5rqmpIQAaxTFs/8+Jli4l0GUOKZ6Q5/i+Zmp6\ne+hMjyV14lfPeyN0zZOq3X4U4cirS4i0Stj/E60Bi9SUixBC4fYgAAAANLkW1RBKJBI+n99g\nUCAQSCSS+iP79+/Pzs5mjjt27Ojo6NhE9QG8isB1HL/TSE1X8TaheELCE6ojMl1dUrVnLEff\nStBzljhumU7g4aowL8IXCQetUEc6AAAAAI1oUQ2hlpaWWNzwXoFUKhUK//X3xU8++aSqqoo5\nLi4uvn37dhPVB6ACSj3tDbwWurqkcscgjp6FztRI2Z14wqwxMz26audIwhUIPZdoukAAAAAA\ndrSohrBNmzZ5eXlyuVz51ChN02VlZS4uLvWn9e7dW3mckpKChhAAGpDdv8A17ajt/1v9NUV5\n9u/pTo8VH1+OhhAAAABajBa17YSDg4NcLr93755yJDc3VyqV1l9mBgDglfjOfjpTDj+/wwTP\n3lNvPlb6AQAAgJajRTWEHh4eFEVFR0crR6KjoymK8vDw0GBVAPBW41p1E/b/RNNVAAAAAKhF\ni3pktH379t7e3rGxsXV1dS4uLpmZmUlJScOHD7e1tdV0aQDwtuIYWmv1+0jTVQAAAACoRYtq\nCAkhs2fPNjY2PnHiRHJysrGxcWBg4JgxYzRdFAAAAAAAQHPU0hpCDoczbty4cePGaboQAAAA\nAACA5q5FvUMIAAAAAAAAqmtpdwjfQF1dXUVFhaarAAAAAAAAaFI0TVM0TWu6DE3KzMz86quv\nNF0FAAAAAACABrT2hhAAAAAAAKDVwjuEAAAAAAAArRQaQgAAAAAAgFYKDSEAAAAAAEArhYYQ\nAAAAAACglUJDCAAAAAAA0EqhIQQAAAAAAGil0BACAAAAAAC0UmgIAQBeTCaTVVdXa7oKAAAA\nADVCQwgA8AJyufzrr79euXJlVVWVpmsBAAAAUBc0hAAAL0BRlEgkysnJWbVqFXpCAAAAaKnQ\nELY6WVlZNE0zxw8fPly9enVFRYVmS4L/b+/O45q60sfxnyxAiBGIIAaRRRAEC7hQIpFFVFRU\ntNNW68txqrjQjh9lXFrFgmCtCozjtGBdqFi16iha2+ooIssgLmDZEgIICCi2WdgCYRGJIeF+\n/7i/yS8T3NpC7oU87780ufb1lIdzkufec54DSSEhKpW6devWmTNnQk1IKjBYSAiSAsCbgJEC\nSIv2+eefEx0D0B8+nx8bGyuVSn19fSUSSXR0dH19fU9Pj4+PD9GhGS5ICmlRKBRfX9+GhgaB\nQFBaWurv729sbEx0UAYNBgsJQVLIrLu7OzU19cSJE1euXKmurra1tbWwsCA6KAMFI4XMZDJZ\ncnLyd999V1hYyGKxbG1tiY5I3+hEBwD0ysXFxcHBITc3V6FQPHz4UC6Xe3l5rV27lui4DBok\nhczw54QIodu3b8fExOzdu5fFYhEdlOGCwUJCkBTSkkqlsbGxzc3NCCFTU9O7d+/ev3//b3/7\nW1BQENGhGSIYKaTV3t6+ffv21tZWhJBUKi0tLV2wYMHHH39MpRrQOkqK5uE1MBBdXV27du2q\nr69HCHl5ecXExJiYmBAdlKGDpJCTXC4/c+aMUCikUCgtLS0IIWdnZ6gJiQWDhYQgKSSkUCg2\nb97c0NDg7Oy8efNmR0fHI0eOZGRkUCiUw4cP29nZER2gIYKRQk6HDh3Kzs52dnZeuXJld3f3\nd999J5PJgoKCtm7dSqFQiI5OT+AJocHp7u5ub2/H/8xms2EJHBlAUkhIJpPhtwytra1nzpyJ\nYdidO3fw/YRQExIIBgsJQVJI6OrVqw0NDePHj4+Pj2cwGDdv3szMzEQIrVu3DqpBosBIIaeS\nkhJra+v9+/czmUyE0JQpU3bt2pWbm4sQMpyaEPYQGhxjY+OKigorKysWi1VaWtrY2Ojr62sg\nv+6kBUkhoaSkpJqaGjc3twMHDnh7e0+ePDkkJEQikQiFQthPSCAYLCQESSGhkydPtrW1ffHF\nF1ZWVhkZGceOHcMwbP369UuWLEEIZWZm2tra0unwVECvYKSQ048//hgaGjp58mT8rwwGw8/P\nj8/nC4VCw8kRFISGRS6XKxSK4ODgoKCgwMDA0tJSgUCg8+teUFBgZmYGyxj0BpJCQmq1Oikp\nqa+vb8+ePZaWlviLNBqNx+MVFxc/evQIakJCwGAhIUgKOV26dInFYq1atSozM/Po0aPa1WBX\nV1dsbGxNTQ1sJtQnGCmkIpfLT5w4ce7cueLi4s7OTg8Pj4kTJ2reNcCaEApCQ9HW1paUlHTk\nyJF79+7NmDHD3NzcxMTEz89PMyVxuVwqlXrr1q2DBw8WFxfPmTMH7h0ONkgKaalUqtTUVDqd\n/tFHH2m/TqVSGQzG/fv35XI51IT6BIOFhCApZFZYWNjQ0GBsbHz8+HHtahAhdPz48draWi6X\nO23aNGKDNBAwUshGLpdv27atoqKio6NDKpX29PR0dHTMnTtXu4uMdk04fvz4Yb/QGgpCg9DQ\n0BAZGVlTU2NmZhYaGurs7Iyvk9aekgQCQUVFRWpqKoZhCxcunDJlCtFRD3OQFDKj0Wi5ubmd\nnZ08Hk+nS3tHR8etW7d8fHwqKio4HM6ECROICtJwwGAhIUgKyanV6vz8fIFAgBDSrgYzMjJS\nU1MZDMYnn3yCpwwMKhgpJJScnFxZWenk5LRp06apU6fW1NRIpdLW1lYul6v9JBCvCTkczqxZ\nswiMVj+gy+jwp1Qqt2zZIhaL3dzcPvvsMzabrXNBd3d3fHx8WVkZQohKpa5evfrdd98lIlID\nAkkhv59++unUqVMeHh579+6l0Wia17/55pu0tLTjx4/X19fzeDwCIzQQMFhICJJCfn19fTt3\n7sTPHty/f/+oUaMUCsX3339/+fJlDMO2b98eEBBAdIzDH4wUspHJZJaWlmFhYUZGRocOHcKL\n87a2tujoaIlEEhwcHBERMexXh74QFITDX3p6+rFjxzgcTmJiouZ2oFAoFAqFVlZW8+fPp9Fo\nGIbl5eWJRCIej+fo6EhovAYBkkJC+GSo+SRQq9U7duyora319vbevHkz/pwwPT09OTnZ3Nz8\n1KlT2lUiGDwwWEgIkkJCfX19GIZpz0sdHR27d+9+/PgxlUq1trZua2tTKpUUCiUsLAyqDv2A\nkUIqEokkKirK29u7tLR04cKFS5cu1bwll8ujoqIMuSaENcrD38OHDxFCixYtwicjsVh89OjR\niooKGo2mVqvz8vL27dtHoVD8/f2JjtSAQFJIpaWlJTk5mc/nm5iYzJw588MPP2SxWDQaLTY2\ndvfu3SUlJevXr3d2dpbL5Y2NjQihVatWQTWoNzBYSAiSQioymezbb78tKirq7e0dN25cSEjI\nokWLqFSqubl5QkLCpUuXsrKyGhsbKRSKl5fXypUr3d3diQ7ZUMBIIRUmk8lkMrOzsxFCOvv/\n2Wx2XFxcVFQU/q4B1oTU118Chrhx48YhhIRCoUgkOn/+/JYtWzAMS0xMPH/+PIfDKS8vr62t\nJTpGgwNJIQ+5XL5jx46ioiK1Wv3s2bP09PRt27bhhR/+deqdd96hUChVVVWNjY1MJnPDhg3B\nwcFER21AYLCQECSFPORy+fbt2/Py8pRKJYZhIpEoJSUlKiqqq6sLIcRgMFatWnXmzJlz585d\nvnx53759UA3qE4wUUsGrPltbW4TQrVu31Gr1C9/Nzs4uKioiKEbCwBPC4S80NLSoqKi4uLi4\nuHjkyJFr165dsGABhULRrC3p6+sjOkaDA0khj3/961+tra0uLi4bNmxgsViXLl3Kzs6OioqK\ni4vjcDgMBmPdunUrV66sr6/HMMzJyYnBYBAdsmGBwUJCkBTyOHXqVGtrq5ub24YNGxwdHWtr\na0+cOFFZWblnz564uDj8MQiFQjEzMyM6UkMEI4VsNE8CHz16dOTIEZ0ngfi7+fn5XC6XwCAJ\nAXsIh6Hu7u4ffvihqKjo+fPnLi4uy5Yts7OzKykpUavVkydP1qxiv3btWkpKCpvNPnnyJKx/\nG2yQFBLCN5eHh4f39fUdOnSIxWLhr1+4cOHChQtWVlZ4TUhskIam/0hxdHRUq9UwWAgESSEn\nfAZbtWoVg8E4dOiQqakp/npvb++ePXvKysqWLl26atUqYoM0KDBShgrYMdgfHDsx3Eil0sjI\nyKKioo6ODrVa/ejRo6ysLBsbGz8/Pzs7OyMjI4QQhmE//PDD6dOnEUIRERGwiXmwQVJISCKR\nREZGikSipqam4OBgb29vzVuenp4IocLCwvv370+fPl1TKILB9sKRMmbMGCcnJ1tbWxgshICk\nkJPODKZ9oiCNRvPy8rp+/frjx4/feecdqDf0A0YKOXV3d6empp44ceLKlSt4010LCwtTU1M/\nP7+ioiKhUCiTyXROmzBMUBAOKwqFYufOnU1NTc7Oznv27AkPD29ra6utrf3555/9/f3Nzc0R\nQgKB4PDhw1lZWXirsZCQEKKjHuYgKeSkVqvv3LkjFAq7u7u5XK6bm5v2u1AT6t+bjBQEg0W/\nICmkpZnBenp6PDw88ClLg8lk/vzzzy0tLVwu19LSkqggDQeMFHJ6WZXu6OgINaEOaCozrFy9\nerWhoWH8+PHx8fGOjo43b97MzMxECK1bt87Ozg4h1N7efuzYsfLycg6Hs2fPnvfee4/okIc/\nSAo5aW8uz83N1dlcjhBasWLFihUrZDJZQUEBEQEanNeOFASDRe8gKaSlPYPduXNHpVJpv4th\nWGdnJ4ItavoCI4WEFArFnj17mpubnZ2dDx06dPHixfnz56tUqq+++kokEiGD7yKjCwPDyNat\nWxcvXox3v7h58+aSJUsWL1589epV/N2MjIyenp6Wlpa8vDz8wCKgB5AUMmtra/vrX/+6ePHi\npKSkF/78y8vL9R+VYXqTkYJhGAwWfYKkkJxmBvvnP/+pVqs1r1+/fn3x4sXLly9XKBQEhmc4\nYKSQUGpq6uLFi//2t7/hP/z09HSdvODa2tquX79OUIwkAk8Ih5WOjg5ra2tHR8fMzMyjR49i\nGLZ+/folS5YghLq6uo4fP56QkGBlZTVjxgwDfzKuT5AUMtO+Qfj1119j/ZpseXh4EBKYAXqT\nkYIQgsGiT5AUUunr63tZo/zc3NzIyMh79+6Vl5enpKQcP34cIbR69WoTExOCgjUsMFJICF/d\ns3XrVgaDkZGRcezYMe28ZGZmKhQKhBCbzV60aBHBsZIAHDsx5InFYqVS6eTkhBDicDi1tbVX\nr149efKk9u89Quj06dNKpVKzdAEMKkgKCWEYVl5eLhKJxowZM3XqVE2jBTiOlkAwUkgIkkJC\nLzt6HmnNYA8fPjxw4AB+vZmZ2erVq+fOnUto1MOfZrDASCGh11bp+fn50EhFA5rKDG3t7e07\nd+7Mysricrnm5uZqtTo/P18gECCEtOejjIyM1NRUBoPxySefaLoeg0ECSSGh5ubm3bt3X758\nuaSk5Pbt23fv3nV1ddX0WoDN5YSAkUJCkBQSksvln3766cOHD/HHg52dnXw+v6ysbPr06fgD\nQM0M1tXVNX369Ojo6L/85S8uLi5EBz7MaQ+WESNGwEghm8LCwoaGBmNj4+PHj+tU6cePH6+t\nreVyudrteQ0cLBkd2s6ePSuTyRwdHa2trRFCwcHBeLNEW1tbf39/hJBCoTh79uzRo0cRQhER\nEVZWVsQGbAggKWTT0dGxc+fO2tpaNpu9dOnSxYsXNzU1RUdH8/l8zTWwuVz/YKSQECSFhDRH\nzyclJV29evXgwYNubm740fNKpRK/RjODFRQU/Pjjj3DUhB5oDxYYKUSprq7W7PUQi8W7d+/G\n2ykhhGbOnKlQKL799ludajAjIyMrK4vBYLzzzjvEBE1KcDD9UIWfSBsWFmZsbKx9Im1HR8fu\n3bsfP35MpVKtra3b2tqUSiXe4Pjdd98lNuZhD5JCTp9//jmfz3d3d4+OjjYzM0tPT09OTsYw\nzNjYOCoqSvsGoVwuz8/Ph+0Egw1GCglBUkjotx49D8dt68cLBwuMFP3j8/l79+4NCAjYunWr\nRCKJjo6Wy+ULFizYsGEDQqivr2/nzp342YP79+8fNWqUQqH4/vvvL1++jGHY9u3bAwICiP4/\nIBFYMjokaZ9IGxISMnnyZM1bDAYjKCgIwzCxWNza2trX1+fl5bVt2zb4vR9skBTCqVSqvr4+\nfF+NRnV19ZkzZ6ysrOLj483MzG7evIlXg7Nnz66rq8vPz58wYYKNjQ1+sampqaurKxGxGxAY\nKSQESSGh33H0PKx+14OXDRYYKfrHYrH4fL5AIHjy5MmlS5fkcrmXl9eWLVvodDpCiEKhcLlc\noVD466+//vvf/87JyfnXv/5VXl5OoVDWrFkzf/58osMnF2gqMyQxmUwmk4n3wOi/MoTBYKxa\nterDDz/s6uoyNTU1MjIiIkaDA0khlkqlwtu4ffbZZ9o///LycoRQeHj4yJEj79+/r91n7Pnz\n53l5eXg/BthIoDcwUkgIkkJC2knpz8rKysHB4fHjx0+ePNG+jaXpMZOfn7906dKxY8fqK15D\n8YrBAiNFz0aOHLl3795du3b9/PPPCCEvL6+YmBjtzrrm5uYJCQmXLl3KyspqbGykUCheXl4r\nV650d3cnLmqSgj2EQ5L2ibQ5OTn9z9RGCFEoFDMzM5iP9AaSQiyVStXV1VVYWBgfH6/9w3//\n/feXLFnC5XI7OzsPHTqEYdiKFSvwvQS2trZsNlutVsfFxTU2NhIXu2GBkUJCkBQS+t1Hz+P/\ncN++fVANDobXDhYYKfrU3d3d3t6O/5nNZhsbG+tcgFfpZ86cOXfu3OXLl/ft2wfV4AvBktGh\nSrMyRCwWt7S0TJ8+HVaGEA6SQiA6nR4QEFBRUSEUCuvr6/38/PC1oxQKZdq0aVQqNS0traio\naOrUqREREfg/OXfuHIPB2LBhw9ixY319fQkN37DASCEhSAoJaZIilUqbmpq0k3Ljxo27d+8y\nmcw1a9bgC+R0/uGoUaP0Hq+hgMFCHsbGxhUVFVZWViwWq7S0tLGx0dfXt386KBSKiYkJNFt6\nBSgIhwyVSpWTk3Pt2rXCwsLOzs5x48axWCx8SiorK4PdAoSApJDKy2pCXE5OzqNHjz744AP8\ngLW0tLSMjAw3N7fly5fD6fODDUYKCUFSSKi7uzs1NfXEiRNXrlzBm2HY2NjgSSkvLxcIBEwm\ns6Oj49///veFCxcQQuvXr8ebW4LB03+k0Ol0TU0Ig4VAcrlcoVAEBwcHBQUFBgaWlpYKBAKd\nmrCgoMDMzEx7HSl4ISgIh4aGhoaoqKisrKz6+vrHjx8XFhbevn174sSJ48aNgx3kRIGkkNAr\nasLOzs6CggK5XD569Ojr169fuHCBQqFs2LABb68PBg+MFBKCpJCQVCqNjIwsKirq6OhQq9WP\nHj3KysoaM2aMu7s7npT6+vq8vLycnJyamhozM7OPPvoIGmMMtpeNFCsrK2jhQ6C2trakpKQj\nR47cu3dvxowZ5ubmJiYmfn5+mpqQy+VSqdRbt24dPHiwuLh4zpw5/R+kA21QEA4B+ClqDQ0N\nNjY2S5cu5XK5z58/r6+vv3379ltvvWVvbw9Tkv5BUkjrZTWhg4NDVVVVZWVlbm5uTU0NQigs\nLGzmzJlExzvMwUghIUgKCSkUip07dzY1NTk7O+/Zsyc8PLytra22tvbnn3/29/cfM2YMHD2v\nf68eKdbW1lATEqKhoSEyMhK/LRIaGurs7MxkMhFC2jWhQCCoqKhITU3FMGzhwoVTpkwhOmqy\ng4KQXFQq1TfffOPg4DBixAjNi6dOnRIKha6urv/4xz88PT1dXV3nzJljZGTE5/OLiormzp1r\nbm6umZImTJiA73UGAwWSMuS8sCakUqn+/v50Or23t9fJySk8PHz27NlERzqswEghIUjKUPHD\nDz/k5+ePHz8+ISHBysrq5s2bFy9eRAitX7+ey+UirX1rVVVVz58/f+FGKfC7/b6RYmJiol0T\nwmDRA6VSGRUV1dTU5ObmFhcX5+3tjVeDOBMTk4CAgNra2srKyidPnlCp1LCwsGXLlhEY8FAB\nBSGJ9PX1HThw4NatWw8ePJg/f75mrk9MTFQqldHR0dpr2yZNmiSRSGpqaqhU6uTJk/EpacyY\nMbNmzSIo/OEJkjJU9PX1aR9C+MKakEajeXh4zJ07NzAwUHP2IBgQMFJICJIyhJw8ebKtre2L\nL76wsrLKyMjQPiAHIZSZmWlrazty5Eh4HjUY/shIQf+t1WGw6EdmZmZOTg6Hw0lISDAzM8Nf\nFAqFmZmZEonEycnJxMRk1qxZ9vb29vb24eHhPB6P2ICHCjh2gkSuXr16//59FosVERGhmY8w\nDHv69ClCyN7eXuf6hQsXIoT4fD7+VzabvWjRIj3GaxAgKWSjVqsxDNN+RSaT/f3vf//ggw/e\ne++9jRs3Xrt2De/DzmAw9uzZ4+7u3v8sCjDgYKSQECRlCOno6LC2tnZ0dMzMzDx69Kh2NdjV\n1XX8+HH8nFXNmQfZ2dlff/21zmQIfp8/OFIQDBY9evjwIUJo0aJF+INBsVgcFRUVExPz008/\nJScnx8bGYhhGoVD8/f1XrFjh6OhIcLhDBxSEJPKf//wHIbRlyxYnJyexWIyfs0mhUPBHGbW1\ntTrXMxgMhNCzZ8/0HqkBgaSQikqlio+P1/4aJJfLt2/fnpeXp1QqMQwTiUQpKSlRUVFdXV0I\nakI9gpFCQpCUIYTD4XR2dl69evXIkSPa1SBC6PTp00ql0s7ODv+rpibMz89vaGggLuThA0YK\nyYnF4rq6OvzP48aNQwgJhUKRSHT+/PktW7ZgGJaYmHj+/HkOh1NeXt4/X+BNQEFIIvjdDiMj\nI7FYHB0d/fe//72srAwhNG/ePITQt99+q1Qqta+/ffs2Qmj8+PFEBGsoICmk0t3dLZFItG+N\nnzp1qrW11c3NLSkp6erVqwcPHnRzc6usrNyzZw+eGu2aMD8/n+j/g2ELRgoJQVLIprq6WnMz\nSywW7969Gz9cHiE0c+ZMhULx7bff6lSDGRkZWVlZDAbjnXfe0fx34Oj5gQUjhcwUCkV0dPRP\nP/2E/zU0NNTd3b24uHjjxo1paWlr166Ni4tzcnJiMBj4MYP4EiHwW8EeQhJhs9l37twpLi7O\nzc2Vy+Wenp7vvfcenU53cXHh8/l1dXUPHjzw8vIaMWIEhmFpaWnnz5+nUCgRERFWVlZExz5s\nQVJIhcFg6GyhOXbsmIWFxYEDB0aPHk2hUCwtLYOCgqqrqysrK/v6+vANHvh+QhsbG9jgMXhg\npJAQJIVU+Hx+bGysVCr19fWVSCTR0dH19fU9PT0+Pj4IofHjx5eWlspkMltb2zVr1piamioU\nigsXLnz33XcIoa1bt7q7u2v/1+Do+QEEI4XM6HT6vXv3ysvLQ0JCGAwGnU6fPXu2i4uLn59f\neHj4pEmT8FW+169fz83NZbPZa9eu1T6CGLwhCixAJ5UzZ85cvnwZIeTm5rZ3717NSZodHR27\nd+9+/PgxlUq1t7fv6OiQy+UIoTVr1rz77rtERmwAIClkI5fLo6KiJBJJcHAwn8+fN2/en//8\nZ+0LZDJZeHi4sbHx2bNnjY2NiYrT0MBIISFICnl0dXXFxMQ8fvzY19f34cOHcrncy8srJibm\nhUmxtrZua2tTKpUUCiUsLAySMthgpJBZbm7ul19+uWrVqqVLl/Z/F8OwH3744ezZsxiGbd++\nPSAgQP8RDgPwhJBEpFJpSkqKQqFACD1//vztt99ms9n4WwwGIygoSKlU1tfXt7a2KhSKUaNG\nbdq0CQ6lHWyQFBLSbvPd09Pj4eHh6empfQGTyfz5559bWlq4XK6lpSVRcRoUGCkkBEkhFfyQ\nNPx4NIVCoVMNov8mBcMwsVjc2tra19fn5eW1bds2+II72GCkkNy4ceMyMzPr6+sXL16s01lX\nIBAcPnw4KysLv3USEhJCVJBDHTwhJJFnz57FxsYyGIwpU6acOXNm5MiRe/fudXJy0r5GoVCI\nRCIjIyMHBwfoN60HkBTS0jwnHDt27OHDh+l0uuYtDMPWrVsnk8kOHDjg5uZGYJCGA0YKCUFS\nyKaxsTEyMhJ/xDRz5sxt27a98GeOYVhXV5epqamRkZHeYzREMFLI78KFCxcuXIiNjX377bc1\nL7a3t+/YsaOxsZHD4fzf//0fnD7/R8ATQhIxMjLy9/cPCgry8vJqowz1AAAgAElEQVTCH3Hk\n5eVNnTpVc6cKIUSn0y0tLS0sLGA+0g9ICqlIpVIajYZ/SdI8J5RKpU1NTdOnT9f8/G/cuHH3\n7l0mk7lmzRrtQhEMHhgpJARJIRtjY+OKigorKysWi1VaWtrY2PjC8+UpFIqJiQneIQPoAYwU\nUhGLxQ8ePLC1tdX+UdvZ2V27du3p06czZ87UvMhgMHg8nru7+4YNG+Bs4T8ICkJSwJ/TUigU\nIyMj/Purm5vby2YloGeQFJJobm6OjIwsLCz09/fXqQnLy8sFAgGTyezo6Pj3v/994cIFhND6\n9evh8aA+wUghIUgKecjlcoVCERwcHBQUFBgYWFpaKhAIdGrCgoICMzMz7XWkQD9gpJBEe3v7\n9u3bs7KycnJyVCqVnZ0d3giAwWBIpdL8/Pw5c+aMGDFCcz2TybSzs4Mq/Y+DgpBgLS0tX375\nZWJi4pUrV1paWtzd3TU9MGBWIiFICoEYDEZNTU1paWlZWVn/mrC+vj4vLy8nJ6empsbMzOyj\njz6CPR4EgpFCQpAUorS1tSUlJR05cuTevXszZswwNzfH9xNqakIul0ulUm/dunXw4MHi4uI5\nc+bA0gYCwUghEIPB8PHxoVAoDx8+LCoqun79ektLC4fDMTc3Hz16dEZGhomJCd4/HAwsKAiJ\nJJfLP/3007q6OgzDent76+rq8vLyfHx8WCwWfgHMSiQESSEKlUrl8XgikehlNWFXV9f06dOj\no6P/8pe/uLi4EB2voYORQkKQFP1raGiIjIzEb1SFhoY6Ozvjp95p14R4p5nU1FQMwxYuXAhb\noQgHI4UQcrm8u7ubw+F4e3uHhoZaW1s3NTUVFxffuHGjsrLS3t6+qamprKxsyZIlcLDEgIOC\nkEjffvttRUWFi4vLrl273n///Z6enrKysvv370+fPr1/TcjhcHSOIQIDTiwWNzc3v/ZwJ0gK\nUV5bE1ZVVU2dOtXOzo7oSAFCMFL0C6YvElIqlVFRUU1NTW5ubnFxcd7e3ng1iDMxMQkICKit\nra2srHzy5AmVSg0LC1u2bBmBAQMNGCn6pP0UHf8OTKfTJ0yYEBISMnXq1N7eXj6fj58S2dPT\n4+DgYG9vT3TIww10GSWGTCaztLQMDw/v6+s7dOiQpvzD2yhZWVnFxcVxOBzN9Q8fPpw4cSJB\nwRoKhULx8ccfe3h4bN++/U2uh6ToQXd3t/ZuAZxarf7HP/6Rn5/v6ur6xRdfaL5gyeXy/Pz8\nRYsW6T1M8CowUvQApi9ySk9PP3bsGIfDSUxM1MxUQqFQKBRaWVnNnz+fRqNhGJaXlycSiXg8\nnqOjI6HxAl0wUvSgoaEhKiqqtbXV3Nx8yZIls2bNsrKy0rmmo6MjKyvr5s2bzc3NHh4ecXFx\nhIQ6jMETQgJIJJLIyEiRSNTU1BQcHOzt7a15Cz9OrbCwUOc5Yf+xAQYcnU6/d+9eeXl5SEgI\ng8F47fWQlMEmFos/+eQTOp2u83mMPyfk8/m1tbU6zwldXV0JCha8FIwUPYDpi5zS0tLq6+uX\nL1+Of7iLxeKEhISLFy/i+6MqKytnz55NoVDs7e09PT0tLCyIjhfogpEy2F79FF2DwWBMmjRp\n8eLFcrkc/4YM63gHFqzBHVwqlUqlUum8yGQymUxmdnZ2c3OzqampzrsrVqxYsWKFTCaLiopq\nbGzUV6QAIYQWL16sUqmysrKIDgQghJBarVar1SkpKdeuXdN5i0aj4QurampqYmNjnz17RkSA\nAJAITF8kNG7cOISQUCgUiUTnz5/fsmULhmGJiYnnz5/ncDjl5eW1tbVExwgAkf7zn/+IxWIO\nh/P5559rajyhUHjmzJkbN26o1WrtiykUyrx58xBCmZmZBMQ6rEFBOIhUKlVCQkJCQoLOLzSb\nzY6Li7O1tUUI5ebm6ryLtGrCgoIC/YULEPL392ez2Tdv3oSl1MQSi8WPHz92cHDYv3+/mZnZ\nC2tCfCkpl8utqam5d+8eEWECQCIwfZFQaGiou7t7cXHxxo0b09LS1q5dGxcX5+TkxGAw8GMG\n+/r6iI4RACI9fPgQIbRo0SL8waBYLI6KioqJifnpp5+Sk5NjY2N1JrSRI0cihKqqqgiJdhiD\nJaODSKlUZmRkPHr0aMaMGWZmZtpvaXpg/Prrr62trVwuV+cQFU9PT09Pz8DAQP2GbOioVKpC\noSgoKHB1dR07dizR4Rio9vb2nTt3ZmVlcblce3t7b2/vvLy8+/fvs1gs7bWj33///aNHj+Lj\n411dXWfNmkVgwACQAUxfJESn02fPnu3i4uLn5xceHj5p0iT8s/769eu5ublsNnvt2rXQLxEY\nMrFYLBQKaTSak5NTWlraV199NWrUqOjo6LCwsHv37j1+/Pjtt9+2tLTEL+7r6zty5IhIJHJ3\ndw8ICCA28mEGCsJBRKfTAwICeDyenZ1dU1OTqamp9ryvqQmFQqFMJutfE1pbW+s9ZMMiFosf\nPHhga2ur/ZO3s7O7du3a06dPZ86cSWBshiwlJaWiomLixIkLFy6k0+kWFhaamrCvr8/T05NC\noVy7du3777+3srJavnw5dBvTA/weLRz+Sx4wfQ0VVCrV1tbWzs4O3+qMYdgPP/xw+vRphFBE\nRAR0kRlsKpUqJyfn2rVrhYWFnZ2d48aNgzMeScXJyamioqKsrOzGjRu//PLL6tWr//rXv44a\nNYpOp6enp3d1dQUHB2t2ctbV1Z0+fdrU1HTHjh06D1rAHwRdRvWhoaFh586dLi4un332Gb5K\nREMul0dFRUkkkuDg4IiICPi+pTft7e2bN2+Wy+XW1tYLFy6cN2+epoXPV199lZubm5KSAjW5\nnuHdd8PCwoyNjQ8dOqS9w/aXX36JiYlpb283MzMzNjaWyWQIoS1btsyePZu4eIchtVpNpVK1\nJ6KWlpbk5GQ+n29iYjJz5swPP/xQM1K0SSQSfBk80AOYvoYogUBw+fLl8vJyCoWyevXq9957\nj+iIhrmGhoZ9+/aJRCLNK9bW1tu3b+/fOBRmMAKp1eqSkhK1Wj158mRNR5lr166lpKSw2eyT\nJ09qf3MuLCy0sLCABnIDDp4Q6oORkVFxcbFQKKyvr/fz8/tNzwnBYBCLxU+fPp03bx6FQsG7\nvV2/fr2lpYXD4Zibm48ePTojI8PExGTy5MlER2pAtLvvhoSE6PzwLSws/Pz86uvrRSLRs2fP\njI2N161bN3/+fKKiHZbwbc9CoVAzEcnl8k8//bSurg7DsN7e3rq6ury8PB8fH52aMDc3NzY2\ndsSIEdCfXT9kMtn48eNHjRoF09cQ0t7eHh8f//jxYw6Hs2PHDljoPtg6Ojp27tzZ0NBgY2Oz\ndOlSLpf7/Pnz+vr627dvv/XWW9p3TGAGI9Zveopua2urWUEKBhAUhPqArx2tqKh4bU04YcIE\nuEc12DRb1IKDg2fPnh0aGmptbd3U1FRcXHzjxo3Kykp7e/umpqaysrIlS5bA7g69UavVd+7c\nEQqFPT0906ZN638Q8IgRI+bMmePn5zd9+vS1a9fibdzBAOrq6vrpp5+0b059++23FRUVLi4u\nu3btev/993t6esrKynQOxUEIlZSUlJaWTpw4EZKiB/gMVlBQsGHDhpUrV8L0NVQwGAwej+fu\n7r5hwwYbGxuiwxn+Tp06JRQKXV1d//GPf3h6erq6us6ZM8fIyIjP5xcVFc2dO9fExAS/EmYw\n8hAIBIcPH87KyqJQKGFhYSEhIURHZCigINSTN6kJx4wZA7cM9UBnixqdTp8wYUJISMjUqVN7\ne3v5fH5ubq5cLu/p6XFwcID9aXqjuTPS1dXV1tY2f/78F36dNTc3t7Gx0XyQgwHEYDB0Fiyk\npKSYmpoeOHCAw+GwWKzp06ejFx2UOmnSpMmTJ8PyXf3QnsEYDAZMX0MIk8m0s7ODdUD6kZiY\nqFQqo6OjtR8GTpo0SSKR1NTUUKlUzVN0mMFIAp6iEwgKwsGCYVh5eXlxcXFnZ+eYMWOoVOpr\na0JYEj3YZDKZqanp0aNHzc3N4+PjdY5vtrKy4vF4ISEhI0eOlEql3d3dHR0dc+bMISpaA6Sp\nCcVicUtLy/Tp0+Gbk57pLGJvamoKDg729vbWXIDfQe9fE44ePZqYiA3JK2YwmL4A0IZh2Jkz\nZxBC4eHhOr0bLCwssrOzFQqF9tMnmMHIAJ6iEwgKwkHR3Ny8e/fuy5cvl5SU3L59++7du66u\nrpaWlq+uCcEAUqlUPT09xsbGmldevUVNg8FgTJo0afHixXK5HP/KqzkpFQwGnfaVmoKkrKwM\ndtUSQrsm7O7u5nK5bm5u2he8rCYEA6X/9IXebAaD6WuwVVdXW1pa4pOSWCz+5z//6e3tDQsW\nSIhCody+fburq2vq1Kk6DZa6urpu3rxpYmKyePFiosIDLwNP0YkCBeHA6+jo2L59u1gsZrPZ\noaGhzs7OpaWlubm5EyZMsLGxgZpQD9RqdUJCQlpamr+/v+ZL1Wu3qGmjUChsNjszM5NKpb79\n9tt6iXqYU6vVFApFp33ll19+mZiYeOXKlZaWFnd3dzxZ0GmJcNrLdzs6OubOnaszTWlqQmtr\na51yEfxBL5y+0G+ZwWD6GiR8Pj82NlYqlfr6+kokkujo6Pr6+p6eHh8fH6JDAy+gVCpLS0t/\n+eWXWbNmaT8kvHLlSnV1taenJxxkB4AGFIQDLyEh4dGjR+7u7vHx8Vwut7m5uaioSKVS5efn\n968J7e3tHRwciA55GCouLhYIBKWlpZovVW+4RU2jt7f32rVrKpVqwYIF+op62Pqt7SuhJiSc\nJgW//vpra2tr/xR4enp6enoGBgYSFeEw1n/6Qr9xBoPpazCwWCw+ny8QCJ48eXLp0iW5XO7l\n5bVlyxY4146cXFxc+Hx+XV3dgwcPvLy8RowYgWFYWlra+fPnKRRKRESE5nQ7AAAUhAOsurr6\nzJkzVlZW8fHxZmZmN2/eTE5OxjBs9uzZdXV1OjWhjY0NbJkdDBQKxdfXt6Gh4WU14Wu3qPX1\n9R05ckQkErm7u8NNxD/ud7SvhO67hHttWQ4n3Q2Gl01f6I1nMJi+BomJiYmfn59AIKioqFAo\nFF5eXjExMa9YLyqRSODsbAJRqVRfX1+hUFhTU3P9+vX8/PyLFy/m5eUhhNasWQNDAwBtUBAO\nsFu3bpWVlW3evNnZ2fn+/fuJiYkYhq1fv3716tW//vrrkydPtGtCJycnouMdtl5bE756i1pd\nXd3p06dNTU137NgBn+h/3O9rXwnddwkHj2oJ8SY14StmMJi+BpBarS4uLh47dqxmacP169cV\nCgVCyM3Nzd/f/2UjAo62IwMGgxEUFKRUKuvr61tbWxUKxahRozZt2gRn2A42mUyWnJz83Xff\nFRYWslgsuKVLflAQDgyxWCyTydhstru7+7Nnz0JDQ58+fRoTE6NUKlesWLF06VKE0JMnT6RS\nqUKhyMvLCwwMhE4Mg+21NeErvuNaWlo6OTktWLBg/PjxRMQ+DP2+9pXQfZdwUBMS4k1qwpdl\nBKavgZKbmxsXF5eenq75ORsbG1dUVFhZWbFYrNLS0sbGRl9f3xeOCDjajiTodPq0adOWLFni\n6+sbGhq6evVq2Kcz2Nrb2z/55JOqqqqurq7GxsY7d+60t7d7e3v3HynwFJ08oCAcAJqDzrlc\nroWFxbRp06hUalpaWlFR0dSpUyMiIvDLzp07x2AwNmzYMHbsWF9fX2JjHvbkcvnx48dTUlJk\nMtmzZ8/kcvlvrQltbW0tLS2JiH3YgvaVQxQs39WzV09f6A1mMJi+/iC1Wp2cnHz27Nnu7m4e\nj/enP/0J/3nSaLQZM2YEBQUFBgaWlpYKBAKdmrCgoMDMzMzExASOtiMVOp1uaWlpYWEB97P0\n4Pjx4w8ePHB2do6IiHj77bdra2vLysr63z2Bp+ikAgXhANA56Bx/MScn59GjRx988AG+LjQt\nLS0jI8PNzW358uUeHh6Exjv8yWSyTz/99MGDBywWKygoaNKkSTKZTCwWv6wmhO+4egPtK4co\nWL6rN28yfSGYwQZZUlJSdnY2g8HYunXrypUrR40apXmLRqPRaDR8P6GmJuRyuVQq9datWwcP\nHiwuLp4zZw6dToej7YBhOnr0qJmZ2cGDBx0cHBwdHYOCgvh8vlAo1KkJ4Sk6qUBB+Ie84pjg\nzs7OgoICuVw+evTo69evX7hwgUKhbNiwAdow6EFSUlJNTY2bm9uBAwe8vb0nT54cEhIikUiE\nQmH/mhC+4+qHXC7v7u5mMpnQvnKIguW7+vGG0xeCGWzQ3L9//+zZs3Q6fd++fdrL2nVo14R4\np5nU1FQMwxYuXDhlyhR9BgwAqfz444+hoaGas1LxJgL9a0J4ik4qUBD+fq8+JtjBwaGqqqqy\nsjI3N7empgYhFBYWNnPmTIKCNSBqtTopKamvr2/Pnj2aRVM0Go3H4xUXFz969EinJoTvuIOt\nra0tKSnpyJEj9+7dwxeCQvtKAF7oN01fCGawwXHs2LHm5ubly5f3r7RFIlFVVZVSqWSz2Qgh\nExOTgICA2traysrKJ0+eUKnUsLCwZcuWERE1AESSy+UnTpw4d+5ccXFxZ2enh4eH9kLQl9WE\n8BSdPKAg/P1efUwwlUr19/en0+m9vb1OTk7h4eFwF0Q/VCpVamoqnU7/6KOPtF+nUqkMBuP+\n/fv9N+SAwdPQ0BAZGVlTU2NmZhYaGurs7MxkMhG0KtG76upqS0tL/IcsFov/+c9/ent7v6Jj\nPiAETF9kcPLkSaVSuW7dOu2VotXV1QkJCWfPnr179+7Nmzdramp8fHyMjY2NjY1nzZplb29v\nb28fHh7O4/EIjBwAQsjl8m3btlVUVHR0dEil0p6env5bQrRrwvHjx9vZ2REYMOgPCsLf77XH\nBNNoNA8Pj7lz5wYGBtrY2BAVp6Gh0Wi5ubmdnZ08Hs/CwkL7rY6Ojlu3bvn4+FRUVHA4nAkT\nJhAVpIFQKpVRUVFNTU1ubm5xcXHe3t54NYiDmlBv+Hx+bGysVCr19fWVSCTR0dH19fU9PT0+\nPj5Ehwb+B0xfZJCTk9PZ2enq6urs7IwQUigUp06dOnr0aGtrq62tLb6rUyQS1dXV4fd5KRSK\nvb29p6enTsrAgIPDDMgpOTm5srLSyclp06ZNU6dOrampkUql/beE4DUhh8OBVe4kBAXhH/Lm\nB50DfVKpVKWlpSKRKCgoSLtKv3r1am1t7eeff+7h4REUFERcgIYiMzMzJyeHw+EkJCRoWksL\nhcLMzEyJROLk5MRkMqExhh6wWCw+ny8QCJ48eXLp0iW5XO7l5bVlyxZNEywd0AqcQDB9kUFJ\nSUlZWRmGYVVVVYmJiaWlpebm5hs3bty0aVNgYCCPx8vOzpZKpW+99daYMWOIDtZQwGEGJIS3\n0khOTsa7yDg6Ojo5Oc2cOfNlt3oZDIaLiwuBAYOXgYLwj3rDg86BPrm6uvL5/Orq6rq6uilT\npuDNftLT0y9cuGBhYfHnP//Z3t6e6BgNQlpaWn19/fLly/EeYmKxOCEh4eLFiw8fPiwqKqqs\nrJw9ezY0xtADvPsF3vdCoVB4eXnFxMS8bL0otAInFkxfhHNxcWlra3v48GFZWRm+KyQwMDAm\nJkbT99jc3Ly8vLypqcnZ2RmGid7AYQZko2ml0dzcvGDBAk0rDVj+MxS9+PYw+E3YbHZcXFxU\nVFR2djZCKCIiAn71iUWj0WJjY3fv3l1SUrJ+/XpnZ2e5XN7Y2IgQWrVqFY1GIzpAQzFu3DiE\nkFAonDZt2t27d3/88UcXF5fExEQbG5vNmzeXl5fX1ta6urqy2exFixYRHexwo1arS0pKfHx8\n8Omou7u7vb0df4vNZr9iB1pra2tfX9/Tp0/1FCj4XzB9EY5CoWzatGnGjBkCgYDFYs2YMUNn\nv5NKpfrll18QtL/Sr5KSEmtr6/379+NbD6ZMmbJr167c3FyE0NatWzXfu2AG0xsmk8lkMvGv\nvjqfKfDFeMiBJ4QDA26HkA2DwQgKClIqlY8ePWpsbHz69CmTyVy/fv38+fOJDs2AODk5VVRU\nlJWV3bhx45dfflm9evVf//rXUaNG0en09PT0rq6u4OBgKysrosMchnJzc+Pi4tLT0zXTkbGx\ncUVFhZWVFYvFKi0t7X9bXQNagRMOpi8ysLGxmTZtmoeHh7m5uc5bFy9eLC4uZrPZH3/8MZTo\negOHGZDNqw8WhrNShxYKhmFExzB8yOXyqKgoiUSya9cuLpdLdDgAIYQUCkV9fT2GYU5OTtoH\nRQL9wJ9TqdXqyZMnazrKXLt2LSUlhc1mnzx5Er5ODSy1Wv3NN9/cvHkTIcTj8ZYtW6bpPqJU\nKhFCz58/j4mJefz4cVBQkPZt9YKCAnd3d9h4QyowfZFQenp6cnIyhmFRUVG+vr5EhzPMyeXy\nc+fO1dTUjB49ur6+/t13312yZIn2BR0dHbt27frll190JjSgN5qvvsHBwf2fBMrl8vz8fFgE\nRH5QEA4w+NUH4BUwDPvhhx/Onj2LYdj27dsDAgKIjmi4+eqrr27dusVgMCIiIl724+3q6tLU\nhJs3b6bRaLdu3UpKSrKzszt48CCcRQHACz1//vzEiRMZGRkIodWrV7///vtERzTM4YcZtLa2\nal5xdnY+ePCgzm1ETU342WefwbEfhHh1TQiGBCgI/4dKpXr+/PmIESM0r4jFYqVS6eTkRGBU\nBq5/UhDkZWgSCASXL18uLy+nUCirV69+7733iI5ouLl//358fDydTo+Li9M0wHghTU3o6uo6\nduxYfB/OihUrVqxYoadYARg61Gr1jRs3vv/++/b2dhMTk4iIiMDAQKKDGv7w21tOTk4rV67s\n7Ow8c+aMXC5/YcnR0dGRn5+/YMECokIFUBMOdbCH8P+nUqkSEhLS0tI0Z/62t7fv3LkzKyuL\ny+X230UA9KB/UhDkZWhqb2+Pj49//Pgxh8PZsWMH9BQdDMeOHWtubl6+fHn/H69IJKqqqlIq\nlWw2GyFkYmISEBBQW1tbWVn55MkTKpUaFha2bNkyIqIGgOyoVOqdO3fKysp4PF5kZCTeNhkM\nIJVK1dPTo/mUh8MMhhxopTHUQZfR/w9eeOBHncpkMhaLhRA6e/asTCbz9PSETmKEeGFSEORl\naLKwsIiLi6upqeHxePA5MUjwzoc6G5irq6tPnDhRU1OD/9Xb2/vTTz8dMWLEiBEj9u7dm5eX\nJxKJeDyeo6Oj/gMe9qqrqydOnIj/wovF4pSUlE8++QQ2ag5F4eHhCxcuhMYYgwH/rG9tbd27\ndy+LxZJIJFFRUd7e3jQaLSQkRLP5fNSoUdC4ksy0O4v6+vpCK42hBZ4QIvS/hce+ffvGjx+P\n3506evSoubl5fHw87ObXv/5JQf+9awh5IYrOTVyEkFgslslk+EOn12IymXZ2dvARPnhycnI6\nOztdXV2dnZ0RQgqF4tSpU0ePHm1tbbW1tZ00aZJMJhOJRHV1dXgLPgqFYm9v7+npaWFhQXTs\nwxCfz4+NjZVKpb6+vhKJJDo6ur6+vqenx8fHh+jQwO8Blfxg0HzW9/b28ng8CwsLtVp9584d\noVD47NkzHx8f7eME4TEUycHBwkMXFIS6hYeTk5PmqM2mpqaQkBBNj2MdEokEPh4GSf+kIK0j\nUF+RF0jK4IE11UNCSUlJWVkZhmFVVVWJiYmlpaXm5uYbN27ctGlTYGAgj8fLzs6WSqVvvfXW\nmDFjiA52mGOxWHw+XyAQPHny5NKlS3K53MvLa8uWLXT6i9fmwPQFDM0L7/zCYQZDmqmpqaur\nK9FRgN+M+vpLhjXNZGRkZLR371688NActdna2vqynvi5ubkbN268du2afuM1CC9MCnqDvEBS\nBo8mKU1NTTKZDH8RX7vr6OgIa3dJYuHChfPmzVMoFOfOnTtz5kxra2tgYODhw4eDgoLwC+zs\n7Nzd3dF/F5eCQTVy5Mi9e/eOHz/+559/xqvBmJiYlzVxhekLGJoX3vnF4YsPbW1tHz16dOTI\nEZ32h/i7H3/8MSxKBGCgGHRBqJmMEEK9vb15eXn465qZCCGUk5OjVqv7/9vW1ta+vr6nT5/q\nM2BD8LKkoDfICyRlkOh8bDs6OspkMgzDiouLx4wZs2vXLjiogCQoFMqmTZs+//zzd955Z+XK\nlYcPH/7000+1H96qVCq8FIQafpCo1erCwkLN99fu7u729nb8z2w2W3u5tQ6YvoBBedmdXw3N\nJ352dvbXX3/dvyaE870AGECGu2RU+zvuhx9+WFFRUVFR0dvbiy9E1KxJEIvFLS0t06dP11mn\nPmnSpMmTJ+P7cMBAeXVS0OvyAkkZDL97TTUgio2NzbRp0zw8PPqv47148WJxcTGbzf74449f\ntvwB/G65ublxcXHp6ema3U3GxsYVFRVWVlYsFqu0tLSxsdHX1/eFu55g+gKGQ/vOb19f38iR\nI1/4OQI7BgHQGwMtCHW+4/J4PBcXl7y8vBfWhGVlZS+ciUaPHk1Q+MPTmyQFvS4vkJSBpX0T\nNz4+Hm9Votnx39PTM23aNHwJog7YDUVC6enpp0+fRght27bNwcGB6HCGFbVanZycfPbs2e7u\nbh6P96c//cnS0hIhRKPRZsyYERQUFBgYWFpaKhAIdGrCgoICMzMz/Bk7TF/AELz2zq82qAkJ\nIZPJkpOTv/vuOzxNsFHTEBhoQZiZmXnlyhXtZes2NjavqAlhJtKDN0wKgrzoy8tu4mrv+G9r\na5s/f772jn+EUG5ubmxs7IgRI7S7wwECPX/+/JtvvklNTUUIrV69et68eURHNNwkJSVlZ2cz\nGIytW7euXLly1KhRmrdoNBqNRjMxMfHz89PUhFwul0ql3rp16+DBg8XFxXPmzHlZpxkAhpM3\nvPOrDbrI6Fl7e/snn3xSVVXV1dXV2Nh4586d9vZ2b2/v/l+04M7vcGKgBaGzs7NSqVyzZo32\nsnWoCYn15klBkJfB90fWVJeUlJSWlk6cOBGObyacWq1OS9ep5doAAAYvSURBVEtLSEh48OCB\niYnJ1q1bFyxYQHRQw839+/fPnj1Lp9P37dvn7e39ssu0a0KBQFBRUZGamoph2MKFC6dMmaLP\ngAEgypvf+dUGhxno0/Hjxx88eODs7BwREfH222/X1taWlZX1X+4Od36HGQMtCCkUypQpU/of\nnvbamhDuTg2e35QUBHkZTH9wTTXshiIPKpV6586dsrIyHo8XGRkJJfpgOHbsWHNz8/Lly/t/\nWxWJRFVVVUqlEp/ZTExMAgICamtrKysrnzx5QqVSw8LCli1bRkTUABDgN9351QaHGejN0aNH\nzczMDh486ODg4OjoGBQUxOfzhUKhTk0Id36HGQMtCF/hFTUh3J0iyqtrQsjLgPvja6phNxR5\neHt7BwYGLly4ENb2DJKTJ08qlcp169ZprxStrq5OSEg4e/bs3bt3b968WVNT4+PjY2xsbGxs\nPGvWLHt7e3t7+/DwcB6PR2DkAOjZb73zC/Tvxx9/DA0N1aSAwWD4+fn1rwnhzu8wAwXhC7zs\nuy/cnSLQK2pCyMuAgzXVwwyUgoMqJyens7PT1dUV77qkUChOnTp19OjR1tZWW1vbSZMmyWQy\nkUhUV1eHf3miUCj29vaenp4WFhZExw4AWUBNSCC5XH7ixIlz584VFxd3dnZ6eHhoLwR9WU0I\nd36HEygIXwwmJhKCpOgNrKkG4DcpKSkpKyvDMKyqqioxMbG0tNTc3Hzjxo2bNm0KDAzk8XjZ\n2dlSqfStt94aM2YM0cECQFLwKU8IuVy+bdu2ioqKjo4OqVTa09PT0dExd+5c7XZx2jXh+PHj\n7ezsCAwYDAYoCF9KMzF5enrCCmmSgKQQDtZUA6DDxcWlra3t4cOHZWVl+HEsgYGBMTExbm5u\n+AXm5ubl5eVNTU3Ozs7QgAGAV4CacFCpVKqenh5jY2PtF5OTkysrK52cnDZt2jR16tSamhqp\nVNra2qqz5AevCTkcDnzQD0sUDMOIjoHUGhoabGxsiI4C/A9ICuH4fP7+/ft7e3uXLl26atUq\nosMBgHh8Pl8gELBYrBkzZujcPlepVGvXrm1vb4+Ojp4+fTpREQIwVOAfMUuXLl2xYgXRsQwf\neLu41tbWvXv3slgshJBMJrO0tAwLCzMyMjp06BCTyUQItbW1RUdHSySS4ODgiIgI2AZiIOAJ\n4WuMHDmS6BCALkgK4eAmLgA6bGxspk2b5uHhYW5urvPWxYsXi4uL2Wz2xx9/TKPRCAkPgCHE\nxsYGX2tNdCDDh6Z5eG9vL4/Hs7CwkEgkkZGRIpGoubl5wYIFcKyXgaO+/hIAAOhn2rRp0dHR\nRkZGRkZGRMcCAHmlp6enpqYihDZs2ACDBYA3BOuABpDOUVKOjo4IISaTyWQys7OzZTKZziJS\nNpsdFxdna2ubnZ399ddfw1pCQwBLRgEAvx8s3wXgZZ4/f37ixImMjAyE0OrVq99//32iIwIA\nGBydalC7ebhcLo+KipJIJM7OzgcPHtRZv6B5d9euXVwuV++BA72CghAAAAAYSGq1+saNG99/\n/317e7uJiUlERERgYCDRQQEADI6mGjQyMjpw4AB+NI42TdX3wh2Dcrk8Pz9/0aJFegwZEAOW\njAIAAAADiUajNTY2tre383i8xMREqAYBAPqnqQYRQr29vXl5ef2vefXqUDabDdWggYAnhAAA\nAMDAk0gkcCwnAIAQ2itFly9ffubMmVc0Bn/1c0JgCKDLKAAAADDwzMzMiA4BAGCIdPYN8ni8\nVzcGh86iAApCAAAAAAAAhonMzMwrV65od5F57WFR2jXhhAkTYHWDoYGCEAAAAAAAgGHC2dlZ\nqVSuWbNGu6foG9aEY8aMmTVrln7jBcSDPYQAAAAAAAAMf3w+f//+/a/YTwgMEzwhBAAAAAAA\nYPh77XNCYJigIAQAAAAAAMAgQE0I+oOCEAAAAAAAAEMBNSHQAQfTAwAAAAAAYECmTZsWHR1t\nZGRkZGREdCyAeNBUBgAAAAAAAIPT0NBgY2NDdBSAeFAQAgAAAAAAAICBgiWjAAAAAAAAAGCg\noCAEAAAAAAAAAAMFBSEAAAAAAAAAGCgoCAEAAAAAAADAQEFBCAAAAAAAAAAGCgpCAAAAAAAA\nADBQ/w808Q90mUWFgQAAAABJRU5ErkJggg==", - "text/plain": [ - "plot without title" - ] - }, - "metadata": { - "image/png": { - "height": 180, - "width": 600 - } - }, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Warning message:\n", - "“\u001b[1m\u001b[22mUsing \u001b[32msize\u001b[39m for a discrete variable is not advised.â€\n", - "Warning message:\n", - "“\u001b[1m\u001b[22mRemoved 6 rows containing missing values (`geom_point()`).â€\n", - "Warning message:\n", - "“\u001b[1m\u001b[22mUsing \u001b[32msize\u001b[39m for a discrete variable is not advised.â€\n", - "Warning message:\n", - "“\u001b[1m\u001b[22mRemoved 6 rows containing missing values (`geom_point()`).â€\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAAFoCAIAAADIFpV9AAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdeVyU1f4H8PPMPgww7AiogIArIohbCpK7oqAirkFu4d5t0V+ZVurNVkst\ny1IwzcpU3BVRMzTR3BAQFRFZRERW2WH2eX5/jM0lNUU5MMB83v/cZ85853u+0OsW3znPcw7D\nsiwBAAAAAAAA48MxdAEAAAAAAABgGGgIAQAAAAAAjBQaQgAAAAAAACOFhhAAAAAAAMBIoSEE\nAAAAAAAwUmgIAQAAAAAAjBTP0AUYWGlpaWJioqGrAAAAAAAAMABjbwgzMzMjIyP9/PwMXQgA\nAAAAAECTio6ONvaGkBDSuXPn119/3dBVAAAAAAAANKnY2Fg8QwgAAAAAAGCkmt0KYUlJyW+/\n/ZaYmFhRUSGVSrt167Zw4UKxWKx7V6vVHjhw4Pjx48XFxTY2NsOHDw8JCeFw/tfWPjMAAAAA\nAAAAdJpXQ5iTk7Ns2TKVStW7d28HB4fq6uq0tLTa2lp9QxgVFXXkyJH+/fsHBwenpqZu3769\npKRk3rx5+gzPDAAAAAAAAACdZtQQarXaNWvWmJmZrVq1yt7e/vGA3NzcmJiYgICAxYsXE0JG\njx7N5/NjY2NHjRrl7OxcnwAAAAAAAADQa0b3UiYkJNy9e3f69On29vYymUypVD4SEB8fz7Js\nUFCQfiQ4OJhl2TNnztQzAAAAAAAAmhW5XM78u+TkZEMX2Mo1oxXCK1euMAxjYmLyxhtvZGdn\nMwzTtWvXiIiIDh066AIyMjK4XK6bm5v+I66urgKBIDMzs54BAAAAAADQDPH5/GnTpj0+bmVl\n1fTFGJVm1BDev3+fy+V+8sknPXv2DA0NLS4u3r1797Jly9avX9+mTRtCSGlpqVQq5XK5+o8w\nDGNpafngwQPdy2cG6GRlZSkUCt11UVFRo/9gAAAAAADwVCYmJtu2bTN0FcaoGd0yKpPJ1Gp1\nt27d3n33XX9//5CQkKVLl9bW1u7du1cXoFAo+Hz+I58SCAT67u6ZATrLli0L/9uOHTsa56cB\nAAAAAABqjhw5wjDMypUrHxm3sLBwd3fXv0xOTmYYZsaMGZmZmVOmTLGzs+NwOBcuXNC9u3Pn\nTn9/f3Nzc7FY3L17988++6xup6D/bGpqanBwsJWVlUQiGThw4KlTpx6v5/z58xMmTGjTpo1A\nIHB0dAwLC0tLS6P/Yze+ZrRCKBQKCSGDBg3Sj3h7e1taWl6/fl0fIJPJHvmUUqkUiUT1DNAZ\nMmSIl5eX7prD4Tz+EQAAAAAAaLlyc3P79u1rY2MzcuTImpoaXTvwzjvvrFmzxs7OLiwsTCKR\nxMTEvPfee8eOHfv999/rriplZmb279+/Z8+eCxcuzM/P37Fjx7Bhw/bs2TNu3Dh9TGRk5Lx5\n86ytrceMGWNnZ5ednR0dHX3gwIE//vijb9++BviBG6AZNYTW1taEEEtLy7qDFhYWpaWlumsr\nK6ucnByNRqO/KZRl2bKyMk9Pz3oG6EREROivL1++fOTIkcb5gQAAAAAAoF5qa2vDwsIeGbS1\ntV23bt0LZIuLi1u0aNH69ev1fUF8fPyaNWtcXV0vXrxoa2tLCPn000+Dg4NjY2PXrFmzbNky\n/WfPnj377rvvfvbZZ7qXCxcu7Nu3b0RExPDhw01MTAghN2/eXLhw4bBhw/bv368/Hi8lJWXA\ngAFz5sy5evXqCxRsQM3ollEPDw9CSElJiX6EZdkHDx5IpVLdSzc3N41Gk5WVpQ/Izs5WKpX6\nXWSeGQAAAAAAAM2QSqX69TH79+9/sWw2Njaff/553b1FfvzxR0LIhx9+qOsGCSE8Hu+rr75i\nGCYqKqruZy0sLN5//339Sx8fn2nTppWUlBw+fFg3snHjRpVKtWzZspqampK/OTo6DhkyJCUl\nJScn58VqNpRm1BC+9NJLPB7v2LFjWq1WN3L27NnKysqePXvqXvr7+zMMo/8nQQg5fPgwwzD+\n/v71DAAAAAAAgGZIKpWyj7lz586LZfP29tat5uklJiaSfz6eRgjp0qWLg4NDdnZ2eXm5ftDH\nx8fU1LRumK6bSEpK0r08f/48ISQgIMD2nw4ePEgIyc/Pf7GaDaUZ3TJqY2MzZcqUX375Zdmy\nZf369SsuLo6NjbWxsZkwYYIuoH379oGBgTExMSqVytPTMzU1NT4+fuTIkS4uLvUMAAAAAACA\nVs/R0fGRkYqKCkKI7vCCuhwcHO7fv19RUWFhYaEbsbe3fyRGN6LLQAjRHWFw6NAh/f2idXXp\n0qWh1TetZtQQEkImTZpkaWl56NChn3/+WSQS+fv7v/rqq/pbRgkhERER1tbWJ06cuHjxorW1\ndXh4eEhISN0MzwwAAAAAAIAWh8PhEELUanXdQZVKVVNTY2Nj80gwwzCPjOh6ioKCAmdn57rj\nugW9uh1HYWHhI5/VjehjdBdt2rTp3bv3C/4wzUnzaggJIcOGDRs2bNi/vcvhcEJDQ0NDQ184\nAAAAAAAAWhzd3pO5ubl1B5OSkh5pEf+Nj49PSkrK6dOnp0+frh+8detWfn6+q6urfnlQl7O6\nurruXaPx8fG6DLqX/fr1u3r16s6dO1tHQ9iMniEEAAAAAAB4ou7du4tEooMHDxYUFOhGKioq\n3n777Xp+fNasWYSQjz76SHfDJyFErVYvXryYZdnZs2fXjSwvL1+9erX+ZVJS0o4dO2xsbIKC\ngnQjixYt4vF4GzZsiIuLq/vB6urqXbt26V9+9tlnI0eOPHr06PP9nE2u2a0QAgAAAACAsamt\nrZ0xY8bj43Pnzn3ppZcIIaampvPnz1+3bp23t3dQUJBSqfz99999fX3Nzc3rk3/gwIFvv/32\n2rVru3XrFhoaamJiEhMTk5qa6u/v/3//9391I/38/H744YdLly4NGDBAdw6hVqvdvHmzfpca\nT0/PTZs2zZ07d+jQocOHD/fx8dFoNGlpaXFxcS4uLpMnT9aFJScnHz9+fPz48Q35tTQBNIQA\nAAAAAGBgKpXqp59+enx86NChuoaQELJmzRpzc/Nt27b99NNPjo6Os2fP/uCDD+zs7Oo5xVdf\nfdWzZ8+NGzf+9NNPKpXK3d199erVixcvFggEdcPc3Nw2bdq0dOnSb7/9VqFQ+Pr6rlq1avDg\nwXVjZs2a1bNnz7Vr154+ffrUqVMSicTR0TE8PFzfDRJC0tPT+Xz+8OHDn+8X0eQYlmUNXYMh\n6Q6mX7VqlaELAQAAAAAAQ0pOTvbx8Zk+ffq2bdsamKq0tNTW1nbevHnfffcdjdIaS2BgIJ4h\nBAAAAAAAoOnUqVNCobDuAffNFhpCAAAAAAAAmiZMmFBbW+vg4GDoQp4NDSEAAAAAAICRwqYy\nAAAAAAAAxNvb2wg3WMEKIQAAAAAAgJFCQwgAAAAAAGCk0BACAAAAAECLdO/ePYZhxo0bZ+hC\nWjA0hAAAAAAAYDByuZypg8vl2tjYDBkyZMeOHYYuzShgUxkAAAAAADAwgUAwc+ZMQohKpcrI\nyIiLi4uLi0tISFi7du1TPmVnZxcfH29tbd1UZbZCaAgBAAAAAMDAxGLxDz/8oH957Nix0aNH\nr1+//j//+Y+Li8u/fUogEPj5+TVFfa0XbhkFAAAAAIDmZeTIkT179mRZ9vLly4SQ5ORkhmFm\nzJiRmZk5ZcoUOzs7Dodz4cKFx58h1EdmZGSEhIRYWVmZm5sHBgamp6cTQvLz82fMmGFvby8W\ni/38/K5cuVJ30sjIyHHjxrm6uorFYgsLi4CAgOjo6LoBTyzju+++YxgmODj4kR+BZdmOHTua\nmJiUlZU11q+JBqwQAgAAAABAs6M7EpBhGP1Ibm5u3759bWxsRo4cWVNTIxKJ/u2zd+/efeml\nl9zd3adNm5aWlhYbG5ucnHzmzJlBgwbZ2NhMmDDh7t27MTExw4YNy8rKsrCw0H1q7ty5ffr0\nGTRokL29fVFR0ZEjRyZNmvT555+/8847dZM/UsaAAQN69+599OjR3Nzcdu3a6cNOnTp1+/bt\n6dOnW1paUv7VUIWGEAAAAAAAmpfY2NikpCSGYXr37q0fjIuLW7Ro0fr167lcrm7k3r17T/z4\nqVOnVq1a9eGHH+peRkREREVF9enT59VXX123bp2uyfzggw9Wr169adOmd999VxeWk5NTt6Or\nra0NCAhYuXJlRERE3abu8TIWLFgwc+bMLVu2rFy5Uh+2adMmQsjcuXMb+rtoZLhlFAAAAAAA\nDEwmk82bN2/evHmzZ88OCAgYPXq0Vqt98803nZ2d9TE2Njaff/65vg17Cmdn5+XLl+tfzpgx\nQ3fx6aef6pccdYPJycn6MF03yLJsRUVFYWFhZWXl+PHjZTJZfHx83eSPlzF58mQrK6uoqCiN\nRqMbKSoqOnDgQPfu3V966aXn+j00PawQAgAAAACAgSmVSt2SGofDsbCwePnll2fPnv3KK6/U\njfH29jYxMalPNh8fn7oNm5OTEyGkW7duYrH4kcG6a4xJSUkrV648depUVVVV3Wx5eXlPL0Ms\nFs+YMWPt2rUxMTG6hwm3bt2qVCrnzZtXn2oNCw0hAAAAAAAYmFQqLS8vf3qMo6Nj/bPVfcnj\n8f5tUKVS6V4mJib6+fmJRKL58+f36NFDKpVyudyTJ09+9dVXCoXimWXMnz9/3bp1mzZtCg4O\nZlk2MjJSIpGEhYXVs2ADQkMIAAAAAAAtQN0NZqhbu3atTCY7dOjQ0KFD9YOPbEP6lDLc3d2H\nDh167NixnJyc9PT0zMzM2bNnm5ubN17BtOAZQgAAAAAAMHZ37twhhPTr16/uYFxcXP0zLFiw\nQKvVRkVFtZTtZHTQEAIAAAAAgLHr0KEDIeT333/Xj+zYseO5GsKgoKC2bdtu3rz50KFDPXv2\nrLs/anOGhhAAAAAAAIzdokWLuFzu1KlTp0+f/uGHHwYHB7/66qsTJ06sfwYulztnzpyioiKV\nStVSlgcJGkIAAAAAAIA+ffqcPHmyT58+Bw4c+Prrr2tqak6cOKHbMrT+Zs2aRQgxMzObNm1a\n45RJHzaVAQAAAAAAgxGJRCzLPj3G29v7iTFt27Z9ZPyJkY+HEUJ4PN4jgy+//PKZM2ceCau7\nU+i/laGXkpJCCHnllVdMTU2fEtasYIUQAAAAAACAgi+++IIQsnDhQkMX8hywQggAAAAAAPDi\nEhMTjx07duHChdOnT0+ePNnT09PQFT0HNIQAAAAAAAAv7q+//lq+fLmFhcXUqVM3btxo6HKe\nD52GcNGiRc8Vv2TJEhcXFypTAwAAAAAAGNCiRYuetyFqPug0hN99991zxYeFhaEhfLrc3NzS\n0lJDV/EcGIbx8vIydBUAAAAAAPAcqN0yeuDAgQEDBjwzTKFQtG3bltakrVh+fn5mZib1tHl5\neTU1NW5ublwul25mDoeDhhAAAAAAoGWh1hBKpVIbG5tnhsnlcloztm7dunVzd3ennvbcuXMF\nBQVDhgwRCoV0MzMMQzchAAAAAAA0NjoN4fnz57t27VqfSKFQeP78+Za18Y5BSCQSiURCPa25\nuXl1dbWVlRX1hhAAAAAAAFocOg1hv3796hnJMEz9gwEAAAAAAKDx4GB6AAAAAAAAI9Uo5xCy\nLHvy5MmLFy+WlpZqtdq6b61fv74xZgQAAAAAAIDnRb8hrKqqGjVq1Llz5574LhpCAAAAAACA\nZoL+LaMrVqw4f/78J598kpqaSgg5cuTIn3/+OXz48N69e9+5c4f6dAAAAAAAAPBi6DeE+/fv\nnzRp0nvvvefq6koIsba2Hjhw4NGjR1mW/fbbb6lPBwAAAAAAAC+GfkOYl5fn7+9PCOFwOIQQ\nlUpFCOFyuVOmTImOjqY+HQAAAAAAALwY+g2hRCLRNYECgUAkEt2/f183bm5uXlBQQH06AAAA\nAAAAeDH0G8IOHTrcunVLd92jR4+dO3eyLKtWq3ft2tW2bVvq0wEAAAAAAMCLod8QDh8+fO/e\nvbpFwtdee+3AgQPu7u4eHh5//PHHzJkzqU8HAAAAAAAAL4Z+Q7h06dI//vhDd/zga6+99uWX\nX4pEIlNT05UrVy5dupT6dAAAAAAAAPBi6J9DKJVKpVKp/uXixYsXL15MfRaAhisvLy8pKTF0\nFc/H2dmZz+cbugoAAAAAaCXoN4QALUVhYWFiYiL1tJWVlVVVVTY2NkKhkHpye3t7NIQAAAAA\nQEsjNoRarbaqqopl2bqDFhYWjTcjwHOxt7fv3bs39bRpaWkZGRldunSxtramnlwkElHPCQAA\nAABGi35DqNVqN23a9M0332RlZSmVykfefaQ/BDAgCwuLxviGoqampqqqytXV1c7OjnpyAAAA\nAACK6DeEq1evXrFihZ2dXVBQkI2NDfX8AAAAAAAAQAX9hjAyMrJnz57x8fEmJibUkwMAAAAA\nAAAt9I+dKCwsnDZtGrpBAAAAAACAZo5+Q+ju7l5RUUE9LQAAAAAAANBFvyF88803t2/fXllZ\n2ZAkt27dGjt2bHBw8LVr1+qOa7Xaffv2zZ07NyQkZM6cOXv27NFqtc8VAAAAAAAAADp0niE8\ncOCA/trOzq5du3ZeXl7z5893c3Pj8f4xxbhx456ZTavVfv/990KhUC6XP/JWVFTUkSNH+vfv\nHxwcnJqaun379pKSknnz5tU/AAAAAAAAAHToNITjx49/fHDp0qWPD9bn2ImYmJjCwsLAwMB9\n+/bVHc/NzY2JiQkICFi8eDEhZPTo0Xw+PzY2dtSoUc7OzvUJAAAAAAAAAD06DWF0dDSVPISQ\nsrKyX3/9NTw8/PEzDOPj41mWDQoK0o8EBwfHxcWdOXMmPDy8PgEAAAAAAACgR6chDA0Nramp\nkUgkDU8VFRVlb28/atSogwcPPvJWRkYGl8t1c3PTj7i6ugoEgszMzHoGAAAAAAAAgB61cwht\nbW2HDx8eEhISFBRkaWn5YkmuXr169uzZTz/9lMN5wm43paWlUqmUy+XqRxiGsbS0fPDgQT0D\ndLKyshQKhe66qKjoxUoFAAAAAABo6ag1hP/3f/+3d+/e6dOn8/n8QYMGhYSEjBs3zt7evv4Z\n1Gr1Dz/8EBAQ0LVr1ycGKBQKPp//yKBAINB3d88M0Fm2bFlGRobuulOnTu7u7vUvEgAAAAAA\noNWgduzEqlWrrl+/np6e/t///resrGzevHmOjo7+/v7r1q3LycmpT4Z9+/aVlZXNnDnz3wKE\nQqFKpXpkUKlUCoXCegboDBkyJORv3bt3r09tAAAAAAAArQ/lcwg9PDyWLl166dKlu3fvrl27\nlsPhLFmyxMXFpVevXp988klaWtq/fbCysnL37t1Dhw6Vy+X5+fn5+flVVVWEkAcPHuTn5+v2\nJrWysqqoqNBoNPpPsSxbVlZmbW2te/nMAJ2IiIhlfxsyZAjd3wAAAAAAAEBLQf9gep127dq9\n8cYbf/75Z0FBwebNm21sbFauXNmlS5euXbseOXLk8fjKykqlUnno0KG5f9uzZw8hZO3atXPn\nztXd8+nm5qbRaLKysvSfys7OViqV+l1knhkAAAAAAAAAeo3VEOrZ2tpGREQcO3asuLj4559/\n7ty5882bNx8Ps7a2fvefBg8eTAiZOnXqu+++KxAICCH+/v4Mwxw+fFj/qcOHDzMM4+/vr3v5\nzAAAAAAAAADQo7apzDNJpdKwsLCwsLAnvisWiwcMGFB3RLf/p6enp/4xv/bt2wcGBsbExKhU\nKk9Pz9TU1Pj4+JEjR7q4uNQzAAAAAAAAAPSariGkIiIiwtra+sSJExcvXrS2tg4PDw8JCXmu\nAAAAAAAAANCh3xCKRKInjjMMIxaLnZ2dR4wYsWTJEhsbm6fnGT9+/Pjx4x8Z5HA4oaGhoaGh\n//apZwYAAAAAAACADv1nCMeMGePm5qZQKOzs7Pz8/Pz8/GxtbRUKRYcOHXr37l1eXv755597\ne3vn5eVRnxoAAAAAAADqj35D+NZbb+Xm5v7yyy85OTknT548efLk3bt3t2/fnpubu3Llyuzs\n7F9//TU/P3/FihXUpwYAAAAAAID6o3/L6NKlS2fMmPHKK6/oRxiGCQ8Pv3Tp0nvvvXf69Olp\n06bFxcUdP36c+tQAAAAAAABQf/RXCBMTE728vB4f9/LySkhI0F3369evsLCQ+tQAAAAAAABQ\nf/QbQj6fn5yc/Ph4UlISn8/XXSsUColEQn1qAAAAAAAAqD/6DWFgYOAPP/ywZcsWjUajG9Fo\nNJGRkZs2bRo9erRu5NKlSzgbEAAAAAAAwLDoP0O4Zs2aCxcuvPbaa0uXLvXw8GBZNiMjo6Sk\nxM3N7YsvviCEyOXyu3fvTps2jfrUAAAAAAAAUH/0G0InJ6ekpKQvv/zy4MGDKSkphJAOHTrM\nnz9/yZIl5ubmhBCRSHTq1Cnq8wIAAAAAAMBzod8QEkKkUulHH3300UcfNUZyAAAAAAAAoIL+\nM4QAAAAAAADQIlBbIZTL5fUJE4lEtGaE56VWqysrKysqKuRyuVAoNHQ5AAAAAABgYNQaQrFY\nXJ8wlmVpzQj1p9Vqr127duvWrd27d8tkspSUlNDQ0D59+piamhq6NAAAAAAAMBiazxCKRKJ+\n/fpxuVyKOYGKhISE6OhoNze3Ll26lJeX9+jRIz4+vqqqauTIkVgqBAAAAAAwWtQaQjc3t8zM\nzPT09BkzZsyaNcvNzY1WZmig8vLyX375xcfHRyQS3b9/nxAiEAg8PDx0p0H26NHD0AUCAAAA\nAIBhUNtU5vbt23FxcYMGDVq3bp2Hh8fgwYN//fVXmUxGKz+8sPz8fHNz80ee3mQYxtbWVtcf\nAgAAAACAcaLWEDIMM2jQoF9++eX+/fvffvttRUVFWFiYo6PjwoULExMTac0CL0CpVPL5/MfH\nhUKhQqFo+noAAAAAAKCZoH/shIWFxYIFC65cuZKUlBQWFvbbb7/5+vp++eWX1CeCehKLxU9s\n/GQymUQiafp6AAAAAACgmWjEcwjd3d29vb11DxNWV1c33kTwdE5OTj169KisrKw7qNFoCgoK\n2rZta6iqAAAAAADA4BqlITx37tysWbPatGnz2muv8fn8qKioJUuWNMZEUB8SiaR79+43b97M\nz89XKpUajaa8vPzGjRtDhgzp2LGjoasDAAAAAACDoXnsREFBwfbt23/88cdbt27Z2dnNmzdv\n9uzZXbp0oTgFvJiuXbu++eabqampFRUVmZmZAQEBfn5+3bt3xxkhAAAAAADGjFpDOHbs2KNH\nj7IsO3z48I8//jg4OPiJG5mAobi4uLi4uIhEIjc3t3HjxuH4QQAAAAAAoNYQHjp0SCQSjRs3\nzsnJ6fz58+fPn39iGHaXMSwul4tGvfHI5fJbt25dvHgxIyNDLBZ7enq6ubkxDGPougAAAAAA\nnozmLaNyuXznzp1Pj0FDCK1VRUVFXFxcQkKCUqksKSlJSko6e/ZsYGBgQEAAbs0FAAAAgOaJ\nWkN4+fJlWqkAWqLz58/fuHHD09MzJydHLpc7OjqamJgcO3bM1ta2e/fuhq4OAAAAAOAJqDWE\nvXr1opUKoMUpLS09evRonz596g7yeLx27dplZmaiIQQAAACA5qkRzyEEMB5VVVVisfjxW0PN\nzMxkMplKpTJIVQAAAAAAT0enIdy2bVtBQUF9IjUazbZt24qLi6nMC9BMcLlcrVb7+LhGo9G9\n2+QVAQAAAAA8G52GcObMmWlpafWJVKlUM2fOzMzMpDIvQDNhbW3t6+tbW1v7yHhZWZmVlRWH\ng6V4AAAAAGiOqD1DmJqaKhKJnhmmVCppzQjQfIjF4g4dOuzdu7dLly76wbKystzc3ClTphiw\nMAAAAACAp6DWEC5cuJBWKoCWyNfXV6VS7dq1SyaTlZWVEUL8/PwWLVrUtm1bQ5cGAAAAAPBk\ndBrCDRs2PFe8q6srlXkBmg8ulztgwICuXbvGx8enpqYOHTq0W7duYrHY0HUBAAAAAPwrOg3h\nokWLqOQBaOksLS2dnZ1ramrat2+PbhAAAAAAmjnsdQEAAAAAAGCk0BACAAAAAAAYKTSEAAAA\nAAAARgoNIQAAAAAAgJFCQwgAAAAAAGCk0BACAAAAAAAYqUZsCDUaTeMlBwAAAAAAgAai3BCW\nlpauWLHC19fX1NSUx+OZmpr6+vquXLmyrKyM7kQAAAAAAADQQHQOpte5evXqiBEjCgsLCSFm\nZmZOTk6VlZWJiYmJiYmRkZHHjh3r3r07xekAAAAAAACgIaitEMpksgkTJhQXF7/99tsZGRmV\nlZX37t2rrKxMT09/88038/PzQ0NDFQoFrekAAAAAAACggag1hLt27crMzNywYcNXX33l5uam\nH/fw8Fi3bt369evT09Ojo6NpTQcAAAAAAAANRK0hPHTokIuLy7x585747qJFi9q3b3/w4EFa\n0wEAAAAAAEADUWsIU1JShgwZwuE8OSGHwxk6dGhycjKt6QAAAAAAAKCBqDWEhYWFzs7OTwlo\n3759UVERrekAAAAAAACggag1hDU1NWKx+CkBEomkqqqK1nQAAAAAAADQQNQaQpZlqcQAAAAA\nAABA06B5DmF0dHRaWtq/vXvt2jWKcwEAAAAAAEAD0WwIL126dOnSJYoJAQAAAAAAoPFQawgv\nX75MKxUAAAAAAAA0AWoNYa9evWilAgAAAAAAgCZAbVMZAAAAAAAAaFloPkP4OIVCcfPmzcrK\nSi8vLwsLi6cH37t37/Tp01euXMnPz+fxeO3atRs3blzfvn3rxmi12gMHDhw/fry4uNjGxmb4\n8OEhISEcDqf+AQAAAAAAAKBDs1OKjY2dPHlyeHj4mTNnCCEnTpxwc3Pz8fEJCAiwt7dfvXr1\n0z++e/fuffv2WVhYBAYGBgQE3L9//+OPP/7tt9/qxkRFRW3bts3V1XX27NkeHh7bt2/fvHnz\ncwUAAAAAAACADrUVwj///HP06NG6kwZ3794dExMTEhJiYmIyduxYpVIZHx//wQcfdO7cOTQ0\n9N8yBAQEzJ49WyqV6l5OnTr1zTffjI6OHjt2rImJCSEkNzc3JiYmICBg8eLFhB/aLgYAACAA\nSURBVJDRo0fz+fzY2NhRo0Y5OzvXJwAAAAAAAAD0qK0Qrlu3TiKRHD58+Nq1a7169QoPD3d2\ndk5PTz9w4MDRo0dTUlKkUunGjRufksHX11ffDRJCTE1N+/Xrp1arCwoKdCPx8fEsywYFBelj\ngoODWZbVLUjWJwAAAAAAAAD0qDWEV65cmTx58pgxYzw9PVetWlVQUDB37lz9c4Ourq5Tp05N\nSkp6rpyVlZWEEEtLS93LjIwMLpfr5uamD3B1dRUIBJmZmfUMAAAAAAAAAD1qt4wWFBToO7EO\nHToQQtq3b183wNnZuaKiov4J8/Lyzp0717NnT31DWFpaKpVKuVyuPoZhGEtLywcPHtQzQCcr\nK0uhUOiui4qK6l8SAAAAAABAa0KtIVSr1Xw+X3ctEAgIITzeP5LzeDzdE4b1UVtb++mnn/L5\n/Hnz5ukHFQqFfgo9gUCg7+6eGaCzbNmyjIwM3XWnTp3c3d3rWRUAAAAAAEBr0rjHTrwYuVy+\natWqwsLClStXtmnTRj8uFAplMtkjwUqlUiQS1TNAZ8iQIV5eXrprDofz+EcAAAAeIatU1P9r\nzeaAy+cKTR79khQAAOARNBvC6OjotLQ0QkhtbS0hZMOGDQcOHNC/e+3atfokUSgUH330UUZG\nxgcffNCtW7e6b1lZWeXk5Gg0Gv1NoSzLlpWVeXp61jNAJyIiQn99+fLlI0eOPO9PCgAAxubD\nwVHVZS3pC0Tf0Z1e+ybo2XEAAGDcaDaEly5dunTpkv7liRMnnjeDUqlcvXp1amrqe++95+3t\n/ci7bm5uCQkJWVlZHh4eupHs7GylUql/dvGZAQAAAC/Go287WZXi2XHPg2XJrb9yxOYi5+72\ndDMTQpw62VLPCQAArQ+1hvDy5csNzKBSqT755JNr16698847ffr0eTzA399/9+7dhw8ffvvt\nt3Ujhw8fZhjG39+/ngEgLThjf+cIISGGLgQAoIWZ810w9ZwatXZRp7VOnWze2D6RenIAAID6\noNYQ9urVq4EZNm3alJiY2LFjx9zc3F27dunHBw4c6ODgQAhp3759YGBgTEyMSqXy9PRMTU2N\nj48fOXKki4uLLvKZAcaJrSlhNUqOuSMhhKcsF6rKH76h1WhK0rl2XQxZHLR2Dx48SEhIMHQV\nz8fb29venv5yDQAAAEAz1Iw2lSksLCSEpKenp6en1x3v0KGDriEkhERERFhbW584ceLixYvW\n1tbh4eEhIf9Y7HpmQEtRVFSkO4ax4cTXfxJd3Vw55heN1LW8vFygUmVmZgr5XNM/3uRU51WM\n20dlFoZhcGsuPE6j0VRXV1NPW1JSkpGR4eLiUnffKVrUajX1nAAAAADNE82GMDY2lsPhjBgx\nghBSVFQ0a9asuu96eXl98sknT/n4Rx999MwpOBxOaGhoaGjoCwe0FHfu3MnMzKSTi+3SVezV\nZt/ES+7v86qqbLTa5MQr3vd+ENekX3D/oLbB9/rqcDgcNITwODs7uwkTJlBPe+fOHXNz8169\neukfGAZouag/mggAAFB/1BrCq1evjh49+vvvv9e9rK2tjYmJqRsQExMzYcIEX19fWjO2bq7m\nKntHFbV0jmHkhnZA1mpF+5f5DH9IyUaePKO2/1JvEwtC6MzCcDhU8rQCvJr8Hnc2EDLE0IUA\nQMsgr1EaugQAADBe1BrCLVu22Nrazpw5s+7g1q1bR44cSQhRq9VeXl4//fQTGsJ6ktzYxrsU\nRT2tKOMgIYRbnkEIMT29hGZqroD4h9FM2OJolIQrIIRwawusq5LZx8YBAHS+Dt/ddaDrsIje\ndQfVKs2Pbxxp29UucNFLhioMAACMELWG8PTp08OGDRMI/vGHr4WFhf4Jn6CgoDNnztCarvXj\nibmOjx688dxUMk3xrWdGcUztGHPHhs7FcBuaoSVTpR2t3TfXbO4pjrV73XHl1V21eyOkHxYx\nPJGhagOA5mb0f/p/O2uvRqUZNufhltpqlSZy0aGCzNLJK3BzAQAANClqDWF2dvbTnxRycXGp\ne049PINaprmf3DRTaauLSHVRQ7MY9yIYv9NInvuQqu/9TefE6QeVKdE1u6dLJkSiGwSAutx7\nt13044RvZ+3VallCCGFJ1KLDBRmlb+2YLLU3NXR1AABgXKg1hHK5nM/n6186OztXVVWJxWL9\niImJiUwmozVdqyca/L6w3zxq6bRa2e8faPJTBF3HqXPOcWw6qjPjTEJ+4Fh1oDYFYeilaiK5\nubkZGRm0sjG2r7YrKFB+65djOd5Sq719aE2XzK/veS4prWhLTp2iNUvfvn1NTExoZQMAQ9H3\nhISQqge1+RkP3tox2QLdIAAANDlqDaGVlVVeXp7+JcMwpqb/+A/bvXv3rK2taU3X6nEsnYml\nM51cWk3NrnBNUZrZ/HOq9OMk/6rkld21BxbWHnjddE4c174rnVlaIDbxx24X19DNydEq+hT8\nSAjb7faXGo7Q4cY3Dje+oZhf4/YXae9FMSEANKWzO1OO/3BR/1IkEShqVUqZSq1UfzX5N90g\nh8eJ+CaobVc7A9UIAADGhVpD6OPjc/z4ca1Wy3nSbpNarfb48eM+Pj60poP6k59dp7570Wze\nGY5F+4dDDGMy7ttajbLmt2nmbzbRjanNkK2JViFu+PfxLFtTQghbd4QQQhiGyyq57N+bB3KF\njEja4LmImKtpeBIAMJSuA11MzIW6a41G+0fUlYriGsIQt55O3iMenqHCcBg7V0vD1QgAAMaF\nWkM4efLkWbNmrVu3bvHixY+/u27dutu3by9btozWdFB/wr5zhb1nM2JLQgirZTVqLSGEMByT\nCZHayrxnfLhV44gt2erCxsrOsv94qZaz1fKGZ2WEkoYnAQBDsXI0t3I0J4SoVZqoRYdl1QpC\niNRWkhKX6djJZuSCfoYuEAAAjA61hjAsLOy7775bsmTJjRs3FixY4O3tzePx1Gp1cnLyxo0b\nt27d2qtXr1deeYXWdFB/jNBMf337Jiu7LXq4qx3DcKRtDVRUs8D3DDG196SYUJ19Rn7qM36P\nSarr+3kufpp7CeLRa/63MEuDkf8jgyfSqLV5acWGruL5SO1MpXbG++2GrhvMz3jwn+0T3x+4\nmSfkLfomSPc8IXpCAABoYtQaQj6ff/DgwaCgoK1bt27dupVhGBMTk9raWpZlCSE9e/Y8ePBg\n3V1noMnk3y6RV6tcfRwIIWXiARcLLHQNoaxScevCXe/hHoYtz4A4Fu0pdmvKa3vkf34hmbiF\nY+WqvnnYbHZsTfQs+fHlpnPiuHZdaM0C8LiaMtmnY382dBXPZ8ybA0a/bryn7f387rH8zAdv\n75hsav1wjyj33m0XRI7/7rX9UjvTl0JpflEFAADwdNQaQkKIk5PTxYsXt2/fHh0dff369YqK\nCkdHR09Pz0mTJoWHh6MbfC5ndly9df4ulVSl9ytzrhW6+TqZ25gU3y0vzauMfP2wRqW5feke\nT8i7fDiNyixcLjNr/RgqqVoidc75mp1hktAogU+Y+s5ZQghhOJKJP9bsnlkdNVz6TgbhCQ1d\nI7RaAjHfbwr9rYaqy2XJx247uFu79XKintzZ0556zhbEe7hHyNKXpXaSh/fwE0II6div/Vu/\nTmKYlrdjMwAAtGg0G0JCCJ/Pnz179uzZs5/4blJSEvaVqae71wsSjz77TPn6y7iUq7+um5nW\nLDy+UR9Mz7XtaBZxkufi949RhiOZtFWVdtTID2mExiYyFbzy8XDqaXNTi5KP3fbo227qf4dS\nT27kfEZ2rPtS3wS69HAwRDkAAGDUKDeET1RRUbFjx46oqKjExET2kZ024F+MW+I/cj7NJ0nO\n77l+YvMlUyuT8oIqBw9rgZgf/tlIoQmWbelgTKz13SAjkDD8vx+OYjj8Lsa7cNp4ZDJZZWUl\njjaF1kFqa7yPUwIAgME1bkN49uzZqKio6Ojo2tpaiUQyceLERp2uNTG1MjG1amgStUpz43S2\nRqUhhDh1suk9pvP5/TcIIRqVZtDcPoWZD3RhLj0crJzMGzoZ/I3r6GP+zm1DV9FqFRYWJiQk\n7N69u6io6OzZs5MnT/b19XVwwLoKtGAMB7eJAgCAwTRKQ1hcXLx9+/aoqKi0tDRCyIgRI+bO\nnTty5EixWNwY08G/Kblbse+zP7Wah8+osNqHy7O1lYojX/+lDxv4ivewiN4GqK+VKs4p/+3D\n3//zE77+oK+wsPDPP/+8c+dOjx49srOz27dvn5aWduLEiaVLlzo6Ohq6utapugzLsAAAAK0Z\nzYZQq9WePHkyKirq4MGDSqWyZ8+ey5cv//jjj+fNmzdu3DiKE0E9tXGzWvXHw+c5ZZWKr6dH\nV5XKlDKVvFox/YtRnoM6GLa81kSrYeXVChOpiBBSUVyTnZyvf6u6TGZqia9C6EhMTLxz5067\ndu2Ki4sJITwer02bNrpxNIS0lBVUWbb531k1SplKd1FdWisyExrz08L3bhbrv1+jRavRCngK\nZa3i7nX6Z6KaSEU27aTU0wIAQCtDrSH873//++OPP+bk5Nja2i5YsGDmzJleXl537tz5+OOP\naU1hVJKOpd9JKaCVTa3QJMSkcbgMX8RTylQu3o4b5+73Hu5h296C1hQcLjN2sT+tbE0j71ZJ\ndtJ9Kqnup5f8FX19yCxfSwezopxyjVp7dmcKIST9Ym7ysfQJywdxeRwqE/mO7iQ2M9INS2Uy\n2dGjR3v3fnQ1u02bNidOnBg4cKC5Oe58biiWJasDfxo80/eRMyHybpWsD9s9ddWQnoGdDFWb\nwX0dvrsx1ktf6b8zu9D907H0T5L0Hd3ptW+CqKcFAIBWhlpDuGLFCnd393379o0ZMwYnTDTc\njTPZ53Zda6TkGZfuEUKSYtMp5uTxuS2uIbz1V0706lMUEx799rz++tflJ/TXO1ecpDWFR992\nRtsQyuVyhmEe/9cLl8vlcDgKhcIgVbUyDEMWRoVsmLmHsKzXUHfdYEHGg2+mR/uM8PAZZbzd\nICFk0IyeiloVlVSWqoRqbkcVx5wQ4lAVLfJoYzq0DyFEoskmhNRwXanM0razLZU8AADQulFr\nCG1sbDIyMpYtW5aenh4eHo7btxpo6KxevUZ3ppIqMTY9O+l+8GI/vpB3LS7r5rk7kz4YTAhJ\nPnH7ZnzO1I/obCjfEjdF6NTfme5m/VdP3E6/dM+6nTQ/vaSrn/Oti/f8pnjR/ZvM3MaEYraW\nRSwWsyyrUCiEwn+0xCqVSqPR4BFlWjr0dHx9a+iGmXsqimsIIYoa1bqw3T2Guk/9aJiRn5Dn\np32dZcuopNLKC4lGxTF3IAxXyxZYsxke7AlWrWCr8hmxFSOis9bNZwMJ2UAlFQAAtGLUGsK8\nvLz9+/dHRka+9957y5cvHzFihO6uUVr5jU0bd+s27tZUUnUe4Ky/Lsopv5OSrxupO26cnDrZ\nOHWyoZjQb4rXwS/jT0QlEELSL96b812w1xA3ivmNnEgkCg4Ovnz5sqvrP9ZP7t+/HxgYaGpq\naqjCWg2tRiuvVhJC2rhZRWwI3rTgACEkO/l+76AuY5f4yyrlhBCegCsQG+k9IKy8gpXRaQgZ\nLp9VK7QV9xiBGVHVshoF0ahZZRXhCgmroTULq6yhkgegPtTZZ5SJv5hM2GzoQgDguVFrCAUC\nweTJkydPnpyVlbVly5Zt27ZNnDhRIpEQQu7fp/OYFjRcuy52NdgzkCqlTPVOn42P30imVmm+\nn7Nf/7L7YLcFkeObtrRWyNfXt7y8PD09ncfjsSwrl8uzs7Pd3d0ff7AQXsDWt44mxKQ9MqhW\nas7vvX5+73XdSw6X88Wl+RILY1yPlVI9ToZV1VZvC2arizUF5RxTe1YtFw1cIg78guIUAI1O\no2Q1KkYgIYRoH2Sp867o32FlZYzY0nCVAcBzYBrppHiNRhMTExMZGRkbG6vRaFxdXUNDQydO\nnNjc/m67fPnykSNHVq1aZehCoAUrL6xWKzW664QjaYfWnmW1rEDMn7V+tFOnh/eLmpgLdXuQ\nQgOVlZUlJiampqYeOXJk1KhRnp6ePj4+1tZ0ltONnLxGWV368Auj4pzyqDcO15bLOVzOy6/6\nDJreUzfOE3At7LEY++LY6iJ1fsrDa7VCdvx9bX4yYRh+94nCPhG6cYbD4bn4Ea7AcGUC1Ivi\n3Ab5XxvM5pziSJ2UCdvkf20w/88VQogs9j3ltT10v0MBaCIsK/t9hWjQUoZvLA/pBAYGNlZD\nqJeXl7d169YtW7bcuXOHENLY0z0vNITGrOpBbVl+FcWEySdu/x552bGjzd3rhZ4BrrcT8qb+\nd6gDpVt/dRw8rPnCRjk+tGXJyso6ffp0//79O3em86gt1FWQ8WBd2G43X6ekY+kdejrdTy8e\nOrvX6P/0N3RdrYHi7Neyk3X+i6NVs4oqQggjsiD6ZzQ5PLNZR7ltexmiQIDnoVFV/zpJU3jD\nbM4p9e3fdQ2h7MQHinMbTF87wWvXx9D1ATw3Vi0vXy42/79bXJuOhq6liQQGBjb6X5ZOTk7v\nv//+8uXLT548GRkZ2djTAdTf5UM36e4yqqM7T+z6n9mEkG2Lj9JNvvLkbHtX3IRDOByOgCvk\nco33TLzGo+sGewx195vaI+lYuolUqNtjhhCCnrDhhH5vCP3e0F1r8hKrIocRQghfzLF0Nos4\nyUhoPtUM/6NWsKzGeL7vbzpcvukru6t/nVS1eZCo33xCCLpBaIm01YXVW8dIpvzCtf3HZtra\nqoKaXyaajPuO69DKd0VpoqUGhmGGDRs2bNiwppkOoD7ad28zfC6d/2KV3q9MPJreY7i7bXuL\nsoKqxKPpQ2b5EkJunb97P70kIMybw6VzDqHEooXdd5p2LufrV6MbKfk5crAx0s7ZONZnhEdj\nZG7+WJase2WXb2DniR8OvnezqKP9LR7j0KGn46IfJ3w7c2/brnY9/j6LwgipUg+xamqnm2hL\ns2V/fMTvMEiVdpgRmLKstvKbXqKhHzJCM1pTcCza8dr3o5WtRZPFrWari01CfjB0Ic2C8vp+\nTV4CxYRc287aolTZiQ9YwmoKbwi9p6lSD6pSaf77WTx8NTHybY6hMXEkdjyHHtWbB5vOieNY\nPtxzUVtVUL15MMfKlWvX+u9Fwr1nYLzcezm593KikkpRqwpc2M/Bw4YQkpGQd+2PzPHvDNS9\ndedqvksPByqztEQiU0F7T3sqqViWlVcrdccwVhWXB7ptjs2YYWpnRwiRVyuFJnxaZ59IpEZ6\n0iMhhGHIf36a6NjJVven1/hee5LU9oQQN1+n5THTzayNeoGlZs9stqaEbk5V2mFCCFtTzNYU\nE0Jq98ymmFzgNYn3yi6KCZuA6uZhbWU+lVTasjuMwISR2BFCNHcvaRWVioubCSGsvJytLubY\n0PnShxFbCrwmUknVZOQnV2r+fpC1MSgStlLPKR62ijD4kxUaDcOYTIisPbCw+ocAyexYQghb\n+6BmewjH0lkSvtcYnujG/7sAKBCa8HXdICHExFxoavm/PRiNuRskhLj0cHjvYDiVVBWF1R+N\n3NI7qEvQWwOOfH2o2/3rBW5WoSvDT2y+dOzbc6/HzLJpJ6UykVFjWcsby1j75Yyli+41l8fV\njUtufsXtNIo4v2TI8gxKPOQDVkVnl2bF+e851h34HUcQQpQJP3Ks3HgdAliNSnllG8fShe9B\n526alvittvzMWnXW6UZKXnv3AvWcXPuuLa4h5HuGMCIK/7ZklTWEPNwYgq3M11YXEUIYLp9j\n40G4Dw+nYXgiwqHypyadu2ygNWFl5ep7NNe6+d3GayvuVW0aTAip/nkix9xR0P91dfZZilNw\n23hyzNpQTEgLGkIAyhw72nx0OsLQVbRCZoIHy8Z8sP3w7P1KDf/vO2dPRiUk/bR7+dgtFoLh\nhBhpQ8iqapWJv9DKps6/WvlNL9HAxfwKAZerbC9OUVzYpEz6VVNwleEJNQXXqMzCa9uL69ST\nSqomIxzwH1qpRAOXEM7DJ2DVWad5bi+LAt4hhIgHLyeEJYzx/u0rHrZCW72ATi6WVST8qL57\nQTz0Q/mJFaxabhK8QXZyJdfKRTjgTf3vv4EYkTmVPE1JPHQFGbqCYkLZ8fcVf30rHrxcefMI\nx9JZU3jDbNYxjpTODTgA/0Z1fU/Nnsb6c4utzNNU5tVsHU03rWjgYvHoL+nmpAINIQA0IlZe\nqX1AbedxcZ+Z07U/HP2rQGvRgbQhqjvXc86fihh0QOQ5lqjlmjpHYDUEx8qNEVtQSdU0WHll\n7b65dHPKji0TEkIExFlzoHb/gYeDx9+nlV88bFWLawhpqtON8Dq8zHXwfviCYQgx6geleB1e\npphN4DWx9uAi+enP1WrCaIk8/ku+q59k6m/69StoOF03aPraCU3+Da2GNf97jxndWRSGrg5a\nNRNrwqOxsQKrJf87BIElWs3DpW8O73//QmYIYSh8i8Q0y+VB0njnELYUOHYCoFGpbp+sjmph\nu0mZhu/le4YYuornQHeFkBBCWK0iYZu6IJVRVamIuUBIhP5vccwdKc7QElcIoQns/fT0vZvF\nDUzCYxS2/HS1UsNwGS6X6Sw51k50hRC2SNk5pSpEo2U0ai1fwHug7qDUSho4l7WTedinIxqY\npOVSJmytPfK22Wu/c9v2uhX1Kef6Zo/12USjrP5lkrb8rvkbiYYuEOA5aKsLqzcPYaRO6vQT\nfO+pmow40zlxXPuuhq6r0TXFsRMAYMw4Uidh3zkNz5NyMqO28uEGj3ameY7mOQzDagmnpLpN\nXoWrblxowvcZSeHUII6Va8OTNCWliv9nsvez457FsvoPiTJNd82wHaWaXDGp4rHVxYIxqoRs\nQrIJISzDu28xk2Ua+oS9G8/eDYsH8Ji71wrTL+Y2MIlHm1v9+/zGIVrdS4Zhdd/3S5k7A8zW\n6QZZwhxOGpeW69PAueieNNvilAr61Q48ZNG2FyFEo9YyuiUGroA79ufs2KPdDVscwPPQdYMc\ni3Ym036rWGEpHrpCIbLQ7TtqDD0hGkIAaERcuy4mIZsanqdbUYCmIFV3rVJoWA2HIRrCEiuz\nKnvbh+McK1cqc7U4ihrl/i/ONDyPr0tye+u7f79iBXYKsYSwhNxPvatQF+lGVVru8WvxKnVD\n77gb8+YAN190hPCo+ZHjtWotjUwb1CrNz+8cq72fOdv/e21FLkO0AqnZ7htvV6rbRXwXJDQR\nvEpjGlpHCjWlwqzSsvwqKqmyrpTHbkwYtYjXwcfxQTGRqkRp53IUtaoDX5wRiHj89jlUZiGE\ndOrvjFMnoPGwiqrqTYM4Vh1Mw/dqNFpCSG2Vwmzct7UaZXXkULPXL7f6+5/REAJAI2JrS9V5\nFO4aEviEaWVlhJCMS/fupV7t7foXIYQw7NVcLwuP7t1ediWEcERS1e2TDZ+L5+DFmNo1PE+T\nEZuSdz6jciBEwMP/ZYn47i5BmZyoCRGYebrlVHd6Uyt8uI9u18kUZjLr2PL+jIYmIJLQ3N49\n4gvfws8XZd51aisp4nMVt/J7BLf/1GLRnyYOLW8nGIpO/5x0ensSxYSH150jhBAiZJhZ7PH/\nHTxL8RDajbcX4xxCaEQMh3SeZDriPcITahTVhJDaSqUZwzGZsLnixBesEWz0hYYQABqROi+R\n7jOEbQlp+/cdnRzC+rY9R2Tn5LEUZ2h5zxBy1VUWCQsbKTlHVUEIMb9Gc09CQojYchUhfenm\nhFZAFrNEk3+1gUlYlqgVaqJRkKJkU1NTU7VSwFNwGK2Uny8ylyg291XYeROeCU/IZRrcY3As\nnE1CoxqYpIl5DXG3bGNGMWFOSsHV3zNE5sKaMplFG1Mul9N/YneegM4+rg+hG4THaDVaebWS\nSqqqEsXqxdKptbe9h7urZEqWMMoadW2FPPNK3pbFogVR6rZd5FQmEpjweXyq/9egBA0hADQi\nVtKO7fkmlVTyWuWtkwk92l9lbLvllLV3Vh7IYke6tq1m7l+4fr+Hi39viTmN3cYIUZt2aFlb\nEDJCM/Goz2hlU13fpym6Keg7hyOxlZ/6lO8ZwrXxUF7dpS2/K+w7jxHTOduD5+JHJQ+0Mup7\nVyifQ6iWtRE83KXGyeQGqSGEEJJ/iRCippG+JT5c1MXPuYufcwOTaDXaa3FZGpWGEGLTTmpq\nJT7zWwohhC/gjn69P1/08M/Ldp72tu1b0qbN0IJkJeV/Nfk3igl/Xnrs56WEEOJk8cb9PfEs\neXgC4bpXdtGaYta60b2Du9DKRhEaQgBoRJlZwm+W0bnz3lRU9dbwa/E3Xzq2e7SIL/tw7IE9\nsb7ltRaDu0j8O53esGF4aY0VlYkivjPp6UIlUxNhBBLRy+/SycWymrwrJpN/4tp2JoQo/vpW\n0D2U3zlQFPBObcxifqcRvA4Bz8wB8MJMZxwiWiqdGiGsljAceZVi08JDncjPJvyavx7MnB85\nXmor0b1FZxYaO9G3RGX5Vfu/OKNrCAkhrPbhlvWyKuWRb/7Shw2Y1H3kgn4GqA+MgIm5sPOA\nhn61UVdlSW3+7RILO0legZO5raS6tNbaSWrdjuYRx+a2Dd3ZuJGgIQSARqRk5DaeYiqpeAz/\nRNGrmWx3G0/CUSsJIRIXhscRp5Cg6gJXgZutjZbO00cqTi2VPC0Sw0he2f3ICCGEcLgmQesN\nUhEYFUZI81ZGWaXim3lHuTyzvKqOPLba0qXdupnH39ox2cLelOIsxsm6rXTl77N017IqxYYZ\ne6rLZIpalbxGGfbpiB7D3A1bHhgDx442b2yfSDfnlZhbW9+OIYTUlMnHvDFg1EJj+ToD5xDi\nHEKARlRWVpacnEw9LUer8Pw96Oag3SoB/ZuRPD09bW1tqadtiZQp0XyPoYzY0tCFgLEozC5T\n1NB5KEhRo9y58g8OlzN5xeDvIvar5OrFO6cc+OJMSW7FtI+HmVlR2YeJ8IVcBw8bKqmazL7P\n/jy3+xqtbCxLFDVKwugO9NYKRHylQiUUC7h8mvtwfJmwkOHgMUJoFJ+HVyfUUgAAIABJREFU\n/Hrnav7TY8xtJZ9fmN809TQ9nEMIAI3L0tJy0KBBjZGZHfDAT2TUWwU2AYEX5S9fAZ5ux/IT\nDT+H8BFfTdmpu/hiwq+6i29n7qWV3MHd+sPjM2llaxqmVmIbSnfBaTVs0Z0yvpBr62Ipq5BX\nPaht425VXSory6+ysZWKzYRUZgFoVAu3hOg3p8m5Vrht8RG1UsvhcEKWBfQY+nCtWyBq5R1T\nK//xAKC1YtANArQ63Qe72bnSWZHWqLQMl+FwGEJIdnK+Sq7u2K8dIYRlWY1KS2sPTKldy7v7\ndPicPsPn9KGS6s9fkhOOpC3cEiKSCM7vvX76p6T3DoYTQs7uTDn1U6LuGqCRFOeUn9h8iWLC\nyuKa639mWzmYleRWWDiY7v3kdMrJTDsXmjciDZjU3aWHA8WEtKAhBAAAgGZh6Gu9GiPt2Z0p\n1WWykfNx0gllAWHeAWHej4/7TfHym+LV9PWAUakorjm7M4V62pLcCkJIaV4lIST9wt30C3cp\nJu/Ytx0aQgAAAICmhuakCbTtYueFvWQaWen9yq1vxSzeNdXQhTQL7bra0VqFrimX/zB3/4DJ\nXv1CuqmVmjUTd8z9fqyVo/mN01kx316Y8VWgnTOddULrtjT3LKUIDSEAAAAANEi7rnbtutoZ\nuopWSKtha8plZtYmhJDqe1kvCT8l5GFDWFFUI7VrpscYNAGhCb+9pz2VVKyWfWvHZN3anUqh\nJoQ4eNjYu1q297TvPtitjbs1rZvMmy2ae0ABAAAAAAAtGZdzVw37PivpPiGEU1vY0T5VN352\nZ8qqod/rd0OBhmA4jP5OTi6PY2opFpnwdS/bdrVr9d0gwQohAAAAAABFxXfLc68XUkklLr+w\nZOjqqLlFPmFjpWx+Z0ISj966df5u+dlflwfuSosbpOXR2dmoi78LNoYlhHC4nDUJCw1dRVND\nQwgAAAAAQM3Nszm/ffA7lVQMYcd4d5vef+OWrRo+V91pEIl8/bCn07VJfXfsuzQhMfoUlVkI\nIe/HTHfqjDN4jRQaQgAAAAAAajp4O4x/Z2DD82jUWq1ay7L9qyrXzRkaeSghmBDSve2NSf1+\ny7ZY6jh2lCMhPAGX4TANn8uYH0cENIQAAAAAANQ4WOTbdm/oEXmslt33+RmVUkMIeUBYTyeb\nEN/dXEY7ue/PKTk97ibfIOQGIcTe1fLlV30aXrNA6EqIScPzQEuEhhAAAAAAgJqKo6uZ23sa\nnmdU1ycMMkTj7Zzo7ZyoH6k92PCpiJprLemLAy2MFBpCAAAAAABq7ss9taUNXSEkhPC5KoZh\nddcivlwqLieEsCyntNZKrXn4N7xWy1FrKfw9b6txxD2jRgsNIQAAAAAANTYjF2XYjKeVLTMh\nr+bK7sl9fs2RzGxbtb3CfpKkMObHMzO7jB9t52JJaxa3rh1ppYIWBw0hAAAAAAA1bdyt27hb\nU0mVlXj/2uZ1U/rtMA2NtKlqQ2K2uy3+tfbQfyJ4kT/GcAOPrRJJBFQmAmOGg+kBAAAAAJoj\nJ4vcyf12mIZuFvhOfzjEMCbB35j2mTpn8BYhHwfTAwWtbYVQq9UeOHDg+PHjxcXFNjY2w4cP\nDwkJ4XDQ9wIAAABACyNw6MSd8wfPxY8QIpIICGEIIYRhTMZ9x+8axPCxLyhQ0No6paioqG3b\ntrm6us6ePdvDw2P79u2bN282dFEAAAAAAM+NEVvoukFCiKVzG56p+d9vMPxOowjT2v6SB4No\nVSuEubm5MTExAQEBixcvJoSMHj2az+fHxsaOGjXK2dnZ0NUBAAAAALwgrl0X6fI8Q1cBrVCr\n+l4hPj6eZdmgoCD9SHBwMMuyZ86cMWBVAAAAAAANx/BEhi4BWqFW1RBmZGRwuVw3Nzf9iKur\nq0AgyMzMNGBVAAAAAAAAzVOrumW0tLRUKpVyuVz9CMMwlpaWDx48qBuWlZWlUCh010VFRU1a\nIgAAAAAAQLPRqhpChULB5/MfGRQIBPr2T2fZsmUZGRm6606dOrm7uzdRfQAAAAAAAM1Jq2oI\nhUKhTCb7//buPK7JK10c+HmTQMK+iiCyyA6yyCKLguAOCvbasePH9rowim1vpeNSqwXFMioy\n1rkVW5XBtdUqLu3oAJWtCFZQtkDYRFYtCYsCISASQpbfH++9ufmBIkuSl4Tn+xcksZ+HM2ee\nnOec854z7EUej0ej/X/7rZcuXerq6or/TCKRRv4TAAAAAAAAAJgOlKog1NfXf/78uUAgEO8a\nFYlEbDbb2dlZ8mMRERHin4uLi1NTU+UaJQAAAAAAAABMDUp1qIy1tbVAIGhqahK/0tzczOPx\nJI+ZAQAAAAAAAACAU6qCMCAgAMOwlJQU8SspKSkYhgUEBBAYFQAAAAAAAABMTUq1ZdTc3HzV\nqlVpaWlDQ0POzs41NTW///57cHCwpaUl0aEBAAAAAAAAwJSjVAUhQigiIsLAwCAzM7OwsNDA\nwGDjxo3vv/8+0UEBAAAAAAAAwFSkbAUhiURat27dunXriA4EAAAAAAAAAKY6pXqGEAAAAAAA\nAADA2CnbCuEEvH79msViER0FAAAAAAAAAMiVQCDARCIR0WEQqa6u7uTJk0RHAQAAAAAAAAAE\nmO4FIQAAAAAAAABMW/AMIQAAAAAAAABMU1AQAgAAAAAAAMA0BQUhAAAAAAAAAExTUBACAAAA\nAAAAwDQFBSEAAAAAAAAATFNQEAIAAAAAAADANAUFIQAAAAAAAABMU1AQAgAAAAAAMHXx+fz+\n/n6iowBKCwpCAAAAAAAApiiBQBAfH3/gwIFXr14RHQtQTlAQAgAAAAAAMEVhGKamptbY2Hjw\n4EGoCYEsQEE4LdTW1opEIvxnJpN56NCh3t5eYkMCYGKgM8sBNDIAYIwgXcgBiUTatWtXYGAg\n1IRARshff/010TEA2aLT6TExMa2trb6+viwWKzo6urm5eWBgYP78+USHppw6OzsTExN/+OGH\noqIiTU1NU1NToiNSHtCZ5QAaWZ4gXchBf39/cnLy+fPn79y5U1tba2pqqqurS3RQSgLShdxg\nGObr69vW1lZWVlZeXu7v76+qqkp0UMppeqZlKAiVn6amJp1OLysre/bs2c2bN9lstqur686d\nOykUCtGhKaGenp49e/Y8efKkr6+vvb39wYMHPT09np6eGIYRHZoygM4sB9DIcgPpQg5aW1v3\n7dtXXFzM4XAEAkFjY2NWVtbMmTMtLS2JDk0ZQLqQJ6gJ5WDapmUoCJUflUpduHBhWVlZVVUV\nl8t1dXU9ePAglUolOi7llJSUVF1dbW1tHRkZ6eXlVV9fX1FR0d7e7uvrq/TZRA6gM8sBNLLc\nQLqQNS6Xu3///o6ODmtr69jY2IiIiO7u7vr6+sePH/v7++vo6BAdoMKDdCE3bDY7KSnp3Llz\nnZ2dr1+/ZrPZUBPKwrRNyzCFMy309/f39PTgP+vp6UH6kJ3S0lIjI6OjR4+qq6sjhObNm3fg\nwIHc3FyE0K5du5Q7m8gHdGY5gEaWD0gXsnb37t22trY5c+YcO3aMRqOlp6dnZmYihLZu3Wpm\nZkZ0dEoC0oUcdHZ27t27t6ury8jIKDAwUCQSPXjwAH+e8PDhw5qamkQHqDymbVqGFcJpQVVV\ntaqqytDQUFNTs7y8fDpMdRDll19+CQ0NdXNzw3+l0WgLFy6k0+kMBgOaXSqgM8sBNLJ8QLqQ\ntYsXL3Z3d//tb38zNDTMyMg4e/asSCTatm3bmjVrEEKZmZmmpqawuXGSIF3IQUJCQl1dnYOD\nw/Hjxz09Pd3c3IKDg1ksFoPBgHVC6Zq2aRkKQuXHZrO5XO6yZcuCgoIWLVpUXl5eVlY2rFsX\nFhZqa2vDNo+JYbPZ58+fv3r1aklJSW9vr7Ozs729vfjd6ZNN5AA6sxxAI8sUpAt5unnzpqam\n5qZNmzIzM8+cOSNZDfb19cXExNTV1QUFBREdpgKDdCEHAoEgISFBKBTGxsYaGBjgL5LJZD8/\nv5KSksbGRqgJJwnSMoKCULl1d3cnJCScPn364cOHCxYs0NHRwbf7i1O2t7c3iUS6f//+iRMn\nSkpKli5dCnOl48Vms3fv3l1VVcXhcFpbWwcGBjgczvLly0mk/7vTRTKbzJkzB7YqTQB0ZjmA\nRpY1SBdyVlRU1NbWpqqqmpSUJFkNIoSSkpLq6+u9vb09PDyIDVJBQbqQGz6fn5ycTKFQtm/f\nLvk6iUSi0WiPHj2C5wknA9IyDgpCpdXW1rZv3766ujptbe3Q0FBra2t8P7RkysYfBE9OThaJ\nRKtWrZo3bx7RUSuexMTEmpoaKyurHTt2uLu719XVtba2dnV1eXt7S84h4dnE2Nh48eLFBEar\noKAzywE0shxAupAzgUBQUFBQVlaGEJKsBjMyMpKTk2k02p49e/B+DsYF0oU8kcnk3Nzc3t5e\nPz+/YTemcDic+/fvz58/v6qqytjY2MbGhqggFRekZRwmvk4UKBMej7dz504mk+ng4PDVV1/p\n6ekN+0B/f/+xY8cqKioQQiQSafPmzWvXriUiUgXW2dlpYGCwZcsWFRWVU6dO4V+H3d3d0dHR\nLBZr2bJlkZGRSrmvQM6gM8sBNLKsQboghFAo3L9/P3734NGjR/X19blc7q1bt27fvi0Sifbu\n3RsQEEB0jIoH0oX8/etf/7p06ZKzs/Phw4fJZLL49X/+859paWlJSUnNzc1+fn4ERqiIIC1L\nghVC5ZSZmZmTk2NsbBwfH6+trY2/yGAwMjMzWSyWlZUVlUpdvHixubm5ubl5REQE5JHxYrFY\n+/bta2lpefHiRUhIiPj5YzU1tYULFxYXFzMYjM7OzmEzTGACoDPLATSyTEG6kBuhUCgUCsV7\nvTAM8/b2ZjAYf/zxx7///e+cnJyffvqpsrISw7Dw8PCVK1cSG62CgnQhB/hqjTgh2NnZ0en0\n2trahoaGefPm0Wg0hNC9e/euX7+uq6v74YcfmpubExmuAoK0PAzs51ZOT58+RQitXr0an/Bg\nMplnzpypqqoik8kCgSA/P//IkSMYhvn7+xMdqaJSV1dXV1fPzs5GCA3bta+npxcXFxcVFYW/\nO61mmGQBOrMcQCPLFKQLOejs7Lxw4UJxcfHQ0NDs2bODg4NXr15NIpF0dHTi4+Nv3ryZlZXV\n3t6OYZirq+tHH33k6OhIdMiKCtKFTL18+TIxMZFOp1Op1MDAwI0bN2pqapLJ5JiYmEOHDpWW\nlm7bts3a2prNZre3tyOENm3aJLlmCMYI0vIwsEKonJhMJoPBIJPJVlZWaWlp3377rb6+fnR0\n9JYtWx4+fNjU1OTl5SU+qwpMgHgOqa+vb+Tzx5IzTDY2NqampgSGquigM8sBNLJMQbqQNTab\n/cUXXzx9+lQgECCEent76XR6RUWFj48PlUqlUChubm5r164NDQ396KOPli9fPmPGDKJDVmCQ\nLmQH78kNDQ0ikWhoaKihoSE/P3/+/Pmampo0Gi0oKIjH4zU2Nra3t7969UpdXX3btm2w0D0x\nkJaHgYJQOVlZWVVVVVVUVPz666/Pnz/fvHnzJ598oq+vT6FQ7t2719fXt2zZMkNDQ6LDVGzi\nfPH8+fORzx/j786cOVNZnz+WG+jMcgCNLGuQLmTq7NmzT548cXBwOHjw4Keffurl5fXHH388\nefKkqqoqKCgIXz/BMIxKpcJayuRBupCdCxcuVFVV2draHjhw4E9/+tPAwEBFRcWjR498fHw0\nNTUpFIqHh8eaNWu8vLyWLVsWHh4OC92TAWlZEhwqoyT6+/t//vnn4uLiwcFBW1vbDz74wMzM\nrLS0VCAQuLm5iU9RS0lJOXfunJ6e3sWLF+F7USrYbHZUVNQ0fP5YRkb2ZEtLS4FAAJ1ZiqCR\niQLpQurwYyE2bdpEo9FOnTqlpqaGvz40NBQbG1tRUbFu3bpNmzYRG6SigwGGHOA9OSIiQigU\nnjp1SlNTE3/9+vXr169fNzQ0jIuLMzY2JjZIpQRpGQcrhMqgtbV13759xcXFHA5HIBA0NjZm\nZWWZmJgsXLjQzMxMRUUFISQSiX7++efLly8jhCIjIy0tLYmNWeH09/cnJyefP3/+zp07+Jl1\n+OnP0/b5Y1l4Y0+eOXOmlZWVqakpdGapgEaWjzdmDEgX0iU+FqKjo2PZsmWSNwqSyWRXV9fU\n1NSmpqb33nsP6pMJgwGGHAzryZ6enuK3XFxcEEJFRUXidULiwlR4kJZHAQWhwuNyufv37+/o\n6LC2to6NjY2IiOju7q6vr3/8+LG/v7+Ojg5CqKys7Pvvv8/KysIwbMuWLcHBwURHrWDeNobG\nv/Ygm0jFWHoygs48OdDI8jFKxoB0IUUCgeDBgwcMBmNgYMDZ2RkfOoupq6s/fvz45cuX3t7e\n8EjbxMAAQz7EPbm/v9/b29vBwUHyXagJpQLS8uhI7/4ImNru3r3b1tY2Z86cY8eOWVpapqen\nZ2ZmIoS2bt1qZmaGEOrp6Tl79mxlZaWxsXFsbOz7779PdMgKhsvlxsbGvnjxwtra+tSpUzdu\n3Fi5ciWfz//2229bWlrwz+BnUpmammZnZxcXFxMbsIJ6Z09G0JknDRpZDt6ZMSBdSIu4JRFC\nDx484PP5ku+KRKLe3l6EkFAoJCY+xQcDDPmQ7Mm5ubn42UiSNmzYsGHDhs7OzsLCQiICVHiQ\nlt9NBBTcrl27wsLCmpubRSJRenr6mjVrwsLC7t69i7+bkZExMDDw8uXL/Px8oVBIZKAKKzk5\nOSws7PPPPx8YGBCJRPfu3RvWyGLd3d2pqalExKgMxtKTRSIRdObJgEaWgzFmDEgX0tLd3f3J\nJ5+EhYX94x//EAgE4tdTU1PDwsLWr1/P5XIJDE+hwQBDnsQ9OSEh4Y3tWVlZKf+olAOk5XeC\nFUKFx+FwjIyMLC0tMzMzz5w5IxKJtm3btmbNGoRQX19fUlJSfHy8oaHhggULpuEKuFTgE3K7\ndu2i0WgZGRlnz56VbOTMzEwul4t/Uk9Pb/Xq1UTGqsjG0pMRQtCZJwMaWQ7GmDEgXUyYUCiU\nXEIRT+3n5ubu27fv4cOHlZWV586dS0pKQght3ryZSqUSF6xigwGGPEkuUn333XeiEYc+Ojs7\nExKYEoC0/E5QECokJpPZ1NSE/2xsbNzb23v37t3Tp09L9m+E0OXLl3k8nngnGJiYMY6hwcSI\nOzP0ZNmBRpYnyBiy09nZ+fe///3Pf/7z+++//9lnn6WkpODbQcUj6adPnx4/fjw6OjolJUVL\nSysyMjIkJIToqBUMDDDkQCQSVVRUpKWllZSUvHF24201IZgYSMvvBIfKKJ6enp79+/dnZWV5\ne3vr6OgIBIKCgoKysjKEkGSyzsjISE5OptFoe/bsEZ8KDUZRW1trYGCAT3Mymcx//OMfnp6e\nVCq1qKiora1NVVU1KSlp2DdiUlJSfX29t7e35Ol2YOwkO7OGhgb0ZFmARpaFt6ULhBBkDBkZ\n/fZ5yWumfXx8oqOj//M//9PW1pboqBUMDDDk4MWLF4cOHbp9+3ZpaWleXt7vv/9uZ2cnPvcI\nDjiZMEjLkwErhIrnypUrnZ2dlpaWRkZGCKFly5bhB1KZmpr6+/sjhLhc7pUrV86cOYMQioyM\nhPthx4JOp3/11VfffvutSCRiMpnR0dFlZWU//fQTQigwMJDL5V64cGFYEsnIyMjKyqLRaO+9\n9x6hsSswyc4MPVlGoJGlbpR0gSBjyMylS5e6urocHBwSEhLu3r174sQJBweHmpqa2NhYHo+H\nJFZXCgsLf/nlF7hqYgJggCFrHA5n//799fX1enp669atCwsL6+joiI6OptPp4s/AAScTAGl5\nkuBiekWC31u6ZcsWVVVVyRt4ORzOoUOHmpqaSCSSkZFRd3c3j8fDD4Beu3YtsTErir6+voMH\nDzY1Nfn6+j59+pTNZru6uh48eJBKpQqFwv379+NX1hw9elRfX5/L5d66dev27dsikWjv3r0B\nAQFEh6943tiZoSdLFzSyjIySLhBCkDGkbly3z8M10xMDAwz5+Prrr+l0uqOjY3R0tLa29r17\n9xITE0UikaqqalRUlOQiFZvNLigomLaPtI0XpOVJgoJQYbBYrKioKE9Pz7KyslWrVn3wwQeS\n73K53Js3b2ZlZXE4HAzDXFxcPvroI0dHR6KiVUR9fX0HDhxobm5GCEnmEQTfiNI2SmeGniwt\n0MgyNUq6QJAxpErck+l0+ooVKz788EPJdzs7OyMiIlRVVa9cuaKqqoq/CDXheMEAQ+rwS1Ao\nFIrki7W1tV9++aWhoWFCQoKWllZ6ejp+usmSJUtycnJG1oRgXCAtTwbl3R8BU4O6urq6unp2\ndjZCaOROGBqNtmnTpo0bN/b19ampqamoqBARo2Lr7+/v6enBf9bT0xOPLRBCOjo68fHx+Ddi\ne3s7hmGurq7wjThho3Rm6MnSAo0sU6OkCwQZQ6oke/JIhoaGFhYWTU1Nz549s7Ozw1/Ed9xF\nRUUVFBSsW7du1qxZcoxXIcEAQ7r4fD5+SMlXX30l2Z6VlZUIoYiICC0trUePHkmedTk4OJif\nn4/3W6gJJwbS8mTACqEiEc96mpubJyQkwAMS0sXj8eLi4oaGhvr7+5uamoKCgnbt2jVsalkk\nEsE3olRAZ5YDaGTZGUu6QJAxpETck2fNmvX9999LrrqIRKKtW7d2dnYeP34cf9pN8l91dXXZ\n2NjIPV6FBOlCirhc7qFDh548eeLt7S1ZEwqFwosXL4aHh/f393/88cf9/f34jfMIoatXr2Zl\nZfX29pLJ5O+//97Y2JjQv0AhQVqeDDhlVJGIz55iMpkvX7708fGBnTBSRCaTFyxYEBQUtGjR\novLy8rKysvb2dl9fX3EjFxYWamtra2trwzfl5EFnlgNoZNkZY7qg0WhUKhUyxiSJe3Jra2tH\nR4dkT/71119///13dXX18PDwYdvz1NTU9PX1iYhXIUG6kCIKhRIQEFBVVcVgMJqbmxcuXEgi\nkRBCGIZ5eHiQSKS0tLTi4mJ3d/fIyEj8n1y9epVGo3366aezZs3y9fUlNHxFBWl5MqAgnNL4\nfH5OTk5KSkpRUVFvb+/s2bM1NTXxlF1RUQHnEUsRm83u7+/X0tIik8lUKnXhwoXibOLt7U0i\nke7fv3/ixImSkpKlS5cOG3aAdxrZkykUinj8AZ1ZKqCR5QbShaz19/cnJyefP3/+zp07+DkQ\nJiYmeE+urKwsKytTV1fncDj//ve/r1+/jhDatm3bsOVB8E4wwJA6Pp8/MDCA71R8W02Iy8nJ\naWxs/POf/2xlZYUQSktLy8jIcHBwWL9+Pdw+PzGQlicJtoxOXW1tbUeOHGlpaRG/YmRktHfv\nXnt7e3hiXoq6u7uTkpIeP36sr68fFxcn3qchPrHKzs5u1qxZubm5CCHx7g4wdqP0ZATHP0gJ\nNLJ8QLqQg9bW1piYmBcvXiCE1NTUBgYGKBTK559/HhQUJO7J4g9ra2tv3rx5+fLlxMWrkGCA\nIXUCgeDYsWNdXV2HDx/W1NTEX3zb3tHs7OxTp07Z2dl99NFHJSUlqampCKGjR49CNTgBkJal\nAlYIpyj8ppq2tjYTE5N169Z5e3sPDg42Nzfn5eXNnTvX3Nwc7i2Vira2tn379tXV1Wlra4eG\nhlpbW4vv2KVSqQEBAfX19TU1Nc+ePSORSFu2bBl29hp4p9F7spGREVzCO3nQyPIB6UIOuFzu\n/v37Ozo6rK2tY2NjIyIiuru76+vrHz9+7O/vP3PmTLh9fvJggCEjJSUlZWVl5eXl/v7+o68T\nWlhYPHnypKamJjc3t66uDiG0ZcuWwMBAgv8ABQRpWVqgICQen8//5z//aWFhoaGhIX7x0qVL\nDAbDzs7um2++cXFxsbOzW7p0qYqKCp1OLy4uXr58uY6Ojjhl29jYmJqaEvgnKCgejxcVFdXR\n0eHg4BAXF+fp6SnOIzhVVdXFixebm5ubm5tHRET4+fkRFapCmFhPplKpkuUKdObRQSMTBdKF\nfPz8888FBQVz5syJj483NDRMT0+/ceMGQmjbtm3e3t5I4lG3J0+eDA4OSj4gBEaCAYbcYBjm\n6+vb1tY2lpqQRCL5+/tTKJShoSErK6uIiIglS5YQ/RcoHkjLUgQFIcGEQuHx48fv379fXV29\ncuVK8RfbyZMneTxedHS0kZGR+MNOTk4sFquuro5EIrm5ueHfizNnzly8eDFB4Su2zMzMnJwc\nY2Pj+Ph4bW1t/EUGg5GZmclisaysrEgkEoZh5ubmLi4uurq6xEY7xU2mJ6P/HeRBZx4dNDKB\nIF3Ix8WLF7u7u//2t78ZGhpmZGRInsuPEMrMzDQ1NdXS0oIlrLGAAYacjasmJJPJzs7Oy5cv\nX7RokYmJCdGxKyRIy1JEevdHgCzdvXv30aNHmpqakjv1RSLRq1evEELm5ubDPr9q1SqEEJ1O\nx3/V09NbvXq1HONVKk+fPkUIrV69Gp9SYjKZUVFRBw8e/Ne//pWYmBgTEwNP2I7dJHsygs48\nBtDIBIJ0IR8cDsfIyMjS0jIzM/PMmTOS1WBfX19SUhJ+vRt+06CpqWl2dvZ3330Hjf9GMMCQ\nPxKJtGvXrsDAwMbGxoMHD+JNjRCi0WixsbGOjo5FRUXHjh0TCATExqkcIC1LERSEBPvtt98Q\nQjt37rSysmIymY8fP0YIYRiGTxfV19cP+zyNRkMIvX79Wu6RKgkmk9nQ0ID/PHv2bIQQg8Fo\naWm5du3azp07RSLRyZMnr127ZmxsXFlZObL9wdtAT5YDaGT5E2cMSBfyYWxs3Nvbe/fu3dOn\nT0tWgwihy5cv83g8MzMz/FdxTVhQUNDW1kZcyFMXZAw5Y7PZCQkJ27Ztq6mpQQhBTSgLMIqT\nESgICYbPaqioqDCZzOjo6L///e8VFRUIoRUrViCELly4wOPxJD+fl5eHEJozZw4RwSo8Lpcb\nHR39r3/9C/81NDTU0dGxpKTks88+S0tL+8tf/hIXF2dlZUWj0fDNhZqTAAAgAElEQVSjwIRC\nIaHxKhLoyXIAjSxnkhkD0oUU1dbWimfumUzmoUOHent78V8DAwO5XO6FCxeGVYMZGRlZWVk0\nGu29994T/3fwmvDIkSOzZs2S85+gECBjyFNnZ+fu3bt/++03EokUFBS0bt06IyOjUWrCgoIC\nYgNWRDCKkx14hpBgenp6Dx48KCkpyc3NZbPZLi4u77//PoVCsbW1pdPpDQ0N1dXVrq6uGhoa\nIpEoLS3t2rVrGIZFRkYaGhoSHbvioVAoDx8+rKysDA4OptFoFAplyZIltra2CxcujIiIcHJy\nwjfVpKam5ubm6unp/eUvf5G8OAiMAnqyHEAjy5lkxtDU1IR0IRV0Oj0mJqa1tdXX15fFYkVH\nRzc3Nw8MDMyfPx8hNGfOnPLy8s7OTlNT0/DwcDU1NS6Xe/369R9++AEhtGvXLkdHR8n/Gtw+\nPwrIGPKUkJBQV1fn4OBw/PhxT09PNze34OBgFovFYDBGPk9oYmICD2dOAIziZAcKQoLNmjVr\naGiovLycy+U6ODh8/fXXVCoVIUQikXx9fRkMRl1dXWpqakFBwY0bN/Lz8xFC4eHhAQEBRAeu\nqKhUan5+vpaWlpOTE0KIRCKZmpqamZmpqKgghEQi0c8//3z58mWEUGRkpKWlJaHBKhLoyXIA\njSx/khkD0oVUaGpq0un0srKyZ8+e3bx5k81mu7q67ty5E78qGsMwb29vBoPxxx9//Pvf/87J\nyfnpp58qKysxDAsPD1+5ciXR4SsSyBhyIxAIEhIShEJhbGysgYEB/iKZTPbz8yspKWlsbBxW\nE+L30YMJgFGcjEBBSLDW1tZz585xuVyE0ODgoJeXl56eHv4WjUYLCgri8XjNzc1dXV1cLldf\nX3/Hjh3wjTgZs2fPzszMbG5uDgsLG3YwXVlZ2ffff5+VlYVh2JYtW4KDg4kKUhFBT5YDaGT5\ne1vGgHQxYVQqdeHChWVlZVVVVVwu19XV9eDBg3ihgsM7s0gkYjKZXV1dQqHQ1dV19+7dUKiM\nF2QMueHz+cnJyRQKZfv27ZKvk0gkGo326NEjNpstWROCCYNRnIxgcAIPsV6/fh0TE0Oj0ebN\nm/fjjz9qaWkdPnx42NQRl8ttaWlRUVGxsLCAw7Un7/r169evX4+JifHy8hK/2NPT8+WXX7a3\ntxsbG//Xf/3XvHnzCIxQEUFPlgNoZEKMzBiQLiapvb193759bDYbIRQYGLh79+439lWRSNTX\n16empobP/YPxgowhTx9//HFbW9upU6eGrUoxGIyDBw/Onz+/uLj4s88+g5J78mAUJwuwQkgw\nFRUVf3//oKAgV1dXdXX1x48f5+fnu7u7i6fxEEIUCsXAwEBXVxeS9Xgxmczq6mpTU1PJpjMz\nM0tJSXn16lVgYKD4RRqN5ufn5+jo+Omnn8KNQBMAPVkOoJFlbYwZA9LFJKmqqlZVVRkaGmpq\napaXl7e3t7/xfnkMw6hUKn44BJgAyBjyxOfzy8vLW1pagoKCJJ9bu3v3bn19/ddff+3s7BwU\nFERcgAoJRnFyAwUh8VRUVPBnJxwcHN6WssEE9PT07N27NysrKycnh8/nm5mZ4Vs1aDRaa2tr\nQUHB0qVLNTQ0xJ9XV1c3MzODL8UJg54sB9DIsjOujAHpYsLYbDaXy122bFlQUNCiRYvKy8vL\nysqG1YSFhYXa2tqS+0jBxEDGkBs7Ozs6nV5bW9vQ0DBv3jz8Do979+5dv35dV1f3ww8/HHnx\nIxgdjOLkCQrCqQVSthTRaLT58+djGPb06dPi4uLU1NSXL18aGxvr6OjMmDEjIyODSqW6ubkR\nHaZygp4sB9DI0gUZQ9a6u7sTEhJOnz798OHDBQsW6Ojo4M8TimtCb29vEol0//79EydOlJSU\nLF26FC9mgFRAxpAWPp+fk5OTkpJSVFTU29s7e/ZsCoUiPqqnpqYmLS2ttLT01q1bubm5CKHt\n27fb2NgQHbXigZwsT1AQTjmQsqWCzWb39/cbGxt7enqGhoYaGRl1dHSUlJT8+uuvNTU15ubm\nHR0dFRUVa9asgSOJZQR6shxAI0sLZAxZa2tr27dvX11dnba2dmhoqLW1NX5LnmRNiJ80k5yc\nLBKJVq1aBU8BSR1kjMlra2uLiorKyspqbm5uamoqKirKy8uzt7c3NDQUH9XT2NjY3t7+6tUr\ndXX1bdu2wXODEwA5Wc6gIJyKxCnb2Nh42J1L4J0kJ6F9fHw0NTUpFIqNjU1wcLC7u/vQ0BCd\nTscvZRoYGLCwsIBdHLIDPXmSmEzmixcvRr9mDRp5kiBjyAGPx4uKiuro6HBwcIiLi/P09MSr\nQRyVSg0ICKivr6+pqXn27BmJRNqyZcsHH3xAYMBKDDLGZHA4nP3797e1tZmYmKxbt87b23tw\ncLC5uTkvL2/u3LlGRkYUCsXDw2PNmjVeXl7Lli0LDw+HRh4vyMmEgFNGp66nT5/a29sTHYWC\nwafuurq6dHR01qxZs3jx4pEX7HI4nKysrPT09BcvXjg7O8fFxRES6vQBPXliuFzuxx9/7Ozs\nvHfv3nd+GBp5YiBjyMe9e/fOnj1rbGx88uRJcSnIYDAYDIahoeHKlSvJZLJIJMrPz29pafHz\n84Pbw2QNMsbEnD179t69e3Z2dkeOHMGfEkQI3b59+8cff9TW1j579qyWlhaxESo6yMlEgRXC\nqWvk/wfA6EafhBaj0WhOTk5hYWFsNvvRo0c+Pj6wbUamoCdPDIVCefjwYWVlZXBwsHjk8TbQ\nyBMAGUNu0tLSmpub169f7+LighBiMpnx8fE3btzAHw2qqalZsmQJhmHm5uYuLi66urpEx6v8\nIGNMzMmTJ3k8XnR0tJGRkfhFJycnFotVV1dHIpHgkbbJgJxMINh3C5THb7/9xmQyjY2Nv/76\na3F2YDAYP/7446+//ioQCCQ/jGHYihUrEEKZmZkExArAGISFhfH5/KysLKIDUU6QMeRm9uzZ\nCCEGg9HS0nLt2rWdO3eKRKKTJ09eu3bN2Ni4srKyvr6e6BgBeAeRSPTq1SuE0Mg9iqtWrUII\n0el0AsJSIpCTCQTndwHl8fTpU4TQ6tWr8SklJpN55syZqqoqMpksEAjy8/OPHDkieR4xvrXj\nyZMnRAUMwOj8/f0vXbqUnp7+pz/9CY7SljrIGHITGhpaXFxcUlJSUlKipaX1l7/8JSQkBMMw\nkUiEXzMoFAqJjhGAd8AwzMTEpLW1tb6+fu7cuZJv4Zs4Xr9+TVBoSgJyMoFghVC2uFzu9evX\nP/vss6KiIqJjUX7jmoQWCoWXL19GCBkbGxMVMACjo1AowcHBL168KC0tJToWJQQZQ25oNFpc\nXNyBAwe++uqrc+fOrVq1Ch/VpaamslgsPT09W1tbomME4N3wJakLFy7weDzJ1/Py8hBCc+bM\nISYsZQE5mUCwQihDbW1tf/vb31gsFplM/u233+bNm4dfqQlkZFyT0I2NjYWFherq6ps2bSIu\nZMXA5/Nzc3Orq6sxDHN0dFy0aBFcGC0LTCazpaXFx8dH8hDtkJCQW7du3bt3z8vLi8DYlBJk\nDHkik8ne3t7iX0Ui0c8//3zlyhWE0LZt2/AGB+OCHwoIewdkZ+R335o1a/Lz8+vr6w8dOrRr\n1y4jIyORSJSWlnbnzh0Mw9auXUt0yIoNcjKB4JRRWRkcHPzrX//a2tpqY2Ozd+9eExOTN36M\nxWKZmprKOTYlJhAISktLBQKBm5ub+FnklJSUc+fO6enpXbx4UXLYUVRUpKura2dnR1CwiqGt\nre3IkSMtLS3iV4yMjPbu3TvyhDrozJPR09Pz17/+lc1mGxkZrVq1asWKFZqamvhb3377bW5u\n7rlz5ySPMQBSARmDEGVlZbdv366srMQwbPPmze+//z7RESmYly9fJiYm0ul0KpUaGBi4ceNG\ncbqQBDl5Mt723WdsbHzo0KGmpiYSiWRubs7hcNhsNkIoPDwcCsLJg5xMFDhlVFbu3Lnz8OFD\nMzOz48ePv+34o9zc3JiYGA0NDTj9WVpIJJKpqamZmZmKigr630lofFNBZGTksKPMTU1NDQwM\niAhTYbzzziXxJ6EzTwaTyXz16tWKFSswDMPPXUxNTX358qWxsbGOjs6MGTMyMjKoVCqcXyd1\nkDHkr6en59ixY01NTcbGxl9++eXixYuJjkjBsNnsL774oqGhQSQSDQ0NNTQ05Ofnz58/f1hN\nCDl5Mkb57vP09Pzzn//M4/Gam5u7urq4XK6+vv6OHTvg9nmpgJxMFNgyKiv5+fkIoY0bN45y\nXnxXV5dQKMQPrQJSJzkJvWXLloCAAKIjUjzXrl178eKF5J1LoaGh+J1Lx44dk7xzCTrzhPX0\n9MTExAwODsbHx2/fvn3Tpk15eXn37t3LyMjIyMhwc3MLCwuzt7fPysr68MMPYWed7EDGkA9d\nXd24uLi6ujo/Pz/Y7jgBP/30U1dXl62t7aeffqqpqXnz5s3s7OyoqKi4uDjJh6kgJ0/GO7/7\ntm7d+tFHH7W0tKioqFhYWEBPlgXIyfIEK4SykpycPDAwsGXLFg0NjWFvZWVldXV1mZqaOjk5\nubm5LVmyhJAIlRtMQkvF2O9cgs48YefOnauqqrK3t1+1ahWFQqFQKDY2NsHBwe7u7kNDQ3Q6\nPTc3l81mDwwMWFhYjDzuHEgFZAx5UldXNzMzgzH0eHV2dqqpqZ07d05NTe348ePGxsaampo+\nPj4IoaKiIvxCNvE6IeTkyRjLdx+FQjEwMNDV1YWeLAuQk+UMCkJZKSgo6Ozs9PDwGPb0oEgk\nSkxMTElJWb16taqq6owZM4iKULnRaDQ/Pz9HR8dPP/30bQ9wgtGJRKIff/wRIRQRETFsYUpX\nVzc7O5vL5QYHB4tfhM48Xvjw7syZMzo6OseOHRu2m8DQ0NDPzy84OFhLS6u1tbW/v5/D4Sxd\nupSoaJUbZAwwxbFYrH379rW0tHR0dCxbtszT01P8louLC3pTTQg5eWLG+90HZAFyspzBtROy\nEhQUhBC6cuXKsLOJ7969+/TpU0tLyzc+Ag6kyNDQcMGCBTB1N2H4nUsIoZF3RsOdS+PF5/P7\n+/slX2GxWHv27Pnuu+9IJNKKFSvU1NTe+A91dHTWrVt37ty5lStXVlVVNTU1ySXe6QgyBpjK\n1NXV1dXVs7OzX7x4MTJdbNiwYcOGDZ2dnVFRUe3t7YREqOiYTCZ+wQ98900RkJPlCQpCWVm5\ncqWdnV1jY2NMTAyLxUIIcbnca9euXbp0CcMwOCQXKAS4c0kqBAJBfHz8gQMHJJ/nEQ/vurq6\n3vlkIIZh+P8WmZmZso0VADAl6enpxcXF4aeG5ubmCgSCYR8Q14SFhYVEBKjYRCJRbGzsmTNn\nBgcHEXz3gekHtozKColE8vHxYTAYdXV1aWlp6enp169fr6iowDAsPDwcXz8EYIqztbWl0+kN\nDQ3V1dWurq4aGhr4nUvXrl3DMCwyMtLQ0JDoGBVDSUlJWVlZeXm5v78/fh+pmprawoULi4uL\n+/r6uru7V65cKXn94EhDQ0MpKSl8Pj8kJEReUQMwms7OzsTExB9++KGoqEhTU/ONNxywWCxt\nbW35x6aUxEnjjz/+6Orq8vb2HrZ44uLi4uLismjRIqIiVFwYhvX39xcWFpJIJFdXV/juA9MN\nFIQyRKPR8KdgmUwmh8MRCoU2Njaff/45PBoLFAWJRPL19cXnNVJTUwsKCm7cuIGfoBseHg5H\nfo0RhmG+vr5tbW1vqwmZTObLly99fHzetjdGKBSePn26paXF0dERmh1MBT09PXv27Hny5Elf\nX197e/uDBw96eno8PT0l+zDcfDBJfD4/JycnJSWlqKiot7d39uzZmpqaeNJgMBidnZ0ja0K4\nrXTC7O3tc3Nzy8vLAwMDtbW14bsPTCtQEMoWhUJxc3Nbu3ZtcHDw+vXrw8LC4NHY8RrLJDSQ\nHRqNFhQUBHcuTdI7a8KKioo3Du9wDQ0Nly9fVlNT+/LLL2G9ZXSQMeQjKSmpurra2to6MjLS\ny8urvr6+oqKivb3d19dX3IdLS0vLy8vt7e3xU0/AuLS1tUVFRWVlZTU3Nzc1NRUVFeXl5dnb\n28+ePXv0mhCMXVdXF5VKxXdnkMlkAwODBw8evHz5MiAgAL77pAVyskLARCIR0TEA8FY9PT27\ndu3q6uoSvxISEvLxxx+P3FzHYrEgy8gUl8uFO5cmSSgUfvvtt3l5edbW1ocPHxafLMVms6Oi\nolgs1rJlyyIjI9/YvEVFRbq6unZ2dvINWcGMMWNAupi8zZs3q6ionDp1Sl1dHSHE4XAOHDjw\n/PnzoKCgXbt2iftwTU2Nk5MToZEqJA6Hs2fPnhcvXpiYmKxcuVJVVbWgoKCqqkpVVTU2Nnbu\n3LljSRpgdEwmMzo6Wl1dfevWrV5eXviLBw4cqKioiI2NdXd3x1+B777JgFGcooAVQjCljWUS\nGsHGJLmAO5cmg81mJyUlnTt3rrOz8/Xr12w2+43rhKNM+ZuamhoYGBARuyIZS8aAdCEVv/zy\nS2hoqPgmUhqNtnDhQjqdzmAwJBscbj6YmEuXLjEYDDs7u2+++cbFxcXOzm7p0qUqKip0Or24\nuHj58uU6OjripGFjYwMj6Qn45ZdfysrKXr9+nZubW19fb2trq6WlZWNjk5GRUVdXFxwcjBct\n8N03GTCKUxRQEIIp7cyZM9ra2idOnLCwsLC0tAwKCho54ECwMQlMbZ2dnV988UV1dbWmpmZQ\nUJCTk1NnZyeTyXxbTQjDuwkbS8aAdDFhbDb7/PnzV69eLSkp6e3tdXZ2lhy9va0mBBMwlovR\n8aQxc+ZMOJhgYmxtbbOzs42MjN5777379++npqYODAx4e3sPDAyUlJRoaGg4ODgQHaPCg1Gc\nooCCEExpY5yEdnJycnNzW7JkCaHBAvBmCQkJdXV1Dg4Ox48f9/T0dHNzCw4OZrFYDAZjZE0I\nw7vJGEvGgHQxMWw2e/fu3VVVVRwOp7W1dWBggMPhLF++XHLrl2SDz5kzx8zMjMCAFdfYL0ZX\nU1ODbeQTpqqqqqGhkZWV5e/v/8knn3R3d9+7d++3337z9vZuaGhgMBjLli172w2xYIxgFKco\noCAEU87EJqFhYxKYmgQCQUJCglAojI2NFe/5JJPJfn5+JSUljY2Nw2pCGN6N1wQyBqSLUfD5\n/IGBAbxDSkpMTKypqbGystqxY4e7u3tdXV1ra+vIyw/wBjc2NoZ5jQnDMCwvL6+vr8/d3X3Y\nqaF9fX3p6elUKjUsLIyo8BQak8ksLCy0srLCO621tXVJScnjx4/fe++9wMBAd3f3mpqa7Ozs\noaGhoaGh3t5eX19fokNWPDCKU0RQEI4DHJQkBzAJDZQMn89PTk6mUCjbt2+XfJ1EItFotEeP\nHg17nhCMC2QM6eLz+fHx8WlpaZIdsrOzU01NLTExEd/6ZWlpaWVlFRgY+LanXmk0mq2tLUF/\ngZLg8Xjl5eXPnz9fvHix5CLhnTt3amtrXVxc4OaDCRgaGoqKisrOzi4pKbGwsDA0NMQwzMLC\nIi0tbXBw0NPT09DQcOXKlfr6+rW1tYODg76+vrCDcbwgJysoKAjHaix3LiG4hHfSYBJa1mBe\nQ87IZHJubm5vb6+fn5+urq7kWxwO5/79+/Pnz6+qqjI2NraxsSEqSMUFGUOK8GqwqKhoaGhI\n3F1ZLNa+fftaWlpevHgREhIi3vo1lpOQwBhxudxbt24lJibOmDEDz8lwMboskMnkgICAvr6+\n0tLSrKystrY2e3t7MzOz9vb27OzshQsX6ujoYBhmY2OzYsUKa2vr1atXEx2y4oGcrKCgIBwr\nOLxO1mASWg7GOK+BYGpDqvh8fnl5eUtLS1BQkOQs6d27d+vr67/++mtnZ+egoCDiAlRIkDGk\nS1wNampqHjlyZM6cOfjrAoHgwYMHDAbj9evX8+fPl/x2g5pQKvD7BgsKCvr7+3k8no+PD5lM\nJpFIcDG6LNBoNB8fHy8vr2fPnpWWlqanp2MYFhYWlpmZ+ezZM/EzbKqqqubm5sSGqnAgJys0\nKAjHCg6vkymYhJYPOACaEHZ2dnQ6vba2tqGhYd68eTQaDSF0796969ev6+rqfvjhhzDyGC/I\nGNI1rBq0srISvyVu0r6+vpFbv+B03EkaHBzcv39/a2urjY1NXFxcSEiIeIMoXIwuOwYGBsuX\nL585c2ZNTU1hYWFRUdHs2bMrKystLS1h++LEQE5WdFAQjhUcXidTMAktH3AANCHEk/01NTVp\naWmlpaW3bt3Kzc1FCG3fvh12ik4AZAwpEleDKioqx44ds7a2HvYBcZM+f/585NYvOB13Mu7c\nufPw4UMzM7Pjx4/r6ekNe5dCoXh4eKxZs8bX1zc0NHTz5s0WFhaExKl8MAyzsrIKDg7m8/ll\nZWUdHR0Iobq6utWrV4+8Mx28E+RkRQcF4Wjg8Dq5gUlo+YADoIkinuxvbGxsb29/9eqVurr6\ntm3bYLJ/YiBjSIu4GkQICYVCLS0tcX6QNPqQDk7HnbBz586x2ewdO3ZYWlq+7TNwMbrsqKio\nuLu7BwQEtLW1tbW1rVmzxtXVleigFBLkZEUHBeFbwUFJcgaT0DICB0BPEeLJfi8vr2XLloWH\nhzs6OhIdlAKDjDF5kjtFN27cWFVVVVVVNTQ0NIGaEExMcnLywMDAli1bNDQ0hr2VlZXV1dUF\nQ2c50NbWDgoK8vHxWbRoEdGxKDDIyQoNCsK3goOS5A8moaUO5jWmGgqFMmPGjBkzZlAoFKJj\nUXiQMSZj2HODfn5+tra2+fn5UBPKU0FBQWdnp4eHh4mJieTrIpEoMTExJSVl9erVcCGNfIzc\nsgvGC3Ky4oKC8A2X8MJBSQSCAYd0wbwGUG6QMSYsMzPzzp07kqfImJiYjKsmhK1fkzc0NFRS\nUtLS0rJkyRLJ+wbv3r2bnZ1tZWUFF9ADxQI5WUFN94Jw5CW8cFAS4aCpJ2bY1AbMa4BpAjLG\nxFhbW/N4vPDwcMkzRcdeE8LWL6mwsrIqKytraGioqqpydHTU1tbmcrk3b968evUqhmE7d+40\nNjYmOkYAxgdysiKa1gXhGy/hhYOSpgKYhB6vYVMbMK8hO7W1tQYGBni7MZnMf/zjH56enlQq\nlei4pjXIGBOAYdi8efNGbpMbY00IW7+kgkQi+fj44PcNpqWlpaenX79+vaKiAsOw8PBwuJ4U\nKCjIyQpn+haEb7uEFw5KmiJgEnrsRk5twLyGjNDp9JiYmNbWVl9fXxaLFR0d3dzcPDAwMH/+\nfKJDm+4gY0jRWGpCIC00Gg3vtEwmk8PhCIVCGxubzz//HHryGMEk3dQEOVmxTNOCcJRLeBEc\nlDRlwCT0WLxxagPmNWREU1OTTqeXlZU9e/bs5s2bbDbb1dV1586dbzwhhsViaWtryz/IaQsy\nhhRBTShPFArFzc1t7dq1wcHB69evDwsLG3bGDHgbmKSbyiAnK5DpWBC+8xJeBAclAQUxytQG\nzGvIApVKXbhwYVlZWVVVFZfLdXV1PXjw4BunonNzc2NiYjQ0NCSXZwFQIFATyhmGYWpqanCm\n6LjAJB0AUkF690eUi+QlvENDQ/n5+W/7pJ6eXlxcnKmpaXZ29nfffScSieQYJgDvJjm1cfjw\n4WEL3ehdfVhPT2/16tVyjFchCQSCoqIiyabr7+/v6enBf9bT03vb6K2rq0soFL569UoeUSqF\n2tpacTszmcxDhw719vYSGxLw8PCIjo5WUVFRUVEhOhYA3kBLS+vw4cNz5sx5/PgxXg2OMkn3\n2WefpaSkyD9IAKa+6bVCOK5LeBE8bQWmMMmpDaFQqKWlBfeGSV1ubm5cXNy9e/ckm05VVbWq\nqsrQ0FBTU7O8vLy9vd3X13dkqzo5Obm5uS1ZsoSIwBUP7PuaskxMTBYtWuTn50d0IAC8GZvN\nTk1N5XK5CCEHBwd/f/83fs2VlpaWl5fb29u7uLjIPUYAprppVBBO4BJeBE9bTVpnZ2diYuIP\nP/yAt/zbGhA2cozLuKY2oCacAIFAkJiYeOXKlf7+fj8/v//4j/8wMDDA3yKTyQsWLAgKClq0\naFF5eXlZWdmwmrCwsFBbW5tKpc6YMYO4v0DBwL6vqUxLS4voEAB4K5ikkyk+n5+Tk5OSklJU\nVNTb2zt79mxIy0ppGhWEE7uEF8HTVpPQ09OzZ8+eJ0+e9PX1tbe3P3jwoKenx9PTc1imhqet\nxmUCUxswrzFeCQkJ2dnZNBpt165dH330kb6+vuS7ZDKZTCbjzxOKa0Jvb28SiXT//v0TJ06U\nlJQsXbr0jd+a4I3g4UwAwMTAJJ3stLW1RUVFZWVlNTc3NzU1FRUV5eXl2dvbGxoaSn4M0rIS\nmEYF4YQv4UVwisxEJSUlVVdXW1tbR0ZGenl51dfXV1RUjJy9g40c4zKxqQ2Y1xi7R48eXbly\nhUKhHDlyxNPTc5RPStaEeDGTnJwsEolWrVo1b948uQWsiAQCQUlJyaxZs8SpAPZ9AeUwxhUV\nIEUwSScLHA5n//79bW1tJiYm69at8/b2HhwcbG5uzsvLmzt3rpGRkfiTkJaVwDQqCCdzCS+Y\nmDNnzmhra584ccLCwsLS0jIoKIhOpzMYjGE1IWzkGJcJT23AvMYYnT179sWLF+vXrx9ZPLe0\ntDx58oTH44kzCZVKDQgIqK+vr6mpefbsGYlE2rJlywcffCD3qBUJPJwJlNUYV1Rgf52MwCSd\nFF26dInBYNjZ2X3zzTcuLi52dnZLly5VUVGh0+nFxcXLly8Xb+KAtKwEplFBOAqoCWXkl19+\nCQ0NFbcnjUZbuHDhG2tC2MgxdjC1IWsXL17k8Xhbt26V3ClaW1sbHx9/5cqV33//PT09va6u\nbv78+fgRo6qqqosXLzY3Nzc3N4+IiIDjN0YBD2cCJTbGFRXYXydTMEknLSdPnuTxeNHR0ZKL\ngU5OTiwWq66ujkQiSQ4zIC0rOigI/wcMpqWFzWafP3/+6jwejAYAAAykSURBVNWrJSUlvb29\nzs7Okt95o9SEYPKgG0tFTk5Ob2+vnZ0dfkkpl8u9dOnSmTNnurq6TE1NnZycOjs7W1paGhoa\nxBOiGIaZm5u7uLjo6uoSGvtUBw9nAiU2xhUV2F8nazBJN3kikejHH39ECEVERJDJZMm3dHV1\ns7OzuVxucHAwQdEB6YOC8P/AYHry2Gz27t27q6qqOBxOa2vrwMAAh8NZvnw5ifR/N15K1oRz\n5swxMzMjMGDlA91YKkpLSysqKkQi0ZMnT06ePFleXq6jo/PZZ5/t2LEDP4I/Ozu7tbV17ty5\nM2fOJDpYhQEPZwLlNsYVFdhfJwcwSTdGHA6nvLz85cuXRkZGkkM1DMPy8vL6+vrc3d0l+zNC\nqK+vLz09nUqlhoWFyT1eICtQEP5/xINpFxcXmLobHZ/PHxgYGHYrd2JiYk1NjZWV1Y4dO9zd\n3evq6lpbW7u6uoZddYDXhMbGxnDAiSxATThJtra23d3dT58+raioYDAYAwMDixYtOnjwoIOD\nA/4BHR2dysrKjo4Oa2tr2PQ1dvBwJlBi41pRgf11gHBCofDatWvx8fF5eXm5ubkPHz709PSU\nvGOGx+OVl5c/f/588eLFkl36zp07tbW1Li4uAQEBRAQOZAI23gzn4eHx/fffm5iYEB3IlIbf\nfNDV1XX48GFNTU2EUGdnp4GBQXl5uZGRUVxcnLq6OkLI3d09Ojo6OzsbIRQZGSlZE+ro6ISE\nhBAVv9Lz8PCIjo4+evSoiooK0bEoHgzDduzYsWDBgrKyMk1NzQULFgxbx+bz+c+fP0cIDZs3\nBaPDG83b21vyxdra2vPnz9fV1eG/enp6fvHFFxoaGgghDQ2Nw4cP5+fnt7S0+Pn5WVpayj1k\nAIbjcDhPnjyhUqmurq6So2QMw0xMTFpbW+vr6+fOnSv5T2g0GkLo9evX8o4VgLfg8/nffPPN\no0ePEELGxsb9/f0sFuvIkSMnT54UDxvWrFmTn59fX19/6NChXbt2GRkZiUSitLS0O3fuYBi2\ndu1aQv8CIGVQEL4BVIOjk7wHr7OzU1NTk8ViRUVFeXp6ksnk4OBgvBpECOnr68fFxUVFRb2x\nJgQyBVMbk+Th4eHh4fHGt27dutXT06Onp/e2D4A30tXV7evra2pqEj+ceeXKldTUVJFIZGpq\nOnv27PLy8tLS0vj4+MOHD+P/BMMwf39/QqMG4H8IhcLr16//8ssvQ0NDCCFTU9OYmBjJHLti\nxYrLly9fuHAhPj5ecvtMXl4eQmjOnDnyjxmAkcSjOHV19d27d3t7e79+/frAgQMNDQ0VFRXi\n/fwUCiUmJubQoUPV1dXbt283NzfncDhsNhshFB4eLt4yA5QDbBkF4zPsVnT8G04gEDx48IDB\nYLx+/Xr+/PmSm+gkr0SXPGIeyIHk3g8gLffu3bt8+TJCaPfu3RYWFkSHo2Dg4UygoPh8/vHj\nx9PT04VCobGxMYZhnZ2dDAZjxYoV4nVCW1tbOp3e0NBQXV3t6uqqoaGBr6hcu3YNw7DIyMhh\nl08AIH+So7ijR486OzsjhFRUVMhkcmFhYWBg4KxZs8QfptFoQUFBPB6vubm5q6uLy+Xq6+vv\n2LFj5cqVxP0FQCYwkUhEdAxAYQyrBiXvwWOz2VFRUSwWy9ra+sSJE8OeoBC/e+DAgWEbxgBQ\nFIODg+fPn8/IyEAIbd68+U9/+hPRESkYkUh0+vTpzMxM/FcMwwICAiIiInR0dMSfOXjwIIPB\niIiIgOMKwNQxyorKoUOHJE9I4nA4hw4dampqIpFIw1ZUYIvdBPD5/Nzc3OrqagzDHB0dFy1a\nJL77TozFYpmamhISnsIZZRR39uzZ3377bdGiRVVVVfglQOvXrxcvdHO53JaWFhUVFQsLC5jW\nV0qwQgjGSpxHVFRUjh07hm/6EhOvBD5//nzkKTL4uzNnzoRTZIAiEggEaWlp8fHx1dXVVCp1\n165d8ATsBGAY5u3tbW9vr6Oj4+Xl9fHHH4eEhOCPV+H4fP6PP/7I5XJDQkJmz55NYKgAiMGK\nClHa2tqioqKysrKam5ubmpqKiory8vLs7e0lF1rhUsdxEQqFDx8+ZLFYGhoaK1eu1NbWxl8v\nLS29ePEin89vbW3V0dFhMpnV1dV0Oj0wMBC/5odCoRgYGOjq6kI1qKygIARjIv5GRAgJhUIt\nLa2RZ1eOvjtUTU3Nzs5OrkEDICUkEunBgwcVFRV+fn779u2DI4gnw8TExMPDw9nZWXJhEHfj\nxo2SkhI9Pb2PP/542C4DAAgxyopKRkbGH3/8QSKRLly48Ouvv7LZbEdHRzKZTKFQPDw81qxZ\n4+vrGxoaunnzZthbPgEcDmf//v1tbW0mJibr1q3z9vYeHBxsbm7Oy8ubO3eu+EAvuNRxXEgk\n0oIFC5qbmxsbGwsKCry9vbW1tSsqKuLi4vh8fmBg4NGjR99777358+c/fvy4ra1tYGBg9CuC\ngNKAghC8m+Q34saNG6uqqt52nwE8MQiUlaen56JFi1atWiWeUgXSBQ9ngikIVlSIcunSJQaD\nYWdn980337i4uNjZ2S1dulRFRYVOpxcXFy9fvhzfOwqXOo7XsJpQXV395MmTg4ODISEhkZGR\n+B5RfX19fX39R48edXR0vP/++0SHDOQBCkLwDsPmR/38/Ea/4w5qQqCsoBSUkcHBwX/+85/J\nyckIoc2bN69YsYLoiAD4H7CiQpSTJ0/yeLzo6GjJ232cnJxYLFZdXR2JRBIPP+BSx/GS7NXF\nxcUCgSAkJOSTTz6RHK0NDQ1lZmaSSCS4/XWaIBEdAJjqsrOzh+2Wwe+4U1FRuX37Nn4P7zB6\nenpxcXGmpqbZ2dnFxcVyDxkAoBgEAkFKSkpERERGRgaVSv3iiy/gqB4w1VAolP3793t7e+On\no2VkZBw+fBhfUdm9ezd+zZKNjc3WrVsRQr///jvR8SoSDofz+PHjsrIygUAg+bpIJHr16hVC\nyNzcfNg/WbVqFUKITqfLLUilJO7VCCEVFZXQ0NBhc/c5OTkIIScnJ2LiA3IHK4TgHaytrXk8\nXnh4uOSzEyYmJmNZJ4RTZAAAo4CHM4FCgBUVqRMKhdeuXYuPj8/Ly8vNzX348KGnp6f4qiQM\nw/Ly8vr6+tzd3SVXCBFCfX196enpVCoVDiKeJHGvbmlpefToEb76jb91//79K1euYBi2c+dO\nuCtlmoCCELwDhmHz5s3T09Mb9vpYakI4RQYAMDp4OBMoBPHomcViqaiofP7558NORbp9+3Z9\nfb2bm1tQUBBBMSqMsVzqyOPxysvLnz9/vnjxYskjpu7cuVNbW+vi4hIQEEBQ+MrjjTuic3Nz\nExISRCJReHg4NPL0AQUhmLh31oQAAPBOUAoChQArKlKBH0xQWFiorq6+b9++Tz75JCQkpLy8\n/NmzZ46OjuI7PGxtbel0ekNDQ3V1taurq4aGhkgkSktLu3btGoZhkZGR0M5SMawmFAgESUlJ\nQqFww4YNsNY9rUBBCCYFakIAAADTBKyoTNLYL3UkkUi+vr4MBqOuri41NbWgoODGjRv5+fkI\nIWhn6ZLs1QwGQyQSbdiwYcOGDUTHBeQKCkIwWVATAgAAmCZgRWXCxnupo4aGRlBQEI/Ha25u\n7urq4nK5+vr6O3bsWLlyJYF/hVKS3BEN1eD0hIlEIqJjAMqATqcfPXp03bp1kEcAAAAoN3Ft\ng/8KY+ixEDea+Chy/PXS0tLDhw8LhUIajTZz5sw//vhDJBLZ2NjExcXRaDSEEJfLbWlpUVFR\nsbCwgIusZIfP5z969AhWX6cnKAiB1LS1tZmYmBAdBQAAACBz4vIGqsGxG1kTVlRU4Nd4BAYG\nfvrpp+rq6g0NDbGxsRwOJzQ0dPv27USHDMC0AAUhAAAAAMC4wYrKBEjWhB9++OH58+fxSx0l\nr/HIzc397//+bx0dnStXrhAbLQDTBFxMDwAAAAAwbhQKBarB8RJfic5ms0+fPj2yGkQI4btJ\neTwecWECML1AQQgAAAAAAOREXBMihFRUVEJDQ4c9GZiTk4MQcnJyIiY+AKYfKAgBAAAAAID8\niGvCoaGhAwcOsFgs8Vv379//9ddfMQxbv349gRECMK1AQQgAAAAAAORKcu9oVFQUXhOKL3Xc\nsmWLg4MD0TECMF3AoTIAAAAAAIAAkmfMhIWFXb16Fb/UEQ5uBUCeoCAEAAAAAADEgEsdASAc\nbBkFAAAAAADEkDxjBqpBAAgBK4QAAAAAAIBIcKkjAASCghAAAAAAAAAApinYMgoAAAAAAAAA\n0xQUhAAAAAAAAAAwTUFBCAAAAAAAAADTFBSEAAAAAAAAADBN/T8yCtBPBOq6VQAAAABJRU5E\nrkJggg==", - "text/plain": [ - "plot without title" - ] - }, - "metadata": { - "image/png": { - "height": 180, - "width": 600 - } - }, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Warning message:\n", - "“\u001b[1m\u001b[22mUsing \u001b[32msize\u001b[39m for a discrete variable is not advised.â€\n", - "Warning message:\n", - "“\u001b[1m\u001b[22mRemoved 6 rows containing missing values (`geom_point()`).â€\n", - "Warning message:\n", - "“\u001b[1m\u001b[22mUsing \u001b[32msize\u001b[39m for a discrete variable is not advised.â€\n", - "Warning message:\n", - "“\u001b[1m\u001b[22mRemoved 6 rows containing missing values (`geom_point()`).â€\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAAFoCAIAAADIFpV9AAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdd1RU1/YH8H2n0Rl6VYqAFVHsBSRGRUFBYy8QjRUjLzFqjJqiJsYUE82L\nsRNrYsNYwa6oaOzYIiJSRKQISG8zw8z9/TF58yNoFOXgUL6ftd5ac8/s2WffMU/Z3HvP4Xie\nJwAAAAAAAGh8BNouAAAAAAAAALQDDSEAAAAAAEAjhYYQAAAAAACgkUJDCAAAAAAA0EihIQQA\nAAAAAGik0BACAAAAAAA0UiJtF6Blubm5MTEx2q4CAAAAAABACxp7Q5iYmLhhwwYvLy9tFwIA\nAAAAAPBGhYeHN/aGkIhatmz5n//8R9tVAAAAAAAAvFFHjhzBM4QAAAAAAACNVJ27QpiTk7Nj\nx46YmJiCggKpVNqmTZsZM2bo6emp31WpVPv37z927Fh2draFhYWvr+/QoUMFgv9va18aAAAA\nAAAAAGp1qyFMSUlZsGCBQqHo3Lmzra1tcXFxXFxcaWmppiEMCwuLiIjo0aNHYGBgbGzs1q1b\nc3JyQkJCNBleGgAAAAAAAABqdaghVKlUy5YtMzIyWrx4sbW19bMBqampkZGRPj4+s2fPJqKB\nAweKxeIjR474+fk5OjpWJwAAAAAAAAA06tC9lNeuXXv06NH48eOtra3LysrkcnmVgOjoaJ7n\nAwICNCOBgYE8z587d66aAQAAAAAAUKeUl5dz/+7mzZvaLrCBq0NXCK9fv85xnL6+/ocffpic\nnMxxXOvWradMmdKsWTN1QEJCglAodHFx0XzE2dlZIpEkJiZWMwAAAAAAAOogsVg8duzYZ8fN\nzMzefDGNSh1qCNPT04VC4dKlSzt06DB8+PDs7Ozdu3cvWLDgp59+srGxIaLc3FypVCoUCjUf\n4TjO1NT06dOn6sOXBqglJSXJZDL166ysrFo/MQAAAAAAeCF9ff3Nmzdru4rGqA7dMlpWVlZR\nUdGmTZtPPvnE29t76NCh8+bNKy0t/eOPP9QBMplMLBZX+ZREItF0dy8NUFuwYEHw/2zfvr12\nzgYAAAAAAJiJiIjgOG7RokVVxk1MTFxdXTWHN2/e5DhuwoQJiYmJo0ePtrKyEggEly5dUr+7\nc+dOb29vY2NjPT29tm3bfvvtt5U7Bc1nY2NjAwMDzczMDAwMevXqFRUV9Ww9Fy9eHDZsmI2N\njUQisbOzCwoKiouLY3/ata8OXSHU0dEhot69e2tG2rdvb2pq+tdff2kCysrKqnxKLpfr6upW\nM0CtT58+Hh4e6tcCgeDZjwAAAAAAQP2VmpratWtXCwuLAQMGlJSUqNuBuXPnLlu2zMrKKigo\nyMDAIDIycv78+UePHj1x4kTlq0qJiYk9evTo0KHDjBkzMjIytm/f3q9fvz179gwZMkQTs2HD\nhpCQEHNz80GDBllZWSUnJ4eHh+/fv//UqVNdu3bVwgnXQB1qCM3NzYnI1NS08qCJiUlubq76\ntZmZWUpKilKp1NwUyvN8Xl6eu7t7NQPUpkyZonl99erViIiI2jkhAAAAAAColtLS0qCgoCqD\nlpaWK1aseI1sp0+fDg0N/emnnzR9QXR09LJly5ydnS9fvmxpaUlE33zzTWBg4JEjR5YtW7Zg\nwQLNZ8+fP//JJ598++236sMZM2Z07dp1ypQpvr6++vr6RHTv3r0ZM2b069dv3759mu3xbt++\n3bNnz6lTp966des1CtaiOnTLqJubGxHl5ORoRnief/r0qVQqVR+6uLgolcqkpCRNQHJyslwu\n16wi89IAAAAAAACogxQKxe/P2Ldv3+tls7Cw+O677yqvLbJx40Yi+uKLL9TdIBGJRKIff/yR\n47iwsLDKnzUxMfnss880h56enmPHjs3JyTl06JB6ZPXq1QqFYsGCBSUlJTn/Y2dn16dPn9u3\nb6ekpLxezdpShxrC7t27i0Sio0ePqlQq9cj58+cLCws7dOigPvT29uY4TvMnQUSHDh3iOM7b\n27uaAQAAAAAAUAdJpVL+GQ8fPny9bO3bt1dfzdOIiYmhfz6eRkStWrWytbVNTk7Oz8/XDHp6\nehoaGlYOU3cTN27cUB9evHiRiHx8fCz/6cCBA0SUkZHxejVrSx26ZdTCwmL06NG//fbbggUL\nunXrlp2dfeTIEQsLi2HDhqkDHBwc/P39IyMjFQqFu7t7bGxsdHT0gAEDnJycqhkAAAAAAAAN\nnp2dXZWRgoICIlJvXlCZra1tenp6QUGBiYmJesTa2rpKjHpEnYGI1FsYHDx4UHO/aGWtWrWq\nafVvVh1qCIlo5MiRpqamBw8e3LZtm66urre397vvvqu5ZZSIpkyZYm5ufvz48cuXL5ubmwcH\nBw8dOrRyhpcGAAAAAABAvSMQCIiooqKi8qBCoSgpKbGwsKgSzHFclRF1T5GZmeno6Fh5XH1B\nr3LH8eTJkyqfVY9oYtQvbGxsOnfu/JonU5fUrYaQiPr169evX79/e1cgEAwfPnz48OGvHQAA\nAAAAAPWOeu3J1NTUyoM3btyo0iL+G09Pz9u3b585c2b8+PGawfv372dkZDg7O2suD6pzFhcX\nV75rNDo6Wp1BfditW7dbt27t3LmzYTSEdegZQgAAAAAAgOdq27atrq7ugQMHMjMz1SMFBQWz\nZs2q5scnTpxIRF999ZX6hk8iqqiomD17Ns/zkyZNqhyZn5+/ZMkSzeGNGze2b99uYWEREBCg\nHgkNDRWJRCtXrjx9+nTlDxYXF+/atUtz+O233w4YMODw4cOvdp5vXJ27QggAAAAAAI1NaWnp\nhAkTnh2fNm1a9+7dicjQ0HD69OkrVqxo3759QECAXC4/ceJEx44djY2Nq5O/V69es2bNWr58\neZs2bYYPH66vrx8ZGRkbG+vt7f3xxx9XjvTy8lq7du2VK1d69uyp3odQpVKtX79es0qNu7v7\nunXrpk2b1rdvX19fX09PT6VSGRcXd/r0aScnp1GjRqnDbt68eezYsXfeeacmX8sbgIYQAAAA\nAAC0TKFQbNmy5dnxvn37qhtCIlq2bJmxsfHmzZu3bNliZ2c3adKkzz//3MrKqppT/Pjjjx06\ndFi9evWWLVsUCoWrq+uSJUtmz54tkUgqh7m4uKxbt27evHm//PKLTCbr2LHj4sWL33777cox\nEydO7NChw/Lly8+cORMVFWVgYGBnZxccHKzpBokoPj5eLBb7+vq+2hfxxnE8z2u7Bm1Sb0y/\nePFibRcCAAAAAADadPPmTU9Pz/Hjx2/evLmGqXJzcy0tLUNCQlatWsWitNri7++PZwgBAAAA\nAABYioqK0tHRqbzBfZ2FhhAAAAAAAIClYcOGlZaW2traaruQl0NDCAAAAAAA0EhhURkAAAAA\nAABq3759I1xgBVcIAQAAAAAAGik0hAAAAAAAAI0UGkIAAAAAAGjsLCwsnJyctF2FFqAhBAAA\nAAB40wYPHsxx3MqVK59969KlSyKRqHnz5iUlJW++MGhs0BACAAAAALxpYWFh1tbWc+fOjY2N\nrTxeUlISFBTEcdxvv/1mYGCgrfKg8UBDCAAAAADwpllaWm7atKm8vHzcuHFyuVwzPnPmzMTE\nxC+++KJLly5aLA8aDzSEAAAAAABa4OfnN2PGjJs3b3722WfqkYMHD4aFhfXo0WPBggXqkZ07\nd3p7exsbG+vp6bVt2/bbb7+VyWSaDBERERzHLVq0qEpmExMTV1dXzeHNmzc5jpswYUJqaurY\nsWMtLCz09PQ6d+58+PDhKh9UKpU//vhjy5YtdXV1mzZtOnPmzOLi4uo8XHfkyJF+/frZ2dnp\n6OjY2tp6eXktW7ascsDFixeHDRtmY2MjkUjs7OyCgoLi4uKqJLl06dLIkSM1SXx9fXfv3l05\n4MXfRvVPU6VS/fTTT61atVKf5kcffVRcXPzsSW3YsGHIkCHOzs56enomJiY+Pj7h4eGVAzQz\nJiYmjh492srKSiAQrFq1iuO4wMDAKtl4nm/evLm+vn5eXt6Lv8w3DPsQAgAAAABox7Jly06f\nPv3jjz/6+/u3bt168uTJRkZG27ZtEwqFRDR37txly5ZZWVkFBQUZGBhERkbOnz//6NGjJ06c\nEIvFrzpXampq586d7e3tR44cmZWVtX///oCAgDNnznh7e2tipk6dunHjRicnp9DQUIFAsHfv\n3uvXryuVyhdn3rp16/jx421sbAYPHmxlZZWdnX337t2wsLCPP/5YHbBhw4aQkBBzc/NBgwZZ\nWVklJyeHh4fv37//1KlTXbt2VcesXbt2xowZYrE4MDDQ1dU1Kyvr2rVrq1evHjlypDqgmt9G\ndU5z+vTp69evd3R0DA0N5Thu7969165de/Y0p02b1qVLl969e1tbW2dlZUVERIwcOfK7776b\nO3dulS+2a9euFhYWAwYMKCkp6dmzp7oLTU1Nbdq0qSYsKirqwYMH48ePNzU1reYf2RvCN25X\nrlz54osvtF0FAAAAADRSN27ckEgkTZs27d+/PxFt3LhRPX7u3DkicnZ2zsrKUo8oFAo/Pz8i\n+vrrr9Ujhw4dIqKFCxdWySmVSl1cXCpPof7J/7PPPlOpVOrBbdu2EVFAQIAm7OTJk0TUrl27\n4uJi9UhpaWmnTp2IyNHR8QWn0KNHD6FQmJaWVnkwNzdX/SI2NlYsFvfv37+0tFTz7q1btwwN\nDT08PDSHQqHQzMwsNja2cpLU1NTqfxvVPM2oqKgqp1lSUuLp6fnsaT569KjyYUlJSadOnfT0\n9DSnppkxNDS0oqJCE7lp06Zn/1zUne2ff/75r9+jNvj5+aEhREMIAAAAANr03XffqfuKoUOH\nagYnTJhARJs2baocGRsby3Gcs7Oz+vCVGkIHBweFQqEZVKlUUqnU2tpaM/Luu+8S0f79+yun\nOnr0aHUaQolE8uTJk+e+GxoaSkRnz57N/qfBgwcT0cOHD3meDwkJIaKff/7536aozrdRzdMc\nP348Ee3bt69yqsjIyH87TZVKlZ+fn5mZmZGR8fXXXxPRgQMHKs9oYWFRUlJS+SOlpaVmZmb2\n9vaaLvHJkycSiaRt27b/doLa4ufnh2cIAQAAAAC0ac6cOTY2NkT0ww8/aAZjYmKIqHfv3pUj\nW7VqZWtrm5ycnJ+f/6qzeHp6ikT//7wYx3FNmjSp/Dybur2pfGslEXl5eb0085gxY+RyeZs2\nbUJDQ/fs2ZOZmVn53YsXLxKRj4+P5T8dOHCAiDIyMojo0qVLRKS+4vdc1f82qnmavXr1qpyq\nyqEmcvDgwVKp1MTExMbGxtbW9tNPPyWitLS0ymHt27fX19evPKKnpzdhwoS0tDR1n0lEmzZt\nksvl6r63rsEzhAAAAAAA2iQQCHR0dIhIT09PM1hQUEBE6kaxMltb2/T09IKCAhMTk1ea5dl4\nkUhU+cG5wsJCkUhkZmZWOcbAwOClu1+EhoaampquWrVqzZo1q1atIqLu3bsvW7asZ8+eRPT0\n6VMiOnjwYOWz02jVqhURqTs6e3v7f5ui+t/GS0+zoKDg2dM0NDSscpoxMTFeXl66urrTp09v\n166dVCoVCoUnT5788ccfK69kQ0R2dnbPFjx9+vQVK1asW7cuMDCQ5/kNGzYYGBgEBQX92wlq\nERpCAAAAAIA6RyqVElFmZqajo2PlcfUlNfW7AoGAiCoqKioHKBSKkpISCwuLV53R2Ng4JSUl\nNze3crNUUlJSnWzjxo0bN25cYWHhxYsX9+/f/+uvv/r5+d29e7dp06bqUm1sbDp37vxvH1d3\ncWlpaZUXR62sOt9GNUml0mdPs7i4uMppLl++vKys7ODBg3379tUMXr9+/dmEHMc9O+jq6tq3\nb9+jR4+mpKTEx8cnJiZOmjTJ2Ni4+nW+MbhlFAAAAACgzlEvc3LmzJnKg/fv38/IyHB2dlZ3\nUOr1KlNTUyvH3Lhxo0qLWE3t27cnovPnz1cerHL4YsbGxv3791+zZs3s2bOLiopOnz5NRN26\ndSOinTt3vuCD6pgjR478W0B1vo1qUqdSr1KjUeWQiB4+fKgpTEN9RtX0/vvvq1SqsLCwdevW\nEdG0adOq/9k3CQ0hAAAAAECdM3HiRCL66quv1LdcElFFRcXs2bN5np80aZJ6pG3btrq6ugcO\nHNA8tldQUDBr1qzXm1G9qMyiRYtKS0vVI+Xl5V988cVLP3jixIkqLWhOTg4RqZ+sCw0NFYlE\nK1eurNJNFRcX79q1S/36/fffFwqFixYtqrI54ePHj9UvqvNtVJN6UZlFixaVlJSoR0pLSz//\n/PMqYc2aNVOfmmZk+/btr9QQBgQENGnSZP369QcPHuzQocMLLpBqF24ZBQAAAACoc3r16jVr\n1qzly5e3adNm+PDh+vr6kZGRsbGx3t7emv39DA0N1c+qtW/fPiAgQC6XnzhxomPHjq93a2Lf\nvn3Hjx+/ZcsWd3f3YcOGcRy3b98+GxsbExMT9b2p/2bMmDEikcjHx8fR0VEoFF6+fDkqKqpN\nmzaDBg0iInd393Xr1k2bNq1v376+vr6enp5KpTIuLu706dNOTk6jRo0iorZt265cuTI0NLR9\n+/aBgYFubm5Pnz69du2akZGRepeI6nwb1dS7d+8pU6Zs2LBBc5p79+61s7OrcpkxNDR0+/bt\nY8aMGTVqlKOj482bNw8fPjxixIgqe9O/gFAonDp1qrqjrrOXB4mwDyG2nQAAAAAAbVM/GpeR\nkVFl/LfffuvRo4ehoaGOjk6bNm2WLFlSVlZWOaCiomLhwoWOjo5isdjR0fGzzz6TyWTP3XZi\n/PjxVZK3a9dOKBRWyfb999+7ublJJBJ7e/sPPvggNzdXJBK1a9fuBcWvWbNmyJAhzZo109fX\nl0qlHh4eS5YsycvLqxxz48aN4ODgpk2bSiQSU1PTNm3ahISEREVFVY45f/78kCFDLC0txWKx\nra1t//79w8PDq/9tVP80lUrl8uXLmzdvrj7NmTNnFhUVmZubV9l2Iioqytvb29jY2NjY+O23\n3z516pR6V8MVK1a8eEYN9RVOIyOjoqKiF3yBWuTn58fxPK/NflTbrl69GhERsXjxYm0XAgAA\nAABQ59y6dat9+/ajR4/esWOHtmupf44cOeLv7x8SErJmzRpt1/J8/v7+eIYQAAAAAACI/vfs\nn0Zpaan6hsx33nlHSxXVb99//z0RzZgxQ9uFvAieIQQAAAAAACKiRYsWnTlz5q233rKxsUlP\nTz98+HBKSoqfn9+IESO0XVp9EhMTc/To0UuXLp05c2bUqFHu7u7aruhF0BACAAAAAAAR0YAB\nA+Lj4/fs2ZOXlycSiVq0aBEaGvrhhx8+d6s9+Dd//vnnp59+amJiMmbMmNWrV2u7nJdg8wxh\naGjoK8XPmTPHycmp5vPWHJ4hBAAAAACAxsnf35/NFcJVq1a9UnxQUFAdaQgBAAAAAAAaLWa3\njO7fv79nz54vDZPJZE2aNGE1KQAAAAAAALw2Zg2hVCq1sLB4aVh5eTmrGQEAAAAAAKAm2DSE\nFy9ebN26dXUidXR0Ll68WMdX2gEAAAAAAGgM2DSE3bp1q2Ykx3HVDwYAAAAAAIDag43pAQAA\nAAAAGqla2YeQ5/mTJ09evnw5NzdXpVJVfuunn36qjRkBAAAAAADgVbFvCIuKivz8/C5cuPDc\nd9EQAgAAAAAA1BHsbxlduHDhxYsXly5dGhsbS0QRERFnz5719fXt3Lnzw4cPmU8HAAAAAAAA\nr4d9Q7hv376RI0fOnz/f2dmZiMzNzXv16nX48GGe53/55Rfm0wEAAAAAAMDrYd8QpqWleXt7\nE5FAICAihUJBREKhcPTo0eHh4cynAwAAAAAAgNfDviE0MDBQN4ESiURXVzc9PV09bmxsnJmZ\nyXw6AAAAAAAAeD3sG8JmzZrdv39f/bpdu3Y7d+7keb6iomLXrl1NmjRhPh0AAAAAAAC8HvYN\noa+v7x9//KG+SDh58uT9+/e7urq6ubmdOnXqvffeYz4dAAAAAAAAvB72DeG8efNOnTql3n5w\n8uTJP/zwg66urqGh4aJFi+bNm8d8OgAAAAAAAHg97PchlEqlUqlUczh79uzZs2cznwUAAAAA\nAABqiP0VQgAAAAAAAKgX2F8h1FCpVEVFRTzPVx40MTGpvRkBAAAAAACg+tg3hCqVat26dT//\n/HNSUpJcLq/ybpX+EAAAAAAAALSFfUO4ZMmShQsXWllZBQQEWFhYMM8PAAAAAAAATLBvCDds\n2NChQ4fo6Gh9fX3myQEAAAAAAIAV9ovKPHnyZOzYsegGAQAAAAAA6jj2DaGrq2tBQQHztAAA\nAAAAAMAW+4Zw5syZW7duLSwsrEmS+/fvDx48ODAw8M6dO5XHVSrV3r17p02bNnTo0KlTp+7Z\ns0elUr1SAAAAAAAAAKixeYZw//79mtdWVlZNmzb18PCYPn26i4uLSPSPKYYMGfLSbCqVas2a\nNTo6OuXl5VXeCgsLi4iI6NGjR2BgYGxs7NatW3NyckJCQqofAAAAAAAAAGpsGsJ33nnn2cF5\n8+Y9O1idbSciIyOfPHni7++/d+/eyuOpqamRkZE+Pj6zZ88mooEDB4rF4iNHjvj5+Tk6OlYn\nAAAAAAAAADTYNITh4eFM8hBRXl7e77//Hhwc/OwehtHR0TzPBwQEaEYCAwNPnz597ty54ODg\n6gQAAAAAAACABpuGcPjw4SUlJQYGBjVPFRYWZm1t7efnd+DAgSpvJSQkCIVCFxcXzYizs7NE\nIklMTKxmAAAAAAAAAGgw24fQ0tLS19d36NChAQEBpqamr5fk1q1b58+f/+abbwSC56x2k5ub\nK5VKhUKhZoTjOFNT06dPn1YzQC0pKUkmk6lfZ2VlvV6pAAAAAAAA9R2zhvDjjz/+448/xo8f\nLxaLe/fuPXTo0CFDhlhbW1c/Q0VFxdq1a318fFq3bv3cAJlMJhaLqwxKJBJNd/fSALUFCxYk\nJCSoX7do0cLV1bX6RQIAAAAAADQYzLadWLx48V9//RUfH//ll1/m5eWFhITY2dl5e3uvWLEi\nJSWlOhn27t2bl5f33nvv/VuAjo6OQqGoMiiXy3V0dKoZoNanT5+h/9O2bdvq1AYAAAAAANDw\nMN6H0M3Nbd68eVeuXHn06NHy5csFAsGcOXOcnJw6deq0dOnSuLi4f/tgYWHh7t27+/btW15e\nnpGRkZGRUVRURERPnz7NyMhQr01qZmZWUFCgVCo1n+J5Pi8vz9zcXH340gC1KVOmLPifPn36\nsP0GAAAAAAAA6gv2G9OrNW3a9MMPPzx79mxmZub69estLCwWLVrUqlWr1q1bR0REPBtfWFgo\nl8sPHjw47X/27NlDRMuXL582bZr6nk8XFxelUpmUlKT5VHJyslwu16wi89IAAAAAAAAA0Kit\nhlDD0tJyypQpR48ezc7O3rZtW8uWLe/du/dsmLm5+Sf/9PbbbxPRmDFjPvnkE4lEQkTe3t4c\nxx06dEjzqUOHDnEc5+3trT58aQAAAAAAAABoMFtU5qWkUmlQUFBQUNBz39XT0+vZs2flEfX6\nn+7u7prH/BwcHPz9/SMjIxUKhbu7e2xsbHR09IABA5ycnKoZAAAAAAAAABpvriFkYsqUKebm\n5sePH798+bK5uXlwcPDQoUNfKQAAAAAAAADUOPV6LQzp6uo+fyaO09PTc3R07N+//5w5cyws\nLNjO+3quXr0aERGxePFibRcCAAAAAADwRvn7+7N/hnDQoEEuLi4ymczKysrLy8vLy8vS0lIm\nkzVr1qxz5875+fnfffdd+/bt09LSmE8NAAAAAAAA1ce+Ifzoo49SU1N/++23lJSUkydPnjx5\n8tGjR1u3bk1NTV20aFFycvLvv/+ekZGxcOFC5lMDAAAAAABA9bF/hnDevHkTJkwYN26cZoTj\nuODg4CtXrsyfP//MmTNjx449ffr0sWPHmE8NAAAAAAAA1cf+CmFMTIyHh8ez4x4eHteuXVO/\n7tat25MnT5hPDQAAAAAAANXHviEUi8U3b958dvzGjRtisVj9WiaTGRgYMJ8aAAAAAAAAqo99\nQ+jv77927dpff/1VqVSqR5RK5YYNG9atWzdw4ED1yJUrV7A3IAAAAAAAgHaxf4Zw2bJlly5d\nmjx58rx589zc3HieT0hIyMnJcXFx+f7774movLz80aNHY8eOZT41AAAAAAAAVB/7htDe3v7G\njRs//PDDgQMHbt++TUTNmjWbPn36nDlzjI2NiUhXVzcqKor5vAAAAAAAAPBK2DeERCSVSr/6\n6quvvvqqNpIDAAAAAAAAE+yfIQQAAAAAAIB6gdkVwvLy8uqE6erqspoRAAAAAAAAaoJZQ6in\np1edMJ7nWc0IAAAAAAAANcHyGUJdXd1u3boJhUKGOQEAAAAAAKCWMGsIXVxcEhMT4+PjJ0yY\nMHHiRBcXF1aZAQAAAAAAoDYwW1TmwYMHp0+f7t2794oVK9zc3N5+++3ff/+9rKyMVX4AAAAA\nAABgi1lDyHFc7969f/vtt/T09F9++aWgoCAoKMjOzm7GjBkxMTGsZgEAAAAAAABW2G87YWJi\n8v7771+/fv3GjRtBQUE7duzo2LHjDz/8wHwiAAAAAAAAqIla3IfQ1dW1ffv26ocJi4uLa28i\nAAAAAAAAeA0sVxnVuHDhwq+//rp79+6SkpLu3buHhYWNGjWqNiYCAAAAAACA18ayIczMzNy6\ndevGjRvv379vZWUVEhIyadKkVq1aMZwCAAAAAAAAWGHWEA4ePPjw4cM8z/v6+n799deBgYFi\nsZhVcgAAAAAAAGCOWUN48OBBXV3dIUOG2NvbX7x48eLFi88Nw+oyAAAAAAAAdQTLW0bLy8t3\n7tz54hg0hAAAAAAAAHUEs4bw6tWrrFIBAAAAAADAG8CsIezUqROrVAAAAAAAAPAG1OI+hAAA\nAAAAAFCXsWkIN2/enJmZWZ1IpVK5efPm7OxsJvMCAAAAAADAa2PTEL733ntxcXHViVQoFO+9\n915iYiKTeQEAAAAAAOC1MXuGMDY2VldX96Vhcrmc1YwAAAAAAABQE8wawhkzZuHBZUAAACAA\nSURBVLBKBQAAAAAAAG8Am4Zw5cqVrxTv7OzMZF4AAAAAAAB4bWwawtDQUCZ5AAAAAAAA4I3B\nthMAAAAAAACNFBpCAAAAAACARgoNIQAAAAAAQCOFhhAAAAAAAKCRQkMIAAAAAADQSKEhBAAA\nAAAAaKRqsSFUKpW1lxwAAAAAAABqiHFDmJubu3Dhwo4dOxoaGopEIkNDw44dOy5atCgvL4/t\nRAAAAAAAAFBDbDamV7t161b//v2fPHlCREZGRvb29oWFhTExMTExMRs2bDh69Gjbtm0ZTgcA\nAAAAAAA1wewKYVlZ2bBhw7Kzs2fNmpWQkFBYWPj48ePCwsL4+PiZM2dmZGQMHz5cJpOxmg4A\nAAAAAABqiFlDuGvXrsTExJUrV/74448uLi6acTc3txUrVvz000/x8fHh4eGspgMAAAAAAIAa\nYtYQHjx40MnJKSQk5LnvhoaGOjg4HDhwgNV0AAAAAAAAUEPMGsLbt2/36dNHIHh+QoFA0Ldv\n35s3b7KaDgAAAAAAAGqIWUP45MkTR0fHFwQ4ODhkZWWxmg4AAAAAAABqiFlDWFJSoqen94IA\nAwODoqIiVtMBAAAAAABADTFrCHmeZxIDAAAAAAAAbwbLfQjDw8Pj4uL+7d07d+4wnAsAAAAA\nAABqiGVDeOXKlStXrjBMCAAAAAAAALWHWUN49epVVqkAAAAAAADgDWDWEHbq1IlVKgAAAAAA\nAHgDmC0qAwAAAAAAAPULy2cInyWTye7du1dYWOjh4WFiYvLi4MePH585c+b69esZGRkikahp\n06ZDhgzp2rVr5RiVSrV///5jx45lZ2dbWFj4+voOHTpUIBBUPwAAAAAAAADUWHZKR44cGTVq\nVHBw8Llz54jo+PHjLi4unp6ePj4+1tbWS5YsefHHd+/evXfvXhMTE39/fx8fn/T09K+//nrH\njh2VY8LCwjZv3uzs7Dxp0iQ3N7etW7euX7/+lQIAAAAAAABAjdkVwrNnzw4cOFC90+Du3bsj\nIyOHDh2qr68/ePBguVweHR39+eeft2zZcvjw4f+WwcfHZ9KkSVKpVH04ZsyYmTNnhoeHDx48\nWF9fn4hSU1MjIyN9fHxmz55NRAMHDhSLxUeOHPHz83N0dKxOAAAAAAAAAGgwu0K4YsUKAwOD\nQ4cO3blzp1OnTsHBwY6OjvHx8fv37z98+PDt27elUunq1atfkKFjx46abpCIDA0Nu3XrVlFR\nkZmZqR6Jjo7meT4gIEATExgYyPO8+oJkdQIAAAAAAABAg1lDeP369VGjRg0aNMjd3X3x4sWZ\nmZnTpk3TPDfo7Ow8ZsyYGzduvFLOwsJCIjI1NVUfJiQkCIVCFxcXTYCzs7NEIklMTKxmAAAA\nAAAAAGgwu2U0MzNT04k1a9aMiBwcHCoHODo6FhQUVD9hWlrahQsXOnTooGkIc3NzpVKpUCjU\nxHAcZ2pq+vTp02oGqCUlJclkMvXrrKys6pcEAAAAAADQkDBrCCsqKsRisfq1RCIhIpHoH8lF\nIpH6CcPqKC0t/eabb8RicUhIiGZQJpNpptCQSCSa7u6lAWoLFixISEhQv27RooWrq2s1qwIA\nAAAAAGhIanfbiddTXl6+ePHiJ0+eLFq0yMbGRjOuo6NTVlZWJVgul+vq6lYzQK1Pnz4eHh7q\n1wKB4NmPAAAAAAAANAYsG8Lw8PC4uDgiKi0tJaKVK1fu379f8+6dO3eqk0Qmk3311VcJCQmf\nf/55mzZtKr9lZmaWkpKiVCo1N4XyPJ+Xl+fu7l7NALUpU6ZoXl+9ejUiIuJVzxQAAAAAAKAB\nYNkQXrly5cqVK5rD48ePv2oGuVy+ZMmS2NjY+fPnt2/fvsq7Li4u165dS0pKcnNzU48kJyfL\n5XLNs4svDQAAAAAAAAANZg3h1atXa5hBoVAsXbr0zp07c+fO7dKly7MB3t7eu3fvPnTo0KxZ\ns9Qjhw4d4jjO29u7mgEAAAAAAACgwawh7NSpUw0zrFu3LiYmpnnz5qmpqbt27dKM9+rVy9bW\nlogcHBz8/f0jIyMVCoW7u3tsbGx0dPSAAQOcnJzUkS8NAAAAAAAAAI06tKjMkydPiCg+Pj4+\nPr7yeLNmzdQNIRFNmTLF3Nz8+PHjly9fNjc3Dw4OHjp0aOXglwYAAAAAAACAGlf9rSBe6siR\nIwKBoH///kSUlZU1ceLEyu96eHgsXbqU1VysqBeVWbx4sbYLAQAAAAAAeKP8/f2ZXSG8devW\nwIED16xZoz4sLS2NjIysHBAZGTls2LCOHTuymhEAAAAAAABqQsAq0a+//mppafnee+9VHty0\naVNGRkZGRkZqaqqpqemWLVtYTQcAAAAAAAA1xOwK4ZkzZ/r16yeRSCoPmpiYaHaWDwgIOHfu\nHKvpAAAAAAAAoIaYXSFMTk7W7P73XE5OTsnJyaymAwAAAAAAgBpidoWwvLxcLBZrDh0dHYuK\nivT09DQj+vr6ZWVlrKYDAAAAAACAGmLWEJqZmaWlpWkOOY4zNDSsHPD48WNzc3NW0wEAAAAA\nAEANMbtl1NPT89ixYyqV6rnvqlSqY8eOeXp6spoOAAAAAAAAaohZQzhq1KjExMQVK1Y8990V\nK1Y8ePBg5MiRrKYDAAAAAACAGmLWEAYFBXXs2HHOnDkTJ068du1aRUUFEVVUVFy7dm3ixIlz\n5szp1KnTuHHjWE0HAAAAAAAANcTsGUKxWHzgwIGAgIBNmzZt2rSJ4zh9ff3S0lKe54moQ4cO\nBw4cqLzqDAAAAAAAAGgXs4aQiOzt7S9fvrx169bw8PC//vqroKDAzs7O3d195MiRwcHB6Aah\nrikrkpXkl2u7ildjamskFDG7sA8AAAAAjRzLhpCIxGLxpEmTJk2a9Nx3b9y4gXVloO64uOev\n8CVR2q7i1Sw6Ocna2VTbVQAAAABAA8G4IXyugoKC7du3h4WFxcTEqO8gBagL7FpYeo32YJ72\n4a2Mx/ey277dTGpl+PLoV6RnpMM8JwAAAAA0WrXbEJ4/fz4sLCw8PLy0tNTAwGDEiBG1Oh3A\nK2nZw6FlDwfmafd9f+7xvex+kzu7dW3KPDkAAAAAAEO10hBmZ2dv3bo1LCwsLi6OiPr37z9t\n2rQBAwbo6enVxnQAAAAAAADwGliuTqFSqY4fPz5y5MgmTZrMmTNHX1//008/JaKQkJB33nkH\n3SAAAAAAAECdwqwh/PLLL5s1a9a/f/8zZ868//77t27dun79+uTJk1nlBwAAAAAAALaY3TK6\ncOFCV1fXvXv3Dho0CDtMAAAAAAAA1H3MrhBaWFgkJCQsWLBg+fLl6enprNICAAAAAABALWHW\nEKalpe3cudPe3n7+/PkODg4DBw7cs2ePXC5nlR8AAAAAAADYYtYQSiSSUaNGnTx5MiEh4ZNP\nPrl58+aIESM6dOhARLhgCAAAAAAAUAexXGVUrVmzZl9//fWjR48OHDjQu3dvoVA4Y8aMZs2a\nzZ079+rVq8ynAwAAAAAAgNfDviFUEwqFgYGBhw4dSklJ+eqrr3ieX7ZsWZcuXWppOgAAAAAA\nAHhVtdUQatjb23/22WdJSUnHjx8fMWJEbU8HoHUKWYW2SwAAAAAAqBZm2068GMdx/fr169ev\n35uZDkCLivPKtF0CALAXtSVGUV6fft1j7WLWrq+rtqsAAIC67g01hPCqctMK61lfwZFDG2tt\nF6E1CVcfnwy79t6KgTr6/9iEMy0ue+eiUx9sGS7Wwf/XAOq3wysv1q+/ljsObIGGEAAAXgo/\npNZRh1ddvLDrjrareAUisXBl3EfarkJr7FtY5mUW/TLxj9CNw4hIwKmIKC0u+6eg3V0Gt0I3\nCNAABH87oELO+AqhSsn/OjPCxsU8YGYPtpmJyNTWmHlOAABoePBzah3l1rkpx3HM0949l5yX\nXtRtaGuRhPEfvVBU68+j1mV6xjozfxv58/g9KyfscbDN+dj/m4xHfnu/O+c5oPnwz97WdnUA\nwIBHXxfmOZUVKppJhmZ6HfxbME8OAABQHWgI66iu77Tu+k5r5mlXTd6bl140/NPeBiZ6zJM3\nZnx5gaQw8YMtw38evycz9qGuR3n4kqhOAa3GfNlX+fCcyLmXtguEhqwkvzzsg0ParuLVdB/a\npssQ9n/FAQAAwKtCQ9i4yErk2i6hoamQKzfOjDCW3+prviQ6b6ZEr2N5ppyIhGJh9qO8yx/6\nOepc+iNrtXNn54H/6a7tYqFhUiqUcRdStF3Fq3Ht3ETbJQAAAAARGsLGpqSgXNslNDRCkaB5\nNwd5mW1qUUUv7jtz288uJvFEJBJyvm7h5mVX7tuuae7mYtfcQtuVQoNlZK7/Y0wo87Rp93OW\nj9nZY0TbYfN9mCcX6+JfH4AGJSe1IOl6Gq78A9RH+Ce54Tu/83ZSTHrQN74CoUAqyTaz/0s9\nfuNo/J97/poRNlS75WlThYxXlNY8jc8IJyIi+ij7qH6rPz8vdRvAEe/fdpdJwQ3DyQe9HNup\nw/iyvJrPxekYk0BY8zzQkHACTl+qyzytrqGEiEQSYW0kB4AG5sGV1DNbbqAhBKiP0BA2fK29\nnY6uubzxo8iJKwY2MbrrYnGOiGKOxG+aFRm0tL+2q9Mm2aU1pYdYrowqJiIBdbWNICJ383NE\nJNvUW8ZwAiLjj+8LLZozTVm7SvLLU+8+0XYVr8a+paWRub62qwAAqOuuHoqLv/RozJf9BMJ/\nLIMX9+ejqM3Xp69/R1uFAcArQUNYR2VlZRUWFjJJpZNwYHLQX+s2d/rvpJ1NFBWkQyd3XDzx\n35sjpqocc+YnJPzIZBaO41xc2C/BV6uUWfdIIH553EvwpKrGSvQcRxyD/7vxxdlUrxrC1LtP\n/vtuuLareDVTVw/27O+m7SoAAGrF3m/PXtjNZl8rXsWXl8gv/nFXR19sqZfS3OLO7A4FygqV\nrFQh0RXN7vALk1mI6IdrMzgB+6XXAUANDWEd9fDhw8TERCapDMr5rg/3jfB79Nv+gWaWZWRI\nx1bE+AzJcM/+JV40+uHVq0xmEQgE9a4hFDl0Uzw4ySSVUqGSlyv0jHT4khyVrIh44jjiDK1I\npF9aJDMw1iVG/5AJjO3YJHpTzJtIfad1YZ42I/7pnajEVl6OTdtYM09u7WzKPCcAQB0h0RPr\nG+uwyqZnJCl4UqJUKK0s0lrY/HU5M7CssNzAWFeP3RQAUNvQENZRrq6uNjY2NUySn1FydMV1\nXmWdLl4QYPPN8E4V8UkWRNS+VWofWnstZ8jNxL5EFa3fdmjn71zDuWpj18TaJun0nqTTe8zS\n8XzpwQ/kt3bdKJvcRrVa0XWJ4a1PDcesMXFv1PfMWDqavDOX/a4bl/fF3olK9Ojj+ta7nsyT\nAwA0YIM+7DHowx5MUskurpLf3KEYsGvFe4dFEiERyUoUg+d4v+V5U3bhJ+NZd5nMAgC1DQ1h\nHWVqpGuqV9MWy8pQtyTAiYiInDPLV7nEhxo6GuuJS4e2WPvUZqJxu3Hqn9Md2ljZWRrVcK7G\n7n/doNHUUxR2lvKo3HGkdTOz4h1jDMfsEDfunrA2KMoriKi8mO0TmgAAUC0FWSV7lkQJeQtv\n3Rxu9VsObp/LkxREZGpnJLq/pTjp14vyeRn/OeT+lnP3Ye7aLhYAXgINYR1VtKqHMuNWzfO0\n/OdhU7O/F7q0erLW6snav0dvU37NZ+I4029VNU9TTynuH5Hf3m009bTQxp0TnFMPSjq9x/N8\nya5gacscToR1GmuqrFB2evP1/iFdRRIhzxMR8SqeiFRK1bG1V7xGe2AlGACAN0PXUOLQ1ppX\n8Q9Va1pkfNBPuOTso7ZE5G4R7amzPcF6qUTf25HI0hF34APUA2gI6yhO34yEkhqn4UmlbtJ4\nXsUTRxzxROr/ccRxf9/nyXHECWo4E1fjDPWauMUA6dwETqfqhVadzhMlbYehG2SDo2sRcQ9v\nZ05bPZjjVf4eERzfWaVUbfwoMuV2pvcYD23XB/CaVCpe2yXUFSvG7oq/nKrtKl6Brav5F8fY\nPXrwRpQlX1dmM1ikoPvfeypR5oNJ9OfSvq1PECnfMv4trnywe/cmAsFDIiLVw+IrNZ+KDDuP\noHr4ZApAfYGGsI4ymnqaVaq7Z5NXT93bonvMWJvw+KzmUnG+mVlxgtJ1f1RQGy/XicsHsZqo\nUeMEmm5QLjBPznbW7EPP6Uq1VVQDo2ek89H20T8F7V47bX+7XpZezc9er8jdPOdI8o2Mj7aP\nMjTD5cFaUfSUwV6d8GKFWSXaLqGusHI2LS+RM0+b/uCpqkLVpJUl88wWTevf3/DZ60caqZIY\nJjQnIsP/P2yl84dy3x9KhhMQ8R3e4UQ1XxUcAJ4PDWHDp+Dlzl2vj7Xdm2gz7ME9WXvLG9H2\n83plfBfos/Wx6SJtV9cAlQnsDlyYOGuGtutocFT5qfTboA9/3vrfD25cDH/i3pbunk3Oemo4\na1138d7eyrHbhZYtX54FXiYj4amtq7nmUCH7e1eV3LRCA1M9HX38TMbApX13m3dpamZvrD7k\n6e8rhPGXUwUCzrVzE+2VpmXjvvatjbQLe/8iKyidfyC4NpLXOwqLrkVPatp1c8QLqZzneaVc\nKRAJJCK5mEqISEUimcqoQqHiOE4kFipJrGLxo6YJJ6x5EoBqUSkL/+tpNOUkZ2il7VLeHDSE\nDZ8RXR1vuyfeZlSKlT9ROBEVi22uun7aKf5LK6ONRIHaLhDg5a5FxOWl5TsVO0o39+3x9s+n\nd2ZRW3r6KN9rZBPF7/3zdd0v/5FvZH232ztttF1p/cbztHzMrq5DWg3/tHfl8eQbGT9PCB+/\nzK+9L3ZoZCDhyuNDKy7M2j7KxOb/7zP/Kypp/YyDwd/212JhDVUnywg96wKiudoupE5wmb2d\nVaoHVx7nPMrv4HCp7MB/cs3HKVOibZrbiZUKxcA/Lh1OH/if7qwmAqhtqrwUgakjEfEqhTLz\njqo8X2hoRUSqgscCY7uaP1pVxzXw0wMiqigrPCPxS7HyJyKB5O/fQxfr2p+2mSnj8Gwb1A8P\nrjyOvZB6OD4oqbBDm6zp5gZPiMhIr7BN9geZxU6HEybG/pkaf7E+PXpUN3Ecfbh1xOV9seFL\nojSDj/568sukP3qNa49ukJWxS3xdOzdZPmZXzuOCkV12uFteuHsueX3owWHzfToHttJ2dQ3E\nxf+uv/TrPvVrkaBCKPj7WveN3afOLl2hvboaFLcuTdTdoMG4XTKDVjwJDCcd44RiceQw/8m4\nZQPqDVVRZsEPLeTXNmtG1GvXKe4fLVzWnMkqj3UcrhA2fJxL35hzqeoFN3jiNGsXPFGaWLWe\npLWyoHHgS3Mr0mJqnmd4MBGZEhGvnJPw62djO60hojFdNpaomraY8lkbnb9XYFI8OFnzuUS2\nHo3qRpEqmrSy/HDbyP8G7y7KLSWisiLZf98N9xrtURv7STZafPbdd5f23rog6ufg8ECXEomy\ncN30A8Pm+XgPsVEVpAmk9tousCFoKn3A3Zr155qwHtNHawZjdh43+3O0mVuAFgtrSBR/7S07\n8B+D4D3ilgMd8rLKCow5XWPDSUeLf+1fvG0Yw9UQQKO0oFxfit/mMyYwsjEcs714+xheKRN4\nBBFRXkahSd7xkm1D9fy+E9o1/B2P0RDWUbu/PH15fyyTVDzPKxSWFw6mcxynw7d7ZNA082Iu\nx5FSqXwkiT0qvM9kFpFY8N3l95mkgoZEFrOt7NBMtjltBUQSIiIDSZEBxZZvG8g2v26fz/V8\nv2Sbs16QlSrUS8joGkrGL/Pf+FEEESXfzOg5sq33mHY5qQVEJNYRSa0MtFxofZb1MC/+Uqpj\nwlSO49w8/5uVnE9EshJ5+35ueqq0nO/8ci1HPbWd3NG/ha5hzReabtSajP8+PSzP6d6k8z//\nvWHpzT2nTS6METp0bTrjV+3W1mAIrFsbTjkhcvIiIrGOSKkrIiJOV2o46bgi/pi2q2uAMh7k\nLBuxY/nN/2i7kIZGVqo4c97eZ9TvpbvGSeQyIuLTLpVcmKs74LsL8T06NS8xtmzg//ChIayj\nJHpifWMdVtnkckFRUZFIJCpT6paU2oglKqVSqW+gp6enx2oKobj+PfCdkpISFxfHNqdKpYqL\nSyWi6OjoxDwzjvUy2d7e3vr69Wk5TYGRDYlZ/GemUhLxKiXP87xQKCBVhXr/FBKIlEqeI04g\n4og4EjD477DRXp/ZNu/o9ch//IZIIpLLKyTR229Fb//7hhmBUPD9lekGJsz+6mhskmLSo3fc\nuiZ6d1DTb80y35UX/oeMiYiKku/ZCL5LKXM9dacDJ7zt1M7WvoXFy5LBC3Gc3eQN6WHU7N77\nD4SthZzc+OwIsUOXprMPkQA//LAhtGxJmqVbRTqc6O+fWzhdY4nHCG1V1cCU5Jel3H7SupcT\nEcnLKxTlf9/8zKv4G8ceePZ34wSNdEMOZdbd8lNLGCRSqVQKhfnNRw/ui51cPOWRHxGR+NyH\nQuu2DyN362dtUqkcSnQlTH7AkHQNETfzqXke5jieb9TbH129ejUiImLx4sXaLqTWpaSk3L17\n9/Lly5cuXZo4caKbm5uHh4dI1Kj/Ubx//35MDIO7GTXS09NTU1MfR5VZFrs9trncqqezi4uL\nsbExwykGDRpkZFR1t8NGIi+zaOOHEe8tbic8EFBQ4WhUGJVj0N+Ku8kPj9z4VULQUl8rJ+yA\nXCPKCpXsfyv+P76XvXravhk9lxy8NcLu7SGD53irx4ViYaNdaJQvyydi9i8mX5qTs2ZgRkqF\nUiV4UtSktf0do1Y9TcdtZPIzx9+EEk5Sz36rXbS2V0XajRom4VW8SqHQHHJUIeBURKTiOZ7+\n/79egUjECWu6koLQ1NF41l81TNJAqCr4snzOAL/IYOxxbNb3w7cPW/CWT1D7lDuZP4zYsTLu\nI17Fb5179P6lRwuPT2y0fyc/3rXUIOZTbVfxagrsxjh9yGxVJ1b8/f0bdT/QqDg6Ojo6Ourp\n6bm4uAwZMkRHh9nlx/or944idl0xq2xyubyoSCEWN7WWq1RETkVdy47z98VlenokEDBbvamf\nl6p+9YMqlaqiooJJKgMzndBfupT92o+39riV/65XYdQd1ajeLe24cP/3vz8usDKQy9lsXyYS\niRj+kdUjQpFAX6qriIvMULRf9/6BDv2bi8vlTZobXTsSL9IRvfOuvsDMSaBvre0ytaZgmRtf\nksMwoZjIwYyIyNkikYgo8VD+lyw3ypN4jDQYt4thwjdAmX2f5DX9a5kjEj7vkomA44kq/S2h\nlFONN8tT5afUNEWDIRChG9R4HJsVG/2QVbYuga3CvzodG51sbmvY1CTp2NrLMUfic1LyvUZ7\nnN1W01+gaPQY4V6/dvTlmvR4FN2u5nkEnFLAVRARqUioKrQ2yiDiibinJRblZK5eXpTnhUqe\nQdNk0NSv5klqAxrCxkUgEIjFjfQ3Sc9SyJWlhTJW2eRyuYAXq+QccRyJVbxSyKkEMnmFUlbG\n8Epsvbukn5WVFRUV9fK4ahBXFPeI/zSDs9t2o0n+zX1e3enU2ZNnc83Gmjo6ru39Z4uvZSIT\nJhN5eXk1bdqUSar6h+cL94SmJZh4j1reMaCNci1JdEUfbht5dNZnBcWbjCcdFrg13oaQVEoG\n9z8rK0ileHmYSKfmq5zXx15FP+AnVf4jhgnT7yTqJv/O8wKeJ4lI9tR0iHPPjgzzowWC50q6\nmbHv+3Nsc94+mWhvkjat99rPlzmqf+NxfMNVhvnb+DjXr4bQvudb9j1v1jzPX2eS8jKLicig\n8KJj0ocn4ob0a7Ev8vY7fh6HMh1C8syHE5GekU7HgS1qPledhYawjkpNTc3NzWWeNjExMSsr\n6/bt2xIJ4+UKOI7z8PBgm7O29RrbrtdYBr9bIqL09PQffvihc+fORJSSkpKWlubu7m5sbFxc\nXGxsbDxy5EjmDxPWFyoZJymSMkklVEniBH23XNUzt5RaGhoQkYmOZXmh4aqEduM7uYlKzHgB\nm4unvKwxXh5U44lbdXji5LfWedivylP9Vz1ozV0Z5rnlyN1hLRMcOjTijSc4fXMqfVrTLCIi\nIlmpQigSiMQcLyviVTxxxAmEnMRQXl7BCTixDpt/mgVWrZnkeZMk7ccwzHZzz2nj+O+VDj53\nr8t0BIUtereT3ttx9dZA7w/HM5wF4FmtvBynrGSwmG1Wcp6oLMW8/Mxj/bE5qYUZ5x8Tx+vq\nirsPb2NkrGxS8vsjown6JlITa8Oaz2Vmz/IJl3rk7tnkzMRcW8mtt82WXS0cdy3VvV+LfQk5\nLc/lOnvz3zy6kxlf2s/ARBcNIWhBRkZGYmIi87QKhcLAwODBgwfM+xOBQFDvGkKG5HL5cy+9\nisVilUqlUCiYd+D1ReHj8pPfsVkvl4iIOugTld0nHZGM2pLisXHpA2MDMtlzn4iYbULYzNHN\nwZVVsnqG4yg0/EMTgwlF63vrFoaUEJmLE0q2/agf+NOgj4L12K10VR9J5z5gmE2V97BoXW9R\n8wGxJ27mKN28OqRweqaWEw/Xu6f+6qybf5w2PjtC4ti1yayDf40dQER2kzekrVc1i5txeYNe\n1ykjtV0gNGSWDiaWDjW9aUWlVH09aKuuMnOs+/aixNiryeN01T+8CSj+/L1hLX8iomtnuju0\nc5i4gvFq2/VCXmbR1QP3ap7H1MbIylLe7tEPj8w+uJ3kWSFPIyKBkLuV3Nqu+VddBAuN2viU\nShyPr7tS87na9nGxdTWveR7m0BDWUS1btnRwcNB2Fa+g0V4BU9PX15fJZDzPV/keysvLDQ0N\nG203SETmTaS+07owSSWXy8+ePWtnZ8dxXFmZ8L/3polaSZsYGBBRenq6l5eXri6brZmsnevZ\n4jSqwvSiNd4sElXwSoWAqJCIVErB0yNGuip32s0LjctOfkknvywhIk6gWUiwJiQdx+v1/aLm\neeqpv7tBh266w7fwJzxIqG809VTR+j7FG/0N0RMyIn24TuzSq8kHe/5/S/m7vQAAIABJREFU\nnR6Os5/6a3qY0DprPREaQqhFd04nnt7MYNU6Y0sDIpfj+V/2N1/Mq7ZeuNeJiDhF8fBWG8US\nOpH7uWkTg6Knpf99N7zmc4372teiKZs7et6Mp48LWd2XyxF/1jj0SaE1UbpIqCQiebniaXbu\n5rUiC6OZecWPlXwGk4lMbY3QEMIrMDY2Zrs6JdQqCwuLt956KykpydbWVjPI8/zjx489PRv+\nfqYvYOlowmpD8/z8/AtZB5t1a8VxXHa2/MEDcbNmAhsbKRFlX47r934HC4tG+jCPqiRHlZvE\nPC339/+IZAW8rEAzzuQxVmXSGaLG2xCW7Bgncu5lMGKjUsURkUhHxBlYqnvC8jPfNc5tMJlz\nnv28BXU4zm7KhjdeCzQ6eZnFcRdYPsSbZDRlSq+14hb5HNF7XhuUcuWGU1PL5DlEzFa60qwy\nXV/YuJgxuS+XiHiezu+8VfTXk4Ef9DA2leSf+r5/aF/OwDpy5Z/6FlaDp3QRPHehqlfn1N72\n5UHa0NAaQpVKtX///mPHjmVnZ1tYWPj6+g4dOrRxLhgIL1VeXl5aWsoqW/PmzZ8+fRobGyuT\nyUpKSjIyMuLj4zt27Ojg4MDwcVCpVCoU1r8tH5kwMDDo2bNncXFxlZ0Yy8vLu3XrZmjI4AmK\nekpo7qLn9y3bnMrsOHnMbxUKIqFEx6aZpN0YltshEKl3sm60DN/dxxlYECcglUozyBlYGs24\nyHBnC9DIkreg8oKXxwEw0tHo97bDlzFP20rvLhE1NU8hos8DGf9OTV/oSdSHbc5aZWiq18Gf\nzXN9hTmlx9dd+XjPOBsXM4Ws4oPZCxbN6mTtbNq2j8v6GQds3cztW7JcAroOamgNYVhYWERE\nRI8ePQIDA2NjY7du3ZqTkxMSEqLtuqAuSklJYbsPoVKp5Hk+Ozs7NjZWT0/PxsamoqLizJkz\nDKeod/sQyuVyhv2wvr7+pUuX3NzcCgsLS0tLi4qKdHR0EhMTvby88vPzWc1iYmLC6u7TN4OT\nGOi+9QnDhIq4yPITi2RdlpZHff3IaFo7xR/K9BiDMTtIiDWK2eAMrTSvswpsZKZ/r92Km0VX\nT9mXeD2Nedqy4makotsdfmGe2bqZ6dw945inhXpPXv9+ASGoKNN2CVpjbKE//2Dws+NSK4OP\nw8e++XrevAbVEKampkZGRvr4+MyePZuIBg4cKBaLjxw54ufn5+joqO3qoM4xMzNr3ZrxKnxd\nu3bleb72VpGpd48j5ubmstp2gv63eM+xY8d0dHTKysoKCwvlcrmbm1tBQQHDWRr1thNEirjI\nkm3D9QJWFBkPpaiv5ZzUaGpU0freJTvGoCesDYdvD3Lt3ETbVdQVugZi/VpYu6g2cqrpGjbq\nlZbg3+j1/VziMYJVNp7nSVFWdnReRXEhX5whMjQVNems4z2LZ7qCg8ixG6tU9ZpIIvKb0c3U\npnHddtSgGsLo6Gie5wMC/v9+4sDAwNOnT587dy44+Dl9PzRylpaWlpYN/B4ArTMwMGDbdbu7\nuyclJT19+rSsrExXV9fCwsLZ2Znt7pqN+vFdni/ZGaw3ZJVO54kUm6UeE5g0NZp6umj92/K/\n9krajdJugdCwTfxpkLZLAGBAIG0ikDL7RQ9fXlj8a39OrC8e9KNid6DRjD+L1/VW3N6pP2xD\nzTcshSo4jgJnNbqHGhpUQ5iQkCAUCl1cXDQjzs7OEomkNvZvAIDqMDIyateOzWaPGh07stxX\nGv6B40w+zyRh1QvRAhMH6ezYZ8cBAKBW8bKi4l/7E5HR1NOqnPhCoUBo0dxw6qnidb1L903X\nf2ctNe5l3oGJBtUQ5ubmVllyg+M4U1PTp0//sZVwUlKSTCZTv87KynqjJQIA1HGVur6EJ81L\npbbPjgMAwJuhzLrHGVgajP6N0/3/u1eEli0Np0WV/jGV/7/27jyuyStdHPh5s5AAYUcEkUV2\nkEVBEVQEd1Cw144dP22vC1Ox7a10XGq1oFhGRcY6t2KrMqjV1lZxaUcHqGxVsILKEggCIiBo\nSVg0EAIiIWT5/fHem5sfKLIk70vC8/1Lk8jn4fT0yXnOOe854hcYQ5NOFgDjk1YVhH19fYN3\njuno6CjKP1xMTEx9fT3+Z1dXVyeniXoFNQAADOnnkj8vcJ24j1MCAADpaDb+rI3/Hvw6dZKb\nwUequYUPAK0qCPFzJga8KBaLBxwYuHjxYm9vb/zPFApl8D8BAAANIpPKO5q7VP5jO9teIIRE\nL8T8JtUfl6dnyNAz0qSjXAEAgHSUSa66YYfIjgJoIa0qCE1NTZ8+fSqVShW7RuVyuUAg8PT0\nVP5YVFSU4s/FxcXp6emERgkAACr1ouPl3hB13bVddL266Hq1yn9s+NZ5K6MDVf5jAQBAi2EM\nA2bQdrKjAFpIqwpCR0fHkpKShoYGZ2dn/JXGxkaxWKx8zAwAAGgZOoOmqst5CWPlZEZ2CAAA\nAABASMsKwqCgoMuXL6elpW3f/j/TJ2lpaRiGBQUFkRsYAACoj64hI+qbiDd/DgAAAABgEK0q\nCG1tbVesWJGRkdHf3+/p6VldXf3777+Hhoba29uTHRoAAADNFrfodE+nSB0/uaGseYfvtyr/\nsT5Lndb/PVTlPxYAAICW0aqCECEUFRVlZmaWnZ19//59MzOzdevWvf3222QHBQAAQOPpGjDk\nMrnKf6yeIUPlPxPH0Bt47DYAAAAwmLYVhBQKZc2aNWvWrCE7EAAAAFrli+vryA4BAAAAUD0K\n2QEAAAAAAAAAACCHtq0QjsLLly95PB7ZUQAAAAAAAAAAoaRSKSaXq/6JCA1SW1t79OhRsqMA\nAAAAAAAAABJM9IIQAAAAAAAAACYseIYQAAAAAAAAACYoKAgBAAAAAAAAYIKCghAAAAAAAAAA\nJigoCAEAAAAAAABggoKCEAAAAAAAAAAmKCgIAQAAAAAAAGCCgoIQAAAAAAAAACYoKAgBAAAA\nAAAYvyQSSU9PD9lRAK0FBSEAAAAAAADjlFQqTUxM3LNnz4sXL8iOBWgnKAgBAAAAAAAYpzAM\n09XVffz48d69e6EmBOoABeGEUFNTI5fL8T9zudx9+/Z1dXWRGxIAowOdmQDQyACAYYJ0QQAK\nhbJt27bg4GCoCYGaUL/88kuyYwDqxWaz4+LimpubAwICeDxebGxsY2Njb2/v7NmzyQ5NO/H5\n/OTk5O+//76oqIjFYllbW5MdkfaAzkwAaGQiQbogQE9PT2pq6unTp69du1ZTU2NtbW1sbEx2\nUFoC0gVhMAwLCAhoaWkpKysrLy+fP3++jo4O2UFpp4mZlqEg1H4sFovNZpeVlT158uTy5csC\ngcDb23vr1q00Go3s0LRQZ2fnjh07Hj582N3d3draevv27c7OTj8/PwzDyA5NG0BnJgA0MmEg\nXRCgubl5165dxcXFQqFQKpU+fvw4Jydn8uTJ9vb2ZIemDSBdEAlqQgJM2LQMBaH2YzAY8+bN\nKysrq6ysFIlE3t7ee/fuZTAYZMelnVJSUqqqqhwdHaOjo2fNmlVXV1dRUdHa2hoQEKD12YQA\n0JkJAI1MGEgX6iYSiXbv3t3W1ubo6BgfHx8VFdXR0VFXV3fv3r358+cbGRmRHaDGg3RBGIFA\nkJKScurUKT6f//LlS4FAADWhOkzYtAxTOBNCT09PZ2cn/mcTExNIH+pTWlpqYWFx8OBBPT09\nhNCMGTP27NmTl5eHENq2bZt2ZxNiQGcmADQyMSBdqNv169dbWlqmTZt26NAhJpOZmZmZnZ2N\nEPrggw9sbGzIjk5LQLogAJ/P37lzZ3t7u4WFRXBwsFwuv337Nv484f79+1ksFtkBao8Jm5Zh\nhXBC0NHRqaysNDc3Z7FY5eXlE2Gqgyy//PJLeHi4j48P/lcmkzlv3jw2m83hcKDZVQI6MwGg\nkYkB6ULdvvvuu46Ojr/97W/m5uZZWVknT56Uy+WbNm1atWoVQig7O9va2ho2N44RpAsCJCUl\n1dbWurm5HT582M/Pz8fHJzQ0lMfjcTgcWCdUrQmblqEg1H4CgUAkEi1ZsiQkJGTBggXl5eVl\nZWUDuvX9+/cNDQ1hm8foCASC06dP//jjjyUlJV1dXZ6enq6urop3J042IQB0ZgJAI6sVpAsi\nXb58mcVirV+/Pjs7+8SJE8rVYHd3d1xcXG1tbUhICNlhajBIFwSQSqVJSUkymSw+Pt7MzAx/\nkUqlBgYGlpSUPH78GGrCMYK0jKAg1G4dHR1JSUnHjx+/c+fO3LlzjYyM8O3+ipTt7+9PoVBu\n3bp15MiRkpKSxYsXw1zpSAkEgu3bt1dWVgqFwubm5t7eXqFQuHTpUgrl/+50Uc4m06ZNg61K\nowCdmQDQyOoG6YJgRUVFLS0tOjo6KSkpytUgQiglJaWurs7f39/X15fcIDUUpAvCSCSS1NRU\nGo22efNm5dcpFAqTybx79y48TzgWkJZxUBBqrZaWll27dtXW1hoaGoaHhzs6OuL7oZVTNv4g\neGpqqlwuX7FixYwZM8iOWvMkJydXV1c7ODhs2bJl5syZtbW1zc3N7e3t/v7+ynNIeDaxtLRc\nuHAhidFqKOjMBIBGJgCkC4JJpdLCwsKysjKEkHI1mJWVlZqaymQyd+zYgfdzMCKQLohEpVLz\n8vK6uroCAwMH3JgiFApv3bo1e/bsyspKS0tLJycnsoLUXJCWcZjiOlGgTcRi8datW7lcrpub\n2xdffGFiYjLgAz09PYcOHaqoqEAIUSiUDRs2rF69moxINRifzzczM9u4cSOdTj927Bj+ddjR\n0REbG8vj8ZYsWRIdHa2V+woIBp2ZANDI6gbpghQymWz37t343YMHDx40NTUViURXrly5evWq\nXC7fuXNnUFAQ2TFqHkgXxPvXv/519uxZT0/P/fv3U6lUxev//Oc/MzIyUlJSGhsbAwMDSYxQ\nE0FaVgYrhNopOzv75s2blpaWiYmJhoaG+IscDic7O5vH4zk4ODAYjIULF9ra2tra2kZFRUEe\nGSkej7dr166mpqZnz56FhYUpnj/W1dWdN29ecXExh8Ph8/kDZpjAKEBnJgA0slpBuiCMTCaT\nyWSKvV4Yhvn7+3M4nD/++OPf//73zZs3f/rppwcPHmAYFhkZuXz5cnKj1VCQLgiAr9YoEoKL\niwubza6pqamvr58xYwaTyUQI3bhx4+LFi8bGxu+9956trS2Z4WogSMsDwH5u7fTo0SOE0MqV\nK/EJDy6Xe+LEicrKSiqVKpVKCwoKDhw4gGHY/PnzyY5UU+np6enp6eXm5iKEBuzaNzExSUhI\niImJwd+dUDNM6gCdmQDQyGoF6YIAfD7/zJkzxcXF/f39U6dODQ0NXblyJYVCMTIySkxMvHz5\nck5OTmtrK4Zh3t7e77//vru7O9khaypIF2r1/Pnz5ORkNpvNYDCCg4PXrVvHYrGoVGpcXNy+\nfftKS0s3bdrk6OgoEAhaW1sRQuvXr1deMwTDBGl5AFgh1E5cLpfD4VCpVAcHh4yMjK+//trU\n1DQ2Nnbjxo137txpaGiYNWuW4qwqMAqKOaTu7u7Bzx8rzzA5OTlZW1uTGKqmg85MAGhktYJ0\noW4CgeCzzz579OiRVCpFCHV1dbHZ7IqKijlz5jAYDBqN5uPjs3r16vDw8Pfff3/p0qWTJk0i\nO2QNBulCffCeXF9fL5fL+/v76+vrCwoKZs+ezWKxmExmSEiIWCx+/Phxa2vrixcv9PT0Nm3a\nBAvdowNpeQAoCLWTg4NDZWVlRUXFr7/++vTp0w0bNnz00UempqY0Gu3GjRvd3d1LliwxNzcn\nO0zNpsgXT58+Hfz8Mf7u5MmTtfX5Y8JAZyYANLK6QbpQq5MnTz58+NDNzW3v3r0ff/zxrFmz\n/vjjj4cPH1ZWVoaEhODrJxiGMRgMWEsZO0gX6nPmzJnKykpnZ+c9e/b86U9/6u3traiouHv3\n7pw5c1gsFo1G8/X1XbVq1axZs5YsWRIZGQkL3WMBaVkZHCqjJXp6en7++efi4uK+vj5nZ+d3\n3nnHxsamtLRUKpX6+PgoTlFLS0s7deqUiYnJd999B9+LKiEQCGJiYibg88dqMrgn29vbS6VS\n6MwqBI1MFkgXKocfC7F+/Xomk3ns2DFdXV389f7+/vj4+IqKijVr1qxfv57cIDUdDDAIgPfk\nqKgomUx27NgxFouFv37x4sWLFy+am5snJCRYWlqSG6RWgrSMgxVCbdDc3Lxr167i4mKhUCiV\nSh8/fpyTk2NlZTVv3jwbGxs6nY4QksvlP//887lz5xBC0dHR9vb25MascXp6elJTU0+fPn3t\n2jX8zDr89OcJ+/yxOryyJ0+ePNnBwcHa2ho6s0pAIxPjlRkD0oVqKY6FaGtrW7JkifKNglQq\n1dvbOz09vaGh4a233oL6ZNRggEGAAT3Zz89P8ZaXlxdCqKioSLFOSF6YGg/S8hCgINR4IpFo\n9+7dbW1tjo6O8fHxUVFRHR0ddXV19+7dmz9/vpGREUKorKzs22+/zcnJwTBs48aNoaGhZEet\nYV43hsa/9iCbqMRwejKCzjw20MjEGCJjQLpQIalUevv2bQ6H09vb6+npiQ+dFfT09O7du/f8\n+XN/f394pG10YIBBDEVP7unp8ff3d3NzU34XakKVgLQ8NMqbPwLGt+vXr7e0tEybNu3QoUP2\n9vaZmZnZ2dkIoQ8++MDGxgYh1NnZefLkyQcPHlhaWsbHx7/99ttkh6xhRCJRfHz8s2fPHB0d\njx07dunSpeXLl0skkq+//rqpqQn/DH4mlbW1dW5ubnFxMbkBa6g39mQEnXnMoJEJ8MaMAelC\nVRQtiRC6ffu2RCJRflcul3d1dSGEZDIZOfFpPhhgEEO5J+fl5eFnIyl799133333XT6ff//+\nfTIC1HiQlt9MDjTctm3bIiIiGhsb5XJ5ZmbmqlWrIiIirl+/jr+blZXV29v7/PnzgoICmUxG\nZqAaKzU1NSIi4tNPP+3t7ZXL5Tdu3BjQyAodHR3p6elkxKgNhtOT5XI5dOaxgEYmwDAzBqQL\nVeno6Pjoo48iIiL+8Y9/SKVSxevp6ekRERFr164ViUQkhqfRYIBBJEVPTkpKemV7PnjwgPio\ntAOk5TeCFUKNJxQKLSws7O3ts7OzT5w4IZfLN23atGrVKoRQd3d3SkpKYmKiubn53LlzJ+AK\nuErgE3Lbtm1jMplZWVknT55UbuTs7GyRSIR/0sTEZOXKlWTGqsmG05MRQtCZxwIamQDDzBiQ\nLkZNJpMpL6Eopvbz8vJ27dp1586dBw8enDp1KiUlBSG0YcMGBoNBXrCaDQYYRFJepPrmm2/k\ngw599PT0JCUwLQBp+Y2gINRIXC63oaEB/7OlpWVXV9f169ePHz+u3L8RQufOnROLxYqdYGB0\nhjmGBqOj6MzQk9UHGplIkDHUh8/n//3vf//zn//89ttvf/LJJ2lpafh2UMVI+tGjR4cPH46N\njU1LSzMwMIiOjg4LCyM7ag0DAwwCyOXyioqKjIyMkpKSV85uvK4mBKMDafmN4FAZzdPZ2bl7\n9+6cnBx/f38jIyOpVFpYWFhWVoYQUk7WWVlZqampTCZzx44dilOhwRBqamrMzMzwaU4ul/uP\nf/zDz8+PwWAUFRW1tLTo6OikpKQM+EZMSUmpq6vz9/dXPt0ODJ9yZ9bX14eerA7QyOrwunSB\nEIKMoSZD3z6vfM30nDlzYmNj//M//9PZ2ZnsqDUMDDAI8OzZs3379l29erW0tDQ/P//33393\ncXFRnHsEB5yMGqTlsYAVQs1z/vx5Pp9vb29vYWGBEFqyZAl+IJW1tfX8+fMRQiKR6Pz58ydO\nnEAIRUdHw/2ww8Fms7/44ouvv/5aLpdzudzY2NiysrKffvoJIRQcHCwSic6cOTMgiWRlZeXk\n5DCZzLfeeovU2DWYcmeGnqwm0MgqN0S6QJAx1Obs2bPt7e1ubm5JSUnXr18/cuSIm5tbdXV1\nfHy8WCxGSqsr9+/f/+WXX+CqiVGAAYa6CYXC3bt319XVmZiYrFmzJiIioq2tLTY2ls1mKz4D\nB5yMAqTlMYKL6TUJfm/pxo0bdXR0lG/gFQqF+/bta2hooFAoFhYWHR0dYrEYPwB69erV5Mas\nKbq7u/fu3dvQ0BAQEPDo0SOBQODt7b13714GgyGTyXbv3o1fWXPw4EFTU1ORSHTlypWrV6/K\n5fKdO3cGBQWRHb7meWVnhp6sWtDIajJEukAIQcZQuRHdPg/XTI8ODDCI8eWXX7LZbHd399jY\nWENDwxs3biQnJ8vlch0dnZiYGOVFKoFAUFhYOGEfaRspSMtjBAWhxuDxeDExMX5+fmVlZStW\nrHjnnXeU3xWJRJcvX87JyREKhRiGeXl5vf/+++7u7mRFq4m6u7v37NnT2NiIEFLOIwi+EVVt\niM4MPVlVoJHVaoh0gSBjqJSiJ7PZ7GXLlr333nvK7/L5/KioKB0dnfPnz+vo6OAvQk04UjDA\nUDn8EhQajab8Yk1Nzeeff25ubp6UlGRgYJCZmYmfbrJo0aKbN28OrgnBiEBaHgvamz8Cxgc9\nPT09Pb3c3FyE0OCdMEwmc/369evWrevu7tbV1aXT6WTEqNl6eno6OzvxP5uYmCjGFgghIyOj\nxMRE/BuxtbUVwzBvb2/4Rhy1IToz9GRVgUZWqyHSBYKMoVLKPXkwc3NzOzu7hoaGJ0+euLi4\n4C/iO+5iYmIKCwvXrFkzZcoUAuPVSDDAUC2JRIIfUvLFF18ot+eDBw8QQlFRUQYGBnfv3lU+\n67Kvr6+goADvt1ATjg6k5bGAFUJNopj1tLW1TUpKggckVEssFickJPT39/f09DQ0NISEhGzb\ntm3A1LJcLodvRJWAzkwAaGT1GU66QJAxVETRk6dMmfLtt98qr7rI5fIPPviAz+cfPnwYf9pN\n+V+1t7c7OTkRHq9GgnShQiKRaN++fQ8fPvT391euCWUy2XfffRcZGdnT0/Phhx/29PTgN84j\nhH788cecnJyuri4qlfrtt99aWlqS+htoJEjLYwGnjGoSxdlTXC73+fPnc+bMgZ0wKkSlUufO\nnRsSErJgwYLy8vKysrLW1taAgABFI9+/f9/Q0NDQ0BC+KccOOjMBoJHVZ5jpgslkMhgMyBhj\npOjJzc3NbW1tyj35119//f333/X09CIjIwdsz9PV1TU1NSUjXo0E6UKFaDRaUFBQZWUlh8Np\nbGycN28ehUJBCGEY5uvrS6FQMjIyiouLZ86cGR0djf+TH3/8kclkfvzxx1OmTAkICCA1fE0F\naXksoCAc1yQSyc2bN9PS0oqKirq6uqZOncpisfCUXVFRAecRq5BAIOjp6TEwMKBSqQwGY968\neYps4u/vT6FQbt26deTIkZKSksWLFw8YdoA3GtyTaTSaYvwBnVkloJEJA+lC3Xp6elJTU0+f\nPn3t2jX8HAgrKyu8Jz948KCsrExPT08oFP773/++ePEiQmjTpk0DlgfBG8EAQ+UkEklvby++\nU/F1NSHu5s2bjx8//vOf/+zg4IAQysjIyMrKcnNzW7t2Ldw+PzqQlscItoyOXy0tLQcOHGhq\nalK8YmFhsXPnTldXV3hiXoU6OjpSUlLu3btnamqakJCg2KehOLHKxcVlypQpeXl5CCHF7g4w\nfEP0ZATHP6gINDIxIF0QoLm5OS4u7tmzZwghXV3d3t5eGo326aefhoSEKHqy4sOGhoYbNmxY\nunQpefFqJBhgqJxUKj106FB7e/v+/ftZLBb+4uv2jubm5h47dszFxeX9998vKSlJT09HCB08\neBCqwVGAtKwSsEI4TuE31bS0tFhZWa1Zs8bf37+vr6+xsTE/P3/69Om2trZwb6lKtLS07Nq1\nq7a21tDQMDw83NHRUXHHLoPBCAoKqqurq66ufvLkCYVC2bhx44Cz18AbDd2TLSws4BLesYNG\nJgakCwKIRKLdu3e3tbU5OjrGx8dHRUV1dHTU1dXdu3dv/vz5kydPhtvnxw4GGGpSUlJSVlZW\nXl4+f/78odcJ7ezsHj58WF1dnZeXV1tbixDauHFjcHAwyb+ABoK0rCpQEJJPIpH885//tLOz\n09fXV7x49uxZDofj4uLy1VdfeXl5ubi4LF68mE6ns9ns4uLipUuXGhkZKVK2k5OTtbU1ib+C\nhhKLxTExMW1tbW5ubgkJCX5+foo8gtPR0Vm4cKGtra2trW1UVFRgYCBZoWqE0fVkBoOhXK5A\nZx4aNDJZIF0Q4+effy4sLJw2bVpiYqK5uXlmZualS5cQQps2bfL390dKj7o9fPiwr69P+QEh\nMBgMMAiDYVhAQEBLS8twakIKhTJ//nwajdbf3+/g4BAVFbVo0SKyfwPNA2lZhaAgJJlMJjt8\n+PCtW7eqqqqWL1+u+GI7evSoWCyOjY21sLBQfNjDw4PH49XW1lIoFB8fH/x7cfLkyQsXLiQp\nfM2WnZ198+ZNS0vLxMREQ0ND/EUOh5Odnc3j8RwcHCgUCoZhtra2Xl5exsbG5EY7zo2lJ6P/\nHeRBZx4aNDKJIF0Q47vvvuvo6Pjb3/5mbm6elZWlfC4/Qig7O9va2trAwACWsIYDBhgEG1FN\nSKVSPT09ly5dumDBAisrK7Jj10iQllWI8uaPAHW6fv363bt3WSyW8k59uVz+4sULhJCtre2A\nz69YsQIhxGaz8b+amJisXLmSwHi1yqNHjxBCK1euxKeUuFxuTEzM3r17//WvfyUnJ8fFxcET\ntsM3xp6MoDMPAzQyiSBdEEMoFFpYWNjb22dnZ584cUK5Guzu7k5JScGvd8NvGrS2ts7Nzf3m\nm2+g8V8JBhjEo1Ao27ZtCw4Ofvz48d69e/GmRggxmcz4+Hh3d/eioqJDhw5JpVJy49QOkJZV\nCApCkv32228Ioa1btzo4OHC53Hv37iGEMAzDp4vq6uoGfJ7JZCKEXr58SXikWoLL5dbX1+N/\nnjp1KkKIw+E0NTVduHBh69atcrn86NGjFy5csLS0fPDgweD2B6/rxza8AAAgAElEQVQDPZkA\n0MjEU2QMSBfEsLS07Orqun79+vHjx5WrQYTQuXPnxGKxjY0N/ldFTVhYWNjS0kJeyOMXZAyC\nCQSCpKSkTZs2VVdXI4SgJlQHGMWpCRSEJMNnNeh0OpfLjY2N/fvf/15RUYEQWrZsGULozJkz\nYrFY+fP5+fkIoWnTppERrMYTiUSxsbH/+te/8L+Gh4e7u7uXlJR88sknGRkZf/nLXxISEhwc\nHJhMJn4UmEwmIzVeTQI9mQDQyARTzhiQLlSopqZGMXPP5XL37dvX1dWF/zU4OFgkEp05c2ZA\nNZiVlZWTk8NkMt966y3Fz8FrwgMHDkyZMoXgX0EjQMYgEp/P3759+2+//UahUEJCQtasWWNh\nYTFETVhYWEhuwJoIRnHqA88QkszExOT27dslJSV5eXkCgcDLy+vtt9+m0WjOzs5sNru+vr6q\nqsrb21tfX18ul2dkZFy4cAHDsOjoaHNzc7Jj1zw0Gu3OnTsPHjwIDQ1lMpk0Gm3RokXOzs7z\n5s2Liory8PDAN9Wkp6fn5eWZmJj85S9/Ub44CAwBejIBoJEJppwxWCwWpAuVYLPZcXFxzc3N\nAQEBPB4vNja2sbGxt7d39uzZCKFp06aVl5fz+Xxra+vIyEhdXV2RSHTx4sXvv/8eIbRt2zZ3\nd3flnwa3zw8BMgaRkpKSamtr3dzcDh8+7Ofn5+PjExoayuPxOBzO4OcJrays4OHMUYBRnPpA\nQUiyKVOm9Pf3l5eXi0QiNze3L7/8ksFgIIQoFEpAQACHw6mtrU1PTy8sLLx06VJBQQFCKDIy\nMigoiOzANRWDwSgoKDAwMPDw8EAIUSgUa2trGxsbOp2OEJLL5T///PO5c+cQQtHR0fb29qQG\nq0mgJxMAGpl4yhkD0oVKsFgsNptdVlb25MmTy5cvCwQCb2/vrVu34ldFYxjm7+/P4XD++OOP\nf//73zdv3vzpp58ePHiAYVhkZOTy5cvJDl+TQMYgjFQqTUpKkslk8fHxZmZm+ItUKjUwMLCk\npOTx48cDakL8PnowCjCKUxMoCEnW3Nx86tQpkUiEEOrr65s1a5aJiQn+FpPJDAkJEYvFjY2N\n7e3tIpHI1NR0y5Yt8I04FlOnTs3Ozm5sbIyIiBhwMF1ZWdm3336bk5ODYdjGjRtDQ0PJClIT\nQU8mADQy8V6XMSBdjBqDwZg3b15ZWVllZaVIJPL29t67dy9eqODwziyXy7lcbnt7u0wm8/b2\n3r59OxQqIwUZgzASiSQ1NZVGo23evFn5dQqFwmQy7969KxAIlGtCMGowilMTDE7gIdfLly/j\n4uKYTOaMGTN++OEHAwOD/fv3D5g6EolETU1NdDrdzs4ODtceu4sXL168eDEuLm7WrFmKFzs7\nOz///PPW1lZLS8v/+q//mjFjBokRaiLoyQSARibF4IwB6WKMWltbd+3aJRAIEELBwcHbt29/\nZV+Vy+Xd3d26urr43D8YKcgYRPrwww9bWlqOHTs2YFWKw+Hs3bt39uzZxcXFn3zyCZTcYwej\nOHWAFUKS0en0+fPnh4SEeHt76+np3bt3r6CgYObMmYppPIQQjUYzMzMzNjaGZD1SXC63qqrK\n2tpauelsbGzS0tJevHgRHByseJHJZAYGBrq7u3/88cdwI9AoQE8mADSyug0zY0C6GCMdHZ3K\nykpzc3MWi1VeXt7a2vrK++UxDGMwGPjhEGAUIGMQSSKRlJeXNzU1hYSEKD+3dv369bq6ui+/\n/NLT0zMkJIS8ADUSjOIIAwUh+eh0Ov7shJub2+tSNhiFzs7OnTt35uTk3Lx5UyKR2NjY4Fs1\nmExmc3NzYWHh4sWL9fX1FZ/X09OzsbGBL8VRg55MAGhk9RlRxoB0MWoCgUAkEi1ZsiQkJGTB\nggXl5eVlZWUDasL79+8bGhoq7yMFowMZgzAuLi5sNrumpqa+vn7GjBn4HR43bty4ePGisbHx\ne++9N/jiRzA0GMURCQrC8QVStgoxmczZs2djGPbo0aPi4uL09PTnz59bWloaGRlNmjQpKyuL\nwWD4+PiQHaZ2gp5MAGhk1YKMoW4dHR1JSUnHjx+/c+fO3LlzjYyM8OcJFTWhv78/hUK5devW\nkSNHSkpKFi9ejBczQCUgY6iKRCK5efNmWlpaUVFRV1fX1KlTaTSa4qie6urqjIyM0tLSK1eu\n5OXlIYQ2b97s5OREdtSaB3IykaAgHHcgZauEQCDo6emxtLT08/MLDw+3sLBoa2srKSn59ddf\nq6urbW1t29raKioqVq1aBUcSqwn0ZAJAI6sKZAx1a2lp2bVrV21traGhYXh4uKOjI35LnnJN\niJ80k5qaKpfLV6xYAU8BqRxkjLFraWmJiYnJyclpbGxsaGgoKirKz893dXU1NzdXHNXz+PHj\n1tbWFy9e6Onpbdq0CZ4bHAXIyQSDgnA8UqRsS0vLAXcugTdSnoSeM2cOi8Wi0WhOTk6hoaEz\nZ87s7+9ns9n4pUy9vb12dnawi0N9oCePEZfLffbs2dDXrEEjjxFkDAKIxeKYmJi2tjY3N7eE\nhAQ/Pz+8GsQxGIygoKC6urrq6uonT55QKJSNGze+8847JAasxSBjjIVQKNy9e3dLS4uVldWa\nNWv8/f37+voaGxvz8/OnT59uYWFBo9F8fX1XrVo1a9asJUuWREZGQiOPFORkUsApo+PXo0eP\nXF1dyY5Cw+BTd+3t7UZGRqtWrVq4cOHgC3aFQmFOTk5mZuazZ888PT0TEhJICXXigJ48OiKR\n6MMPP/T09Ny5c+cbPwyNPDqQMYhx48aNkydPWlpaHj16VFEKcjgcDodjbm6+fPlyKpUql8sL\nCgqampoCAwPh9jB1g4wxOidPnrxx44aLi8uBAwfwpwQRQlevXv3hhx8MDQ1PnjxpYGBAboSa\nDnIyWWCFcPwa/P8AGNrQk9AKTCbTw8MjIiJCIBDcvXt3zpw5sG1GraAnjw6NRrtz586DBw9C\nQ0MVI4/XgUYeBcgYhMnIyGhsbFy7dq2XlxdCiMvlJiYmXrp0CX80qLq6etGiRRiG2draenl5\nGRsbkx2v9oOMMTpHjx4Vi8WxsbEWFhaKFz08PHg8Xm1tLYVCgUfaxgJyMolg3y3QHr/99huX\ny7W0tPzyyy8V2YHD4fzwww+//vqrVCpV/jCGYcuWLUMIZWdnkxArAMMQEREhkUhycnLIDkQ7\nQcYgzNSpUxFCHA6nqanpwoULW7dulcvlR48evXDhgqWl5YMHD+rq6siOEYA3kMvlL168QAgN\n3qO4YsUKhBCbzSYhLC0COZlEcH4X0B6PHj1CCK1cuRKfUuJyuSdOnKisrKRSqVKptKCg4MCB\nA8rnEeNbOx4+fEhWwAAMbf78+WfPns3MzPzTn/4ER2mrHGQMwoSHhxcXF5eUlJSUlBgYGPzl\nL38JCwvDMEwul+PXDMpkMrJjBOANMAyzsrJqbm6uq6ubPn268lv4Jo6XL1+SFJqWgJxMIlgh\nVC+RSHTx4sVPPvmkqKiI7Fi034gmoWUy2blz5xBClpaWZAUMwNBoNFpoaOizZ89KS0vJjkUL\nQcYgDJPJTEhI2LNnzxdffHHq1KkVK1bgo7r09HQej2diYuLs7Ex2jAC8Gb4kdebMGbFYrPx6\nfn4+QmjatGnkhKUtICeTCFYI1ailpeVvf/sbj8ejUqm//fbbjBkz8Cs1gZqMaBL68ePH9+/f\n19PTW79+PXkhawaJRJKXl1dVVYVhmLu7+4IFC+DCaHXgcrlNTU1z5sxRPkQ7LCzsypUrN27c\nmDVrFomxaSXIGESiUqn+/v6Kv8rl8p9//vn8+fMIoU2bNuENDkYEPxQQ9g6oz+DvvlWrVhUU\nFNTV1e3bt2/btm0WFhZyuTwjI+PatWsYhq1evZrskDUb5GQSwSmj6tLX1/fXv/61ubnZyclp\n586dVlZWr/wYj8eztrYmODYtJpVKS0tLpVKpj4+P4lnktLS0U6dOmZiYfPfdd8rDjqKiImNj\nYxcXF5KC1QwtLS0HDhxoampSvGJhYbFz587BJ9RBZx6Lzs7Ov/71rwKBwMLCYsWKFcuWLWOx\nWPhbX3/9dV5e3qlTp5SPMQAqARmDFGVlZVevXn3w4AGGYRs2bHj77bfJjkjDPH/+PDk5mc1m\nMxiM4ODgdevWKdKFMsjJY/G67z5LS8t9+/Y1NDRQKBRbW1uhUCgQCBBCkZGRUBCOHeRkssAp\no+py7dq1O3fu2NjYHD58+HXHH+Xl5cXFxenr68Ppz6pCoVCsra1tbGzodDr630lofFNBdHT0\ngKPMra2tzczMyAhTY7zxziXFJ6EzjwWXy33x4sWyZcswDMPPXUxPT3/+/LmlpaWRkdGkSZOy\nsrIYDAacX6dykDGI19nZeejQoYaGBktLy88//3zhwoVkR6RhBALBZ599Vl9fL5fL+/v76+vr\nCwoKZs+ePaAmhJw8FkN89/n5+f35z38Wi8WNjY3t7e0ikcjU1HTLli1w+7xKQE4mC2wZVZeC\nggKE0Lp164Y4L769vV0mk+GHVgGVU56E3rhxY1BQENkRaZ4LFy48e/ZM+c6l8PBw/M6lQ4cO\nKd+5BJ151Do7O+Pi4vr6+hITEzdv3rx+/fr8/PwbN25kZWVlZWX5+PhERES4urrm5OS89957\nsLNOfSBjEMPY2DghIaG2tjYwMBC2O47CTz/91N7e7uzs/PHHH7NYrMuXL+fm5sbExCQkJCg/\nTAU5eSze+N33wQcfvP/++01NTXQ63c7ODnqyOkBOJhKsEKpLampqb2/vxo0b9fX1B7yVk5PT\n3t5ubW3t4eHh4+OzaNEiUiLUbjAJrRLDv3MJOvOonTp1qrKy0tXVdcWKFTQajUajOTk5hYaG\nzpw5s7+/n81m5+XlCQSC3t5eOzu7wcedA5WAjEEkPT09GxsbGEOPFJ/P19XVPXXqlK6u7uHD\nhy0tLVks1pw5cxBCRUVF+IVsinVCyMljMZzvPhqNZmZmZmxsDD1ZHSAnEwwKQnUpLCzk8/m+\nvr4Dnh6Uy+XJyclpaWkrV67U0dGZNGkSWRFqNyaTGRgY6O7u/vHHH7/uAU4wNLlc/sMPPyCE\noqKiBixMGRsb5+bmikSi0NBQxYvQmUcKH96dOHHCyMjo0KFDA3YTmJubBwYGhoaGGhgYNDc3\n9/T0CIXCxYsXkxWtdoOMAcY5Ho+3a9eupqamtra2JUuW+Pn5Kd7y8vJCr6oJISePzki/+4A6\nQE4mGFw7oS4hISEIofPnzw84m/j69euPHj2yt7d/5SPgQIXMzc3nzp0LU3ejht+5hBAafGc0\n3Lk0UhKJpKenR/kVHo+3Y8eOb775hkKhLFu2TFdX95X/0MjIaM2aNadOnVq+fHllZWVDQwMh\n8U5EkDHAeKanp6enp5ebm/vs2bPB6eLdd9999913+Xx+TExMa2srKRFqOi6Xi1/wA9994wTk\nZCJBQaguy5cvd3Fxefz4cVxcHI/HQwiJRKILFy6cPXsWwzA4JBdoBLhzSSWkUmliYuKePXuU\nn+dRDO/a29vf+GQghmH4f4vs7Gz1xgoAGJdMTEwSEhLwU0Pz8vKkUumADyhqwvv375MRoGaT\ny+Xx8fEnTpzo6+tD8N0HJh7YMqouFAplzpw5HA6ntrY2IyMjMzPz4sWLFRUVGIZFRkbi64cA\njHPOzs5sNru+vr6qqsrb21tfXx+/c+nChQsYhkVHR5ubm5Mdo2YoKSkpKysrLy+fP38+fh+p\nrq7uvHnziouLu7u7Ozo6li9frnz94GD9/f1paWkSiSQsLIyoqAEYCp/PT05O/v7774uKilgs\n1itvOODxeIaGhsTHppUUSeOPP/5ob2/39/cfsHji5eXl5eW1YMECsiLUXBiG9fT03L9/n0Kh\neHt7w3cfmGigIFQjJpOJPwXL5XKFQqFMJnNycvr000/h0VigKSgUSkBAAD6vkZ6eXlhYeOnS\nJfwE3cjISDjya5gwDAsICGhpaXldTcjlcp8/fz5nzpzX7Y2RyWTHjx9vampyd3eHZgfjQWdn\n544dOx4+fNjd3d3a2nr79u3Ozk4/Pz/lPgw3H4yRRCK5efNmWlpaUVFRV1fX1KlTWSwWnjQ4\nHA6fzx9cE8JtpaPm6uqal5dXXl4eHBxsaGgI331gQoGCUL1oNJqPj8/q1atDQ0PXrl0bEREB\nj8aO1HAmoYH6MJnMkJAQuHNpjN5YE1ZUVLxyeIerr68/d+6crq7u559/DustQ4OMQYyUlJSq\nqipHR8fo6OhZs2bV1dVVVFS0trYGBAQo+nBpaWl5ebmrqyt+6gkYkZaWlpiYmJycnMbGxoaG\nhqKiovz8fFdX16lTpw5dE4Lha29vZzAY+O4MKpVqZmZ2+/bt58+fBwUFwXefqkBO1giYXC4n\nOwYAXquzs3Pbtm3t7e2KV8LCwj788MPBm+t4PB5kGbUSiURw59IYyWSyr7/+Oj8/39HRcf/+\n/YqTpQQCQUxMDI/HW7JkSXR09Cubt6ioyNjY2MXFhdiQNcwwMwaki7HbsGEDnU4/duyYnp4e\nQkgoFO7Zs+fp06chISHbtm1T9OHq6moPDw9SI9VIQqFwx44dz549s7KyWr58uY6OTmFhYWVl\npY6OTnx8/PTp04eTNMDQuFxubGysnp7eBx98MGvWLPzFPXv2VFRUxMfHz5w5E38FvvvGAkZx\nmgJWCMG4NpxJaAQbkwgBdy6NhUAgSElJOXXqFJ/Pf/nypUAgeOU64RBT/tbW1mZmZmTErkmG\nkzEgXajEL7/8Eh4erriJlMlkzps3j81mczgc5QaHmw9G5+zZsxwOx8XF5auvvvLy8nJxcVm8\neDGdTmez2cXFxUuXLjUyMlIkDScnJxhJj8Ivv/xSVlb28uXLvLy8uro6Z2dnAwMDJyenrKys\n2tra0NBQvGiB776xgFGcpoCCEIxrJ06cMDQ0PHLkiJ2dnb29fUhIyOABB4KNSWB84/P5n332\nWVVVFYvFCgkJ8fDw4PP5XC73dTUhDO9GbTgZA9LFqAkEgtOnT//4448lJSVdXV2enp7Ko7fX\n1YRgFIZzMTqeNCZPngwHE4yOs7Nzbm6uhYXFW2+9devWrfT09N7eXn9//97e3pKSEn19fTc3\nN7Jj1HgwitMUUBCCcW2Yk9AeHh4+Pj6LFi0iNVgAXi0pKam2ttbNze3w4cN+fn4+Pj6hoaE8\nHo/D4QyuCWF4NxbDyRiQLkZHIBBs3769srJSKBQ2Nzf39vYKhcKlS5cqb/1SbvBp06bZ2NiQ\nGLDmGv7F6Lq6urCNfNR0dHT09fVzcnLmz5//0UcfdXR03Lhx47fffvP396+vr+dwOEuWLHnd\nDbFgmGAUpymgIATjzugmoWFjEhifpFJpUlKSTCaLj49X7PmkUqmBgYElJSWPHz8eUBPC8G6k\nRpExIF0MQSKR9Pb24h1SWXJycnV1tYODw5YtW2bOnFlbW9vc3Dz48gO8wS0tLWFeY9QwDMvP\nz+/u7p45c+aAU0O7u7szMzMZDEZERARZ4Wk0Lpd7//59BwcHvNM6OjqWlJTcu3fvrbfeCg4O\nnjlzZnV1dW5ubn9/f39/f1dXV0BAANkhax4YxWkiKAhHAA5KIgBMQgMtI5FIUlNTaTTa5s2b\nlV+nUChMJvPu3bsDnicEIwIZQ7UkEkliYmJGRoZyh+Tz+bq6usnJyfjWL3t7ewcHh+Dg4Nc9\n9cpkMp2dnUn6DbSEWCwuLy9/+vTpwoULlRcJr127VlNT4+XlBTcfjEJ/f39MTExubm5JSYmd\nnZ25uTmGYXZ2dhkZGX19fX5+fubm5suXLzc1Na2pqenr6wsICIAdjCMFOVlDQUE4XMO5cwnB\nJbxjBpPQ6gbzGgSjUql5eXldXV2BgYHGxsbKbwmFwlu3bs2ePbuystLS0tLJyYmsIDUXZAwV\nwqvBoqKi/v5+RXfl8Xi7du1qamp69uxZWFiYYuvXcE5CAsMkEomuXLmSnJw8adIkPCfDxejq\nQKVSg4KCuru7S0tLc3JyWlpaXF1dbWxsWltbc3Nz582bZ2RkhGGYk5PTsmXLHB0dV65cSXbI\nmgdysoaCgnC44PA6dYNJaAIMc14DwdSGSkkkkvLy8qamppCQEOVZ0uvXr9fV1X355Zeenp4h\nISHkBaiRIGOolqIaZLFYBw4cmDZtGv66VCq9ffs2h8N5+fLl7Nmzlb/doCZUCfy+wcLCwp6e\nHrFYPGfOHCqVSqFQ4GJ0dWAymXPmzJk1a9aTJ09KS0szMzMxDIuIiMjOzn7y5IniGTYdHR1b\nW1tyQ9U4kJM1GhSEwwWH16kVTEITAw6AJoWLiwubza6pqamvr58xYwaTyUQI3bhx4+LFi8bG\nxu+99x6MPEYKMoZqDagGHRwcFG8pmrS7u3vw1i84HXeM+vr6du/e3dzc7OTklJCQEBYWptgg\nChejq4+ZmdnSpUsnT55cXV19//79oqKiqVOnPnjwwN7eHrYvjg7kZE0HBeFwweF1agWT0MSA\nA6BJoZjsr66uzsjIKC0tvXLlSl5eHkJo8+bNsFN0FCBjqJCiGqTT6YcOHXJ0dBzwAUWTPn36\ndPDWLzgddyyuXbt2584dGxubw4cPm5iYDHiXRqP5+vquWrUqICAgPDx8w4YNdnZ2pMSpfTAM\nc3BwCA0NlUgkZWVlbW1tCKHa2tqVK1cOvjMdvBHkZE0HBeFQ4PA6wsAkNDHgAGiyKCb7Hz9+\n3Nra+uLFCz09vU2bNsFk/+hAxlAVRTWIEJLJZAYGBor8oGzoIR2cjjtqp06dEggEW7Zssbe3\nf91n4GJ09aHT6TNnzgwKCmppaWlpaVm1apW3tzfZQWkkyMmaDgrC14KDkggGk9BqAgdAjxOK\nyf5Zs2YtWbIkMjLS3d2d7KA0GGSMsVPeKbpu3brKysrKysr+/v5R1IRgdFJTU3t7ezdu3Kiv\nrz/grZycnPb2dhg6E8DQ0DAkJGTOnDkLFiwgOxYNBjlZo0FB+FpwUBLxYBJa5WBeY7yh0WiT\nJk2aNGkSjUYjOxaNBxljLAY8NxgYGOjs7FxQUAA1IZEKCwv5fL6vr6+VlZXy63K5PDk5OS0t\nbeXKlXAhDTEGb9kFIwU5WXNBQfiKS3jhoCQSwYBDtWBeA2g3yBijlp2dfe3aNeVTZKysrEZU\nE8LWr7Hr7+8vKSlpampatGiR8n2D169fz83NdXBwgAvogWaBnKyhJnpBOPgSXjgoiXTQ1KMz\nYGoD5jXABAEZY3QcHR3FYnFkZKTymaLDrwlh65dKODg4lJWV1dfXV1ZWuru7GxoaikSiy5cv\n//jjjxiGbd261dLSkuwYARgZyMmaaEIXhK+8hBcOShoPYBJ6pAZMbcC8hvrU1NSYmZnh7cbl\ncv/xj3/4+fkxGAyy45rQIGOMAoZhM2bMGLxNbpg1IWz9UgkKhTJnzhz8vsGMjIzMzMyLFy9W\nVFRgGBYZGQnXkwINBTlZ40zcgvB1l/DCQUnjBExCD9/gqQ2Y11ATNpsdFxfX3NwcEBDA4/Fi\nY2MbGxt7e3tnz55NdmgTHWQMFRpOTQhUhclk4p2Wy+UKhUKZTObk5PTpp59CTx4mmKQbnyAn\na5YJWhAOcQkvgoOSxg2YhB6OV05twLyGmrBYLDabXVZW9uTJk8uXLwsEAm9v761bt77yhBge\nj2doaEh8kBMWZAwVgpqQSDQazcfHZ/Xq1aGhoWvXro2IiBhwxgx4HZikG88gJ2uQiVgQvvES\nXgQHJQENMcTUBsxrqAODwZg3b15ZWVllZaVIJPL29t67d+8rp6Lz8vLi4uL09fWVl2cB0CBQ\nExIMwzBdXV04U3REYJIOAJWgvPkj2kX5Et7+/v6CgoLXfdLExCQhIcHa2jo3N/ebb76Ry+UE\nhgnAmylPbezfv3/AQjd6Ux82MTFZuXIlgfFqJKlUWlRUpNx0PT09nZ2d+J9NTExeN3prb2+X\nyWQvXrwgIkqtUFNTo2hnLpe7b9++rq4uckMCvr6+sbGxdDqdTqeTHQsAr2BgYLB///5p06bd\nu3cPrwaHmKT75JNP0tLSiA8SgPFvYq0QjugSXgRPW4FxTHlqQyaTGRgYwL1hKpeXl5eQkHDj\nxg3lptPR0amsrDQ3N2exWOXl5a2trQEBAYNb1cPDw8fHZ9GiRWQErnlg39e4ZWVltWDBgsDA\nQLIDAeDVBAJBenq6SCRCCLm5uc2fP/+VX3OlpaXl5eWurq5eXl6ExwjAeDeBCsJRXMKL4Gmr\nMePz+cnJyd9//z3e8q9rQNjIMSIjmtqAmnAUpFJpcnLy+fPne3p6AgMD/+M//sPMzAx/i0ql\nzp07NyQkZMGCBeXl5WVlZQNqwvv37xsaGjIYjEmTJpH3G2gY2Pc1nhkYGJAdAgCvBZN0aiWR\nSG7evJmWllZUVNTV1TV16lRIy1ppAhWEo7uEF8HTVmPQ2dm5Y8eOhw8fdnd3t7a23r59u7Oz\n08/Pb0CmhqetRmQUUxswrzFSSUlJubm5TCZz27Zt77//vqmpqfK7VCqVSqXizxMqakJ/f38K\nhXLr1q0jR46UlJQsXrz4ld+a4JXg4UwAwOjAJJ36tLS0xMTE5OTkNDY2NjQ0FBUV5efnu7q6\nmpubK38M0rIWmEAF4agv4UVwisxopaSkVFVVOTo6RkdHz5o1q66urqKiYvDsHWzkGJHRTW3A\nvMbw3b179/z58zQa7cCBA35+fkN8UrkmxIuZ1NRUuVy+YsWKGTNmEBawJpJKpSUlJVOmTFGk\nAtj3BbTDMFdUgArBJJ06CIXC3bt3t7S0WFlZrVmzxt/fv6+vr7GxMT8/f/r06RYWFopPQlrW\nAhOoIBzLJbxgdE6cOGFoaHjkyBE7Ozt7e/uQkBA2m83hcAbUhLCRY0RGPbUB8xrDdPLkyWfP\nnq1du3Zw8dzU1PTw4UOxWKzIJAwGIygoqK6urrq6+smTJxQKZePGje+88w7hUWsSeDgTaKth\nrqjA/jo1gUk6FTp79iyHw3Fxcfnqq6+8vLxcXFwWL15Mp3KfBwUAAA1PSURBVNPZbHZxcfHS\npUsVmzggLWuBCVQQDgFqQjX55ZdfwsPDFe3JZDLnzZv3ypoQNnIMH0xtqNt3330nFos/+OAD\n5Z2iNTU1iYmJ58+f//333zMzM2tra2fPno0fMaqjo7Nw4UJbW1tbW9uoqCg4fmMI8HAm0GLD\nXFGB/XVqBZN0qnL06FGxWBwbG6u8GOjh4cHj8WpraykUivIwA9KypoOC8H/AYFpVBALB6dOn\nf/zxx5KSkq6uLk9PT+XvvCFqQjB20I1V4ubNm11dXS4uLvglpSKR6OzZsydOnGhvb7e2tvbw\n8ODz+U1NTfX19YoJUQzDbG1tvby8jI2NSY19vIOHM4EWG+aKCuyvUzeYpBs7uVz+ww8/IISi\noqKoVKryW8bGxrm5uSKRKDQ0lKTogOpBQfh/YDA9dgKBYPv27ZWVlUKhsLm5ube3VygULl26\nlEL5vxsvlWvCadOm2djYkBiw9oFurBKlpaUVFRVyufzhw4dHjx4tLy83MjL65JNPtmzZgh/B\nn5ub29zcPH369MmTJ5MdrMaAhzOBdhvmigrsryMATNINk1AoLC8vf/78uYWFhfJQDcOw/Pz8\n7u7umTNnKvdnhFB3d3dmZiaDwYiIiCA8XqAuUBD+fxSDaS8vL5i6G5pEIunt7R1wK3dycnJ1\ndbWDg8OWLVtmzpxZW1vb3Nzc3t4+4KoDvCa0tLSEA07UAWrCMXJ2du7o6Hj06FFFRQWHw+nt\n7V2wYMHevXvd3NzwDxgZGT148KCtrc3R0RE2fQ0fPJwJtNiIVlRgfx0gnUwmu3DhQmJiYn5+\nfl5e3p07d/z8/JTvmBGLxeXl5U+fPl24cKFyl7527VpNTY2Xl1dQUBAZgQO1gI03A/n6+n77\n7bdWVlZkBzKu4TcftLe379+/n8ViIYT4fL6ZmVl5ebmFhUVCQoKenh5CaObMmbGxsbm5uQih\n6Oho5ZrQyMgoLCyMrPi1nq+vb2xs7MGDB+l0OtmxaB4Mw7Zs2TJ37tyysjIWizV37twB69gS\nieTp06cIoQHzpmBoeKP5+/srv1hTU3P69Ona2lr8r35+fp999pm+vj5CSF9ff//+/QUFBU1N\nTYGBgfb29oSHDMBAQqHw4cOHDAbD29tbeZSMYZiVlVVzc3NdXd306dOV/wmTyUQIvXz5kuhY\nAXgNiUTy1Vdf3b17FyFkaWnZ09PD4/EOHDhw9OhRxbBh1apVBQUFdXV1+/bt27Ztm4WFhVwu\nz8jIuHbtGoZhq1evJvU3ACoGBeErQDU4NOV78Ph8PovF4vF4MTExfn5+VCo1NDQUrwYRQqam\npgkJCTExMa+sCYFawdTGGPn6+vr6+r7yrStXrnR2dpqYmLzuA+CVjI2Nu7u7GxoaFA9nnj9/\nPj09XS6XW1tbT506tby8vLS0NDExcf/+/fg/wTBs/vz5pEYNwP+QyWQXL1785Zdf+vv7EULW\n1tZxcXHKOXbZsmXnzp07c+ZMYmKi8vaZ/Px8hNC0adOIjxmAwRSjOD09ve3bt/v7+798+XLP\nnj319fUVFRWK/fw0Gi0uLm7fvn1VVVWbN2+2tbUVCoUCgQAhFBkZqdgyA7QDbBkFIzPgVnT8\nG04qld6+fZvD4bx8+XL27NnKm+iUr0RXPmIeEEB57wdQlRs3bpw7dw4htH37djs7O7LD0TDw\ncCbQUBKJ5PDhw5mZmTKZzNLSEsMwPp/P4XCWLVumWCd0dnZms9n19fVVVVXe3t76+vr4isqF\nCxcwDIuOjh5w+QQAxFMexR08eNDT0xMhRKfTqVTq/fv3g4ODp0yZovgwk8kMCQkRi8WNjY3t\n7e0ikcjU1HTLli3Lly8n7zcAaoHJ5XKyYwAaY0A1qHwPnkAgiImJ4fF4jo6OR44cGfAEheLd\nPXv2DNgwBoCm6OvrO336dFZWFkJow4YNf/rTn8iOSMPI5fLjx49nZ2fjf8UwLCgoKCoqysjI\nSPGZvXv3cjicqKgoOK4AjB9DrKjs27dP+YQkoVC4b9++hoYGCoUyYEUFttiNgkQiycvLq6qq\nwjDM3d19wYIFirvvFHg8nrW1NSnhaZwhRnEnT5787bffFixYUFlZiV8CtHbtWsVCt0gkampq\notPpdnZ2MK2vlWCFEAyXIo/Q6fRDhw7hm74UFCuBT58+HXyKDP7u5MmT4RQZoImkUmlGRkZi\nYmJVVRWDwdi2bRs8ATsKGIb5+/u7uroaGRnNmjXrww8/DAsLwx+vwkkkkh9++EEkEoWFhU2d\nOpXEUAFQgBUVsrS0tMTExOTk5DQ2NjY0NBQVFeXn57u6uiovtMKljiMik8nu3LnD4/H09fWX\nL19uaGiIv15aWvrdd99JJJLm5mYjIyMul1tVVcVms4ODg/Frfmg0mpmZmbGxMVSD2goKQjAs\nim9EhJBMJjMwMBh8duXQu0N1dXVdXFwIDRoAFaFQKLdv366oqAgMDNy1axccQTwWVlZWvr6+\nnp6eyguDuEuXLpWUlJiYmHz44YcDdhkAQIohVlSysrL++OMPCoVy5syZX3/9VSAQuLu7U6lU\nGo3m6+u7atWqgICA8PDwDRs2wN7yURAKhbt3725pabGyslqzZo2/v39fX19jY2N+fv706dMV\nB3rBpY4jQqFQ5s6d29jY+Pjx48LCQn9/f0NDw4qKioSEBIlEEhwcfPDgwbfeemv27Nn37t1r\naWnp7e0d+oogoDWgIARvpvyNuG7dusrKytfdZwBPDAJt5efnt2DBghUrViimVIFqwcOZYByC\nFRWynD17lsPhuLi4fPXVV15eXi4uLosXL6bT6Ww2u7i4eOnSpfjeUbjUcaQG1IR6enpHjx7t\n6+sLCwuLjo7G94iampqamprevXu3ra3t7bffJjtkQAQoCMEbDJgfDQwMHPqOO6gJgbaCUlBN\n+vr6/vnPf6ampiKENmzYsGzZMrIjAuB/wIoKWY4ePSoWi2NjY5Vv9/Hw8ODxeLW1tRQKRTH8\ngEsdR0q5VxcXF0ul0rCwsI8++kh5tNbf35+dnU2hUOD21wmCQnYAYLzLzc0dsFsGv+OOTqdf\nvXoVv4d3ABMTk4SEBGtr69zc3OLiYsJDBgBoBqlUmpaWFhUVlZWVxWAwPvvsMziqB4w3NBpt\n9+7d/v7++OloWVlZ+/fvx1dUtm/fjl+z5OTk9MEHHyCEfv/9d7Lj1SRCofDevXtlZWVSqVT5\ndblc/uLFC4SQra3tgH+yYsUKhBCbzSYsSK2k6NUIITqdHh4ePmDu/ubNmwghDw8PcuIDhIMV\nQvAGjo6OYrE4MjJS+dkJKyur4awTwikyAIAhwMOZQCPAiorKyWSyCxcuJCYm5ufn5+Xl3blz\nx8/PT3FVEoZh+fn53d3dM2fOVF4hRAh1d3dnZmYyGAw4iHiMFL26qanp7t27+Oo3/tatW7fO\nnz+PYdjWrVvhrpQJAgpC8AYYhs2YMcPExGTA68OpCeEUGQDA0ODhTKARFKNnHo9Hp9M//fTT\nAaciXb16ta6uzsfHJyQkhKQYNcZwLnUUi8Xl5eVPnz5duHCh8hFT165dq6mp8fLyCgoKIil8\n7fHKHdF5eXlJSUlyuTwyMhIaeeKAghCM3htrQgAAeCMoBYFGgBUVlcAPJrh//76ent6uXbs+\n+uijsLCw8vLyJ0+euLu7K+7wcHZ2ZrPZ9fX1VVVV3t7e+vr6crk8IyPjwoULGIZFR0dDO6vE\ngJpQKpWmpKTIZLJ3330X1ronFCgIwZhATQgAAGCCgBWVMRr+pY4UCiUgIIDD4dTW1qanpxcW\nFl66dKmgoAAhBO2sWsq9msPhyOXyd99999133yU7LkAoKAjBWEFNCAAAYIKAFZVRG+mljvr6\n+iEhIWKxuLGxsb29XSQSmZqabtmyZfny5ST+FlpJeUc0VIMTEyaXy8mOAWgDNpt98ODBNWvW\nQB4BAACg3RS1Df5XGEMPh6LRFEeR46+Xlpbu379fJpMxmczJkyf/8ccfcrncyckpISGByWQi\nhEQiUVNTE51Ot7Ozg4us1Ecikdy9exdWXycmKAiByrS0tFhZWZEdBQAAAKB2ivIGqsHhG1wT\nVlRU4Nd4BAcHf/zxx3p6evX19fHx8UKhMDw8fPPmzWSHDMCEAAUhAAAAAMCIwYrKKCjXhO+9\n997p06fxSx2Vr/HIy8v77//+byMjo/Pnz5MbLQATBFxMDwAAAAAwYjQaDarBkVJciS4QCI4f\nPz64GkQI4btJxWIxeWECMLFAQQgAAAAAAAiiqAkRQnQ6PTw8fMCTgTdv3kQIeXh4kBMfABMP\nFIQAAAAAAIA4ipqwv79/z549PB5P8datW7d+/fVXDMPWrl1LYoQATChQEAIAAAAAAEIp7x2N\niYnBa0LFpY4bN250c3MjO0YAJgo4VAYAAAAAAJBA+YyZiIiIH3/8Eb/UEQ5uBYBIUBACAAAA\nAABywKWOAJAOtowCAAAAAAByKJ8xA9UgAKSAFUIAAAAAAEAmuNQRABJBQQgAAAAAAAAAExRs\nGQUAAAAAAACACQoKQgAAAAAAAACYoKAgBAAAAAAAAIAJCgpCAAAAAAAAAJig/h+Ujzwbnu2l\nyQAAAABJRU5ErkJggg==", - "text/plain": [ - "plot without title" - ] - }, - "metadata": { - "image/png": { - "height": 180, - "width": 600 - } - }, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Warning message:\n", - "“\u001b[1m\u001b[22mUsing \u001b[32msize\u001b[39m for a discrete variable is not advised.â€\n", - "Warning message:\n", - "“\u001b[1m\u001b[22mRemoved 4 rows containing missing values (`geom_point()`).â€\n", - "Warning message:\n", - "“\u001b[1m\u001b[22mUsing \u001b[32msize\u001b[39m for a discrete variable is not advised.â€\n", - "Warning message:\n", - "“\u001b[1m\u001b[22mRemoved 4 rows containing missing values (`geom_point()`).â€\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAAFoCAIAAADIFpV9AAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdd1wU19oH8DNbgV1YuoAi3QaiINiR2FBRERE19opYyL1JNImaokZNM2re\na6JRMLZYsWBB7BoxQRHBioggIiJVkLLA1nn/2GQvFxvKwaX8vn/cz8yZZ5/zLDcxPszMOQzL\nsgQAAAAAAACaH46uCwAAAAAAAADdQEMIAAAAAADQTKEhBAAAAAAAaKbQEAIAAAAAADRTaAgB\nAAAAAACaKTSEAAAAAAAAzRRP1wXoWFFRUWJioq6rAAAAAAAA0IHm3hCmp6eHh4f37t1b14UA\nAAAAAAC8U5GRkc29ISSEtGvX7oMPPtB1FQAAAAAAAO9UTEwM3iEEAAAAAABophrcHcLCwsLd\nu3cnJiaWlJRIJBJXV9d58+bp6+trrqrV6qioqJMnTxYUFJibm/v5+QUFBXE4/21rXxsAAAAA\nAAAAGg2rIczMzFy8eLFCofD29ra2ti4vL09JSamoqNA2hBEREceOHevZs2dAQEBycvL27dsL\nCwtnz56tzfDaAAAAAAAAANBoQA2hWq1etWqVoaHhsmXLWrRo8XxAVlZWdHS0r6/v/PnzCSFD\nhw7l8/kxMTFDhgyxs7OrTQAAAAAAAABoNaBnKRMSEh49ejRlypQWLVpUVlbK5fIaAbGxsSzL\nDh8+XDsSEBDAsuzFixdrGQAAAAAAAA1KVVUV83LXr1/XdYFNXAO6Q3jt2jWGYQwMDP79739n\nZGQwDNOhQ4eQkBBHR0dNQFpaGpfLdXJy0n7EwcFBIBCkp6fXMgAAAAAAABogPp8/fvz458dN\nTU3ffTHNSgNqCJ88ecLlcr/55htPT8/g4OCCgoJ9+/YtXrz4p59+srKyIoQUFRVJJBIul6v9\nCMMwJiYmT58+1Zy+NkDjwYMHMplMc5yfn1/vXwwAAAAAAF7JwMBg69atuq6iOWpAj4xWVlYq\nlUpXV9fPPvvMx8cnKCho4cKFFRUVBw4c0ATIZDI+n1/jUwKBQNvdvTZAY/HixZP+sWvXrvr5\nNgAAAAAAQM2xY8cYhlm6dGmNcWNjY2dnZ+3p9evXGYaZOnVqenr6+++/b2lpyeFwLl++rLm6\nZ88eHx8fIyMjfX39jh07fvfdd9U7Be1nk5OTAwICTE1NRSJRnz59zp8//3w9cXFxo0aNsrKy\nEggENjY2EydOTElJof+1618DukMoFAoJIX379tWOdO7c2cTE5Pbt29qAysrKGp+Sy+V6enq1\nDNDo37+/u7u75pjD4Tz/EQAAAAAAaLyysrK6detmbm4+ePBgqVSqaQc+/fTTVatWWVpaTpw4\nUSQSRUdHL1q06MSJE6dPn65+Vyk9Pb1nz56enp7z5s3LycnZtWvXwIED9+/fHxgYqI0JDw+f\nPXu2mZnZsGHDLC0tMzIyIiMjo6Kizp49261bNx184TpoQA2hmZkZIcTExKT6oLGxcVFRkebY\n1NQ0MzNTpVJpHwplWba4uNjNza2WARohISHa46tXrx47dqx+vhAAAAAAANRKRUXFxIkTawxa\nWFisXbv2LbKdO3cuLCzsp59+0vYFsbGxq1atcnBwuHLlioWFBSHk22+/DQgIiImJWbVq1eLF\ni7WfvXTp0mefffbdd99pTufNm9etW7eQkBA/Pz8DAwNCyN27d+fNmzdw4MBDhw5pt8e7efNm\nr169Zs2adePGjbcoWIca0COjLi4uhJDCwkLtCMuyT58+lUgkmlMnJyeVSvXgwQNtQEZGhlwu\n164i89oAAAAAAABogBQKxc7nHDp06O2ymZubf//999XXFvntt98IIV999ZWmGySE8Hi81atX\nMwwTERFR/bPGxsZffPGF9tTDw2P8+PGFhYVHjx7VjKxfv16hUCxevFgqlRb+w8bGpn///jdv\n3szMzHy7mnWlATWEPXr04PF4J06cUKvVmpFLly6VlpZ6enpqTn18fBiG0f4/QQg5evQowzA+\nPj61DAAAAAAAgAZIIpGwz3n48OHbZevcubPmbp5WYmIi+d/X0wgh7du3t7a2zsjIePbsmXbQ\nw8NDLBZXD9N0E0lJSZrTuLg4Qoivr6/F/zp8+DAhJCcn5+1q1pUG9Mioubn5+++///vvvy9e\nvLh79+4FBQUxMTHm5uajRo3SBLRu3drf3z86OlqhULi5uSUnJ8fGxg4ePNje3r6WAQAAAAAA\n0OTZ2NjUGCkpKSGEaDYvqM7a2vrJkyclJSXGxsaakRYtWtSI0YxoMhBCNFsYHDlyRPu8aHXt\n27eva/XvVgNqCAkhY8aMMTExOXLkyI4dO/T09Hx8fCZPnqx9ZJQQEhISYmZmdurUqStXrpiZ\nmU2aNCkoKKh6htcGAAAAAABAo8PhcAghSqWy+qBCoZBKpebm5jWCGYapMaLpKXJzc+3s7KqP\na27oVe848vLyanxWM6KN0RxYWVl5e3u/5ZdpSBpWQ0gIGThw4MCBA192lcPhBAcHBwcHv3UA\nAAAAAAA0Opq1J7OysqoPJiUl1WgRX8bDw+PmzZsXLlyYMmWKdvDevXs5OTkODg7a24OanOXl\n5dWfGo2NjdVk0Jx27979xo0be/bsaRoNYQN6hxAAAAAAAOCFOnbsqKend/jw4dzcXM1ISUnJ\nxx9/XMuPT58+nRCyfPlyzQOfhBClUjl//nyWZWfMmFE98tmzZytWrNCeJiUl7dq1y9zcfPjw\n4ZqRsLAwHo+3bt26c+fOVf9geXn53r17tafffffd4MGDjx8//mbf851rcHcIAQAAAACguamo\nqJg6derz46GhoT169CCEiMXiOXPmrF27tnPnzsOHD5fL5adPn+7SpYuRkVFt8vfp0+fjjz9e\ns2aNq6trcHCwgYFBdHR0cnKyj4/PJ598Uj2yd+/ev/76a3x8fK9evTT7EKrV6k2bNmlXqXFz\nc9u4cWNoaOiAAQP8/Pw8PDxUKlVKSsq5c+fs7e3Hjh2rCbt+/frJkydHjhxZlx/LO4CGEAAA\nAAAAdEyhUGzbtu358QEDBmgaQkLIqlWrjIyMtm7dum3bNhsbmxkzZnz55ZeWlpa1nGL16tWe\nnp7r16/ftm2bQqFwdnZesWLF/PnzBQJB9TAnJ6eNGzcuXLjw559/lslkXbp0WbZsWb9+/arH\nTJ8+3dPTc82aNRcuXDh//rxIJLKxsZk0aZK2GySEpKam8vl8Pz+/N/tBvHMMy7K6rkGXNBvT\nL1u2TNeFAAAAAACALl2/ft3Dw2PKlClbt26tY6qioiILC4vZs2f/8ssvNEqrL/7+/niHEAAA\nAAAAgKbz588LhcLqG9w3WGgIAQAAAAAAaBo1alRFRYW1tbWuC3k9NIQAAAAAAADNFBaVAQAA\nAAAAIJ07d26GC6zgDiEAAAAAAEAzhYYQAAAAAACgmUJDCAAAAADQjDx+/JhhmMDAwNdGmpub\n29vb139FOtZMvubLoCEEAAAAAGgKEhISpk2b5ujoqK+vb2Rk5O7u/sknn2RnZ+u6LmjQ0BAC\nAAAAADRuLMt+9tln3t7e27Zts7S0HD9+/IgRI6qqqn788cc2bdrs379f1wVCw4VVRgEAAAAA\nGrfly5f/8MMPtra2+/fv79q1q3Z827ZtoaGh77///unTp/v27avDCqHBwh1CAAAAAIBG7OHD\nh8uXLxcIBMePH6/eDRJCpkyZsm7dOpVKNWfOHLVa/YokarX6p59+at++vZ6enq2t7UcffVRe\nXl6b2WNiYgYOHGhjYyMUCq2trXv37r1q1arqAXFxcaNGjbKyshIIBDY2NhMnTkxJSamR5PLl\ny2PGjNEm8fPz27dvX/WAPXv2+Pj4GBkZ6evrd+zY8bvvvpPJZNqr169fZxhm6tSpWVlZ48eP\nNzc319fX9/b2Pn78+Nt9zfDw8MDAQAcHB319fWNjY19f38jIyOoB2hnT09Pff/99S0tLDofz\nyy+/MAwTEBBQIxvLsm3atDEwMCguLq7Nj/Qdwx1CAAAAAIBGbMuWLUqlcvLkyW5ubs9fnTFj\nxjfffHPv3r0//vjjFTcJ58yZs2nTJjs7u7CwMIZhDh48mJCQoFKpXj319u3bp0yZYmVlNWLE\nCEtLy4KCgjt37kRERHzyySeagPDw8NmzZ5uZmQ0bNszS0jIjIyMyMjIqKurs2bPdunXTxPz6\n66/z5s3j8/kBAQHOzs75+fkJCQnr168fM2aMJuDTTz9dtWqVpaXlxIkTRSJRdHT0okWLTpw4\ncfr0aT6fry0mKyvL29u7ZcuWY8aMyc/Pj4qKGj58+IULF3x8fN70a4aGhnbt2rVv374tWrTI\nz88/duzYmDFjvv/++08//bR6WFZWVrdu3czNzQcPHiyVSnv16qXpQrOysmxtbbVh58+fv3//\n/pQpU0xMTF7989QNtnmLj4//6quvdF0FAAAAAMBb6tevHyFk586dLwuYOXMmIWT58uWa06ys\nLELIiBEjtAHnz58nhHTq1Km8vFwzIpVKPTw8CCF2dnavmLpnz55cLjc7O7v6YFFRkeYgOTmZ\nz+cPGjSooqJCe/XGjRtisdjd3V17yuVyTU1Nk5OTqyfJysrSHFy8eJEQ4uDgkJ+frxlRKBRD\nhgwhhKxcuVIzkpSUpGltvvjiC7VarRncsWMHIWT48OFv8TUfPXpU/VQqlXp5eenr62u/mnbG\nsLAwpVKpjdyyZQshZMmSJdU/ruls//rrr5f+HHVnyJAheGQUAAAAAKARy8nJIYS0bt36ZQGa\nS0+ePHlZwNatWwkhS5cuFYlEmhEDA4MVK1bUZnYul8vj/c9Th9r7YOvXr1coFIsXL5ZKpYX/\nsLGx6d+//82bNzMzMwkhGzZsUKlUS5cubd++ffUkrVq10hz89ttvhJCvvvrKwsJCM8Lj8Vav\nXs0wTERERI2vuWTJEoZhNKcTJkyQSCTx8fFv8TU19/dYli0pKcnLyystLR05cmRlZWVsbGz1\nMHNz8++//57L5WpHxo4da2pqGhERob3rqLlX2bFjxx49erzmR6kjaAgBAAAAABoxlmUJIdpG\n6GVeEaC539WnT5/qgzVOX2jcuHFyudzV1TUsLGz//v25ubnVr8bFxRFCfH19Lf7X4cOHyT99\n7OXLlwkhmjt+L5SYmEgIqfGwa/v27a2trTMyMp49e6Yd9PDwqN6aMgzTqlWr6q/t1f5rJiUl\njRgxQiKRGBsbW1lZWVtbf/7554SQGnt4dO7c2cDAoPqIvr7+1KlTs7Ozo6OjNSNbtmyRy+Wz\nZ89+2RfUObxDCAAAAADQiFlbW6ekpGRmZvbq1euFAY8ePdKEvSxDSUkJj8czNTWtPigWi7V3\n0l4mLCzMxMTkl19+2bBhwy+//EII6dGjx6pVqzSVPH36lBBy5MgRfX395z+ruSWo6ehatmz5\nitoIIVZWVjXGra2tnzx5UlJSYmxsrBnRHmjxeLzq7wfW8msmJib27t1bT09vzpw5nTp1kkgk\nXC73zJkzq1evrr6SDSHExsbm+YLnzJmzdu3ajRs3BgQEsCwbHh4uEokmTpz4si+oc2gIAQAA\nAAAasd69e58/f/7kyZPjx49//qparT5z5gwh5GXtIiFEIpFkZmYWFRVVb5bKy8ulUqm5ufmr\nZ58wYcKECRNKS0vj4uKioqI2b948ZMiQO3fu2NraSiQSQoiVlZW3t/fLPq7p4rKzs52dnV9W\nGyEkNzfXzs6u+rjmBqPmai3V8muuWbOmsrLyyJEjAwYM0A5eu3bt+YQvvOnq7Ow8YMCAEydO\nZGZmpqampqenz5gxw8jIqPZ1vmN4ZBQAAAAAoBGbOnUql8vds2fPnTt3nr+6efPmhw8ftm3b\n1tfX92UZNAuraJZv0apx+mpGRkaDBg3asGHD/Pnzy8rKzp07Rwjp3r07IWTPnj2v+KAmJiYm\n5tW1XbhwofrgvXv3cnJyHBwcnr8r+Aq1/JoPHz7UFqal+Ua1NHfuXLVaHRERsXHjRkJIaGho\n7T/77qEhBAAAAABoxBwdHRcvXiyXy4cMGXL16tXql3bs2PHBBx9wudz169dzOC/9m/+UKVMI\nIUuXLpVKpZqRioqKL7/88rVTnz59WqlUVh8pLCwkhGjerAsLC+PxeOvWravRTZWXl+/du1dz\nPHfuXC6Xu3Tp0hqbEz5+/FhzMH36dELI8uXLNQ+gEkKUSuX8+fNZlp0xY8ZrK3yLr+no6Kj5\natqRXbt2vVFDOHz48FatWm3atOnIkSOenp6vuEHaEOCRUQAAAACAxk3T5KxZs6Zbt27dunVz\ndXWVy+WXL1++f/++vr7+7t27NVtTvEzfvn1DQkLCw8Pd3NxGjRql2aDPxsbmtfffxo0bx+Px\nfH197ezsuFzulStXzp8/7+rqOmzYMEKIm5vbxo0bQ0NDBwwY4Ofn5+HhoVKpUlJSzp07Z29v\nP3bsWEJIx44d161bFxYW1rlz54CAABcXl6dPnyYkJBgaGmp2iejTp8/HH3+8Zs0aV1fX4OBg\nAwOD6Ojo5ORkHx8f7W6HtVTLrxkWFrZr165x48aNHTvWzs7u+vXrx48fHz16dI296V+By+XO\nmjXrq6++Ig3+9iAh2IcQ+xACAAAAQJNw5cqVyZMn29vbC4VCsVjs5uY2f/587YZ+Ws/vQ8iy\nrEqlWrNmTZs2bQQCQcuWLT/88MOysjIzM7NX70O4YcOGwMBAR0dHAwMDiUTi7u6+YsWK4uLi\n6jFJSUmTJk2ytbUVCAQmJiaurq6zZ88+f/589ZhLly4FBgZaWFjw+Xxra+tBgwZFRkZWD/j9\n99979uwpFouFQqGrq+uKFSsqKyurT0EImTJlSo3yOnXqxOVy3+Jrnj9/3sfHx8jIyMjIqF+/\nfmfPntXsarh27dpXz6ilucNpaGhYVlb2ih+gzg0ZMoRhWVanDamOXb169dixY8uWLdN1IQAA\nAAAA0ETExMT4+/vPnj17w4YNuq7lVfz9/fEOIQAAAAAAAE0//PADIWTevHm6LuT18A4hAAAA\nAAAABYmJiSdOnLh8+fKFCxfGjh3r5uam64peDw0hAAAAAAAABX/99dfnn39ubGw8bty49evX\n67qcWqHTEIaFhb1R/IIFC+zt7alMDQAAAAAA0BCEhYW9aWekc3Qawl9++eWN4idOnIiGEAAA\nAAAAQLeoPTIaFRXVq1ev14bJZLJWrVrRmhQAAAAAAADeGrWGUCKRmJubvzasqqqK1owAAAAA\nAABQF3Qawri4uA4dOtQmUigUxsXFNYr1dgAAAAAAAJo2Og1h9+7daxnJMEztgwEAAAAAAKD+\nYGN6AAAAAACAZqpe9iFkWfbMmTNXrlwpKipSq9XVL/3000/1MSMAAAAAAAC8KfoNYVlZ2ZAh\nQ/78888XXkVDCAAAAAAA0EDQf2R0yZIlcXFx33zzTXJyMiHk2LFjf/zxh5+fn7e398OHD6lP\nBwAAAAAAAG+HfkN46NChMWPGLFq0yMHBgRBiZmbWp0+f48ePsyz7888/U58OAAAAAAAA3g79\nhjA7O9vHx4cQwuFwCCEKhYIQwuVy33///cjISOrTAQAAAAAAwNuh3xCKRCJNEygQCPT09J48\neaIZNzIyys3NpT4dAAAAAAAAvB36DaGjo+O9e/c0x506ddqzZw/Lskqlcu/eva1ataI+HQAA\nAAAAALwd+g2hn5/fgQMHNDcJZ86cGRUV5ezs7OLicvbs2WnTplGfDgAAAAAAAN4O/YZw4cKF\nZ8+e1Ww/OHPmzB9//FFPT08sFi9dunThwoXUpwMAAAAAAIC3Q38fQolEIpFItKfz58+fP38+\n9VkAAAAAAACgjujfIQQAAAAAAIBGgf4dQi21Wl1WVsaybPVBY2Pj+psRAAAAAAAAao9+Q6hW\nqzdu3Pif//znwYMHcrm8xtUa/SEAAAAAAADoCv2GcMWKFUuWLLG0tBw+fLi5uTn1/AAAAAAA\nAEAF/YYwPDzc09MzNjbWwMCAenIAAAAAAACghf6iMnl5eePHj0c3CAAAAAAA0MDRbwidnZ1L\nSkqopwUAAAAAAAC66DeEH3744fbt20tLS+uS5N69eyNGjAgICLh161b1cbVaffDgwdDQ0KCg\noFmzZu3fv1+tVr9RAAAAAAAAAGjQeYcwKipKe2xpaWlra+vu7j5nzhwnJyce73+mCAwMfG02\ntVq9YcMGoVBYVVVV41JERMSxY8d69uwZEBCQnJy8ffv2wsLC2bNn1z4AAAAAAAAANOg0hCNH\njnx+cOHChc8P1mbbiejo6Ly8PH9//4MHD1Yfz8rKio6O9vX1nT9/PiFk6NChfD4/JiZmyJAh\ndnZ2tQkAAAAAAAAALToNYWRkJJU8hJDi4uKdO3dOmjTp+T0MY2NjWZYdPny4diQgIODcuXMX\nL16cNGlSbQIAAAAAAABAi05DGBwcLJVKRSJR3VNFRES0aNFiyJAhhw8frnEpLS2Ny+U6OTlp\nRxwcHAQCQXp6ei0DAAAAAAAAQIvaPoQWFhZ+fn5BQUHDhw83MTF5uyQ3bty4dOnSt99+y+G8\nYLWboqIiiUTC5XK1IwzDmJiYPH36tJYBGg8ePJDJZJrj/Pz8tysVAAAAAACgsaPWEH7yyScH\nDhyYMmUKn8/v27dvUFBQYGBgixYtap9BqVT++uuvvr6+HTp0eGGATCbj8/k1BgUCgba7e22A\nxuLFi9PS0jTHbdu2dXZ2rn2RAAAAAAAATQa1bSeWLVt2+/bt1NTUr7/+uri4ePbs2TY2Nj4+\nPmvXrs3MzKxNhoMHDxYXF0+bNu1lAUKhUKFQ1BiUy+VCobCWARr9+/cP+kfHjh1rUxsAAAAA\nAEDTQ3kfQhcXl4ULF8bHxz969GjNmjUcDmfBggX29vZeXl7ffPNNSkrKyz5YWlq6b9++AQMG\nVFVV5eTk5OTklJWVEUKePn2ak5OjWZvU1NS0pKREpVJpP8WybHFxsZmZmeb0tQEaISEhi//R\nv39/uj8BAAAAAACAxoL+xvQatra2//73v//444/c3NxNmzaZm5svXbq0ffv2HTp0OHbs2PPx\npaWlcrn8yJEjof/Yv38/IWTNmjWhoaGaZz6dnJxUKtWDBw+0n8rIyJDL5dpVZF4bAAAAAAAA\nAFr11RBqWVhYhISEnDhxoqCgYMeOHe3atbt79+7zYWZmZp/9r379+hFCxo0b99lnnwkEAkKI\nj48PwzBHjx7Vfuro0aMMw/j4+GhOXxsAAAAAAAAAWtQWlXktiUQyceLEiRMnvvCqvr5+r169\nqo9o1v90c3PTvubXunVrf3//6OhohULh5uaWnJwcGxs7ePBge3v7WgYAAAAAAACA1rtrCKkI\nCQkxMzM7derUlStXzMzMJk2aFBQU9EYBAAAAAAAAoMFo1muhSE9P78UzMYy+vr6dnd2gQYMW\nLFhgbm5Od963c/Xq1WPHji1btkzXhQAAAAAAALxT/v7+9N8hHDZsmJOTk0wms7S07N27d+/e\nvS0sLGQymaOjo7e397Nnz77//vvOnTtnZ2dTnxoAAAAAAABqj35D+NFHH2VlZf3++++ZmZln\nzpw5c+bMo0ePtm/fnpWVtXTp0oyMjJ07d+bk5CxZsoT61AAAAAAAAFB79N8hXLhw4dSpUydM\nmKAdYRhm0qRJ8fHxixYtunDhwvjx48+dO3fy5EnqUwMAAAAAAEDt0b9DmJiY6O7u/vy4u7t7\nQkKC5rh79+55eXnUpwYAAAAAAIDao98Q8vn869evPz+elJTE5/M1xzKZTCQSUZ8aAAAAAAAA\nao9+Q+jv7//rr79u3rxZpVJpRlQqVXh4+MaNG4cOHaoZiY+Px96AAAAAAAAAukX/HcJVq1Zd\nvnx55syZCxcudHFxYVk2LS2tsLDQycnphx9+IIRUVVU9evRo/Pjx1KcGAAAAAACA2qPfELZs\n2TIpKenHH388fPjwzZs3CSGOjo5z5sxZsGCBkZERIURPT+/8+fPU5wUAAAAAAIA3Qr8hJIRI\nJJLly5cvX768PpIDAAAAAAAAFfTfIQQAAAAAAIBGgdodwqqqqtqE6enp0ZoRAAAAAAAA6oJa\nQ6ivr1+bMJZlac0IAAAAAAAAdUHzHUI9Pb3u3btzuVyKOQEAAAAAAKCeUGsInZyc0tPTU1NT\np06dOn36dCcnJ1qZAQAAAAAAoD5QW1Tm/v37586d69u379q1a11cXPr167dz587Kykpa+QEA\nAAAAAIAuag0hwzB9+/b9/fffnzx58vPPP5eUlEycONHGxmbevHmJiYm0ZgEAAAAAAABa6G87\nYWxsPHfu3GvXriUlJU2cOHH37t1dunT58ccfqU8EAAAAAAAAdVGP+xA6Ozt37txZ8zJheXl5\n/U0EAAAAAAAAb4HmKqNaf/755+bNm/ft2yeVSnv06BERETF27Nj6mAgAAAAAAADeGs2GMDc3\nd/v27b/99tu9e/csLS1nz549Y8aM9u3bU5wCAAAAAAAAaKHWEI4YMeL48eMsy/r5+a1cuTIg\nIIDP59NK3gzJZDKFQqHrKt6MWCzWdQkAAAAAAPAGqDWER44c0dPTCwwMbNmyZVxcXFxc3AvD\nsLpMLd24cSM9PZ16WqlUqlAoJBIJwzB0M3M4HDwYDAAAAADQuNB8ZLSqqmrPnj2vjkFDWEum\npqb1cYfw+vXrhYWF7du3p37/lnqHCQAAAAAA9Y1aQ3j16lVaqYAQ4uzs7OzsTD2tUql88uRJ\njx49hEIh9eQAAAAAANC4UGsIvby8aKUCAAAAAACAd6Ae9yEEAAAAAACAhoxOQ7h169bc3Nza\nRKpUqq1btxYUFFCZFwAAAAAAAN4anYZw2rRpKSkptYlUKBTTpk2rj/UzAQAAAAAA4I1Qe4cw\nOTlZT0/vtWFyuZzWjAAAAAAAAFAX1BrCefPm0UoFAAAAAAAA7wCdhnDdunVvFO/g4EBlXgAA\nAAAAAHhrdBrCsLAwKnkAAAAAAADgncG2EwAAAAAAAM0UGkIAAAAAAIBmCg0hAAAAAABAM4WG\nEAAAAAAAoJlCQwgAAAAAANBMoSEEAAAAAABopuqxIVSpVPWXHAAAAAAAAOqIcr5p2jMAACAA\nSURBVENYVFS0ZMmSLl26iMViHo8nFou7dOmydOnS4uJiuhMBAAAAAABAHdHZmF7jxo0bgwYN\nysvLI4QYGhq2bNmytLQ0MTExMTExPDz8xIkTHTt2pDgdAAAAAAAA1AW1O4SVlZWjRo0qKCj4\n+OOP09LSSktLHz9+XFpampqa+uGHH+bk5AQHB8tkMlrTAQAAAAAAQB1Rawj37t2bnp6+bt26\n1atXOzk5acddXFzWrl37008/paamRkZG0poOAAAAAAAA6ohaQ3jkyBF7e/vZs2e/8GpYWFjr\n1q0PHz5MazoAAAAAAACoI2oN4c2bN/v378/hvDghh8MZMGDA9evXaU0HAAAAAAAAdUStIczL\ny7Ozs3tFQOvWrfPz82lNBwAAAAAAAHVEbZVRqVSqr6//igCRSFRWVkZrOoC6e/bsWWFhoa6r\neDN2dnZ8Pl/XVQAAAABAE0GtIWRZlkoMwDuTl5eXmJhIPW1paWlZWZm5ublQKKSevEWLFmgI\nAQAAAIAWmvsQRkZGpqSkvOzqrVu3KM4FUHctWrTw9vamnjYlJSUtLa19+/ZmZmbUk+vp6VHP\nCQAAAADNFs2GMD4+Pj4+nmJCgHplbGxsbGxMPa1UKi0rK3NwcLC0tKSeHAAAAACAImoN4dWr\nV2mlgvpQXFx89+7duLi4goICMzMzZ2dnR0dHXRcFTV9lZWV2drauq3gzVlZWYrFY11UAAAAA\nvAvUGkIvLy9aqYC6rKysv/76KzU1tbCwsLy8/Nq1aydOnAgODu7RowfDMLquDpqykpKS+vht\nkVQqLSwsNDU1NTQ0pJ68d+/eaAgBAACgmaD5yCg0TDKZ7MqVK7m5uc7OzgqFQq1Wt2zZ0tra\nev/+/dbW1g4ODrouEJoyY2PjXr16UU/7+PHja9eutW3btj7+ATY3N6eeEwAAAKBhqt+GUCaT\n3b17t7S01N3d/bUvaz1+/PjChQvXrl3Lycnh8Xi2traBgYHdunWrHqNWq6Oiok6ePFlQUGBu\nbu7n5xcUFMThcGof0AxlZ2fHx8d7eHhUHxQKhdbW1hkZGWgIoV7p6em1bt2aelq1Wp2ZmWlj\nY1MfyQEAAACaD5qdUkxMzNixYydNmnTx4kVCyKlTp5ycnDw8PHx9fVu0aLFixYpXf3zfvn0H\nDx40Njb29/f39fV98uTJypUrd+/eXT0mIiJi69atDg4OM2bMcHFx2b59+6ZNm94ooBkqKysT\niUTPj2NnSAAAAACAZo7aHcI//vhj6NChmp0G9+3bFx0dHRQUZGBgMGLECLlcHhsb++WXX7Zr\n1y44OPhlGXx9fWfMmCGRSDSn48aN+/DDDyMjI0eMGGFgYEAIycrKio6O9vX1nT9/PiFk6NCh\nfD4/JiZmyJAhdnZ2tQlonng8nkqlen5cpVLxeHhmGAAAAACg+aJ2h3Dt2rUikejo0aO3bt3y\n8vKaNGmSnZ1dampqVFTU8ePHb968KZFI1q9f/4oMXbp00XaDhBCxWNy9e3elUpmbm6sZiY2N\nZVl2+PDh2piAgACWZTU3JGsT0DxZWFiUlpYqFIoa40+fPrWwsNBJSQAAAAAA0BBQawivXbs2\nduzYYcOGubm5LVu2LDc3NzQ0VPveoIODw7hx45KSkt4oZ2lpKSHExMREc5qWlsblcp2cnLQB\nDg4OAoEgPT29lgHNk6WlZUBAwL179+RyuWaEZdnHjx+7urq2b99et7UBAAAAAIAOUXtiMDc3\nV9uJaTa4q7HYg52dXUlJSe0TZmdn//nnn56entqGsKioSCKRcLlcbQzDMCYmJk+fPq1lgMaD\nBw9kMpnmOD8/v/YlNV69e/fmcDiHDh0qLCysrKzkcDh9+/bt2bNnfSzZDwAAAAAAjQW1hlCp\nVPL5fM2xQCAghNR4P43H42neMKyNioqKb7/9ls/nz549Wzsok8m0U2gJBAJtd/faAI3Fixen\npaVpjtu2bevs7FzLqhovgUDw3nvvderU6cSJE0+ePAkODra1tW3mi68CAAAAAEBDXFOkqqpq\n2bJleXl5S5cutbKy0o4LhcLKysoawXK5XE9Pr5YBGv3793d3d9ccczic5z/SVJmYmNjY2BBC\nrKys0A0CAAAAAADNhjAyMjIlJYUQUlFRQQhZt25dVFSU9uqtW7dqk0Qmky1fvjwtLe3LL790\ndXWtfsnU1DQzM1OlUmkfCmVZtri42M3NrZYBGiEhIdrjq1evHjt27E2/KQAAAAAAQBNAsyGM\nj4+Pj4/Xnp46depNM8jl8hUrViQnJy9atKhz5841rjo5OSUkJDx48MDFxUUzkpGRIZfLte8u\nvjYAAAAAAAAAtKg1hFevXq1jBoVC8c0339y6devTTz/t2rXr8wE+Pj779u07evToxx9/rBk5\nevQowzA+Pj61DAAAAAAAAAAtag2hl5dXHTNs3LgxMTGxTZs2WVlZe/fu1Y736dPH2tqaENK6\ndWt/f//o6GiFQuHm5pacnBwbGzt48GB7e3tN5GsDAAAAAAAAQKsBLSqTl5dHCElNTU1NTa0+\n7ujoqGkICSEhISFmZmanTp26cuWKmZnZpEmTgoKCqge/NgAAAAAAAAA0aDaEMTExHA5n0KBB\nhJD8/Pzp06dXv+ru7v7NN9+84uPLly9/7RQcDic4ODg4OPitAwAAAAAAAECDWkN448aNoUOH\nbtiwQXNaUVERHR1dPSA6OnrUqFFdunShNSNAA6RWq8vLy0tKSprPdiYAAAAA0HhRawg3b95s\nYWExbdq06oNbtmwZPHgwIUSpVLq7u2/btg0NITRhaWlpN2/e3L9/f0lJSUJCQnBwcNeuXU1N\nTXVdFwAAAADAi1FrCC9cuDBw4ECBQFB90NjYWLuz/PDhwy9evEhrOoCGJjU1df369Y6Oju7u\n7tnZ2W3btk1KSiorK/Pz85NIJLquDgAAAADgBTi0EmVkZGh3/3she3v7jIwMWtMBNCgKheLG\njRsuLi4WFhaaET6fb29vn5KScuPGDd3W1vSUlJQ8/MezZ890XQ4AAABAI0btDmFVVRWfz9ee\n2tnZlZWV6evra0cMDAzwVhU0VYWFhXFxcd7e3jXGrayscnJyWJZlGEYnhTU9iYmJW7duVavV\n+fn5jx49Onr06OTJk7t06YKfMAAAAMBboNYQmpqaZmdna08ZhhGLxdUDHj9+bGZmRms6gAZF\nJpNV/4WIFp/PV6vVCoWixtPU8Hbu3r27c+dOd3f3iooKhmEcHR2NjIz27NkjFAo7duyo6+oA\nAAAAGh9qj4x6eHicPHlSrVa/8KparT558qSHhwet6QAaFH19fblczrJsjXGZTMbj8dANUsGy\n7N27d+3t7UUikXbQwMDA0dHx3r17KpVKh7UBAAAANFLUGsKxY8emp6evXbv2hVfXrl17//79\nMWPG0JoOoEGxsLDo06dPXl5e9UGWZbOzs1u1aqWrqpqY8vLy8+fPP79qq7Gx8cWLF0tLS3VS\nFQAAAECjRq0hnDhxYpcuXRYsWDB9+vSEhASlUkkIUSqVCQkJ06dPX7BggZeX14QJE2hNB28n\n62rR7R1PdV1FE8ThcLy8vDIyMrKysmQymWY3wnv37nl6enbq1EnX1TURKpWKYZjn3xVkGIbD\n4eAOIQAAAMBboNYQ8vn8w4cPe3h4bNmyxdvbWyAQiMVigUDg7e29ZcsWT0/Pw4cPv/AlK6hv\npQXSoid/3zyRS5WM/O+lfVRK9ePkfN3V1dTY2touXry4c+fOenp6aWlpRkZGfn5+fn5+BgYG\nui6tiRCLxb169ZJKpTXGKyoqunfvbmhoqJOqAAAAABo1ag0hIaRly5ZXrlyJiIgYNGiQjY0N\nwzA2NjaDBg3avHnz5cuXbWxsKM4FtZcYk/pd4O9PUgsJIbbKi6NcNhNClArVprmHd315WtfV\nNSlWVlaaJnDcuHEBAQG9evVCN0gRj8ezs7N7+PBh9XeV1Wp1RkaGra2tUCjUYW0AAAAAjRS1\nVUY1+Hz+jBkzZsyY8cKrSUlJWFemluSVCqWcziNw3r355SmcNeP3ztkYyFFW8Rl52dOKvV+c\nK8rKDf3csqKkisoshBADiR6tVI0ah8MRCoXYBaE+eHp6Pnv27OzZs3w+v6ysLDc3Nycn5733\n3vPy8tJ1aQAAzZoq/64y/ZywxzxdFwIAb4xyQ/hCJSUlu3btioiISExMfH4ZRnihfcvP/bn3\nFpVUXewShntE3eHO+HFMZTfHInM79kufzUKebJpPROY2/m8zMqnMwuNz16V8RCVVY8eTPumc\nsZaQ/roupAkSCAQDBw50cHC4ceOGSqVyd3fv0qWLi4sLl8vVdWkAAM2a6tEV2dXf0BACNEb1\n2xBeunQpIiIiMjKyoqJCJBKNHj26XqdrSlq7WVWWyeueR16pqGId78iE0303H7gbRmSEECIy\nVM/ou0vA4Zwr+cL1PTFfyOVw6/rwMJfbvG+IsWpWWcXwDQgh3Io8s/Lb2t98sPJyRiB+xUfh\njXC53LZt2wqFQpVK5eXl5eLiouuKAACaKXnCFkVKtOj9nYT3Pw/tK24frLr0k+Hsi7oqDADe\nSL00hAUFBdu3b4+IiEhJSSGEDBo0KDQ0dPDgwfr6+vUxXZPUZ3ynPuPrujpl9r3ClcO2sWr2\nDumY2+bpyA7rrmZ0Zxj1eM+NqgrZ+ouzKuT5hOT7hXYd+WkfKmU3W4p7Jyr2zxDPOse1bF99\nXH5te0XUXMmSQoaH52kBAKBJ4bUdUnXhh/Ido8STDmgHFbcPlu8eLwraqMPCAOCN0GwI1Wr1\nmTNnIiIiDh8+LJfLPT09P//885UrV86ePTswMJDiRM1Byopg4dO4uudZNFymPVYTbi+XWJYQ\ntZpTqTL6cMh/NOOqHF7GR3V94o4lHMe1WXVM0njx2w7huwWVbXzPcNY57aD8xh7pwVmi0VvQ\nDQIAQNPDMbQynP1H2aZ+5dsD+W5BpFo3KOgyRdfVAUBtUWsIv/76699++y0zM9PCwmLu3LnT\npk1zd3d/+PDhypUraU3RrBhK4w0ET+ojM0MIl6MSc4rrI3nzxTAGI34mhJRt6sdz/xchhHMv\nSnriX6LRWwSdx+m6OAAAgL+x0kJWVkoxoWjMFunuCfKLq1lFRfnucQaDVvIcfNRFDyhOwTF1\npJgNAGqg1hAuWbLE2dn54MGDw4YNw36DdWc5PUKVl0wllVqlvnzgjvRpSW/XJHlJnlrJ6gmV\njzn+d5O5vhM7Sywpvd7G0NzC5N1QPbqsePAHxYQciS3XzMk0fjlRK5jjcwXuY9TPHlVd+J7i\nFALv6RyRBcWEAADQrJSF91fl3Ky//BXRn5DoT+jmNPlWQTjvYh1EgOaJ2r9d5ubmaWlpixcv\nTk1NnTRpEnYdrCO+ix/fxY9KqtPhV+Pv6c8dtovLGt+r6G1aHmvvH2J7YWWO29fhm82+iG6+\nD3VUXfhefieKetq/V9dhifz6bnJ9N93knJYeAkr/YAAAQDPEsWijflb3VzxYVllt6Tu1iqhk\nhBDCcKsvMMNweIRDZRXo5r1wHUA9o9YQZmdnHzp0KDw8fNGiRZ9//vmgQYM0T43Syt/cqFQq\nlYrOPoQ9guy95R8zSqlwynHFqi8IS9iuYXyVvGvsEq/l++VyCmuZaggEAlqp3g2+i5+6lMJz\nuayyirB/b5XOVj5Tl2YTliUcHtfUnmjfHuTwGS6FO+dcY7u6JwEAgGZLPCGSbkLNe4NC75nK\nx/FEreIY24omH8LL8wCNCLWGUCAQjB07duzYsQ8ePNi8efPWrVtHjx4tEokIIU+e1Mu7cE3b\ntWvX0tPTqaRyyD9qVZJ71XGhMuY8v/ypBaM6fPgwl9vGyczf6nDIyXt0HmjkcDhjx46lkuqd\nEfSYI+gxh1Y2pUKlTo6U7pv62GqyRdZevtc4Ji3acFYUa9qOx8cueQAA0AT9d01RllU+STSc\nebpsUz/p9pHoCQEaEfoPZDs6Oq5cufLrr7+Ojo4ODw+PiYmZN2/ejz/+GBwcPHr0aG9vb+oz\nNkmmpqYKhYJKKpXtnCdkjg3DIYSYqJ2NH6c7ODgQQhSt//WYndeaodOrMEyzfpzj9oUHiT99\nO6zDDvGY30qvFVmQvap+3+rr6xf/7Lvp7KxPzn/NF+LlBwAAaFIUqafKd48XjfxV0GWKPGEr\nIYQRW4pDzpRv7CvdPV486aCuCwSAWqmvv6RyudyAgICAgIDs7OwtW7Zs3rx51apVq1atYln2\n9R8GQpydnZ2dnamnVdqoFalCm169qGdujG5feBB34A6VVOac5CFttu67MkGRI9SvynayIfu+\njK0o6unBuTalx4YdC7xUhM5KS2O+7CexFFFJ1dip5PjDBJqCqnI5X4/H5TW+dbkAOAam4vF7\n+K6BhBC1Uq1SqAghHEMrceh5xa39uq4OAGqr3u9atGzZ8osvvvj888/PnDkTHh5e39PBq/Ec\nfHgOPrquoqHIzyhOPH6PSio9vvyO4dzsIlvyMMPevJTYkDtnHxJCHpJRN7LS0vOprb4d8HFv\nCUFDSBRVyrhvcjr+Lnt9KEDDtnX+8bY9W/ed4qnrQgDeGLeVF7eVl+Y443Yh91GZCSGEEI6h\nlbBnmA4LA4A38o4eY2MYZuDAgQMHDnw30wHURo9gN/cBNG/Dsmr20A8X8xLyZEohl8sEfvZe\nZz/Kt3lNrA3pJmxElArV3diHHfs5EULUSlatZJXyvxdeunMxw8W7lUAfG95A43D7wgN7dyux\nqQEhRClXKWRKzfjjuwWEkFbtsbUMNA6P7xaUFJS79nEghJRI+idmc9oQQggpL668cTqt15iO\nui0PAGoJ7zVB86VvKNQ3FL4+7pXklYqlA36TVf73hc+K0hY/Hl/EcDkxv8TF/BKnGezgYz/j\n/4bVca5mTlpctWX+cd8JnUcs+J+73CfWXz6x4coXx6ea20p0VRvAG4nbf/vQ9xc/2jlG0xNq\nPEh6sm7q/qCFvmgIoV4d/O6PP/fdopJKpVTLKuRCfT6Xz1XKVUo5Z77nzyzLyqQKhsMc/I7a\nTr8/JsxjOM16qQKAeoWGEKBOBPr8WesDqsr/3r3jfnzW8V8uK9VcoR5n1CJfUxsjzbh5a2Pd\n1ahLD2/k7P7qDK1sEkvxqU3xf0Xe0pMICCFRX13ZXxVXki+1sDMODztCa5ZRi3zbdG9NKxs0\nGZcP3VHK6OwG1LZ767wHxSv8tw2Y4WVSebH4lnPUqqpzWxPb97JjGObSHjqbhpvbStr1wkY1\nUJNAn29gVNdfhv43mx6v7GmFoSlPrlKrVWqBAb+sUMrlMUYWoma+2hxAI4KGEJqvq0dTzkRc\npZiwoqTq6eMSnpCrrFIRhuz64rSlgwnd9UVDN4zQNpmNQlW5/NHtPLo5SwsrKopLPh++cu3J\nTyvkBoSQ/IxiivmlJXg1EV7gwMoL5cWVlHN+98dUn5MP0tNPHpcRQm6eTb95ls6GQ4SQLkPb\noiGE5w37d89h/+5JMeG16HtbFxyXtBA/zSrREwksbCXzNo8SGuAZfoBGAw0hNF9lhVLqvQoh\nRFmlIoTIpApCSM79p3STKyjdoHhn2vWy25C+oO55cu4XluSV8UvvKiSuBZnPjn4bLRJK9YTy\nIfOHtGpvySu9qxK7iMyN8Kwd1J9Rn79X9zuElWWykvzy9pU/POX3yGV63zqXTgghDHH0sHHo\nbOUk3yzjWD7mj7C0M+bUed1RPEQN9UcpVyUcS9G+yN09yO3S3puEEJVc6Tmk7dUjdzXjTl1s\nrF3MdVYlANQOGkJovjoOa23mSWeho7x7JUe+SnhvnqtLH6v4U7eSNueM3uBlYmxy/uc7T24V\nj1vfi8uns6a8sY3B64Oaol1fnC5/lDa39/KzqSOuZvkSNUsIISyJWX+lk83lIe33hl9exBo7\nf350sq4rhSar+0jXuie5sD3pxuk0pYV1f4flD9NmKmTuhBDCkpK8MpP7v7UwvxJ5d/7TyrSZ\n64a3dmtR9+kA6klpofTizusqpVpzqv7nQKFQxx24rQ2rksrREAI0fGgIofkqKipKTk6mkkpZ\nqXabaqYwL0pOLpJKpQzDZGVl5ebmWvXnCGxFKakptN6kcHR0FAqpvfvxDjzLL0+9nFn3PD4T\n3Alxzyu28uN9YO1ieuS4LSGEcJiBPVK6GkXmtlk9wKc/IST+CIWNJZ29bU2tG9NzufBu/N+k\nfRWlFB4nNpDoZcj7XsjRH+K8qaJ4LCGEYUhP612uFteOZX1WwbfX55Odn5+q+0Tte9sHfoJ9\nhqBemNoYfXpggua4vKjip4n7hAZ8mVRe/rRi5AKfroEddFseQF2oHidwW3YhzeklWDSE0HzZ\n2tpKJPQfqcptVfwk5pyfn9/f5/1oJjcwaGR3CJOv3N/x0VmKCZ1bTJ7cc0uO/UBCiKvV9S4G\nJ3ZdmnBnn5yQGFpTBH3da+CEHrSyQZOhX5rAlVJ7hzCnjMSW+gZ77SmpNJYYlBjrF5+6PbRS\nkWfI5NOaghRKCUFDCDXdvZSZdYfa6xLyCsWlvTf5ejx9sUAmlbu957j90xO3zj2wdbWkNQUh\nZOCsrs3pL+egUyp56c9dJZ/c55g56bqUdwcNITRfBgYG9dFfWVlZtT/vjPfpNVoZPZobvKfu\nebhEyRC1QqqUSZXPWBu/jjGEkMHu0cXKVt1d4np3jBca8ljCUdH4M83AxIoQNISEEPLnvlud\nBjhV3xqhORvj9h9WSX/BIVPR328aD+90kG5mbgs3QmbTzdlIqQpTiaKSa91J14U0CDfPpl3Y\nnlRPya+fuk8ISYhOSYhOoZh2YIh3s7pdA+8YKy+Xxa7V8/2U8IQsqyYsy7IqQghh1VUXVws8\nJ3IMrXVdY/1CQwhAH7pBLQv2niG5Ri2diBDRf88YwpryskxpryOjT+gs+t8ERP/fXxJLkdt7\njroupEFgOVxdl/BmGKFY1yU0FPIr4WppgWjMVl0X0iD0HN3RxbsVlVQpf2Zm3sodMMOLy+em\nXsm6cyFj5Gd9CCHpCdm3LzyosWdsnaAbhHomv7FHmRknnnzov0OsuuJAiOLeCYHHBN3V9Y6g\nIQSAeiToEEBkJbSysWqW4TCqnJuKeyeIWkk4PL5zP24rL804rVn4HcfQStXosGp23fQDgZ/4\ntHb9nxVNlHLVzsWnugZ2aN+7+W5jYLw4mxCWWjqWrTz5ufzGnsIyc8a4tWnVnwYjfhZ0HEUt\nPyGEK6CZrbGRXdnE6EkEncYSQuQVCpVUrvltkiL1pCrnpp7vJ7otT4dsO1jadqDzPKenf1vt\nsaxSkZGUoxnx9G87+iuq70sA1CdGIDacdb4svH/5thH64/cQQmQVchI7T3E3WjzrHMfIRtcF\n1js0hABQj7iW7fQHraSYUJ6wperiav2g3yr3TxaMiFAcm8NvN1TY618Up2jOGA7Tqp3FfyZH\n/mv7aG1PqJSrNs49XPjo2ciFvrotT7cYfWNquVi24thH8ht7DUPOlGz+gGPXTdQpRLpvKiMQ\nCTqPozZL88YRmZfvHk/UCoHHxMzbeaSywJQQRcpx6Y5R+iPW6bq6Jsiuo5V3QHtdVwHwlhix\npWHI2bLw/tIdowkhlaeW8nIuiWed47ZoFiskoSEEgEZDnrBFemiOeNxunlPfyv1Ev11fgWmU\ndHsgIaQ594TlRRXfB+2kmFCtZr8bsUNiKS4tlO747ESVVK5SqCWWolXB1GbpN71L38metLI1\nOpUxC+VJOw1Dz3OtO5m1kvDsjAWd3ieKKmnkNEZPwm/nr+sCm4JbWW5mXf6P7J9J1GrCsoQl\ninsnpL8HV3l+lfK4R/euuq6vybFpY27TBjtMwLtTdf1A5YFpFBKplYRVqRRqDo/DMITk3SGE\ncO4fUHMFJf/noVaqOVwOw+EQDoW3gfi+X4gHfFr3PNShIQSAxkFdnCk9NEc8bhffbSRb+Uwz\nyG/jJ5p0ULojiOfcn9uCwjZxjRHLEirbIWgxDMMT8Erypa1MH+Y+a6lU8/VEgiqpguIUdd/h\nvVFjxBaGIWe51u7VBwVeU4lARFi1rqpqCDbN2pV54zGVVCq5Si5TdbQLHiafoXjqyHBUzyIC\n/kgbEndQxRMcPvp9NJVZzFubfhQ5k0oqAHgjhalpInkZrWxcDiE1/vRVyRlCuAwhas2lqrrP\nUnDntnhA3dPQh4YQABoHjomdZFEmR1xzt25+28FGCzM4IppLnDcuhmYGqxPD6p7n/PbEtKvZ\n2tPMW7njOv4edT1Y2M6fr/f3fyx4Au64rwfoiZr1y2l1p9dnwX9PGA5hOJpDgfto3RTUYPgb\nfyR6j97GG/9wtEjVHPRvc6R/myMUM8tZMSFoCAF0QOg15cINK4oJs1MKOurvamOVpsctK1WY\nPyuXnHs8xa6zLUNvTSPP3r1opaILDSEANBrabpDh63NbeTF6khrjzROrZivLKNwhlJiLbJxM\n7co2PhGPkbHGmTdzGYblEFZiYWDcwtBaGlkq6Fyp30ZeqVAr63oXi6/H4wvxHyBCCNEf8j1H\n3Hx/nVGDobFQTW0VqndBaIB/jAF0w8LRauTKKdTSsWzFoTnlVzMjLoTO6fPjgcRJo7oenNk1\nVjz1CMPTozZLQ4U/yACgEeIJjT64qusiGoqypxWfdd9AK9vU3lftRKci/ggtrzIknQirJpf2\n3hrkdtza6fLh8/PySwuOrPmz7rMM+7DX0A+w2SMhhHCt3HRdQgNiGHaZKOv6XFZpYcXNM2ks\nyxJCDCuT7Aq+e/zUhsOobUxynpjNLRK/RwghDHH1cTBtaVTXipv3Uq4ATUDEv44+upkz0HG7\ng+TOvpT5hVIhIeRZqd6upA9GV61OC/M6nDrP0MJ4/t6mvOIXGkIAgMaNL+RVX/y9jm6xKztV\nLQvt++tFxbcMw1i3Me/g8kdH07hzJV+16u1GZ/MyQqydzShlgiaFyvLuxZk516/cZVliI7zu\navJjXOF4ddFDkV75nYoRA5gNmQ9U6ZW+hBDLjsbmHe3rPh0ANGr9pnYp1w66oAAAIABJREFU\ny3rY4lZZfvs9Xl1aPFl9lhDCMMQzqJfUpofVnQ+D+7fi2bi/Nk+jxmh+hdZsXb169dixY8uW\nLdN1IQAADcL6kENFjwrmBR3mlqWXZOdy7XwMimOv8r87eUi5YO84KzRy0EgoUk9KtwVWdlm6\neqWor8NBfX5Z1I0J//6Sa3r7E9GYrYJO7+u6QACoE4VMWZIvpZjwWV75bx8eMzbjhbSbufvB\nqvupwimrBrdqT/ORfkMzA6EBhdVK6fL390dDiIYQABo39dO00p86U0jEqoharVazDIdhCGHV\nSs2KlwyXTwijVrMMwzAcQmfpbfexotGb654HmpgzEQl5GUVUUjmoD5VXcI+ecmrhaNpZb5sB\nvyyJ/fhB4hO//jnWJrn3OZOpzCKxFA/7d08qqQBeqzCrZH3Ioa9OTNV1IQ1CWkL26rG7qadl\nCNuvw+k/7vVVquh3btPXDm2A23X6+/vjkVEAgMaNVVSxcmq/JWUIISpS/TeFrErx9zir6RDl\ndZ+FLaGztQA0MbfOpadeyaKS6hJxIoQQospOKXDvqGb5bFpCNiHkxGkrQqwIuUllFmtnMzSE\nUK+UCtWz3HJzWwkhRPqssuBhsfZS3oOiFo6muitNx8Qm+rRel1Ap1MmXHhqa6tu5W7Mse/YE\n08HXQU8kyL5XUPiopF0vO1q39Uxs6vzecv1AQwgA0LhxW3QwXkrnpopW1bmVsvhwNcvjmtoz\nilLR1KOUl3Ll69PMBk3F+JV+MimF3zgQQi7uvM7hcnq/704ISdhqUFhetujwJEJIQnRK0eNS\nv1A6O9PzhVwqeQBe5uH1nHXTDszZGNiulx0hRCT8e+e90+FXo//z13dxc/TEzXRlIysn05B1\nw6mkUsiU8VF3ewS7cbiMQqb814nUMV/2a+FgQgiJj0p2fc9RZNzEFxpFQwgA0MgxHEbfhGK+\nypNfyOIjxDNPS3eMMvBbIouPkG4LFIee5xhaU5wF4Hmav4FRMfHbQdrjBHPXKlLR2q0FIUTz\nvwD1quDRs6zbebSydRnS5peZB/1meRtzH3044JvE42NvnUtPiL43KLRr8sUMWrO097HXNxTS\nyta48IW8XmM7ao45XA6Hy/D4f28P2zWwg+7qenfQEAIAwH9VxiySXfnVMOQMt5UXIYRweKKJ\n+6TbR5aHDzAMvcCILHRdIMAbc+/vVFVO58YjQG3cvZS5+8vTVFKJheW2ZplKuevxny+3Mnnc\nrq8y/IOjhBAOo35y5OeYRx5qlkNloi+ip7Rshz/hCZfHWX4hxLShPttZT9AQAgDAP1hWmXXF\ncObpv7tBQgghDE9PNPlQReQMZXYSv42fDqsDeDvO3rQ2TAGoFcfO1iM/7VP3PEqFSl+W5l7w\nfabhrL/u+5TeeUwI4XI4XQPb9BD9n6H8jm1ACOEbcHkUekKJpajuSZqG5tYNEjSEAADwXwxj\nOOvcC4Z5eqJxO999OQAAjVGrDpatOtR1uwK1Sv1x53WyCsVVi2lTev1qXpBWwroQQlhWaZu1\nhGfxYN0fs4ukiW26t/5o5xgaVUPzhYYQAABeTK//l9xWXXRdBQBAI/M4OT859mHd8/iFdmVV\nLCE9U+Vu/bkfGxuUEEKCvfe1tc26axXe09mGEMLlc05tjK/7XD1Hu4lNDeqeBxojNIQAAPBi\nwm6zdF0CAEDjU3JmjeM9Clut8rlyhvl7GyA5h9vN8S9C2E62SRVyfZfM6ZpxtZqrVFP4+3y5\n6y5x74F1zwONERpCAAAAAABqrA3SGXFhPSVnGLVISG3vWS0Bv74KhoavqTWEarU6Kirq5MmT\nBQUF5ubmfn5+QUFBHA6d9ZcAAAAAAF7NeOT3ypwJVFLlpBXG/Bw3ZG430/ydiuwbrKyUwxcK\nOgan5HeKP3x38veD+Xp09kznO/elkgcao6bWEP5/e3ce1tSZNgz8OVlIgLAjgsgiO8iioAgq\ngjso2NeOHa+2r1WmYtuv0nGp1YJiGRUZ67wV2yqDa2ur1C6jBSpbFaygbIEgILJqSQA1EAIi\nIWT5/jjvly8XuEBIziHh/v0FJ7Fzc8+57nPu8zzneU6fPp2ZmTl//vw1a9bU1dV9++23fD7/\n/fffJzsuAAAAAAAwKVAsnPQsnNTyn5ruIVs/d53eH1slggei+cf0rm822pzz9OzqmUu8HNb+\nj6GdiVr+V8Akp1MNYVtbW1ZWVmho6M6dOxFCq1evptPp165di4iIcHBwIDs6AAAAAAAAxoBK\nkesVvi/5s8To/UJJywM5htFmLGJtvPL0/BoWjYHsdpAdINAFOjWX8o8//pDL5VFRUYoja9as\nkcvlN2/eJDEqAAAAAAAAVCB5cEvCLTd67wbFzNF0KgvfcpDmspS16VfRjcNyUS/ZAQJdoFMj\nhE1NTVQq1dnZWXFkxowZenp6zc3NJEYFAAAAAACACmhOoSafND3nuMtS04QnxMcDdJJONYTd\n3d0mJiZUKlVxBMMwMzOzrq4u5a+1tLQMDg7iPz9+/JjQEAEAAAAAABg7iqk9w38D2VEAHaRT\nDeHg4CCdPnypJT09PUX7h4uLi2tq+t9nLe7u7i4uLgTFBwAAAAAAgEowlpXButNkRwF0kE41\nhAwGY2BgYNhBsVjMZDKVjyxdutTX1xf/mUKhjPwnAAAAAAAAADAZ6FRDaG5u/vDhQ6lUqpg1\nKpfLBQKBt7e38tdiYmIUP5eVlWVmZhIaJQAAAAAAAABMDDq1yqizs7NUKm1paVEcaW1tFYvF\nysvMAAAAAAAAAADA6VRDGBISgmFYRkaG4khGRgaGYSEhISRGBQAAAAAAAAATk05NGbW3t1+1\nalVWVtbQ0JC3t3ddXd0ff/wRHh7u6OhIdmgAAAAAAAAAMOHoVEOIEIqJibGwsMjNzS0pKbGw\nsNiwYcPrr79OdlAAAAAAAAAAMBHpWkNIoVDWrVu3bt06sgMBAAAAAAAAgIlOp94hBAAAAAAA\nAAAwero2QqiCZ8+e8Xg8sqMAAAAAAAAAAEJJpVJMLpeTHQaZGhoajh07RnYUAAAAAAAAAECC\nyd4QAgAAAAAAAMCkBe8QAgAAAAAAAMAkBQ0hAAAAAAAAAExS0BACAAAAAAAAwCQFDSEAAAAA\nAAAATFLQEAIAAAAAAADAJAUNIQAAAAAAAABMUtAQAgAAAAAAAMAkBQ0hAAAAAAAAE5dEIunv\n7yc7CqCzoCEEAAAAAABggpJKpcnJyXv37n369CnZsQDdBA0hAAAAAAAAExSGYfr6+s3Nzfv2\n7YOeEGgCNIQAqE19fb1cLsd/5nK5+/fv7+3tJTck3QNJJgAkGQAwSlAuCEChULZv3x4aGgo9\nIdAQ6meffUZ2DIA4fD4/NTX1m2++KS0tZbFYtra2ZEekO9hsdkJCQnt7e1BQEI/Hi4+Pb21t\nHRgYmDt3Ltmh6Q5IMgEgyUSCmkyA/v7+9PT006dPX7lypb6+3tbW1tTUlOygdASUC8JgGBYU\nFNTR0VFZWVlVVbVw4UI9PT2yg9JNk7MsQ0M4ifT09OzcufPevXt9fX2dnZ03b97s6ekJCAjA\nMIzs0HQBi8Vis9mVlZUPHjy4fPmyQCDw9fXdtm0bjUYjOzTdAUkmACSZMFCTCdDe3r579+6y\nsjKhUCiVSpubm/Py8qZOnero6Eh2aLoAygWRoCckwKQty9AQTiJpaWm1tbXOzs6xsbFz5sxp\nbGysrq7u7OwMCgrS+ROdAAwGY8GCBZWVlTU1NSKRyNfXd9++fQwGg+y4dAokmQCQZMJATdY0\nkUi0Z8+eR48eOTs7JyYmxsTEdHd3NzY23rlzZ+HChSYmJmQHqPWgXBBGIBCkpaWdOnWKz+c/\ne/ZMIBBAT6gJk7YswyOcSaSiosLKyurQoUMGBgYIoVmzZu3du7egoAAhtH37dt0+0YnR39/f\n09OD/2xmZgZlWhMgyQSAJBMDarKmXb16taOjY8aMGYcPH2YymdnZ2bm5uQihd999187Ojuzo\ndASUCwLw+fxdu3Z1dXVZWVmFhobK5fKbN2/i7xMeOHCAxWKRHaDumLRlGUYIJ5FffvklMjLS\nz88P/5XJZC5YsIDNZnM4nMnw8IMAenp6NTU1lpaWLBarqqoKsqoJkGQCQJKJATVZ086ePdvd\n3f2Pf/zD0tIyJyfn5MmTcrl88+bNa9asQQjl5uba2trC5MZxgnJBgJSUlIaGBg8PjyNHjgQE\nBPj5+YWHh/N4PA6HA+OE6jVpyzI0hDpOIBCcPn36u+++Ky8v7+3t9fb2dnd3V3w6eU50AggE\nApFItGzZsrCwsEWLFlVVVVVWVg7LaklJibGxMUynURkkmQCQZI2Cmkyky5cvs1isd955Jzc3\n98SJE8rdYF9fX0JCQkNDQ1hYGNlhajEoFwSQSqUpKSkymSwxMdHCwgI/SKVSg4ODy8vLm5ub\noSccJyjLCBpC3SYQCHbs2FFTUyMUCtvb2wcGBoRC4fLlyymU/7/diPKJPmPGDJhFo4Lu7u6U\nlJSvv/761q1b8+fPNzExwV+rUFwaAwMDKRTKjRs3jh49Wl5evnTpUngmPVaQZAJAkjUNajLB\nSktLOzo69PT00tLSlLtBhFBaWlpjY2NgYKC/vz+5QWopKBeEkUgk6enpNBpty5YtyscpFAqT\nybx9+za8TzgeUJZx0BDqstTU1Lq6Oicnp61bt86ePbuhoaG9vb2rqyswMFD58QZ+oltbWy9e\nvJjEaLVUR0fH7t27GxoajI2NIyMjnZ2d8XnnypdG/IX79PR0uVy+atWqWbNmkR21loEkEwCS\nTACoyQSTSqXFxcWVlZUIIeVuMCcnJz09nclk7ty5Ez/PwZhAuSASlUotKCjo7e0NDg4etmOK\nUCi8cePG3Llza2pqrK2tXVxcyApSe0FZxmGK7USBLuHz+RYWFps2baLT6cePH8crdXd3d3x8\nPI/HW7ZsWWxsrE4OeRNMLBZv27aNy+V6eHh8+umnZmZmw77Q399/+PDh6upqhBCFQtm4cePa\ntWvJiFSLQZIJAEnWNKjJpJDJZHv27MH3Hjx06JC5ublIJPrxxx9/+uknuVy+a9eukJAQsmPU\nPlAuiPef//zn3Llz3t7eBw4coFKpiuP//ve/s7Ky0tLSWltbg4ODSYxQG0FZVgYjhDqIx+Pt\n3r27ra3t8ePHERERildj9fX1FyxYUFZWxuFw+Hz+sIcfQAW5ubnXr1+3trZOTk42NjbGD3I4\nnNzcXB6P5+TkxGAwFi9ebG9vb29vHxMTA/VaBZBkAkCSNQpqMmFkMplMJlPM9cIwLDAwkMPh\n/Pnnn7/++uv169e///77u3fvYhgWHR29cuVKcqPVUlAuCICP1igKgpubG5vNrq+vb2pqmjVr\nFpPJRAhdu3bt0qVLpqamb731lr29PZnhaiEoy8PAfG4dZGBgYGBgkJ+fjxAaNqHczMwsKSkp\nLi4O/3RSPfzQhPv37yOEVq9ejT9Y4nK5J06cqKmpoVKpUqm0qKjo4MGDGIYtXLiQ7Ei1GCSZ\nAJBkjYKaTAA+n3/mzJmysrKhoaHp06eHh4evXr2aQqGYmJgkJydfvnw5Ly+vs7MTwzBfX9+3\n337b09OT7JC1FZQLjXry5ElqaiqbzWYwGKGhoRs2bGCxWFQqNSEhYf/+/RUVFZs3b3Z2dhYI\nBJ2dnQihd955R3nMEIwSlOVhYIRQBykeb/T19Y18NVb54YeLi4utrS2JoWo7LpfL4XCoVKqT\nk1NWVtYXX3xhbm4eHx+/adOmW7dutbS0zJkzR7EmGFANJJkAkGSNgpqsaQKB4OOPP75//75U\nKkUI9fb2stns6urqefPmMRgMGo3m5+e3du3ayMjIt99+e/ny5VOmTCE7ZC0G5UJz8DO5qalJ\nLpcPDQ01NTUVFRXNnTuXxWIxmcywsDCxWNzc3NzZ2fn06VMDA4PNmzfDQLdqoCwPAw2hblKc\nyg8fPhz5aiz+6dSpU3X11VjCODk51dTUVFdX//bbbw8fPty4ceP7779vbm5Oo9GuXbvW19e3\nbNkyS0tLssPUbpBkAkCSNQ1qskadPHny3r17Hh4e+/bt++CDD+bMmfPnn3/eu3evpqYmLCwM\nHz/BMIzBYMBYyvhBudCcM2fO1NTUuLq67t279y9/+cvAwEB1dfXt27fnzZvHYrFoNJq/v/+a\nNWvmzJmzbNmy6OhoGOgeDyjLymBRGV0mEAji4uIm4auxGtLf3//zzz+XlZUNDg66urq+8cYb\njo6OUqm0oqJCKpX6+fkpVqvLyMg4deqUmZnZ2bNn4f5jTCDJBIAkkwVqstrhy0K88847TCbz\n+PHj+vr6+PGhoaHExMTq6up169a988475Aap7UZWDDs7OygX6oWfyTExMTKZ7Pjx4ywWCz9+\n6dKlS5cuWVpaJiUlWVtbkxukToKyjIMRQl3Q39+fnp5++vTpK1eu4Mup4QsTT9pXYzWhvb19\n9+7dZWVlQqFQKpU2Nzfn5eVNnTrVycnJ1tbWzs6OTqcjhORy+c8//3z+/HmEUGxsrKOjI7lh\naxdIMgEgycR4blmGmqxeimUhHj16tGzZMuUdBalUqq+vb2ZmZktLy2uvvQb9icqeWzFsbGwW\nLFgA5UJdhp3JAQEBio98fHwQQqWlpYpxQvLC1HpQll8CGkKt96LbO7wiw4muFiKRaM+ePY8e\nPXJ2dk5MTIyJienu7m5sbLxz587ChQtNTEzwr1VWVn711Vd5eXkYhm3atCk8PJzcsLULJJkA\nkGRivKQsQ01WI6lUevPmTQ6HMzAw4O3tjd86KxgYGNy5c+fJkyeBgYHwSptqRlMxoFyMn+JM\n7u/vDwwM9PDwUP4UekK1gLL8cpRXfwVMYCKRKDEx8fHjx87OzsePH//hhx9WrlwpkUi++OKL\ntrY2/Dv4ckm2trb5+fllZWXkBqylrl692tHRMWPGjMOHDzs6OmZnZ+fm5iKE3n33XTs7O/w7\nPT09J0+evHv3rrW1dWJi4uuvv05qyNoHkkwASDIBXlmWoSariyKTCKGbN29KJBLlT+VyeW9v\nL0JIJpORE5/2e2XFgHKhFspnckFBAb42krI333zzzTff5PP5JSUlZASo9aAsv5ocaLP09PSo\nqKiPPvpoYGBALpdfu3ZtzZo1UVFRV69eHfbN7u7uzMxMMmLUBdu3b4+KimptbZXL5dnZ2cOS\nnJOTg+f/yZMnRUVFMpmMxFC1FySZAJBkAoyyLENNVpfu7u73338/KirqX//6l1QqVRzPzMyM\niopav369SCQiMTytNpqKAeVCXRRnckpKynPzeffuXeKj0g1Qll8JRgi1G/6saPv27UwmMycn\n5+TJk3K5fPPmzWvWrEEI5ebmikQi/JtmZmarV68mM1ZtJhQKraysHB0dc3NzT5w4oZzkvr6+\ntLS05ORkhJClpeX8+fMn4UwDtYAkEwCSTIBRlmWoySqTyWTKQyiKR/sFBQW7d+++devW3bt3\nT506lZaWhhDauHEjg8EgL1jtNpqKAeVCXZQHqb788kv5iEUfvb29SQlMB0BZfiVoCLXbKG/v\ngAq4XG5LSwv+s7W1dW9v79WrV7/++mvlJCOEzp8/LxaLFdPtwFgp8gxJ1hxIMpGgLGsOn8//\n5z//+de//vX111//8MMPMzIy8Omgijvp+/fvHzlyJD4+PiMjw8jIKDY2NiIiguyotQxc+wgg\nl8urq6uzsrLKy8uf+3TjRT0hUA2U5VeCRWW0Q319vYWFBf4Ejsvl/utf/woICGAwGKWlpR0d\nHXp6emlpacOKdVpaWmNjY2BgoPLCa2CUenp69uzZk5eXFxgYaGJiIpVKi4uLKysrEULKSc7J\nyUlPT2cymTt37lQsvQ1GTznPhoaGkGRNgCRrwotqMkIIyrKGvHz3eeVtpufNmxcfH//f//3f\nrq6uZEetZeDaR4DHjx/v37//p59+qqioKCws/OOPP9zc3BTrHsECJyqDsjweMEKoBdhs9qef\nfvrFF1/I5XIulxsfH19ZWfn9998jhEJDQ0Ui0ZkzZ4ad3zk5OXl5eUwm87XXXiM1dm114cIF\nPp/v6OhoZWWFEFq2bBm+6petre3ChQsRQiKR6MKFCydOnEAIxcbGwia8qlHOMyRZQyDJaveS\nmoygLGvMuXPnurq6PDw8UlJSrl69evToUQ8Pj7q6usTERLFYjJRGV0pKSn755RfYakIFcO3T\nNKFQuGfPnsbGRjMzs3Xr1kVFRT169Cg+Pp7NZiu+AwucqADK8jjBxvRaoK+vb9++fS0tLUFB\nQffv3xcIBL6+vvv27WMwGDKZbM+ePfhuKocOHTI3NxeJRD/++ONPP/0kl8t37doVEhJCdvha\nBt8cdtOmTXp6esrbHAuFwv3797e0tFAoFCsrq+7ubrFYjK+yvXbtWnJj1kbPzTMkWb0gyRry\nkpqMEIKyrHZj2n0etplWDVz7iPHZZ5+x2WxPT8/4+HhjY+Nr166lpqbK5XI9Pb24uDjlQSqB\nQFBcXDxpX2kbKyjL4wQNoXbo6+vbu3dva2srQkj5FEdQrNWKx+PFxcUFBARUVlauWrXqjTfe\nUP5UJBJdvnw5Ly9PKBRiGObj4/P22297enqSFa32ekmeIcnqAknWqJfUZARlWa0UZzKbzV6x\nYsVbb72l/Cmfz4+JidHT07tw4YKenh5+EHrCsYJrn9rhm6DQaDTlg/X19Z988omlpWVKSoqR\nkVF2dja+usmSJUuuX78+sicEYwJleTxor/4KmAD6+/t7enrwn83MzBSXPYSQiYlJcnIyXqw7\nOzsxDPP19YVirRoDAwMDA4P8/HyE0MjpRkwm85133tmwYUNfX5++vj6dTicjRl3wkjxDktUF\nkqxRL6nJCMqyWimfySNZWlo6ODi0tLQ8ePDAzc0NP4jPuIuLiysuLl63bt20adMIjFcrwbVP\nvSQSCb5Iyaeffqqcz7t37yKEYmJijIyMbt++rbzW5eDgYFFREX7eQk+oGijL4wEjhNpBLBYn\nJSUNDQ319/e3tLSEhYVt37592FNPuVwOxXr8FI+W7e3tU1JS4C0UDYE8EwCSrDmjqckIyrKa\nKM7kadOmffXVV8qjLnK5/N133+Xz+UeOHMHfdlP+V11dXS4uLoTHq5WgXKiRSCTav3//vXv3\nAgMDlXtCmUx29uzZ6Ojo/v7+9957r7+/H99xHiH03Xff5eXl9fb2UqnUr776ytramtS/QCtB\nWR4PWGVUO1Cp1Pnz54eFhS1atKiqqqqysrKzszMoKEhxopeUlBgbGxsbG0MRHyfFAl9cLvfJ\nkyfz5s2D6UaaAHkmACRZc0ZZk5lMJoPBgLI8Toozub29/dGjR8pn8m+//fbHH38YGBhER0cP\nm56nr69vbm5ORrxaCcqFGtFotJCQkJqaGg6H09raumDBAgqFghDCMMzf359CoWRlZZWVlc2e\nPTs2Nhb/J9999x2Tyfzggw+mTZsWFBREavjaCsryeEBDONEJBIL+/n4DAwMqlUqlUhkMxoIF\nCxQnemBgIIVCuXHjxtGjR8vLy5cuXTrsigheSSKRXL9+PSMjo7S0tLe3d/r06SwWC78uVldX\nw6LPajEyyTQaTXH/AXlWC0gyYfCybGRkBDVZQ/r7+9PT00+fPn3lyhV8HQgbGxv8TL57925l\nZaWBgYFQKPz1118vXbqEENq8efOw4UHwSnDtUzuJRDIwMIDPVHxRT4i7fv16c3PzX//6Vycn\nJ4RQVlZWTk6Oh4fH+vXrYfd51UBZHieYMjpxdXd3p6Wl3blzx9zcPCkpSXn+gGIxJTc3t2nT\nphUUFCCEFBMPwOh1dHQcPHiwra1NccTKymrXrl3u7u6wLIG6vCTJCJZ/UBNIMjFeVJahJqtR\ne3t7QkLC48ePEUL6+voDAwM0Gu2jjz4KCwtTnMmKLxsbG2/cuHH58uXkxauV4NqndlKp9PDh\nw11dXQcOHGCxWPjBF80dzc/PP378uJub29tvv11eXp6ZmYkQOnToEHSDKoCyrBYwQjhBdXR0\n7N69u6GhwdjYODIy0tnZWXnvVwaDERIS0tjYWFdX9+DBAwqFsmnTpmHLgoFXwrcD6ujosLGx\nWbduXWBg4ODgYGtra2Fh4cyZM+3t7WFz2PF7eZKtrKxgE97xgyQT4yVlGWqyuohEoj179jx6\n9MjZ2TkxMTEmJqa7u7uxsfHOnTsLFy6cOnUq7D4/fnDt05Dy8vLKysqqqqqFCxe+fJzQwcHh\n3r17dXV1BQUFDQ0NCKFNmzaFhoaS/AdoISjL6gIN4UQkFovj4uIePXrk4eGRlJQUEBCg3A3i\n9PT0Fi9ebG9vb29vHxMTExwcTEqo2kIikfz73/92cHAwNDRUHDx37hyHw3Fzc/v88899fHzc\n3NyWLl1Kp9PZbHZZWdny5ctNTEwU10UXFxdbW1sS/4SJT7UkMxgM5XYF8vxykGSyvLIsQ01W\ni59//rm4uHjGjBnJycmWlpbZ2dk//PADQmjz5s2BgYFI6VW3e/fuDQ4OKr8gBEaCax9hMAwL\nCgrq6OgYTU9IoVAWLlxIo9GGhoacnJxiYmKWLFlC9l+gfaAsqxE0hBNRbm7u9evXra2tk5OT\njY2N8YMcDic3N5fH4zk5OSneTra3t/fx8TE1NSU13olOJpMdOXLkxo0btbW1K1euVNw9HDt2\nTCwWx8fHW1lZKb7s5eXF4/EaGhooFIqfnx9+8zF16tTFixeTFL52GE+S0f+7yYM8vxwkmUSj\nKctQk8fv7Nmz3d3d//jHPywtLXNycpTX5UcI5ebm2traGhkZwRDWaMC1j2Bj6gmpVKq3t/fy\n5csXLVpkY2NDduxaCcqyGlFe/RVAuPv37yOEVq9ejT/q4HK5cXFx+/bt+89//pOampqQkABv\nfo7J1atXb9++zWKxlF+HkMvlT58+RQjZ29sP+/6qVasQQmw2G//VzMxs9erVBMarlcaZZAR5\nHgVIMomgLBNDKBRaWVk5Ojrm5uaeOHFCuRvs6+tLS0vDt3fDdxp99PxyAAAgAElEQVS0tbXN\nz8//8ssvIfnPBdc+4lEolO3bt4eGhjY3N+/btw9PNUKIyWQmJiZ6enqWlpYePnxYKpWSG6du\ngLKsRtAQTiBcLrepqQkhNH36dIQQh8Npa2u7ePHitm3b5HL5sWPHLl68aG1tfffu3cbGRrKD\n1Sa///47Qmjbtm1OTk5cLvfOnTsIIQzD8GdyI5PJZDIRQs+ePSM8Ui0GSSYAJJl4UJYJZm1t\n3dvbe/Xq1a+//lq5G0QInT9/XiwW29nZ4b8qesLi4uKOjg7yQp64oGIQTCAQpKSkbN68ua6u\nDiEEPaEmKGoygrKsVtAQThQikSg+Pv4///kPQigyMtLT07O8vPzDDz/Mysr629/+lpSU5OTk\nxGQy8SWqZDIZ2fFqE/zREZ1O53K58fHx//znP6urqxFCK1asQAidOXNGLBYrf7+wsBAhNGPG\nDDKC1VaQZAJAkgkGZVlD6uvrFU/uuVzu/v37e3t78V9DQ0NFItGZM2eGdYM5OTl5eXlMJvO1\n115T/HfwnvDgwYPTpk0j+E/QClAxiMTn83fs2PH7779TKJSwsLB169ZZWVm9pCcsLi4mN2Bt\npFyTEZRltYJ3CCcKGo1269atu3fvhoeHs1isJUuWuLq6LliwICYmxsvLC5/skZmZWVBQYGZm\n9re//U15QxvwcmZmZjdv3iwvLy8oKBAIBD4+Pq+//jqNRnN1dWWz2U1NTbW1tb6+voaGhnK5\nPCsr6+LFixiGxcbGWlpakh271oAkEwCSTDAoy5rAZrMTEhLa29uDgoJ4PF58fHxra+vAwMDc\nuXMRQjNmzKiqquLz+ba2ttHR0fr6+iKR6NKlS9988w1CaPv27Z6ensr/Ndh9/iWgYhApJSWl\noaHBw8PjyJEjAQEBfn5+4eHhPB6Pw+GMfJ/QxsYGXs5UgXJNZjKZNBoNyrK6QEM4gTAYjKKi\nIiMjIy8vLwqFYmtra2dnR6fTEUJyufznn38+f/48Qig2NtbR0ZHcULXLtGnThoaGqqqqRCKR\nh4fHZ599xmAwEEIUCiUoKIjD4TQ0NGRmZhYXF//www9FRUUIoejo6JCQELID1yaQZAJAkokH\nZVntWCwWm82urKx88ODB5cuXBQKBr6/vtm3b8K2iMQwLDAzkcDh//vnnr7/+ev369e+///7u\n3bsYhkVHR69cuZLs8LUJVAzCSKXSlJQUmUyWmJhoYWGBH6RSqcHBweXl5c3NzcN6Qnw/eqAC\n5ZqMEIKyrC7QEE4g06dPz83NbW1tjYqKUl4zrbKy8quvvsrLy8MwbNOmTeHh4SQGqY3a29tP\nnTolEokQQoODg3PmzDEzM8M/YjKZYWFhYrG4tbW1q6tLJBKZm5tv3boVbjvGCpJMAEgy8aAs\nqx2DwViwYEFlZWVNTY1IJPL19d23bx/eqODwk1kul3O53K6uLplM5uvru2PHDmhUxgoqBmEk\nEkl6ejqNRtuyZYvycQqFwmQyb9++LRAIlHtCoLIX1WQEZXl8MFiBZ0K5dOnSpUuXEhIS5syZ\ngx/p6en55JNPOjs7ra2t/8//+T+zZs0iN0Jt9OzZs4SEBCaTOWvWrG+//dbIyOjAgQPDns+J\nRKK2tjY6ne7g4AArmKsAkkwASDIpoCyrXWdn5+7duwUCAUIoNDR0x44dzz1X5XJ5X1+fvr4+\n/uwfjBVUDCK99957HR0dx48fHzYqxeFw9u3bN3fu3LKysg8//BBa7vEbWZMRlOVxgxFC0nC5\n3NraWltbW+USbGdnl5GR8fTp09DQUPwIk8kMDg729PT84IMPYKca1dDp9IULF4aFhfn6+hoY\nGNy5c6eoqGj27NmKZ6UIIRqNZmFhYWpqCldE1UCSCQBJ1jQoy8TQ09OrqamxtLRksVhVVVWd\nnZ3P3V8ewzAGg4EvDgFUABWDSBKJpKqqqq2tLSwsTPm9tatXrzY2Nn722Wfe3t5hYWHkBaiV\nRlmTEZTlcYOGkBw9PT27du3Ky8u7fv26RCKxs7PDZxEwmcz29vbi4uKlS5caGhriXzYwMLCz\ns4NiPR50Oh1/QcXDw+NF10UwTpBkAkCSNQfKMjEEAoFIJFq2bFlYWNiiRYuqqqoqKyuH9YQl\nJSXGxsbK80iBaqBiEMbNzY3NZtfX1zc1Nc2aNQvfw+PatWuXLl0yNTV96623Rm78CF5uTDUZ\nQVkeH2gIycFkMufOnYth2P3798vKyjIzM588eWJtbW1iYjJlypScnBwGg+Hn50d2mLoJrosE\ngCQTAJKsXlCWNa27uzslJeXrr7++devW/PnzTUxM8PcJFT1hYGAghUK5cePG0aNHy8vLly5d\nijczQC2gYqiLRCK5fv16RkZGaWlpb2/v9OnTaTSaYqmeurq6rKysioqKH3/8saCgACG0ZcsW\nFxcXsqPWPlCTiQQNIQkEAkF/f7+1tXVAQEBkZKSVldWjR4/Ky8t/++23uro6e3v7R48eVVdX\nr1mzBlbL1RC4LhIAkkwASLK6QFnWtI6Ojt27dzc0NBgbG0dGRjo7O+O75Cn3hPhKM+np6XK5\nfNWqVfAWkNpBxRi/jo6OuLi4vLy81tbWlpaW0tLSwsJCd3d3S0tLxVI9zc3NnZ2dT58+NTAw\n2Lx5M7w3qAKoyQSDhpBQys9H582bx2KxaDSai4tLeHj47Nmzh4aG2Gw2vl/QwMCAg4MDTDDQ\nHMV10draetjGVkBdIMnjxOVyHz9+/PJt1iDJ4wRlmQBisTguLu7Ro0ceHh5JSUkBAQF4N4hj\nMBghISGNjY11dXUPHjygUCibNm164403SAxYh0HFGA+hULhnz56Ojg4bG5t169YFBgYODg62\ntrYWFhbOnDnTysqKRqP5+/uvWbNmzpw5y5Yti46OhiSPFdRkUsAqo8TBnyp1dXWZmJisWbNm\n8eLFI/d+FQqFeXl52dnZjx8/9vb2TkpKIiXUyeP+/fvu7u5kR6HjIMmqEYlE7733nre3965d\nu175ZUiyaqAsE+PatWsnT560trY+duyYohXkcDgcDsfS0nLlypVUKlUulxcVFbW1tQUHB8Pu\nYZoGFUM1J0+evHbtmpub28GDB/G3BBFCP/3007fffmtsbHzy5EkjIyNyI9R2UJPJAiOEBHn5\n81EFJpPp5eUVFRUlEAhu3749b948mNGhUSMLDVA7SLJqaDTarVu37t69Gx4errjzeBFIsgqg\nLBMmKyurtbV1/fr1Pj4+CCEul5ucnPzDDz/grwbV1dUtWbIEwzB7e3sfHx9TU1Oy49V9UDFU\nc+zYMbFYHB8fb2VlpTjo5eXF4/EaGhooFAq80jYeUJNJBPNuCfL7779zuVxra+vPPvtMceJy\nOJxvv/32t99+k0qlyl/GMGzFihUIodzcXBJiBQBMDFFRURKJJC8vj+xAdBOUZcJMnz4dIcTh\ncNra2i5evLht2za5XH7s2LGLFy9aW1vfvXu3sbGR7BgBeAW5XP706VOE0Mg5iqtWrUIIsdls\nEsLSIVCTSQTrdxHk/v37CKHVq1fjTzu4XO6JEydqamqoVKpUKi0qKjp48KDyUrn4rIN79+6R\nFTAAgHQLFy48d+5cdnb2X/7yF1hKW+2gLBMmMjKyrKysvLy8vLzcyMjob3/7W0REBIZhcrkc\n32ZQJpORHSMAr4BhmI2NTXt7e2Nj48yZM5U/widxPHv2jKTQdATUZBLBCCFBxvR8VCaTnT9/\nHiFkbW1NVsBaRCQSXbp06cMPPywtLSU7FgDUiUajhYeHP378uKKiguxYdBCUZcIwmcykpKS9\ne/d++umnp06dWrVqFX5Xl5mZyePxzMzMXF1dyY4RgFfDh6TOnDkjFouVjxcWFiKEZsyYQU5Y\nugJqMolghJAgY3o+2tzcXFJSYmBg8M4775AXsnbo6Oj4xz/+wePxqFTq77//PmvWLHzfUqBG\nEomkoKCgtrYWwzBPT89FixbBhtGawOVy29ra5s2bp7yIdkRExI8//njt2rU5c+aQGJtOgrJM\nJCqVGhgYqPhVLpf//PPPFy5cQAht3rwZTzgYE3xRQJg7oDkjr31r1qwpKipqbGzcv3//9u3b\nrays5HJ5VlbWlStXMAxbu3Yt2SFrN6jJJIJVRokjlUorKiqkUqmfn5/iNdmMjIxTp06ZmZmd\nPXtW+YpYWlpqamrq5uZGUrDaYXBw8O9//3t7e7uLi8uuXbtsbGye+zUej2dra0twbDqjo6Pj\n4MGDbW1tiiNWVla7du0auUId5Hk8enp6/v73vwsEAisrq1WrVq1YsYLFYuEfffHFFwUFBadO\nnVJexgCoBZRlUlRWVv700093797FMGzjxo2vv/462RFpmSdPnqSmprLZbAaDERoaumHDBkW5\nUAY1eTxedO2ztrbev39/S0sLhUKxt7cXCoUCgQAhFB0dDQ3h+EFNJgusMkocCoVia2trZ2dH\np9PR/3s+io93x8bGDltl29bW1sLCgowwtcmVK1du3bplZ2d35MiRF60xVVBQkJCQYGhoCEts\nq+CVey4pvgl5Hg8ul/v06dMVK1ZgGIavu5iZmfnkyRNra2sTE5MpU6bk5OQwGAxYv07toCwT\nr6en5/Dhwy0tLdbW1p988snixYvJjkjLCASCjz/+uKmpSS6XDw0NNTU1FRUVzZ07d1hPCDV5\nPF5y7QsICPjrX/8qFotbW1u7urpEIpG5ufnWrVth93m1gJpMFpgySg7l56ObNm0KCQkhOyKt\nVFRUhBDasGHDSxbl7+rqkslk+MpgYKwuXrz4+PFj5T2XIiMj8T2XDh8+rLznEuRZZT09PQkJ\nCYODg8nJyVu2bHnnnXcKCwuvXbuWk5OTk5Pj5+cXFRXl7u6el5f31ltvwcw6zYGyTAxTU9Ok\npKSGhobg4GCY7qiC77//vqury9XV9YMPPmCxWJcvX87Pz4+Li0tKSlJ+mQpq8ni88tr37rvv\nvv32221tbXQ63cHBAc5kTYCaTCQYISQBPB9Vl/T09IGBgU2bNhkaGg77KC8vr6ury9bW1svL\ny8/Pb8mSJaREqO1Gv+cS5Fllp06dqqmpcXd3X7VqFY1Go9FoLi4u4eHhs2fPHhoaYrPZBQUF\nAoFgYGDAwcFh5HLnQC2gLBPJwMDAzs4O7qHHis/n6+vrnzp1Sl9f/8iRI9bW1iwWa968eQih\n0tJSfEM2xTgh1OTxGM21j0ajWVhYmJqawpmsCVCTCQYNIQmYTGZwcLCnp+cHH3zwotfewGgU\nFxfz+Xx/f/9haZTL5ampqRkZGatXr9bT05syZQpZEWo1uVz+7bffIoRiYmKGDUyZmprm5+eL\nRKLw8HDFQcjzWOG3dydOnDAxMTl8+PCwgW5LS8vg4ODw8HAjI6P29vb+/n6hULh06VKyotVt\nUJbBBMfj8Xbv3t3W1vbo0aNly5YFBAQoPvLx8UHP6wmhJqtmrNc+oAlQkwkG206Qw9LScv78\n+fBUaZzCwsIQQhcuXBi2APTVq1fv37/v6Oj43PfswSjhey4hhEbuGQ17Lo2VRCLp7+9XPsLj\n8Xbu3Pnll19SKJQVK1bo6+s/9x+amJisW7fu1KlTK1eurKmpaWlpISTeyQjKMpjIDAwMDAwM\n8vPzHz9+PLJcvPnmm2+++Safz4+Li+vs7CQlQm3H5XLxDX7g2jdBQE0mEjSEQIutXLnSzc2t\nubk5ISGBx+MhhEQi0cWLF8+dO4dhGKxEPH6w55JaSKXS5OTkvXv3Kr/Po7i96+rqeuWbgRiG\n4f9f5ObmajZWAMCEZGZmlpSUhK8aWlBQIJVKh31B0ROWlJSQEaB2k8vliYmJJ06cGBwcRHDt\nA5MPTBkFWoxCocybN4/D4TQ0NGRlZWVnZ1+6dKm6uhrDsOjoaHz8EIyHq6srm81uamqqra31\n9fU1NDTE91y6ePEihmGxsbGWlpZkx6gdysvLKysrq6qqFi5ciG+Vqa+vv2DBgrKysr6+vu7u\n7pUrVypvPzjS0NBQRkaGRCKJiIggKmoAXobP56empn7zzTelpaUsFuu5OxzweDxjY2PiY9NJ\niqLx559/dnV1BQYGDhs88fHx8fHxWbRoEVkRai8Mw/r7+0tKSigUiq+vL1z7wGQDDSHQbkwm\nE3/VmMvlCoVCmUzm4uLy0UcfwfvHakGhUIKCgvCWOzMzs7i4+IcffsAXd42OjoYlv0YJw7Cg\noKCOjo4X9YRcLvfJkyfz5s170dwYmUz29ddft7W1eXp6QtrBRNDT07Nz58579+719fV1dnbe\nvHmzp6cnICBA+RyGnQ/GSSKRXL9+PSMjo7S0tLe3d/r06SwWCy8aHA6Hz+eP7Alht1KVubu7\nFxQUVFVVhYaGGhsbw7UPTCrQEI7LaJ6PAk2j0Wh+fn5r164NDw9fv359VFQUvH+sRkwmMyws\nDPZcGqdX9oTV1dXPvb3DNTU1nT9/Xl9f/5NPPoHxlpeDskyMtLS02tpaZ2fn2NjYOXPmNDY2\nVldXd3Z2BgUFKc7hioqKqqoqd3d3fNUTMCYdHR1xcXF5eXmtra0tLS2lpaWFhYXu7u7Tp09/\neU8IRq+rq4vBYOCzM6hUqoWFxc2bN588eRISEgLXPnWBmqwVMLlcTnYM2qqnp2f79u1dXV2K\nIxEREe+9996weV88Hg/OfqADRCIR7Lk0TjKZ7IsvvigsLHR2dj5w4IBi0SOBQBAXF8fj8ZYt\nWxYbG/vc9JaWlpqamrq5uREbspaBskyYjRs30un048ePGxgYIISEQuHevXsfPnwYFha2fft2\nxTlcV1fn5eVFaqRaSSgU7ty58/HjxzY2NitXrtTT0ysuLq6pqdHT00tMTJw5c+ZoigZ4OS6X\nGx8fb2Bg8O67786ZMwc/uHfv3urq6sTExNmzZ+NH4No3HqOsyQjKMtlghFB1o3k+ChNmgM6A\nPZfGQyAQpKWlnTp1is/nP3v2TCAQPHec8CWP/G1tbS0sLMiIXZtAWSbML7/8EhkZqdiJlMlk\nLliwgM1mczgc5YTDzgeqOXfuHIfDcXNz+/zzz318fNzc3JYuXUqn09lsdllZ2fLly01MTBRF\nw8XFBe6kVfDLL79UVlY+e/asoKCgsbHR1dXVyMjIxcUlJyenoaEhPDwcb1rg2jceo6nJCMry\nBAANoepOnDhhbGx89OhRBwcHR0fHsLCwkddCmDADAODz+R9//HFtbS2LxQoLC/Py8uLz+Vwu\n90U9IdzeqQzKskYJBILTp09/99135eXlvb293t7eyndvL+oJgQpGszE6XjSmTp0K78yrxtXV\nNT8/38rK6rXXXrtx40ZmZubAwEBgYODAwEB5ebmhoaGHhwfZMWq90dRkBGV5AoCGUHWjeT7q\n5eXl5+e3ZMkSckMFAJAoJSWloaHBw8PjyJEjAQEBfn5+4eHhPB6Pw+GM7Anh9m48oCxrjkAg\n2LFjR01NjVAobG9vHxgYEAqFy5cvV576pZzwGTNm2NnZkRiw9hr9xuj6+vowjVxlenp6hoaG\neXl5CxcufP/997u7u69du/b7778HBgY2NTVxOJxly5a9aIdYMEqjnEoAZZl00BCOjQrPR2HC\nDACTmVQqTUlJkclkiYmJijmfVCo1ODi4vLy8ubl5WE8It3djBWVZvSQSycDAAH5CKktNTa2r\nq3Nyctq6devs2bMbGhra29tHbn6AJ9za2hqea6gMw7DCwsK+vr7Zs2cPWzW0r68vOzubwWBE\nRUWRFZ5W43K5JSUlTk5O+Enr7OxcXl5+586d1157LTQ0dPbs2XV1dfn5+UNDQ0NDQ729vUFB\nQWSHrH1Um0oAZZlc0BCOATwfJQCsRgV0jEQiSU9Pp9FoW7ZsUT5OoVCYTObt27eHvU8IxgTK\nsnpJJJLk5OSsrCzlE5LP5+vr66empuJTvxwdHZ2cnEJDQ1/01iuTyXR1dSXpL9ARYrG4qqrq\n4cOHixcvVh4kvHLlSn19vY+PD+x8oIKhoaG4uLj8/Pzy8nIHBwdLS0sMwxwcHLKysgYHBwMC\nAiwtLVeuXGlubl5fXz84OBgUFAQzGMcKarKWgoZwDOD5qKaNZmMrBDsdjw+03ASjUqkFBQW9\nvb3BwcGmpqbKHwmFwhs3bsydO7empsba2trFxYWsILUXlGU1wrvB0tLSoaEhxenK4/F2797d\n1tb2+PHjiIgIxdSv0ayEBEZJJBL9+OOPqampU6ZMwWsybIyuCVQqNSQkpK+vr6KiIi8vr6Oj\nw93d3c7OrrOzMz8/f8GCBSYmJhiGubi4rFixwtnZefXq1WSHrH2gJmspaAhHBZ6PEgNWCNS0\nUbbcCLputZJIJFVVVW1tbWFhYcpPSa9evdrY2PjZZ595e3uHhYWRF6BWgrKsXopukMViHTx4\ncMaMGfhxqVR68+ZNDofz7NmzuXPnKhde6AnVAt9vsLi4uL+/XywWz5s3j0qlUigU2BhdE5hM\n5rx58+bMmfPgwYOKiors7GwMw6KionJzcx88eKB4h01PT8/e3p7cULUO1GStBg3hq8HzUcLA\nCoGaBgtAk8LNzY3NZtfX1zc1Nc2aNYvJZCKErl27dunSJVNT07feegvuPMYKyrJ6DesGnZyc\nFB8pUtrX1zdy6hesjjtOg4ODe/bsaW9vd3FxSUpKioiIUEwQhY3RNcfCwmL58uVTp06tq6sr\nKSkpLS2dPn363bt3HR0dYfqiaqAmaztoCF8Nno8SBlYI1DRYAJoUiof9dXV1WVlZFRUVP/74\nY0FBAUJoy5YtMFNUBVCW1UjRDdLp9MOHDzs7Ow/7giKlDx8+HDn1C1bHHY8rV67cunXLzs7u\nyJEjZmZmwz6l0Wj+/v5r1qwJCgqKjIzcuHGjg4MDKXHqHgzDnJycwsPDJRJJZWXlo0ePEEIN\nDQ2rV68euWc6eCWoydoOGsJXg+ejGgUrBBIJFoAmi+Jhf3Nzc2dn59OnTw0MDDZv3gwP+1UD\nZVldFN0gQkgmkxkZGSnqg7KX39LB6rgqO3XqlEAg2Lp1q6Oj44u+Axujaw6dTp89e3ZISEhH\nR0dHR8eaNWt8fX3JDkorQU3WdtAQjgo8H9UQWI2KALAA9ASheNg/Z86cZcuWRUdHe3p6kh2U\nFoOyPH7KM0U3bNhQU1NTU1MzNDSkQk8IVJOenj4wMLBp0yZDQ8NhH+Xl5XV1dcGtMwGMjY3D\nwsLmzZu3aNEismPRYlCTtRo0hKMFz0c1AVaj0jRouScaGo02ZcqUKVOm0Gg0smPRelCWx2PY\ne4PBwcGurq5FRUXQExKpuLiYz+f7+/vb2NgoH5fL5ampqRkZGatXr4YNaYgxcsouGCuoydoL\nGsIxgGuhykbudAyrUREDWm6g26Asqyw3N/fKlSvKq8jY2NiMqSeEqV/jNzQ0VF5e3tbWtmTJ\nEuX9Bq9evZqfn+/k5AQb0APtAjVZS0FDODZwoqtg5E7HsBqVJgzruqHlBpME1A3VODs7i8Xi\n6Oho5TVFR98TwtQvtXBycqqsrGxqaqqpqfH09DQ2NhaJRJcvX/7uu+8wDNu2bZu1tTXZMQIw\nNlCTtRE0hGMGz0fH5Lk7HcNqVGo3rOuGlltz6uvrLSws8Lxxudx//etfAQEBDAaD7LgmNSjL\nKsAwbNasWSOnyY2yJ4SpX2pBoVDmzZuH7zeYlZWVnZ196dKl6upqDMOio6Nhe1KgpaAmax1o\nCFUBz0dH6UU7HcNqVOo1suuGlltD2Gx2QkJCe3t7UFAQj8eLj49vbW0dGBiYO3cu2aFNdlCW\n1Wg0PSFQFyaTiZ+0XC5XKBTKZDIXF5ePPvoIzuRRgod0ExPUZO0CDaGK4PnoK71kp2MEq1Gp\nz3O7bmi5NYTFYrHZ7MrKygcPHly+fFkgEPj6+m7btu25K8TweDxjY2Pig5y0oCyrEfSERKLR\naH5+fmvXrg0PD1+/fn1UVNSwNWbAi8BDuokMarIWgYYQaMQrdzpGsBqVOryk64aWWxMYDMaC\nBQsqKytrampEIpGvr+++ffue+yi6oKAgISHB0NBQeXgWAC0CPSHBMAzT19eHNUXHBB7SAaAW\nlFd/BYAxUt7peGhoqKio6EXfNDMzS0pKsrW1zc/P//LLL+VyOYFhaj3lrvvAgQPDxmDRq9Jr\nZma2evVqAuPVSlKptLS0VDl1/f39PT09+M9mZmYvunvr6uqSyWRPnz4lIkqdUF9fr8gzl8vd\nv39/b28vuSEBf3//+Ph4Op1Op9PJjgWA5zAyMjpw4MCMGTPu3LmDd4MveUj34YcfZmRkEB8k\nABMfjBACNRvTTscIXmlTlXLXLZPJjIyMYN8wtSsoKEhKSrp27Zpy6vT09GpqaiwtLVksVlVV\nVWdnZ1BQ0Misenl5+fn5LVmyhIzAtQ/M+5qwbGxsFi1aFBwcTHYgADyfQCDIzMwUiUQIIQ8P\nj4ULFz73MldRUVFVVeXu7u7j40N4jABMdJO6IeTz+ampqd988w3evTz3TSqYYDAmKux0jOCV\ntrEbU9cNPaEKpFJpamrqhQsX+vv7g4OD/+u//svCwgL/iEqlzp8/PywsbNGiRVVVVZWVlcN6\nwpKSEmNjYwaDMWXKFPL+Ai0D874mMiMjI7JDAOCF4CGdRkkkkuvXr2dkZJSWlvb29k6fPh3K\nsk6avA1hT0/Pzp07792719fX19nZefPmzZ6enoCAAOUiAm8BjZVqOx0jeKVtLFTouqHlHquU\nlJT8/Hwmk7l9+/a3337b3Nxc+VMqlUqlUvH3CRU9YWBgIIVCuXHjxtGjR8vLy5cuXfrcqyZ4\nLng5EwCgGnhIpzkdHR1xcXF5eXmtra0tLS2lpaWFhYXu7u6WlpbKX4OyrAMmb0OYlpZWW1vr\n7OwcGxs7Z86cxsbG6urqYUUEJhiMlco7HSNYRWbUVOu6oeUevdu3b1+4cIFGox08eDAgIOAl\n31TuCfFmJj09XS6Xr1q1atasWYQFrI2kUml5efm0adMU9RbmfQHdMMoRFaBG8JBOE4RC4Z49\nezo6OmxsbNatWxcYGDg4ONja2lpYWDhz5kwrKyvFN6Es63O7pLEAAA3fSURBVIDJ2xCeOHHC\n2Nj46NGjDg4Ojo6OYWFhbDabw+Eo94QwwWCsxrPTMRgllbtuaLlH6eTJk48fP16/fv3I5rmt\nre3evXtisVhxkjMYjJCQkMbGxrq6ugcPHlAolE2bNr3xxhuER61N4OVMoKtGOaIC8+s0BB7S\nqdG5c+c4HI6bm9vnn3/u4+Pj5ua2dOlSOp3OZrPLysqWL1+umMQBZVkHTN6G8JdffomMjFTc\nNzOZzAULFozsCWGCgbpAT6gu0HVr2tmzZ8Vi8bvvvqs8U7S+vj45OfnChQt//PFHdnZ2Q0PD\n3Llz8SVG9fT0Fi9ebG9vb29vHxMTA8tvvAS8nAl02ChHVGB+nUbBQzp1OXbsmFgsjo+PVx4M\n9PLy4vF4DQ0NFApF+TYDyrK2m1wNoUAgOH369HfffVdeXt7b2+vt7a1cjl/UEwJ1gY5F0yDD\nanH9+vXe3l43Nzd8/0yRSHTu3LkTJ050dXXZ2tp6eXnx+fy2trampibFA1EMw+zt7X18fExN\nTUmNfaKDlzOBDhvliArMr9M0eEg3fnK5/Ntvv0UIxcTEUKlU5Y9MTU3z8/NFIlF4eDhJ0QH1\nm0QNoUAg2LFjR01NjVAobG9vHxgYEAqFy5cvp1D+/2aMyj3hjBkz7OzsSAxYJ0HHommQYbWo\nqKiorq6Wy+X37t07duxYVVWViYnJhx9+uHXrVnwJ/vz8/Pb29pkzZ06dOpXsYLUGvJwJdNso\nR1Rgfh0B4CHdKAmFwqqqqidPnlhZWSnfD2MYVlhY2NfXN3v2bOXzGSHU19eXnZ3NYDCioqII\njxdoim42hBKJZGBgYNiG0ampqXV1dU5OTlu3bp09e3ZDQ0N7e3tXV9ewVfjxntDa2hrW3tAQ\nRcfi4+MDz0c1AXrCcXJ1de3u7r5//351dTWHwxkYGFi0aNG+ffs8PDzwL5iYmNy9e/fRo0fO\nzs4w6Wv04OVMoMPGNKIC8+sA6WQy2cWLF5OTkwsLCwsKCm7duhUQEKC8x4xYLK6qqnr48OHi\nxYuVT+krV67U19f7+PiEhISQETjQCB2ceIMvyt/V1XXgwAEWi4UQ4vP5FhYWVVVVVlZWSUlJ\nBgYGCKHZs2fHx8fn5+cjhGJjY5V7QhMTk4iICLLinwz8/f2/+uorGxsbsgPRWf7+/vHx8YcO\nHaLT6WTHon0wDNu6dev8+fMrKytZLNb8+fOHTRaQSCQPHz5ECA17bgpeDk9aYGCg8sH6+vrT\np083NDTgvwYEBHz88ceGhoYIIUNDwwMHDhQVFbW1tQUHBzs6OhIeMgDDCYXCe/fuMRgMX19f\n5btkDMNsbGza29sbGxtnzpyp/E+YTCZC6NmzZ0THCsALSCSSzz///Pbt2wgha2vr/v5+Ho93\n8ODBY8eOKW4b1qxZU1RU1NjYuH///u3bt1tZWcnl8qysrCtXrmAYtnbtWlL/AqBmutYQKm/R\nxufzWSwWj8eLi4sLCAigUqnh4eF4N4gQMjc3T0pKiouLe25PCDQNukFNg657nPz9/f39/Z/7\n0Y8//tjT02NmZvaiL4DnMjU17evra2lpUbyceeHChczMTLlcbmtrO3369KqqqoqKiuTk5AMH\nDuD/BMOwhQsXkho1AP9LJpNdunTpl19+GRoaQgjZ2tomJCQo19gVK1acP3/+zJkzycnJynOU\nCgsLEUIzZswgPmYARlLcKhsYGOzYsSMwMPDZs2d79+5tamqqrq5WzOen0WgJCQn79++vra3d\nsmWLvb29UCgUCAQIoejoaMWUGaAbdGrK6LANu/HiK5VKb968yeFwnj17NnfuXOX5Xcq7dSuv\nfg6AblCe+wHU5dq1a+fPn0cI7dixw8HBgexwtAy8nAm0lEQiOXLkSHZ2tkwms7a2xjCMz+dz\nOJwVK1YoxgldXV3ZbHZTU1Ntba2vr6+hoSE+onLx4kUMw2JjY4dtPgEA8ZRvlQ8dOuTt7Y0Q\notPpVCq1pKQkNDR02rRpii8zmcywsDCxWNza2trV1SUSiczNzbdu3bpy5Ury/gKgEZhcLic7\nBvUY1g0qb9EmEAji4uJ4PJ6zs/PRo0eHTe5XfLp3795hc5kAAEBhcHDw9OnTOTk5CKGNGzf+\n5S9/ITsiLSOXy7/++uvc3Fz8VwzDQkJCYmJiTExMFN/Zt28fh8OJiYmB5QrAxPGSEZX9+/cr\nr5AkFAr379/f0tJCoVCGjajAFDsVSCSSgoKC2tpaDMM8PT0XLVqk2PtOgcfj2drakhKe1nnJ\nrfLJkyd///33RYsW1dTU4JsArV+/XjHQLRKJ2tra6HS6g4MDjJ3oJB0ZIVSc4nQ6/fDhw/h8\nJAXFSODDhw9HriKDfzp16lRYRQYA8FxSqTQrKys5Obm2tpbBYGzfvh1eM1YBhmGBgYHu7u4m\nJiZz5sx57733IiIi8NercBKJ5NtvvxWJRBEREdOnTycxVAAUYESFLB0dHXFxcXl5ea2trS0t\nLaWlpYWFhe7u7soDrbCp45jIZLJbt27xeDxDQ8OVK1caGxvjxysqKs6ePSuRSNrb201MTLhc\nbm1tLZvNDg0Nxbf5odFoFhYWpqam0A3qKl1oCBXFGiEkk8mMjIxGLqv48tmh+vr6bm5uhAYN\nANAeFArl5s2b1dXVwcHBu3fvhtVxx8PGxsbf39/b21t5YBD3ww8/lJeXm5mZvffee8OmcgBA\nipeMqOTk5Pz5558UCuXMmTO//fabQCDw9PSkUqk0Gs3f33/NmjVBQUGRkZEbN26EueUqEAqF\ne/bs6ejosLGxWbduXWBg4ODgYGtra2Fh4cyZMxULesGmjmNCoVDmz5/f2tra3NxcXFwcGBho\nbGxcXV2dlJQkkUhCQ0MPHTr02muvzZ07986dOx0dHQMDAy/fIgjoDK1vCJWL9YYNG2pqal60\n1D68MQgAUFlAQMCiRYtWrVqleKQK1AtezgQTEIyokOXcuXMcDsfNze3zzz/38fFxc3NbunQp\nnU5ns9llZWXLly/H547Cpo5jNawnNDAwOHbs2ODgYERERGxsLD5H1Nzc3Nzc/Pbt248ePXr9\n9dfJDhkQQbsbwmGP7oKDg1++/Rr0hAAAlUErqCGDg4P//ve/09PTEUIbN25csWIF2REB8L9g\nRIUsx44dE4vF8fHxyrv7eHl58Xi8hoYGCoWiuMeDTR3HSvmsLisrk0qlERER77//vvIt8dDQ\nUG5uLoVCgd1fJwkK2QGMS35+/rCJHPj2a3Q6/aeffsK3iB3GzMwsKSnJ1tY2Pz+/rKyM8JAB\nAAD8L6lUmpGRERMTk5OTw2AwPv74Y1iqB0w0NBptz549gYGB+BJ0OTk5Bw4cwEdUduzYge9l\n5eLi8u677yKE/vjjD7Lj1SZCofDOnTuVlZVSqVT5uFwuf/r0KULI3t5+2D9ZtWoVQojNZhMW\npE5SnNUIITqdHhkZOWyA5Pr16wghLy8vcuIDhNPuEUJnZ2exWBwdHa08rd/GxmY044SwigwA\nAJALXs4EWgFGVNROJpNdvHgxOTm5sLCwoKDg1q1bAQEBiq2SMAwrLCzs6+ubPXu28gghQqiv\nry87O5vBYMBCxOOkOKvb2tpu376Nj37jH924cePChQsYhm3btg32SpkktLshxDBs1qxZZmZm\nw46PpieEVWQAAIB08HIm0AqKu2cej0en0z/66KNhqyL99NNPjY2Nfn5+YWFhJMWoNUazqaNY\nLK6qqnr48OHixYuVl5i6cuVKfX29j49PSEgISeHrjufOiC4oKEhJSZHL5dHR0ZDkyUO7G8KX\neGVPCAAAYCKAVhBoBRhRUQt89YeSkhIDA4Pdu3e///77ERERVVVVDx488PT0VOzh4erqymaz\nm5qaamtrfX19DQ0N5XJ5VlbWxYsXMQyLjY2FPKvFsJ5QKpWmpaXJZLI333wTxronFZ1tCBH0\nhAAAAABQHxhRGafRb+pIoVCCgoI4HE5DQ0NmZmZxcfEPP/xQVFSEEII8q5fyWc3hcORy+Ztv\nvvnmm2+SHRcglC43hAh6QgAAAACoD4yoqGysmzoaGhqGhYWJxeLW1tauri6RSGRubr5169aV\nK1eS+FfoJOUZ0dANTk6YXC4nOwaNY7PZhw4dWrduHZziAAAAABgnRW+D/wr30KOhSJpivXf8\neEVFxYEDB2QyGZPJnDp16p9//imXy11cXJKSkphMJkJIJBK1tbXR6XQHBwfYLUxzJBLJ7du3\nYfR1cpoUDSFCqKOjw8bGhuwoAAAAAKALFO0NdIOjN7InrK6uxrfxCA0N/eCDDwwMDJqamhIT\nE4VCYWRk5JYtW8gOGYBJYbI0hAAAAAAAagQjKipQ7gnfeuut06dP45s6Km/jUVBQ8D//8z8m\nJiYXLlwgN1oAJgnt3pgeAAAAAIAUNBoNusGxUmyJLhAIvv7665HdIEIIn00qFovJCxOAyQUa\nQgAAAAAAQBBFT4gQotPpkZGRw94MvH79OkLIy8uLnPgAmHygIQQAAAAAAMRR9IRDQ0N79+7l\n8XiKj27cuPHbb79hGLZ+/XoSIwRgUoGGEAAAAAAAEEp57mhcXBzeEyo2ddy0aZOHhwfZMQIw\nWcCiMgAAAAAAgATKa8xERUV99913+KaOsHArAESChhAAAAAAAJADNnUEgHQwZRQAAAAAAJBD\neY0Z6AYBIAWMEAIAAAAAADLBpo4AkAgaQgAAAAAAAACYpGDKKAAAAAAAAABMUtAQAgAAAAAA\nAMAkBQ0hAAAAAAAAAExS0BACAAAAAAAAwCT1fwGRH9Kt41oziQAAAABJRU5ErkJggg==", - "text/plain": [ - "plot without title" - ] - }, - "metadata": { - "image/png": { - "height": 180, - "width": 600 - } - }, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Warning message:\n", - "“\u001b[1m\u001b[22mUsing \u001b[32msize\u001b[39m for a discrete variable is not advised.â€\n", - "Warning message:\n", - "“\u001b[1m\u001b[22mRemoved 3 rows containing missing values (`geom_point()`).â€\n", - "Warning message:\n", - "“\u001b[1m\u001b[22mUsing \u001b[32msize\u001b[39m for a discrete variable is not advised.â€\n", - "Warning message:\n", - "“\u001b[1m\u001b[22mRemoved 3 rows containing missing values (`geom_point()`).â€\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAAFoCAIAAADIFpV9AAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdeUBUVf/H8TMzzLDKLi6obJKpuKamCS7lvq+ZW+65ZGVaj2a5VeqvMm3T\nUjHLNtMy3DKXxEQfFRRwyRVRBMQVBERgYOb+/hifiRAF9cIdmPfrrztnztz7wW6H+XLvPUcl\nSZIAAAAAAFgftdIBAAAAAADKoCAEAAAAACtFQQgAAAAAVoqCEAAAAACsFAUhAAAAAFgpCkIA\nAAAAsFI2SgdQWGpqanR0tNIpAAAAAEAB1l4Qnj9/fuXKlcHBwUoHAQAAAIAytX79emsvCIUQ\nTz755CuvvKJ0CgAAAAAoU9u2beMZQgAAAACwUhSEAAAAAGClLO6W0Rs3bvz000/R0dHp6eku\nLi7169d/+eWX7e3tTe8ajcawsLDt27dfv37d09OzU6dO/fr1U6v/KWuL7QAAAAAAMLGsSikh\nIeG1116LiIioV69ev379nn766aSkpDt37pg7hIaGfvPNN35+fmPGjAkMDFyzZs2KFSsK7qHY\nDgAAAABQcklJSSqVqk+fPkoHKRUWdIXQaDR+9NFHlSpVmjdvXpUqVe7tkJiYuHXr1rZt206b\nNk0I0b17d61Wu23btq5du/r4+JSkAwAAAAClHD58eOnSpX/99VdKSopWq/X19e3cufOUKVO8\nvb2Vjma9LOgK4eHDhy9dujRixIgqVapkZ2fr9fpCHSIiIiRJ6tmzp7mlV69ekiTt3bu3hB0A\nAAAAlD1JkqZPn968efNvv/3Wy8tryJAhvXv3zsnJWbRo0RNPPPHLL78oHfBBvLy8IiIiFi5c\nqHSQUmFBVwiPHDmiUqkcHBxee+21CxcuqFSqevXqjRs3zt/f39QhLi5Oo9EEBASYP+Ln56fT\n6c6fP1/CDgAAAADK3nvvvffhhx/WrFnzl19+adGihbn922+/HT9+/AsvvLBz58727dsrmPAB\ndDpdBV633IKuEF6+fFmj0SxYsKB69epvvvnmiBEjLly4MHPmzCtXrpg6pKamuri4aDQa80dU\nKpWbm9vNmzdL2MHk1Vdf7f0/q1evLv2fDAAAALBeFy9efO+993Q63e+//16wGhRCjBgx4vPP\nPzcYDBMnTjQajQXfOnjw4PPPP1+9enVbW9tq1ap16tRp3bp1BTscOHCgf//+VatW1el01atX\nHzZs2OnTpwt2WLlyZZ8+ffz8/Ozt7V1dXdu2bbt+/fqCHWJjY1Uq1ciRIxMTE4cMGeLp6Wlv\nb9+8efPff/+9YLcinyEsduflhQUVhNnZ2fn5+fXr158+fXpISEi/fv1mzJhx586dX3/91dQh\nNzdXq9UW+pROp8vNzS1hB5OsrKzM/8nJySmdnwYAAACAEEKsXr06Pz//hRdeCAoKuvfdMWPG\n+Pr6njlz5q+//jI3fvXVV61bt960aVNwcPC0adO6d+9+7dq1ZcuWmTusXLkyODg4IiKiW7du\nU6dODQkJWb9+fbNmzQ4dOmTuM378+CtXrrRv337KlCn9+/c/ffr0888//+GHHxYKkJiY2Lx5\n8zNnzjz//PPdu3ePiYnp2bNnRETEg3+oEu7c8lnQLaO2trZCiIJXihs3buzm5nbixAlzh+zs\n7EKf0uv1dnZ2JexgsmrVKvN2VFTUli1bZPoJAAAAABS2b98+IUTnzp2LfFetVnfo0CE0NHT/\n/v2mWuDYsWOTJ092dXXdt29f3bp1zT2TkpJMG6dOnXr55Zc7duz422+/mReoO3bsWOvWrV96\n6aWjR4+aWhISEmrWrGn++J07d9q2bTt37txx48a5ubmZ23fv3v3OO++8++67KpVKCPH9998P\nHz78o48+CgkJecAPVcKdWz4LukLo4eEhhCj0z+fq6nr79m3Ttru7e3p6usFgML8rSVJaWprp\ngyXpAAAAAKCMpaSkCCFq1ap1vw6mty5fvmx6+eWXXxoMhrlz5xasBoUQNWrUMG0sW7YsLy9v\n5syZWVlZN/6nevXqzz333LFjxxISEkzdTAWbJEnp6elXr17NyMjo27dvdnZ2oat/tWrVmjNn\njqkaFEIMHTrUxcUlMjLywT9UCXdu+SzoCmFgYOCePXtu3LhhbpEk6ebNm66urqaXAQEBhw8f\njo+PDwwMNLVcuHBBr9ebZ5EptgMAAACAMiZJkhDCXHHdj7nDwYMHhRBdu3a9X88DBw4IIdq2\nbVvkuykpKaY152JiYubOnRseHp6ZmVmwQ3JycsGXTZo0sbH5pyxSqVQ1atQ4d+7cg9OWcOeW\nz4IKwlatWq1evfqPP/5o06aNWq0WQuzbty8jI+PZZ581dQgJCVm3bt3mzZunTp1qatm8ebNK\npTJfzC22AwAAAIAyVq1atdOnTyckJLRu3brIDpcuXTJ1M728deuWEOIBixOa5ozctGmT+X7R\ngkzXFaOjo4ODg+3s7CZOnNioUSPT3JO7du36+OOPC80wYr7+ZGZjY1PwrsN7lXznls+CCkJP\nT88XXnjh+++/nzlzZsuWLa9fv75t2zZPT8/+/fubOtSqVatbt25bt27Ny8sLCgo6efJkRERE\nly5dfH19S9gBAAAAQBkLDg4ODw/fvn37kCFD7n3XaDTu2rVLCGEuF00VWnJycu3atYvcoYuL\nixCiatWqzZs3v99BFy9enJ2dvWnTpg4dOpgbjxw58hg/RxntvIxZ0DOEQojnn3/+lVdeycrK\n+u677/bs2RMSEvLRRx+Z/nubjBs37sUXXzx//vyqVavOnj07fPjw8ePHF9xDsR0AAAAAlKWR\nI0dqNJq1a9f+/fff9767atWqixcv1qlTx3wLaMuWLYUQ27Ztu98OTR3Wrl37gINevHjR3NNs\n9+7dD52+zHde1iTrFhkZOXv2bKVTAAAAABXZrFmzhBA1a9aMjIws2L5mzRpbW1uNRvPnn3+a\nG48dO6bRaNzd3U+dOlWwc2Jiomnj+PHjNjY2Wq224KckScrMzFy7dq1pe/jw4UKIDRs2mN/9\n4YcfTBXQkiVLTC0xMTFCiBEjRhRK26hRI41GU/C4QojevXubW0qyc0mSFi5c2Llz561btxb3\nz6OYrl27WtAtowAAAAAqpLlz52ZlZS1evPjpp59++umn69evr9frDx48eO7cOXt7+59++sk8\nb4gQokGDBp9//vnkyZMbN27cq1evwMDAmzdvHj58uFKlSuHh4UKIoKCg5cuXjx8/vkOHDp06\ndWrSpInBYDh9+vTu3bt9fX0HDRokhJg8efKPP/44ePDgQYMG+fj4xMbG/v777wMHDpRl+fgS\n7jw2Nnb79u19+/Z9/COWHgpCAAAAAKVLrVZ//PHHgwYNWrp06d69e2NiYrRara+v77Rp06ZM\nmWJeT8Js4sSJDRs2XLRo0Z49e8LCwjw9PRs2bDh27Fhzh9GjRzdt2nTx4sV79uwJDw93dHSs\nXr368OHDTdWgEKJFixa7du2aPXt2WFiYEKJZs2Y7duy4fPmyLAVhCXd+9uxZrVbbqVOnxz9i\n6VFJkqR0BiWZFqafN2+e0kEAAAAAVBypqamVK1eeMGHC0qVLlc5yX926dbOsSWUAAAAAoAII\nDw+3tbV95513lA5SDApCAAAAAJBZ//7979y5Y15c0WJREAIAAACAlaIgBAAAAAArRUEIAAAA\nAFaKghAAAAAArBQFIQAAAIByKSkpSaVS9enTR+kg5RgFIQAAAADF5OTkqArQaDSenp7PPffc\njz/+qHQ0q2CjdAAAAAAA1k6n040aNUoIkZeXFxcXt3v37t27dx8+fHjx4sUP+JSXl1dERISH\nh0dZxayAKAgBAAAAKMze3v6rr74yv/zjjz+6d+/+ySefvPrqq76+vvf7lE6nCw4OLot8FRe3\njAIAAACwLF26dGnatKkkSVFRUUKI2NhYlUo1cuTI8+fPv/DCC15eXmq1+uDBg/c+Q2juGRcX\n169fP3d3d2dn527dup09e1YIkZKSMnLkyCpVqtjb2wcHBx85cqTgQVeuXNmnTx8/Pz97e3tX\nV9e2bduuX7++YIciYyxdulSlUvXq1avQjyBJ0hNPPOHg4JCWllZa/0xy4AohAAAAAIsjSZIQ\nQqVSmVsSExOffvppT0/PLl26ZGVl2dnZ3e+zly5datWqVe3atYcMGXL69Olt27bFxsbu3bu3\nffv2np6e/fv3v3Tp0tatWzt27BgfH+/q6mr61Pjx41u0aNG+ffsqVapcu3Zty5Ytzz///Acf\nfPCf//yn4M4LxWjdunXz5s1///33xMTEmjVrmruFh4efO3duxIgRbm5uMv/TyIqCEAAAAIBl\n2bZtW0xMjEqlat68ublx9+7dkydP/uSTTzQajaklKSmpyI+Hh4fPmzdv9uzZppfjxo0LDQ1t\n0aLFiy++uGTJElOROWvWrPfff3/58uXTp083dUtISChY0d25c6dt27Zz584dN25cwaLu3hiT\nJk0aNWrUqlWr5s6da+62fPlyIcT48eMf99+ilHHLKAAAAACFZWdnT5gwYcKECWPGjGnbtm33\n7t2NRuOUKVN8fHzMfTw9PT/44ANzGfYAPj4+b7/9tvnlyJEjTRsLFy40X3I0NcbGxpq7mapB\nSZLS09OvXr2akZHRt2/f7OzsiIiIgju/N8agQYPc3d1DQ0MNBoOp5dq1a2FhYQ0aNGjVqtVD\n/TuUPa4QAgAAAFCYXq83XVJTq9Wurq7t2rUbM2bM0KFDC/Zp3Lixg4NDSfbWpEmTggWbt7e3\nEKJ+/fr29vaFGgteY4yJiZk7d254eHhmZmbBvSUnJz84hr29/ciRIxcvXrx161bTw4SrV6/W\n6/UTJkwoSVplURACAAAAUJiLi8utW7ce3Kd69eol31vBlzY2NvdrzMvLM72Mjo4ODg62s7Ob\nOHFio0aNXFxcNBrNrl27Pv7449zc3GJjTJw4ccmSJcuXL+/Vq5ckSStXrnR0dBw2bFgJAyuI\nghAAAABAOVBwghnZLV68ODs7e9OmTR06dDA3FpqG9AExateu3aFDhz/++CMhIeHs2bPnz58f\nM2aMs7Nz6QWWC88QAgAAALB2Fy9eFEK0bNmyYOPu3btLvodJkyYZjcbQ0NDyMp2MCQUhAAAA\nAGvn7+8vhNi5c6e55ccff3yogrBnz541atRYsWLFpk2bmjZtWnB+VEtGQQgAAADA2k2ePFmj\n0QwePHjEiBGzZ8/u1avXiy++OHDgwJLvQaPRvPTSS9euXcvLyysvlwcFBSEAAAAAtGjRYteu\nXS1atAgLC/v000+zsrJ27NhhmjK05EaPHi2EqFSp0pAhQ0onpvyYVAYAAACAYuzs7CRJenCf\nxo0bF9mnRo0ahdqL7HlvNyGEjY1NocZ27drt3bu3ULeCM4XeL4bZsWPHhBBDhw51cnJ6QDeL\nwhVCAAAAAJDBhx9+KIR4+eWXlQ7yELhCCAAAAACPLjo6+o8//jh48OCePXsGDRoUFBSkdKKH\nQEEIAAAAAI/uv//979tvv+3q6jp48OBly5YpHefhUBACAAAAwKObPHny5MmTlU7xiHiGEAAA\nAACsFAUhAAAAAFgpCkIAAAAAsFLyPEP4sLfMvvHGG76+vrIcGgAAAADwaOQpCJcuXfpQ/YcN\nG0ZBCAAAAADKkm2W0bCwsNatWxfbLTc3t0aNGnIdFAAAAADwyGQrCF1cXDw9PYvtlpOTI9cR\nAQAAAACPQ56C8MCBA/Xq1StJT1tb2wMHDgQFBclyXAAAAADAI5OnIGzZsmUJe6pUqpJ3BgAA\nAACUHpadAAAAAAArJdszhAVJkrRr165Dhw6lpqYajcaCb33yySelcUQAAAAAwMOSvyDMzMzs\n2rXr/v37i3yXghAAAAAALIT8t4zOmTPnwIEDCxYsOHnypBBiy5Ytf/31V6dOnZo3b37x4kXZ\nDwcAAAAAeDTyF4S//fbb888//9Zbb/n5+QkhPDw82rRp8/vvv0uS9MUXX8h+OAAAAADAo5G/\nIExOTg4JCRFCqNVqIUReXp4QQqPRvPDCC+vXr5f9cAAAAACARyN/Qejo6GgqAnU6nZ2d3eXL\nl03tzs7OV65ckf1wAAAAAIBHI39B6O/vf+bMGdN2o0aN1q5dK0lSfn7+zz//XKNGDdkPBwAA\nAAB4NPIXhJ06dfr1119NFwnHjh0bFhZWu3btwMDAP//8c9SoUbIfDgAAAADwaOQvCGfMmPHn\nn3+alh8cO3bsokWL7OzsnJyc5s6dO2PGDNkPBwAAAAB4NPKvQ+ji4uLi4mJ+OW3atGnTpsl+\nFAAAAADAY5L/CiEAAAAAoFyQ/wqhmdFozMzMlCSpYKOrq2vpHREAAAAAUHLyF4RGo3H58uWf\nffZZfHy8Xq8v9G6h+hAAAAAAoBT5C8L3339/zpw5Xl5ePXv29PT0lH3/AAAAAABZyF8Qrly5\nsmnTphEREQ4ODrLvHAAAAAAgF/knlbl69eqQIUOoBgEAAADAwsl/hbB27drp6emPuZMzZ878\n5z//kSRp/vz5DRo0MLcbjcawsLDt27dfv37d09OzU6dO/fr1U6vVJe8AAAAAADCRv1KaMmXK\nmjVrMjIyHnkPRqPxyy+/tLW1vfet0NDQb775xs/Pb8yYMYGBgWvWrFmxYsVDdQAAAAAAmMhz\nhTAsLMy87eXlVbNmzYYNG06cODEgIMDG5l+H6NOnT7F727p169WrV7t167Zhw4aC7YmJiVu3\nbm3btq1ppfvu3btrtdpt27Z17drVx8enJB0AAAAAAGbyFIR9+/a9t3HGjBn3Nha77ERaWtoP\nP/wwfPjwe5esiIiIkCSpZ8+e5pZevXrt3r177969w4cPL0kHAAAAAICZPAXh+vXrZdmPECI0\nNLRKlSpdu3bduHFjobfi4uI0Gk1AQIC5xc/PT6fTnT9/voQdAAAAAABm8hSEAwYMyMrKcnR0\nfMz9HD16dN++fQsXLixyGpjU1FQXFxeNRmNuUalUbm5uN2/eLGEHk/nz5ycnJ5u2XVxcdDrd\nY8YGAAAAgPJItllGK1eubJrSs2fPnm5ubo+wh/z8/K+++qpt27b16tUrskNubq5Wqy3UqNPp\ncnNzS9jB5Pjx43FxcabtOnXq1K5d+xHSAgAAAEB5J1tB+Oabb/76668jRozQarXt27fv169f\nnz59qlSpUvI9bNiwIS0tbdSoUffrYGtrm52dXahRr9fb2dmVsIPJqlWrDAaDafvYsWM7d+4s\neUgAAAAAqDBkW3Zi3rx5J06cOHv27LvvvpuWljZhwoTq1auHhIQsWbIkISGh2I9nZGSsW7eu\nQ4cOOTk5KSkpKSkpmZmZQoibN2+mpKSYpqJxd3dPT08313JCCEmS0tLSPDw8TC+L7WDi6Ojo\n/D9FLm4BAAAAANZA5nUIAwMDZ8yYERkZeenSpcWLF6vV6jfeeMPX17dZs2YLFiw4ffr0/T6Y\nkZGh1+s3bdo0/n9++eUXIcTixYvHjx9vuuczICDAYDDEx8ebP3XhwgW9Xm+eRabYDgAAAAAA\nM/kXpjepWbPma6+99tdff125cmXFihWenp5z586tW7duvXr1tmzZcm9/Dw+P6f/27LPPCiEG\nDx48ffp007wvISEhKpVq8+bN5k9t3rxZpVKFhISYXhbbAQAAAABgJtszhPdTuXLlcePGjRs3\nLj09ffPmzRs2bDh16lSPHj0KdbO3t2/dunXBlmvXrgkhgoKCGjRoYGqpVatWt27dtm7dmpeX\nFxQUdPLkyYiIiC5duvj6+pawAwDASuTc1t9OK/xUOR6HW7VKGpvS+jsyAEAppV4Qmrm4uAwb\nNmzYsGGPs5Nx48Z5eHjs2LHj0KFDHh4ew4cP79ev30N1AABYg8hNp36axZxhcpr35xgv30eZ\nRRwAYMlUpvlarFZUVNSWLVvmzZundBAAgJxO7UvY9/MxpVMUQ5JEzLYzTu4OT7SsqXSW4j0/\n61kXr8ddcBgAYFG6desm/xXCQms8mKlUKnt7ex8fn86dO7/xxhuenp6yHxoAAJO6wT51g32U\nTlEMQ75x8rYzVQPcx33eU+ksAAArJf/DAD169AgICMjNzfXy8goODg4ODq5cuXJubq6/v3/z\n5s1v3br1wQcfNG7cODk5WfZDAwAAAABKTv6C8PXXX09MTPz+++8TEhJ27dq1a9euS5curVmz\nJjExce7cuRcuXPjhhx9SUlLmzJkj+6EBAAAAACUn/y2jM2bMGDly5NChQ80tKpVq+PDhkZGR\nb7311p49e4YMGbJ79+7t27fLfmiUMaPRmJmZaW9vb1oXBAAAAED5In9BGB0dPWLEiHvbGzZs\nuHr1atN2y5Yt16xZI/uhK5LU1NTbt28rneK+srKyjh8/fu3atcOHDz/11FOVKlWqW7dutWrV\nlM51X2q1ukaNGkqnAAAAACyL/AWhVquNjY29tz0mJkar1Zq2c3NzHR2ZqexB4uLizp8/r3SK\nouXk5Bw/fvzSpUsuLi56vf7IkSP5+fk///xz165dK1eurHS6omm12gEDBiidAkDZ0R//NSd8\nodIpiiFJ4uXnrto6aDM+W6R0luI5vfib2rUczIYKAHgo8heE3bp1++qrr5o0aTJy5EiNRiOE\nMBgMX3/99fLlywcPHmzqExkZyWLxD+br6+vu7q50iqJFR0fn5+cHBwdnZWWdOXOmcuXK3t7e\nqampGo2madOmpv/olkatZjFlwMrkZhhT45UOUbzqrrckldqYekvpICVgzFM6AQBAfvIXhB99\n9NHBgwfHjh07Y8aMwMBASZLi4uJu3LgREBDw4YcfCiFycnIuXbo0ZMgQ2Q9dkXh5eXl5eSmd\nomgxMTH169d3dnbOzMy8cuWKu7t7lSpVvLy8Dh8+3K9fP0u+cRSA9dA1G6VrNkrpFMUw5OZm\nzLa7mhtY94NTSmcBAFgp+QtCb2/vmJiYRYsWbdy48dixY0IIf3//iRMnvvHGG87OzkIIOzu7\n8PBw2Y+LspGXl5efn3/vLDIqlUqn02VnZyuSCgAAAMAjkL8gFEK4uLi899577733XmnsHMrS\narUajUav19vZ2RV6S6/X29vbK5IKZe/ghr8PhZ1UOkWFMmllX61tqYzJAAAA98OXDwt17dq1\njIwMpVMUzWg0njx50s/P7/bt2+np6ba2tvb29qmpqf7+/hkZGVlZWUoHLIJarfb391c6RYVy\n49Kt0/sTlE5RoRgNktIRAACA1ZGtIMzJySlJt3svK6FIFy9etORZRtVq9X//+99KlSrl5eVd\nv3796tWrN27c6Ny5c3R0tNLpiqbVaikI5dV5wtPPjnpK6RTFSL2cMb/HmiadA4ct7Kx0luLp\n7LVKRwAAAFZHtoKwhPcKShJ/Ai8RS55lVAjRuHHj48ePp6amxsTESJLUunXrunXrent7K53r\nvphlVHZaOxutnaXfYpCdmSuEyNMbHFz4UxQAAEAR5Pw+Z2dn17JlS8tcdaDcseRZRk2aNGmi\n1+szMzPt7e0dHByUjgPcV9atEt2/AAAAYIVkKwgDAgLOnz9/9uzZkSNHjh49OiAgQK49w2Lp\ndDoPDw+lUwCFfTTwx07jWzTqULtgY15u/qrXtjTp/MTTfespFQwAAMDSyHYf3blz53bv3t2+\nffslS5YEBgY+++yzP/zwA4sQACh7zwxsEPrK5qO74swtebn5X00Iu3bxVv22vsrlAgAAsDiy\nFYQqlap9+/bff//95cuXv/jii/T09GHDhlWvXv3ll1+22IlGAFRIrZ9vMPjdDqGvbD61L0EI\nIRmllZM3pyZnvLZmoJM7tzcDAAD8Q/6ZNlxdXSdNmnTkyJGYmJhhw4b99NNPTz311KJFi2Q/\nEADczzMDGwx+t8PaubuEENcupF1PSJvy/SAXL0elcwEAAFiWUpwksHbt2o0bNz548ODhw4dv\n375degcCAJNdqw5HbTplflnJzUHKTM66bdRUr7Rs3AZTo41O89IXvVyqOCmUEQAAwIKUSkG4\nf//+VatWrVu3Lisrq1WrVqGhoYMGDSqNAwFAQU+0rGnnqDNtG/ON4Wui+zdcHXHmWbdmTWvU\nvTttr8ZG7ehWomVyAAAAKjw5C8IrV66sWbPm66+/PnPmjJeX14QJE8aMGVO3bl0ZDwEAD1Cr\nfpVa9avoD69WBfZc+UaEIc+gURldPG33rzs+9rOe9Xzi1S7emir1lY4JAABgKWR7hrB37941\na9acOXOmv7//L7/8kpSUtGjRIqpBAGUvN/qHS+89nZGUPPqTHkIIOyfd4Hc7HPpgXubqnsZb\niUqnA+4hSUonAABYL9muEG7atMnOzq5Pnz7e3t4HDhw4cOBAkd2YXQZAafvx8NhntO9O6LDS\n4NjdtPRNszqn6jRft+HIwDa96z2hcDqgMEOeUekIAADrJectozk5OWvXrn1wHwpCoGLIO7cz\nP+5PpVMUrV3g1ap+HcW5MPUPTzvb32lgty3rp+W2dbp2rOlod25RdpqFrjxh3+ldodEpnQJl\nYe8PsXVa1ari7256ab4+eGJPvMZGUzfYR6lgKEuGfGNull7pFBWKnZNOrZF//nygwpOtIIyK\nipJrVwAsX/7FfTl7PlA6RdG8hDDeuLvtoBMO4oIwirxTW5yFEELkKBfsweyem6WiILQOKXE3\nf//iwOs/DPL0/mcplOjfz6ye9rvpPmdYg7//uvDlS78pnaJCef3HQU88XVPpFED5I1tB2KxZ\nM7l2BcDyqe3dbWq1UDpFYVJGivFO6j8vDXnCoBdCqHQOQqhMjSqVUHs+ITRaZSI+gEqldAKU\nkednP2c0SIsHr331mz6mC9bR286unvb70AWdmnQOVDgcyoprFaem3eoonaJ4x/+M02hU9doF\nKB2keJXcmUEaeBSluA4hgArsxvkEh0uRSqcoKUl/559tIYzJMQqGuR9DnsHG8qpUlAaVSrww\nr4MQYumoX99sKySjtHrq1qELOrXsyxS4VqRWUJVxn/dUOkXxtg951qhx6vr5FKWDACgt8hSE\n33zzTZcuXapWrVpsT4PB8N1333Xv3r1y5cqyHBqAIo6m9ti1yU3pFPdVt/rffeYpdEQAACAA\nSURBVJr+uuVo72cC9h2Kb9Wg5lF7m+zv/jsyO89CHyAUQiycbcuf6Cq85DM3/t4Tb9p2r+7s\n7u0qhBBGfaOOtTOuZe1YHimEUGvUrQYEObraKZgTVs6QclTtUkPl4CGEsLPJyVdpTO3G21el\nrJuaKvUUTQdAZvJ8/Rg1alR4eHhJCsK8vLxRo0YdOHCAghAo15r0aFi1jrfSKYrmeH1r5dO/\n3ajzf43a93A93Ktli9ZZnrNdjo9/xXvzlUarjTbOSgcsmtaOerDiSzl349T+BPPLnJw8IYSj\n7nbq5cysW3efb1WpVUHt/CgIoaDc/Z/lJ0ZWGvenysnL3GhMT8pc3l5bt4dDzyUKZgMgO9m+\nf5w8edLOrvjfXno9E2oBFUG1QM9qgZ5KpyhaxieD7AZ94954sBAi44ytW+NquiZNpM67s9b0\nrVvtuG3z0UoHhPVq1uPJZj2ezAlfqK3T5ehRxzXTNokgoVarbibemvLDII/b21U6R2293krH\nRFnIv3QwZ8cspVPch2SUMq+kf+CvqdHU3+OkJDSZX7UxJB9RaR2MV47dDu2odL6i2XdfpKnW\nSOkUQPkjW0H48ssvy7UrAHgczlNi721U6Zycxu4s+zDAvST97bRl7bfvGjPo3eEiSqjUqsad\nnwh/47Uu9dZXGrlJ6XQoI1LW9bxzu5ROUYz8+AgnnRBC5F+IEEJI+jvGuN0KZ7o/u+w0pSMA\n5ZI8BeHnn3/+UP39/PxkOS4UJ925aXrGALBMusaDNdWbKJ0C+JdTxhGJJyNfem5lpaf6ZUUJ\nIUTfHgm3c9eFHRvdXduiitLxUDa0T3RxnZtafL+yJeXnGq+fuvvCkJe9c27exQNCpdL6h9g/\nN0uoTQ8TqjRedS1w3VSVbSWlIwDlkjwF4eTJk2XZD8qdjE8aOQ5db+PTSukgQNHs2r+ldASg\nsJhtZ4OGf+rg8MOdb3sIIXSanOyNLzsP/9nxV+e/98RX8XtK6YAoExqtyt7ipubKi/4ua90I\nIUnmFpVKCCHlx+/NjP/fnaIqtdOwX7RBfRVJCEB2zGGAhyRJ+qM/6RoMNC3jJuXliPy7EyHk\nndupqVJf7Vxd0XwAYLnyLx3K+/u3IV2FEPuEUag96xgSD9nb3NY92c+QeKhXCyGEyN7+m23r\nV9ROXCms4KSsG/mXi7i/XVmqStWcxuzYsSLyZmJ6n1frG3e/ZchIkYRK6+ottXl/w5LjtepX\naTu8sRDCAu93tanxlAXW2IDloyDEQzLmZ++cqz+23mnouoJLe+dGfX0nbFKl8XsoCAHgfqTb\nV42p8f+8Nubfbc9N/6ddpRa5mYKCsKLLv3Tg9je9lE5RtGfUQvgIw0YhhFCrhBCSMT1RbB7R\nt7YQueJ2qMLx7qfS+HAb/3ZKpwDKHwpCCyVlXZdyM5VOUTTHF76789Ow26s6OfT9UkgGKTMl\nZ88H2TtnO/b6TO3k9a/vOpZDpVa7+SodAoC109brpa13twbIjfpaHzZJCKGXHFRJR5zG7rCp\n0VzRdChTao/adu2mK52iaFJupj7mx/Tb9vHpTappYw2SzVV9vdrusc5Oel2TwSqdk9IBi6Z2\nraV0BKBcoiC0UNl/zMyNtNQ/wQkhhDDcjEtfVFcIcfunoaaWrA0TFE30ICo7F9d5t5ROAQB3\nme6qcBj4/Z2fBuYanJxbjb0d2oma0KpovOrad/0/pVMUlp9nuHXltnrbCOEdomu74vA7u5uo\nb+Tk257Vjaz3UhvjzuE5t9KNz853r15JrVErHRaAPCgILZSNXxuhsrihVsq5JeVm3X2Rn5t/\nab+kzxZCpfFuqq5U9W67WvPPtuXQ2iudAADuyo1adSfsZaeh69QBnU0t9p3ni3z97VVdKr20\nm4XUoKCoTafW/OcPnU3zPINO+uB7IUSTZpKQxLnIxHldf1CrOtlo8vXvrnxpaa8mXZ5QOiwA\neVAQWihtg/7auj2UTlFY9uap+Zci/3mt1gqRLVQqKeuG4c5NU5tKa+vQ+wuVraXdT6JSOgAA\n3GW4dMhp6DptvV6G3Fxzo333j4TOIf/SIQpCKKhV/6BW/YNM2xk37nwybN3VjOq5+bY16lZ+\n7bvnndz46ypQAZViQWgwGDQaTentv2LL3vSahd8y+g/JaLyVULAhfaHF3cTPLaMALIdD/xVF\nttt3nFfGSYD7MVWD7tUqHTzUTqvV1Gpg/+nwddSEQIUkc0GYmpr66aefbtmy5cyZM1lZWY6O\njnXq1OnZs+drr73m5sZEwA9B7VVXG9hB6RT3Zcy4bLh+2qZqA8PVkxqvuoab51Vae021hhZ4\nm+tdWkelEwBA0XKNDFCwLOZqcPxXvac2+UKoxKSVfZeN+42aEKiQ5CwIjx492rlz56tXrwoh\nKlWq5O3tnZGRER0dHR0dvXLlyj/++KNBgwYyHq5iswuZKkKmKp2iaKa5EJyG/aqt3+fWPE/7\nnp+oPZ/IXN5O2DoXWosCAFCsfMlW6QjAv/w870+PGs7jl/W20d291Utnr524ou+ysRvCPtw7\nbGFnZeMBkJds13Oys7P79+9//fr1qVOnxsXFZWRkJCUlZWRknD17dsqUKSkpKQMGDMgt8LAE\nyitDXvbvbzoNWaut38fcpnbxrjR+j/HqybyzfygYDQAAPL5h8ztNXN7HXA2a2DpoX/l2wIC3\n2yuVCkApke0K4c8//3z+/PmlS5dOmjSpYHtgYOCSJUv8/Pxee+219evXDxs2TK4jQhkareuc\nm/c2q128nd88U/ZxAACAvOyd/7lqrdaoNdq71w9stBobLdNDABWNbFcIN23a5OvrO2FC0SvR\nTZ48uVatWhs3bpTrcLAQuoYD1e7+SqcAAAClQmdnY+/EXc1ARSbbFcJjx44999xzanXRFaZa\nre7QocPevXvlOhwshEPfL5WOAAAAAOARyXaF8OrVqz4+Pg/oUKtWrWvXrsl1OAAAAADAY5Kt\nIMzKyrK3f9A0xI6OjpmZmXIdDgAAAADwmGQrCCVJkqUPAAAAAKBsyLkO4fr160+fPn2/d48f\nPy7jsQAAAMqvuKik9e+HK52ieHfSc3Ju5y7s/Z3SQYo3dH6nWkFVlE4BlD9yFoSRkZGRkZEy\n7hAAAKBCys3Ou5GYrnSK4tk66oQQ5SKqPidf6QhQgCHlmJR13ab2c0oHKcdkKwijoqLk2hWE\nEGEfRRzZet/LrXhYdk66t7eMUDoFAAB31W/j93H0ZKVTAOWe/vh64/WzFISPQ7aCsFmzZnLt\nCuVFvt5w6+pt+0q2jq52SmcBAACAVcjd94lkNNi1mVaoXX/8F0PCAfseHyuSqvyS85ZRyKjP\nmyF93gxROkUx4qMvfzTwx6e61xk6v5PSWQAAAGAVNDWa3V7VVeTn2j0709yoP7Yu6+cXHQeu\nVjBYOVW6BWFubu6pU6cyMjIaNmzo6upaqseCUrIzcpWOAAAAAGth4xvsNOaP2193FZLB1KI/\n/kvWzy869l+pazxY2WzlkZwF4bZt27755hudTjdu3Lg2bdrs2LFj9OjRycnJQgidTjdr1qx3\n3nnnAR9PSkras2fPkSNHUlJSbGxsatas2adPn6effrpgH6PRGBYWtn379uvXr3t6enbq1Klf\nv35qtbrkHfCYDPnGt0OWD1vYOaidf8H2jOtZn41Y3+fNNkHt/e/3WQAAAJQLhpSjmcvbK52i\nGNk75giVRgihP7ZOpXO8s+m1O5teUzrUfTn0X6FrMEDpFEWQrSD866+/unfvblppcN26dVu3\nbu3Xr5+Dg0Pv3r31en1ERMSsWbOefPLJAQPu+6+wbt26ffv2NWrUqEmTJrm5ufv27Zs/f/7g\nwYMHD/6n0A8NDd2yZcszzzzTq1evkydPrlmz5saNGxMmTCh5BzwmjY262+RWKyZtemlZLwfn\nu48OZlzPWjJsnWcNlydb+ygbDwBMrl+6lXjiqtIpiiHl5/kLYcw3Rv9+Ruksxavfzt/WQat0\nCgBlRaVR2bspHeIeBr2UfUuI/61tbmMn8rOFEMLG1vTu3XZbZ5XWXol8D6LS6JSOUDTZCsIl\nS5Y4Ojr+9NNPvr6+48ePHz58uI+Pz/79+013il64cKFJkybLli17QEHYtm3bMWPGuLi4mF4O\nHjx4ypQp69ev7927t4ODgxAiMTFx69atbdu2nTZtmhCie/fuWq1227ZtXbt29fHxKUkHyKLN\n0MZqjXrFpE09XmsthMjX538yfL1HdeeXlvWy0WmUTgcAQghxal/CT7N2Kp2iGBqV4b3+Qp+d\nt/KVzUpnKd68P8d4+Vret0MApUQySNlpSoe4h2SUjAXWF/nfLaPCaJCEytys0mdJ+Tllm6x4\nkrletTCyFYRHjhwZNGhQjx49hBDz5s3r2LHjW2+9ZX5u0M/Pb/DgwWvXrn3AHp566qmCL52c\nnFq2bLlp06YrV674+/sLISIiIiRJ6tmzp7lPr169du/evXfv3uHDh5ekA+QS/EJDIcTP8/4U\nQpw9lOjfxHv8V721tsxRBMBSPNGihuXPd6WS8kXsDC9fN8uPKoSo5OGgdAQAZUijU7tb9HNA\nUnaaMfWCys5VSAZJf0fl4K6uVE3pUA+i0jkpHaFosn2Dv3LlSkBAgGnbVL/VqlWrYAcfH5/0\n9Idb1TQjI0MI4eZ29++RcXFxGo3GfBQhhJ+fn06nO3/+fAk74DGtnbPr778umF9qbW3y9Ybc\nrLwr8Tff7Xx3TidbB+2bvwzltiIAyqpa26NqbQ+lUxTHkJcWK5wrO5r+ygYAlkPjVdf51cNK\np7gv/fFfstYOcxz0reHGWeP1s7atX739dVddywl2z81SOlr5I1tBmJ+fr9XerQF0Op0Qwsbm\nXzu3sbExPWFYQsnJyfv372/atKm5IExNTXVxcdFo/rkpUaVSubm53bx5s4QdTFauXHn9+nXT\nNvPNPJSQwY2eeLqmaTs7M3fjx/tM2091e9KnQRXTts5Bq7OnGgQAAECpyPs7LGvtMMcBobom\nw7J3zBJC2Pi2dhq19fbX3YTW4d71CfFgFnqP3507dxYuXKjVagvOB5Obm2uuOc10Ol1ubm4J\nO5j8+eefcXFxpu06derUrl1b5vQVl/eTlb2frCyEyLhx55Nh6yrXdM28eadmfa/wb6PHftaz\nYYeAYvcAAGVDf/zXnPCFSqcojiQJIfKTYzI+a6Z0lOI5vfib2rWm0ikAQEj6LMdB3+kaDizY\naOMX4jTmj/xLB5VKVX7JWRCuX7/+9OnTQog7d+4IIT7//POwsDDzu8ePHy/hfnJycubNm3f1\n6tW5c+dWrVrV3G5ra5udnV2os16vt7OzK2EHkwULFphLxPj4+MjIyBIGg4mpGnSvVqnThBZL\nhvzsWdM1ZHDj0Fc3UxMCsBxS1nVD8hGlU5SM/nb5iGp5MzQAsE66JkMLvFIJ1d3pZGx8W9v4\ntlYkUrkmZ0EYGRlZsLjasWPHI+wkNzf3vffei4uLmzVrVv369Qu+5e7unpCQYDAYzDeFSpKU\nlpYWFBRUwg4mpkccTW7fvv0IIa2Z0WBcMvRnz5ou45f1vvS/Kd1bD2pgyDeEvrp56k+DfBtZ\n9OO8AKyEbcsJti1ZcwgAKjjb5mOknIebpgSFyFYQRkVFPf5O9Hr9+++/f/Lkybfeeqtx48aF\n3g0ICDh8+HB8fHxgYKCp5cKFC3q93jyLTLEd8PhUanWncc2b96pbaIWJNkMbu1at5FLFQmdP\nAgAAQMWjdmNtucclW0HYrNnjPv+Ql5e3YMGC48eP/+c//2nRosW9HUJCQtatW7d58+apU6ea\nWjZv3qxSqUJCQkrYAY9PpRKtBvzriqtKffcyfcPnKLwBAACA8sSCJpVZvnx5dHT0E088kZiY\n+PPPP5vb27RpU61aNSFErVq1unXrtnXr1ry8vKCgoJMnT0ZERHTp0sXX19fUs9gO5ci5yKSr\n8alKpyjGjUu3hBBZt3L2rT2mdJZiaLTqVv2Diu8HAAAAWBM5C8Jt27ap1erOnTsLIa5duzZ6\n9OiC7zZs2HDBggUP+PjVq1eFEGfPnj179mzBdn9/f1NBKIQYN26ch4fHjh07Dh065OHhMXz4\n8H79+hXsXGyH8uJQ2N/7fy7pNDzKOrXv4ql9F5VOUQz7SrYUhAAAAEAhqodaG/ABjh492qRJ\nky+//HL8+PFCiIsXL/r5+RXqc/jw4aeeekqWw8klKipqy5Yt8+bNUzpIYQnHr9xM5AFZ2Wi0\nmkYdWV8EAACgRPTZeVfOW/rdauWLRw0XR1e74vuVrW7dusl2hXDVqlWVK1ceNWpUwcbVq1d3\n6dJFCJGfn9+wYcNvv/3W0gpCi+XToKpPg6rF9wMAAADkduV86sLe3ymdokIZvaR78151lU5R\nBNkKwj179nTs2FGn0xVsdHV1NS8k2LNnz71798p1OAAAAAClxMndPviFhkqnKF5k2El9bn7w\noHIQtbKPq9IRiiZbQXjhwoX+/fs/oIOvr2/BdeoBAAAAWCb36s5D53dSOkXRti09mHNb33d6\nGyHEsV1xeXkGU9SIn45ePHpl+P91VjpgOaOWa0c5OTlardb80sfHJzMzs2fPnuYWBweH7Oxs\nuQ4HAAAAwAo1eDZg/7rj698PL9j41/ex698Lb9r1CaVSlV+yXSF0d3dPTk42v1SpVE5O/1qj\nPCkpycPDQ67DAQAAALBCNepWnvL9858OX2du2bf22K8L9oz9vGf9toVntUSxZLtC2KRJk+3b\ntxuNxiLfNRqN27dvb9KkiVyHAwAAAGCdatSt/Np3z0eGnczJ0gtJrHt399jPezZ8LkDpXOWS\nbFcIBw0aNHr06CVLlkybNu3ed5csWXLu3LmZM2fKdTgAAAAAVuXS31fDPtxrXjWvso/rhdgU\nIYSXv3v4t9Hh30ab2tu/2LRhB4rDkpKtIBw2bNjSpUvfeOONv//+e9KkSY0bN7axscnPz4+N\njV22bNnq1aubNWs2dOhQuQ4HAAAAwKq4VqlUN9hXMt6tCC8eTTFt2Dtqn3zGR6USQgihElUC\n3BUKWC7JVhBqtdqNGzf27Nlz9erVq1evVqlUDg4Od+7cMS1837Rp040bNxacdQYAAAAASs7Z\n06HjuOam7X1rj53Yc8HB2Tb7tv7K+dRaDaoOeLv93ZoQD0O2ZwiFEN7e3ocOHQoNDe3cuXP1\n6tVVKlX16tU7d+68atWqgwcPVq9eXcZjAQAAALBO+9YeMz03aKPTCJUwPU/4y/xw892kKDnZ\nrhCaaLXaMWPGjBkzpsh3Y2JimFcGAAAAwCM7uOHvde/ufmlZr6B2/j8IIf43x8wnw9bZOmh7\nTQ1WOF95I+cVwvtJT0//8ssvn3rqqaZNm5bB4QAAAABUVA4udpNC+wW18y/YWKNu5dd/HORZ\n00WpVOWXzFcIC9m3b19oaOj69evv3Lnj6Og4cODAUj0cAAAAgMd3+eyNL1/6TekUxbudmi0Z\npVntVppbti09qGCeBxj4zrOWOfdpqRSE169fX7NmTWho6OnTp4UQnTt3Hj9+fJcuXezt7Uvj\ncAAAAABkZDRIdzJylU5RPFsnnZBEuYian2dQOkLR5CwIjUbjrl27QkNDN27cqNfrmzZt+vbb\nb8+fP3/ChAl9+vSR8UAAAAAASk+NupU/jp6sdAqUBdmeIXz33Xf9/f07d+68Z8+eSZMmHT16\n9MiRI2PHjpVr/wAAAAAAecl2hXDOnDm1a9fesGFDjx49WG8QAAAAACyfbFcIPT094+LiZs6c\nuXjx4suXL8u1WwAAAABAKZGtIExOTl67dq23t/dbb71Vq1at7t27//LLL3q9Xq79AwAAAADk\nJVtBqNPpBg0atGvXrri4uOnTp8fGxg4cONC08CAXDAEAAADAAsm/ML2/v//8+fMvXbq0cePG\n9u3bazSal19+2d/f/z//+U9UVJTshwMAAAAAPBr5C0ITjUbTq1evzZs3JyQkvPfee5IkffTR\nRy1atCilwwEAAAAAHlZpFYRm3t7e77zzTnx8/I4dOwYOHFjahwMAAAAAlJCcC9M/gEql6tix\nY8eOHcvmcAAAAACAYpX6FUIAAAAAgGWiIAQAAAAAK0VBCAAAAABWioIQAAAAAKwUBSEAAAAA\nWCkKQgAAAACwUhSEAAAAAGClKAgBAAAAwEpREAIAAACAlaIgBAAAAAArRUEIAAAAAFaKghAA\nAAAArBQFIQAAAABYKQpCAAAAALBSFIQAAAAAYKUoCAEAAADASlEQAgAAAICVoiAEAAAAACtF\nQQgAAAAAVoqCEAAAAACsFAUhAAAAAFgpCkIAAAAAsFIUhAAAAABgpSgIAQAAAMBKURACAAAA\ngJWiIAQAAAAAK0VBCAAAAABWioIQAAAAAKwUBSEAAAAAWCkKQgAAAACwUhSEAAAAAGClbJQO\nIDOj0RgWFrZ9+/br1697enp26tSpX79+ajV1LwAAAAAUVtEqpdDQ0G+++cbPz2/MmDGBgYFr\n1qxZsWKF0qEAAAAAwBJVqCuEiYmJW7dubdu27bRp04QQ3bt312q127Zt69q1q4+Pj9LpAAAA\nAMCyVKgrhBEREZIk9ezZ09zSq1cvSZL27t2rYCoAAAAAsEwVqiCMi4vTaDQBAQHmFj8/P51O\nd/78eQVTAQAAAIBlqlC3jKamprq4uGg0GnOLSqVyc3O7efNmwW6bNm1KS0szbd+5c6dMIwIA\nAACAxahQBWFubq5Wqy3UqNPpcnNzC7b8+OOPcXFxpu06derUrl27jPIBAAAAgCWpUAWhra1t\ndnZ2oUa9Xm9nZ1ewZcqUKbdv3zZtX7t27cyZM2WUDwAAAAAsSYUqCN3d3RMSEgwGg/muUUmS\n0tLSgoKCCnZr2bKleTsqKoqCEAAAAIB1qlCTygQEBBgMhvj4eHPLhQsX9Hp9wWlmAAAAAAAm\nFaogDAkJUalUmzdvNrds3rxZpVKFhIQomAoAAAAALFOFumW0Vq1a3bp127p1a15eXlBQ0MmT\nJyMiIrp06eLr66t0NAAAAACwOBWqIBRCjBs3zsPDY8eOHYcOHfLw8Bg+fHi/fv2UDgUAAAAA\nlqiiFYRqtXrAgAEDBgxQOggAAAAAWLoK9QwhAAAAAKDkKtoVwkeQl5eXkZGhdAoAAAAAKFOS\nJKkkSVI6hpJOnjy5cOFCpVMAAAAAgAKsvSAEAAAAAKvFM4QAAAAAYKUoCAEAAADASlEQAgAA\nAICVoiAEAAAAACtFQQgAAAAAVoqCEAAAAACsFAUhAAAAAFgpCkIAAAAAsFIUhAAAAABgpSgI\nAQAAAMBKURDiUZw+fVqSJNN2UlLSnDlzMjIylI0EFMQpCgCPg1EUsB6auXPnKp0B5Ux0dPTs\n2bMvX77csmXL5OTkt99++8KFC9nZ2c2bN1c6GiAEpyjKjxs3bnz11VfffvttZGSkk5OTt7e3\n0okAIRhFUa4wkD4+G6UDoPwJDAz08fHZs2dPTk7OmTNn0tLSGjZsOHr0aKVzAXdxiqJcuHXr\n1ptvvnnz5k0hxOXLl2NjY7t27Tp+/Hi1mpt3oDBGUZQXDKSy4AohHpqtrW3r1q1jYmJOnDiR\nk5PTsGHDWbNm2draKp0LuItTFOXCihUr/v7774CAgFdeeaVZs2bnzp07duzYlStXWrZsqVKp\nlE4Hq8YoivKCgVQWXCHEo8jKyrp165Zp283NTafTKZsHKIRTFJbvyJEjXl5e8+fPd3BwEEI0\nbtz4nXfe2bNnjxDi9ddf56sMlMUoinKBgVQWXCHEo9DpdCdOnPD09HRycoqNjeUvMbA0nKKw\nfBs2bOjRo0ejRo1ML+3s7Fq3bh0dHX306FHOWCiOURTlAgOpLCgI8dDS0tJycnI6dOjQrl27\nNm3axMbGxsTEFPq/7tChQ87OztxeAkVwisJipaWlhYaGfv/994cPH87IyAgKCqpTp475Xb7K\nwEIwisKSMZDKjoIQDyE1NfXTTz9dunTpvn37nnnmGRcXF9NjBuZfFS1atFCr1eHh4YsWLTp8\n+PBzzz1nY8NtySg7nKKwZGlpaVOnTj1x4kR6evrly5ezs7PT09M7duxYcPKDgl9l/Pz8atas\nqWBgWCFGUVg4BtLSQEGIkkpJSZk+ffrZs2ednZ179OgREBBgul274K8K0wPoa9eulSSpW7du\njRs3Vjo1rAinKCzcV199dfLkSX9//8mTJzdp0uTs2bOXL1++efNmixYtCv4B2/RVpmrVqu3b\nt1cwLawQoygsHwNpaVCZVx0FHkCv10+ZMiUpKenJJ59866233NzcCnXIyspauHDhsWPHhBBq\ntXrEiBF9+/ZVIimsFKcoLNmNGzc8PDxGjhyp1Wo/++wz05fs1NTUt99+Ozk5uUOHDq+88go3\nNUFZjKKwcAykpYcrhCiRHTt27N69u2rVqv/3f//n7Oxsajx69OiOHTuSk5P9/f1tbW3bt29f\nq1atWrVqjRs3rlWrVsoGhrXhFIXFSk5Onj59emJi4rVr17p27Wqe/MDe3r5169ZRUVFHjx69\nceNGoT9vA2WMURSWjIG0VHHbN0rkzJkzQoju3bub/h6TlJS0bNmyEydOaDQag8Gwf//+999/\nX6VSBQcHK50UVopTFBbLwcHBwcFh165dQohCc/e7ubktWLBg5syZpnf58zYUxCgKS8ZAWqrU\nxXcBhKhRo4YQ4ujRo4mJiT/++OOUKVMkSfrkk09+/PHHqlWrHj9+/Ny5c0pnhFXjFIXFMn1Z\n8fb2FkKEh4cbDIYi3921a1dUVJRCGQFGUVg0BtJSxS2jKBF/f/8TJ04cO3bs999/T0hIGDFi\nxIQJE9zd3W1sbLZt25aZmdmhQwdPT0+lY8J6cYrCkplvakpISLh38gPTu1WqVGHyAyiIURQW\njoG09DCpDIqQlZX166+/RkVF5ebmBgYGDhw40NfX12AwHDlyxGAwNGrUyHQ/iRBi8+bNK1eu\ndHNz+/rrrzUajbKxYT04RVEepaWlzZw5k8kPYCHuHUhr1qzJKAoLx0Babyu97wAAIABJREFU\nGigIUdjly5dnz5597do1IYS9vX12draNjc2rr77arl27gt0kSfr111+/++47SZLefPPNkJAQ\nZeLC+nCKwvIV+TcLwVcZWIySDKSMolDQ/UZRwUBaCrhlFP+Sk5MzY8aMq1evBgQEzJs3b9y4\ncampqefOnTt48GBwcLCLi4upW0xMzBdffLFz506VSjVy5MguXbooGxvWg1MUlu/y5cvTp0+P\niopKT083GAznz5/fuXNnlSpVfH19mRAPlqAkAymjKBT0gFFUMLNoKWBSGfzLxo0bU1JS/Pz8\nFi5c6Ovr+8cff+zYsUMIMWbMmJo1a5r63Lp168svvzx+/HjVqlXnzZvXr18/RSPDunCKwsLl\n5OTMmzfv2rVrAQEBn3322c8//9y5c+f8/PwlS5YkJiYKJj+ABSh2IGUUhYKKHUUFA6ncWHYC\n/3Lo0CEhxOuvv25nZ7d9+/Yvv/xSkqSxY8f26tVLCLFjx442bdq4urouWLDg7NmzrVq14k8y\nKGOcorBwBb9q29nZFfk3C9NXmf/+978tWrRQNCysVEkGUkZRKKUko6hgIJUVVwjxL+np6V5e\nXr6+vjt27Fi2bFnB3xCZmZkrVqz4v//7PyGEp6fnM888wy8JlD1OUVi4Yr9q5+TkCCHc3Ny6\nd++ucFZYq5IMpIyiUEoJR1HBQCofCkIIIURSUlJ8fLwQomrVqhkZGRs3bly6dGnB//2EEN98\n841ery/4txmgzHCKorwo4d8sgDJmHkUFAyksG6No2aMghLh169bs2bNnzZqVmJjYtm3bnJyc\nVatWFfoNsX379p07d9rZ2fXu3VvZtLBCnKIoR/iqDQtUcBQVQjCQwpIxipY9CkKI77777saN\nG76+vl5eXh06dHjyySeFEN7e3sHBwUKInJyc7777btmyZUKIV155hUVpUfY4RWFpTp8+bV60\nKSkpac6cORkZGaaXfNWGBSo4igohGEihOEZRi8I6hFbtxo0bHh4eI0eO1Ol0n332mb29vRAi\nPT19zpw58fHxarXay8srNTVVr9ebZp3u27ev0pFhXThFYYGio6Pfe++9kJCQ119/PTk5+e23\n305LS+vatevEiROFEEajccaMGadPn/b29p4/f767u3tOTs769et/+eUXFnND2StyFBUMpFAU\no6iloSC0XsnJyTNnznzqqadiYmK6des2cOBA81s5OTnr1q3buXNnenq6SqVq0KDB0KFD69at\nq2BaWCFOUVimzMzMWbNmxcfHt2zZ8syZM2lpaQ0bNpw1a5atra2pA1+1YSEeMIoKBlIoh1HU\n0lAQWq+0tLSZM2cmJycLIUaOHHnvKkOSJGVmZtrb22u1WiUCwtpxisJiZWZmvvPOOxcuXBBC\nFPoeY8JXbViCYkdRwUAKhTCKWhQKQqtm/lVRq1atTz/9VKPRKJ0I+BdOUVimK1euTJ8+PS0t\nTQjRtm3bqVOnFjk7P1+1oThGUVgmRlGLopk7d67SGaAYe3v71q1bR0VFJSUlXb9+/emnn2bF\nIVgUTlFYJp1Od+LECU9PTycnp9jY2CtXrrRs2fLek1OlUtna2vIVHApiFIVlYhS1KBSEViQ/\nP3/37t2bN2+OjIzMyMioUaOGjY2N+VfFsWPHbty40aJFC35VQCmcoigX0tLScnJyOnTo0K5d\nuzZt2sTGxsbExBT6NnPo0CFnZ+dCd0ABZeDegdTJyYlRFBaFUdTSUBBai5SUlJkzZ+7cufPC\nhQvx8fGRkZF//fVXnTp1PD09zV+4jx49yq8KKIVTFJYvNTX1008/Xbp06b59+5555hkXFxdb\nW9vWrVubv820aNFCrVaHh4cvWrTo8OHDzz33nI2NjdKpYUXuN5DWqFGDURSWgFHUMlEQWoX0\n9PQZM2akpKRUq1ZtwIABLVq0yM3NvXDhwl9//fX/7d17UFNn+gfwN4GQcDfKJRS5CIKAIAIC\npiiK4h3b3W53dpiOVt1lHLcwq9bbgqI7pYF13RZXS6lWa9VFu7Pt2llpXaAaqWgFBBIDKlDR\nknANJoAIhoT8/jjzO7/8AlrWS05Cvp+/2pNj53Hm7XPe57zv+5yZM2d6eHhgwg3MwhAF89fe\n3r5z587GxkYXF5eUlJTAwEAHBwdCiOFspra2ViaTnT17Vq/Xr1y5cvbs2UxHDVbk6YnU19cX\nWRSYhSxqtlAQTjRarfaTTz7x8/NzdHSkL3722WcSiSQ4OPgvf/lLREREcHDw4sWLORxOTU1N\nVVXVkiVLuFyu4YR7+vTp3t7eDP4tYALDEAVLpNFoMjMzOzs7Q0JCRCJRTEwMNY+hcLnc+fPn\nNzU1NTQ03Lt3j81mr1u3zqjFP8AL9GyJ1NXVFVkUmIIsas5QEE4oIyMj+/fvv3TpUn19/bJl\ny+iXf/n5+RqNJisry8PDg745LCxMoVA0Njay2ezIyEjyv0fPPT09k5KSmPkLwESHIQoWqqSk\n5OLFiwKBIC8vz8XFhbookUhKSkoUCkVAQACXy01KSvL19fX19U1LSxMKhcwGDBPY8yRSZFFg\nCrKoOcOu3Anl66+/vnbtmpOTU0ZGBv2E0Ov1Dx8+JIT4+voa3b9y5cry8vKampq1a9dSV/h8\n/qpVq0wZM1gVDFGwUHfu3CGErFq1inqlLZfLCwoKZDKZjY2NTqerqKjIyclhsVjz5s1jOlKY\n+J4zkSKLAiOQRc0Zm+kA4EX67rvvCCGbN28OCAiQy+U//PADIYTFYnl5eRFCmpqajO7n8XiE\nkEePHpk8UrBSGKJgWeRyeXNzMyFk6tSphBCJRNLa2lpUVLR582a9Xp+fn19UVCQQCG7evDl6\n9AK8JEikYEGQRS0CCsIJhXrpwuFw5HJ5VlbWn//8Z6lUSghZunQpIeTYsWMajcbw/suXLxNC\npk2bxkSwYI0wRMGCDA0NZWVl/etf/yKEpKSkhIaGVldXv/POO8XFxRs2bBCJRAEBATwej/pA\n1sjICNPxgrVAIgVLgSxqKXCGcELh8/nl5eXV1dVisVilUkVERLzxxhu2trZBQUE1NTXNzc31\n9fWzZs1ydHTU6/XFxcVFRUUsFisjI8PNzY3p2MEqYIiCBbG1tb1y5crNmzeXL1/u5OS0aNGi\noKCghISEtLS0sLAwaqve+fPnxWIxn8/fsGEDm413rGAKSKRgKZBFLQUKwgnllVdeGR4erqur\nGxoaCgkJ2bdvH/VBTzabPXfuXIlE0tjYeP78+atXr37xxRcVFRWEkPXr18+fP5/pwMFaYIiC\nZeFyuRUVFc7OzmFhYWw229vb28fHh8PhEEL0ev2XX3554sQJQkhGRoa/vz+zoYL1QCIFC4Is\nahFQEE4obW1tR48eHRoaIoQ8fvx4zpw5fD6f+onH4y1cuFCj0bS0tPT09AwNDU2ePDk9PX3Z\nsmWMhgzWBUMULMvUqVNLSkpaWlpWr15t+NG22traw4cPl5aWslisdevWLV++nMEgwdogkYIF\nQRa1CCy9Xs90DPDCPHr0KDs7m8fjzZ49++TJk87Ozu+9915AQIDhPUNDQ62trRwOx8/PDx+l\nBRPDEAWLc+bMmTNnzmRnZ8+ZM4e6olard+zY0dHRIRAIfv/73+O7yWBiSKRgWZBFzR8Kwonm\n0aNHNjY2XC7366+/Pnbs2JjPCQAGYYiC2ZLL5a2trfHx8YbnWNRq9YYNG6Kiovbs2UNfVCqV\njY2NQqEQU21gBBIpmCdkUQuFLaMTDYfDsbW1JYSEhIQ4ODj88MMPFRUVUVFR9H4SAEZQ755Y\nLBaGKJgntVq9ffv20tLSixcvarVaHx8fOzs7QgiPx2tra7t69erixYsdHR2pmx0cHHx8fDCP\nAaYgkYIZQha1XCgIJzI8J8AcdHd3f/DBB/n5+efOnevu7g4NDaWeEARDFMwJj8eLjY1lsVh3\n7typqqo6f/58d3e3QCBwdXV1d3f/z3/+w+VyIyMjmQ4TwBgSKZgJZFHLhYJwgsNzApilUqm2\nbdvW3Nys1+uHh4ebm5srKipiY2OdnJyoGzBEwRyoVKqBgQGBQBATE5OSkuLh4dHZ2VldXf3N\nN980NDT4+vp2dnZKpdLXXnsNXdHBDCGRAuOQRS0aCsKJj35OCASC0NBQpsMB63Ls2DGZTBYU\nFLR79+5f/epXg4ODUqn02rVr8fHxo2tCDFEwvQcPHhw8ePCjjz66cuUKNSxtbW2nT5++fPny\nqKio4eHhmpoa6mtvg4ODfn5+vr6+TIcMMAYkUmAKsugEgKYy1uLOnTszZsxgOgqwIkqlcsqU\nKWlpaSMjI3/729/o8o/qNubm5iYSiQQCAX0/hiiYXnt7e2ZmZk9Pj6ur62uvvZaUlDT6y929\nvb2lpaUXLlzo6uoKDw8XiUSMhAowHkikYGLIohMDVgitxej/PwFeHoVCsXPnztbW1s7OzuTk\n5JiYGPqniIgIQkhlZaXROiGGKJiYRqPJzMzs7OwMCQkRiUQxMTEODg6jb+PxeGFhYatXr1ap\nVNSgxX48MFtIpGBKyKITBnbxAsDz0mq1Wq3W8IqDg4ODg0NZWVlXV5e9vb3R/ampqampqUql\nMjMzs6Ojw4SRAvyf7777Ti6XCwSCffv20bMTiURy8uTJb775RqfTGd7MYrGWLl1KCCkpKWEg\nVgAA84MsOmHYMh0AAFg2rVabl5dHCPnjH/9oY2NDXeTz+SKRKDMzU6FQiMXi1atX0z9RUlNT\nCSFnzpy5fv3666+/bvqwAe7cuUMIWbVqFfVKWy6XFxQUyGQyGxsbnU5XUVGRk5Nj2BLd2dmZ\nEHLr1i2mAgYAMCvIohMGVggB4Llotdr+/v6GhgajtT6qJvT29r579+5HH300+rhyamqqSCRC\nNQhMmTp1KiFEIpG0trYWFRVt3rxZr9fn5+cXFRUJBIKbN282NTXRN4+MjJw4cYIQYnjwFQDA\nmiGLThhYIbQYWq1WLBbX19ezWKzQ0NDExEQul8t0UACEx+P96U9/6urq8vb27uzsdHNzG71O\nWFZWRgjJyMgw+gRteHg4AxEDEEIISUlJqaqqqq6urq6udnZ23rBhw4oVK1gsll6vp8bwyMgI\nffOPP/54/fp1BweHtWvXMhcyWAXq9Rk+2A3mD1l0wkCXUcvQ3t6ek5PT2tpKX/Hw8Ni+ffvo\nZmIKhcLb29u00QEQQkh7e/uuXbuCgoIM944SQlQqFbV3NDk5eXRNCMAgnU5348YNnU4XGRlJ\n90L497//ffToUT6ff/z4ccORXFlZOWnSpODgYIaChYlGp9Ox2WzDlNjd3V1YWFhTU8Plchcs\nWLBmzRq67ZYhPOjBfCCLTgzoMmoBent7d+3a1d7e7uXl9eabb8bFxT1+/LilpeXy5cszZ870\n8PCg7xSLxdnZ2Y6Ojug6DabH4XCqq6slEklLS0tCQgL95Vl7e/uEhISqqiqJRKJUKuPi4lAT\ngplgs9ne3t4+Pj4cDocQotfrv/zyS2pTU0ZGhr+/v+HN3t7eU6ZMYSJMmICo09cSiYROiSqV\natu2bc3NzXq9fnh4uLm5uaKiIjY21qgmxIMezAqy6MSAM4QWoKioqKurKzg4+ODBg2+88UZK\nSopIJFq7dq1Go8nNze3v76fv7OnpGRkZefjwIYPRgtWi9o6GhoZWVlbm5uYathejzxOWlZVV\nVVUxGCTAk9TW1u7evfvkyZOEkHXr1s2fP5/piGAiGxgYUCgUZWVlhw4dovZq/f3vf+/p6QkK\nCvrggw+OHDmSnJzc0dExuhUzHvRgtpBFLRdWCC1Afn6+RqPJysoyXAwMCwtTKBSNjY1sNjsy\nMpK+GBkZuWjRIoYiBWtna2s7f/58mUz2pHVCT0/PpKQkZoMEGE2tVufm5t69e1cgEOzYsQOj\nFF42Ho9ntHXi6NGj9vb2+/fvFwgETk5O8fHxZKxPtuJBD+YJWdSioSA0d3q9nnrXkpaWZtS4\nf9KkSWVlZUNDQ8uXL6cvuru7mzpEsFZ6vf7mzZvV1dV9fX2enp5U7ff0mhAnB8A88Xg8oVAY\nGhq6adMmLy8vpsMBq2C0nb6zszM5OTkmJoa+ISIigoxVE+JBD2YIWdSioSA0dywW6/Lly/39\n/VFRUYYrhISQ/v7+CxcucLnc1atXMxUeWK2urq69e/f+85//vHHjxuXLl7///vvg4GDqbMBT\nakIAs+Xg4ODj44MDrmBKhjXhwMBAXFxcSEiI4Q1PqgkBzBCyqOVCQWgBNBpNXV3d/fv3k5KS\nDBcJz507d/v27YiICOzSBhPr7e3dvn27XC7n8/kpKSmBgYF1dXVisXj69OnUe0HUhAAA40HX\nhP39/b29vUuWLDHKlnRN6OHhYVQuAgC8ECgILUBQUFBNTU1zc3N9ff2sWbMcHR31en1xcXFR\nURGLxcrIyHBzc2M6RrAueXl5P/74Y2hoaG5ublxcXFdXV1VVlVarvXr16pg1oa+vr5+fH9NR\nAwCYI7om/Omnn3p6eka3Yo6IiIiIiEhMTGQqQgCY2PAdQsvQ29u7d+/eu3fvstlsX1/f3t5e\nlUpFCFm/fv0vf/lLpqMD63L79u0dO3a4ubkdPHjQ2dn5woULH3/8sV6vX7Ro0cWLF+3s7DIz\nM6Ojo6mbh4aGrly5kpyczGzMAABmDp9sBQCmYIXQMvB4vIULF2o0mpaWlp6enqGhocmTJ6en\npy9btozp0MDqXLp0SSqV/uEPfwgMDLx27Vp+fr5er//d73739ttv//TTT/fu3TNaJwwICGA6\nZLAiSqWysLDw888/r6ysdHJywve7wVLgk61gJpBFrRBWCC3M0NBQa2srh8Px8/PDowJMTC6X\nazQaf3//48ePr1+/fmBgYOPGjQMDA6mpqampqYSQ06dPl5aW9vX12djYHD58WCAQMB0yWBe1\nWr1ly5aenh76yooVKzZu3Gh0KEuhUGCKA+YJ64TALGRR64QVQgtja2s7ZcqUSZMm4SEBJqZW\nq3ft2lVaWhofH5+UlMRms4uLi6uqqqKiojIyMqh7Tp8+zePxNm3a9Morr8ydO5fZgMEKHTly\npL6+PjAwMCMjY86cOU1NTVKptKOjY+7cuXTOFIvF2dnZjo6OM2bMYDZagNEM1wmnT5+OOTeY\nGLKodbJlOgAAsAynTp1SKpURERH050/a29sJIXST2+Li4tu3b7/66qtxcXFxcXGMBQpW7MaN\nGx4eHu+//76DgwMhZPbs2bt37xaLxYSQLVu2ULOZnp6ekZGRhw8fMhsqwJPw+XyRSHT16lUk\nUjA9ZFHrhBVCAPgZSqXS3t6+oKDA1dU1NzeXx+NR1/v6+q5fv65Sqdzd3c+fP3/mzBkWi7Vp\n0yajD2YCmMxXX32VkpISGRlJ/SuPx0tISKipqZFIJPQb7rCwsMjIyEWLFjEbKsBT2NvbBwcH\nMx0FWCNkUeuEFUIAeBqFQpGZmRkTE8Nms5cuXWpvb0//lJSUJBaLpVLp3r17qSvr1q0LDw9n\nKFKwUiqV6vTp042Nje7u7ra2tnZ2doa/urq65uTkGL3hDgsLYyZWAADzgywKWCEEgKfR6XTl\n5eUSiWRwcDA6Ojo0NJT+ic1mz5s3z9bWdnh4OCAgIC0tDe8LwcRUKtXWrVtlMllvb29bW9vg\n4ODoT3sbvuGeNm2aj48PgwGDNbh9+/aUKVOozXVyufyvf/1rTEwMl8tlOi6AMSCLAkFByBS0\n9AVLQXc46O/vf/DgwbJlywwfEjY2NuHh4UuWLElMTKS+MwFgSoWFhQ0NDQEBAenp6VFRUY2N\njW1tbaM/7U3NZgQCQVJSEoPRgjWoqanJzs5ua2ubO3euQqHIyspqaWkZHByMjY1lOjSAMSCL\nAkFByAi1Wv3uu+/eunWrv7+/o6OjvLxcrVbHxMSMbhyqUChcXFwYCRKARteEcrm8u7s7Pj4e\nTW6BcdTR1sLCQhcXlwMHDvj7+wcEBCxYsOBJn3Hj8XhBQUEMBgxWwsnJqaampra29t69e//4\nxz9UKtWsWbM2b95sazvGIR085YFByKJAQ0HIgPG09CXo6gvmhK4JpVIpvpgMjFMoFDt37mxt\nbe3q6lqxYgXd/wCf9gbGcbnchISE2tpamUw2NDQ0a9asPXv2jLlfFE95YBCyKBhi//wt8KLR\nLX3nzJmzYMGCDz/80M/PTywWf/jhh3q9nr4NXX3BrFCd0L29vcvKyg4dOmQ4VgFMzMHBwcHB\noaysTKlUGvU/wEAF09PpdJWVlfRgGxgYUKvV1D/z+XyjIUrDUx4YhCwKhrBCyIDxtPQlhKCr\nL5gbvDgEM2F4tHV0/wN82htMSSwWi0Sib7/9ls6KdnZ2MpnMzc3Nycmprq5u9A4gCp7ywCBk\nUTCEgtBEVCrVp59+evr06erq6r6+vvDwcMMtIk+qCd3d3ZkLGWAMeEiAmaCH4v3790f3P6B+\n9fT0RP8DeHl0Ol1hYeGpU6cGBgaEQuEvfvGLKVOmEEJsbGxeffXVhQsXJiYm1tXV1dbWGtWE\n169fd3Fx4XK5eMoDg5BFgYaC0BTQ0hcmEjwkwEw8fckan/aGl+3gwYNlZWU8Hm/Lli1vvfXW\n5MmT6Z9sbGxsbGyo84R0TRgXF8dmsy9dunTgwIHq6urFixeP2WkGwGSQRYGCgtAU0NIXzIpW\nqx0cHDQ8MyCXy5VKJZ/PH+d/AQ8JMBPYxgxMuXbt2qlTp2xtbXNycmJiYp50m2FNSHWaOXv2\nrF6vX7ly5ezZs00ZMMCYkEWBoCB84Yym2mjpC+ZGq9Xm5eUVFxfPmzePGqhqtXrXrl2lpaVx\ncXGurq5MBwjw38FsBhjx8ccfd3V1/eY3vxn9Dre1tfXWrVsajYZ6y8blcufPn9/U1NTQ0HDv\n3j02m71u3bpf//rXTEQNMAZkUUBB+CIZTbXR0hfMDTVEKysrh4eHhULhpEmTCCFHjx6VyWQz\nZsxYuXIl9i+BJcLRVjC948ePazSa3/72t4Y7RW/fvp2Xl3fq1Knvv//+woULjY2NsbGxdnZ2\ndnZ2SUlJvr6+vr6+aWlpQqGQwcgBRkMWtXIoCF+Y0VNtnU5XXl4ukUgePXoUGxtr2EUGNSGY\nHj1EnZyccnJypk2bRq1gFxQUuLq65ubm8ng8pmMEeEY42gomdvHixb6+vuDg4MDAQELI0NDQ\nZ599VlBQ0NPT4+3tHRYWplQqW1tbm5ubqT6iLBbL19c3IiKCehMHYG6QRa0ZCsIXY/RUm6Cl\nL5gToyEaEBBAr2B3dnYuX76cXsE2pFAoXFxcTB8tWCEcbQWLc+PGDalUqtfrb926lZ+fX1dX\n5+rq+s4776SnpycmJgqFwrKysra2tpkzZ3p6ejIdLMDPQxa1WigIX4DRU236J7T0BXNAD1EO\nh5Obm0u9z6ZXsAcHB6Ojo0NDQ43+lFgszs7OdnR0NFzcBngZcLQVLE5QUNCDBw/u3LkjlUqp\nRJqYmLhnz56QkBDqBldX15s3b3Z2dgYGBiKLAoA5Y//8LfBUhlPt9957z7AapPD5fJFI5O3t\nXVZWdujQIb1eb/TrqlWrTBgvWB16iBJChoeHKyoqqOv0yCSEXLx4UafTGf3Bnp6ekZGRhw8f\nmjhgsDb0EO3s7FQqldTFU6dOKZVKf39/Dw8PZsMDGBOLxUpPT9+3b9/rr7/+1ltvHT58eNu2\nbYYvL7Ra7f379wkhGMMAYOawQvhcDKfaIyMjzs7OY+67w4lBYIrh8vWaNWtkMplMJhseHqYG\nKj0y5XJ5d3d3fHy84cgMCwuLjIykTr8AvCQ42goWzcvLKzo6Ojw8fPQ69hdffFFdXc3n8zdu\n3GhjY8NIeAAA44GC8Nk9faptBDUhmJ7RVFsoFAYFBVVUVIxZE0ql0tEj093dnbnwYeJ7tqOt\nAObv22+/PXHiBCFk69atfn5+TIcDVkSpVBYWFn7++edUakWLChgPFITPaDxTbSPoIgMmVlJS\ncu7cOcOjrV5eXk+pCfG2Akzp2Y62EvQ6AvP2+PHjTz755OzZs4SQt99+e+nSpUxHBFZErVa/\n++67t27d6u/v7+joKC8vV6vVMTExRo91ZFEwgoLwGY1zqm0EXWTAlAIDAzUazfr16w2PtqIm\nBHPwpP32hs2ZHzx4sGzZMsPmzAS9jsCM6XS64uLivLy8+vp6Lpe7ZcuWFStWMB0UWJcjR47U\n19cHBgZmZGTMmTOnqalJKpV2dHTMnTuXfqwji8JoKAif0fin2kbQ0hdMhsVizZ49e3TX/p+t\nCbGCDS/V8xxtvXHjRl1d3YwZMyIiIpj7GwCMgc1ml5eXS6VSoVC4c+dODFEwvYKCAhcXlwMH\nDvj5+fn7+y9cuLCmpkYikRjWhMiiMBoKwmf0X021AczNU2pCrGDDS/WcR1vR6wjMWUxMTGJi\n4sqVK7EfDxjx1VdfpaSk0JNPHo+XkJBgVBMii8JoKAhfPNSEYBGeVBNiBRtequc/2opeR2DO\nUAqCialUqk8//fT06dPV1dV9fX3h4eGGe0HHrAmRRcEICsKXAjUhWAQMVDA9HG0FAHhRVCrV\n1q1bZTJZb29vW1vb4OBgb2/vkiVLDE9fG9aE06ZN8/HxYTBgME8oCF8WTLXBItADNSIiAscJ\nwARwtBUA4L+l1WoHBwft7OyMrhcWFjY0NAQEBKSnp0dFRTU2Nra1tfX09Bi9QaNqQoFAgCMh\nMCYUhC8RptpgEby8vBITE4VCIdOBgLXD0VYAgNGoo9fFxcXz5s2ja0KlUmlvb19YWEh1kfH3\n9w8ICFiwYMGTdlXweLygoCCG/gZg7lAQvlyYaoNFcHZ2ZjoEAEJwtBUA4P+jG3ENDw8LhcJJ\nkyYRQhQKxc6dO1tbW7u6ulasWEFvQ8NOe3g2KAhfOky1AQDGD/vtAQAoRm2Zp02bRl3X6XTl\n5eUSieTRo0exsbGGXWRQE8IzYP/8LQAAACYUHR2dlZXF4XA4HA7TsQAAMMOoGjRsxMXn80Ui\nEXWs+tKlSzqdzvAP0r+WlZVVVVWZOm6wQCy9Xs90DAAAAMba29ubyn7fAAABjUlEQVS9vLyY\njgIAgAF0NcjhcPbv3x8YGDj6HpVKlZmZqVAokpOTMzIyjFYCVSrV1atXV61aZaqQwYJhyygA\nAJgj7LcHAOtEV4OEkJGREWdn5zE3zz99dyhOX8P4oSAEAAAAADALhjtF16xZI5PJnnKgGicG\n4YVAQQgAAAAAwDyjc4NCofBnm2yhJoTnh4IQAAAAAIB5JSUl586dM+wiM57Gy4Y14fTp06lm\nMwDjh4IQAAAAAIB5gYGBGo1m/fr1hj1Fx18Tenp6JiUlmTBemCDQZRQAAAAAwKzV1NS8//77\nw8PDb7755tq1a5kOByYUrBACAAAAAJi18awTAjwbFIQAAAAAAOYONSG8JCgIAQAAAAAsAGpC\neBnYTAcAAAAAAADjEh0dnZWVxeFwOBwO07HABIGmMgAAAAAAlqS9vd3Ly4vpKGCCQEEIAAAA\nAABgpbBlFAAAAAAAwEqhIAQAAAAAALBSKAgBAAAAAACsFApCAAAAAAAAK4WCEAAAAAAAwEqh\nIAQAAAAAALBS/wPjBYsLfaJrWwAAAABJRU5ErkJggg==", - "text/plain": [ - "plot without title" - ] - }, - "metadata": { - "image/png": { - "height": 180, - "width": 600 - } - }, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Warning message:\n", - "“\u001b[1m\u001b[22mUsing \u001b[32msize\u001b[39m for a discrete variable is not advised.â€\n", - "Warning message:\n", - "“\u001b[1m\u001b[22mRemoved 3 rows containing missing values (`geom_point()`).â€\n", - "Warning message:\n", - "“\u001b[1m\u001b[22mUsing \u001b[32msize\u001b[39m for a discrete variable is not advised.â€\n", - "Warning message:\n", - "“\u001b[1m\u001b[22mRemoved 3 rows containing missing values (`geom_point()`).â€\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAAFoCAIAAADIFpV9AAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdeXxM9/7H8e+ZLStJCCKWJCLXHrtqJUKLNPat9lxquaq0VVRRS9R2b1G9\nddEStVRbpYtdqRLCT0UkdqEiIqsgkUS2SWbm98e0c3NVCU5ysryejz7u48z3fOd839Pbr/GZ\nc873SCaTSQAAAAAAKh6V0gEAAAAAAMqgIAQAAACACoqCEAAAAAAqKApCAAAAAKigKAgBAAAA\noIKiIAQAAACACkqjdACFpaamRkREKJ0CAAAAABRQ0QvC6OjodevW+fj4KB0EAAAAAErU9u3b\nK3pBKIRo2LDhW2+9pXQKAAAAAChR+/fv5x5CAAAAAKigKAgBAAAAoIIqdZeM3r1795tvvomI\niEhPT3dwcGjSpMnEiRNtbGzMe41G444dOw4cOHDnzh1nZ+du3br1799fpfpvWfvEDgAAAAAA\ns9JVKcXGxr7zzjuhoaGNGzfu37//Cy+8EB8fn52dbekQHBy8ceNGDw+PMWPGeHl5bd68ee3a\ntYWP8MQOAAAAAFB08fHxkiT17dtX6SDFohSdITQajUuXLq1UqdL8+fNr1Kjx5w5xcXF79+71\n8/ObOnWqEKJHjx5arXb//v0BAQFubm5F6QAAAABAKeHh4atWrTp69GhSUpJWq3V3d/f39588\neXKtWrWUjlZxlaIzhOHh4bdu3Ro5cmSNGjVycnL0ev1DHUJDQ00mU69evSwtvXv3NplMx44d\nK2IHAAAAACXPZDK9//77bdu23bRpU/Xq1YcNG9anT5/c3Nxly5b97W9/++6775QO+DjVq1cP\nDQ1dsmSJ0kGKRSk6Q3jmzBlJkmxtbd95552YmBhJkho3bjxu3Lh69eqZO1y/fl2tVnt6elre\n4uHhodPpoqOji9gBAAAAQMlbsGDBRx99VKdOne+++65du3aW9k2bNo0fP37IkCE///xz586d\nFUz4GDqdrhw/t7wUnSFMTExUq9WLFy92dXV97733Ro4cGRMTM2vWrOTkZHOH1NRUBwcHtVpt\neYskSU5OTvfu3StiB7O33367zx82bNhQ/J8MAAAAqLhu3ry5YMECnU63b9++wtWgEGLkyJEr\nV640GAwTJkwwGo2Fd/3666+DBg1ydXW1srKqWbNmt27dtm3bVrjDyZMnBwwY4OLiotPpXF1d\nR4wYERUVVbjDunXr+vbt6+HhYWNj4+jo6Ofnt3379sIdzp49K0nSqFGj4uLihg0b5uzsbGNj\n07Zt23379hXu9sh7CJ948LKiFBWEOTk5BQUFTZo0ef/99319ffv37z9jxozs7Ozvv//e3CEv\nL0+r1T70Lp1Ol5eXV8QOZllZWZl/yM3NLZ5PAwAAAEAIITZs2FBQUDBkyJCmTZv+ee+YMWPc\n3d2vXr169OhRS+Nnn33WoUOHXbt2+fj4TJ06tUePHikpKatXr7Z0WLdunY+PT2hoaPfu3adM\nmeLr67t9+/Y2bdqcOnXK0mf8+PHJycmdO3eePHnygAEDoqKiBg0a9NFHHz0UIC4urm3btlev\nXh00aFCPHj0iIyN79eoVGhr6+A9VxIOXfqXoklErKyshROEzxS1atHBycrp48aKlQ05OzkPv\n0uv11tbWRexgtn79esv26dOn9+zZI9MnAAAAAPCw48ePCyH8/f0fuVelUnXp0iU4OPjEiRPm\nWuD8+fOTJk1ydHQ8fvx4o0aNLD3j4+PNG1euXJk4cWLXrl1//PFHywPqzp8/36FDh3/84x/n\nzp0zt8TGxtapU8fy9uzsbD8/v6CgoHHjxjk5OVnaDx8+PHv27A8//FCSJCHEli1bAgMDly5d\n6uvr+5gPVcSDl36l6Axh1apVhRAP/etzdHR88OCBebtKlSrp6ekGg8Gy12QypaWlmd9YlA4A\nAAAASlhSUpIQom7dun/VwbwrMTHR/HLNmjUGgyEoKKhwNSiEqF27tnlj9erV+fn5s2bNysrK\nuvsHV1fXV1555fz587GxseZu5oLNZDKlp6ffvn07IyOjX79+OTk5D539q1u37rx588zVoBBi\n+PDhDg4OYWFhj/9QRTx46VeKzhB6eXmFhITcvXvX0mIyme7du+fo6Gh+6enpGR4efuPGDS8v\nL3NLTEyMXq+3rCLzxA4AAAAASpjJZBJCWCquv2Lp8OuvvwohAgIC/qrnyZMnhRB+fn6P3JuU\nlGR+5lxkZGRQUNCRI0cyMzMLd0hISCj8smXLlhrNf8siSZJq167922+/PT5tEQ9e+pWigvDF\nF1/csGHDTz/91LFjR5VKJYQ4fvx4RkbGyy+/bO7g6+u7bdu23bt3T5kyxdyye/duSZIsJ3Of\n2AEAAABACatZs2ZUVFRsbGyHDh0e2eHWrVvmbuaX9+/fF0I85uGE5jUjd+3aZbletDDzecWI\niAgfHx9ra+sJEyY0b97cvPbkoUOHli9f/tAKI5bzTxYajabwVYd/VvSDl36lqCB0dnYeMmTI\nli1bZs2a1b59+zt37uzfv9/Z2XnAgAHmDnXr1u3evfvevXvz8/ObNm16+fLl0NDQV1991d3d\nvYgdAAAAAJQwHx+fI0eOHDhwYNiwYX/eazQaDx06JISwlIvmCi0hIaF+/fqPPKCDg4MQwsXF\npW3btn816Mcff5yTk7Nr164uXbpYGs+cOfMcn6OEDl7CStE9hEKIQYMGvfXWW1lZWV9++WVI\nSIivr+/SpUvN/3+bjRs37u9//3t0dPT69euvXbsWGBg4fvz4wkd4YgcAAAAAJWnUqFFqtXrr\n1q2XLl36897169ffvHmzQYMGlktA27dvL4TYv3//Xx3Q3GHr1q2PGfTmzZuWnhaHDx9+6vQl\nfvCSZqrYwsLC5s6dq3QKAAAAoDybM2eOEKJOnTphYWGF2zdv3mxlZaVWq3/55RdL4/nz59Vq\ndZUqVa5cuVK4c1xcnHnjwoULGo1Gq9UWfpfJZMrMzNy6dat5OzAwUAjxww8/WPZ+9dVX5gpo\nxYoV5pbIyEghxMiRIx9K27x5c7VaXXhcIUSfPn0sLUU5uMlkWrJkib+//969e5/0r0cxAQEB\npeiSUQAAAADlUlBQUFZW1scff/zCCy+88MILTZo00ev1v/7662+//WZjY/PNN99Y1g0RQjRr\n1mzlypWTJk1q0aJF7969vby87t27Fx4eXqlSpSNHjgghmjZt+vnnn48fP75Lly7dunVr2bKl\nwWCIioo6fPiwu7v74MGDhRCTJk36+uuvhw4dOnjwYDc3t7Nnz+7bt++1116T5fHxRTz42bNn\nDxw40K9fv+cfsfhQEAIAAAAoXiqVavny5YMHD161atWxY8ciIyO1Wq27u/vUqVMnT55seZ6E\nxYQJE7y9vZctWxYSErJjxw5nZ2dvb++xY8daOowePbpVq1Yff/xxSEjIkSNH7OzsXF1dAwMD\nzdWgEKJdu3aHDh2aO3fujh07hBBt2rQ5ePBgYmKiLAVhEQ9+7do1rVbbrVu35x+x+Egmk0np\nDEoyP5h+/vz5SgcBAAAAUH6kpqZWq1btjTfeWLVqldJZ/lL37t1L16IyAAAAAFAOHDlyxMrK\navbs2UoHeQIKQgAAAACQ2YABA7Kzsy0PVyy1KAgBAAAAoIKiIAQAAACACoqCEAAAAAAqKApC\nAAAAAKigKAgBAAAAoIKiIAQAAABQJH369JEkaeXKlX/e9euvv2o0mr/97W9ZWVklHwzPjIIQ\nAAAAQJEEBwfXqFFj+vTply9fLtyelZU1YsQISZK2bNliZ2enVDw8AwpCAAAAAEVSrVq1DRs2\n5ObmDh8+XK/XW9onT54cHR09d+7cdu3aKRgPz4CCEAAAAEBRBQQETJw48ezZs7Nnzza37Nq1\nKzg4+KWXXpo1a5a5ZevWrb6+vpUrV7axsWnWrNk///nPvLw8yxH27NkjSVJQUNBDR3Z0dKxf\nv77l5dmzZyVJGjVqVFxc3LBhw5ydnW1sbNq2bbtv376H3mgwGJYvX96wYUNra+s6depMnjz5\nwYMHzs7O7u7uj/8s+/fv79q1q6urq5WVVc2aNX18fJYuXVq4w8mTJwcMGODi4qLT6VxdXUeM\nGBEVFfXQQX799ddBgwZZDtKtW7dt27Y9ftxShYIQAAAAwFNYunRpo0aNli9fHhISkpKSMnbs\n2EqVKn355ZdqtVoIMX369KFDh167dm3EiBGTJk0yGAwzZ8709/fPz89/hrHi4uLatm179erV\nQYMG9ejRIzIyslevXqGhoYX7/OMf/5g2bVpeXt6kSZOGDh26Z8+egIAAg8Hw+CNv3ry5e/fu\nFy9e7N279/vvv9+3b1+VShUcHGzpsG7dOh8fn9DQ0O7du0+ZMsXX13f79u1t2rQ5deqUpc9n\nn33WoUOHXbt2+fj4TJ06tUePHikpKatXr36GT6oYU8UWFhY2d+5cpVMAAAAAZUlkZKROp6tT\np46/v78Q4osvvjC3Hzt2TAjh4eGRkpJibsnPzw8ICBBCLFq0yNyye/duIcS8efMeOqaDg4On\np2fhIcwFy+zZs41Go7nxyy+/FEL06tXL0u3QoUNCiObNmz948MDckp2d3aZNGyGEm5vbYz7C\nSy+9pFarExISCjempqaaNy5fvqzVav39/bOzsy17z507Z29v7+3tbXmpVqurVKly+fLlwgeJ\ni4t7zLilSkBAAGcIAQAAADydFi1aLFiwIC4u7sCBA/3793/99dfN7V988YUQYu7cudWqVTO3\naDSa5cuXS5JU+ORb0dWtW3fevHmSJJlfDh8+3MHBISwszNJh8+bNQoj58+dbFrOxsbFZuHBh\nUQ6uVqs1Gk3hFicnJ/PG6tWr8/PzZ82alZWVdfcPrq6ur7zyyvnz52NjY4UQa9asMRgMQUFB\njRo1KnyQ2rVrP8MnVQoFIQAAAICnNm3aNBcXFyHEsmXLLI0RERFCiM6dOxfu2ahRo5o1a8bE\nxNy/f/9pR2nZsmXhmk2SpNq1a6elpVlazCcSfX19C7/Lx8fniUceOnSoXq9v0qTJpEmTvvvu\nu+Tk5MJ7T548KYTw8/Or9r927twphEhKShJC/Prrr0II8/nPskvz5C4AAAAA8L9UKpWVlZUQ\nwsbGxtKYnp4uhDAXioXVrFkzMTExPT3d0dHxqUb5c3+NRlP4/sCMjAyNRlOlSpXCfezs7J74\n9ItJkyY5OTmtWrVqzZo1q1atEkK8+OKLS5cu7dChgxDi3r17Qohdu3YV/nQW5lOC5vq2Vq1a\nT/WJShsKQgAAAADycHBwEEIkJye7ubkVbjefUjPvValUQoiCgoLCHfLz87OyspydnZ92xMqV\nK8fGxqamphauCbOysopytOHDhw8fPjwjI+PkyZM7duxYv359QEDApUuX6tSpY47q4uLStm3b\nv3q7uVhNSEgovDhqmcMlowAAAADk0bJlSyFESEhI4carV68mJSV5eHiYKyjzfXpxcXGF+0RG\nRj5UIhZRixYthBDHjx8v3PjQy8erXLmyv7//mjVrpk6dmpmZefjwYSFE+/bthRBbt259zBvN\nffbv3/8MsUsPCkIAAAAA8hg9erQQYsGCBeZLLoUQBQUFU6dONZlMY8aMMbc0a9bM2tp6586d\nltv20tPTp0yZ8mwj/v3vfxdCBAUFZWdnm1tyc3Pnzp37xDf+/PPPD5Wgd+/eFULY2toKISZN\nmqTRaFauXGmuDy0ePHjw7bffmrfffPNNtVodFBT00MMJ4+PjLdsbN2785JNPUlJSnuGjlQwu\nGQUAAAAgj44dO06ZMuXjjz9u0qTJwIEDbW1t9+7de/nyZV9f3/fee8/cx97efsKECStWrGjR\nokWvXr30ev3PP//cunXrypUrP8OIXbp0GTly5KZNm5o2bTpgwABJkn788UcXFxdHR0fztal/\nZejQoRqNxs/Pz83NTa1Wnzp16siRI02aNOnZs6cQomnTpp9//vn48eO7dOnSrVu3li1bGgyG\nqKiow4cPu7u7Dx48WAjRrFmzlStXTpo0qUWLFr179/by8rp37154eHilSpWOHDliHmXhwoXR\n0dE+Pj7Vq1d/hk9XAigIAQAAAMhm+fLlrVq1Wr169aZNm/Lz8+vXr79w4cKpU6fqdDpLn6VL\nl1auXHnjxo2bNm1ydXUdM2bMnDlznrlkWr9+fZMmTdatW/fpp59Wq1ZtwIABQUFB1atXf+g+\nxocsXLjwwIED4eHhe/bs0Wq1bm5uCxcunDhxomUVmdGjR7dq1erjjz8OCQk5cuSInZ2dq6tr\nYGCguRo0mzBhgre397Jly0JCQnbs2OHs7Ozt7T127Nhn+yCKkEwmk9IZlHT69Ok9e/bMnz9f\n6SAAAAAA5HHu3LkWLVoMGTLkm2++UTpLqda9e3fuIQQAAABQhpnv/bPIzs42X57ar18/hRKV\nJVwyCgAAAKAMCwoKCgkJ6dSpk4uLS2Ji4r59+2JjYwMCAl577TWlo5UBFIQAAAAAyrBXX331\n2rVr3333XVpamkajadCgwaRJk9555x1JkpSOVgZQEAIAAAAow3r27GleGhTPgHsIAQAAAKCC\noiAEAAAAgAqKghAAAAAAKih57iGcNGnSU/WfNm2au7u7LEMDAAAAAJ6NPAXhqlWrnqr/iBEj\nKAgBAAAAQFmyrTK6Y8eODh06PLFbXl5e7dq15RoUAAAAAPDMZCsIHRwcnJ2dn9gtNzdXrhEB\nAAAAAM9DnoLw5MmTjRs3LkpPKyurkydPNm3aVJZxAQAAAADPTJ6CsH379kXsKUlS0TsDAAAA\nAIoPj50AAAAAgApKtnsICzOZTIcOHTp16lRqaqrRaCy865NPPimOEQEAAAAAT0v+gjAzMzMg\nIODEiROP3EtBCAAAAAClhPyXjM6bN+/kyZOLFy++fPmyEGLPnj1Hjx7t1q1b27Ztb968Kftw\nAAAAAIBnI39B+OOPPw4aNGjmzJkeHh5CiKpVq3bs2HHfvn0mk+k///mP7MMBAAAAAJ6N/JeM\nJiQk+Pr6CiFUKpUQIj8/XwihVquHDBmycuXKpUuXyj4iAAAobcJ2XL5/+4HSKVBUGivNy6Na\nKZ0CgALkLwjt7OzMRaBOp7O2tk5MTDS3V65cOTk5WfbhAABAKXT0q7M3IhKVToGisnWwpiAE\nKib5C8J69epdvXrVvN28efOtW7cOGjTIYDB8++23tWvXln04AABQCvWe4pOVlqN0CpnFnk8+\nuO50u94Nm3f1UjqLzNQ6tdIRAChD/oKwW7duX3zxxb///W+tVjt27Nhx48bVr1/faDTevHlz\n4cKFsg8HAABKoQYv1lU6gvzUWrVYd9q1QbVW3RsonQUA5CH/ojIzZsz45ZdfzI8fHDt27LJl\ny6ytre3t7YOCgmbMmCH7cAAAAACAZyP/GUIHBwcHBwfLy6lTp06dOlX2UQAAAAAAz0n+M4QA\nAAAAgDJB/jOEFkajMTMz02QyFW50dHQsvhEBAAAAAEUnf0FoNBo///zzTz/99MaNG3q9/qG9\nD9WHAAAAAAClyF8QLly4cN68edWrV+/Vq5ezs7PsxwcAAAAAyEL+gnDdunWtWrUKDQ21tbWV\n/eAAAAAAALnIv6jM7du3hw0bRjUIAAAAAKWc/GcI69evn56e/pwHuXr16vTp000m06JFi5o1\na2ZpNxqNO3bsOHDgwJ07d5ydnbt169a/f3+VSlX0DgAAAAAAM/krpcmTJ2/evDkjI+OZj2A0\nGtesWWNlZfXnXcHBwRs3bvTw8BgzZoyXl9fmzZvXrl37VB0AAAAAAGbynCHcsWOHZbt69ep1\n6tTx9vaeMGGCp6enRvM/Q/Tt2/eJR9u7d+/t27e7d+/+ww8/FG6Pi4vbu3evn5+f+Un3PXr0\n0Gq1+/fvDwgIcHNzK0oHAAAAAICFPAVhv379/tw4Y8aMPzc+8bETaWlpX331VWBg4J8fWREa\nGmoymXr16mVp6d279+HDh48dOxYYGFiUDgAAAAAAC3kKwu3bt8tyHCFEcHBwjRo1AgICdu7c\n+dCu69evq9VqT09PS4uHh4dOp4uOji5iBwAAAACAhTwF4cCBA7Oysuzs7J7zOOfOnTt+/PiS\nJUseuQxMamqqg4ODWq22tEiS5OTkdO/evSJ2MFu0aFFCQoJ528HBQafTPWdsAAAAACiLZFtl\ntFq1auYlPXv16uXk5PQMRygoKPjss8/8/PwaN278yA55eXlarfahRp1Ol5eXV8QOZhcuXLh+\n/bp5u0GDBvXr13+GtAAAAABQ1slWEL733nvff//9yJEjtVpt586d+/fv37dv3xo1ahT9CD/8\n8ENaWtrrr7/+Vx2srKxycnIeatTr9dbW1kXsYLZ+/XqDwWDePn/+/M8//1z0kAAAAABQbsj2\n2In58+dfvHjx2rVrH374YVpa2htvvOHq6urr67tixYrY2Ngnvj0jI2Pbtm1dunTJzc1NSkpK\nSkrKzMwUQty7dy8pKcm8FE2VKlXS09MttZwQwmQypaWlVa1a1fzyiR3M7OzsKv/hkQ+3AAAA\nAICKQObnEHp5ec2YMSMsLOzWrVsff/yxSqWaNm2au7t7mzZtFi9eHBUV9VdvzMjI0Ov1u3bt\nGv+H7777Tgjx8ccfjx8/3nzNp6enp8FguHHjhuVdMTExer3esorMEzsAAAAAACzkfzC9WZ06\ndd55552jR48mJyevXbvW2dk5KCioUaNGjRs33rNnz5/7V61a9f3/9fLLLwshhg4d+v7775vX\nffH19ZUkaffu3ZZ37d69W5IkX19f88sndgAAAAAAWMh2D+FfqVat2rhx48aNG5eenr579+4f\nfvjhypUrPXv2fKibjY1Nhw4dCrekpKQIIZo2bdqsWTNzS926dbt377537978/PymTZtevnw5\nNDT01VdfdXd3L2IHAAAAAIBFsReEFg4ODiNGjBgxYsTzHGTcuHFVq1Y9ePDgqVOnqlatGhgY\n2L9//6fqAAAAAAAwK7mC8Gn169evX79+DzWqVKqBAwcOHDjwr971xA4AAAAAADP5C8KHnvFg\nIUmSjY2Nm5ubv7//tGnTnJ2dZR8aAAAAAFB08i8q07NnT09Pz7y8vOrVq/v4+Pj4+FSrVi0v\nL69evXpt27a9f//+v/71rxYtWiQkJMg+NAAAAACg6OQvCN999924uLgtW7bExsYeOnTo0KFD\nt27d2rx5c1xcXFBQUExMzFdffZWUlDRv3jzZhwYAAAAAFJ38l4zOmDFj1KhRw4cPt7RIkhQY\nGBgWFjZz5syQkJBhw4YdPnz4wIEDsg8NAAAAACg6+c8QRkREeHt7/7nd29s7PDzcvN2+ffvb\nt2/LPjQAAAAAoOjkLwi1Wu3Zs2f/3B4ZGanVas3beXl5dnZ2sg8NAAAAACg6+QvC7t27f/bZ\nZ+vXrzcYDOYWg8Gwbt26zz//vEePHuaWsLAwHhYPAAAAAMqS/x7CpUuX/vrrr2PHjp0xY4aX\nl5fJZLp+/frdu3c9PT0/+ugjIURubu6tW7eGDRsm+9AAAAAAgKKTvyCsVatWZGTksmXLdu7c\nef78eSFEvXr1JkyYMG3atMqVKwshrK2tjxw5Ivu4AAAAAICnIn9BKIRwcHBYsGDBggULiuPg\nAAAAAABZyH8PIQAAAACgTJDtDGFubm5RullbW8s1IgAAAADgechWENrY2BSlm8lkkmtEAAAA\nAMDzkPMeQmtr6/bt26vVahmPCQDFIe5yyuJem5VOgacQMLF97yk+SqcAAKC8ka0g9PT0jI6O\nvnbt2qhRo0aPHu3p6SnXkQFAdjprTd2mNZROIb+Um2m5D/S1G1dXqSSls8jMsYa90hEAACiH\nZCsIf/vtt5CQkPXr169YsWLJkiWdOnUaM2ZM//79i3gpKQCUpBr1qszcGah0Cvl9OnL7leOx\nU7cOsbbTKZ0FAACUAbKtMipJUufOnbds2ZKYmPif//wnPT19xIgRrq6uEydOjIiIkGsUAAAA\nAIBc5H/shKOj45tvvnnmzJnIyMgRI0Z88803rVu3XrZsmewDAQAAAACeRzE+h7B+/fotWrQw\n30z44MGD4hsIAAAAAPAM5Fxl1OLEiRPr16/ftm1bVlbWiy++GBwcPHjw4OIYCAAAAADwzOQs\nCJOTkzdv3vzFF19cvXq1evXqb7zxxpgxYxo1aiTjEBVH5E/Xbp5PVjoFnkLAxPYs4wEAAICy\nRbaCsE+fPvv27TOZTN26dVu0aFHv3r21Wq1cB6+ALh2LOfHtBaVT4Cm8PKo1BSEAAADKFtkK\nwl27dllbW/ft27dWrVonT548efLkI7uxukwRdZ/4YsdhLZROIbN7iRlrJ+xs1tmz5+SXlM4i\nP/sqPGEFAAAAZYycl4zm5uZu3br18X0oCIuoSq3KVWpVVjqFzKzsdEIIO0frcvlAcAAAAKDM\nka0gPH36tFyHAgAAAACUANkKwjZt2sh1KAAAAABACSjG5xACAAAAAEozeQrCjRs3JicX6RkJ\nBoNh48aNd+7ckWVcAAAAAMAzk6cgfP3116OioorSMz8///XXX4+OjpZlXAAAAADAM5PtHsLL\nly9bW1s/sZter5drRAAAAADA85CtIJw4caJchwIAAAAAlAB5CsKVK1c+VX8PDw9ZxgUAAAAA\nPDN5CsJJkybJchwAAAAAQInhsRMAAAAAUEFREAIAAABABUVBCAAAAAAVFAUhAAAAAFRQFIQA\nAAAAUEFREAIAAABABVWMBaHBYCi+gwMAAAAAnpPMBWFqauq8efNat25tb2+v0Wjs7e1bt24d\nFBSUlpYm70AAAAAAgOckz4Ppzc6dO+fv73/79m0hRKVKlWrVqpWRkREREREREbFu3bqffvqp\nWbNmMg4HAAAAAHgesp0hzMnJGTBgwJ07d6ZMmXL9+vWMjIz4+PiMjIxr165Nnjw5KSlp4MCB\neXl5cg0HAAAAAHhOshWE3377bXR09MqVK5cvX+7p6Wlp9/LyWrFixSeffHLt2rXt27fLNRwA\nAAAA4DnJVhDu2rXL3d39jTfeeOTeSZMm1a1bd+fOnXINBwAAAAB4TrIVhOfPnwSbx5YAACAA\nSURBVH/llVdUqkcfUKVSdenS5ezZs3INBwAAAAB4TrIVhLdv33Zzc3tMh7p166akpMg1HAAA\nAADgOclWEGZlZdnY2Dymg52dXWZmplzDAQAAAACek2wFoclkkqUPAAAAAKBkyPkcwu3bt0dF\nRf3V3gsXLsg4FgDgkVSSUekIAACgzJCzIAwLCwsLC5PxgACAp+Jpc7TNiyFCTFY6CAAAKBtk\nKwhPnz4t16EAAEVnvH9LGPJVVT2FEFop20qba2435ecYks5p6rZXNB0AACjVZCsI27RpI9eh\nAABFl39pZ84vH1Yad0hds7ml0ZSf/WBDL2EyVhp/RMFsAACglJPzklEAKCuM965n/zhB6RSy\nUVnZZ65sq67VsoFdvNYmTf+lf97t8yZDvqZWqwfBXZVOJw9di+G6NqOUTgEAQHlTvAVhXl7e\nlStXMjIyvL29HR0di3UsACg6U15m/m+HlE4hs4JbYZVVQqiFISbE3JJ/46iiieSk5tpXAACK\ngZwF4f79+zdu3KjT6caNG9exY8eDBw+OHj06ISFBCKHT6ebMmTN79uzHvD0+Pj4kJOTMmTNJ\nSUkajaZOnTp9+/Z94YUXCvcxGo07duw4cODAnTt3nJ2du3Xr1r9/f5VKVfQOACCEULt4Owal\nKp3iuZmMhtuXhMlgfqUPW5cXuVUIk8rJw7bXx5KNg7ldVaWeZFVZuZQy0VgrnQAAgHJItoLw\n6NGjPXr0MD9pcNu2bXv37u3fv7+trW2fPn30en1oaOicOXMaNmw4cODAvzrCtm3bjh8/3rx5\n85YtW+bl5R0/fnzRokVDhw4dOnSopU9wcPCePXteeuml3r17X758efPmzXfv3n3jjTeK3gEA\nhBBCpZZsnJQO8bwMiZGZa18RxoKH2o1pMQ8297O8tOkaZN1lXslGAwAAZYNsBeGKFSvs7Oy+\n+eYbd3f38ePHBwYGurm5nThxwnylaExMTMuWLVevXv2YgtDPz2/MmDEODr//pD106NDJkydv\n3769T58+tra2Qoi4uLi9e/f6+flNnTpVCNGjRw+tVrt///6AgAA3N7eidAAAM1NeZsGtU0qn\nkIH96P3mDVNBXs7BOQUJF1RSgdDa2/b4SOXsZelWDq6PVVfxMK+kCgAAZCRbQXjmzJnBgwf3\n7NlTCDF//vyuXbvOnDnTct+gh4fH0KFDt27d+pgjtG7duvBLe3v79u3b79q1Kzk5uV69ekKI\n0NBQk8nUq1cvS5/evXsfPnz42LFjgYGBRekAAGbGe9fLzWorhakkIYQQ+Q+yd7ypcBS5Wb8y\n26bbAqVTAABQ3shWECYnJ3t6/v7brbl+q1u3buEObm5u6enpT3XMjIwMIYST0++XdV2/fl2t\nVltGEUJ4eHjodLro6OgidgAAM8m+hnWn95VOIRNjvv7C96b8HKvmQ2KOHLEpiHPuOlbEHTck\nntU1HyxVclE6nzw07r5KRwAAoBySrSAsKCjQarXmbZ1OJ4TQaP7n4BqNxnyHYRElJCScOHGi\nVatWloIwNTXVwcFBrVZb+kiS5OTkdO/evSJ2MFu3bt2dO3fM26w3A1RMqsquNgH/VDqFPHIP\nL5KsHSu/fUayrRq/f3TVvOyaryyyttVm75lSEHOs8qCNSgcEAAClVyl9DmF2dvaSJUu0Wm3h\n9WDy8vIsNaeFTqfLy8srYgezX3755fr16+btBg0a1K9fX+b0AFCCrDtOs+o4VXpoEU5Jsu21\nwpSboVAoAABQNshZEG7fvj0qKkoIkZ2dLYRYuXLljh07LHsvXLhQxOPk5ubOnz//9u3bQUFB\nLi7/vdjJysoqJyfnoc56vd7a2rqIHcwWL15sKRFv3LgRFhZWxGAAUBpprKQ/NjMKauam1m7y\nx0vJuuw/bQIAABQnOQvCsLCwwsXVwYMHn+EgeXl5CxYsuH79+pw5c5o0aVJ4V5UqVWJjYw0G\ng+WiUJPJlJaW1rRp0yJ2MDPf4mj24MGDZwgJAKVTor7FlQtO3ZSOAQAAygrZCsLTp08//0H0\nev3ChQsvX748c+bMFi1aPLTX09MzPDz8xo0bXl6/r6UeExOj1+stq8g8sQMAAAAAwEK2grBN\nmzbPeYT8/PzFixdfuHBh+vTp7dq1+3MHX1/fbdu27d69e8qUKeaW3bt3S5Lk6+tbxA4AAAAA\nAItStKjM559/HhER8be//S0uLu7bb7+1tHfs2LFmzZpCiLp163bv3n3v3r35+flNmza9fPly\naGjoq6++6u7ubu75xA4AUL7lZemVjgAAAMoSOQvC/fv3q1Qqf39/IURKSsro0aML7/X29l68\nePFj3n779m0hxLVr165du1a4vV69euaCUAgxbty4qlWrHjx48NSpU1WrVg0MDOzfv3/hzk/s\nAADlWFZ6rtIRAABAWSJbQXju3LkePXqsWbPG/DI7O3vv3r2FO+zdu3fAgAGtW7f+qyMsWLDg\niaOoVKqBAwcOHDjwmTsAQDlzdMvZuMu3hy3oplJLhdvD90aF74p64/O+SgUDAACln2yPZV+/\nfn21atVef/31wo0bNmxISkpKSkqKi4tzcnLatGmTXMMBAMya+HlcCY3d9N4+o8FkaQzfE7Vp\n2v7WPRsqGAwAAJR+shWEISEhXbt21el0hRsdHR1dXFxcXFxq167dq1evY8eOyTUcAMDMuY7D\n1K1DbkQkfvHuHnPLuYO/bXpvf+AS/7a9KAgBAMDjyFYQxsTEWB728Eju7u4xMTFyDQcAsKhS\nq/K7Xw2OPZ+cnpIlhPhy1sHAJf7t+jZWOhcAACjtZLuHMDc3V6vVWl66ubllZmba2NhYWmxt\nbXNycuQaDgBwJ/b+N/MOmYy/XynqUMP+Xny6EMK5juPJHy6d/OGSuf2Fvo3b92+iWEoAAFCK\nyVYQVqlSJSEhwfJSkiR7e/vCHeLj46tWrSrXcACASlVtm3T0MOQbzC8Trt65cSZBCKFWSw1f\nrCupfl9jpnaj6opFBAAApZtsBWHLli0PHDhgNBpVqkdchmo0Gg8cONCyZUu5hgMAWNvrXhn9\n+9LNEfuu7v7kROVqdukpWXnZ+rgrKaNX9FCpZbsvAAAAlEuy/V1h8ODB0dHRK1aseOTeFStW\n/Pbbb4MGDZJrOACARcS+qxum7gtc4m9trxNCTAweEHs++Yt39xoNRqWjAQCAUk22gnDEiBGt\nW7eeNm3a6NGjw8PDCwoKhBAFBQXh4eGjR4+eNm1amzZthg8fLtdwAACz879Eb5i67+//etWy\nioyTa6V3vhwUE5n09Zyflc0GAABKOdkuGdVqtTt37uzVq9eGDRs2bNggSZKtrW12drbJZBJC\ntGrVaufOnYVXnQEAyMLGXjduZW/vLp6FG53rOLz79eCLR24olQoAAJQJshWEQohatWqdOnVq\n8+bN27dvv3jxYnp6uqura9OmTQcNGhQYGEg1CADFweuFOpZtSZIs2851HDr9nTu3AVmZTK/7\nBD8wNlM6BwDIRs6CUAih1WrHjBkzZsyYR+6NjIxkXRkAKD4O1e2So1OVTgGUNyb9A0lnL4SQ\nhNHL5eoFQ+of7VmSzk7RaADwvEpiAbr09PQ1a9a0bt26VatWJTAcAFRYLCsKyM6UfS99frX8\nSzseajcknElfUrcg9qQiqQBALjKfIXzI8ePHg4ODt2/fnp2dbWdn99prrxXrcAAAoJQw3Lkq\n9A+UTiEP607TH3w92NZ/kS6znhDCJj8m/+zXWT++qWvcS9LoDAlnlA4oB0mtdm2hdAgACiiW\ngvDOnTubN28ODg6OiooSQvj7+48fP/7VV1+1sbEpjuFQhgx+4et08XchApQOAgAoXtnbRxfE\n/p/SKeSUvfe9GkIIIerf/uDBN0IIkRexJS9ii6KhZCPZODkGccE5UBHJWRAajcZDhw4FBwfv\n3LlTr9e3atXqgw8+WLRo0RtvvNG3b18ZB0LZYsq6K9k5m7drOcbnSym/t+dmSFprodYpFw0A\nUFy0TfqoXZoqnUJOxjtX82OOCZPJJKk1Lk00ddsrnUhWWlulEwBQhmwF4YcffvjFF1/ExsZW\nq1btzTfffP311729vW/evLlo0SK5hqhQTFl3THmZSqeQR+aql7TNB1n7TJYy0tUqg5V035h6\nw3g/LuubYVYd3tZ5l5MLiVWObkKlVjoFAJQW1n7TlY4ggwfB3Qriwws1aITIF8JkvB+nvx9n\nbpJsHB2mR4tCa/wCJSDrfu69+HSlU+ApVK3tYOdorXSKR5CtIJw3b179+vV/+OGHnj178oSJ\n55fz06y8sGClU8gm78TKvBMrtUI42QknsSb9X2vM7Tn7Z+Tsn6FsNrk4zE5UVaqpdAoAKC0K\nog8bs+4pneJ5aZv009R/xbxtykjMOfmZZBLCZNI26qmu0eSPTjb6C98pFlEmkkanbdxH6RR4\nCpeOxmyYslfpFHgKo1f0aNu7kdIpHkG2gtDZ2fn69euzZs26du1aYGCgq6urXEeumNS1Wuu8\ny8+vPqactIIbx4x2NaWMWL2pkpWVUbKtoqnzQnn6PVXSlMaffABAKTkH5pSzewiFENLv/2vS\nR3ypcBS5cQ9hmVPd3dFniLfSKeQXtvOKJInSWTg9p2pujkpHeDTZCsKEhIQff/xx3bp1M2fO\n/OCDD/z9/c1Xjcp1/IrGqv0bVu3fUDqFnAwJZ9I/e1kIoRZ52kb97IZsEariXeQWAKAg607T\njZm3lU4hD+P9uNzjK7RuL91W+1aJmpvgNNajXr4+8iurdmPVruXkAcuSxkrpCHg67s1rujcv\nh5cmXTxyQ1JJwxd1UzpIBSLb38h1Ot3gwYMHDx5848aN9evXb9y48bXXXrOzsxNCJCYmyjUK\nypbs7/+RF7bO8tL8w6pa6PXnvtWf+/b3VpXGYUaMyqG2AvkAAMWm3Fx/aMpJS/+Xp/WLE226\n/+vGwatVouam2r3cdNBQjUfH7B1vVp40QV2Tn78BlGHyP8K4Xr16ixYtunXr1s6dOzt37qxW\nqydOnFivXr3p06efPn1a9uFQmtn0WObwfrT5n0pvHDPZ1RBCmITaqv14S7vD9OtUgwCAUkuy\ndrAfsd2m+78eardqO7rSP46oqnoqkgoA5FJc1+yp1erevXv37t07ISFhw4YN69evX7p06dKl\nS00mUzGNWM7kX91vSDqvdArZmHLS8sLWCV0VIW7nCkfpzGZDSpS2Qbl6GqHVSxMlnb3SKQAA\ncpNU/11XRpLyCqyM0u/PVda4vahcLACQR7HfxFWrVq3Zs2d/8MEHhw4dWrdu3ZPfACGEEPkX\nfyhPq4yaSdmpQggb6Z7IFwU3jhbcOKp0IjnpWv+dghAAyjvVol3ze04thzduAaiwSmhVD0mS\nunbt2rVr15IZrhyw8p2i9R6sdAp5ZH07Ul29kXWn6Wm3s7O3jUq27t76H6MNty/n/DTT2ney\npl5npQPKQ2VTRekIAIBiV2DkkbMAyhWWeSyl1NUbqauXk/V27Uft0Li2Eiq1SZuWb9BlCnet\nVxetVxddwwDJxkmyc1Y6IAAAAFBBURCi2Glqt7Vs5+ht8+0qmbdVzl4KJQIAACjb8q/uzzkw\nR+kU8hvZ8rYkSRmflsMbzWz8F2obvKp0ikegIESJWnNkUvt+TZROAQDAszCvjfcgNVvpIIAw\nZacaEs4onUJ+NeyFEMKQEKd0EPmZclKVjvBoFIQAAAB/qUBvCP3mXMfhLdQalTAJIYTJ+PuS\n6f+3/ULTzp6VnW2VzIeKStdyuK7lcKVTyCP/2kGVYx3z3VIp71mbhKixNFcIYUi5Yrwfp/0b\nD6kvXvI/hxAAAKDcMBQYj2yKCH5rt6HAWLj9h38e/X7JUX1OvlLBgHKj4ObxzM/8DMkXCjca\nki9kfuZXEPt/SqWqOCgIAQAA/pKVrfbdrwcnXL3z2Rs7LDXhzuWhx789//bGgc51HJSNB5QD\nNl3n61oMzVz7iqUmNKRceRDcTde0v02Xecpmqwi4ZBQl7X5yptIRAAB4Ck4uld79evCKYd8e\nXHtaCBEdkXA75v47m15z83ZROhpQLkiSba9PhBCZa1+RhFEI6cHal7WN+9j2WyMkSelw5R8F\nIYrdhcPRDTu4aa1+/4/NaPj91oub55IqV7Or4lpZuWgAADzOtV9vpdy8b972GeL90+pTQoi4\nS3e6jmsXdzkl7nKKEMK+ik2LbqybDTwLU9ad/OgQ87bGrYPh7m+mq/uFEKoazTSeL+svfGfe\npfXsJNlVUypkuUdBiGK3a8WJkC8j3/isb+HGi0durJ24a+zKXhSEAIBSK2znFXPV9z8kcenY\nDemPExe2DtbNu3pxGgN4BgVxp3ND/mV5acrPNW8YMxJyj35kaZes7LUNAko6XIVBQYhi986m\ngZ+M2LZm/I4BMzqZWy4di1k7adeAmX7er3gqGg0AgMcZscTfsr1zeeiRDRFCCCsbjUN1+/Gr\n+2h0auWiAeWBtmF3bcPu5m1DypUHa182mtRCCCnrjv0/flG7NFM0XUXBojIodvZVbCdvGZSR\n8uDreYeEEFnpuZ9P2Dlghp9fYEulowEAUCQ7l4ce3XK2+9svCSFaBjS4fSP18zd3FugNSucC\nyglzNaht3MdgUhtMmofWmEGxoiBEMUpLyow6ERt1Ijb+yp0eb7+UlpAuhEi8dtdnULMa9aqY\nd/0WFm8yKR0UAIC/9sM/jx776tzkLYOquzkKIaxtte9+Pfj2jdT17+wxGoxPfDuAx7NUg7b9\n1gghmYSw7fWJrvngzLWvGJIvKp2u/OOSURSjX74IP/n9JcvL/DyDEEKYTKd2XDm184q5UaNT\nz9wZ6FjDXpGEAAA83oO0nHM/X3/ny9fqNqmRGp9hbjSvO7pm3I9xl1JYaxR4TnnHlmubD7Ht\n+fF/1xSVJNvenwqVJu/Ev20HrFM0XflHQYhiNPCDzgM/6CyEyMvL273xl8MfXxFCqLSSXS3N\n65+86lHfXeF8AAA8ib2Tzfxfxvy53cml0qzdfy/5PICZIfGs/txWpVPIQ7JzFkLk/DRTCKGW\nCkxC5OyfIYSQNFZCY2XeLgd0zYeoXVsoneIRKAhLqXPnzt26dUvpFPLIz88P23/xfoi15JEh\noh1Ndnkpt3I/HLCu/Xg31zo1lU4nm65du1pbWyudAgBQjCSVJISwqcyf9lCe4falwutzlhsq\nSQghyuVHU9f0piDEUygoKNDr9UqnkMelYzH3Q6y1jTOMVbKM0Y75Br2tT6Y4XuXClruVJlSy\nstUpHRAAgKfA4qIoDTT1X7Ef+7PSKeRx/tD1Ss62Hi1chRCrx/0ohHhzXT8hRMzZxMy72d5d\n6iucTyZql6ZKR3g0CsJSqnXr1q1bt1Y6hTyOL/rEtZPwerlJWkLWhWP3bW1tX/BtoG9pDFsd\nZ/+gZu/ATkoHBAAAKGNUlVxUlcrJ/asFF11Xzjow9tOXmnetH3P3kpCE1qvL2YO/rZ97YcRi\nf61XY6UDlnMUhCh27afXzMjMeKhRZ6+q0iPrb53LyR9kAAAAeDYv9GtsNBiD39495t89zS0X\nj9z4YvLe1+a8/EI/qsFiR0GIYmdtY3333l3LS0n7+4Y+X29lZaVMJgAAAJQaLw5sKoRY/84e\nIYQkSWsn7ho4u3PHYc2VzlUhUBCWUpcuXYqPj1c6hTxiY2NPnTpVt27d3FSjENWy9Bnnz5/P\nzs62s7O7ePHitWvXlA4oj06dOlHfAgAAFF3S9Xu//vDfR5Q1eKnupZAYIUQjX/d78ek/fnTM\n3N6+f5Oa9asqE7ECoCAspbKyslJTU5VOIY/KlSvXqFEjOjq6irWLJIRGo0lOTkhJSfHz83vw\n4IHS6WRjNPJsYgAAgKegz87PTs+1vDQZTX9sicLt+pz8Eg5WoVAQllLt2rVr166d0ilkk5GR\nERYWtuPrfQYhJEnq2bNnkyZNGjZsqHQuAAAAKMbN28XN+/cVJS4eubF24i6NVi0k8VtYnN+I\nXs27lpP1RUs5ldIBUCFUrly5S5cu06dPF0K0aNGiX79+VIMAAAAwM1eDA2d3VmtUao1q6Idd\ngt/efe7n60rnqhAoCFFyzLfY6XQ6lYr/8AAAACCEEOcPRX/+5s4h81+xrCLz0mvNhszvEvz2\n7vO/RCubrSLgklEAAAAAikm4emf44m7t+zUp3NhhUDO1RpUQdcf7FU+lglUQFIQAAAAAFBMw\nsf0j29v3b/LIdsiLghAAAABAqaCz0QiVpHSKioWCEAAAAECpoNaqJQrCksXaHgAAAABQQVEQ\nAgAAAEAFRUEIAAAAABVUebuH0Gg07tix48CBA3fu3HF2du7WrVv//v156h0AAAAA/Fl5q5SC\ng4M3btzo4eExZswYLy+vzZs3r127VulQAAAAAFAalaszhHFxcXv37vXz85s6daoQokePHlqt\ndv/+/QEBAW5ubkqnAwAAAIDSpVydIQwNDTWZTL169bK09O7d22QyHTt2TMFUAAAAAFA6lauC\n8Pr162q12tPT09Li4eGh0+mio6MVTAUAAAAApVO5umQ0NTXVwcFBrVZbWiRJcnJyunfvXuFu\nu3btSktLM29nZ2eXaEQAAAAAKDXKVUGYl5en1WofatTpdHl5eYVbvv766+vXr5u3GzRoUL9+\n/RLKB6DUKNAb7t9+oHQK+eXnFggh7sVnWNk+/IdhWWdTycrO0VrpFAAAlDflqiC0srLKycl5\nqFGv11tb/8/fISZPnvzgwe9/EUxJSbl69WoJ5QNQaiRdv7e412alUxSXhd03Kh1BfgET2/ee\n4qN0CgAAyptyVRBWqVIlNjbWYDBYrho1mUxpaWlNmzYt3K19+/aW7dOnT1MQAhWQTSWrVt0b\nKJ0CT8H1b85KRwAAoBwqVwWhp6dneHj4jRs3vLy8zC0xMTF6vb7wMjMAIIRwruMwbmWvJ/cD\nAAAo18rVKqO+vr6SJO3evdvSsnv3bkmSfH19FUwFAAAAAKVTuTpDWLdu3e7du+/duzc/P79p\n06aXL18ODQ199dVX3d3dlY4GAAAAAKVOuSoIhRDjxo2rWrXqwYMHT506VbVq1cDAwP79+ysd\nCgAAAABKo/JWEKpUqoEDBw4cOFDpIAAAAABQ2pWrewgBAAAAAEVX3s4QPoP8/PyMjAylU1QI\nDx5kFkj63Pwc/oUDAMqirJwHBZI+Jy+bLzIoLvHqnYgDvymdQn6ZDzKEJH298Celg8ivlb+X\na4NqSqd4mMlkkkwmk9IxlHT58uUlS5YonaKiKMg33L1136aSlUN1e6WzAADw1HKz9PeTMytV\nsbVzslE6Cyq6nMy89JQHSqeQn7HAJIRQaSSlg8jPoYa9jb2V0ikeoaIXhAAAAABQYXEPIQAA\nAABUUBSEAAAAAFBBURACAAAAQAVFQQgAAAAAFRQFIQAAAABUUBSEAAAAAFBBURACAAAAQAVF\nQQgAAAAAFRQFIQAAAABUUBSEAAAAAFBBURCiJERFRZlMJvN2fHz8vHnzMjIylI0ElCdMMaC4\nMcsAlFfqoKAgpTOgnIuIiJg7d25iYmL79u0TEhI++OCDmJiYnJyctm3bKh0NKA+YYkBxY5YB\nJePu3bufffbZpk2bwsLC7O3ta9WqpXSiCkGjdACUf15eXm5ubiEhIbm5uVevXk1LS/P29h49\nerTSuYBygikGFDdmGVAC7t+//9577927d08IkZiYePbs2YCAgPHjx6tUXNJYvCTL9Q9A8cnM\nzJw9e3ZMTIwQwtvbe86cOVZWVkqHAsoPphhQ3JhlQHH79NNPDx065OnpOXz48KysrE2bNt29\ne7dTp07vvvuuJElKpyvPOEOIkpCVlXX//n3ztpOTk06nUzYPUM4wxYDixiwDituZM2eqV6++\naNEiW1tbIUSLFi1mz54dEhIihKAmLFbcQ4iSoNPpLl686OzsbG9vf/bs2eTk5Pbt2zOxAbkw\nxYDixiwDitsPP/zQs2fP5s2bm19aW1t36NAhIiLi3LlzzLhiRUGIYpeWlpabm9ulS5dOnTp1\n7Njx7NmzkZGRD03sU6dOVa5cmctvgGfAFAOKG7MMKCZpaWnBwcFbtmwJDw/PyMho2rRpgwYN\nLHupCUsGBSGKUWpq6r///e9Vq1YdP378pZdecnBwsLKy6tChg+WrtF27diqV6siRI8uWLQsP\nD3/llVc0Gi5jBoqKKQYUN2YZUHzS0tKmTJly8eLF9PT0xMTEnJyc9PT0rl27Fl5FpnBN6OHh\nUadOHQUDl1cUhCguSUlJ77///rVr1ypXrtyzZ09PT0/zFeGFv0ojIyMvXry4detWk8nUvXv3\nFi1aKJ0aKDOYYkBxY5YBxeqzzz67fPlyvXr1Jk2a1LJly2vXriUmJt67d69du3aFzwSaa0IX\nF5fOnTsrmLYcY5VRFAu9Xj958uT4+PiGDRvOnDnTycnpoQ5ZWVlLliw5f/68EEKlUo0cObJf\nv35KJAXKJKYYUNyYZUDxuXv3btWqVUeNGqXVaj/99FPzTy2pqakffPBBQkJCly5d3nrrLa4O\nLTEUhCgW+/fvX7NmjYuLyyeffGKe5EKIc+fOnTt3ztnZ2d/fX61Wm0ymEydOxMXFvfjii+7u\n7ormBcoYphhQ3JhlQDFJSEiYNWtW69atz549271794EDB1p2paWlzZo1i5qwhHGZO4rF1atX\nhRA9evQwf4nGx8evXr364sWLarXaYDCcOHFi4cKFkiT5+PgonRQok5hiQHFjlgHFxNbW1tbW\n9tChQ0KIh57g4uTktHjx4lmzZpn3UhOWDNWTuwBPr3bt2kKIc+fOxcXFff3115MnTzaZTJ98\n8snXX3/t4uJy4cKF3377TemMQBnGFAOKG7MMKCbmqq9WrVpCiCNHjhgMhkfuPXTo0OnTpxXK\nWLFwhhDFomfPnqdPnw4PDw8PD69UqdLo0aMDAgIkSTKZTGq1WghhNBqVzgiUYUwxoLgxy4Di\nYzkTGB0dvWrVqofOBJr3/t///V+7du0UDFlxcA8hZJCVlfX999+fPn06PXLLdgAAIABJREFU\nLy/Py8vrtddec3d3NxgMZ86cMRgMzZs3t9x9sXv37nXr1jk5OX3xxRfmL1QARfHnWVanTh2m\nGCAXvsiAkscdg6UEBSGeV2Ji4ty5c1NSUoQQNjY2OTk5Go3m7bff7tSpU+FuJpPp+++///LL\nL00m03vvvefr66tMXKAMKsosY4oBz4wvMqC4PfI3F0FNWDpQEOK55ObmvvPOO0lJSZ6enu+8\n8467u/uqVasOHDggSdJ//vMfy8NDIyMjv/vuuwsXLkiSNHLkyP79+ysbGyhDijLLmGLAM+OL\nDChuj//NhZpQcdxDiOeyc+fOpKQkDw+PJUuWWFtb//TTTwcPHhRCjBkzxvIlev/+/TVr1iQn\nJ7u4uLz55ps8tBd4Kk+cZUwx4HnwRQYUq9zc3Pnz56ekpDz0m8uKFSs8PT3r1KlTeGXR9u3b\nc99gyaMgxHM5deqUEOLdd9+1trY+cODAmjVrTCbT2LFje/fuLYQ4ePBgx44dHR0dFy9efO3a\ntRdffJFffYCnVZRZxhQDnhlfZECxKspvLqwioyweO4Hnkp6eXr16dXd394MHD65evbrwl2hm\nZubatWv/+c9/CiGcnZ1feuklvkSBZ1CUWcYUA54ZX2RAsXriby65ublCCCcnpx49eiictaKi\nIMSziI+Pv3HjhhDCxcUlIyNj586dq1atKjy9hRAbN27U6/WW334AFJ1liglmGVA8+CIDSkYR\nf3OBgigI8dTu378/d+7cOXPmxMXF+fn55ebmrl+//qEv0QMHDvz888/W1tZ9+vRRNi1Q5hSe\nYkIIZhkgO77IgBLDby6lHwUhntqXX3559+5dd3f36tWrd+nSpWHDhkKIWrVq+fj4CCFyc3O/\n/PLL1atXCyHeeustZ2dnheMCZU3hKSaEYJYBsuOLDJBXVFSU5ckF8fHx8+bNy8jIML/kN5fS\nj8dO4CncvXu3atWqo0aN0ul0n376qY2NjRAiPT193rx5N27cUKlU1atXT01N1ev1kiSNGjWq\nX79+SkcGypJHTjHBLAPkwxcZILuIiIgFCxb4+vq+++67CQkJH3zwQVpaWkBAwIQJE4QQRqNx\nxowZUVFRtWrVWrRoUZUqVXJzc7dv3/7dd9/xSM9SQh0UFKR0BpQNCQkJ77//flxc3O3bt199\n9dXmzZub262trTt16mQymeLj4+/du2c0Gr29vadMmcL0Bp7KX00xwSwDZMIXGVAc7O3tIyIi\nIiMjb968uW3btrS0NG9v78mTJ2s0GiGEJEnt2rU7d+7crVu3du3adfjw4a+++sr8SM/XX3/d\n399f6fjgDCGKzPLYUCHEqFGj/vxMXpPJlJmZaWNjo9VqlQgIlG1PnGKCWQY8H77IgGKSmZk5\ne/bsmJgYIYS3t/ecOXOsrKwKd8jNzd22bdvPP/+cnp4uSVKzZs2GDx/eqFEjhfLif1AQ4ilY\nvkrr1q3773//W61WK50IKFeYYkBxY5YBxSE5Ofn9999PS0sTQvj5+U2ZMuWRz2jhN5fSiUtG\n8RRsbGw6dOhw+vTp+Pj4O3fuvPDCCzyRCZARUwwobswyoDjo/r+9ew9q8kr/AH4SiAkhgBGE\nsMhFkKsgYjRKUQRFBcXutrWzw+xo1VnH6Vamar1tENwdbWRd12Jtt9RLt1WXujtttVNpLaQa\nXa8QA4mAilS0JNxMTCIiMQTy+yMzaX5BERDyEvh+/qpvjp3HP5457/Oec54zZkxVVZWPjw+H\nw6msrGxubp41a1bP5KLRaEwmEx9ihhsUhPBcJpPp7Nmz3333XVlZ2aNHjyZMmODq6mqdShUK\nhVqtFggEmEoBBqxnlnE4HKQYwGDBRAbgAFqt1mAwpKWlpaSkJCcnV1ZWVlRU2NWE165d8/T0\ntNtHCsMEtozCszU1Ne3atctyDZqFr6/v5s2bIyMjic2Wm7S0tOzsbEylAAPQS5YhxQBeHiYy\ngKH28OHDgwcPXr16ddy4cSKRiMfjEULa2tpyc3Pv3r2bkpLy7rvvuri4nDt3bv/+/YGBgXv3\n7kVNOAxhhRCeQa/Xb9u2rampyd/ff9myZQKB4OnTp/X19efPn588ebKvr6/186pcLsfnVYAB\n6D3LgoKCkGIALwMTGcBQa2pq2rp1a21traenZ2ZmZlhYGJvNJoQwmcykpCTLOmFFRUVVVdWJ\nEyfMZvPixYunTp1KddTwDCgIRzuTyfTpp58GBwe7u7tbH/7rX/+Sy+URERF///vf4+LiIiIi\n5s+fz2AwZDJZeXn5ggULmEym7VQ6adKkgIAACv8VAMPZwLLMy8sLKQbQF5jIABzPaDQKhcKW\nlpaoqCiRSMTn8y3VoAWTyZwzZ86dO3dqamru3btHp9NXrlz55ptvUhgw9AIF4ajW3d29Z8+e\nc+fOVVdXL1q0yPpxtKCgwGg05uTk+Pr6WgfHxMSoVKra2lo6nW65u8kylfr5+aWmplLzDwAY\n9l4my5BiAC+EiQyAEiUlJWfPnuXxePn5+Z6enpaHcrm8pKREpVKFhoYymczU1NSgoKCgoKA1\na9YkJiZSGzD0gk51AEClb7/99sqVKxwOx/b4hNlsfvz4MSEkKCjIbvzixYsJITKZzPqEy+Uu\nWbLEUfECOJ+XzDKkGEDvMJEBUOL27duEkCVLllgWBpVKpVAozM3NPXnyZGFhYV5entlsptFo\ns2fPzsrKCgkJoThc6BUKwlHtp59+IoSsX78+NDRUqVRevXqVEEKj0fz9/Qkhd+7csRvPYrEI\nIU+ePHF4pADOClkGMKSQYgCOpFQq6+rqCCETJkwghMjl8oaGhqKiovXr15vN5oKCgqKiIh6P\nd+PGjZ7ZB8MWCsJRzfJRh8FgKJXKnJycv/3tbwqFghCycOFCQsiRI0eMRqPt+PPnzxNCJk6c\nSEWwAE4JWQYwpJBiAA5jMBhycnJOnjxJCMnMzIyOjpZKpe+8805xcfHq1atFIlFoaCiLxbJc\nM9jd3U11vNBXOEM4qnG53AsXLkilUolEotVq4+LiXn/9dVdX1/DwcJlMVldXV11dPWXKFHd3\nd7PZXFxcXFRURKPRsrOzfXx8qI4dwDkgywCGFFIMwGFcXV0vXrx448aN9PR0Doczb9688PDw\npKSkNWvWxMTEWPZsnz59WiKRcLnc1atX0+lYeXIOuIdwtDt69OhXX31FCImKitq5c6f1chi9\nXr9jx467d+/S6fSgoCC9Xq/Vagkhq1ateu2116iMGMDZIMsAhhRSDMBhJBLJvn37VqxYsWzZ\nMrufzGbz119/fezYMbPZvHnz5jlz5lASIQwAVghHtcbGxkOHDhkMBkLI06dPp0+fzuVyLT+x\nWKyUlBSj0VhfX6/RaAwGw7hx49atW7do0SJKQwZwMsgygCGFFANwpAkTJpSUlNTX1y9dutT2\n6s6KioqPPvqotLSURqOtXLkyPT2dwiChv7BCOKo9efIkLy+PxWJNnTr16NGjHh4eO3fuDA0N\ntR1jMBgaGhoYDEZwcDAu7QXoL2QZwJBCigE42Jdffvnll1/m5eVNnz7d8kSn023ZsqW5uZnH\n4/3pT3/C7fNOBwXhaPfkyRMXFxcmk/ntt98eOXLkmVMpALwMZBnAkEKKAQwRpVLZ0NAwc+ZM\n29OAOp1u9erVCQkJubm51odqtbq2tjYxMRHfXJwRtoyOdgwGw9XVlRASFRXFZrOvXr166dKl\nhIQE65YbABgYy+c2Go2GLAMYUkgxgKGg0+k2b95cWlp69uxZk8kUGBg4ZswYQgiLxWpsbLx8\n+fL8+fPd3d0tg9lsdmBgIKpBJ4WCEH6FqRRgUDx48GDfvn0FBQWnTp168OBBdHS0ZRIlyDKA\nIYYUAxgsLBZrxowZNBrt9u3b5eXlp0+ffvDgAY/H8/LyGj9+/I8//shkMuPj46kOEwYBCkL4\nfzCVArwkrVa7adOmuro6s9nc2dlZV1d36dKlGTNmcDgcywBkGcCQQooBvDytVtve3s7j8fh8\nfmZmpq+vb0tLi1Qq/f7772tqaoKCglpaWhQKxauvvoq7JUYAFIRgzzqV8ni86OhoqsMBcDJH\njhypqqoKDw/fvn37G2+80dHRoVAorly5MnPmzJ41IbIMYCggxQAG7OHDh/v37//4448vXrxo\nmblcXV0nTZqUnp6ekJDQ2dkpk8ks1352dHQEBwcHBQVRHTK8LDSVgWe7fft2ZGQk1VEAOBO1\nWu3t7b1mzZru7u4PP/zQWv5ZGrL5+PiIRCIej2cdjywDGFJIMYD+ampqEgqFGo3Gy8vr1Vdf\nTU1N9fHxsRuj1+tLS0vPnDnT2toaGxsrEokoCRUGEVYI4dl65j8A9EKlUm3durWhoaGlpSUt\nLY3P51t/iouLI4SUlZXZrRMiywCGFFIMoF+MRqNQKGxpaYmKihKJRHw+n81m9xzGYrFiYmKW\nLl2q1Wot8xo2Zjs77PoFAOgfk8lkMpnsHrLZbDabLRaLW1tb3dzc7H7NysrKyspSq9VCobC5\nudlRkQIAAPTVTz/9pFQqeTzeX/7yF2uNJ5fLjx49+v3333d1ddkOptFoCxcuJISUlJRQECsM\nKhSEAAD9YDKZ8vPz8/Pz7aZGLpcrEokCAgIIIRKJxO5XYlMTXrt2zXHhAgAA9M3t27cJIUuW\nLLEsDCqVSqFQmJube/LkycLCwry8PLuDZh4eHoSQmzdvUhItDCIUhAAA/WAymdra2mpqanou\n9Flrwrt373788cc9T2hnZWWJRKLf/va3jgoWAACgryZMmEAIkcvlDQ0NRUVF69evN5vNBQUF\nRUVFPB7vxo0bd+7csQ7u7u7+/PPPCSG2Z+PBSblSHQAMFZPJJJFIqquraTRadHR0cnIyk8mk\nOigAp8disf7617+2trYGBAS0tLT4+Pi4uLhYf7XUhEKhUCwWE0Kys7PtbumNjY11dMQAzszy\nYQW3XQM4QGZmZnl5uVQqlUqlHh4eq1evzsjIoNFoZrPZMtN1d3dbB//888/Xrl1js9krVqyg\nLmQYHOgyOjI1NTXt2rWroaHB+sTX13fz5s09+62pVCrLJjcA6JempqZt27aFh4f/+c9/tq0J\nCSFarVYoFKpUqrS0tJ41IQD01NXVRafTbZPlwYMHhYWFMpmMyWTOnTt3+fLl1oZMdjCRAQyW\nrq6u69evd3V1xcfHWzvKfPfdd4cOHeJyuZ999pntfFdWVjZ27NiIiAiKgoVBgy6jI5Ber9+2\nbVtTU5O/v/+yZcsEAsHTp0/r6+vPnz8/efJkX19f60iJRJKXl+fu7o7G3AD9xWAwpFKpXC6v\nr69PSkqyvZnXzc0tKSmpvLxcLper1WqBQICaEKAXlqO5crncmixarXbTpk11dXVms7mzs7Ou\nru7SpUszZszoWRNiIgMYRHQ6PSAgIDAwkMFgEELMZvPXX39t2RqanZ0dEhJiOzggIMDb25uK\nMGGQ4QzhCFRUVNTa2hoREbF///7XX389MzNTJBKtWLHCaDTu3r27ra3NOlKj0XR3dz9+/JjC\naAGclGXvaHR0dFlZ2e7du5/XY0YsFpeXl1MVJIBTaG9vV6lUYrH4wIEDlo1L//73vzUaTXh4\n+L59+w4ePJiWltbc3PzMJr2YyACGSEVFxfbt248ePUoIWbly5Zw5c6iOCIYKVghHoIKCAqPR\nmJOTY7sYGBMTo1Kpamtr6XR6fHy89WF8fPy8efMoihTAubm6us6ZM6eqqqqXdUI/P7/U1FQK\ngwQY/lgslt2i+qFDh9zc3Pbs2cPj8TgczsyZM8mzLvMkmMgAhoZOp9u9e/fdu3d5PN6WLVsw\nkY1sKAhHGrPZbPmWs2bNGrtzTWPHjhWLxQaDIT093fpw/Pjxjg4RwGmZzeYbN25IpdJHjx75\n+fnR6fQX1oQ4XAHQF3YbrVtaWtLS0vh8vnVAXFwceU5NiIkMYNCxWKzExMTo6Oi3337b39+f\n6nBgaKEgHGloNNr58+fb2toSEhJsVwgJIW1tbWfOnGEymUuXLqUqPADn1draumPHjq+++ur6\n9evnz5//3//+FxER4e3t3XtNCAB9ZFsTtre3CwSCqKgo2wG91IQAMOjYbHZgYCDOwI8GKAhH\nIKPRWFlZef/+/dTUVNtFwlOnTt26dSsuLg67wAH6S6/Xb968WalUcrnczMzMsLCwyspKiUQy\nadIkf39/1IQAg8JaE7a1ten1+gULFtilkrUm9PX1tSsXAQBgYFAQjkDh4eEymayurq66unrK\nlCnu7u5ms7m4uLioqIhGo2VnZ/v4+FAdI4CTyc/P//nnn6Ojo3fv3i0QCFpbW8vLy00m0+XL\nl3vWhEFBQcHBwVSHDOCUrDXhL7/8otFoejbpjYuLi4uLS05OpipCAIARBvcQjkx6vX7Hjh13\n796l0+lBQUF6vV6r1RJCVq1a9dprr1EdHYCTuXXr1pYtW3x8fPbv3+/h4XHmzJlPPvnEbDbP\nmzfv7NmzY8aMEQqF06ZNI4QYDIaLFy+mpaVRHTKAc8NlngAADoMVwpGJxWKlpKQYjcb6+nqN\nRmMwGMaNG7du3bpFixZRHRqA8zl37pxCoXj33XfDwsKuXLlSUFBgNpv/+Mc/vvXWW7/88su9\ne/ds1wlDQ0OpjhfA6eEyT4DBolarCwsLv/jii7KyMg6HExAQQHVEMOxghXCEMxgMDQ0NDAYj\nODgYsylAvyiVSqPRGBoa2t3d/dlnn61ataq9vX3t2rXt7e1ZWVlZWVmEkOPHj5eWlj569MjF\nxeWjjz7i8XhURw0wcmCdEOAl6XS6DRs2aDQa65OMjIy1a9fanc5VqVQoFEczrBCOcK6urt7e\n3mPHjsU8CtAvOp1u27ZtpaWlAoFg7Nix06ZNo9PpxcXF5eXlCQkJ2dnZlmHHjx9nsVhvv/32\nb37zm1mzZlEbM8AIY7tOOGnSJLywAvTXwYMHq6urw8LCsrOzp0+ffufOHYVC0dzcPGvWLOub\noUQiycvLc3d3j4yMpDZaoIor1QEAAAxHx44dU6vVcXFxtte3NDU1EUKsfXqLi4tv3br1yiuv\nCAQCgUBATaAAIxqXyxWJRJcvX0aKAQzA9evXfX1933//fTabTQiZOnXq9u3bJRIJIWTDhg2W\nmlCj0XR3dz9+/JjaUIFCKAgBAP4ftVrt7e0tlUr9/Py2b9/OZDKtP0VGRv74449nzpyxDDh9\n+jSNRsvMzKQwWoARj8vlLlmyhOooAJxSd3d3enq6pRokhHh5ee3atcuuJnzjjTeio6NjYmKo\nDBQohYIQAOBXKpVKKBTy+Xw6nb5w4UI3NzfbX1NTUyUSiUKh2LFjh+XJypUrY2NjqYgUAADg\nGbRa7fHjx2tra8ePH+/q6jpmzBjbX59ZE6IaHOVwhhAA4FddXV0XLlyQy+UdHR3Tpk2Ljo62\n/ZVOp8+ePdvV1bWzszM0NHTNmjXz5s2jKlQAp3Dr1i1vb2/LzjSlUvmPf/yDz+fbLrwDwCDS\narUbN26sqqrS6/WNjY0dHR16vX7BggW2XWRYLFZSUpJMJpPL5RMnTgwMDKQwYBgOUBA6B7QM\nBnAMaxOLtra2hw8fLlq0yK4Vm4uLS2xs7IIFC5KTk/39/amKE8ApyGSyvLy8xsbGWbNmqVSq\nnJyc+vr6jo6OGTNmUB0awMhUWFhYU1MTGhq6bt26hISE2traxsZGjUZjd3eLpSbk8XipqakU\nRgvDBApCJ6DT6d57772bN2+2tbU1NzdfuHBBp9Px+fyejUNVKpWnpyclQQKMGNaaUKlUPnjw\nYObMmWjSCzAwHA5HJpNVVFTcu3fvv//9r1arnTJlyvr1611dn31iBbMYwICp1Wo3N7fCwkJP\nT8+9e/eGhISEhobOnTv3efd5slis8PBwCgOG4QMFoRPoS8tggq7BAIPHWhMqFApcig0wYEwm\nMykpqaKioqqqymAwTJkyJTc393n7RTGLAQyYSqXaunVrQ0NDa2trRkZGfHy85bnt3S2YzuB5\n6C8eAlSztgyePn363LlzP/jgg+DgYIlE8sEHH5jNZuswdA0GGESWZvcBAQFisfjAgQO2uQYA\nvejq6iorK7OmTHt7u06ns/w3l8u1629hC7MYwICx2Ww2my0Wi9VqtV2WYTqDF8IKoRP45ptv\nMjMzrR97bI8C264TxsTExMfHo8UFwGDBh1WA/pJIJCKR6IcffrCmzJgxY6qqqnx8fDgcTmVl\nZc/tLVaYxQAGzPYAfM8uMrbT2aRJk9CKAuygIBymtFrt4cOHjx8/LpVKHz16FBsba7uF5nk1\n4fjx46kLGWAEwiQK0EddXV2FhYXHjh1rb29PTEz83e9+5+3tTQhxcXF55ZVXUlJSkpOTKysr\nKyoq7GrCa9eueXp6WvaRYhYDGDDrhHX//v2eXWQsv/r5+aGLDPSEgnA4QstggOEDkyhAX+zf\nv18sFrNYrA0bNvzhD38YN26c9ScXFxcXFxfLeUJrTSgQCOh0+rlz5/bu3SuVSufPn/+8TjMA\n0Ee9b2xxc3OLiIigMDwYtlAQDkdoGQwwiEwmU0dHh+2ZCqVSqVaruVxuH/8PmEQBenflypVj\nx465urru2rWLz+c/b5htTWjpNHPixAmz2bx48eKpU6c6MmCAkQqHHWAAUBBSzO5VFS2DAQaX\nyWTKz88vLi6ePXu2JdF0Ot22bdtKS0sFAoGXlxfVAQKMBJ988klra+vvf//7nh8oGxoabt68\naTQaLZ9gmEzmnDlz7ty5U1NTc+/ePTqdvnLlyjfffJOKqAFGJtSE0F/YnkEly6uqRqPZuXMn\nh8NRqVRCoZDP57u4uKSnp7PZbMuwcePGiUQioVAoFosJIdnZ2UhsgL6wpFhZWRmHw1Gr1RwO\nhxBy7NgxtVodFxfn6+tLdYAAI8T9+/cJIQKBwPbhrVu3Dh8+XFtba/kjn8/ftGmTu7u7u7v7\nzp07L1261NDQkJiYGBIS4viAAUY2S2dRy6vjrFmz7HITwA6unaCM9VW1paVFrVYTtAwGGFS2\n1eCuXbtCQkLUarXZbJZKpX5+ftu3b3/eZWgA0F9jx44lhNy9e9fyR4PBcOjQoa1bt9bW1gYE\nBMycOZPJZF6/fj0/P98ygEajzZ49OysrC9UgwBCxvDquXbsW1SC8ELaMUsPuVXXixIkELYMB\nBo9dioWGhlov7W1paUlPT7fe42JHpVJ5eno6OFqAEeD69esKhcJsNt+8ebOgoKCystLLy+ud\nd95Zt25dcnJyYmKiWCxubGycPHmyn58f1cECjAo4AA99hIKQAj1fVa0/oWUwwMuzphiDwdi9\ne3dYWBghpKur68KFC3K5vKOjY9q0adHR0T3/okQiycvLc3d3t73lBQBeKDw8/OHDh7dv31Yo\nFJYsS05Ozs3NjYqKsgzw8vK6ceNGS0tLWFgY8gsAYFhBQehoz3xVtYWWwQAvw5pihJDu7m4P\nDw/LYqDtCvzDhw8XLVpkuwJvcf369crKysjIyLi4OApCB3BaNBpNIBBERkZ6eXlNnz597dq1\nGRkZLBbLOsBkMh09etRgMGRkZEyYMIHCUAEAwA4KQod63quqHbSHAhgY2+X35cuXV1VVVVVV\ndXZ22tWESqXywYMHM2fOtMusmJiY+Pj4efPmURQ+gHPz9/efNm1abGxsz/69//nPf6RSKZfL\nXbt2rYuLCyXhAQDAM6EgdJzeX1XtoCYE6C+7zdiJiYnh4eGXLl16Zk2oUCiemVnjx4+nKHyA\nEeuHH374/PPPCSEbN24MDg6mOhwAZ6JWqwsLC7/44gvL7IYWEjAUUBA6SF9eVe2giwxAv5SU\nlJw6dcr2aK6/v38vNSG+tgAMtadPn3766acnTpwghLz11lsLFy6kOiIAZ6LT6d57772bN2+2\ntbU1NzdfuHBBp9Px+Xy7aQvt0OAloSB0kD6+qtpBFxmAvgsLCzMajatWrbJt1ISaEIASXV1d\nxcXF+fn51dXVTCZzw4YNGRkZVAcF4GQOHjxYXV0dFhaWnZ09ffr0O3fuKBSK5ubmWbNmWact\ntEODl4eC0EH6/qpqB11kAPqIRqNNnTqVy+XaPX9hTYgVeIBBR6fTL1y4oFAoEhMTt27dikZN\nAAPwz3/+09PTc+/evcHBwSEhISkpKTKZTC6X29aEaIcGLw8FoYP061UVAAZXLzUhVuABhgif\nz09OTl68eDE2swEMzDfffJOZmWl9OWSxWElJSXY1IdqhwctDQUg91IQADvC8mhAr8ABDB6Ug\nQH9ptdrDhw8fP35cKpU+evQoNjbWdi/oM2tCtEODl4SCcFhATQjgAEg0AAAYzrRa7caNG6uq\nqvR6fWNjY0dHh16vX7Bgge3FubY14cSJEwMDAykMGEYGFITDBV5VARzAmmhxcXE4bgEAAJQw\nmUwdHR1jxoyxe15YWFhTUxMaGrpu3bqEhITa2trGxkaNRmPX/MxSE/J4PBx5gEFBM5vNVMcA\nv5LJZO+///6yZcuysrKojgVgxGpqavL396c6CgAAGI0sV5FpNJqdO3dyOBzLQ7Va7e3tvXLl\nSgaD8eGHH7LZbELIw4cPc3JyVCpVWlpadnY2GmLDEMEK4fDi7++fnJycmJhIdSAAI5mHhwfV\nIQAAwGhkvZi6s7MzMTFx7NixhBCVSrV169aGhobW1taMjAzrNjFckgSOQX/xEHAsLFwAAAAA\njDzWatByMXVISIjlOZvNZrPZYrFYrVbb7SPlcrkikSggIEAsFh84cAA7+2AooCAEAAAAABha\ndtWg7cXU1qqPEHLu3Lmuri7bv2hbE5aXlzs6bhgFcIYQAAAAAGAIWatBBoOxZ8+esLCwnmO0\nWq1QKHzeiUGtVnv58uUlS5Y4KmQYRXCGEAAAAABgqFirQUJId3e3h4fHM5vJ935iEBfnwtBB\nQQgAAAAAMCRsd4ouX768qqqqlwvG0EUGKIGCEAAAAABg8NmdG0xMTHzhpdOoCcHxUBACAAAA\nAAy+kpKSU6dO2XaR8ff371dNOGnSJEuzGYChg4IQAAAAAGDwhYXlHvkPAAAA2ElEQVSFGY3G\nVatW2fYU7XtN6Ofnl5qa6sB4YZRCl1EAAAAAAIeSyWTvv/9+Z2fnsmXLVqxYQXU4MKphhRAA\nAAAAwKH6sk4I4BgoCAEAAAAAHA01IQwTKAgBAAAAACiAmhCGAzrVAQAAAAAAjFLTpk3Lyclh\nMBgMBoPqWGCUQlMZAAAAAAAqNTU1+fv7Ux0FjFIoCAEAAAAAAEYpbBkFAAAAAAAYpVAQAgAA\nAAAAjFIoCAEAAAAAAEYpFIQAAAAAAACjFApCAAAAAACAUQoFIQAAAAAAwCj1f/TAxRlRUFHv\nAAAAAElFTkSuQmCC", - "text/plain": [ - "plot without title" - ] - }, - "metadata": { - "image/png": { - "height": 180, - "width": 600 - } - }, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "218" - ], - "text/latex": [ - "218" - ], - "text/markdown": [ - "218" - ], - "text/plain": [ - "[1] 218" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAAFoCAIAAADIFpV9AAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdeUBU5f7H8efMMMOqgCIiyiaSmYhabiW4lEvgvq9ct7xm2XWrq2mm5tK9\naWqZu17XzC1zzVBzQ3NBwS3DfQHEDZBN1pnz+2N+TWSmKGc4LO/XX2ee88x5vpBPw2fO8kiy\nLAsAAAAAQOmjUbsAAAAAAIA6CIQAAAAAUEoRCAEAAACglCIQAgAAAEApRSAEAAAAgFKKQAgA\nAAAApZSV2gWoLDExMTIyUu0qAAAAAEAFpT0QXr16dcmSJYGBgWoXAgAAAACFauPGjaU9EAoh\nXn755Q8++EDtKgAAAACgUO3atYt7CAEAAACglCIQAgAAAEApVeQuGX3w4MF3330XGRmZnJzs\n6OhYs2bN999/39bW1rTXaDRu2bIlLCzs/v37Li4urVq16ty5s0bzR6x9ZgcAAAAAgEnRSko3\nb94cPnx4eHj4K6+80rlz54YNG8bGxj569MjcYenSpStWrPDx8Rk0aJCfn9+qVasWL16c9wjP\n7AAAAAAA+RcbGytJUseOHdUuxCKK0BlCo9E4Y8aMMmXKTJ48uWLFin/tEBMTs3PnzqZNm44e\nPVoI0aZNG51Ot2vXruDgYC8vr/x0AAAAAKCWkydPzps37+DBg/Hx8Tqdztvbu3Xr1iNGjKhc\nubLapZVeRegM4cmTJ2/dutWvX7+KFStmZGRkZ2c/1iE8PFyW5Xbt2plb2rdvL8vyoUOH8tkB\nAAAAQOGTZXnMmDH169dfuXKlq6tr7969O3TokJmZOXPmzJdeemnTpk1qF/g0rq6u4eHhn3/+\nudqFWEQROkN46tQpSZLs7OyGDx9+/fp1SZJeeeWVwYMHV61a1dThypUrWq3W19fX/BYfHx+9\nXn/16tV8dgAAAABQ+KZMmfLFF194eHhs2rSpQYMG5vaVK1cOGTKkZ8+ee/bsad68uYoVPoVe\nry/B65YXoTOEt2/f1mq106dPd3d3/+ijj/r163f9+vVx48bduXPH1CExMdHR0VGr1ZrfIkmS\ns7NzQkJCPjuY/Otf/+rwu+XLl1v+JwMAAABKrxs3bkyZMkWv1//4449506AQol+/fnPnzjUY\nDEOHDjUajXl3HTt2rHv37u7u7tbW1pUqVWrVqtWGDRvydjh69GiXLl3c3Nz0er27u3vfvn2j\no6PzdliyZEnHjh19fHxsbW2dnJyaNm26cePGvB1Onz4tSVL//v1jYmJ69+7t4uJia2tbv379\nH3/8MW+3J95D+MyDFxdFKBBmZGTk5ubWrFlzzJgxQUFBnTt3Hjt27KNHj77//ntTh6ysLJ1O\n99i79Hp9VlZWPjuYpKenp/4uMzPTMj8NAAAAACGEWL58eW5ubs+ePf39/f+6d9CgQd7e3hcv\nXjx48KC5ceHChY0bN962bVtgYODo0aPbtGlz7969+fPnmzssWbIkMDAwPDw8JCRk1KhRQUFB\nGzdurFev3vHjx819hgwZcufOnebNm48YMaJLly7R0dHdu3f/4osvHisgJiamfv36Fy9e7N69\ne5s2baKiotq1axceHv70HyqfBy/6itAlo9bW1kKIvGeK69Sp4+zsfP78eXOHjIyMx96VnZ1t\nY2OTzw4my5YtM29HRETs2LFDoZ8AAAAAwOMOHz4shGjduvUT92o0mhYtWixduvTIkSOmLHD2\n7Nlhw4Y5OTkdPny4Ro0a5p6xsbGmjd9+++39999v2bLlDz/8YF6g7uzZs40bN/7nP/955swZ\nU8vNmzc9PDzMb3/06FHTpk0nTZo0ePBgZ2dnc/u+ffs++eSTzz77TJIkIcSaNWtCQ0NnzJgR\nFBT0lB8qnwcv+orQGcLy5csLIR779Tk5OaWlpZm2y5Url5ycbDAYzHtlWU5KSjK9MT8dAAAA\nABSy+Ph4IYSnp+ffdTDtun37tunlggULDAbDpEmT8qZBIUSVKlVMG/Pnz8/JyRk3blx6evqD\n37m7u7/11ltnz569efOmqZspsMmynJycfPfu3ZSUlE6dOmVkZDx29s/T03PixImmNCiE6NOn\nj6Oj44kTJ57+Q+Xz4EVfETpD6Ofnd+DAgQcPHphbZFlOSEhwcnIyvfT19T158uS1a9f8/PxM\nLdevX8/OzjY/ReaZHQAAAAAUMlmWhRDmxPV3zB2OHTsmhAgODv67nkePHhVCNG3a9Il74+Pj\nTWvORUVFTZo0af/+/ampqXk7xMXF5X1Zt25dK6s/YpEkSVWqVLl8+fLTq83nwYu+IhQIX3/9\n9eXLl//0009NmjTRaDRCiMOHD6ekpLz55pumDkFBQRs2bNi+ffuoUaNMLdu3b5ckyXwy95kd\nAAAAABSySpUqRUdH37x5s3Hjxk/scOvWLVM308uHDx8KIZ6yOKHpmZHbtm0zXy+al+m8YmRk\nZGBgoI2NzdChQ2vXrm169uTevXu//PLLx54wYj7/ZGZlZZX3qsO/yv/Bi74iFAhdXFx69uy5\nZs2acePGNWrU6P79+7t27XJxcenSpYupg6enZ0hIyM6dO3Nycvz9/S9cuBAeHv722297e3vn\nswMAAACAQhYYGLh///6wsLDevXv/da/RaNy7d68QwhwXTQktLi6uWrVqTzygo6OjEMLNza1+\n/fp/N+isWbMyMjK2bdvWokULc+OpU6cK8HMU0sELWRG6h1AI0b179w8++CA9PX316tUHDhwI\nCgqaMWOG6b+3yeDBg//xj39cvXp12bJlly5dCg0NHTJkSN4jPLMDAAAAgMLUv39/rVa7bt26\nX3/99a97ly1bduPGjerVq5svAW3UqJEQYteuXX93QFOHdevWPWXQGzdumHua7du377mrL/SD\nFza5dDtx4sSnn36qdhUAAABASTZhwgQhhIeHx4kTJ/K2r1q1ytraWqvV/vzzz+bGs2fParXa\ncuXK/fbbb3k7x8TEmDbOnTtnZWWl0+nyvkuW5dTU1HXr1pm2Q0NDhRCbN2827/32229NCWj2\n7NmmlqioKCFEv379Hqu2du3aWq0277hCiA4dOphb8nNwWZY///zz1q1b79y581m/HtUEBwcX\noUtGAQAAAJRIkyZNSk9PnzVrVsOGDRs2bFizZs3s7Oxjx45dvnzZ1tb2u+++Mz83RAhRq1at\nuXPnDhs2rE6dOu3bt/fz80tISDh58mSZMmX2798vhPD391+0aNGQIUNatGjRqlWrunXrGgyG\n6Ojoffv2eXt79+jRQwgxbNiwtWvX9urVq0ePHl5eXqdPn/7xxx+7deumyPLx+Tz46dOnw8LC\nOnXqVPARLYdACAAAAMCyNBrNl19+2aNHj3nz5h06dCgqKkqn03l7e48ePXrEiBHm9STMhg4d\nGhAQMHPmzAMHDmzZssXFxSUgIOCdd94xdxg4cOCrr746a9asAwcO7N+/397e3t3dPTQ01JQG\nhRANGjTYu3fvp59+umXLFiFEvXr1du/effv2bUUCYT4PfunSJZ1O16pVq4KPaDmSLMtq16Am\n08L0kydPVrsQAAAAACVHYmJihQoV3n333Xnz5qldy98KCQkpWg+VAQAAAIASYP/+/dbW1p98\n8onahTwDgRAAAAAAFNalS5dHjx6ZF1cssgiEAAAAAFBKEQgBAAAAoJQiEAIAAABAKUUgBAAA\nAIBSikAIAAAAoKiLjY2VJKljx47P7Oni4uLt7W35ikoIAiEAAAAA1Zw8eXLAgAFVq1a1tbUt\nW7ZsQEDARx99FBcXp3ZdpQWBEAAAAIAKZFkeM2ZM/fr1V65c6erq2rt37w4dOmRmZs6cOfOl\nl17atGmT2gWWClZqFwAAAACgNJoyZcoXX3zh4eGxadOmBg0amNtXrlw5ZMiQnj177tmzp3nz\n5ipWWBpwhhAAAABAYbtx48aUKVP0ev2PP/6YNw0KIfr16zd37lyDwTB06FCj0fiUgxiNxjlz\n5tSoUcPGxsbDw2PkyJFpaWn5GX3Xrl0tW7Z0d3e3trauVKlSYGDgjBkz8nY4evRoly5d3Nzc\n9Hq9u7t73759o6OjHzvIsWPHunfvbj5Iq1atNmzYkL+fvgghEAIAAAAobMuXL8/Nze3Zs6e/\nv/9f9w4aNMjb2/vixYsHDx58ykGGDh06cuTIjIyMYcOG9ezZc9u2bcHBwQaD4elDr1q1KiQk\n5Pz58+3btx8zZkzHjh01Gs3SpUvNHZYsWRIYGBgeHh4SEjJq1KigoKCNGzfWq1fv+PHj5j4L\nFy5s3Ljxtm3bAgMDR48e3aZNm3v37s2fP/85fw3q45JRAAAAAIXt8OHDQojWrVs/ca9Go2nR\nosXSpUuPHDnyd1eNHjhwYPHixbVr1z5y5Ii9vb0QYvLkyYGBgQ8fPnR0dHzK0IsWLdJqtadO\nnXJ3dzc3JiUlmTZ+++23999/v2XLlj/88IOtra2p8ezZs40bN/7nP/955swZ08thw4Y5OTkd\nPny4Ro0a5oPExsbm/zdQRHCGEAAAAEBhi4+PF0J4enr+XQfTrtu3b/9dhxUrVgghJk2aZEqD\nQgg7O7upU6fmZ3StVmtl9adzY87OzqaN+fPn5+TkjBs3Lj09/cHv3N3d33rrrbNnz968eVMI\nsWDBAoPBMGnSpLxpUAhRpUqV/IxepHCGEAAAAEBhk2VZCCFJ0tO7PaVDVFSUEKJJkyZ5Gx97\n+US9evX65Zdfatas2aNHj2bNmgUGBrq5uZn3Hj16VAjRtGnTJ743Pj7ey8vr2LFjQojg4OBn\njlX0EQgBAAAAFLZKlSpFR0ffvHmzcePGT+xw69YtU7e/O0JycrKVlVW5cuXyNjo4OJhPGP6d\nYcOGOTs7z5s3b8GCBfPmzRNCvP766zNmzDBVkpCQIITYtm2b+XrRvEynBB8+fCiEqFy58tMH\nKhYIhAAAAAAKW2Bg4P79+8PCwnr37v3XvUajce/evUKIv4uLQghHR8ebN28mJibmzYRpaWnp\n6ekuLi5PH71Pnz59+vRJSUk5evToli1bli1bFhwc/Ouvv3p4eJjuP3Rzc6tfv/7fvd3JyUkI\nERcXV61atWf9oEUd9xACAAAAKGz9+/fXarXr1q379ddf/7p32bJlN27cqF69+t9duimEqFu3\nrhDi0KFDeRsfe/l0ZcuWbd269YIFC0aPHp2amrpv3z4hRKNGjYQQ69ate8obTX127dqV/7GK\nLAIhAAAAgMJWtWrVcePGZWdnBwcHR0RE5N21evXqDz74QKvVzp8/X6P528DSr18/IcSkSZPS\n09NNLY8ePZowYcIzh96zZ09ubm7elgcPHggh7OzshBDDhg2zsrKaO3euKR+apaWlrV+/3rT9\n3nvvabXaSZMmPbY4Yd6njK5YsWLOnDn37t17Zj3q4pJRAAAAACowZblZs2Y1bNiwYcOGNWvW\nzM7OPnbs2OXLl21tbb/77rs333zzKW9v3rz54MGDlyxZ4u/v36VLF0mSNm/e7O7ubrqe8yl6\n9eplZWXVtGlTLy8vrVZ7/Pjx/fv316xZs23btkIIf3//RYsWDRkypEWLFq1atapbt67BYIiO\njt63b5+3t3ePHj2EELVq1Zo7d+6wYcPq1KnTvn17Pz+/hISEkydPlilTZv/+/aZRpk6devXq\n1cDAQFdXV4V+YRZBIAQAAACgAo1G8+WXX/bo0WPevHmHDh2KiorS6XTe3t6jR48eMWJEfpZw\nWLhwYY0aNRYuXDh37twKFSp069ZtypQp3t7eT3/X1KlTw8LCTp48uWPHDp1O5+XlNXXq1Pff\nf9/8FJmBAwe++uqrs2bNOnDgwP79++3t7d3d3UNDQ01p0GTo0KEBAQEzZ848cODAli1bXFxc\nAgIC3nnnnQL8PtQhmZ73WmpFRETs2LFj8uTJahcCAAAAAIUqJCSEewgBAAAAoJQiEAIAAABA\nKUUgBAAAAIBSikAIAAAAAKUUgRAAAAAASikCIQAAAACUUgRCAAAAACillFmYftiwYc/V/8MP\nP3zmepEAAAAAAItSJhDOmzfvufr37duXQAgAAAAA6lImEAohtmzZ0rhx42d2y8rKqlKlilKD\nAgAAAABemGKB0NHR0cXF5ZndMjMzlRoRAAAAAFAQygTCo0ePvvLKK/npaW1tffToUX9/f0XG\nBQAAAAC8MGUCYaNGjfLZU5Kk/HcGAAAAAFgOy04AAAAAQCml2D2EecmyvHfv3uPHjycmJhqN\nxry75syZY4kRAQAAAADPS/lAmJqaGhwcfOTIkSfuJRACAAAAQBGh/CWjEydOPHr06PTp0y9c\nuCCE2LFjx8GDB1u1alW/fv0bN24oPhwAAAAA4MUoHwh/+OGH7t27f/zxxz4+PkKI8uXLN2nS\n5Mcff5Rl+ZtvvlF8OAAAAADAi1E+EMbFxQUFBQkhNBqNECInJ0cIodVqe/bsuXHjRsWHAwAA\nAAC8GOUDob29vSkE6vV6Gxub27dvm9rLli17584dxYcDAAAAALwY5QNh1apVL168aNquXbv2\nunXrZFnOzc1dv359lSpVFB8OAAAAAPBilA+ErVq1+v77700nCd95550tW7ZUq1bNz8/v559/\nHjBggOLDAQAAAABejPKBcOzYsT///LNp+cF33nln5syZNjY2Dg4OkyZNGjt2rOLDAQAAAABe\njPLrEDo6Ojo6Oppfjh49evTo0YqPAgAAAAAoIOXPEAIAAAAAigXlzxCaGY3G1NRUWZbzNjo5\nOVluRAAAAABA/ikfCI1G46JFi77++utr165lZ2c/tvexfAgAAAAAUIvygXDq1KkTJ050dXVt\n166di4uL4scHAAAAAChC+UC4ZMmSV199NTw83M7OTvGDAwAAAACUovxDZe7evdu7d2/SIAAA\nAAAUccqfIaxWrVpycnIBD3Lx4sV///vfsixPmzatVq1a5naj0bhly5awsLD79++7uLi0atWq\nc+fOGo0m/x0AAAAAACbKJ6URI0asWrUqJSXlhY9gNBoXLFhgbW39111Lly5dsWKFj4/PoEGD\n/Pz8Vq1atXjx4ufqAAAAAAAwUeYM4ZYtW8zbrq6uHh4eAQEBQ4cO9fX1tbL60xAdO3Z85tF2\n7tx59+7dkJCQzZs3522PiYnZuXNn06ZNTSvdt2nTRqfT7dq1Kzg42MvLKz8dAAAAAABmygTC\nTp06/bVx7Nixf2185rITSUlJ3377bWho6F+XrAgPD5dluV27duaW9u3b79u379ChQ6Ghofnp\nAAAAAAAwUyYQbty4UZHjCCGWLl1asWLF4ODgrVu3PrbrypUrWq3W19fX3OLj46PX669evZrP\nDgAAAAAAM2UCYdeuXdPT0+3t7Qt4nDNnzhw+fPjzzz9/4mNgEhMTHR0dtVqtuUWSJGdn54SE\nhHx2MJk2bVpcXJxp29HRUa/XF7BsAAAAACiOFHvKaIUKFUyP9GzXrp2zs/MLHCE3N3fhwoVN\nmzZ95ZVXntghKytLp9M91qjX67OysvLZweTcuXNXrlwxbVevXr1atWovUC0AAAAAFHeKBcKP\nPvro+++/79evn06na968eefOnTt27FixYsX8H2Hz5s1JSUkDBgz4uw7W1tYZGRmPNWZnZ9vY\n2OSzg8myZcsMBoNp++zZs3v27Ml/kQAAAABQYii27MTkyZPPnz9/6dKlzz77LCkp6d1333V3\ndw8KCpo9e/bNmzef+faUlJQNGza0aNEiMzMzPj4+Pj4+NTVVCJGQkBAfH296FE25cuWSk5PN\nWU4IIctyUlJS+fLlTS+f2cHE3t6+7O+euLgFAAAAAJQGCq9D6OfnN3bs2BMnTty6dWvWrFka\njebDDz/09vauV6/e9OnTo6Oj/+6NKSkp2dnZ27ZtG/K7TZs2CSFmzZo1ZMgQ0zWfvr6+BoPh\n2rVr5nddv349Ozvb/BSZZ3YAAAAAAJgpvzC9iYeHx/Dhww8ePHjnzp3Fixe7uLhMmjSpRo0a\nr7zyyo4dO/7av3z58mP+7M033xRC9OrVa8yYMabnvgQFBUmStH37dvO7tm/fLklSUFCQ6eUz\nOwAAAAAAzBS7h/DvVKhQYfDgwYMHD05OTt6+ffvmzZt/++23tm3bPtbN1ta2cePGeVvu3bsn\nhPD3969Vq5apxdPTMyQkZOfOnTk5Of7+/hcuXAgPD3/77be9vb3z2QEAAAAAYGbxQGjm6OjY\nt2/fvn37FuQggwcPLl++/O7du48fP16+fPnQ0NDOnTs/VwcAAAAAgIlkel5LqRUREbFjx47J\nkyerXQgAAAAAFKqQkBDlzxA+tsaDmSRJtra2Xl5erVu3/vDDD11cXBQfGgAAAACQf8o/VKZt\n27a+vr5ZWVmurq6BgYGBgYEVKlTIysqqWrVq/fr1Hz58+N///rdOnTpxcXGKDw0AAAAAyD/l\nA+HIkSNjYmLWrFlz8+bNvXv37t2799atW6tWrYqJiZk0adL169e//fbb+Pj4iRMnKj40AAAA\nACD/lL9kdOzYsf379+/Tp4+5RZKk0NDQEydOfPzxxwcOHOjdu/e+ffvCwsIUHxoAAAAAkH/K\nnyGMjIwMCAj4a3tAQMDJkydN240aNbp7967iQwMAAAAA8k/5QKjT6U6fPv3X9qioKJ1OZ9rO\nysqyt7dXfGgAAAAAQP4pHwhDQkIWLly4bNkyg8FgajEYDEuWLFm0aFGbNm1MLSdOnGCxeAAA\nAABQl/L3EM6YMePYsWPvvPPO2LFj/fz8ZFm+cuXKgwcPfH19v/jiCyFEZmbmrVu3evfurfjQ\nAAAAAID8Uz4QVq5cOSoqaubMmVu3bj179qwQomrVqkOHDv3www/Lli0rhLCxsdm/f7/i4wIA\nAAAAnovygVAI4ejoOGXKlClTplji4AAAAAAARSh/DyEAAAAAoFhQ7AxhZmZmfrrZ2NgoNSIA\nAAAAoCAUC4S2trb56SbLslIjAgAAAAAKQsl7CG1sbBo1aqTVahU8JgAAAADAQhQLhL6+vlev\nXr106VL//v0HDhzo6+ur1JEBAAAAAJag2ENlLl++vG/fvubNm8+ePdvPz+/NN9/89ttvMzIy\nlDo+AAAAAEBZigVCSZKaN2++Zs2a27dvf/PNN8nJyX379nV3d3///fcjIyOVGgUAAAAAoBTl\nl51wcnJ67733Tp06FRUV1bdv3+++++61116bOXOm4gMBAAAAAArCgusQVqtWrU6dOqabCdPS\n0iw3EAAAAADgBSj5lFGzI0eOLFu2bMOGDenp6a+//vrSpUt79OhhiYEAAAAAAC9MyUB4586d\nVatW/e9//7t48aKrq+u77747aNCgGjVqKDgEAAAAAEApigXCDh06/Pjjj7Ist2rVatq0ae3b\nt9fpdEodHAAAAACgOMUC4bZt22xsbDp27Fi5cuWjR48ePXr0id14ugwAAAAAFBFKXjKamZm5\nbt26p/chEAIAAABAEaFYIIyIiFDqUAAAAACAQqBYIKxXr55ShwIAAAAAFAILrkMIAAAAACjK\nlAmEK1asuHPnTn56GgyGFStW3L9/X5FxAQAAAAAvTJlAOGDAgOjo6Pz0zMnJGTBgwNWrVxUZ\nFwAAAADwwhS7h/DChQs2NjbP7Jadna3UiAAAAACAglAsEL7//vtKHQoAAAAAUAiUCYRz5859\nrv4+Pj6KjAsAAAAAeGHKBMJhw4YpchwAAAAAQKFh2QkAAAAAKKUIhAAAAABQShEIAQAAAKCU\nIhACAAAAQClFIAQAAACAUopACAAAAACllAUDocFgsNzBAQAAAAAFpHAgTExMnDhx4muvvebg\n4GBlZeXg4PDaa69NmjQpKSlJ2YEAAAAAAAWkzML0JmfOnGnduvXdu3eFEGXKlKlcuXJKSkpk\nZGRkZOSSJUt++umnWrVqKTgcAAAAAKAgFDtDmJGR0aVLl/v3748aNerKlSspKSmxsbEpKSmX\nLl0aMWJEfHx8165ds7KylBoOAAAAAFBAigXC9evXX716de7cuV9++aWvr6+53c/Pb/bs2XPm\nzLl06dLGjRuVGg4AAAAAUECKBcJt27Z5e3u/++67T9w7bNgwT0/PrVu3KjUcAAAAAKCAFAuE\nZ8+efeuttzSaJx9Qo9G0aNHi9OnTSg0HAAAAACggxQLh3bt3vby8ntLB09Pz3r17Sg0HAAAA\nACggxQJhenq6ra3tUzrY29unpqYqNRwAAAAAoIAUC4SyLCvSBwAAAABQOJRch3Djxo3R0dF/\nt/fcuXMKjgUAAAAAKCAlA+GJEydOnDih4AEBAAAAAJajWCCMiIhQ6lAAAABFkSynLmhsH7pZ\nU8ZN7VIAQBmKBcJ69eopdSgAAICiQ06/L9lXEEII2Zh786j8KEGUcRNCyOkPJLvyQpJUrg8A\nCkCxh8oAAACUPHL6g4fTPbKj1jzWnnvjcPJ/q+bGHFelKgBQipL3EP5VVlbWb7/9lpKSEhAQ\n4OTkZNGxAAAAFCfZu9j3XJO+rq8wGvV1+5gac28cSftfiE3Tj6w8G6lbHgAUkJKBcNeuXStW\nrNDr9YMHD27SpMnu3bsHDhwYFxcnhNDr9RMmTPjkk0+e8vbY2NgDBw6cOnUqPj7eysrKw8Oj\nY8eODRs2zNvHaDRu2bIlLCzs/v37Li4urVq16ty5s0ajyX8HAACA56Kv1VUIkb6ur5CNQghD\nXNSjLe/ZNP3I5q0JapcGAAUlKbU24MGDB5s3b246ml6v37lzZ8eOHe3s7N54443s7Ozw8PC0\ntLSNGzd27dr1744wa9asw4cP165d28fHJysr6/Dhw0lJSb169erVq5e5z+LFi3fs2PHGG2/U\nqlXrwoUL4eHhISEh7777bv47PCYiImLHjh2TJ09W5JcAAABMUuc3zr35i9pVIL8kW2enSYlq\nVwGgsIWEhCh2hnD27Nn29vbfffedt7f3kCFDQkNDvby8jhw5YrpS9Pr163Xr1p0/f/5TAmHT\npk0HDRrk6OhoetmrV68RI0Zs3LixQ4cOdnZ2QoiYmJidO3c2bdp09OjRQog2bdrodLpdu3YF\nBwd7eXnlpwNUl/XLN7oabTXO3moXAgCwMEnSOFZWu4iCktPvy7nZT+8jSRqpbHvEdmYAACAA\nSURBVKXCqceCrGzUrgCAOhQLhKdOnerRo0fbtm2FEJMnT27ZsuXHH39svm/Qx8enV69e69at\ne8oRXnvttbwvHRwcGjVqtG3btjt37lStWlUIER4eLstyu3btzH3at2+/b9++Q4cOhYaG5qcD\nVJf1yzeSQ0U9gRAASjxZNibHqV1EYZBlo1z8f1LJ1lntEgCoQ7FAeOfOHV9fX9O2Kb95enrm\n7eDl5ZWcnPxcx0xJSRFCODv///+hrly5otVqzaMIIXx8fPR6/dWrV/PZAapIXRBk0+JTnV/L\nvI1ybuaj9f/Q1eqmD+imVmEAAMux77tR5GaqXYViDLGn0jcOsG7wTubhr2zeGp95cIZd6+k6\n/05q16UciQcuAKWUYoEwNzdXp9OZtvV6vRDCyupPB7eysnqu+xXj4uKOHDny6quvmgNhYmKi\no6OjVqs195EkydnZOSEhIZ8dTJYsWXL//n3TNs+bKQT6Wl3TV3aw77fVnAnl3Mz0VZ2MD2/Z\ndfhG3doAABaiKeuudgmKyb1xJH3TIJtmY2yaj8s8/JW+di9tpTrp6/ra21fQv/YPtasDgAKx\n7LITL+zRo0eff/65TqfL+zyYrKwsc+Y00+v1WVlZ+exg8vPPP1+5csW0Xb169WrVqilcPf7M\nOnC40Nmkr2hvH7pJCCGMuelruhkTbzgM2Sc5uKpdHQAATyM/Skhb9rZNszE2b30ijAZTo75W\nVyEb09f/Q1uplta9rroVAkBBKBkIN27cGB0dLYR49OiREGLu3Llbtmwx7z137lw+j5OZmTl5\n8uS7d+9OmjTJzc3N3G5tbZ2RkfFY5+zsbBsbm3x2MJk+fbo5Il67du3EiRP5LKwwPdo2PDty\ntdpVKErSpC1vJyQpfX2okIVk7ZDyZU21a1JS2Q9/0zhUVLsKAIDCJNtyDkP2WVWp/1i7PqC7\ntsLLmgovqVIVAChFyUB44sSJvOFq9+7dL3CQrKysKVOmXLlyZcKECTVr/ikwlCtX7ubNmwaD\nwXxRqCzLSUlJ/v7++exgYrrF0SQtLe0FiiwEkhCStYPaVRSUnJUq572BRKMRRoMwCqGzlg3m\n07aSxq5cCbh1QTIa1S4BAGABkvRHGpQ0koOrZF3W9EpbKUC1qgBAIYoFwoiIiIIfJDs7e+rU\nqRcuXPj444/r1Knz2F5fX9+TJ09eu3bNz8/P1HL9+vXs7GzzU2Se2aEYkXMeGR/GqF2FZUhC\n5P7pIt6S8Rg6WRKS2jUAACxLkpwm3FW7CABQkmKBsF69egU8Qk5OzvTp08+dO/fvf/+7QYMG\nf+0QFBS0YcOG7du3jxo1ytSyfft2SZKCgoLy2aEYsfJpUgJOmv1BNuZc3i1npgjZqCnjZki4\nqvNrqXHyfPYbiw9JZ6d2CQAAAMDzKUIPlVm0aFFkZORLL70UExOzfv16c3uTJk0qVaokhPD0\n9AwJCdm5c2dOTo6/v/+FCxfCw8Pffvttb29vU89ndihG9K+G6l8tKWsnGrLTVneRrGzLjD6W\ntqi5Taspckrco11jHUK/173cRu3iAAAAgNJLyUC4a9cujUbTunVrIcS9e/cGDhyYd29AQMD0\n6dOf8va7d+8KIS5dunTp0qW87VWrVjUFQiHE4MGDy5cvv3v37uPHj5cvXz40NLRz5855Oz+z\nAwpf2uouxsRrDu8eND9zxTpwhBAifU03h8F7rbzeULU6AAAAoPSSnmttwKc4c+ZM3bp1FyxY\nMGTIECHEjRs3fHx8Hutz8uTJ1157TZHhlBIREbFjx47JkyerXcjj0hIfZabnqF2FMqTIOXKN\n3sLWVQih/ba+seF4uVpHIYR0cb0o97JcobbaBSqjnHtZjZa7CAEAAFBshISEKHaGcNmyZRUq\nVBgwYEDexuXLl7/99ttCiNzc3ICAgJUrVxa1QFhkbZkZfmR9fhfqKPLshdhq2hrROmXvj/vO\nx93/fdcJIYrish8v4D9Hhzq62qtdBQAAQDGWdXyRkDTWDQarXUgpolggPHDgQMuWLfV6fd5G\nJycn80KC7dq1O3TokFLDlXie/m4ZqdlqV6GwzPTstUdDhaPPqyEeateiPJ21Vu0SAAAAih85\nN1PS6k3PUzTcPv3HgxVlo2zIlqxsnvZmFJhigfD69etdunR5Sgdvb++869Tj6Zr0rt2kdwm5\nltLs7vWkSS2uvxbo8c7cdmrXAgAAgCLh0cZBcm6mQ+91Qqv7o9WQk7a2h6Szs++5Rr3SSgXF\nFjbIzMzU6f74T+jl5ZWamtqu3R9/99vZ2WVkZCg1HIqv1AeP1C4BAAAARYVtyH8N8WfTVnX6\nY6lqQ07at90Nd87bBv9X1dJKBcXOEJYrVy4u7o/lxSVJcnBwyNshNja2fPnySg2HYmTZv3a0\nereBxyuueRtlo7z5PwdfbuxVs+njDx8CAADA0xkf3sq9dVztKhRj02R0xp7JKfPekOychaRJ\nmd/YmBxr22Ji7s1f1C5NMVaeDYvmKtyKBcK6deuGhYUZjUaN5glnHY1GY1hYWN26dZUaDsWI\ns3uZr0I3DF/dXW/7/+eQZaO8emzYb4dvNA3lnwQAAMBzu7Z9U/nzo9WuQmGGtDt5Xz764V21\nKrGEhFqzqvUdqXYVT6BYIOzRo8fAgQNnz549evQT/mnOnj378uXL48aNU2o4FCOdxzbVWmlm\n91kf+vnbQghZlleN+elC+I2Ra7q7eDiqXR0AAEDxk2vrcfrum2pXUVBO1vc8HKPztmilXCGE\nQf5TSIlJfvlh1p+uNSuO3OsX0acqKhYI+/btO2/evA8//PDXX39977336tSpY2VllZube/r0\n6fnz5y9fvrxevXp9+vRRajgULx0+DBJCrByzSwhx91rS3RtJI9d0d6vGJcQAAAAvoqpvdsWK\n+9SuwlJMsdDM2+m8WpUoyL7aILVLeDLFAqFOp9u6dWu7du2WL1++fPlySZLs7OwePXpkWvj+\n1Vdf3bp1a96nzqA0OLH1t8snYswvnSqWuZuWkJr4qG6w38/LT5kaNVpNxw+DbMtaq1QjAMAi\nzuy9wlPEihErvbZR55pqV4HnoHHxs274T7WrUI5szLmyV36UmJhkI4Qo55wp2Tjp/FoKTclZ\n1ktTvpraJTyZYoFQCFG5cuXjx4+vWrVq48aN58+fT05Odnd39/f37969e2hoKGmwFLJx0Ns5\n/r50jCxkg9G0qbfRmdu1VhqNlWJPuwUAFBG7F524Fnlb7SqQX3aONgTC4sXKo4GVRwO1q1CI\nISdtbQ8hWZUd9WvUB31kSfKesiZ1UXNj6h2H0O+FFacNLEvJQCiE0Ol0gwYNGjToyedDo6Ki\neK5MqRLwlm/AW75CCNkorxrzU3pKlhDC2a3Mmb1Xhq/s5hXgpnaBAABLaTWkQck7Qxj7272D\na07XblHNv3lVtWtRmJW+5JyHQbHzaMcoQ/y5MkP2axyrCCGELDSOVcoM2Z+6qNmjHz+ya/+1\n2gWWcAoHwidKTk5eu3bt0qVLIyMjTVeQolQxpcEL4TcGzAj+ZtD3Lh6OVV9z/6rfRjIhAJRg\ntVsU0YujCuJ02OWDa067eJQN7Bmgdi1AyWFdf5DNm+M1ZdyEELk5BiEkIYTGsUqZoYfl1DvP\nejcKyrKX6h0+fLh///7u7u7vvffexYsXu3XrZtHhUDR9O3539JGbo9f1dPFyMrV0+DCocfda\ncwdsir/8QN3agBLGmByXe+Ow2lUAJUpGStaioVuT76Y91p71KGf56B/jrySoUhVQktyIr5CU\nbGvazs61zsr5/2tEk5Jtb94p9g8XLfosEgjv37//5Zdf1qhRIygoaOXKlUFBQZs3b75///6G\nDRssMRyKOJ2N1ci1PVy9nfM2dvm4Wat/NkhLzFCrKqBEyjm/OWP3p2pXAZQo1vY6o9E4q8/6\nvJkw61HOvHc237mc4OTqoGJtQMlwZs+VL3usu3/zoRDi59/a7rvYRghx/+bDmd2/O7PnitrV\nlXxKBkKj0bh79+7u3btXqVLlww8/tLOzGz9+vBDi3Xff7dSpk62trYJjoRjpMfGtx9KgSash\nDfwaFtH1WIBiJOf85qwjc39/JYvfr8w3xJ7M+PHfalUFlBgareaf8zpUqlZ+Vu/16Q8zhRAG\ng3H+4B8yUrP+taorT8kGCq7Tv5tUf8Nzdu/1928+NAqNUWju3Uia1WtdtfpVTEuXwaIUu4fw\ns88++9///nfz5s0KFSq89957AwYMCAgIuHHjxrRp05QaolQ5ceLE1atX1a5CMbIs37179+71\nJCHKXou7PHXq1MqVK9vY2Dz7ncVHx44d+dYDqpDKuGWs/4ecnWbT/GNzY25sRNrSVtaNh6tY\nGFBiaK00g79pv2TYtu1zjgghzuy5Yu9sN2J1N3sn/rcPKEDSSP/479urxvw0u/d60wNHZvde\nX61+lQGz2mi0ktrVlXyKBcKJEydWq1Zt8+bNbdu2ZYWJgrvy84NLv6SqXYUyZFlOS0tLTk7W\nSjqNENn3tLd+yLpve8/BwaEk/VPJfCuHQFiMpCVlnA67rHYVSnGw85rvtee9m2fijFqHMg/T\nLv1vvdfVIUnlO91N6CzWnVW7PGV4vOLKY6hQ+PYsibh3I8m07eBsa8wxCCHSEjOqv+65ZUa4\nqd3GQd95bDOJv1qB55eRmnXz7P8/NqZBhxrJ99KiD9+UJeFd2/mNrv6Xjt0y7fIKcLMtw9l4\nS1EsELq4uFy5cmXcuHGXLl0KDQ11d3dX6silkzFVe/dCitpVKEknypo2NDk68VCX/VAkigwh\nSs49hBrBA7uLk4fRUU77eqhdhZISrOxccudn51prJKN3Su/0bPus+3udoveqXZdi7l3t4RUw\nU+0qUOrYlbUxL5xryDXKQhJCyLJsbae3tteb2m3LWJMGgRdz6VjMpmn7zS8NOUZZCCGL+zce\nrp2wx9ze9ZPmJfLBxUWEYoEwLi7uhx9+WLJkyccffzx+/PjWrVubrhpV6vilTfcJb3Ye01Tt\nKpSxd+/ey5cvu7q6ZmZmnj171sXFpWrVqrIsR0VFDRs2rFKlSmoXqAy+uCpeHMvpbFxKwHcu\nssaYneellY0uUwghC62DbbaD7f3/7yRpZakwFhmyqFyfknNBAYqRxj1qmTayM3LmD/7B2l6X\nliScK5X57fDNkWt7OFXkiTJAgdRuWa12y/9PevduJM3uvV6jlYQkCSH+tbJbhd8fUA+LUuxP\nBL1e36NHjx49ely7dm3ZsmUrVqzo1q2bvb29EOL27dtKjVJ66G11etsS8tdPpuFRmXL2VrYa\nK0kjdEaNtbCy1QghHJztckSW+ZtXoDDZlbU2lIBVmGWjnJv3pRAGIYSQNH96ZJhGoxHaYv/D\nOrjxlzdUY0qD6cmZbYe/sfKjXf7NqibeTp3dez2ZEFCKKQ1Wq1/l7M9XJUmYnjEzcm0PMmEh\nUP4746pVq06bNu2zzz7buXPnkiVLdu3a9f7778+cObNr167dunWrX7++4iOiiLOysjIYDH9t\nz83NtbIq9mctUFxprCTbJzz8ttj54zq13CxjarxB1stGo5VklHR2JeMH/IOOe3Shjtwcw7xB\nmzNSs0as7n75eIwQQqOR3pnbbsmwbbP7rP9oQy+HcnZq1wgUb+Y0OGBWm1G1vxZC/OO/b6/6\n909kwsJhqT/HtVpt+/bt27dvHxcXt3z58mXLls2YMWPGjBny789DR+lRoUKF3377zcnpT5M5\nKysrPT29QoUKalWFUk5b8RXHMSXnQb6GuMjUpS1tmoz+eUN8Jc3RGv9emr22vXW9ATZvfaJ2\naUCxl5tlcPVx7vhRE3unPy5psdJpB3/TfssXhzJSswmEQAHt/PqXGoHeof9pLWn+/3tOSSP9\n44u3V48N2zn3l/4zQ9Qtr8Sz+PmZypUrf/LJJ+PHj9+7d++SJUssPVyJkZ6enpWVpXYVyqhU\nqVKlSpWuX79epkyZzMzMjIyMxMTEy5cvBwcHGwyGxMREtQtUhpOTk0aj5MKeQD5lXT+RsaK1\n9Rvv2baelvttb2EtNB5vOAzYkfa/kJxcbZnWHz/7EAD+no2Dvs+0Vn9qkiQhhJVO23V8c3Vq\nAkqW/l+2+euTmUyZkHNJhaCQLtiTJKlly5YtW7YsnOFKgF9//bUkrUOYkZFx//798PDw9PT0\na9eu6XS6Ro0aJSQkhIWFqV2aYliHEGo5szEs4UaLoOHj8zZqvZscl6babdoZRCCESk5sufDw\nbpraVSgs/nKCEOLO5YTdi06oXYvCrKyt3uz/qtpVoJTKmwa1Oq2kefIuWAh3cBVRrq6uUsma\nAa+++mpiYmJ6erpOp3N0dCxTpozaFSmM+yGhlldHjFv03tYTPdeN/LaHkIUQQpbFhs9+PrlL\nP2LNd2pXh9Lr4Lenr0WWzKfK/Rp+49fwG2pXoTA7RxsCIYoCva2V+cJRFA7+hC2ivL29vb29\n1a4CQDFgpdcOmd9h0XtbZ/dZb6+tfTXZIfo/B06HXRmxpnvl6i5qV4fSq/2owPSkkrPYbImn\nLQEPXgbwQgiEAFDsmTNh9JGHudkvxf90eeS3PUiDUFf11z3VLgEA8GwEQgAormIu3PtPx9VG\nw+N33KcnZUwNWWF+2eaD19uOaFyolQEALCzlfvrtSw/UrkJ5udkGSRLRR26qXYjy3F9yKVvB\nXu0qnoBACADFVZUarh9v/YfRYBRCyLLYuyQi8qeLRoNcrnLZvtNa2Tv//1OOXH1K1oKEAAAh\non+5tXzUTrWrsJSv/rFR7RKUN3B2m/rta6hdxRMQCAGguJIkUaVGBSGELIuNn+2LPnrLuVKZ\nhNiUir7lNkzZN/LbHkXzm0gAQMF51HTt9O8maleB51DlFVe1S3gyAiEAFG+mNBixI3rEmu5L\nhm0VQgyc1WblR7tm91lPJgSAkqpStfKVqpVXuwqUBKyjDQDF24FVkRE7okd++8czRa302n9+\n0965Upml/9qubm0AAKCI4wwhABRvdVr7BbzlW76KY95GnY3V0MWdbl8sgc8bAAAACiIQAkDx\n5uxWxryttfrjug+dtZVXgJsaFQEAgGKDS0YBoORwdHVQuwQAAFCcEAgBAAAAoJTiklEApVF2\nRs6dq4lqV6G8zLRsIUTshXt6W53atSjMsYK9Y0XOfwIAoDACIYDS6O71pM87rFa7Ckv5suc6\ntUtQXvD7jdqPClS7CgAAShoCIYDSqGx5u1ZDGqhdBZ6DX/0qapcAAEAJRCAEUBo5VnTo9O8m\nalcBAACgMh4qAwAAAAClFIEQAAAAAEopAiEAAAAAlFIEQgAAAAAopQiEAAAAAFBKEQgBAAAA\noJQiEAIAAABAKUUgBAAAAIBSikAIAAAAAKUUgRAAAAAASikCIQAAAACUUgRCAAAAACilCIQA\nAAAAUEoRCAEAAACglCIQAgAAAEApZaV2AQozGo1btmwJCwu7f/++i4tLq1atOnfurNGQewEA\nAADgcSUtKS1dunTFihU+Pj6DBg3y8/NbtWrV4sWL1S4KAAAAAIqiEnWGMCYmZufOnU2bNh09\nerQQok2bNjqdbteuXcHBwV5eXmpXBwAAAABFS4k6QxgeHi7Lcrt27cwt7du3l2X50KFDKlYF\nAAAAAEVTiQqEV65c0Wq1vr6+5hYfHx+9Xn/16lUVqwIAAACAoqlEXTKamJjo6Oio1WrNLZIk\nOTs7JyQk5O22bdu2pKQk0/ajR48KtUQAAAAAKDJKVCDMysrS6XSPNer1+qysrLwta9euvXLl\nimm7evXq1apVK6T6AAAAAKAoKVGB0NraOiMj47HG7OxsGxubvC0jRoxIS0szbd+7d+/ixYuF\nVB8AAAAAFCUlKhCWK1fu5s2bBoPBfNWoLMtJSUn+/v55uzVq1Mi8HRERQSAEAAAAUDqVqIfK\n+Pr6GgyGa9eumVuuX7+enZ2d9zEzAAAAAACTEhUIg4KCJEnavn27uWX79u2SJAUFBalYFQAA\nAAAUTSXqklFPT8+QkJCdO3fm5OT4+/tfuHAhPDz87bff9vb2Vrs0AAAAAChySlQgFEIMHjy4\nfPnyu3fvPn78ePny5UNDQzt37qx2UQAAAABQFJW0QKjRaLp27dq1a1e1CwEAAACAoq5E3UMI\nAAAAAMi/knaG8AXk5OSkpKSoXQUAAAAAFCpZliVZltUuQ00XLlz4/PPP1a4CAAAAAFRQ2gMh\nAAAAAJRa3EMIAAAAAKUUgRAAAAAASikCIQAAAACUUgRCAAAAACilCIQAAAAAUEoRCAEAAACg\nlCIQAgAAAEApRSAEAAAAgFKKQAgAAAAApRSBEAAAAABKKQIhCkN0dLQsy6bt2NjYiRMnpqSk\nqFsSUJIwxQBLY5YBKKm0kyZNUrsGlHCRkZGffvrp7du3GzVqFBcXN378+OvXr2dkZNSvX1/t\n0oCSgCkGWBqzDCgcDx48WLhw4cqVK0+cOOHg4FC5cmW1KyoVrNQuACWfn5+fl5fXgQMHMjMz\nL168mJSUFBAQMHDgQLXrAkoIphhgacwyoBA8fPjwo48+SkhIEELcvn379OnTwcHBQ4YM0Wi4\npNGyJPP1D4DlpKamfvLJJ9evXxdCBAQETJgwwdraWu2igJKDKQZYGrMMsLSvv/567969vr6+\nffr0SU9PX7ly5YMHD5o1azZy5EhJktSuriTjDCEKQ3p6+sOHD03bzs7Oer1e3XqAEoYpBlga\nswywtFOnTrm6uk6bNs3Ozk4IUadOnU8++eTAgQNCCDKhRXEPIQqDXq8/f/68i4uLg4PD6dOn\n79y506hRIyY2oBSmGGBpzDLA0jZv3ty2bdvatWubXtrY2DRu3DgyMvLMmTPMOIsiEMLikpKS\nMjMzW7Ro0axZsyZNmpw+fToqKuqxiX38+PGyZcty+Q3wAphigKUxywALSUpKWrp06Zo1a06e\nPJmSkuLv71+9enXzXjJh4SAQwoISExO/+uqrefPmHT58+I033nB0dLS2tm7cuLH5o7RBgwYa\njWb//v0zZ848efLkW2+9ZWXFZcxAfjHFAEtjlgGWk5SUNGrUqPPnzycnJ9++fTsjIyM5Obll\ny5Z5nyKTNxP6+Ph4eHioWHBJRSCEpcTHx48ZM+bSpUtly5Zt27atr6+v6YrwvB+lUVFR58+f\nX7dunSzLISEhderUUbtqoNhgigGWxiwDLGrhwoUXLlyoWrXqsGHD6tate+nSpdu3byckJDRo\n0CDvmUBTJnRzc2vevLmK1ZZgPGUUFpGdnT1ixIjY2NiXX375448/dnZ2fqxDenr6559/fvbs\nWSGERqPp169fp06d1KgUKJaYYoClMcsAy3nw4EH58uX79++v0+m+/vpr01ctiYmJ48ePj4uL\na9GixQcffMDVoYWGQAiL2LVr14IFC9zc3ObMmWOa5EKIM2fOnDlzxsXFpXXr1lqtVpblI0eO\nxMTEvP76697e3qrWCxQzTDHA0phlgIXExcWNGzfutddeO336dEhISNeuXc27kpKSxo0bRyYs\nZFzmDou4ePGiEKJNmzamD9HY2Nj58+efP39eq9UaDIYjR45MnTpVkqTAwEC1KwWKJaYYYGnM\nMsBC7Ozs7Ozs9u7dK4R4bAUXZ2fn6dOnjxs3zrSXTFg4NM/uAjy/KlWqCCHOnDkTExOzdu3a\nESNGyLI8Z86ctWvXurm5nTt37vLly2rXCBRjTDHA0phlgIWYUl/lypWFEPv37zcYDE/cu3fv\n3oiICJVqLF04QwiLaNu2bURExMmTJ0+ePFmmTJmBAwcGBwdLkiTLslarFUIYjUa1awSKMaYY\nYGnMMsByzGcCr169Om/evMfOBJr2/vLLLw0aNFCxyNKDewihgPT09O+//z4iIiIrK8vPz69b\nt27e3t4Gg+HUqVMGg6F27drmuy+2b9++ZMkSZ2fn//3vf6YPVAD58ddZ5uHhwRQDlMIHGVD4\nuGOwiCAQoqBu37796aef3rt3Twhha2ubkZFhZWX1r3/9q1mzZnm7ybL8/fffr169Wpbljz76\nKCgoSJ1ygWIoP7OMKQa8MD7IAEt74ncugkxYNBAIUSCZmZnDhw+Pj4/39fUdPny4t7f3vHnz\nwsLCJEn65ptvzIuHRkVFbdq06dy5c5Ik9evXr3PnzuqWDRQj+ZllTDHghfFBBlja079zIROq\njnsIUSBbt26Nj4/38fH5/PPPbWxsfvrpp927dwshBg0aZP4Qffjw4YIFC+7cuePm5vbee++x\naC/wXJ45y5hiQEHwQQZYVGZm5uTJk+/du/fYdy6zZ8/29fX18PDI+2TRRo0acd9g4SMQokCO\nHz8uhBg5cqSNjU1YWNiCBQtkWX7nnXfat28vhNi9e3eTJk2cnJymT59+6dKl119/nW99gOeV\nn1nGFANeGB9kgEXl5zsXniKjLpadQIEkJye7urp6e3vv3r17/vz5eT9EU1NTFy9e/J///EcI\n4eLi8sYbb/AhCryA/MwyphjwwvggAyzqmd+5ZGZmCiGcnZ3btGmjcq2lFYEQLyI2NvbatWtC\nCDc3t5SUlK1bt86bNy/v9BZCrFixIjs72/zdD4D8M08xwSwDLIMPMqBw5PM7F6iIQIjn9vDh\nw08//XTChAkxMTFNmzbNzMxctmzZYx+iYWFhe/bssbGx6dChg7rVAsVO3ikmhGCWAYrjgwwo\nNHznUvQRCPHcVq9e/eDBA29vb1dX1xYtWrz88stCiMqVKwcGBgohMjMzV69ePX/+fCHEBx98\n4OLionK5QHGTd4oJIZhlgOL4IAOUFR0dbV65IDY2duLEiSkpKaaXfOdS9LHsBJ7DgwcPypcv\n379/f71e//XXX9va2gohkpOTJ06ceO3aNY1G4+rqmpiYmJ2dLUlS//79O3XqpHbJQHHyxCkm\nmGWAcvggAxQXGRk5ZcqUoKCgkSNHxsXFjR8/PikpKTg4eOjQoUIIo9E4duzY6OjoypUrT5s2\nrVy5cpmZmRs3bty0aRNLehYR2kmTJqldA4qHuLi4MWPGxMTE3L179+23HRd4KAAAHY9JREFU\n365du7ap3cbGplmzZrIsx8bGJiQkGI3GgICAUaNGMb2B5/J3U0wwywCF8EEGWIKDg0NkZGRU\nVNSNGzc2bNiQlJQUEBAwYsQIKysrIYQkSQ0aNDhz5sytW7e2bdu2b9++b7/91rSk54ABA1q3\nbq12+eAMIfLNvGyoEKJ///5/XZNXluXU1FRbW1udTqdGgUDx9swpJphlQMHwQQZYSGpq6ief\nfHL9+nUhREBAwIQJE6ytrfN2yMzM3LBhw549e5KTkyVJqlWrVp8+fWrUqKFSvfgTAiGeg/mj\n1NPT86uvvtJqtWpXBJQoTDHA0phlgCXcuXNnzJgxSUlJQoimTZuOGjXqiWu08J1L0cQlo3gO\ntra2jRs3joiIiI2NvX//fsOGDVmRCVAQUwywNGYZYAl6vf78+fMuLi4ODg6nT5++c+dOo0aN\n/jq5JEmytrbmi5iihkCIv5Wbm7tv377t27efOHEiJSWlSpUqVlZW5o/Ss2fPPnjwoEGDBnyU\nAi/sr7PMwcGBKQYohQ8yoBAkJSVlZma2aNGiWbNmTZo0OX36dFRU1GOZ8Pjx42XLln3sOlIU\nEVwyiieLj4+fOnWqaRk0E1dX148++qh69eoizyU3LVq0+OCDD/goBV7AU2YZUwwoOD7IAEtL\nTExcvHjxsWPHypUrN336dDc3NyFEamrqhAkTrl271qxZs+HDh2u12v3793/11VceHh4zZ84k\nExZBnCHEEyQnJ48dOzY+Pr5SpUpdu3Zt0KBBVlbW9evXDx48WLNmTVdXV/PXq2fOnOHrVeAF\nPH2WeXp6MsWAguCDDLC0+Pj4MWPGXLp0qWzZsm3btvX19bWzsxNCWFtbN27c2HSeMCoq6vz5\n8+vWrZNlOSQkpE6dOmpXjScgEJZ2ubm5ixYt8vLysre3NzcuX778zJkzL7300owZM2rVqvXS\nSy+99dZbOp0uMjIyIiKiZcuW1tbWeT9Kq1WrVrlyZRV/CqAoe7FZ5ujoyBQD8oMPMqDwZWdn\njxs37u7duy+//PL06dNfe+01Uxo0sba2DgoKunz58oULF27cuKHRaPr379+tWzcVC8ZTEAhL\nNaPR+MUXX+zfv//XX39t3bq1+cvROXPmZGdnjx8/3tXV1dz5lVdeiYuLu3TpkkajMa3dZPoo\nrVixYvPmzdX5AYAiryCzjCkGPBMfZIAqdu/evW/fPjc3t//85z9ly5Y1NZ45c2b37t1xcXFV\nq1a1trZu3ry5p6enp6fn4MGDX3/9dXULxlNo1C4Aatq6devRo0cdHBzy3j4hy3JaWpoQwtPT\n87H+ISEhQojIyEhzi7Ozc5s2bQqrXqD4KeAsY4oBT8cHGaCKixcvCiHatGljOjEYGxs7bty4\nCRMm/PDDDwsXLvz0009lWZYkKTAwsFevXt7e3iqXi6ciEJZqP//8sxBixIgRVatWjY2NPXbs\nmBBCkqRKlSoJIS5fvvxYfxsbGyHEo0ePCr1SoLhilgEWxRQDClNsbOyVK1eEEFWqVBFCnDlz\nJiYmZu3atSNGjJBlec6cOWvXrnVzczt37txfZx+KLAJhqWb6Uken08XGxo4fP/6///3v2bNn\nhRCtWrUSQixbtiw7Oztv/4MHD/5fe/ca1OSV/wH8JCQSQrhEEJJFBLmoUBAhGKAoCkWFit1t\n684Os6MFZx2nW5mt1tsGxN1BI9NxLdZ2y6rttODa7k4v7qy0VrI1sl5WCBEieEEqWgjXhCRS\nSgyB/F9kJs0/eAEkeUj4fl7p8zw6vzdnzvPNec7vEELmz59PRbEATgmjDMCuMMQAHEav1xcW\nFn711VeEkJycnKioKJlM9sYbb1RVVW3atEksFoeFhbFYLPMxg6Ojo1TXC+OFPYQzGpfLramp\nkclkUqlUo9HExsa+8sorDAYjMjJSLpe3trY2NzcvXrzY09PTZDJVVVWdOnWKRqMVFBT4+/tT\nXTuAc8AoA7ArDDEAh2EwGBcvXrx+/XpWVhaHw8nIyIiMjExNTd28eXN0dLT5m+0zZ85IpVIu\nl7tp0yY6HStPzgHnEM50FRUVn3/+OSFk0aJFJSUllsNhdDrdvn377t69S6fT582bp9PpNBoN\nISQ/P//ll1+msmIAZ4NRBmBXGGIADiOVSg8fPrxx48b169fb3DKZTF988UVlZaXJZNq5c+fy\n5cspqRAmASuEM1pnZ+fx48f1ej0h5OHDh4mJiVwu13yLxWKtXLnSYDC0tbWp1Wq9Xj979uyt\nW7euWbOG0pIBnAxGGYBdYYgBONLcuXPPnTvX1ta2bt0666M7r1279t5771VXV9NotLy8vKys\nLAqLhInCCuGM9tNPPxUXF7NYrCVLllRUVHh5eZWUlISFhVk/o9fr29vbmUxmSEgIDu0FmCiM\nMgC7whADcLBPP/30008/LS4uTkxMNF/RarW7du3q7u7m8Xi///3vcfq800EgnOl++uknNzc3\nd3f3f/3rXx9++OEjp1IAeBYYZQB2hSEGYCcdHR3t7e1JSUnWuwG1Wu2mTZvi4+P37t1ruahS\nqVpaWlJSUvCbizPCJ6MzHZPJZDAYhJBFixax2ez//e9/ly5dio+Pt3xyAwCTY/65jUajYZQB\n2BWGGIA9aLXanTt3VldXf/fdd0ajMTg4eNasWYQQFovV2dl5+fLlF154wdPT0/wwm80ODg5G\nGnRSCITwM0ylAFOir6/v8OHDZWVlp0+f7uvri4qKMk+iBKMMwM4wxACmCovFWrp0KY1Gu337\ndl1d3ZkzZ/r6+ng8no+Pz5w5c7799lt3d/e4uDiqy4QpgEAI/w+mUoBnpNFoduzY0draajKZ\nhoeHW1tbL126tHTpUg6HY34AowzArjDEAJ6dRqMZHBzk8XgCgSAnJycgIKCnp0cmk3399dc3\nbtyYN29eT0+PQqF46aWXcLaEC0AgBFuWqZTH40VFRVFdDoCT+fDDD5uamiIjI4uKil599dWh\noSGFQnHlypWkpKSxmRCjDMAeMMQAJq2/v//IkSPvv//+xYsXzTMXg8GIiIjIysqKj48fHh6W\ny+XmYz+HhoZCQkLmzZtHdcnwrNBUBh7t9u3bCxcupLoKAGeiUqn8/Pw2b948Ojr67rvvWuKf\nuSGbv7+/WCzm8XiW5zHKAOwKQwxgorq6ukQikVqt9vHxeemll9LT0/39/W2e0el01dXVZ8+e\n7e3tjYmJEYvFlJQKUwgrhPBoY8c/ADyBUqncvXt3e3t7T09PZmamQCCw3IqNjSWE1NbW2qwT\nYpQB2BWGGMCEGAwGkUjU09OzaNEisVgsEAjYbPbYx1gsVnR09Lp16zQajXlew4fZzg5f/QIA\nTIzRaDQajTYX2Ww2m82WSCS9vb0eHh42d3Nzc3Nzc1UqlUgk6u7udlSlAAAA4/Wf//yno6OD\nx+P96U9/smS8xsbGioqKr7/+emRkxPphGo22evVqQsi5c+coqBWmFAIhAMAEGI3G0tLS0tJS\nm6mRy+WKxeKgoCBCiFQqtblLrDLh1atXHVcuAADA+Ny+fZsQsnbtWvPCYEdHh0gk2rt371df\nfVVeXl5cXGyz0czLy4sQcvPmTUqqhSmEQAgAMAFGo3FgYODGjRtjF/osmfDu3bvvv//+2B3a\nubm5YrH4l7/8paOKBQAAGK+5c+cSQhobG9vb20+dOvXmm2+aTKaysrJTp07xeLzr16/fuXPH\n8vDo6OjHH39MCLHeGw9OikF1AWAvRqNRKpU2NzfTaLSoqKi0tDR3d3eqiwJweiwW689//nNv\nb29QUFBPT4+/v7+bm5vlrjkTikQiiURCCCkoKLA5pTcmJsbRFQM4M/MPKzjtGsABcnJy6urq\nZDKZTCbz8vLatGlTdnY2jUYzmUzmmW50dNTy8Pfff3/16lU2m71x40bqSoapgS6jrqmrq2v/\n/v3t7e2WKwEBATt37hzbb02pVJo/cgOACenq6tqzZ09kZOQf//hH60xICNFoNCKRSKlUZmZm\njs2EADDWyMgInU63Hix9fX3l5eVyudzd3X3FihUbNmywNGSygYkMYKqMjIzU19ePjIzExcVZ\nOsr8+9//Pn78OJfL/eijj6znu9raWl9f3wULFlBULEwZdBl1QTqdbs+ePV1dXXw+f/369UKh\n8OHDh21tbRcuXHjuuecCAgIsT0ql0uLiYk9PTzTmBpgoJpMpk8kaGxvb2tpSU1OtT+b18PBI\nTU2tq6trbGxUqVRCoRCZEOAJzFtzGxsbLYNFo9Hs2LGjtbXVZDINDw+3trZeunRp6dKlYzMh\nJjKAKUSn04OCgoKDg5lMJiHEZDJ98cUX5k9DCwoKQkNDrR8OCgry8/OjokyYYthD6IJOnTrV\n29u7YMGCI0eOvPLKKzk5OWKxeOPGjQaD4eDBgwMDA5Yn1Wr16Ojojz/+SGG1AE7K/O1oVFRU\nbW3twYMHH9djRiKR1NXVUVUkgFMYHBxUKpUSieTo0aPmD5f+/ve/q9XqyMjIw4cPHzt2LDMz\ns7u7+5FNejGRAdjJtWvXioqKKioqCCF5eXnLly+nuiKwF6wQuqCysjKDwVBYWGi9GBgdHa1U\nKltaWuh0elxcnOViXFxcRkYGRZUCODcGg7F8+fKmpqYnrBMGBgamp6dTWCTA9MdisWwW1Y8f\nP+7h4fH222/zeDwOh5OUlEQedZgnwUQGYB9arfbgwYN3797l8Xi7du3CRObaEAhdjclkMv+W\ns3nzZpt9Tb6+vhKJRK/XZ2VlWS7OmTPH0SUCOC2TyXT9+nWZTPbgwYPAwEA6nf7UTIjNFQDj\nYfOhdU9PT2ZmpkAgsDwQGxtLHpMJMZEBTDkWi5WSkhIVFfX666/z+XyqywH7QiB0NTQa7cKF\nCwMDA/Hx8dYrhISQgYGBs2fPuru7r1u3jqryAJxXb2/vvn37Pv/88/r6+gsXLvz3v/9dsGCB\nn5/fkzMhAIyTdSYcHBwUCoWLFi2yfuAJmRAAphybzQ4ODsYe+JkAgdAFGQyGhoaG+/fvp6en\nWy8Snj59+tatW7GxsfgKHGCidDrdzp07Ozo6uFxuTk5OeHh4Q0ODVCqNiIjg8/nIhABTwpIJ\nBwYGdDrdqlWrbIaSJRMGBATYxEUAAJgcBEIXFBkZKZfLW1tbm5ubFy9e7OnpaTKZqqqqTp06\nRaPRCgoK/P39qa4RwMmUlpZ+//33UVFRBw8eFAqFvb29dXV1RqPx8uXLYzPhvHnzQkJCqC4Z\nwClZMuEPP/ygVqvHNumNjY2NjY1NS0ujqkIAABeDcwhdk06n27dv3927d+l0+rx583Q6nUaj\nIYTk5+e//PLLVFcH4GRu3bq1a9cuf3//I0eOeHl5nT179oMPPjCZTBkZGd99992sWbNEIlFC\nQgIhRK/XX7x4MTMzk+qSAZwbDvMEAHAYrBC6JhaLtXLlSoPB0NbWplar9Xr97Nmzt27dumbN\nGqpLA3A+58+fVygUf/jDH8LDw69cuVJWVmYymX73u9+99tprP/zww71796zXCcPCwqiuF8Dp\n4TBPgKmiUqnKy8s/+eST2tpaDocTFBREdUUw7WCF0MXp9fr29nYmkxkSEoLZFGBCOjo6DAZD\nWFjY6OjoRx99lJ+fPzg4uGXLlsHBwdzc3NzcXELIyZMnq6urHzx44Obm9t577/F4PKqrBnAd\nWCcEeEZarXbbtm1qtdpyJTs7e8uWLTa7c5VKJYLiTIYVQhfHYDD8/Px8fX0xjwJMiFar3bNn\nT3V1tVAo9PX1TUhIoNPpVVVVdXV18fHxBQUF5sdOnjzJYrFef/31X/ziF8nJydTWDOBirNcJ\nIyIi8MIKMFHHjh1rbm4ODw8vKChITEy8c+eOQqHo7u5OTk62vBlKpdLi4mJPT8+FCxdSWy1Q\nhUF1AQAA01FlZaVKpYqNjbU+vqWrq4sQYunTW1VVdevWreeff14oFAqFQmoKBXBpXC5XLBZf\nvnwZQwxgEurr6wMCAg4cOMBmswkhS5YsKSoqkkqlhJBt27aZM6FarR4dHf3xxx+pLRUohEAI\nAPD/qFQqPz8/mUwWGBhYVFTk7u5uubVw4cJvv/327Nmz5gfOnDlDo9FycnIorBbA5XG53LVr\n11JdBYBTGh0dzcrKMqdBQoiPj8/+/fttMuGrr74aFRUVHR1NZaFAKQRCAICfKZVKkUgkEAjo\ndPrq1as9PDys76anp0ulUoVCsW/fPvOVvLy8mJgYKioFAAB4BI1Gc/LkyZaWljlz5jAYjFmz\nZlnffWQmRBqc4bCHEADgZyMjIzU1NY2NjUNDQwkJCVFRUdZ36XT6smXLGAzG8PBwWFjY5s2b\nMzIyqCoVwCncunXLz8/P/GVaR0fHX/7yF4FAYL3wDgBTSKPRbN++vampSafTdXZ2Dg0N6XS6\nVatWWXeRYbFYqampcrm8sbFx/vz5wcHBFBYM0wECoXNAy2AAx7A0sRgYGOjv71+zZo1NKzY3\nN7eYmJhVq1alpaXx+Xyq6gRwCnK5vLi4uLOzMzk5WalUFhYWtrW1DQ0NLV26lOrSAFxTeXn5\njRs3wsLCtm7dGh8f39LS0tnZqVarbc5uMWdCHo+Xnp5OYbUwTSAQOgGtVvvWW2/dvHlzYGCg\nu7u7pqZGq9UKBIKxjUOVSqW3tzclRQK4DEsm7Ojo6OvrS0pKQpNegMnhcDhyufzatWv37t37\n5z//qdFoFi9e/OabbzIYj96xglkMYNJUKpWHh0d5ebm3t/ehQ4dCQ0PDwsJWrFjxuPM8WSxW\nZGQkhQXD9IFA6ATG0zKYoGswwNSxZEKFQoFDsQEmzd3dPTU19dq1a01NTXq9fvHixXv37n3c\n96KYxQAmTalU7t69u729vbe3Nzs7Oy4uznzd+uwWTGfwOPSnPwJUs7QMTkxMXLFixTvvvBMS\nEiKVSt955x2TyWR5DF2DAaaQudl9UFCQRCI5evSo9VgDgCcYGRmpra21DJnBwUGtVmv+M5fL\ntelvYQ2zGMCksdlsNpstkUhUKpXNKMN0Bk+FFUIn8OWXX+bk5Fh+7LHeCmy9ThgdHR0XF4cW\nFwBTBT+sAkyUVCoVi8XffPONZcjMmjWrqanJ39+fw+E0NDSM/bzFArMYwKRZb4Af20XGejqL\niIhAKwqwgUA4TWk0mhMnTpw8eVImkz148CAmJsb6E5rHZcI5c+ZQVzKAC8IkCjBOIyMj5eXl\nlZWVg4ODKSkpv/rVr/z8/Aghbm5uzz///MqVK9PS0hoaGq5du2aTCa9evert7W3+jhSzGMCk\nWSas+/fvj+0iY74bGBiILjIwFgLhdISWwQDTByZRgPE4cuSIRCJhsVjbtm377W9/O3v2bMst\nNzc3Nzc3835CSyYUCoV0Ov38+fOHDh2SyWQvvPDC4zrNAMA4PfnDFg8PjwULFlBYHkxbCITT\nEVoGA0who9E4NDRkvaeio6NDpVJxudxx/g+YRAGe7MqVK5WVlQwGY//+/QKB4HGPWWdCc6eZ\nzz77zGQyvfjii0uWLHFkwQCuCpsdYBIQCClm86qKlsEAU8toNJaWllZVVS1btsw80LRa7Z49\ne6qrq4VCoY+PD9UFAriCDz74oLe39ze/+c3YHyjb29tv3rxpMBjMP8G4u7svX778zp07N27c\nuHfvHp1Oz8vL+/Wvf01F1QCuCZkQJgqfZ1DJ/KqqVqtLSko4HI5SqRSJRAKBwM3NLSsri81m\nmx+bPXu2WCwWiUQSiYQQUlBQgIENMB7mIVZbW8vhcFQqFYfDIYRUVlaqVKrY2NiAgACqCwRw\nEffv3yeECIVC64u3bt06ceJES0uL+a8CgWDHjh2enp6enp4lJSWXLl1qb29PSUkJDQ11fMEA\nrs3cWdT86picnGwzNgFs4NgJylheVXt6elQqFUHLYIApZZ0G9+/fHxoaqlKpTCaTTCYLDAws\nKip63GFoADBRvr6+hJC7d++a/6rX648fP7579+6WlpagoKCkpCR3d/f6+vrS0lLzAzQabdmy\nZbm5uUiDAHZifnXcsmUL0iA8FT4ZpYbNq+r8+fMJWgYDTB2bIRYWFmY5tLenpycrK8tyjosN\npVLp7e3t4GoBXEB9fb1CoTCZTDdv3iwrK2toaPDx8XnjjTe2bt2alpaWkpIikUg6Ozufe+65\nwMBAqosFmBGwAR7GCYGQAmNfVS230DIY4NlZhhiTyTx48GB4eDghZGRkpKamprGxcWhoKCEh\nISoqauw/lEqlxcXFnp6e1qe8AMBTRUZG9vf33759W6FQmEdZWlra3r17Fy1aZH7Ax8fn+vXr\nPT094eHhGF8AANMKAqGjPfJV1RpaBgM8C8sQI4SMjo56eXmZFwOtV+D7+/vXrFljvQJvVl9f\n39DQsHDhwtjYWApKB3BaNBpNKBQuXLjQx8cnMTFxy5Yt2dnZLBbL8oDRaKyoqNDr9dnZ2XPn\nzqWwVAAAsIFA6FCPe1W1gfZQAJNjvfy+YcOGpqampqam4eFhm0zY0dHR19eXlJRkM7Kio6Pj\n4uIyMjIoKh/AufH5/ISEhJiYmLH9e//xj3/IZDIul7tlyxY3NzdKygMAgEdCIHScJ7+q2kAm\nBJgom4+xU1JSIiMjL1269MhMqFAoHjmy5syZQ1H5AC7rm2+++fjjjwkh27dvDwkJobocAGei\nUqnKy8s/+eQT8+yGFhJgDwiEDjKeV1Ub6CIDMCHnzp07ffq09dZcPp//hEyIX1sA7O3hw4d/\n+9vfPvvsM0LIa6+9tnr1aqorAnAmWq32rbfeunnz5sDAQHd3d01NjVarFQgENtMW2qHBM0Ig\ndJBxvqraQBcZgPELDw83GAz5+fnWjZqQCQEoMTIyUlVVVVpa2tzc7O7uvm3btuzsbKqLAnAy\nx44da25uDg8PLygoSExMvHPnjkKh6O7uTk5OtkxbaIcGzw6B0EHG/6pqA11kAMaJRqMtWbKE\ny+XaXH9qJsQKPMCUo9PpNTU1CoUiJSVl9+7daNQEMAl//etfvb29Dx06FBISEhoaunLlSrlc\n3tjYaJ0J0Q4Nnh0CoYNM6FUVAKbWEzIhVuAB7EQgEKSlpb344ov4mA1gcr788sucnBzLyyGL\nxUpNTbXJhGiHBs8OgZB6yIQADvC4TIgVeAD7QRQEmCiNRnPixImTJ0/KZLIHDx7ExMRYfwv6\nyEyIdmjwjBAIpwVkQgAHwEADAIDpTKPRbN++vampSafTdXZ2Dg0N6XS6VatWWR+ca50J58+f\nHxwcTGHB4BoQCKcLvKoCOIBloMXGxmK7BQAAUMJoNA4NDc2aNcvmenl5+Y0bN8LCwrZu3Rof\nH9/S0tLZ2alWq22an5kzIY/Hw5YHmBI0k8lEdQ3wM7lcfuDAgfXr1+fm5lJdC4DL6urq4vP5\nVFcBAAAzkfkoMrVaXVJSwuFwzBdVKpWfn19eXh6TyXz33XfZbDYhpL+/v7CwUKlUZmZmFhQU\noCE22AlWCKcXPp+flpaWkpJCdSEArszLy4vqEgAAYCayHEw9PDyckpLi6+tLCFEqlbt3725v\nb+/t7c3OzrZ8JoZDksAx6E9/BBwLCxcAAAAArseSBs0HU4eGhpqvs9lsNpstkUhUKpXNd6Rc\nLlcsFgcFBUkkkqNHj+LLPrAHBEIAAAAAAPuySYPWB1NbUh8h5Pz58yMjI9b/0DoT1tXVObpu\nmAGwhxAAAAAAwI4saZDJZL799tvh4eFjn9FoNCKR6HE7BjUazeXLl9euXeuokmEGwR5CAAAA\nAAB7saRBQsjo6KiXl9cjm8k/eccgDs4F+0EgBAAAAACwC+svRTds2NDU1PSEA8bQRQYogUAI\nAAAAADD1bPYNpqSkPPXQaWRCcDwEQgAAAACAqXfu3LnTp09bd5Hh8/kTyoQRERHmZjMA9oNA\nCAAAAAAw9cLDww0GQ35+vnVP0fFnwsDAwPT0dAfWCzMUuowCAAAAADiUXC4/cODA8PDw+vXr\nN27cSHU5MKNhhRAAAAAAwKHGs04I4BgIhAAAAAAAjoZMCNMEAiEAAAAAAAWQCWE6oFNdAAAA\nAADADJWQkFBYWMhkMplMJtW1wAyFpjIAAAAAAFTq6uri8/lUVwEzFAIhAAAAAADADIVPRgEA\nAAAAAGYoBEIAAAAAAIAZCoEQAAAAAABghkIgBAAAAAAAmKEQCAEAAAAAAGYoBEIAAAAAAIAZ\n6v8AEBI7U4sQDIwAAAAASUVORK5CYII=", - "text/plain": [ - "plot without title" - ] - }, - "metadata": { - "image/png": { - "height": 180, - "width": 600 - } - }, - "output_type": "display_data" - } - ], - "source": [ - "IPCC_Table$DIFF_CCI_IPCC <- IPCC_Table$CCI_mean - IPCC_Table$AGB\n", - "IPCC_Table$SD_CCI_IPCC <- sqrt((IPCC_Table$CCI_stdev)^2 + (IPCC_Table$Uncertainty)^2)\n", - "IPCC_Table$IN_AGB_CI_CCI <- 1\n", - "IPCC_Table$IN_AGB_CI_CCI[abs(IPCC_Table$DIFF_CCI_IPCC) > 2*IPCC_Table$SD_CCI_IPCC] = 0\n", - "IPCC_Table$Tval_CCI_IPCC <- IPCC_Table$DIFF_CCI_IPCC/IPCC_Table$SD_CCI_IPCC # plot the t-values \n", - "\n", - "SUBSET <- 'Continent'\n", - "SUBSET_AGE <- 'AGE'\n", - "for (i in 1:nrow(unique(IPCC_Table[SUBSET]))){\n", - " if (i>0) { for (f in 1:nrow(unique(IPCC_Table[SUBSET_AGE]))){\n", - " WIDTH <- c(2.8,4,2.8,3.2,4,2,3.5)\n", - " HEIGHT <- c(3.1,3.1,3.1,3.1,3.1,3.1,3.1)\n", - " W <- WIDTH[i]\n", - " H <- HEIGHT[i]\n", - " # if (as.character(unique(IPCC_Table[SUBSET])[i,1])==\"Oceania\") {ll = 1.5}\n", - " # else{ll = 1}\n", - " IPCC_Table_SUBSET <- IPCC_Table[(IPCC_Table[SUBSET] == as.character(unique(IPCC_Table[SUBSET])[i,1])) & (IPCC_Table[SUBSET_AGE] == as.character(unique(IPCC_Table[SUBSET_AGE])[f,1])),]\n", - " IPCC_Table_SUBSET$GEZ_CODE <- as.numeric(IPCC_Table_SUBSET$GEZ_CODE)\n", - " IPCC_Table_SUBSET <- IPCC_Table_SUBSET %>% group_by(AGE) %>% arrange(GEZ_CODE, .by_group=TRUE) %>% arrange(desc(AGB), .by_group=TRUE) #arrange(desc(region_mean), .by_group=TRUE) #%>% group_by(GEZ_CODE)\n", - " IPCC_Table_SUBSET$AGE[IPCC_Table_SUBSET$AGE== 'Sec_gt20'] = 'Old secondary'\n", - " IPCC_Table_SUBSET$AGE[IPCC_Table_SUBSET$AGE == 'Sec_lt20'] = 'Young secondary'\n", - " IPCC_Table_SUBSET$'IPCC' = 'Tier 1 estimates'\n", - " CONT <- gsub(\"_\",\" \",as.character(unique(IPCC_Table[SUBSET])[i,1]))\n", - " AGEY <- as.character(unique(IPCC_Table[SUBSET_AGE])[f,1])\n", - " # if (CONT == \"Oceania\") {CONT <- \"Oc.\"}\n", - " if (CONT == \"Oceania\" & AGEY == \"Primary\") {AGEY <- \"Primary\"}\n", - " if (CONT == \"Oceania\" & AGEY == \"Old secondary\") {AGEY <- \"Old sec.\"}\n", - " if (CONT == \"Oceania\" & AGEY == \"Young secondary\") {AGEY <- \"Young sec.\"}\n", - " p <- ggplot() +\n", - " ggtitle(paste0(CONT,\",\\n\",AGEY)) +\n", - " geom_point(data=IPCC_Table_SUBSET, aes(x=1:nrow(IPCC_Table_SUBSET), y=AGB, color=\"black\", size=IPCC),alpha=0.35,color=\"black\") + \n", - " geom_errorbar(data=IPCC_Table_SUBSET, aes(x=1:nrow(IPCC_Table_SUBSET), ymin=AGB-Uncertainty, ymax=AGB+Uncertainty, color=\"black\",alpha=IPCC),alpha=0.35,color=\"black\", width=0.5) +\n", - " geom_point(data=IPCC_Table_SUBSET, aes(x=1:nrow(IPCC_Table_SUBSET), y=region_mean), size=2, shape=8, color=\"darkorchid4\") + \n", - " geom_errorbar(data=IPCC_Table_SUBSET, aes(x=1:nrow(IPCC_Table_SUBSET), ymin=region_mean-region_stderr, ymax=region_mean+region_stderr), width=0.5,color=\"darkorchid4\") +\n", - " geom_point(data=IPCC_Table_SUBSET, aes(x=1:nrow(IPCC_Table_SUBSET), y=CCI_mean), size=2, shape=8,color=\"darkorange2\") + \n", - " geom_errorbar(data=IPCC_Table_SUBSET, aes(x=1:nrow(IPCC_Table_SUBSET), ymin=CCI_mean-CCI_stdev, ymax=CCI_mean+CCI_stdev), width=0.5, color=\"darkorange2\") +\n", - " theme_bw() +\n", - " coord_cartesian(ylim=c(0,600)) +\n", - " # ylim(0, 600) +\n", - " ylab(\"AGBD [Mg/ha]\") +\n", - " scale_x_continuous(breaks=1:nrow(IPCC_Table_SUBSET) , labels=IPCC_Table_SUBSET$GEZ_NAME) +\n", - " # xlab(\"Various ecozones in different continents, displayed in groups of forest age classes\") +\n", - " # theme(legend.position=\"bottom\") +\n", - " # guides(color = guide_legend(override.aes = list(size=4),title = \"Space-lidar estimates\")) +\n", - " # scale_color_brewer(palette=\"Dark2\") +\n", - " theme(\n", - " legend.position=\"none\",\n", - " text=element_text(size=13),\n", - " legend.text=element_text(size=13),\n", - " legend.title=element_text(size=13),\n", - " axis.title.y=element_text(size=11),\n", - " axis.title.x=element_blank(),\n", - " axis.ticks.x=element_blank(),\n", - " panel.grid.major = element_blank(), \n", - " panel.grid.minor = element_blank(),\n", - " panel.background = element_blank(),\n", - " axis.text.x=element_text(angle=45,hjust=1, vjust=1,size=12),\n", - " plot.margin = margin(t=-1.4,r=0,b=0,l=0.5, unit = \"cm\"),\n", - " plot.title=element_text(hjust=0.95, vjust=-1.8, margin=margin(t=40,b=-20),size=12),\n", - " ) \n", - " \n", - " # options(repr.plot.width=12, repr.plot.height=5)\n", - " print(p)\n", - " ggsave(p, file=paste0(\"/projects/my-public-bucket/Data/Harris_et_al_PAPER/_PLOTS/\",as.character(unique(IPCC_Table[SUBSET])[i,1]),\"_\",as.character(unique(IPCC_Table[SUBSET_AGE])[f,1]),\"_age_classes.png\"), width=W, height=H)\n", - " }\n", - "}}\n", - "nrow(IPCC_Table)" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "id": "73140caf-9527-4b42-938b-74e99bfab0fd", - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Warning message in geom_errorbarh(aes(xmin = AGB - Uncertainty, xmax = AGB + Uncertainty), :\n", - "“\u001b[1m\u001b[22mIgnoring unknown parameters: `width`â€\n", - "Warning message:\n", - "“\u001b[1m\u001b[22mRemoved 80 rows containing missing values (`geom_point()`).â€\n", - "Warning message:\n", - "“\u001b[1m\u001b[22mRemoved 93 rows containing missing values (`geom_errorbarh()`).â€\n", - "Warning message:\n", - "“\u001b[1m\u001b[22mRemoved 80 rows containing missing values (`geom_point()`).â€\n", - "Warning message:\n", - "“\u001b[1m\u001b[22mRemoved 93 rows containing missing values (`geom_errorbarh()`).â€\n", - "Warning message in geom_errorbarh(aes(xmin = AGB - Uncertainty, xmax = AGB + Uncertainty), :\n", - "“\u001b[1m\u001b[22mIgnoring unknown parameters: `width`â€\n", - "Warning message:\n", - "“\u001b[1m\u001b[22mRemoved 80 rows containing missing values (`geom_point()`).â€\n", - "Warning message:\n", - "“\u001b[1m\u001b[22mRemoved 93 rows containing missing values (`geom_errorbarh()`).â€\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhwAAAIcCAIAAAAynOArAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdeUBU5foH8O85s7DvyqIoIopripZJ1xLNMhXcs81QSLup5c2umZVmVqaZ\naf2EQqybazdcMpXMfQE3MG+KiqCyuQKyw7DMds7vj9FxHEYYYGYOA8/nr5lz3jPzxcyHs7zP\ny/A8D0IIIcQUWKEDEEIIaTmoqBBCCDEZKiqEEEJMhooKIYQQk6GiQgghxGSoqBBCCDEZcV5e\nXqMPtrOzc3FxMWEaQgghVo1pysFTp05dv369iZKY0rVr106dOiV0CkIIaXXEQgcwi7S0tHPn\nzg0ePFjoIIQQ0opER0eLAUyZMuU///lPQw+WSCRmiGQyPXr0mDBhgtApCCGkFfnpp5/EABiG\nEYtb5ikLIcQq1NTU2NraCp2CmAA7bNiwXr16NeLIRh9ICCG6OI574YUXIiIi5HK50FlIU4kP\nHTrUuCMbfSAhhOiKiopKTEx0dna2sbEROgtpKpqnQggRUnZ29sKFC11cXGJiYoTOQkyAbqUQ\nQgTDcVxkZKRMJtu4caOvr6/QcYgJ1FVUCgsLi4qKlEpl7V29e/c2WyRCSGsRFRWVkJAQFhYW\nHh4udBZiGgaKSk1NzbJly9avX3/jxo1HHUZLexFCmqioqGjhwoVubm6xsbFCZyEmo19U5HL5\n0KFDk5KSAEgkEqVS6ebmVl5erlarAYjFYurLQggxCQ8Pj127dpWVlbVr107oLMRk9G/UR0dH\nJyUlDRkyJDc396WXXgJQXFxcXV194sSJMWPG8Dy/aNGiwsJCIaISQlqaZ599dvz48UKnIKak\nX1S2bt3KMMxPP/3k7e2t3SiRSAYNGrRr165Zs2bNmTPn4MGDlg1JCCHEOugXlbS0ND8/v4CA\nAAAMwwDQXPjSWL58uaOj47fffmvJiIQQQqyFflGRy+Vt27bVvNZMRCotLdXutbOz69mz59mz\nZy2WjxBCiBXRv1Hv7e1dUlKiee3j4wMgLS3t6aef1g4oKCgoKytr0HcsWLDg4sWLHh4e69at\n09uVkpISFxeXmZnJsmzPnj3Dw8P9/f0bMYYQYhXy8/NdXV1p5nwLpn+mEhAQkJuby3EcgIED\nBwKIjo7WvAUQHx+flZXVsWNH479g//79aWlpIpGo9q7k5ORFixZdv349JCQkODj44sWLH3zw\nQUZGRkPHEEKsAsdxL7300uOPP04P+7Rg+kVl+PDhlZWVp0+f1rz28/PbsmXLU089NXfu3Fdf\nfVXTTH7y5MlGfnpxcfG6desmTpxY+xcThUIRExNjZ2e3atWqt99+e86cOV988YVSqdRt1WDM\nGEKItYiOjk5MTOzUqVObNm2EzkLMRb+oTJgwYeLEibdv3wYglUrj4uLc3NzOnDmzatWquLg4\nlUo1YsSIjz/+2MhPj4mJcXNz0zyarOfcuXPFxcXPP/+89jGz7t27P/nkk9euXbt+/brxYwgh\nViE7O3vBggUuLi5r1qwROgsxI/17KoGBgdu3b9e+DQ4Ovnbt2tatW69cuWJjYxMSEjJy5EjN\nU2H1On78eHJy8pdffmlwOa/U1FQAffv21d0YFBSUlJSUmprq5+dn5BhCSPOn7fG1YcMG6vHV\nstXfUNLDw2PmzJkN/dyKioq1a9c+99xzjz32mMEBubm5uP8sgJbmjESzy8gxut+obR5jsF8Z\nIUQo0dHRCQkJoaGhU6ZMEToLMS9zdSn+8ccfAURGRj5qQFVVFQB7e3vdjZq3lZWVxo/RCg0N\n1YwHEBQUNGDAgKb9BIQQ01AoFN98842bm9vatWuFzkLMzixF5e+//z527NjcuXOdnJzqHmnM\nlTQjr7YNHTpUu2ycVCo15hBCiAVIpdIzZ85cvnyZeny1BgaKCs/zu3bt2rNnT0ZGhkwmM9iQ\nuI75j0ql8vvvv+/fv39ISEgdX6w94XB1ddVu1JxqODg4GD9G67PPPtO+3r17d+3rY4QQoXh7\ne+t2fiItmH5RqaqqGj169JEjRxr9iTKZrKCgoKCgYMyYMXqfPGbMmI4dO0ZHR+P+nZLc3Nz2\n7dtrx+jdRDFmDCGEkOZDv6h8/vnnR44ckUgkr7zyytNPP+3t7c2yDVty2MbG5vnnn9fbePTo\nUZFINHjwYA8PD82WXr167dy5MyUl5YknntAOS0lJ0ewyfgwhhJDmQ7+obN26FcCvv/46ceLE\nxn2ivb397Nmz9TaePHnSzs5Od3u/fv3c3d0PHjwYGhqqOS9OT08/c+ZM165dtc8KGzOGEEJI\n86FfVG7duuXh4dHoimI8qVQ6Y8aMZcuWzZ07d9CgQUql8sSJE2KxWPfxZWPGEEKaoZycHLVa\nrel3TloV/aLi4eFhsbUdg4ODP//887i4uGPHjjEM07t37/Dw8M6dOzd0DCGkWeE4burUqWfP\nnv3777+7desmdBxiUfpFZfjw4f/973+Lioq0Nz9MIi4uzuD2vn376k2Yb9wYQkjzERUVlZiY\nGBoaShWlFdK/Cb948WJHR8c5c+aoVCpBAhFCrFp2dvbChQupx1erJU5KStLb9NVXX82ZM+fc\nuXMzZ87s1q2bo6Nj7cOCg4MtEo8QYk20Pb42btxIPb5aJ/FTTz1lcEdqauo777zzqMMMzogk\nhLRyUVFRCQkJYWFh4eHhQmchwhDTs7mEEJPgef6PP/5wc3OLjY0VOgsRjDgnJ0foDISQloBh\nmH379qWnp1OPr9asYbPlCSGkDiKRiLpdtHIsgLCwsJ9++unu3btChyGEEGLdWAB79ux58803\nfXx8nn766W+++ebatWtCpyKEEGKVWADHjx+fO3du586dT548OW/evMDAwF69ei1YsOCvv/6i\np7wIIYQYj9EtG5cuXdq1a9fOnTv/97//aba3b99+zJgx48aNGzp0qMGl5psnzXoqb731ltBB\nCGnhMjIyzp07N2nSJKGDkGZh1KhRjMFzkVu3bmmqS0JCgma9dxcXl1GjRo0bN27kyJH1ruco\nOCoqhFgAx3FDhw5NTEw8cuTI0KFDhY5DhDdq1CjDT3/5+vq+/fbbBw8eLCgo+OWXXyZNmsRx\n3K+//vryyy+3adNm5MiRsbGxtLQiIa2cpsdXWFgYVRSiZfhMpTa5XH748OFdu3bt3r07Ly8P\nAMMwHMeZOV4j0ZkKIeaWnZ3dp08fsVh88eJF6shCNB55plKbjY3NqFGjYmNj79y5c+rUqQ8+\n+CAwMNCs4QghzRbHcRERETKZbPXq1VRRiK4GT35kGOapp55avnx5enq6OQIRQpo/7YUv6vFF\n9NCMekJIgxUWFrZp04Z6fJHa9BfpGjduXN0HiEQiZ2fnzp07h4SEDB482GzBCCHN1xdffDF3\n7lxXV1ehg5BmR7+o7Nq1y/iD+/Xr99///rd79+4mjUQIsQJUUYhB+kUlJibm5s2bK1askEql\nYWFhffv2dXJyqqioOH/+/B9//KFUKufNm+fu7p6enr5jx45z584NGzbs/Pnzbdu2FSQ9IYSQ\nZkW/qIwZM+bxxx9/8sknt2/f7u3trbsrNzd34sSJ69at+/vvv729vb/++uuxY8ceP37822+/\nXbp0qQUzE0IIaab0b9R/+umnRUVFW7du1asoAHx8fLZt21ZQULB48WIAbm5umzZtYll2z549\nlslKCCGkmdMvKnv37u3Tp8+j1thp3759nz59tFXEz8+vd+/e2dnZ5s1ICBFaRkbG3Llzq6qq\nhA5Cmjv9olJQUFD3HHue53VXXvHw8FAoFGaJRghpHjiOmzZt2qpVq+Lj44XOQpo7/aLi5eV1\n4cKFGzduGBx9/fr1Cxcu6F4Zu3XrFt2lJ6Rl0051fPnll4XOQpo7/aIybtw4lUo1ceLE2nUl\nJydn/PjxarV67Nixmi3l5eU5OTmdOnWyQFBCiCCys7MXLlzo4uISExMjdBZiBfSf/lq0aNHu\n3bvPnj3btWvX559/vm/fvs7OzuXl5SkpKQcPHlQoFH5+fosWLdIM3rx5s1KpfPbZZy0emxBi\nCRzHRUZGymSyjRs3Uo8vYgz9otKmTZvExMSIiIijR4/u2bNH78muoUOHbtiwoU2bNpq3oaGh\ngwcP7tChg4XCEkIsKyoqKiEhITQ0lHp8ESPpFxUAHTt2PHLkSHJy8t69e69cuVJRUeHk5NSt\nW7eRI0cOHDhQd6Sfn5+lchJCBODv79+9e/e1a9cKHYRYDQNFRWPgwIF6JYQQ0tqMGTMmLCyM\nZanzLDEW/V0hhNSFKgppEPrrQgghxGTEABrRZphW6CKEEFKbGMCVK1eEjkEIIaQleHCjvkeP\nHpMnT/by8hIwDSFEWNnZ2eHh4dHR0UFBQUJnIVZJDGDQoEEnT55MS0tbvHjxyJEjIyMjw8LC\nJBKJ0NkIIRalmep48uTJixcvUlEhjcMCOHHixNWrVz/++GNvb+/4+PgJEya0a9duzpw558+f\nFzoeIcRyaKojaTpGtycxx3GHDh1av37977//XlNTA6Bv376RkZGTJ0/WzqK3Crt3787NzX3r\nrbeEDkKI1cjOzu7Tp49IJLp06RJ1ZCGNM2rUqIceKWZZdvjw4f/973/z8vLWrFkzcODAlJSU\nOXPmtGvXbsKECUeOHBEqKCHErLQ9vqKioqiikKYwPE/FxcXlrbfeSkpKSktLmz9/vru7+++/\n/05rBhPSUv3www8JCQlhYWF04Ys00SPbtABQq9U5OTk5OTllZWUWC0QIsbzQ0NAjR45ER0cL\nHaQ+CgWkUqFDkLoYLirp6enr16/ftGnTnTt3ALRt23bGjBnTp0+3bDZCiIX4+/vv2LFD6BRG\nyM8HtUVv3h4qKqWlpXFxcevXr09OTgYgkUjGjBkTGRkZGhpKTxgTQgiplxiAWq0+ePDg+vXr\nd+3apXnoq0+fPhEREa+//jotFUwIIcR4YgAdO3bUXOby8PCYPn16ZGRk//79hQ5GCCHE+ogB\naCpK9+7dR48eLZVKd+zYUe/V1SVLllgiHSHEbBQKhZRuehNTe3BPJT093fjew1RUCLFqmZmZ\nISEh33zzzSuvvCJ0FtKiiAGEhoYKHYMQYjkcx02bNu327dtKpVLoLKSlEQP4448/hI5BCLEc\n6vFFzIdWfiSkdcnOzl64cKGLi8uaNWuEzkJaoLpm1BNCWhhtj6+NGzdSjy9iDnSmQkgrsmnT\nJurxRcyK7d2798KFCxtxZKMPJIQI5dVXX/38889jY2OFDkJaLDY1NfXWrVuNOLLRBxJChCKV\nSj/55JN27doJHYS0WGIA1dXVeXl5QichhBBi9cQAtm7dunXrVqGTEEIIsXp0o54QYiVkMlRX\no6ICOougk+ZGzNN/HkJatNu3b7dv317oFE2jUCAjAzIZAJSWwt4eXbrA1lboWMQAOlMhpCXL\nzMzs1q3b+++/L3SQpsnMvFdRNKqqkJFB5yvNExUVQlosTY+vysrKvn37Cp2lCTSXvPRUVaG8\nXIg0pB40o54Qi1OpkJtrge/5++zZkb17vzN27ItDhuDmTQt8o1nI5Ya35+dTXWkAT0/Y2Fjg\ne6ioEGJxYrEFFlrPzs4eOmWKSCS6dOkSrLojS00NiosNbPfxgZOTxdOQelBRIaQFalE9vmxt\n4eaGkpKHNjo5wdFRoECkLlRUCGmBjh49mpiY2HJ6fPn7g2EenK+4uNzbQpofKiqEtEDDhg3b\nt29f7969hQ5iImIxunSBQoGbN+Hra5l7A6RxqKgQ0jINHz5c6AimJpVCKqWK0szRI8WEEEJM\nRv9MRa1Wnz9/PikpKT8/v6KiwsXFxcvL66mnnurTpw/LUgUihBBSlwdFhef5tWvXfvnllzcN\nPc/u7+//ySefREZGWjAbIYQQK3Pv5EOtVr/22mszZszQVBSRSOTl5RUQEODp6ak5QcnOzn7j\njTciIyM5jhMyLyHkEZKSkhQKhdApSGt3r6gsX748Li4OwLBhw/7888/S0tK8vLyMjIz8/PzS\n0tL4+PghQ4YAWL9+/XfffSdgXEKIQRkZGc8991wLvDlPrA0LoKysbMmSJQAWLFhw6NChkSNH\nOurMKnJycgoLCzty5MiHH34IYNGiRRW1+/AQQoTDcdz06dMrKyunTZsmdBbS2rEAtmzZUl1d\n/cwzz3zxxRePGscwzNKlSwcNGlRZWbllyxYLJiSE1CMqKiohIaHlTHUk1owFkJCQAODdd99l\n6pyhyjDMu+++qx1PCGkOsrOzFy5c6OLiEhMTI3QWQiAGcP78eQAhISH1jtbcWdGMJ4QIrkX1\n+CItAgsgPz/fxcWlTZs29Y5u27atk5NTfn6++YMRQup35cqVlJQU677wpVCgqkroEMRkxAAq\nKiq8vLyMPMDFxaWgoMCckQghxurRo8elS5dEIpHQQZpAqYRcDnt7oXMQ0xADUCgUxs+WF4lE\n8ketmUMIsTirX3+etCzUeYUQQojJ3GvTUlRUNGPGDGMOKCoqMmceQgghVuxeUZHJZLGxscJG\nIYSQevj4CJ2A1EMMIDQ0VOgYhBBj7dy5MygoqFOnTkIHEYKYloBq7sQA/vjjD6FjkPv4c2D6\nCR2CNF8ZGRmvv/66h4dHRkaGRCIROg4h+qjsNzPqvRBTUSGGaXt8xcTEUEUhzRM9/UWI1aAe\nX6T5q/9MpaSk5MKFCwUFBQEBAf360S/RhAiDenwRq/CgqPz555/79++Xy+U9evSIjIx0dnYG\nsHz58i+++KKyslIzpl+/flu2bOnataswYQlprajHF7EW94pKRETEhg0btFu/+eab5OTkHTt2\naNZQ0Tp37tzzzz9/8eJFJycni8YkpHUrKiqqqqpqaRe+VCrcvo3SUvA8ysrQvj2kUqEzkaZi\nAWzfvl1TUTp37vzCCy+0b9/+1q1bS5Ys+fLLL11dXdesWZOWlnb58uXVq1c7OTldv379hx9+\nEDo2Ia1L27ZtT506tWnTJqGDmI5ajcuXkZ8PuRwKBQoKcOkSaDlk6ycGsG7dOgDTp0+PjY1l\nWbampmbChAk//vijSqX69ddfX3nlFc3QHj16ODg4TJs2LT4+fv78+UKmJqT1EYvFrq6uQqcw\nndxc1NQ8tEWlws2bCAgQKBAxDYbneR8fn7y8vPz8fE9PT83WM2fODBw4UCQS1dTUiHVmG8nl\ncjs7Ozc3t2berGX37t25ublvvfWW0EEaTrUU4o+FDkHMieNQWip0iGbg9m1UV+tvlEjg5ydE\nmmbGyQnW+cj4qFGjxAAKCwvd3d21FQVA9+7dAfj4+Igfnr9qY2Pj6elZWFho4aCEtBwMAxsb\noUM0Awbb9dMfjobRbeObITEAlUqld+Nd8+iXjaH/ura2tmq1uu4Praio2L59e1paWn5+vkwm\nc3Nz69y584svvhgYGKg3MiUlJS4uLjMzk2XZnj17hoeH+/v7N2IMIVaDYeDgIHSIZsDdHTKZ\n/kY3N/rDsXZmqYfFxcU7d+6UyWQBAQHBwcEeHh7Jycnz5s07duyY7rDk5ORFixZdv349JCQk\nODj44sWLH3zwQUZGRkPHENIirVu3bufOnUKnMBsvL+g9RGprC3pa2vqZpU2Lj4/PL7/84ujo\nqN2Snp7+0UcfrV+/XrPKPQCFQhETE2NnZ7dq1Spvb28AI0aM+PDDD2NiYlauXGn8GEJapIyM\njNmzZ0ul0pCQEDc3N6HjmAHDoHt3FBSguBhqNdzd4eVl1Zd9iEZd66kUFBTU3mjMLXqpVCp9\n+Hnz7t27+/r6Xr9+XalUanoWnTt3rri4eOzYsZpqoRnz5JNPJiUlXb9+3c/Pz8gxhLQ8uj2+\nWmZF0WAYeHrCwQFyOdzdhU5DTKOu9VTKy8tNtcjKzZs3c3Nz27Vrp+2Cl5qaCqBv3766w4KC\ngpKSklJTUzUFw5gxhLQ81OOLWC8zrqeSn5//22+/cRxXWFh44cIFkUike96Tm5sLwOfhJXc0\nZySaXUaOIaSFoR5fxKqZcT2V0tLSffv2aV47Ojr++9//DgoK0u6tqqoCYG9vr3uI5q221Zgx\nY7Q+/fRTuVyueS2VStu3b2+6H4UQC6EeX8TamXE9lW7duu3evVupVObm5u7YseOLL76YPn36\n6NGjdccwDFPv5xgzBsDRo0c1RQhAUFAQFRVijZRKZd++fV1cXOjCF7FSZl+kSyKRdOzYcc6c\nOQUFBT///PPAgQM1syy1Jxy6nSc0VcHh/oPqxozRiouL43le8zoxMbG8vNx8PxQhZmJjY/N/\n//d/9U4FI6TZqquopKen197YuXNnaaM6ifbq1evixYtXr17VFBXNnZLc3FzdUwq9myjGjNFq\n166d9rWDgwMVFWK9RAZnmxNiDe49Fb5mzZoRI0YsWbJEd18PQ7766qvGfVN+fj50/m/p1asX\ngJSUFN0xmreaXUaOIYQQ0nywAEpLS+fPn3/06FFtQ+I6LF++vKysrO4xFy9evHv3ru6WU6dO\nJSYmSqVSbTHo16+fu7v7wYMH8/LyNFvS09PPnDnTtWtX7bPCxowhhBDSfIgBbN26tby8PDIy\nskuXLnq7vb29//rrL+3bL7/8cs2aNXFxcXU3AD516tSff/7ZsWNHT09PhmFu3759+/ZthmFm\nzJih6SoGQCqVzpgxY9myZXPnzh00aJBSqTxx4oRYLJ45c6b2c4wZQwghpPkQA9i7dy+A119/\nvfZukUik+1zjtGnT1qxZc/DgwbqLytChQ1UqVWpq6qVLl5RKpaur6+DBg0ePHt2tWzfdYcHB\nwZ9//nlcXNyxY8cYhundu3d4eHjnzp0bOoYQq/b9999nZWUtWbLEzs5O6CyENBXD83znzp1z\ncnIqKyv1/k4zDKNZBVK7heM4e3v7du3aZWVlWTxqA9B6KsRaZGdn9+nTRyQSXbp0qZVOTFGp\noFZTx/uW4d56Kvn5+a6urrV/S/Lz89N7yIplWXd394KCAstlJKTloqmOACAWQ2z2uQ3EYsQA\nlEqlwfPunJyc2hvVarWC1pEmxBQ0Pb5CQ0NpqiNpMVgA7u7upaWl2h4ndVAoFMXFxR4eHuYP\nRkgLp+3xtWbNGqGzEGIyLIDAwEC1Wn369Ol6RyclJalUqtoLOBJCGoTn+YiICJlMtnr16tZ7\n4Yu0RCyAYcOGAfj+++/rHR0VFQXg2WefNXcsQlo2hmHeeeediIiIKVOmCJ2FEFNiAUybNk0q\nlW7fvr3u1VNiY2O3b99uY2Mzffp0S8UjpMWaNGnSunXrhE5BiImxAHx9fT/88EMAM2bMCA8P\nP3/+vN6g8+fPh4eHa1ZDWbBggW6XLUIIIUTr3pN8n376aXZ29qZNmzZv3rx582Z3d3d/f39H\nR0eZTJadnV1cXKwZFhERsXDhQuHSEkIIadbuFRWWZTdu3Dho0KAvvvji9u3bxcXF2kKi4evr\nu2jRojfffFOIkIQQQqzDQ3OO3nrrrcjIyISEhOPHj9++fbu8vNzZ2dnX1/fpp58OCQlpXMd7\nQogGx3E8z1Nbe9Ky6U9klUqlzz///PPPPy9IGkJasO+//z4uLm7z5s3+/v5CZyHEXNiGHnDu\n3Ll//etf5ohCSAuWnZ398ccfp6amSiQSobMQYkbGFpWioqLVq1f369evf//+mtkqhBAjaXt8\n0VRH0uLV08dNrVYfOHBg3bp1u3bt0rb86tu3r/mDEdJyREdHa3p80VRH0uI9sqhcu3Zt/fr1\nGzZsuH37tmaLh4fHa6+9FhkZ2a9fP0vFI8TqZWdnL1iwgHp8kVZCv6hUVlZu27bt559/Pn78\n+L0RYrFKpWrTps3t27fpATBCGurtt9+WyWTr16+nC1+kNXhQVE6ePPnzzz9v3bpVJpNptjz2\n2GNTp059/fXXvb29RSIRVRRCGiEqKmr9+vVTp04VOgghliAG8NVXX61bt+7q1auaTW3atHn1\n1VcjIiL69+8vaDZCWoKAgIAvvvhC6BSEWIgYwEcffQRAIpGMGjVq6tSpYWFh9NQjIYSQRnjw\nSLFUKnV1dXVxcRHT0p6EEEIahQXw8ccf+/r6VlZWbtiwYdiwYZ06dVqwYMGVK1eEzkYIIcTK\nsAC+/PLL69ev7927d9KkSTY2Njdu3Fi6dGn37t2Dg4NjYmJKSkqEDkmINeE4rqCgQOgUhAjj\n3uUvlmVHjBixdevWO3furF69OigoCEBycvKsWbN8fHwAqNVqlUolZFJCrER0dHSPHj2OHTsm\ndBBCBKDfpsXd3X327Nnnzp07d+7c7NmzPTw85HI5gMLCwvbt28+dO/fSpUtC5CTEOmimOqrV\n6i5dugidhRABPLL3V1BQ0OrVq+/cubNly5YRI0awLHv37t1Vq1Y99thjAwYMsGREQqwFx3ER\nERHU44u0ZvU0lJRKpS+99NLevXtv3LixZMkSzS9fZ8+etUg2QqxMVFRUYmJiWFhYeHi40FkI\nEYaxXYrbt2+/YMGCa9euJSQk0NxgQmrLzs5euHChq6trTEyM0FkIEUyDp6QMHjx48ODB5ohC\niFVbsmSJTCbbsGEDXfgirRnNcyTENH744YdnnnmGmtuTVq7BKz8SQgyysbGJiIgQOgUhAqOi\nQgghxGSoqBBCCDEZKiqEEEJMhooKIY3EcVxycrLQKQhpXqioENJI0dHRTz311Nq1a4UOQkgz\nQkWFkMbQ9PhycXEZNWqU0FkIaUbE48aNa8RhO3fuNHkUQqyFtsfXxo0baaojIbrEu3btEjoD\nIVaGenwR8iji2n2Kbty4sWLFCp7nQ0NDe/bs6eXllZ+ff/ny5T179jAMM2/evI4dOwqSlZDm\ngHp8EVIH8YwZM3Tf37lzp1+/fv369YuLi+vcubPuroyMjFdeeeXnn3/++++/LRuSkGbkt99+\nox5fhDyK/o36RYsWFRcX//bbb3oVBUCXLl127NhRWFj46aefWioeIc3O+++/n5SURD2+CDFI\nv6js27evT58+HTp0MDi6Y8eOffr02bdvn/mDEdJ8DRw4UOgIhDRT+kWloKCA5/k6DuB5/u7d\nu+aMRAghxFrpFxUvL68LFy5kZ2cbHJ2VlXXx4kUfHx/zByOEEGJ99IvKhAkT1BJ0MgUAACAA\nSURBVGr1+PHjL126pLfr4sWL48aNU6vVEyZMsFQ8Qggh1kR/ka5PPvlk9+7dKSkpffr0efbZ\nZ7WPFKemph49epTn+YCAgE8++USQrIQIguO49evXh4eHSyQSobMQ0tzpFxUPD4/ExMTIyMhD\nhw4dPnz48OHDunuHDx++bt06Nzc3CyYkRGDR0dHvvvtuamrqypUrhc5CSHNnYDlhX1/fgwcP\n/vXXX3/++Wd6enpFRYWTk1P37t1DQ0OfeOIJy0ckREDaHl/vvfee0FkIsQKPXKN+wIABAwYM\nsGQUQpobjuMiIyOpxxchxqurSzHHccXFxbdu3bJYGkKalaioqISEhNDQUOrxRYiRDBcVTbM8\nZ2dnDw8P3YmQX331VURERGFhoaXiESIYTY8vFxeXNWvWCJ2FEKthoKh88803Q4YM2bNnT2Vl\npd4uZ2fnDRs2xMfHWyQbIUJKTU1lWXb16tV04YsQ4+kXlYSEhHnz5tnY2Hz22WcZGRl6DY7G\njx8PgIoKaQ3CwsKuXr1KPb4IaRD9G/WrVq0CEBMTExERAYBhGN29Pj4+7du3v3LliqXiESIk\nLy8voSMQYmX0z1ROnTrl7u6uqSgG+fj43Llzx7yhCCGEWCf9olJWVubn51fHARzH1dTUmDMS\nIYQQa6VfVNzc3G7cuPGo0SqV6urVq97e3mZORQghxCrpF5UBAwYUFRUdOHDA4OhffvlFJpP9\n4x//MH8wQiyN47gPP/zw5s2bQgchxIrpF5Xp06cD+Oc//1l7zeCDBw/+61//AvDmm29aJhwh\nlhQdHb18+fIPPvhA6CCEWDH9p7/GjRs3adKkbdu2DRw4MDg4uKCgAMD8+fNPnDhx6tQpAG+8\n8caQIUMsH5QQs9L2+FqxYoXQWQixYgZ6f23evNnb2/uHH344ceKEZsvXX38NgGXZt99+W/PM\nMSEtCfX4IsRUDBQVqVS6evXq9957b8eOHSkpKSUlJY6Ojo899tiLL74YGBho+YiEmBv1+CLE\nVB7Zpdjf33/u3LmWjEKIIKjHFyEmpH+jfsaMGRs2bKjjgFWrVs2YMcOckQixKLlcHhgYSD2+\nCDEJ/aISGxt79OjROg7YvXt3bGysOSMRYlHdu3dPTk6mHl+EmERd66kYxHGcXkMwQqydWPzI\n68CEkAZpcFG5deuWk5OTOaIQQgixdmIAWVlZWVlZ2k25ubmHDh2qPbSqqurw4cPZ2dk0o54Q\nQohBYgAbN2787LPPtJsOHDjwqDYtGu+8847ZcxFCCLFCYgCenp69evXSvE9NTXV1dW3fvr3e\nOIZh7O3tu3btGh4e/sILL1g6JiGmw3Hca6+99vrrr4eFhQmdhZCWRgxg1qxZs2bN0rxnGGbs\n2LHr168XMhQh5hQdHb1ly5bKykoqKoSYnP5DL+vWrevSpYsgUQixAG2Pr5iYGKGzENIC6ReV\nOtZ8JMTaUY8vQsytrsfzCwsLi4qKlEpl7V29e/c2WyRCzIV6fBFibgaKSk1NzbJly9avX1/H\nEpA8z5szFSGmRz2+CLEA/aIil8uHDh2alJQEQCKRKJVKNze38vJytVoNQCwWu7i4CBCTkCZr\n27btlClTgoOD6cIXIeajP6M+Ojo6KSlpyJAhubm5L730EoDi4uLq6uoTJ06MGTOG5/lFixYV\nFhYKEZWQJnF0dPz+++/pwhchZqVfVLZu3cowzE8//eTt7a3dKJFIBg0atGvXrlmzZs2ZM+fg\nwYOWDUkIIcQ66BeVtLQ0Pz+/gIAAAJrGkZoLXxrLly93dHT89ttvLRmREEKItdAvKnK5vG3b\ntprXNjY2AEpLS7V77ezsevbsefbsWYvlI4QQYkX0i4q3t3dJSYnmtY+PD4C0tDTdAQUFBWVl\nZZYJR0gT6Z5nE0IsQL+oBAQE5ObmchwHYODAgQCio6M1bwHEx8dnZWV17NjRwikJeYh6lTGj\nOI4bPnz4hx9+qFKpTPClNTUm+BBCWjr9R4qHDx9+9OjR06dPDxo0aPjw4X5+flu2bMnOzn76\n6afv3Lmzfft2AJMnTxYiKiH38Ub9+x4VFXXkyBE7OzvTrMFVUIAOHUzwOYS0aPr/s02YMOHs\n2bO3b98GIJVK4+LiRo0adebMmTNnzmgGjBgx4uOPP7Z0TEIaqMVMdeRkYO0AkdA5CDGOflEJ\nDAzUnI5oBAcHX7t2bevWrVeuXLGxsQkJCRk5ciQtJ2xRvBo8wNI/Kg3Qknp8qfPBtANjJ3QO\nQoxT/2UBDw+PmTNnWiAKMaz4GpTV8O4ndI7mhE+te7+mx1dYWBhNdSTEwhq8Rj0hwuPL69h5\n586dBQsWuLm5xcbGWiwRIUTDFDcwCbEcObhzQCn4LDCdDY5o165dbGysWCxu166dhcMRQgwX\nlaNHj8bHx2dkZMhkMu3zxLqOHTtm3lyE1Madgeod8DcBQDEI7DhIvgNsag+kBxQJEYp+Uamu\nrn755Zfj4+MFSUMMq7yLqgLYtxU6h6D4Qqimgy94sIXbCZUHxEvM/L088vNx9y7kcpSWwtsb\nbS30H4KrgDIVqgKosiDyhqQ7GImhcWo1VCrYGCiuhFieflFZtGhRfHy8WCweN27cwIEDPT09\nWZbuuwhNXgZ5WWsvKtzuhyqKhnoTxAsBWzN+782byMu797q6GtnZUCph/gtrXDmqjwBqAOAU\n4MqhLoDdEEO3QVUqlJdbrNQRUjf9ovLrr78C+O2338aMGSNEHmI23CFwyUKHaALutKGtCqg+\nAxzN9aUqFZgC+Dy8UQ0ovGCqX7ZEs8C41d6sSAFUgM7T+1wJlNmQBJjmawkxE/2iUlBQ4O3t\n3cSKUlFRcerUqdOnT9+4caOkpMTNza1///6vvPJKmzZt9EampKTExcVlZmayLNuzZ8/w8HB/\nf/9GjCH1Y58D+5zQIZpA9TlK1VB4PryVgXg2XyWuLpfb2EgZmHoGVU0NKgw9aVbqCqnURN+h\nBO7W3spUQaxTK3m1nbrGSXUTTO2rXEoW1TaQmyiOxYnagDHnqSaxMP2i4uvr2/TrXdu2bdu5\nc6ejo2NgYGC3bt2ysrIOHDiQlJS0YsUKTZNKjeTk5KVLlzo4OISEhCiVypMnT37wwQfLli3r\n0qVLg8YQo/C5QK3LR1aEKYZdDmzy9LeLs3mJ/c8b1gCYNn2ajWlvLVRVgzO0JJ27p8nuYXAB\ngIFbJVwGeN2OZbwIACMB61BrqIIHp0Lt7daC5vW2LAbatKxcuTIzM1OzpErjdOzYcf78+cHB\nwSKRCADHcf/5z3/i4+M3btw4f/58zRiFQhETE2NnZ7dq1SrNgmAjRoz48MMPY2JiVq5cafwY\nYrRi8NeFztAEnAziUgPbxdn7Dp9MvLjx8ccft/PJN/GXuqihuA69ByDFYnhzMFVfCbaLwQfY\nGEcD5UzUDqzupTK5HDduoKwMPI+aXHToAGdn06QipLH0i8qCBQvi4+Nff/31LVu2NLob8XPP\nPXSZhWXZqVOn/vnnn7pd9M+dO1dcXDx27FjtEpPdu3d/8sknk5KSrl+/7ufnZ+QYYiymF5he\nQodoCkdwe/S3Mf7ZNwa9/OpMkchm1XdxYE3dkYUFPEqQkQGev7+FRWAgRGb/t5tXGNqq20hT\npUJaGhT3x1VW4upVdO8OR7PdYSLECPpFxdXVNTExcfLkyd26dQsNDe3SpYujob+jCxcubNjX\n3KfdkpqaCqBv3766w4KCgpKSklJTUzUFw5gxLV9VAcqvg2Vh49KqHwBjh4IdDe6hh905dnlk\nZOSzvZ5f/N4XnqW+CkNnMk3mBkk/VFejpga2trCxxw1LXK/hKgxsVN0Er10gpqIaMi/9Ef+T\nw8PKiorYD6yT0CGI6RiY/BgXF/fXX3/V1NT89ttvjzqsoUXl9OnTcrm8f//+2i25ubm4vw6Y\nluaMRLPLyDFaV69e1a7IpLtapXW7sAFZ+wEg7xyuxqP7BASOFTqTKRQWQqls+GGLwIWCvwz+\nLpjOYAedPpUV7OfXo0ePfoPdAf2/EiZWVgYXF0Bm3m+5j3HVqR/3sW4Qe9x/wxdCVF1rBAsP\ng+c4zZjMYn+oRvP2NtnlzdZHv6hs2rTp3XffBeDt7d23b1+TzFMpKSn58ccfHR0dX3rpJe3G\nqqoqAPb29rojNW8rKyuNH6M1ffp0zXgAQUFBAwYMaGJs4eUcuVdRNDglLm+Bix+8goTLZCJu\nbg8uKDVMKBAK1SqIZ1ZVVU19fwLHcae+/NISszQUCkvOBeHvQpWlv9HmMUD7BKVMhupaRUUk\nogkrJkAVpQn0i4rmBvj777+/dOlSicTg/N2Gqaqq+uyzz8rKyhYsWFD7kWJjuugb2Wl/zJgx\nivvXlw22lrE+148a2JhztCUUFVETryCpIBbbOzvv2b8/KyvL2zLN7VkWJlnsyzjS3uDKoNZ5\nXk/aCyJvnRFt2uD+yt8PeHhYMmSDVFxHxm8oTod9G3gFo9MosM00KWkS/f+qV69edXR0XL58\nuUkm0ldXV3/66afZ2dn//ve/n3jiCd1d2hMOV1dX7UbNqYaDg4PxY7Tef/997evdu3fXvj5m\nfeSGZkgoyiyeo/nq1q1bt27dhE5hHiLYDoY6D4orELlD7AdW7+EANzd4eSFf54E3R0c018Vj\nSq8iaTE4JQDIS1ByDcVpeOIDmHxmERGcfuVwcnIyyVQVADU1NZ999tnVq1dnz54dEhKit1dz\np0Tvn369myjGjGnJHGrdhgXg4G1gI2mhRN4Q+0LSpVZF0fDzQ48e8PKCiwu6dEHPniab529q\nF9feqyhad88iz5o7PJBH0T9TGTJkyK5duyoqKpycmvRAhlwu//zzzy9fvjxz5ky9J4w1evXq\ntXPnzpSUFN0zmJSUFM0u48e0ZN3GoeDSQ1tENugaJlAaYholV1BT3IDxvBpMfh2/0TtBaYvq\nahQ33xkqagUqDE2Runm0sXfWrFmbPpBY70xVI+gXlcWLF+/Zs2fevHk//PBDo89XFArFkiVL\nLl269Oabb44cOdLgmH79+rm7ux88eDA0NFTzQFd6evqZM2e6du2qfVbYmDEtWZueeOIdpKyD\nshIAHDzR9w04NdPrG8RINq5gTXCzUoeCR6UaBvqHNRecAmCAWvVD6gR7Q2fjLVuLv5Ok//OV\nlZV99dVX77//fnJy8ltvvfWoeSrBwcF1fOimTZtSUlJcXV0zMzO/++473V3vvvuu5sa7VCqd\nMWPGsmXL5s6dO2jQIKVSeeLECbFYrLt0sTFjrIyyGpKGrDbu+w/YuuJ2Etr2hs8Aeijlxo0b\ndnZ2bQX5B7RDB5N8jOn/GZXzKFeheT/z5dYNJen6G9sPhovhhdaIFWP4h88/jXzUiq/zrPW7\n7747cuSIwV2///67SOfJH22zSIZhNM0iO3fW/1tmzBg9mhv1b731ljE/iyWp9n8kfmFZnSOW\nQvzxQ1uK0pF/AT794dba251xHDd06NC0tLSM9Dec3b8SOk6zoVBAJoO7u9A56iK7jVMfQVUN\n/v6VvA7D8NgMgVMRkxs1apT+mYpJLivNmTNnzpw5xozs27ev3oT5xo0hrUFUVFRiYmJYWJgz\ndbjSJZU284oCwLE9Bv8fsnej8CIc28E7GD5PCZ2JmId+UcnJyREiBmmg6kzYdgLTivq7Zmdn\nL1y40MXFJSYmBmL9CU+k+bN1Q4+pQocg5tfS7xm1VDXXYdux9TQN5zguMjJSJpNt3LjRt7lO\nxSCEwNDapIQ0O1FRUQkJCWFhYeHh4UJnIYTURfzHH38A8PX1DQoKAqB5W6+wMJotQSyE47iN\nGze6ubnFxsYKnYUQUg/x6NGjAUyePHnz5s0ANG/rVffTX8TEHL1b80R6lmVPnDhx6dKldu3a\nCZ2FEFIP8eOPPw5A+5Cu5i1pXqROkFrZIhmmZWdn1xLaThPSCojPnj2r+17vLSGEEGI8ulFP\nCCHEZPSLyowZMzZs2FDHAatWrZoxgybCEkIIMUC/qMTGxh49amhtqPt2795ND+EQc8vMzExM\nTBQ6BSGkwRp8+YvjOCP7gxHSOBzHvfHGG0OHDv3rr7+EzkIIaZgGF5Vbt241cakVQuqm6fE1\natQoeuLLQrgaVNCCWcQ0xACysrKysrK0m3Jzcw8dOlR7aFVV1eHDh7Ozs//xj39YLiBpZR7q\n8UUsgOegvAtFHrgasLZCpyFWTwxg48aNn332mXbTgQMHDhw4UMcx77zzjtlzkVaJenxZWk0O\nCn+DshAAKs7CJQRuw2jheNIUYgCenp7a1XlTU1NdXV3bt2+vN45hGHt7+65du4aHh7/wwguW\njkkAAOrEFaLB84ROYUbU48ui1OXI3wSu6t5bXoXSwxA5wJm60pPGEwOYNWvWrFmzNO8Zhhk7\nduz69euFDEUega9uyOLmDVVdjIKL6Bhixq+oT2pqKvX4spyKvx5UFK3SY1RUSFPot75ft25d\nly6tfYXBVkeWiwsbUJAKXo2ru9HrNfgI061n7dq1ixcvph5fFqIsMbBRXQ5e3aqW6iGmpV9U\nIiIihIhBhKOQ4eRSVBfdeyvLRfJKDHwXPgMFiUMVxXLEhh7jFDlQRSFNof9I8Y0bN7Zv356S\nkqLdwnHc0qVLO3XqJJVKBw0adO7cOcsmJGaWtf9BRdHKrutJDWGozwIN7I3NK80TpaVw7A9G\nqr/RKViIKKTl0D9TiY6OXrFixbZt27TLwq9YsWLBggWa16dOnRo2bBg1IbcQtRzX/kDe/8Cp\nUZIBBy9WWYLUXwHNyo+5pmndlvu/Wpt4lN2690WmJZKg+4uNPFZ9AqL+DXswKX8TvN9o5Ne1\nBpK2aDsJhb8/uLPi2B+uzwqaiVg9/aJy9OhRGxsb7RpcKpVq5cqVAFasWDFkyJCvv/5627Zt\nK1eu1GwkZqSW49gnqLh17235TTh4cSIntterAFByBK7PgJGY4IuUlZDdeXgTA4c20HxRs6CG\n6jDUZ6HcDPFQMB2MPY5XmDNVi+DQG3YBqL6GqlS4PgdJW6EDEaun/6vurVu3fH19bW3vzYFK\nTk4uKCgYMmTI+++//8QTT/z444+2trZ1z2IhxuBvnqlnxNXdDyqKRmU+itJNH8XX0FRWJwvN\nEcnMzPz6669VKtUjR/ClqH4R8nfB/Q+KZagaDdVvlsnWWrB2sOsKaTuqKMQk9M9UioqK/P39\ntW9PnjwJYMyYMZq3Li4ugYGBGRkZFssnPIUMZTmm+jCGq0HBJQDcpV9FtvYGRqgrIboEALkG\n2l4xqkrN4ZDdgTIVjP5/vkbq+AxuHH/w1rkjbJzufdGDLc6m+S4dmh5fiYmJgYGB48aNMzxI\n8Tk43VIqh3wJ2CCwASbP03qxdnAR8lFy0pLo/6skkUjKysq0b48fPw7g6aef1m5xcHBQq9WW\nCUcAADzAm3flmw7PwD0QhWmQ5cPncbgHPFRRzCY6OjoxMTE0NPSRFQVyqGqfFtdAvR/sLPOG\nI4Q0in5RCQgIuHz58p07d9q1a1daWnrkyBFHR8d+/fppB+Tl5Xl5eVk2pKCkjmjb21QfxrO2\nmk/TvtCncgDLQrUX3YtRchtgoFaA5yG2AcAo5HDZDwA2prtRr+EC+HBQ20CcCWSCvQmnh2+0\nmPr2RFlZmbr652+X+06b9gQUj7pFVwMY+g1GdRR8df3fYXMOisqmhLQCjBsk9DACaUb0i8qY\nMWMuXrw4atSoKVOm7Ny5s6qqavLkyWLxvWGFhYU5OTnPPPOMxXO2JmxPSHvCswaXF0B2B4oq\n8GrYOMO+LVdexvabCwCVRyAx0Y16g6oT4THYXB8OcBw3dtKzCQm3N2zY4OQxpY6BUO0FX+uJ\nZ8nLEBvxFJl8DdxpQTlCLEr/V925c+cGBgampKTMnTv3+PHjbm5uixcv1u7dvXs3z/ODB5vx\nnxtyj9gWQ5ag23g4eMLWDV1HY+hSrvCK0LFMIzo6OiEhITQ0dMqUOioKABbSf9faFgjxaLNF\nI4Q0if6Zipub25kzZ3788cf09PSOHTtOnz5dd0rK5cuXhw0bpn3gmJgedxfKS5D0BgCxHXq8\nBFaC6pLm9ICvCTg4OHTo0GHt2rX1DxVPAFRQRIMvAMQQD4X0Y8DG/BkJIY1h4PEhFxeX999/\n3+Dob775xsx5Wj2eBww8X8tX5KpPf88XXFXtns32e511tHwyU5o2bVp4eLhUWms6t0HilyB+\nCYplkP6bygkhzVxdd3o5jisuLr5161YdY4gF8BW5ipXd1Ee/RFWx+nS08odg7kaS0KGaytiK\n8oAdYLZ7SIQQEzFcVBITE8PCwpydnT08PDp0eDCB+auvvoqIiCgsLLRUvFZPUYHSHP7y71A8\n1KKcyzjEF10TKpQwpDPM+1w1IcQUDFz++uabbz744AOeN9C8z9nZecOGDSEhIZGRkebPZm2U\nVXxFXj1jqkv54qyHXuhRlIG5BYkzAGTsw9+x4FQMGKlnR3VFsbrq/hSiapk6ZYuo31QTxr/H\nxplxaGP6jzUBWumWECugX1QSEhLmzZtna2v70UcfTZ48+fPPP9+4caN27/jx499+++34+Hgq\nKrXxVUVcxqF6xpTkaMZoX+hT3QSSIb6D0hycXwcAIglEYnAqxsYONeXgeAB8RSnY1Hq/rhEY\nr17NtagQQqyAflFZtWoVgJiYGM3CKgzzUFNYHx+f9u3bX7nSQh5sNS3GpYPoyX/WPYYvydaM\n0b7QJ08FMxHSIOybDUdXAJDYwcEFvBxlJWpZCc/JATBtvNkB77CdhpjyB+CqIc+FXWdTfuZ9\nmZmZH3744XfffVd7pWpCSEuiX1ROnTrl7u5ex1JdPj4+rav3V9kNXN5mqg9ji1JxeqXuC33q\nq8CvEB1G3vn7W5SortBMLBc5uUOtAsBUVrI5Rwx1rW8CTg5lEWzaAUDFTdzUaT7WbSzcG78e\nqLbH15gxY2jxeUJaNv2iUlZW1rt3XV1JOI6rqakxZ6RmxqUjnpprqg/jygvZp+bqvtAnvwHm\nVUiDUJqN7MMAIJLAzgm8HPIadUUxr5QDEAV05+19RE/ONFUwAFCVoTINLsEAcCsRviab4hoV\nFaXp8UUVhZAWz8Dkxxs3bjxqtEqlunr1qre3t5lTWSW+8Kr67M91j+GyE1T7PtR9oU99EqiA\nyBOycpQVAAArRkURoIa8hlfd68DFlxTwZVv44uum/AE4OZRFbNd8tudYE35qdnb2woULXVxc\n1qxZY8KPJYQ0T/pFZcCAAXv27Dlw4MDw4cNrj/7ll19kMpm2Ez7RxbQJFI/4qu4xqv0fiV9Y\npvtCn/xdMJGQBgFAahxOfQNwcHABV6O6cRX3H8kT9XwCbV9iu5m0W4numYqJcBwXGRkpk8k2\nbtzo62uhNVoIIQLSf/B/+vTpAP75z3/+/fffersOHjz4r3/9C8Cbb75pmXCtXa9XMOUwHpvM\nO3orC2+pK4of7LJ3Y7sMFS6ZsaKiohISEsLCwujCFyGthP6Zyrhx4yZNmrRt27aBAwcGBwcX\nFBQAmD9//okTJ06dOgXgjTfeGDJkiOWDtlI2LnDrzLAqkc+T/OFv+bKbsHEW9Xud9ewFxjwz\nAYuvoOACqvJRXQTvAU1cAvKZZ54JCQmJjY01VTpCSDNnYPLj5s2bvb29f/jhhxMnTmi2fP31\n1wBYln377bc1zxwTC2Mfe1E64D3FDwOls5IB4M5/zPI1pZm4e38ZldIMlGagcxg8ejT68/r3\n73/s2DGTRCOEWAUDRUUqla5evfq9997bsWNHSkpKSUmJo6PjY4899uKLLwYGBlo+InmANWef\nEnkpynKAh1tyXT8Ity5gqekWIcQoj1zk3N/ff+5ckz1KS5qpynyo7z8gXpoOrlbRUstRcBF2\nHvfeShwfvCaEkFqoQ1/rxorqH6PbVcGY8YSQVuyRZyrExKqK1Zd38jknuZRf2V7jhU5zn10b\n2N3v9MVUoex/UD48QGyPtn3ANKCWcBzHmvUyHSGkGaP/+S2ByzqmWNVN9ds0Lue4Mu41xbe9\nUFVc/2Eazn5w61D/sKaouYmbq3F3MyRy/V3+Ix6qKOrjdX9SRkZGr169Dh0yUadL9f/A55rm\nowghFkFFxfxqylRxr/GVDxah4Yuz1Gm7YWhxAQOk9pA4aF4yYjvTx1OVIW8jFPkAIFHBSQap\nEmJbtOmNXlPhGvDQYPVfBj9Dg+O4adOmpaen5+aaqBLwd8BXmOajCCEWQUXF7LjMw3xFrX9k\nK/L4/EsN/Simw0DTZNJVngy1zgpgEhUcK2GjhP9I2Hs26JM0Pb4emuqovIsak/aSIYQ0b3RP\npbHk5aqjS40ZyOemqNVQqyB9eHl1VcJXjEut61ra3l9ainJxnxcAQHaR9WBQtB8AlMUoPgLG\nFE/6Vl42sJEtv/dF+vGqIDK0HSgrK+MK9n67cMS0aVMfHKsuB6eAJP3eW0YM92EmyEwIaa6o\nqDSWjXO9nb40uJwT1Rf2KRQPFxWGEY9ayTjVas2p2/tLoygdFVcAwPExrui/7BMvAID8Ftyf\nBWvfpB9Bg1egrNb60Gp7eLxgYLAiFVID2zmOGzNhaGJi4saNG506vaj5XFSmorIAUMLGE45B\nAFP7wLqoT0N9GFwqxOPAdm/YsaRBeCVqsmFHs9CICdDlL7Nj/Qax/s/obWTaP2GgotRH/Mw8\nE4XS4dQPTK3fLWx8GvQZP/74Y2Ji4ujRo+9f+OKRvwl3f0FlKqqvomArcteCVxv9eWrUzELN\nG1Dth3IDqsdDQX0cGqayQRcdeRUU9EAEMQ0qKubHMOIXlrKdh0IkAQCpg2jox2zAkMZ8lL27\nSZMBAGx80SbsoStpjn1g27FBn/Hqq6/Onj37QXP78mRUpT00oiYHpUeN/TjlWqgfHqz8UX8L\nqZOsNS2kR5qVB7+ichx38uTJK1euODs7DxkyxNPT8E3ar7/+uqqqavHixRYKaHXu/g3P/vob\nbZxFA6bbDNqv2jNHHLYarEi1/yMhwj2C8wDYdUZlKuS34PwUbLxx5xS4bUks6gAAIABJREFU\nagMjOd7gdmdHyervlgO4t7fK0DMIVRfhMsioPMq94GvdLlLEw0anLT8jAiPVH0MIEdq9onLt\n2rWJEydevHhR81YikcycOXPZsmX29vpX7b/++uuioiIqKo+kkD1yF3+I7XYTqu8AsJ1SoTC0\nnDB3FfgVisMPtoiL4FAM7m8onAGAq0HNTUgKUJoIiSdsTLRgmkIJdQ2YKlRnoRoQlaL0tKF4\nN8Eaiq2HvwObWsuDMsUoNeJYAGoJ0KnW4QWo1jlcLIJtfUXF5hwUlUZ9Y0siGgzRAKFDkNZL\nDKCiomL48OE5OTkA7OzsAFRXV69evfrw4cN79uzx8/MTNmLLIR7J5SSy3eYC4HIKNS/0aZcT\n1qpIR+UVOPWHtAMU+chdA84DuN+Ay9EXXi+bIJsUsH14OWF3Q8sJK1ZB+u/6P60oHuWn9Dc6\n9IH7q0aFqZkK9Rn9jZIpkDbw9E6+Bu4zGnYIIaRpWADff/99Tk6Oq6vrjh07KioqKioqtm7d\n2qFDh9TU1MGDB2dlZQkdktxXsBOc4qEtsguoTHvEaOG4DoXI6aEtrA3cDT1OZpDk3QevlR7g\nJWDcIJnWmCQVNHeSEIsSA9ixYweAFStWjB9/ryfVpEmTnn322YkTJyYkJISEhBw9erRLly5C\nxrQKymKoSsAVozpTbw+LfLFtJaozGXtGs1f7otaHiMHchfr+LlU5So5BXoC8VNi2Q81NA4dU\nnANrirsL6kooC++l0vsp7DrXfiC4pKTEzc3N8EeJHOHzFkr2ofoawMO2M9xGQGz0Uwai/rBd\nA8VycNngHMAGwPYjMA2bialNCSen+oe1ILwKZamozEFRMpx7QOIsdCDSyrAA0tPTAUyaNEl3\nh4eHx4EDB8aNG3fr1q0hQ4ZkZNDTJBanlqEwHvJccAqoK1F5DTCus4v5ZWRk+Pv7a1ZvM0zi\nAc/J8H4DbV+G11RIvRr2BaIQ2P4BfhpUz6DmJSgdGna4UonMTFTKkJeHCxdQWGsiTgulLEPG\nD7i9E9W3kLcPGdEoSxU6E2llxACqq6vt7OxcXFz09kml0q1bt77yyis7duwICQk5duxY165d\nhQhpJSTukLiDvQ27AL09HCpVNQWwC+CreM1e7Qt9rAqMJ6QBAJC/FZwcajXUXF3f6xRk+KMa\nSlUGddW9jzL0U2hpenyVlZX5+DRsOksDcHLkrgV7HioXVFai7ARch8JtuFHH8jyuXkVlJTTn\nUTU1yMoCw8Cj5a8Ec/t3KEoevOWUuLMb9h3ofIVYDgvAw8Ojurq6vLy89m6JRBIXFzd+/Pg7\nd+4MGTLk2rVrFk/YsqgVqr0fKFYEqE98q4wdzGUermuw3NDFrgerm/AA4NALDj1NHLI+Bnp8\nPYrUF3bdGvMdxX9CceehLaVHDV8wrK2oCJW1Hvq6caMxMayKSmZgziOnuNeQwTBejbJE5G9A\n+UkUbofK6ObZhDyCGEBQUND+/ftPnTo1YsSI2iMkEsmWLVtefPHF3bt3DxkypKqqqvYYYhSe\n4y7+xpfe+/+eyznO/fScJHIvG2jgjx2AgYnuAGw6ooYBcxu27eHQB84mfXi0nEH5TQCoEOOm\noZKm7lQmu8Rdv/7tv/89bdo0w2OaTF4EVZE3+NFg5eBF4O//OeRUQmzENyrkUDoBQNlgqHVu\nqCTeeGjBMetUrfRUczYGd6kNzSwCUJYKZdkjPq4yFSoe6HH//WU49TdN+x/rx0rR1tAjkKRu\nYgCjR4/ev3//r7/+arCoAJBIJNu2bXvxxRfj4+MtG8+aKfIhO6d5KeYLGJcC/sr/iQL9AX/d\nUXxmLNrovFdLgAsQ5QEAKwHDw0YEjgVz/24KKwKjAGsDG2+oS1BywGSBOTnERbApAQDuJhx0\nzly502CfAgD1pT1/7FRIboaFhTl5m+t3fxsH2LgkAjwYNXjmQd8HiSfse9R5KABAJrv30Jft\nTdTotOz09m4BRcUBj7xJwnOwYcHXulbq3ANSD9bAxUPZORRs1d9oexk+/2x6TtJqiQGMHz9+\n9uzZcXFxS5Ys6dDB8HpQUql0+/btVFfqwBdlcJlHUHINd9L1dqmKbqmK77Dym9y1YwYOdBrM\nSO/fiFadA+wgrgEAnkFpNiMvZzsEQioFALsA+EQg6xBEmXAbZuLfKFU681SqHp6novob4hEA\nrl7aOXn2prCwsPnLDU2yMaHqa1DcAS8CAJU7RBVglHDqD5eQ+o+1q8bdVHAcpEWo7HVvo5sb\nPFr4HUEGgDvyH/41w6ETPAIe0cyzJtvQxuvgOTDUwIk0khhAu3bt0tLSlEqlU50PX2rqysGD\nB3kjV5dqZRgnb7bLc8hzhveT+vts0znmKqOwxbVaJxYMK+r6PCT3y4PiFJiBkNy/TcI/h/wj\n4Ith7wPHPnDq1+Bevw34AViwhq+rAGooY6DaF+h/c8NPzzw3fKa5Mmi5j0LeT/deq+zBVkHq\nDKfgOo+5z84OHTvius7tBVtbdOpk8ozNkEcwwKLwBFQysGK4PAav5+o4PTNUORgz/hUjrcG9\nq9Xduhl1N1UqlYaGhpozjzWTOjLujqi6BffO+rvKZXxpKdszWH36e709bOehjFfvB+/lLmB8\nIdX9BDUqrsCtP2zNvKiwyAlO/Qzt4KE6CHWB5s2UV6qBuVA7QmTO6812AfCKQNFeqO4CEqh8\nwD4FNWtsB1RPTzg7I/80HBzg5QUPjxZw4csoDDwGwmMg8vbDa3h9P7RdZ1Qk62+0DaA+s6Qp\n6v/bc/z48X379lkgSovHdgxmOv1Ddwvj5C2e+NOjxhumkEGWB1UNOKUpwxlWDtXHqOkGvtbt\ncfmnZp80U1UCRTnAg+fBy1FyF+np4Op8ulqXrS2kUri6ok2b1lJRdDBiI35oh8dg//Cjg6wt\nPMaaLRRpFepfpCsyMjIzM5MueTUar1LI71xV5Gdx8iq202B2+FLu4nYu64io3xTRwBmw1Z8e\nVJf033BtN9RK+Hvj2CfoMx2efZqaj8sCd1Z/o801qHKhXgc+DbwUEOkP4POg/A+YOqY/MBBP\nevTe+lSloWLX/d95eEiK4XISJc/i7l14N6SHZvv2jc/Q8jHwmoyKs6i6BGUh7HrCdTBENKWF\nNAmt/GheFWf/yF0zU1l0C0DRrpW+Tw90fGEZ6x+i2v+RKGR+wz4r5wjSf3vwtqYYZ777f/bO\nPE6uqszfz7lbbb3vne6ks5MNCKtAWIKsgkBAZEYUwVEHhmEcRhEdcfCnDjKOyOgYRcZRI4oC\nyiaLDIiSECAJgUAgC9k73Z1eq9fa73J+f3RVL9XV6ap0d0KT+3zyx72nzjn3VKf7vvee932/\nL+fejZFH8zq696L7KZ5L5UmIlA1oa8MeszSWRBmR59jnwRY4NVCT9JbLEb8q2kKE92ATO2PX\nfbJjKEYmr3Dvu1ipQoRWMU4AYaH10NFB9s83fVXwfqo9FQhQ8H67ZSvkn0rgWPo2ZBUE4eIy\nFq5RmTQSrfaB5xPv/rrktLmQVE4TgXhiy0qjeq5SBp1pm4pxnDeR3fAbxOND2iW+KL2vYbew\nWAAIgaeTAoEdJ/hNpI106L9Zxf5K46/wlSadrYrMxelqQxTyAApsRBdKBxCN4vOKETulPpTM\nxeoHyWJn3rIx1AwvQuQ1DW6vOR6EiXBwDJRCtCHRBEKHk0ad3fMe+vup5oop6DxMG3F5JTA0\nkVFkCil2cZkEXKMyaRiVrc+usXds95UOEVIMEO36k3HOp2juwts1YswC7EaYjjpcPNHsQBjs\nawBJYR6WxKOiCKQk5oAvfZrCEvw5am0B0xcSeBP175Kn9iNY/7x7j338KR2//kXxlZcOWZLI\nx/u7DO83udP8OlWn4x2pS7n/37FTWfHROjytKDGis6m5hhF6QplJHCC2jcA8vHVHYTmv0CYC\nGaMuXFwmGdeojEGs/p2eNQ/mMKCvgfxn+w9Db79gtjX01g96uQMlflNtjxl1suUd0ZLpSd7Z\ngogght9l7R6ETtvuwKzKvGPm0Qf+IU/34QDO8Off/CqmnZ7DmvuRnfSZKKlIXLlAJhb+5Pst\npy8uWjgnjhrG0ZF+9M+jfxIxyTpaeSfQszZ57ASSm2++Y7OyKE6C9t8R2Q7Q8gvUAir+Bu+I\nkLz3MaFd5I1PFrzc3cpyOUKMbVSO8iJd3rpjvdf9Rw4DGtdQm4y1NTsae9qGiTHllQYS5cdX\nXvMVe+PP1ZMzFQgxf4K4CG34S0CsHsVP6w5a/5xhiG4Sn4QncVH4xDNLN7/z9IdO1RcssBER\ntDL4KMYXJv5aIym+kGgjiX0AjgepE1oCARwHZaxttc6nkhalH7uXtt9Scytq3uStd2IJ14/X\nqCju46LLEWLsX70XXzyo6KHLANHdRHZhNRBMajBVXnKuN2+YKqIvQN4xyzG3iwILMz3xHsB2\noAk5PFzY6UAalAWIGugWPokhBj0WQqIM98YHzMyTj0EfTgtKcmBPT8++XVsvvXDOZ//udLT1\naNeiXknip7lPm5nOrbz3O7p3svP3VJ7CMZ/AM/T1TOh0n4k5Dd8e7Hx6T8X2Q3Ts6C+ZGFDH\nGcQOE95MwRmZBri4uEwk6UblpptuOv3006+//vrRBtx77707duz46U8n7ObywcE3B98comso\nTb6p6KUoe+KtD9zuxMKA0IyaDy0NXHs74Gx8STk5UyXE+LOIY4eVEwbCW1HzUct452GKS4mC\nPsQNbuURHbL9lV9L7d8mkxSyiv5KIbuwW9COA6SUD//6Z60Nlddcc02+90Q65qKcCz3YtagT\nEE8Vbaf9eUoKKTkZgAgH/kDdxcOfryMRZCVSxy7ASX0wZvSXEyWcydkjTcJHOhLs/Rj95eIy\nwaQblfvvvz8Wix3EqPzxj39cvXq1a1SypOQjNxec/rGe1Q8m2vaWXv4vyls/G9d0vjkwPPtP\nL6X2M7RuonsPhp+ieVSeOJj2VlqaQwCujJLYiucm4O233vrGypXLly8/8aKLAKxGtHKARAtG\n+bi+AgCb76N3RJVqUcXMjww5b2qCOFoXtn/wF9Xvp/ygC5AW8cb0Vz2gZAl5E7DycTHmxp2L\ny9Qn551Xx3HE0ZefPB60osrA8edr+981Kmdb45zLM42yE+h8BhwQ+OZQfjl6MTM+zIwPZ+iv\njozVHQV5APt51L2oWxDHLz355BdXry4qKkLr/w2xkgdO6iCFFaV+rNDiEdciuD1DPn7DmuGv\nVZ2ziR9A8WKVDr6plJezeXAB3hJq0sViNIpPpful4W3FFBzn+hlcXA4DOf+ZNTY2Hlx30mVy\n0WaiVSOCVP8d/glKF7cfwPoGxJEeEhejXIG+ctGilICHsxs7iP01lNkQSxuqeplxQc4X3P0E\n1oi6PAUzh09lFbBrHXQRm4XjBaiooHZYumVmLd2i83ES9K1LqsB7ain72OhamYdOdCO+kyd4\nTidBz7uE99G5gYJFaIcntkBoeGYcliu5fPDRgD179uzZM7gZ0dzc/Oc/Z4gyikQiL7744t69\ne884w3V4Hl6cFhQTWULndrb+mngIr8N7D1N7HuXHj3dyuQnrK0gV6QEVx4A/Ys1Fuw3Aepz4\nN2BgN8mDdhXKgoHRQqCPXj++Py9T0dPbq06l8aX0xmnLhk8VsyhSUTXsPPQiioqydUgIldLL\nKD6P5p9R8Un00knS3Y21jEwRGhfxdup/jdkHEG2k9S9Mv3q8YWBZIXS8s8bu5uKSBRrwwAMP\nfPOb3xxoev75559//mCln2655ZZJX5fLUJx2Ql288zCtm5EWhZUIiWOy/y/4KwnkooU1EvsR\nHA+ODyTCQfqRNvwW7TZkC/FvDbEoQJz4l/H9McvbdKwZK0T+gvT2hTfQvZNQ02DLzEspH4hO\nkJK9e+nowBNCi2CHqavL2cWt+FE86GVj98wRaWJuw2rC6SL6V4yFqOP7H0jNS+OjSYvSjxOn\n8XHm3YI6sbbLxWUy0YCKiorFi5O1jLZs2VJUVFQzQoZPCOH3++fNm3fddddddFGmsCWXyaP9\nXbavRWtggQ37KJ+HXyVPQwriW/HMHNfk9l9AoMRAgkzuKDlBrLtw3kPpHjHgXcyvILJKa9cD\nqDoMupIMtC/3t595D00v0fBXCmZSfQali4cMa2qio2Pw1DTZtYtjj01WKjuySOKvpeoASJxO\nYq/gPR112ngnjncQa01vtCOEdlO4JNMAF5f3JRpw880333zzzf3nQogrrrhi1apVR3JRHyS6\ndhBu0cLtQu+lcY3i99O4Bhg4SMcuhF2oQ0r5Rlro7qJkAcEZtEgAey5egeVBCrzFROZnmCd7\nrCCyA3in6Z1Fx0VUtd9NIdC+ivlbnNczDFFvQFmUoX0EZhgrhDFEMia0i/C+5LEBZTMIVGM1\n0zo03LdFQ04HUAtRElhFSI2GBHk5GpXQh5hon4TTh51KPbJMov0vFk+hj1uzxuzN3N79FrGW\n8U7+gcRTRtHSsbu5HGbSHfW//OUv5849DJu4Rw3F8ymeb1mb48G4p/ZsZ8uflNqzgYGDdOKP\nIuYO5qlEn0b/DQUesKkO8UorvSZlFyAF0oMU2PnIQ9oN17aivwogu5F98bijU2326Kon5fuO\nfhMi2McRTu5e2X1zZKIYFNQKGClclgE1hrCG+eS94B2ihea38RQNd7pIiZoKBxAOisBOgI0h\n8WVdQsaOYnXiMxFvo+ahF0+UW8XRkSmXv2OjpMLr1MJMspi5ICs88oB/ZAR42SKMkdpo70vU\nSsSEVrh2mYqkG5UbbrjhSCzjg0vGN5Xu/WrvDp6/NUN/WQ8/Sf5pyhBWIwA2SKSCtwLV4cDj\naAJbAYHmpa0kwzxD8RYy+7z0RtuHfR6As1Varz76+94/bdjyo5WGN6ABKDPwfQsg/kXyHukf\noRSXYAUwbkHL1lFhtmCH8Yz+FN/dTPl09LS9tC3NWBaA0YzjxyoAQXU1FdndXGN7af/DsBb/\n/ImqPSV3YaZ25hJRjJS3Q5+PGHfEsq+NzuFvhoE5+LIqyvq+4OCVEFyOEg72d9DR0REMBk0z\nw+PhkiXuLm92ZHxTqcVu2qJdeHeG/vF/Rnwm+abS/RXMAwC2H2xklB1hAhrx+RQrRAtxFCpP\nZMYIg5Ebp/73PStv/eqWr3yxuKiwPJk+Ytye/NDzHcRMrD8iW4S3FFGD97Ic5vYgTcTo4WFq\nEUreiA61xTQ2AuhhbA0SaBq1xYyIIsuEpPMRPMNdQfY6lAUTcntW62AXEgSDVSjVcpRcaq2N\nRumHwUvHa9gRFIOipVR+GDHxsdAuLpNIBqMSi8XuvvvuVatW7d+/f7RhbiHIw4HTlqExT8PW\nkxotikZZyrrL/YhSGP3+PQp79zZ//Zv7Cgs9X/pCJTgos9G/gDpgqLwYXxgUkUzcO7HhudOW\nZWqtrsayaE25rb1eZs9GH9uk9LxD4aI+rJHBBRDbPyFGRSnCWELi3cEW4cUzekmXnBAKZWdS\ndiYt/0fVhZMUCO3iMrmkG5V4PH7uueeuW7cO0HXdNM3i4uLe3l7btgFN0wqzrGbhkhEtl8Ly\nSgn2iHiguEDzgIXQmHHeYN0U52WUMxC5+Vccx/nMZz4TCoUf+NX/lE9TsX6F935EbU6TTDxC\nMGMG1dU0dFE8i6LZWRaZj7VRuGgUKRQxPo/HEPRjUMuxmohvxTgObSYiq1eoHBCaa1Fcpirp\nf4ErV65ct27d8uXLm5ubr7nmGqCzszMaja5du/byyy+XUt55550dQ8M9XXJBqd2RQ29fpo2m\n/OMwQHXI78beOs71HDhwoKmp6aOXnnrd1T8n8Z/IFiIXkLgrg4jK4UfXKSjA78/SoiRR8zAy\nhff65k3UugClBONYRAB93sRbFBeXKU26UXnkkUeEEP/7v/9bNURgXNf1ZcuWPfnkkzfffPOt\nt976wgsvHN5FHq14luP/JEJHiaIkQMcqRPpRHZAoDqF36Bsh854LtbW1b2969Jc/iSB7BlvN\n32D+aryLnxC83twsSj/lH08XZSlajmf6RC1qAMfVEnNxGUH6n8W2bdvq6urmzJkD9AtH2rat\npnQJv/vd765ateq//uu/Lrggd72noxOrGzusyE5VjxJvQviINwHCQ/9BOgkF0YVMfaQtJ3AC\nsdUo+bRvQ9sHIJzBN4nO/8OoAHCiiI5DqJvr54/+gjxM0MKIeLLVfBD9hgy9tY/mOv8wEgk0\nbdLFeo0qar9Iz6uENuBbRN5x+MaXyjMKlvuO4uIyggw+lfKUtLjH4wG6u7tLS5O1Y30+36JF\nizZu3Hg4lzi1STRjW4KwopmYXQIDswtAF8mDNCwFER6RBVIB+Xj+zPQW8kLYCopEpOxKvBnF\nh2xEbIbc0wScdxE2gJTI1GuBPEDi+zlPNQLdh6pCInUesfDdimfy45nUAkouJr6P8qsn/Vou\nLi5DSDcqVVVVXV3JO1p1dTWwbdu2M888c6BDe3t7T08PLlmSCJJ/gi2kGe0hbwlCxeoEhE7/\nQTq2ggjB8I/sCA5YxxA0kOXYGoo9aFScBXjrcDYh6hBj5ayMxFuC/cvUiUw6iJUZGF/KeaoR\nmFGsEEZ16rynfYIlGD+glLmSrS5TlnSjMmfOnA0bNjiOoyjKhz70IWDlypVnnHGGoijAU089\ntWfPnmxS7p977rnt27fv2rWroaFBSnn//ff3m6g03n777Yceemj37t2KoixatOi6666bNSs9\nfimbPlMF6XSLglMAp/dPSsEpGXrEH0PMxjh2WKNVjvCjzmTPdykpH2ZRAN8c8k/A3oeyAFGX\n+6LqiD2CDAODPjb9s7nPM8k0NlI7SliapHsz3W8TayXRQekZ+CfegXJYcRUkXaYu6bvbF154\nYTgcfu211/qP6+rqHn744dNPP/1LX/rSJz7xiauuugr45Cc/Oea8v/jFL/7yl7+Ew+GDFF9Z\nv379nXfeWV9ff84555x22mnvvPPO7bffvmvXrlz7TCkcFB+KD5vkQfo/iWKkNxoL0esILAQP\nMMyiCJ3AIhQfioriGWXOYf8e/N1jr67bNKSlDs8PEdVIFdubTEzRJmHXKBolHKa7m0zptJmR\nJnLscsgtz9P0BOG92BF6t7P3F/RuH9dKXVxcDpn0N5Wrrrpq48aNTU1NgGEYDz300CWXXLJh\nw4YNGzb0d7j44ou/9rWvjTnvV7/61VmzZhUXF//Hf/zHq6++OrJDIpG47777fD7fvffe2x9p\ndvHFF3/1q1+97777vv/972ffZ0rgmbHYUztC/z1XhELeAohD6j4rVMovQyvKfo7du3ffeOON\nXq+3vr4+EEhlSqrL8P8fsdcIryX/nxCTUIRt717a25PHjY3MmDFGVeDoDjqfJdEKAu8sSkdN\n44+1ElyX3tj8FPnz3UwPF5cjQLpRmT9//h/+MKibdNppp+3cufORRx557733PB7POeec85GP\nfCSbcsInnnjiwTts2rSps7PziiuuGIhdXrBgwamnnrpu3br6+vq6uros+0wJhKIOSg8OIunZ\nR2HWW3l2F+XDn9y1EvJyKNLlOM5nP/vZcDj8k5/8ZNCiJNGRM7ALRlqU0Bsdju8Qq5Ikgtgx\nZLCLoA1D/D0HeqktGNVjb3bQvQlZARXJFuVVxDIy6fiGdmdotCJ0rkd35mSne3mIJDroPdRM\nIaMMb8XY3VxcphxjR9qXlpb+wz/8w4RfeMuWLcDxxw+7Jy5dunTdunVbtmzpNxjZ9JlayPZu\nBrRCJIQaczAqwaeRwzeOzHZ61lOUUeokAytXrly9evWll1766U9/OsPHjpOUcRyO4TPtQ1XJ\ndUyEhm524E+M+CxI8ShFSIJryWtPb7QaKa4c2VcdJd5NK0B3eplMfV/Fi36o82s56+m4uEwN\njlj6VnNzM6kAswH630j6P8qyz/sds4u+TclcvESjEphL8y8BdRq0rMLsonm4f0h6YQ0iU0pj\nbN8wb0o/PWuI9mfpN0MP+OitwMnwKmlZ1uXztSv+9OOa2lq2PZtprQpONeHVaa2GkyCUixDA\nEDwaMoBqhzN8pjYS2jnKuCieEXt6eiOh0Miu3moKRtQQECpeAxIOofSvczAMm/wRxm90imbg\nO+To6DjEx+51KPiPcWsDuxxBxjYq69atW7t2bTwenz9//iWXXDJi2+QQiUQigN8/7Dmz/zQc\nDmffZ4AvfvGLsViyDkdhYeHMmTMnZJ3jRQ3gnZl8nPbNsdd8U1tyD+Bs/Z56zOW0baRseAxY\n4m3EieiZSmA1/BgZS2/01FF6MYD9JMqJiOlk2qlyHOfTn/rU+vXr77nnnrpjzszQA4h30Pss\n0/5mxHUbmH6I0VTxRqwQ+da7RCLpn5VWMWNG5mGN92KOeFNJLGfeOSP7Cgi10/bSkBaVumth\nNjT/lOqPH9rKsyG0icAJkze9i8uURAOam5t//vOfe73e2267behn8Xj8E5/4xOOPPz7QUlNT\n89hjj5166qkTdfls3DPZ9AE2btwYSd25li5d+n4xKoqBXoyassS2jTQIN0sL9BKEH314Zokj\nEXnpjf3kLcwgypJ/fLKzYqAUjJanEgmFLFGw8LhlV14zeqxwohcmp17vtGmkBeypKpUZ9rKS\n5B1P15/TG41R+5efg28aXW8TaSB/LqWn4TloEICLi8vkoQHPPPPMv/3bv1177bVpn91+++39\nFkVRlKKios7Ozqampssuu2zHjh3j1yoeeOEoKhrc6Oi3CgMvQ9n0GeCZZ54ZEOR/4YUX3qeq\nl4EK5PBSiIATRCkde2zpJcTqMTsBPG3EK8g/kcBiALkT+1FkC+r1iAyvKnl5eY888sjAm9wo\nlBO5MNsvkhMlJcyYQVMTtg3g9TJz5sHy6guXE2sg+t6QlrOIHCxYIG8eefNofZHKcRaXcXFx\nGR8K8NJLLwH9msQDtLS03HfffcB1113X3d0dDAZff/316urqtra2n/3sZ+O/cL+nJM01kuZE\nyabPAPn5+QUp9Cxqb7yPiD415MTKsMfVj+pn+hcovQTPNISk4mo5QtP0AAAgAElEQVQqPgYO\n1m0kzka+hn0PidOwfzvadbzeI1eZr6qKE05g2jQWLODYYykoOFhnoVJ1A1Wfwb+YgjOY9o+U\nXHK4Furi4jIuFGDz5s1CiOXLlw/94PHHHzdNs6am5n/+53/6ExhPPvnku+66C3j22Yxu3txY\nvHgx8Pbbbw9t7D/t/yjLPlMM6Qw5lsNOzc103Uz8FXq/RdctmO+OHI3QKVpG/kkIjcAxAPb9\n2A8O6RHG+hryrclZfY7EYlpkiGtEUfB48HiyFR72zSewhPxT8Bzp+i4uLi5ZowCtra0VFRVp\nO1pr164FVqxYMfTx9m//9m+FENu2bRv/hU844YSSkpIXXnihpaWlv2X79u0bNmyYN2/eQKxw\nNn2mBomw9dxXE98ukw0bzJ8uc3Y8R9dONv2Q5g1s/hnRDqx6er6BtS/Z39pDz53YDWPPbP96\nRFN8uJlxcXFxOXxoQGdnZ+UIr+kbb7wBpL2++Hy+srKyzs5MSojDeeqpp3bv3g30S6qsWrXK\n5/MB119/fXFxMWAYxk033XT33Xd/6UtfWrZsmWmaa9eu1TRtaE5MNn2mBOZjn3PefghQZxSQ\n147nl2JGmIpU9KrsIfo8RhuAGsJzINke+0c8H8ownXYA/1bs/8TRkZlKPjsvEb4zZzFgxaQw\nhDUi8yLQi/w7xATU4h0XjoOUh1JexcXF5TCiAYFAoLW1tV9Esr+1p6dnx44dwCmnpIseapqW\nTTjW5s2b169fP3DaLyYGXH311f1GBTjttNO+9a1vPfTQQy+99JIQYsmSJdddd93s2bOHzpNN\nn/c5sunNfosCOPst2aEpFUX23p3KpZ8THj9A8R6sTjQNwHOAeColUJtB4I4MM4bXEVlFwe0o\nfuyfDaq2DFJI5+d/+swz4XD41ltvHSiHMwbxMD3NlI9QCw03UJJ7SHEwSGcnXRJHwylM1lAp\nKTmUYiptbTQ1YZq0tlJURF0dxuREqbm4uIwbDTjmmGM2bNjw3HPPXXJJ0h36/PPPSylramrS\ndpkSiURHR8fQopCjcccdme6GIzj++OPTEuYPrc+kEO+mffOon5pR+53HM7THu/EMcZXb+2VU\nVSqTj/kiLyFKEiitakGV0/4gqgbQaoFEOADCRvYlx4o9KKehKurJxw27hNWD2kn3rQgFWZmp\n9K+0lDtOmr2lL5KIhYLZphZN4JvKzp30F1CIeujr4N0GFi1C08jSvA2lq4v61A9ESrq6iMdZ\ntCijcfLV5Dy9i4vLxKIBl1566YYNG77yla8cd9xxtbW1LS0t3/72t4EVK1ak9X7jjTdM01y4\ncOERWOnhx1NE7Yhc7QGko1YNz9fp2knrG0SDGAWULqDiBBSN8P9zGmeZ7zzd30UxfDLoVcpn\n2/VvGOf8gyioAijch+OjaAeAp4V4ymbn34xnOULgHZ5e3vpbrLWU34PiJ3EmMl39yhHXP/Kz\n4k9+9dcPPPBAoPC6bL/vRL2pdHTQNVxyKxajoYFDK1jQ2ppeeSwSIRjMqEdZMG7RThcXl3Gi\nAbfccsuPf/zjd999d9asWTU1NU1NTZZleTyeW2+9Na33Y489BpxxhltCCISCb8hDfftmmlYD\n6B6cOB1v48SZcxm2V8w9D38JkU4ARSAEiibyK0TJzKSHwONBXEjRPGLP41FJzCC8GG02fSfR\n1y9M0v+oLrHDqHmES3FOwm5B6Miv4awGgT1w59W2bJ2zcFri2Z/85CNnncW+fdl+I8siHB7W\n33FIJIhGiURy8NAMqeGmGpa3IAIQDB6CO0SGLZHIJPrQ2soISYUMhKcT35ehXVEmxDeT54Es\nYikmF00jU6UiF5cjhQaUlJQ8++yzV155ZUNDQ319PeD1en/+85+nFeOKRqMPPPAAMLBL5pLE\nsWj46+Bp//2qczsVJyAQ3iL96lXmQ58gkboPGgH91E8N3tc0H7UXovnwXoz5NQqPp+oitBHb\nTTJBz1qKPkzry7CW8k+heKAWayPWL+jslzAJdHSd97MHf3/5WWeddv75+HOpLhyPE4sNDonF\n6OjAcQB6etB1KiuTjp+DM0ShSzrCNlW9v+RUTovpH94nBE6GDwwjq9nMaOZuRUUT4pUJ7SAw\nxauBubhMOMl7xEknnfTee+89//zze/bsKSoquvjii0dmFwaDwbvuuktV1ZHe+6OOaAehpsHT\nRB92JiHCtjfxeNF3K2UzjM8+Lfe/btf/VF36z+qMUyieT9duenZScSLedfS8TOmF6AtwpqOd\nncGipGFIRL9TQaDdifp5yj6OcpGjfOHqa69YvXr1319/ffExuXhB+t0V4TBlZSgKlsU77yQt\nSj+mSU8P2ex82vaA0pdjqWbU4y2IUFBARc5S77L7AD4/ncPtiqIwfTq+LIoj2h2HcFEXF5fx\nMPjg6fP5rrjiioN0ra2t/dznPjf5S5oKGAUUDHlmj/fAaxm6+crwJfBUolaLgjpRfYrT+5x6\nwqfprcdXircEGad0IeH1GcYeHDF0M0oi30VGoAFZf9VVV1VVVS1ZsiSH2fr62LuXfhGXTZuo\nqUHXM9Rn7OsjHh97H6yyko4OotHBFlUdVTtyTKqqiXUN6lEqCnV1WVkUFxeXI8ERk76f2qgG\n6pD9E08RvlKiwWF9FI3SxZhPYuTlVJwxMx0dREPEDfoaCJeinULfAVDAxnkK2Yi8GBxFPPiF\nK07+wpXfo7eXhuz2+22b9nZSsmnYNvv3j3rXbmzMauOooABFIRZTPY5HtygpGSz7mAvCctBU\nFi+mu5uWFkpKKCrKOf/GxcXlMKIBoVBICJFl4Okrr7ximmZaUqQLsz/K9oewh5TImPFhPIVk\nXY59DMrKkAX07KFoOq0v43mdwusROta3sX8CEJmP0YLWCw+g/w7mZKtX39AwaFEGsDNVhheC\nurqs3Cr9xGL2/r64U24canUPuSOYvG5xMeHwwYSNXVxc3h9oQH5+fmlpaZqs74oVKwoKCvo9\n80O54oorgsGgHHkbOsrxV3Dc52h7m87tFM2mZCH+Ibv5MoyMoAyJgnUeQ1w5bIbEvRhfPNgl\nOrvpSr2p6KfT1wwCG/g0gFmCGkaJA4i9hMqzfVPpylRxN5HAMEgMdxT5/eRUG82y1GjCI2OD\nIVKKQo2bS+Li8kFm1KfOJ598srQ0Cz12lwE0P9NOxzEzZLfYbdj1eJaL8j64F08P1m6Ubfgb\nsdagvIORh+zAisJm5C+xMrmXC228jXjqCG/F04nWBGD/LyQgzajMJrR9DCXgAQK9GcJzVZWy\nMnp6ko6Wng9TdCo1NblF4sZittkXd8oNN0TKxeWowfWpHFZkez58kXg9/mdQ/5XIWorPIr6K\nxDTEq3juwG5DfAZtaWpABGcb6kkAMoG5lsCHEa/BX9DuAJCvSfsNIcAsQ1hJo6JcRviT2WYs\neiPs2Tos0AuYPh2jmnJwHOrrWTzzUBI7DMP2FBIdu6OLi8sHhtyFmFyyJFbPiBwL7fxLR+0f\n78nUGsXJpIFPBCwA9Ws/+knkymu6TTN1LVGF+vc5rNPvZ+bMYQIq5eWD+XSKgqYdYqqgokj1\nENNBnE5ir2A3E19PYmsmeTMXF5f3Je6byqQR2ZW5EIhcB9UAQlBzVo6TOiT+CWsX2k7iv0b9\n2N7919/xDVNVLekAAuUctG8jSiCLhPMBysooKqK9nc5OZs8+4gG7dgex1QCiBCeK04HTgXcq\niYi6uBy9uG8qhx355qGPdV7Bfhr6S0OajvnQZz5zYSgU/dGPfmF4T0S7B/0hxLxDmVnTKCjA\n4zniFgVIpGqMOfFSafsBux2n90guycXFJUvcN5XDi3Qwu4ntwDEBpEnXamLriJbhbaLxUcps\nRt1q6sBZj6NZBy5HD6LEX/xrYo4nduUXZ3/izOusJi/GrMH/z668/u2xHIhr9BQwUkf4EKYa\nHIuIY+3NZYiDk9oIdMKDbiGrLaDkau96FjFKaeYJQU/k+NUOipKPUjZhs7m4HClco3IY6dqJ\n80dEGH0j4R7CLSi9OG34Ihh5qEHs/yHRgmajDOybRZG7sRrBwf4znm7UmFr5fyihvrDZGIku\nu4RrPu6o+T8m7zW0N1FTA40Q+XlZrUq9HvIAIjZOlJFxZ3YsQ2MWWCGi9dgxjJno2UWiATgg\nMsj5K/64OtYy9v2JmR8Z2tB4aCvPEnsXYy4pB/SJm8rF5ciRNCrhcPimm25K+2y0xsOxrqlF\nIoQx1h080ceeZyirRknQV0f+XlpmUdyE14OQxKbh3U5sAUWv0jaHubclR8kgzu+Qb+M8h4T4\nYrReocbxtlx5dcNfXkr86ueFeVV3oP4N3bvxLcdzUXJgTwMFuUbySgyTkSmwHitD41h0vErb\nX5EWQPtGSk+n8rxsx6rl2G0jGossMdYyEnGG9fH2HsLKs8dRGHNJLi5HG0mjEovF7r///rTP\nMja6DNKzHhkH6NlLYSpr3N5LNwCxerpWE1eJrgeH8B48FnY5joXqwarGF0eNYxYgQArMCqQg\nOhO7i/ZnEP3/NWHsDdADJ4IgUY4VwCrAzvvVD2a+9bb10UsK6S1ArCFWht1JdA1GBf6Jrivi\nYO3HakF40apRx0psD+2m9YXBU2nTsRZPOUXHjT5mCJ4Tif4VJz64EajPQeSscezi4nIESBbp\nOtLLmJpotXS+BxBRUFJuh4HjmEIiRjQPJQIOcZWEilOMcLC8JDTiHpxShA7gGCiAIFGCLQi2\noOQByBZkMRQCGH0IiWpi2/h3184P187PR/8KynIA3sI7F2MJGbwi48Mh+hecHpAgsHajzcJz\n4sFGdG3M3JilUREBfBdi7sJuRClBq0GthsZDWXuWSJvm1+jdixagfCmFbqSZi8uhogFPP/30\nkV7G1CRQQ6AGoOXnlKVUivsayJ8OEKvHO4PEarQTQRLeTcgk0IKwSeSj9xKpIdAEPgDbj9GM\nJ4hUkSqKjXIOYhHOWpx3EDaAVDDL0DuxClEV1GWIWfAmzpsA+juIfTilAA4EerGy92MQ2jU3\nvK+GhMm+9MqPsqXQSkuhaUGtR8kfdbZoU4bGeDutf85+RQBOF4qAbtgCiQq2D37kraZwcW6z\njYYVYd3/ozflct/xO+b/DXOvnpjJXVyONlxH/URgzUP7bPI4vIbiswESLxJYjtOHcgtYaO/S\ntouydahxQtMJ7KftNGavxVQQNpYfGccTRGo4BkofzqsY3wIv9rakUUEhXo3WS6IcpRXtv6Uz\nJFoovgnqECXJ054m8nJQ2QrMJlAVoaWFEQ/p5to+05dun9RpeE4Y/efRQ+/W9Eb/NCpGr86c\nEXMHxjEDHuwJKKuVka2/GrQo/ex4mJLFlBwdVbNdXCaWpFGxbds0TSGEZ3Rd8Xg8LqXUdV1V\nJ3qD5WjAyGf2pYTewOgAEILaGGoT1jSERB1Z4yuG8yzK+fBTiI/4NGG3PuWEPjPYEC9H8w5u\nffXkkals2MFIaPQVJpXExOAd3IlliEGQvQeLpi2pgzbkcD2B4rk5B+A6XThhlHHXDTg4LZlK\n4TS/6hoVF5dDIWlUPv7xjz/++OP/8i//cu+9947W9etf//o999xz1VVXPfroo4dreVMKuQf7\ndwQasF4GMOqxX0N5E2clSOghfwb+XqxOtF0ELOJPoobw1qPGkCIpRSJM1JR7xvoFyvMoVbAL\nAEfqzUJYGO2IhFr6TbVyD3iTnRPNaEUMpHL09mYrKDmAaRIKUTwdcQrqGQPNIthrRwv7j7tb\n6WoBUMtQRgRoDSVhEtqD02+hNPJmEd4De3JbkRNEqWf0xJ10Orfy3oNDzsNnjh39JbEz5bKk\nT5WJcD3dLdmu7f3A7BXobriayySjAZs2bXr88cdnzZr13e9+9yBd77777ieeeOKxxx576623\nli5depCeRyliNtodRP6IJw4QSRDqQfFhd6PlYUxDq8M+gO2QqEHrI66ihbDyAaSKiCa3v6Sa\n0oW8BFGHsw0ZBqe5RWhOsS9fz/MU43MQJvIEtPOTV7c3odWhpra/Ik0UZ7H9JbyD20rxMD3N\nlHSkSZap0/NoS5q8okqKKlECeM9PhaeNjnTo3YIdpvgUxCG93Jrb0OfnEHnw3oMc88kh511N\nFI9dAbP1TUIjqgTULmfWZWMNfDGHOGkXl6MEDVi1ahVw22236frB8q80Tfvyl7984403rlq1\n6gc/+MHhWd8UJB/fh4k3EtoEKnkCS6DuxtbwlkEbIohpoIbQw2ih5GO47UMNoYeQGlJBSSCm\noUxD9iEjMKOra/OGt6zlyxTdH0ZRERKp4azB6kxeVjTilGClAm+9PViFYy9WPRNljPhjMb3Y\n68fcgh1EqKjVGEvGtiiAUDCKsfRDtCiAcMIkdHyT5U3pZ+Gnef2uYS2BamZcMGp/xyL4Cj1b\nMLuJHqDibPx1k7pAF5ephAasWbMGuPzyy8fsfdlll9144439/V0yI1VEHh1/QYrkM7YVwJqN\nGiOqoSfQVPqqUHbhVKCEMQsAYtPw7sTjIGLIPPTLUL+OKEUGsZ52lI9c+Td127bLPW9N83jj\nRPJR+xAS/aaUSXAIr0abjZ66vUUbKJuwMiZqKWqOPvYJQVgREr5+o2IfQJ02KVcpX8pJt/Pe\n7wg1ouqUn8jC61G9o/SWNDxCaGfyLLyHvXuo+xR5cyZlbS4uUw4N2LNnTyAQqK3NJKk7nOrq\n6oKCgj17ctwa/4DR9yZyuBS73Ujv60OONxA/kDw1S5AqgO3F3A8l2AZ4SFQQrwSZNCqOD6eS\n6D+jP4lxHtqnh07/o5W/W/1y7D//vTrgV3E8SAME2seSFqVvI13PYYcBjCrKrsQzYxK//uGh\nq4v9++kOsH0f+QHq6uyugFqdg3/F6UHEs+1eeQqVp2AnUDTEQUVW+94btCgDHHia+V/IYW0u\nLh9gNCASiZSUlIzZtZ9AIJBWePiowzcrWdRd2kgTQGnFk3JgKK14ahFqUqJEjSTVrPrvOGoE\npQ8s1DCOB3Q8tcgIYgaBctQupIPj4KQqW8lYV2fwnv/8Tt30wps/XwMCBOSjHo/n3wAiW+kY\nEjeRaKHlV9R84VC+l2zH3kz8v0CiLsO4FVE99PPwPhLB3KY0u7DjWLkq+8RitPRAoXRUIcoR\n8F7QUnxaVDn4jVv20PVG8tjpQ9i1IlPGzHjo3Z6h0ewm+BrKqIGTRwsFC1Fd4YOjHg0oKirq\n7Oy0LEvTxtgpt207GAwWFxcflrW9X9FSX9/sILILwAkS3ZVs7D82yok3A1j5yU2wfoVEKx9F\nAR2rAARmHnoplEEh8ShiB04edBNPvffIyN7Nmz552fxrrsoP6IlkvC9RxJykg73rxfTlORF6\nX4Fjc/tSMkj8a8gzkB0A1h+xX8X3BGKwpLSnAj0LN81QYi3YYQK5JqjvaqQ03RCZdrE+Oz+j\nUZGS5ldpXU/4AKEuZpxP0XzsIIoVFGMpyuRKvJ3Qrgzt/tmoR71Rcc2qC/1GZc6cOevXr1+/\nfv2yZcsO3vv1119PJBJz5rj7xwDoZRSdDRAieTBwnH8S+/8LJ4rRhlkIAt1L3zQSNQC2h7iF\nHSA+PVnSRvrQZkMvCMhDsVIxT/rS2gumfeLEqkqN1n6HjY3jocNGXQ0QL4ERNj4SRW4nlssu\npdOIcxZ2Pg03DzaK55J6yXolauAQEmUViaNhhHIcJrrxpxfNVK1mNdydsXvHZuy9lFVQVgHQ\ntwG/JFCMcMgQ1zU+ymagjViFno/PBHNiL3WoFBWRP7ragYvLJKMB55133vr163/4wx+OaVR+\n+MMf9vc/HEub0qgBCk5BzcPej16JE0Im8HYQeAO9BSsfPUp0BoFt2PkAViH+JtRupIqjojoo\nl6AsQ4YV66GqGfsBULB9qGHMMvQgnq+DRtdfsCPpV/fWYc5i8IUygHbJwbb8pSR0OXYnfSdS\n8mci8/DvBFAW4Ht8PD8GsxErhJFrxEBXF7H05BHbKVdri0d+iZ49bFiV3rhnI2f+A0bBVrzT\n1fIcr35QNHBaaH95sEX1MeuzUDr6GBeXowkN+PznP/+9733v97///cqVK2+55ZbRut53330P\nPfSQYRif//znD+MKpyDhLXT+mUQ7iodACLMVBIqFo4JAKNg6moUaRkicVJiR0oNIIA1QEBHk\nHxBnoZyM/RzsT/aRBoRxvCBQzwAVA3rWpi+g6AoiKuqAR0Qfw4m8YwclzmA9j3h10qg4OtC1\ng1iOrpQBEkHsGKGuHId1TSeYfklLydOUDN+j/a30FsCM0PAS/mlVVidKGfrEvlr7CBxPpJFY\nO/7p5M+lc0fOcxTMJFA9djcXlymHBsycOfP222+/6667/umf/mnt2rW33XbbSSedJETyz1dK\n+eabb95zzz0PPfQQ8K//+q8zZkz94KJJwmlH+RPdLSj9qe4OwsTTBgLhoPUgLBw/mg8ZRliY\nhf03bvQgiXKElRSU7H99SfwO5TzsPJz+MAqB40UKHB2mIWYCFNQQtwlvTi5AaJRcjPd07AZE\ndi8I7e309GAspfil9I+6FxPAU4hyqBJxqsCO4M/VsVFRREMffX0DDY5RbnbpSi9qRbpqi2cU\nN48vD19hxExADMNCzUEIbWz8lRQfR+cGSk49xBk016Ht8gElebf41re+VV9f/5vf/Obhhx9+\n+OGHi4uL58yZk5eXFwqFdu/e3dWVfNS84YYbvvGNbxy51R4JzGDS5X4Q7FZC7yaPe/IxUkGp\nwgRJvAqpgYLjwfGi9uKUoRpY+Wi9WIUICQKpIcxhGfWiEPV4HBVnDs4bWMXYhWg9JGqxqgZf\nH9QL8Z1MdAdaEd4ZmH6CQWKxkQ/7memP5eu4DMeHk0dPlOhcFJtEFe0XYbT7NYUc/fMDJGyc\nAN6hw/Oyq0dZW0k4j2BQoiX2FdsRn8cXJw4N6B70IUrK2rmevU8nqzMP4A1QXI2nsjfRH4In\n8U6Cmn1sryuS7+KSTtKoKIry61//+qyzzvr2t7/d2NjY1dW1ceOwmhjTp0+/8847P/e5zx2J\nRR5RZAfWyzhR7N5R+2gholsApCTQgkjVwhUOQqJ3goFtoIaRKnYBUiLLkBKrGKmCJFaTfJtR\nYkglGrd8PsCH+SoEwUYWyUSBDM+X8bk4VSghlKHxUR7s2QgPioQwQFwQyi6SN6YlX4yar0Ik\n0I/H8dJxDnYeCPZHUA49/0JJIGzs1O4dEqnYBxuQRsIvwwp2QvUMqmM6DViRAelioWvlJ36c\n4JbBQUJQMQMBdu/85JA+Eu8y4RixSZn2SKGWoVYd6UW4TH2G7Wv8/d///Q033LB69eqXX365\nsbGxr6+voKCgtrb2zDPPXL58+cFFXD6wGMdgHIO0kikpGTnwKqVnAEiL7T/Am3Iy6z3oncQr\nQKDYWH582zBasPLJ24v04EiitRg9GAeQXkQMxGsvB274bPz7382/9LL/RcwmfhtOA4DeJLxN\nQnsU6+/xtOL5x2FrCG/GU42W2htqbqY6uz37YJDGgQJYAqMTIQnPQzExDBaMS4EkGVJ8yC4N\nm8ifM9SrF1Xo85LHKpTPQp9Jy3p6dlJYRWUVhh9A9TfYfbMAtQR9Vvok48dqnpRpc0NB+Mbu\n5eJy2EjfLDcM44ILLrjggtGVj45OhHZQuSt9UB64bAtqyjEtEujdaN2gIBwcHaMNtRetG6UP\n+lBBCIijJJAOwrJMVdWdlfdMW7Zspkw8h2zDPpAKLxaIKI4KD2PlI4frVVmG03vzoPZirzdb\nHUZZAgniA+r6lSCJFwIUVXJQKeKx6YF4hoLzWSKtDBYFcPrS58wvIv8iWouoWIq5Pal44MRL\nAaGiFB/6Gg6Cak3KtLmho40theHicvhwi3RNBGoz1iPJY2UhThN2KjVDMXEMpA9AmCg20oMd\nQKb2pqQCfmQcqSOV5gNKQ1OkZvouf+XHENVYe7D3pS6jYPtRQ5hleI9Hm8dQYvuU0kdQU8rm\neV1kn6M6XdLbSziMaaJGkQ6JTzBtGvnjfQY2dWQIbRyP8+buwR/VANpMtExRCKFXqVmAWkF8\nM04nSqBRVRcbx6FkqxeR49r2jOurubh8IHGNykTgFKEuSh5bKpXXE95KaDPemYjHyb+WxD6s\ndvJmYd+F40HaiFTRFKmA6I/7ag8mDjQrjlROO02gHIf1KNZmJ16jePvFRiRWMWoIx4t64ZCI\n4X4CKDNQU9tfZvOIDgelBPJNenooegts9GPG8eOYSDxLib0yrEUtH+PZXCnBtxy7BcVCd5/i\nXVwOLxpw00035Trspz/96SQsZsoivYPxu97v4WzHB6Ier0W8CfEShoXShehGmAiJbg/WLFFC\nIMCJJxKW5dTUiKXHC3Awb0FGwIdZhT8GqZor8QqEjf17xPDQWiUBpw2qqthkG1I8SAInAJny\nPo4cahXeszC3YXcifGg16Auzk27MlNTi4uIy2WjA/fffn+sw16gk6XyPA68QC9K+meL51J5N\n+OphNerNveifx4li7iTvSqyXcGwSAfRUEoZdBBKtb9166fHaM2cYHt0LJo6J9EqzxA4uU/J3\nYZZhlhBKvQ/1aJRdSt6QUmnR1xl/IIXsRvaCRDYhJjSzYxyoFagVJLZgLHLthIvL+x0NuPTS\nS4/0MqYmndvZ/VTy2IrRvploB/mZNlxUD543MUMwB7ET1RySSJ/oz2o850wtGtd9Hh2p4BQn\nhZDVqFL4LgjMErSuZKJ7P5G70c9BSRWwEo3YJZDKqfP14FyCkkuZdXMV5jbM5wDMX2LciH7z\nWGNcXFxchqEBTz/99JFextRk/1/TW0IH0EY4t/tjmORpcDKyDTuOGUFLhR1b+SAQJlL1GQqO\ngSyEpdjrAMxCGZqH/wDh+fj2Eh3uF/bOx5dMxcDegloDRQCOTaiFgiKUTg6OEkhKy1r/h/kr\nODH1QYLEjxDz0KZqHKBSjBg9s8jFxWWScB31OdLXQOgAgG1iZlLfjbTRvB4g0pKUD5YJ4m04\nEZwWLLAD2DqJ1D6OVQQCx4A5iBZkAHEqShXmbgA7IITALEfk+2IAACAASURBVEFq2HnI4f9f\n8S5ES/I40YcMEg8TDBKJALzXQH4+JSWI0feMvDNRKoDB6LWhWA9NXaMi9KQAtIuLy+HENSqj\nI+uxf5Pe6Enlcksb++0MaRRGHsVBAH8D9l709xAP4tORPaj12K/jbEUZVLXCygcFJQ57ECYU\nIUBdgq3jvCNsn5Bx8rei9aIH8RwYdq08gZrSMlSbUYvojmAkGKjpnqik8zpmzhw6KFyPtwI1\n7YVKZiq8lrHRxcXFZXRcozI6og7tjoN1iD9Kz/CaJYpGyUK8FwNEXkRNOeoVH3Y92nKce5Ft\nMMSomKWgoHcCqBZODCrw3IEG9hsyusbuLFfK/JhlxO4lPMRHUnA6nssHT6OvE6+gvnXEKtuo\nqWGIGkK8HaNohFER02GECck5fux9xsHyVV1cXCYF969uHMy8iO2/Jd6TPBUqtWdjDqTqRbD+\nHRqwvwOnwyKQyPcgCjqYjsPOXc4xtWJIRJMGYL8CFmioJ6HNRtmFdgqFkqaXiM/FMREqehXx\nBTSnlC4TCUKJUV8smprwDNbk80qUThgowiIlVVXonyWWVvXAg/E+knoThxDbVuQW/nFxOdy4\nRmUcGHks+TuCW2l7i+K5FM3DX07jGgDZgL0K63WUMpx6nPVQg/x3nP1IgaOC+tYmKx6XjVpv\nbW3qfuloSIGIkrgL8gDhxNTCLhJrQBLYhO897DBSIXwM9huUXYV3Lrt309mJ3ottDkZ/DaWq\nCq934CzWhF6Cmi48fALGnfBS8kyUY3wNZSnvG/T5Y/dxcXE54rhGZXwoGuXHEe9m2hnD2q1/\nxRaEFqHYxKtQohhBtHaEFxSUWHeP/PAlbV//av6N187GtlFiAMJCajhe9C8h8gBpd9lde5SS\nCjoehXISQ+oLWt20PYjyKToPGuKVnz/MorQQaQBJwQK0tJqz2rkYx+I5CRy0q6bi74bXLb/o\n4nKkmXo3jiOP3AL9+u0xZBeAZwtONPmpZwtOhMRG1LlofSgWjgagWADCASlh82br3HOMj3/M\nl++tQNmNMFOf2qgLIYgMAtLqc8IxOn6EHekv+zUMJ05nOwdRjvT7mZOUCJaSA0/QvRmgZzOt\nL1B1McUnpg1QEbXgTNFfjLqLj/QKXFyOeqbkveMIIxvABJAdyG0AejNOKrRXb8ZpRiro7agR\nEpWYJQCJchSL8DHEpzuWPLlUrrqDQkcQLESEEQNVRhQoRWwEcBwFDI9Fd//Wj4oc6VjoRBcA\nwkK1UCMAioIQ6DpalPrX+vtZvZQUUXL2kKG9OFsGsydRy0koxAUoiIZhFykrw+cKrLu4uIyN\nBnz0ox9dsWLF5ZdfXlFRcaTXMxWIBiEBIFoR+wFEL2aq2oroxUzgGAiJ1DDa0Tugv16ViX+n\nlCLUla+atXlegQpOOSKGUCAGfkQCUYltkDBxHBSkIYQnCGD7sQvSFxOfi60AKFGklrQ6gQBA\nQaqzlk/Bsr0/INGTrnJScgrVl6ROEgm6uigLgYM6xeO+XFxcjhAa8MwzzzzzzDM33njj6aef\nvmLFiiuuuGLevHljjjx6CXwyvSW4htqzhx2HryZWiNGCmkhWoTc68dbjeHu7xbN/3b1k8b5j\nl2hQTPt/U7yZ2IfofMEpvrT9jfVE59GXfH2QSDuha0VbR1mKgnEc3RHo98cIUFEUysoIhweN\nCgBmXwbdrNAeWv+cOrFVYnkETj6EH8lItHxKPzQhM7m4uEwlNODll19+4oknnnzyyVdeeeWV\nV1758pe/vGjRohUrVqxYseLkk08WB8nHdulHdtP5XPLYbqAzgnUK9gES1QgbqQAkqklUIkWh\nIj5+gaNpNr0g5hJ/mf0JnD+iBZXWP1QufpPwbKykArFE2nGPVrQV4aRfVOj45qGHiUbp7cVx\nADSNwkIMg97eNKNiCOxI+hy+GgIzUye2TSzG9Ktc1UYXF5dDRgPOPPPMM88885577nn33Xef\nfPLJJ5544o033ti6det3vvOdmpqayy+/fMWKFeeee+5RWk44G8QQZ0VkDSVnIz9My7dQd2EX\nEpmDUNEM4ho4SEOzCjEOoCxD6gRTtXaNFhJVGK2E52OVp6Z2ZDSALMdXD4608oQWAkHeCXim\nIXQs0KEUolE0LZnkaIEMUzJMKEyp5MCjw1ateplzDgyYnkQCp8u1KC4uLuNhmDrSkiVL7rjj\njtdff33//v0rV648//zz29ra7rvvvosuuqi8vPzaa6995JFH+vr6RpvLZRBh4DmXou9gCEqO\nofx4Ai8T2E5gB4Ht+PeRtw3fM8imwSH/v737jo+iWv8H/pnZ2d2UTe+FhNA7pEgRMNSfhgCi\nVwktN6IIQS7GHyhwDShwUdRb9HvBrxRBrhelqAgowpUiARTCVYqgQjCGAGmk92yZme8fJyzL\n7ibZJJuCed4v/8ieOTNzdo/sszPnzHPYGLvDLShqjGUyIIkCRHdDwWCoCiVJgiofbm7wDoO7\nN9zc7v7n7w9vkxKF+ZQwt34IiIHizkOQah+EzIDSYoyGEEKaw/rsr+Dg4AULFixYsKC0tPTA\ngQN79+49dOjQjh07duzYoVKpxowZwwb2AwIas7Zgh5MPcQhKh0LVH3IaxAhwWgCQBRhcoPWF\nrITW52510QUAqrtBdDaWceAUSr0s87LOWyrvx8kcFF1h4KFSQlCjHtZuWnoOhkckbqfApRuc\nOtE1CSHE/hrI4+rm5sYuUPLz8w8cODB37lxPT89Dhw4lJiYGBbWXRZzaKcVZOAjwvABfJXyy\n4fk1vA/A+wC8DsL9JHz2wfsA3E/erS8UAoDLD1CVsX6RZYUkqgw1al1RF11pkCgKssYZYQ/C\nwyKLpc04BZSuULpRRCGEtAhbn1NRq9UTJkyYMGHChg0bzpw5wwb2W7Rl94Pq2nRbinzIdx7s\nMP7t6AHkgKuRpNzP91yO6T1TqTIAgMxDdIJQCiig94BeWTvGLgbBoEDOOHAhotab09eA10t6\nFSBJqOScKqWyAKnKU9QB2hAoHRr4PVDmJjiD92y5904IIVY0+uFHjuOGDRs2bNiwN998syUa\ndD+RCyGeBgDhGsQ7Ty8a/5ayIZ4BV3r+3Laffz7s63Vq5Ai2lwCDG9S5kFTQ+UGng04HrRaq\nXOgD4HMSqmi+oJMhGxxvUEDmhHJJ5wlAcM0H31vRIxRlN+CkaeD2181SeNKACSGktdET9c3A\nBUOYCgDaExDuzP4y/i3lQXhCr/1q6Z+P3Myumjvbqza5i8zDoIFaBABDEPSTEBwEUUTOLnSZ\nAd0tcGN5n0Hiecg6cIpqTp0vVYUAUA67KFcUNr/VzqEWee8JIcROaG28FiRJUlZ2dnV19fKl\nzn7+osV2Nfg7C9oLAvzyakfXZWi/h6wzqchBFQk+oDELztdN7WOSmoUQQuyKrlSaSq6C4ePa\nvx0yoL+zAqNbUe3f0vkzJ+d1CypOXhY24eHquztyEoQyyAIUoyBch8Mu6F3BcZAuQv8+pOtS\nxX7e6Xu+CwBwnB6KGl3a/5cKgdDWfHuEENIUFFSainOovfcFQPsdhDup7zWAXAL9rtLijHmJ\nP3+x5ZEhfR+Syr68u6OshM4LjjchTEPFWegmgPcGx0HPQfkk9LcNN2IM2bVPRHKcllOVARCz\nIYVxcrWLVAxUOkOnqCc3MQBUqlAMzhGcRWpjQghpORRUmowHd2ckXHa6+7d0AzVxkEsqKgzO\nDkoPx1BnQZCqegF3HmmUBBjcIfHg0lDjD507HFzBcTD4QXCFPkCq9pD1tUeTeR1bGFKWIFVy\nYo0jKoFqB4h8A0FFK6ASvGC3oFKYJuf8IKlducAHOGdfmo9MCLGOgoq96V6BXAIgKFA49rWz\nk5ACxX6oRkA8WltBUkHrD+c0SMdRMRqVYQhyAy9AlwYVoL0AKVy8XVuX40ROqJJ14H0g6yUe\nt+UKCF6FnIdfA10nVyHYPktWyRKOv2q4ur92TEhwwIMvCn2erD+mEUI6KAoqtpGLIOfUuVXI\nhPQTAEAH8ayx2MmJh94ATgZM9uVk8DqAB2QgB+I3yNsDn8cgF0C6AkAIgv43iGUmjydykPKh\nuw2lL/Q/QfYD3wlCU4dYqvKgdr+br6VB57eIxogCwFCDE2sMXj05vwENz/JwDG6wCiHkd4WC\nim3kCkg369zKFdRulbXAvY+7czWABNkkx7AsgzNABmSA10EohpSF0r1wLqtNBcZDPRQ1RyGL\nAGQotJABg8kCjxJ0P0HhA87agvQNKrgIn3A4+jRc01CJ3IP4cZvlvDVc2SvZElQIIR2NACAx\nMbGxu23YsKEFGtOO8SHgQ+rcqneC8BAkyAZA3Anpt7ubDBrwWiiehfgBpBsAu/3lC0U5KrtD\n54eygXB0RDUHdQD4sdAdAafQX2cRBZDBKSpqDyVDlgQAsiRAz/26Ryq6bZEP36hCA43B6paS\ndGSehsrFYoMoQ+sIjcF4iVR6Cfoy6KpkXgHp3siS/V8p9X+sH9++usUovHrQEA4h9w0BwMaN\nGxu7W4cIKoYilJ1tuBpq11CRqx0NtwOAFyH9YrJNAtzAd5UqVwElkNk6xApwMkQ1OBGSA7gw\nAMjlgTRgCsBBl6a4M1QPCArXtNq/de4K1zSIDrxzdogbH9K5niYZOKd8Tu0I9d01HMsycPs8\nnL0AEY5K+D0AtYfpLhyq9XwnQeELABXpyCwBgKI8ySdYcf3yPSEkNJofkkSXuYQQcwKA2NjY\ntm5GuyR4wvMRm2qKl+DZX5ak+a/OnTt37uCogdC9C/F78MFQuEL5BrhAAIAE7UroTqDSD9Vd\nABmqPBSPgdMvULqKrq4F/30O4hEgTCzylYoAAAotpyqSqwMAgBd5p1tSRSjvlCVpvYUANedc\nd5PKyqC/J01LVS5yzphsL0LhdQSPMRlcEYEaDsW1r6qza//o/YBSr0fnvndDiKBGp26Ku0tG\nth1eBZ+HGq5GCGk1AoAvv/yywXqkPj79Aaxfv37Lli0FBQV79+6Fwwbo1kGVCHELYPza5sG5\ng3cFZzFK7jlRofzabxyg/QKct1TtW/0NIIJTVfGaW2JRAAAoRKVvuj4nVOlzQ1Zp1EMbyv3V\n6Z6gcuollOWZ13IvQ4/pd17oRBRXwK82UpVeQmUGIMPRhRNL5FtpBoMeANxCuFEvCgERjfqA\nCCEdBd3BsI+MjIzk5GQ3N7f169c3XFvpA004qn6Gzh+8E3ynwbkfdF8bqpH+ySQgEApIZRDz\nAM6RUwXL1eBUkEUF79hVqoTCNYT3ckB6vacoc8O9+SQrrM0zyD1jMoegdo362leyAWVFkPSA\nDHBcrwfUBh2UrvCOQtkvKPvFytFMqT3QeULDnwQh5HeGgoodSJI0e/bsioqKDz/8MDi4wVm0\nShj6wncqIKL4MJT94Fy7Mo3giJ5xX4DzhsoXgKyFIUcp5XnybtD9dM+VCpw0qqjGXalknUBN\nkXktz77oOfPOi3uvVABUPoSbn95d2V7tg9CZULo19P4IIR2YeVARRfHChQtnzpzJy8srLy93\nc3Pz8/MbNmzYgAEDeJ6mkFq3bt26lJSUiRMnxsfHN1xbVkBi83m5+hN6cmoIAQqDTqG/ar7J\nkA1FPhQ2TAs2ChqF9D0WhfUOSDiHoftClKfBUAa1NzQ9wNH/AoSQet0NKrIsb9q06bXXXrt5\n08qNkrCwsBUrVsyePbsV23Z/yMjIWL58uZub28b/2WTIMNlg6AeBh9QHnMPd5xgNAyBqoA1F\nNQAOVcHQOkMHcIBhAATA8CDgZewW2QDx9p2MxTIvVQUCkGr8IKkM6ZArUKdiDe6d8dtlMIRi\nlN+ofckp4DcYLmrcbbOBR5UjJ0Bh8iS+wgHuA5rwqRBCOqjaby9RFGfNmrVz5072UqFQeHt7\nazSa8vLygoICSZIyMjKefvrpEydObNmyhS5ZTDk5OY0bN+6xxx4LDA2Qa0w26G9CKUO8BX7A\n3aBS/Rv051EaBKcu0DihtBDVnvAFOECfCSWguwquP5S11WUd5EqIbICdk3l1sQjwylKR8+Hd\nwOb+WifWwGJrlwSU/Iqsb+ASAp8Ii+cf9TJKddA0+ZMghJA7QeXNN99kEWXs2LGLFy8eOXKk\nRlP77VJeXp6SkvL3v//9+PHj27Zt69+//6JFi9qsve2Pn5/f559/zv6+Z46v2BcKDmIZeLE2\nqGRnQ38NTrcg5iPzZ7i7wqcakgHOAAfoSqECVAYoAu/eFRPAOYN3hVQGQIaiGgAUNZwgKTqh\nvinFagOsbfUYiPK8Op6o18nQirA5fQshhFjiAZSWlq5ZswZAcnLykSNHYmJijBEFgIuLy8SJ\nE48dO7Zs2TIAr7zySnl5eVs1936iiIRpJuGyMty6dU+F0lKUlZnvxTmAdzcrUz8ATnlPiaon\n+KZeUjh41rFIl0IB53rCFCGENIwHsGvXrurq6pEjR/7lL3+pqx7Hca+//vrw4cMrKyt37drV\nii38vSi0thJwdbWVQgu8Oxz/H5Q9wamg7AZlDwidm94Q3yiorc7gUiigoZtfhJBmEQCkpKQA\nSEpK4rj6kixxHJeUlPTtt9+mpKTMmTOnlRrYnlVXo6CggTpyILhCoArs8q6iP2oCofMFABmo\n9kJZNnJz4egIp1AINyF1A393ogQnQlEN3AQHqPwcxAIoegAWlzf2UpmJsp8gVkHtC88HaCl7\nQkijCQAuXLgAIDo6usHao0aNMtYncHREp04N1BEPgB8OzgsAcnKguQSnKzB4QO8NDlDdht4b\nkoTKSnj8gIDHIf56d0FJQNZC1INnJ5F1aCiENcft48hPufPiJxSlIuwZqDxb8IyEkN8fHkBe\nXp6bm5u3t3eDtX18fFxcXPLyLNJ9dCSSJE2YMOGf//ynLMsN1zby94dSWV8Fvd76LbJWUZ1t\nElEAyDBUIWtfWzWHEHK/EgCUl5f7+fnZuIObm1t+fn5LNqm9W7du3cGDB3mef/7558236XTm\ngUHyB1ci6fWGGh4qPxQMhaIrKkOgVwNAVT/IdyLN7QeAErj0A3fbuLcsQiq7k0lFlqQSV/Hq\nbcgO8G5oOeFywZga0halP977mgOAqhuozm3Ecl5tgIPKfFoDIaQtCQB0Op3tj54oFAqtVtuS\nTWrXjI86Wk/+r1TC5965umI+eBd9oVfVbQ4ADB4wlELrhVKLsXKtCrwnRDUUdy8ZZT2kEihY\n/JANUlEJr/BGTQXKhXofxgeKHWDTJIA7J6/jGqnqN/DtPKi0XWpL7wfb7NSEtFuU+6sRGs7x\nxXEQ7v1IORG8Qu2vUPsDAHQXoDuLyp4ocUBp6T01/b6F93iof4DwsLFM1sJwA8ru7AXEa9mK\nHr1QlgcnLwj1DqPfrEAnj/oq3EvhjIpfzQuVbvAaBtASWXWgiQyEWKr9BiwsLLRx/cfCtrvv\n3+ZYjq/Y2FibcnzVSQDXHWHu+Pln6HR3i11c4OyM1lhN0QrXntB0RcW9mY8DYymiEEIapzao\nVFRUNGH9xw7l+vXrycnJHh4emzZtssPhVCoMGID8fOTnw9UVXl5wbNPBAQ6d4lBwCqU/QayE\ngx98ouEc1pYtIoTcj2jlR1t16tRp1apVAQEBgYGB9jkiz8PPD3o9goLAcUAP+xy2yc1Rwnc0\nfEe3bSsIIfc3WvnRVgqFYvHixW3dCkIIadco3zAhhBC7oaBCCCHEbngAFRUVlZWVNu7w7bff\nHj9+vAVbRAgh5L4lAHBxcfHy8iq4NzfilClTXF1dP/zwQ7MdHn300cLCwsZlKGmeixcv7ty5\nMz09nef5Pn36xMfHh4W10rSkyspKZ8oGTwghNqvz9te+ffu++uqr1myKVampqa+88kpmZmZ0\ndPTQoUMvXbq0ZMmSX3+1eE6vBbAcX1OnTq22LUF9+6KyumQKIYS0rHY9pqLT6d577z1HR8d/\n/OMfCxYseOGFF/7yl7/o9fr33nuvFc6+bt26EydOVFVVOTreh09O25zMjRBC7KhdB5Xz588X\nFRWNHz/e358lOUGvXr0GDx587dq1zMzMFj11Azm+CCGEWNOug8pPP/0EYODAgaaFgwYNMm5q\nIcYcX+vWrbOe46uNWCw0TAgh7Uu7TiiZk5MDICAgwLSQXbWwTaa+//57SWI54tHM5Px2yvFl\nfxwNlBBC2rd2HVSqqqoAODk5mRayl5ZzoBctWsTqAxg0aNADDzzQtJOWlJSsWLHCbjm+oKak\njISQjqNdBxWG42z6Uk5MTNTr9ezv5qRSdnd3/89//nP79m375PhSzG7e7uDvJrDnoQoEAHVQ\n+17khBDScdUGlcrKSsvU93UVtka7AJhclLi73x1MYJcjlo+PzJgxw/j3/v37Le+P2W7YsGFN\n3tcGobZX5QSTJbs4AU69AEAdYv9GEUKIPdQGlZqaGsvU91YLWxMbTcnJyQkKCjIWWh1oua8E\nNVyFEELuT+069X3fvn337t178eLFqKgoY+HFixfZprZrFyGEEOvader78PBwT0/Pw4cPx8bG\nsklfV65cOXv2bPfu3UNDG3ETiRBCSOto1wP1KpUqMTFx7dq1ixcvHj58uF6vP3XqlCAI8+fP\nt++JsrOz3dzcKM0XIYQ0U7t++BHA0KFDV69eHRIScvz48e+++65fv35vvfVWt27d7HgKSZKm\nT58+cODAvLw8Ox62TrwIB4fWOBEhhLS6+q5Urly5YlnYpUsXVesmKxw4cKDZQ/X2xXJ8xcbG\n+rVOvixBDyfX1jgRIYS0utqgsmHDhr17944YMWL58uXGbb1797bcYdWqVa+88korta7lUY4v\nQgixIx5ASUnJ0qVLv/nmm2nTpjW4w5tvvllaWtryDWsN7TbHFyGE3Kd4ALt37y4rK5s5c6bl\nWIW/v/9NE4mJiVVVVTt37myLptpfu83xRQgh9ykewMGDBwHMmjXLcrNCoQg28cwzzwA4fPhw\nK7eyJej1+nXr1tkvx5fN+B6tejpCCGlFAoCLFy9yHGdLbpKIiAi1Wn3u3LmWb1iLUyqVZ8+e\nvXz5sn1yfNlOmNiqpyOEkFYkAMjLy3N3d7dc3zA0NNQsGwrP856ens1MLN9+eHp6PvTQQ23d\nCkII+f0QAOj1eqsr5l6/ft2yUBRFnU7X0s0ihBByP+IBeHp6lpSUaLXaBmvrdLqioiIvL6+W\nbxghhJD7Dw+gR48eoiiePn26wdpnzpwxGAw9etBQMyGEECt4AGPHjgXw7rvvNlh73bp1AMaM\nGdPSzWohGRkZLbq4PSGEdHA8gGeeeUalUn366af1r56ycePGTz/9VK1Wz5kzp7WaZ0/sUcfI\nyMjLly+3dVtMqNWwbWlLQghp/3gAwcHBy5YtA5CYmBgfH3/hwgWzShcuXIiPj2erQCYnJ7f2\nHFw7Wb9+fUpKyrhx4/r169fWbTHh49PWLSCEELvhZFkGIEnSU0899e9//5uVenp6hoWFaTSa\nioqKjIyMoqIiVv7UU09t3brVxkXj29CRI0fYnTojURSNS0YqFIr6dxdFEUCD1ZpCLgfnUm+N\nMoDSTdpElmVJktBCPUXsShRFjuN4vr2nRe/g2L+p5vaUbGLDhg2mC/eaCg4O3rRpk9wxDB48\nOD4+vq1bQRpQWVkZGRn53HPPtXVDSANycnIiIyOXLVvW1g0hDUhLS4uMjHzttdeac5B7Ut/P\nmzdv9uzZKSkpJ0+ezMrKKisrc3V1DQ4OHjFiRHR0dCtnvCeEEHLfMV9PRaVSjR8/fvz48W3S\nGkIIIfc1usVJCCHEbhQrV65s6za0O2q1Oioqip7xbP+cnJyioqK6du3a1g0h9eE4zsXFJSoq\nqnPnzm3dFlIfnufd3d0jIyM7derU5IPUzv4ihBBCmo9ufxFCCLEbCiqEEELsxnz2Vwd38eLF\nnTt3pqen8zzfp0+f+Pj4sLCwtm5UB1JeXv7dd9+dPn36xo0bxcXFHh4eERER06ZN8/b2Nqtp\nS09Rb7aa5OTkS5cueXl5ffDBB2abqKfaA0mSDh48ePTo0Vu3bvE8HxgYOGrUqMmTJ5vWsVdP\n0ZjKXampqa+//rqzs/Pw4cP1ev23334LYO3atd26dWvrpnUUW7du3bt3r0aj6dGjh6Oj42+/\n/ZaTk+Pq6vrXv/7VdL04W3qKerPV/Oc//9m4caMsy+7u7mZBhXqqPdDpdGvWrLlw4YKXl1fP\nnj1lWc7OzlYoFO+8846xjj17yh6PYf4eaLXahISEuLi4nJwcVvLLL788+uijixYtatuGdSiH\nDx8+deqUwWBgL0VR3LRp06RJk9544w1jHVt6inqz1RQWFsbFxW3fvj0uLu6pp54y3UQ91U5s\n3rx50qRJH3zwgfFflizL5eXlxr/t21M0plLr/PnzRUVF48eP9/f3ZyW9evUaPHjwtWvXMjMz\n27ZtHce4ceOGDx9uzOXF83xCQoJCofjll1+MdWzpKerNVvPee+95eHhMnTrVchP1VHtQUlJy\n4MCBnj17sn9KxnKNRmP82749RUGlFltnZeDAgaaFgwYNMm4ibUK4w1hiS09Rb7aOkydPpqam\nPvfcc0ql0nIr9VR7kJqaKori2LFjWXTZsWPHsWPHKisrTevYt6dooL6WMYexaSGLyWwTaROn\nT5/WarURERHGElt6inqzFZSXl2/atGncuHH9+/e3WoF6qj1IT08HUFxcnJiYWF1dzQo1Gs3S\npUuNEcK+PUVXKrWqqqoAODk5mRayl2ZRnbSa4uLizZs3azQa07srtvQU9WYr2Lx5M4DZs2fX\nVYF6qj0oKysDsGvXrqFDh77//vsfffTR/PnztVrt2rVrS0tLWR379hQFlXu0/6ViOo6qqqpV\nq1aVlpYuWrTIckqxLT1Fvdlyzp07d/z48Tlz5ri41L8+EPVUG5NlGUBgYGBSUpKvr6+Li0tM\nTMzkyZOrqqqOHTtmWtNePUVBpZbVkMuCs7Ozc9u0qQOrrq5+9dVXMzIyXnjhhaioKNNNtvQU\n9WaL0uv17777bkRERHR0dD3VqKfaA/YJh4eHm667MPOpyAAAEp9JREFUxf5N/fbbb6Z17NVT\nNKZSi90rzMnJMV2mzOptRNLSampqVq1alZaWtnDhQsuvLVt6inqzRVVUVOTn5+fn55s9PVdV\nVTV58uSQkJD169eDeqp9YKu/W71tpdPp2Ev79hRdqdTq27cvgIsXL5oWspdsE2kdWq129erV\nP//8c2Ji4rhx4ywr2NJT1JstSq1Wj7cgCAIrf/DBB1k16qn2oF+/fgBu3rxpWshe+vr6spf2\n7Sm6UqkVHh7u6el5+PDh2NhYNqXhypUrZ8+e7d69e2hoaFu3rqNgj/5evnz52WefjYmJsVrH\nlp6i3mxRTk5OCxcuNCv89ttvHR0dTcupp9qDXr16hYaGpqamXrt2rXv37gCqqqo+/fRTAMbw\nb9+eojQtd505c2bt2rUajYYlITh16pQsy2+88Qali2g1W7Zs2bdvn7u7u+kcYiYpKck4SGhL\nT1FvtrJp06Y5OjqapWmhnmoPrl69mpycDGDIkCFOTk7nzp3Lz8+PiYmZP3++sY4de4qCyj2M\n6dI4jmPp0rp06dLWjepA3nnnHbMZKUaff/656fPAtvQU9WZrshpUQD3VPvz2228fffTRzz//\nrNPpgoKCYmJiHnnkEbOpXPbqKQoqhBBC7IYG6gkhhNgNBRVCCCF2Q0GFEEKI3VBQIYQQYjcU\nVAghhNgNBRVCCCF2Q0GF3K+ioqI4jvvyyy/buiGkFmeCZQdpPzp37sxx3JkzZ+x72HHjxpm+\n69zcXPse/35EQeX3bOLEiRzHJSYmWhYaKRQKDw+PYcOGvfHGGxUVFVaPc+PGjRUrVjz44IN+\nfn4qlcrDwyMyMnLx4sVmiYCaXB9ASUkJZ7O9e/c252Npmtzc3O3btyclJQ0fPtzZ2ZnjOHd3\n9yYfLTk5mb2XN954o8HK2dnZq1evHjVqVGBgoFqtdnFx6dq165NPPrl161bjkhhGZv3LcZxK\npQoMDJw0adLnn39ueXCz+g4ODr6+vv3794+Pj9+8eTNbjaNRpk6dmpCQMGXKFKtnCQ4OFkXR\n6o7Dhw9ndXr16tXYk1o6deoUx3GTJk1q/qHq8fDDDyckJPzxj39s0bPcZ2Ty+xUbGwtg3rx5\nloUajSY0NDQ0NDQoKMiYE7tr1643b940rSxJ0quvvqpSqVgFhULh4+NjmvH08ccfNxgMTa5v\nVFpa6mWB7eLq6mpW/tVXX8myvGLFipkzZ54/f75lPjxzb7/9ttm/HTc3t6YdShTF4OBgdpAe\nPXrUU1OSpNWrV6vValaZ53lPT0/TYObq6rphwwbTXcz6NzQ01MPDw1j/6aefNjuFWf3g4GDT\nJVKcnJzeeustURRteV9sl5ycHMtN7CzMwYMHLSukpaUZK/Ts2dOW09Vv8eLFADZv3sxesvxU\np0+fbv6RLen1+nree0dDQeX3rJ6gYlpYU1Ozfv16tsz4hAkTTCs/9dRT7F/LE088cfLkSb1e\nz8pv3rz57rvvhoWFAaiurm5y/XoYlz61+h3U+rZs2TJ27NilS5d+8sknf//735sTVA4ePAjA\n2dmZfeYsh5JVxs9zypQpR48eNX50lZWVhw4dio+PVyqVDz/8sOkuVjs9Nzf3mWeeYYdiIbn+\n+rdv3/7kk09GjBjBdpk1a5Yt76vBoMIuQeLi4iwrvPzyywB69+5tr6DSrVs3nufz8vLYSwoq\nrYaCyu+ZjUGFYSnnOI67ffs2K2HrxQJYt26d1ePrdLoXXnihpqamafXr196CiqkdO3Y0J6g8\n+eSTABISEh599FGrVw/Mpk2b2Cewfv36ug6Vlpa2evVq05K6+lcURZam6fnnn7elvizLkiSx\n/ysAbNy4scH31WBQeemll7y8vBwcHIqLi83aFhwcLAjCmjVr7BJULl26BGD48OHGEgoqrYbG\nVEitRx55BIAsy7/++isAvV6/evVqAHFxcX/605+s7qJUKt9++212c6ax9ZuvroH6ffv2TZo0\nyd/fX6VS+fr6Tpky5cSJE2Z1jMO2V65ciY+PDwoKEgShrmbbV1FR0f79+wH88Y9/TEhIALB7\n927L9dh1Oh37PGfMmLFgwYK6jta9e/cVK1bYcl6e51nmc61Wa2NTOY5bs2bN2LFjAbz22muS\nJNm4Y11UKtX06dNramp27txpWn7kyJFbt27FxMT4+flZ3bGgoOD5558PDQ1Vq9WdOnVKTEzM\nzc3dsGEDx3FmgzfMvn37AFjddP369YSEhICAALVa3a1bt5dfftn488UoLS3tzTffHDNmTOfO\nnR0cHNzc3IYNG/b222/b/tF1ZBRUSC2zr4zjx4+zlXxefPFFW3ZvbP2WoNPp4uLipkyZ8uWX\nX+r1+n79+hkMhn379o0aNepvf/ubZf2zZ89GRUVt374dgLu7e/O/NG3x0UcfabXakJCQ0aNH\nT5w40dvbu6Ki4pNPPjGrlpKScuvWLdjv89RqtZcvX8adW0y2Y4MTN27cOH/+fPObMXv2bADb\ntm0zLWQv2SZLN2/ejIqKWrduXVZWVt++fX19fbds2RIREcE+H6vYVA52IWjq4sWL4eHhH3/8\nsaurq0ajSU9PX7t27aOPPirfm1f35ZdfXrZs2enTpxUKxYABAzw8PFJTUxctWjRu3DiKKw2i\noEJqHTp0CADHcez37KlTpwCwiVu27N7Y+i3hpZde2r17d0hIyMGDBwsLC8+dO1dUVLR161a1\nWr1kyRLL65UlS5aMHj06MzMzKyuroKCAXRm0tK1btwKYNWsWx3FKpXL69OnGQlPs8/T09AwP\nD2/mGcvLy//73/8+8cQTWVlZgYGBxnEaG40cOZItOmCX+bgREREDBgxITU29cuUKKyktLf38\n88+9vb0nTpxodZeEhITMzMzw8PD09PRz58798MMP169f79y581tvvWW1flZW1g8//NCnTx/2\nf7KpF154ITY2Njc39+rVq4WFhbt27RIE4fDhw+za0ejJJ588fvx4RUVFenr62bNnr1+/fuXK\nlZEjR546dWrt2rXN/gx+5yioEFRVVf3zn/9kv+UfeeQRb29vAOxnYNeuXc0WXahLY+vbXUZG\nxrvvvisIwmeffcZu5TGzZ8/+85//LMuy5XdQ586dP/vss5CQEPaSvfEWdeHChQsXLgAwTkJl\nX/EnT568du2aaU32ebKpDU2wceNG4yxhV1fXwYMHHzp0aN68eWfPnnVzc2vUoTQaDftk8vLy\nmtYYM+wtGy9Wdu7cWVNTM3PmTDZtwUxqauo333yjUqn27NljXGEwKCjos88+s1ofwN69e2VZ\ntnrvq0uXLtu2bTNOLJw6deq0adMAmN1EjYuLi46ONl2/p0ePHrt37wZguWAMMUNBpYPavn17\ncHBwcHCwv7+/RqNJSkrS6/VhYWEbNmxgFdgDChqNxsYDNra+3e3Zs0cUxaFDh0ZFRZltmjlz\nJoDjx4+b3eCaM2eOcfZz62BXJEOGDOnZsycriYiI6N+/PyzuCNXzebIBIVPGX/1Grq6uXe8I\nDg5WKBTsTqDVR1UaxJpRXl7ehH0tzZo1S6lU/vvf/2YPrLCv6bqun9hMufHjx3fu3Nm0PCAg\noK4rG3bvy2pQee655wThnjXUR44cCYCNI5rS6XRffvnlihUrnn322fj4+FmzZr344otKpfLG\njRsFBQW2vM0Oi9ao76AqKyvZ4DD7JdurV69JkyYtXLjQ1dWVVWAPK9T1OKSlxta3O/ZkZX5+\nvuXXE7tjXllZWVJS4unpaSwfOHBgKzYQOp3u448/BsDG540SEhJefPHFf/3rX6tXrzb+OmYd\nYfXzDAgIMBgMAERRrOsR7unTpxt/HwAwGAy7du1asGDBwoULKysrly5d2qiWs3DS2Eucuvj4\n+MTExOzfv//w4cOdO3dOTU0dOHDgoEGDrFa+evUq6uipQYMGsasHU6WlpSkpKUFBQZa/LQAY\nY7kRW27d7HM+c+bMtGnTMjMzrTapsLCwFS5q718UVDqoefPmmX7pWGJP56Wnp8uybMsdrcbW\nt7vi4mIAV69eZV9DVlVVVZkGFdOn/FrB3r17CwsLVSpVXFycafnMmTOXLVuWlZX19ddfx8TE\nsMKgoCAAGRkZlsc5ffo0++PWrVudOnWy5dSCIMycObO8vHz+/Plr1qyZO3eu6ROR9SsvL2e/\nzeuamtUEs2fP3r9//7Zt29j1R11D9LgTz4y/dUxZ7b4DBw7o9frJkydb/Z/Q8sqPPflrOlBf\nWFgYGxtbVFQ0derUP/3pT71793Z3d2fXN56ensXFxcYJxMQquv1FrGO3BYqLi8+dO9cS9e2O\nfV8sWbKknhn0xufY2wS7z6PT6by8vExvXhmvPEzv17PPs6ioqJ7cNo01atQoABUVFT/++KPt\ne504cYLdNhw2bJi9WhIbG+vj47Nv375t27YplUp2f9IqFjmsZouxejuunntfNtq9e3dRUdHg\nwYN37NgxcuRIb29vFlH0en0TktZ0QBRUiHXR0dHsK5g9PW73+nbHRibYpKl2iF2IAPD29vaz\nwG6n7Nu3r7CwkNWPjo5mFyv/+Mc/7NUG4+/x/Px82/diDQgLCxswYIC9WsICSU1NTV5eHptX\nXVdNdsPKamS1LNRqtYcOHXJzcxs9enST28audEeMGGFMX8ScPXu2rqxlxBQFFWKdSqViT9Xt\n2LGjrhtlBoNhyZIlbOZ+Y+vb3R/+8Aee57/77rujR4+2xPGbadu2bZIk+fr65uTk5FrIysry\n8vLS6XQfffQRq2/8PD/88MMtW7bYpQ3GT6Zr16621Jdlefny5ceOHQOwfPlysy/ZZpozZ87Y\nsWPHjh1b/zOn7H7g4cOHb9y4YVqem5tr+dzr0aNHy8vLJ0yYUNfEMFuwh3Ozs7PNyuuawUzM\nUFAhdZo7d+6sWbMAzJ8/f8aMGampqcZfarm5uZs2berdu/df//pX4+/fxta3r549e7Inz594\n4ont27ezG0pMTk7O//7v/9qSD7jlsMlds2bNMpt9xKhUqhkzZuDeO2Dz5s2Lj48HMGfOnOnT\np586dcp4N1+SpO+///61116z8exarfbDDz9kOVcGDRrU4LMvBQUFn332WXR0NDtFQkLC008/\nbeO5bNS3b98jR44cOXJkzJgx9VQbMmTI6NGjdTrdH/7wB2Ncyc7OfuKJJ3Q6nVnleh6kt91D\nDz0E4NNPP/3iiy9YSXV1dVJS0oEDB6z2HTHXoklgSNtqVO4vq0RRTE5ONv7uU6vVgYGBprOA\nHnvsMdOsw42tX48Gc3+xpyy/+OILY4lerzcO+bq4uERGRj7wwAPsJhKAhIQEY80mZILKzs42\npklmN/o5jjOWxMfH17NvSkoKa8OPP/5YVx3jWNS5c+eMhaIovvLKK8Z5z0ql0s/PjyXAZyWO\njo4rV67UarXGXSyzFPv7+xtHrYODg69cuWJ6XrP6nTp1Mu0vZ2fnv/3tb/bKUpycnFz/EVj6\nOLPcX5mZmay/BEGIiIiIjIxUKpX+/v4sB+Xjjz/OqkmSxHLzlJWVWR65rh5nkSMyMtJYIknS\n+PHj2Xvp0qXL0KFDWXe/88477AGXS5cumR2Ecn+ZoisVUh+e59esWZOWlvbyyy8PGTLExcWF\npZsMDw9PSko6d+7cnj17TJ8Ra2x9+xIEYevWrceOHZs+fbqHh8fly5fT0tJcXV0fe+yxLVu2\nWM3UYjtRFAvvYEPEsiwbS+ofwmXXH5GRkWzgx6rw8HA2cdb06Xqe51etWpWenr5y5cqRI0d6\nenoWFRWVlpYGBARMmTJl/fr1WVlZpmsNGFVUVGTecfv2bZa96vXXX//pp58sp9Wa1s/Ly1Mq\nlX379p05c+bmzZtzcnIWL15s3xtfjRUSEvL9998vXLgwICDg8uXLubm5CQkJP/zwA5vIZ5wY\ndubMmdzc3DFjxjRzUh/Hcfv371++fDlbCeLatWvDhg07ePBgUlKSHd5MB8DJLXMvghDS0bDr\noZycHPbwR0t79tln33///dWrV7PBp6VLl7711lsbNmyYN29eK5zdlMFgYFfnrfbe2zO6UiGE\n2FNAQADX8ssJl5SU7NmzB0B0dDQr2bdvH8dxkydPbtHzmmHLCTdnXsDvD407EULswzRTgB0f\nCcrMzDxw4EB8fLzxvtaNGzcSEhKKiooGDRrEHugBYJmrphU8/PDDpu/U0dGx9dvQ3tDtL0JI\nu3b58uX+/fsrlcqwsLCgoKCioqLLly+Loujv73/06NE+ffq0dQPJPRQrV65s6zYQQkid1Gq1\nIAharTYvLy8tLa20tLR79+6zZ8/+17/+1eQszqTl0JUKIYQQu6GBekIIIXZDQYUQQojdUFAh\nhBBiNxRUCCGE2A0FFUIIIXZDQYUQQojdUFAhhBBiNxRUCCGE2A0FFUIIIXZDQYUQQojd/B9s\n1/3OzQWOuwAAAABJRU5ErkJggg==", - "text/plain": [ - "plot without title" - ] - }, - "metadata": { - "image/png": { - "height": 270, - "width": 270 - } - }, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Warning message:\n", - "“\u001b[1m\u001b[22mRemoved 80 rows containing missing values (`geom_point()`).â€\n", - "Warning message:\n", - "“\u001b[1m\u001b[22mRemoved 93 rows containing missing values (`geom_errorbarh()`).â€\n", - "Warning message:\n", - "“\u001b[1m\u001b[22mRemoved 80 rows containing missing values (`geom_point()`).â€\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhwAAAIcCAIAAAAynOArAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdeUCUdf4H8PfzzMU93HIJ3njikaamiUeaAqFZurZmalqa1eZud/qzy00t\nsxJaNFtF2t3UzBXUarVUyAPNVFIUFRlABZH7PmbmeX5/DI7DMMIMzMwzA5/XP+t85/sMb1rl\nw3N8P1+G53kQQggh5sAKHYAQQkjHQUWFEEKI2VBRIYQQYjZUVAghhJgNFRVCCCFmQ0WFEEKI\n2VBRIYQQYjZioQNYxLVr106cOCF0CkII6XQ6ZlG5fPnyuXPnxo0bJ3QQQgjpRGJjYztmUQHQ\nr1+/mTNnCp2CEEI6ka+//pruqRBChFdXVyd0BGIeVFQIIQLjOO7RRx9dsGBBfX290FlIe3XY\ny1+EEHsRExOTkpLi5uYmk8mEzkLai85UCCFCUigUK1eulMvlcXFxQmchZkBnKoQQwXAct3Dh\nwqqqqoSEhKCgIKHjEDOgMxVCiGBiYmKSk5OjoqLmzZsndBZiHlRUCCHCKC4uXrlypYeHx+bN\nm4XOQsyGLn8RQoTh5eWVmJhYXl4eEBAgdBZiNlRUCCGCmThxotARiJnR5S9CCCFmQ0WFEEKI\n2VBRIYQQYjbWuKeyYsWKCxcueHl5bdu2Te+ttLS0HTt2XL9+nWXZ/v37z5s3r3v37m2YQwix\nCwUFBe7u7rRyvgOz+JnK//73v8uXL4tEouZvnTp1atWqVTk5OeHh4aNGjbpw4cIbb7yRmZlp\n6hxCiF3gOG727NkPPPBAUVGR0FmIpVi2qJSUlGzbtu2JJ55o/otJQ0NDXFyco6Pjhg0bXnzx\nxeXLl3/44YdKpVK3VYMxcwgh9iI2NjYlJaVbt27e3t5CZyGWYtmiEhcX5+HhMXv27OZvnTt3\nrqSkZPLkyX5+fpqRvn37Pvjgg9euXcvJyTF+DiHELigUihUrVsjl8k2bNgmdhViQBYvKr7/+\neurUqWXLlkkkkubvpqenAxg8eLDu4JAhQ7RvGTmHEGL7tD2+Nm7cSD2+OjZL3aivrKz86quv\nHnnkkUGDBhmckJ+fD8Df3193UHNGonnLyDm6X5Hnec2flUpl+78FQoi5xMbGJicnR0ZGPvPM\nM0JnIZZlqaKyZcsWAAsXLrzfhJqaGgBOTk66g5qX1dXVxs/RioyM1MwHMGTIkBEjRrTvOyCE\nmEdDQ8P69es9PDy++uorobMQi7NIUTl79uzRo0dfffVVV1fXlmcyDNPqpxkzB8CECRO028ZJ\npVJjDiGEWIFUKj19+vSlS5eox1dnYP6iolQqv/zyy2HDhoWHh7cwTXvC4e7urh3UnGo4Ozsb\nP0fr/fff1/45KSmp+fUxQohQ/Pz8tI/bkI7N/EWlqqqqsLCwsLAwOjpad7ympiY6Ojo4ODg2\nNhZ375Tk5+cHBgZq5+jdRDFmDiGEENth/qIik8kmT56sN3jkyBGRSDRu3DgvLy/NyIABA/bu\n3ZuWljZ8+HDttLS0NM1bxs8hhBBiO8xfVJycnF5++WW9wePHjzs6OuqODx061NPT89ChQ5GR\nkZrz4oyMjNOnT/fu3TskJMT4OYQQQmyHYPupSKXSpUuXrlmz5tVXXx0zZoxSqTx27JhYLH7h\nhRdMmkMIsUHZ2dlqtbpnz55CByHWJmSX4lGjRn3wwQfBwcFHjx49ceLEwIEDP/744169epk6\nhxBiUziOmz9/flhY2JUrV4TOQqzNSmcqO3bsMDg+ePBgvQXzbZtDCLEdMTExKSkpkZGRoaGh\nQmch1kb7qRBCzEmhUKxcuZJ6fHVatEc9IcRstD2+EhISqMdX50RnKoQQs4mJiUlOTo6Kipo3\nb57QWYgwqKgQQsyD5/n9+/d7eHhs3rxZ6CxEMHT5ixBiHgzD/PTTTxkZGdTjqzOjMxVCiNmI\nRCLqdtHJUVEhhBBiNlRUCCGEmA0VFUIIIWZDRYUQ0naZmZnfffed0CmIDaGiQghpI47jFi1a\nNHv27CNHjgidhdgKKiqEkDbS9PiKioqaMGGC0FmIrRDfvn27zQc7OjrK5XIzpiGE2AtNjy93\nd/e4uDihsxAbIm7Pvrzz58+Pj483XxhCiH3gOG7BggXU44s0R5e/CCEm0174oh5fRA8L4Jln\nnlGaTujkhBDBFBUVeXt7U48v0hwLgGEYsemETk4IEcyHH3547do16vFFmmMnTZrUtl49bT6Q\nENIBuLu7Cx2B2CLxzz//3LYj23wgIYSQjopu1BNCCDEbKiqEEELMpqX77UVFRcXFxQYf9Bo4\ncKDFIhFCbE5mZmZcXNyHH37o5OQkdBZi0wwUlbq6ujVr1sTHx+fm5t7vMJ7nLZmKEGJDND2+\nUlJSHnzwwT/96U9CxyE2Tb+o1NfXT5gwITU1FYBEIlEqlR4eHhUVFWq1GoBYLKa+LIR0Ntql\njlRRSKv076nExsampqaOHz8+Pz9/9uzZAEpKSmpra48dOxYdHc3z/KpVq4qKioSISggRgKbH\nl1wupx5fxBj6RWXXrl0Mw3z99dd+fn7aQYlEMmbMmMTExGXLli1fvvzQoUPWDUkIEQbHcQsX\nLqyqqoqJiaEeX8QY+kXl8uXLISEhPXv2BMAwDADNhS+NdevWubi4fPbZZ9aMSAgRSkxMTHJy\ncmRkJPX4IkbSLyr19fU+Pj6aP8tkMgBlZWXadx0dHfv373/mzBmr5SOECKh79+59+/b96quv\nhA5C7IZ+UfHz8ystLdX8WdMV//Lly7oTCgsLy8vLrROOECKs6Ojo9PR06vFFjKdfVHr27Jmf\nn89xHICRI0cCiI2N1bwEsG/fvqysrODgYCunJIQIhWVpiTQxgf4jxVOmTDly5MjJkyfHjBkz\nZcqUkJCQnTt3KhSKsWPH5uXl7d69G8DcuXOFiEoIIcTW6ReVmTNnnjlz5tatWwCkUumOHTsi\nIiJOnz59+vRpzYSpU6e+88471o5JCCHEHugXlT59+mhORzRGjRp17dq1Xbt2XblyRSaThYeH\nT5s2TfNUGCGEEKKn9b22vLy8XnjhBStEIYQITqFQzJs3LzY2dsiQIUJnIXaJbsERQhppljoe\nP378woULQmch9oqKCiGkES11JO1n4PIXz/OJiYkHDhzIzMysqqoy2JCY1j8S0sFoe3xt2rRJ\n6CzEjukXlZqamscee+zw4cOCpCGECELb4yshIYF6fJH20C8qH3zwweHDhyUSyZw5c8aOHevn\n50dLnwjp8P7xj38kJydHRUXRhS/STvpFZdeuXQC+/fbbJ554Qog8hBABREZGHj58ODY2Vugg\nxO7pF5WbN296eXlRRSGkU+nevfuePXuETkE6Av2i4uXlRXs7EkIIaRv9+yVTpky5fv16cXGx\nIGkIIYTYNf2i8t5777m4uCxfvlylUgkSiBBCiP0Sp6am6g2tXbt2+fLl586de+GFF0JDQ11c\nXJofNmrUKKvEI4RYSkNDg1QqFToF6WjEo0ePNvhGenr6Sy+9dL/DDK6IJITYi+vXr4eHh69f\nv37OnDlCZyEdijgkJEToDIQQq+I4btGiRbdu3VIqlUJnIR2NODs7W+gMhBCroh5fxHJotTwh\nnQv1+CIWxQKIior6+uuv79y5I3QYQohlaXt8xcTEUI8vYgksgAMHDjz33HP+/v5jx45dv379\ntWvXhE5FCLGIb775hnp8EYsSA/j111/37t2bmJh4/Pjx48ePv/766/37958xY8aMGTOGDx9O\nmwcT0mE89dRTubm5ixYtEjoI6bAY3YeDL168mJiYuHfv3t9//10zHhgYGB0dPWPGjAkTJkgk\nEuFymiYpKSk/P3/JkiVCByGEkE4kIiKCMbji5ObNm5rqkpycrHnoUC6XR0REzJgxY9q0aa6u\nrlaPahoqKoQQYn33LSpa5eXlBw4c2Lt3708//VRZWQlAKpVOnDhxxowZ0dHR/v7+1opqGioq\nhBBifa0XFa36+vpffvklMTExKSnp9u3bABiG4TjOwgnbiIoKIYRYX0REhLHrVGQyWURExObN\nm/Py8k6cOPHGG2/06dPHouEIIWZx69YtoSOQTsTkxY8Mw4wePXrdunUZGRmWCEQIMaPr16+H\nhoa+9tprQgchnQWtqCekw9L0+Kqurh48eLDQWUhnob/z44wZM1o+QCQSubm59ejRIzw8fNy4\ncRYLRghpL+rxRaxPv6gkJiYaf/DQoUP/85//9O3b16yRCCFmQD2+iCD0i0pcXNyNGzc++eQT\nqVQaFRU1ePBgV1fXysrK8+fP79+/X6lUvv76656enhkZGXv27Dl37tykSZPOnz/v4+MjSHpC\niEHaHl8JCQnU44tYk35RiY6OfuCBBx588MHdu3f7+fnpvpWfn//EE09s27bt7Nmzfn5+H3/8\n8fTp03/99dfPPvvso48+smJmQkgrjhw5kpKSQj2+iPXp36h/9913i4uLd+3apVdRAPj7+3/3\n3XeFhYXvvfceAA8Pj2+++YZl2QMHDlgnKyHESJMmTfrpp582b94sdBDS6eifqfz4449hYWEB\nAQEGZwcGBoaFhWmrSEhIyMCBAxUKhWUzEkJMN2XKFKEjkM5I/0ylsLCw5TX2PM/r7rzi5eXV\n0NBgkWiEEELsjX5R6dKlyx9//JGbm2twdk5Ozh9//KF7ZezmzZt0l54QQoiGflGZMWOGSqV6\n4oknmteV7Ozsxx9/XK1WT58+XTNSUVGRnZ3drVs3KwQlhBBi+/TvqaxatSopKenMmTO9e/ee\nPHny4MGD3dzcKioq0tLSDh061NDQEBISsmrVKs3kf/3rX0qlcuLEiVaPTQjRl5qaOmzYMKlU\nKnQQ0qkZ6FKcm5u7YMGCI0eONJ89YcKE7du3d+3aVfMyJyensrKya9eucrnc4klNQV2KSWeT\nmZk5ZMiQ4cOHHz16VOgspPOKiIjQP1MBEBwcfPjw4VOnTv34449XrlyprKx0dXUNDQ2dNm3a\nyJEjdWeGhIRYKyoh5L44jlu8eHF1dTXtE0wEZ6CoaIwcOVKvhBBCbJOmxxctdSS2gLoUE2Lf\ntD2+4uLihM5CyP3PVAghto96fBFbIwbQhjbDtEMXIbbgypUraWlpdOGL2A4xgCtXrggdgxDS\nFv369bt48aJIJBI6CCGN7l3+6tev39y5c7t06SJgGkKIqQIDA4WOQMg9YgBjxow5fvz45cuX\n33vvvWnTpi1cuDAqKkoikQidjRDSoajrUZ0PiQscvYWOQixGDODYsWPXrl2Lj49PSEjYt2/f\nvn37vL29586du2DBgiFDhgidkBBi/3hc+w7X94JTAoC8F8KWwpXWuXVEjY8U9+7d++9//3tO\nTs7//ve/p556qqqq6osvvhg6dOiQIUO++OKLoqIiYVMSQuya4gCufddYUQCUZ+LMWiirBc1E\nLKPJOhWWZadMmfKf//zn9u3bmzZtGjlyZFpa2vLlywMCAmbOnHn48GGhUhJCtPbu3ZudnS10\nChPwPK7v0R+sLcLNowKEIZZmeJ2KXC5fsmTJkiVLMjIy4uPj4+Pj//vf/1ZUVFDvSELa6VYy\nqm62/fDS0tIft2UddcxfsmQJy9rH4mWuAQ2VBsbzUtBQZvU0QguZBgdPoUNYUkuLH9VqdXZ2\ndnZ2dnl5udUCEdKxBYa3/ViO4yZOfDz5bHJCQkK/efZRUQDwauT+DHWzzfy6PIheTwgRiFiS\n4aKiOUH55ptv8vLyAPj4+CxdunTx4sXWzUYIacJOe3wxIgRNRM5PTQZFDggYK1AgYklNikpZ\nWdmOHTvi4+NPnToFQCKRREdHL1y4MDIykp4wJkRYdt3jq+/TqL2DO2cbX0pcMOgFONGiuI5I\nDECtVh86dCg+Pj4xMbGurg5AWFjYggULnn76adoqmBBbYO89vkQyDH8bZZmoyIbUBV6DIHEW\nOhOxDDGA4OBgzWUuLy+vxYsXL1y4cNiwYUIHI4TcU1xcXFNTY3cXvvS494J7L6FDEAsTA9BU\nlL59+z722GNSqXTPnj179jR7ALCp1atXWyMdIQQA4OPjc+LEiaqqKqGDENKKe/dUMjIyjO89\nTEWFECsTi8Xu7u5CpyCkFWIAkZGRQscghBDSEYgB7N+/X+gYhBBCOgKL7PxYWVm5e/fuy5cv\nFxQUVFVVeXh49OjR48knn+zTp4/ezLS0tB07dly/fp1l2f79+8+bN6979+5tmEMIIcQWWGRR\nbklJyd69e6uqqnr27Dlq1CgvL69Tp069/vrrR48e1Z126tSpVatW5eTkhIeHjxo16sKFC2+8\n8UZmZqapcwjpkLZt27Z3716hUxBiGobnebN/aENDQ0NDg4uLi3YkIyPj7bfflsvl8fHx2jnP\nP/98XV3d559/7ufnp5nz1ltv9ezZ89NPPzV+jkFJSUn5+flLliwx+7dGiHVkZmYOGTJEKpVe\nv37dw8ND6DiEGCUiIoIdOHDgypUr23BwCwdKpVLdigKgb9++QUFBJSUlSmVj8+tz586VlJRM\nnjxZUy00cx588MFr167l5OQYP4eQjofjuMWLF1dXV3/xxRdUUYh9YdPT02/ebEvTVJMOvHHj\nRn5+fkBAgLbdS3p6OoDBgwfrTtPsCaZ5y8g5hHQ8dtrjixBobtTX1tbevn3b7B9dUFDw/fff\ncxxXVFT0xx9/iESipUuXat/Nz88H4O/vr3uI5oxE85aRcwjpYOy6xxchYgC7du3atWuX2T+6\nrKzsp58aG5O6uLj87W9/092cuKamBoCTk5PuIZqX1dXVxs/Revfdd+vr6zV/lkqlgYGB5vtW\nCLESe+/xRYhFHinWCA0NTUpKUiqV+fn5e/bs+fDDDxcvXvzYY4/pzmEYptXPMWYOgCNHjmiK\nEIAhQ4ZQUSH2SKlUDh48WC6X04UvYqfElnj6S5dEIgkODl6+fHlhYeHWrVtHjhzp6+sLnRMO\n3c4Tmqrg7NzYv9SYOVo7duzQfi8pKSkVFRWW+6YIsRCZTPbFF1+o1WqhgxDSRtbbPG7AgAFq\ntfrq1aual5o7JXq3RvRuohgzRysgICDwruYlhxA7IhKJhI5ASBtZr6gUFBRA51/LgAEDAKSl\npenO0bzUvGXkHEIIIbbDIkXlwoULd+7c0R05ceJESkqKVCrVFoOhQ4d6enoeOnRI++BZRkbG\n6dOne/fuHRISYvwcQgghtsMiN+pPnDjxww8/BAcH+/r6Mgxz69atW7duMQyzdOlSNzc3zRyp\nVLp06dI1a9a8+uqrY8aMUSqVx44dE4vFL7zwgvZzjJlDCCHEdlikTcvVq1cPHTqUnp5eXFys\nVCrd3d379+//2GOPhYaG6s3UNotkGEbTLLJHjx5tmKOH2rQQO/Lll19mZWWtXr3a0dFR6CyE\ntEtERIRFiorgqKgQe6FQKMLCwkQi0cWLF2lhCrF3ERERFlynQghpGS11JB2P9Z7+IoTo0fT4\nioyMpKWOpMOgokKIMLQ9vjZt2iR0FkLMRv/yl1qtPn/+fGpqakFBQWVlpVwu79Kly+jRo8PC\nwliWKhAh5sHz/IIFC6qqqrZv304XvkhHcq+o8Dz/1Vdf/f3vf79x40bzed27d/+///u/hQsX\nWjEbIR0WwzAvvfRSjx49nnnmGaGzEGJOjUVFrVY//fTTO3bs0LwUiUTe3t4uLi6VlZVFRUUc\nxykUimeffTYlJeWf//wnnbIQ0n6zZs2aNWuW0CkIMbPG8rBu3TpNRZk0adIPP/xQVlZ2+/bt\nzMzMgoKCsrKyffv2jR8/HkB8fPznn38uYFxCCCG2jAVQXl6+evVqACtWrPj555+nTZumuxmw\nq6trVFTU4cOH33rrLQCrVq2qrKwUKi4hhBBbxgLYuXNnbW3tww8//OGHH95vHsMwH3300Zgx\nY6qrq3fu3GnFhIQQQuwGCyA5ORnAK6+80vJ2WAzDvPLKK9r5hBCTcBxHG6WQDo8FcP78eQDh\n4eGtztbcWdHMJ4SY5Msvvxw3bpxCoRA6CCEWJAZQUFAgl8u9vb1bne3j4+Pq6qrZGYUQYjyF\nQvHOO++IRCKJRCJ0FkIsiAVQWVmp7UjfKrlcTjv1EmISbY+vjRs30lJH0rGxABoaGoxfeiIS\nierr6y0ZiZCOJjY2VtPji5Y6kg6PljESYlkKhWLFihXU44t0Eo0r6ouLi5cuXWrMAcXFxZbM\nQ0hH8+KLL1ZVVcXHx9OFL9IZNBaVqqqqzZs3CxuFkA4pJiYmPj5+/vz5QgchxBrEACIjI4WO\nQUiH1bNnzxaWFRPSwYgB7N+/X+gYhBBCOgK6UU8IIcRsqKgQQggxG/2dH5srLS39448/CgsL\ne/bsOXToUCtkIsSucRxXXFzs4+MjdBBCBHDvTOWHH3545ZVXli5d+sUXX2jXzK9bt65r167j\nx4+fNWvWsGHDhg0bdu3aNYGiEmIfYmNj+/Xrd/ToUaGDECKAxjOVBQsWbN++XTu6fv36U6dO\n7dmzR7OHita5c+cmT5584cIFV1dXq8YkxE5oljqKxeJevXoJnYUQAbAAdu/erakoPXr0ePTR\nRwMDA2/evLl69eq///3v7u7umzZtunz58qVLlzZu3Ojq6pqTk/OPf/xD6NiE2CKO4xYsWEA9\nvkhnJgawbds2AIsXL968eTPLsnV1dTNnztyyZYtKpfr222/nzJmjmdqvXz9nZ+dFixbt27fv\nzTffFDI1ITYpJiYmJSUlKipq3rx5QmchRBgMz/P+/v63b98uKCjw9fXVjJ4+fXrkyJEikaiu\nrk4svnczv76+3tHR0cPDw8abtSQlJeXn5y9ZskToIKQTUSgUYWFhYrH4woULdJpCOqeIiAgx\ngKKiIk9PT21FAdC3b18A/v7+uhUFgEwm8/X1LSoqsnJQQmzf6tWrq6qqtm/fThWFdGZiACqV\nSu/Gu2Z7FZlM1vwABwcH2hKVkOb+8Y9/PPzww9TcnnRytPiREPOQyWQLFiwQOgUhAqOiQggh\nxGxa2k+lsLCw+aCN36InhBAioJb2U6moqKBNVgghhBiP9lMhpI04jvvtt99GjhwpdBBCbAjt\np0JIG8XGxi5fvnzTpk3PP/+80FkIsRV0o56QttD0+JLL5REREUJnIcSGtN76nhCiR9vjKyEh\ngZY6EqKrpaKSkZHRfLBHjx5SqdRieQixA9Tji5D7aSwqmzZt2rt379ixY1euXKl9r1+/fs0P\neP/991etWmWldITYHoVCsXLlSnd397i4OKGzEGJzWABlZWVvvvnmkSNHtA2JW7Bu3bry8nLL\nByPERn3//fdVVVVffPEFXfgipDkWwK5duyoqKubOndt8WyE/P78bOpYuXVpTU7Njxw4hohJi\nE1577bXU1FTq8UWIQSyAH3/8EcDTTz/d/G2RSBSkY9GiRQAOHTpk5ZSE2BRam0LI/bAA0tLS\nGIYZPXp0q7OHDRsmk8nOnj1r+WCEEELsjxhAQUGBu7u7o6Oj3nshISH+/v66IyzLenp6FhYW\nWi8gIYQQ+yEGoFQqm1cUANnZ2c0H1Wp1Q0ODpWMRQgixRywAT0/PsrKy+vr6Vmc3NDSUlJR4\neXlZPhghtoLjuK1btyqVSqGDEGIHWAB9+vRRq9UnT55sdXZqaqpKperTp4/lgxFiK2JjYxct\nWvTWW28JHYQQO8ACmDRpEoAvv/yy1dkxMTEAJk6caOlYhNgIbY+vv/71r0JnIcQOsAAWLVok\nlUp3797d8u4pmzdv3r17t0wmW7x4sbXiESIkjuMWLlxYVVUVExNDSx0JMQYLICgoSHNqv3Tp\n0nnz5p0/f15v0vnz5+fNm6fZBXLFihUBAQHWD0qI9cXExCQnJ0dGRgrT44uHKhcNaWhIB9ch\nN1ytr0dmJs6exe+/48oV1NQIHYiYAcPzPO52Xf3mm280o56ent27d3dxcamqqlIoFCUlJZrx\nBQsWbN26lWEYwfIaJykpKT8/f8mSJUIHIXZMoVCEhYWJRKKLFy9a/zSFV6EuGVzZvRFJH0gH\nWTmFJalUuHgRuo+SikQYMAAODsJlIu0VERHR2FCSZdmEhIQxY8Z8+OGHt27dKikp0RYSjaCg\noFWrVj333HNC5CREAOnp6SzLbty4UZALXw0XmlQUAMqrEPlC1MX6WSwjLw96ixPUaty4gd69\nBQpEzKPxTEWroaEhOTn5119/vXXrVkVFhZubW1BQ0NixY8PDw+2o4z2dqXQuavBqi3xwYWGh\nj4+PmT9UrUbxnVZnqa4a+KZYOUQd5tpzURHq6wEwDA/c/SkkEoGurgPw9IRMJnSItrh3pqIl\nlUonT548efJkQQIR0gbqIv1f6s3FAz6qKrN/qgh864VKaagVOMuCN38egVSzqKsDIHIsZcV3\nT1kkEpi9itsjkUjoBG1n8s6P586d27Zt28aNGy2RhpA2EHWxu4tCrf+7U+WDK9EfFAVBEmqR\nQAIoZKEo0B/09ISYtqO1b8buUV9cXLxx48ahQ4cOGzZMs1qFEGI5uvfkNdeGWBeIewqUxhJ8\nfODp2WTExQWBgQKlIWbTyi8FarX64MGD27ZtS0xM1Lb8Gjx4sOWDEdKpibzh8DAaLoIrAyuC\nyA/SQWA62C/xvXqhtBQVFeB5uLrC0xM2/2QpadV9/5Jeu3YtPj5++/btt27d0ox4eXn9+c9/\nXrhw4dChQ60VjxDr4TjunXfeefHFF7t27Sp0FgAQ+cJxIsAZf0HBDnl4wMND6BDEnPSLSnV1\n9Xfffbd169Zff/21cYZYrFKpvL29b926ZUcPgBFiqtjY2HXr1uXk5Hz77bdCZ9HRgSsK6Yju\nFZXjx49v3bp1165dVVWNz5cMGjRo/vz5Tz/9tJ+fn0gkoopCOjBtj69PPvlE6CyE2DExgLVr\n127btu3q1auaIW9v76eeemrBggXDhg0TNBshVqLt8ZWQkEA9vghpDzGAt99+G4BEIomIiJg/\nf35UVJREIhE6GCHWI3CPL0I6kHvXa6VSqbu7u1wuF9Nz4qQzUSgUK1eulMvlmzZtEjoLIXaP\nBfDOO+8EBQVVV1dv37590qRJ3bp1W7FixZUrV4TORog11NfX9+nTR6geX4R0MGBF7TEAACAA\nSURBVPe6FB88eHDr1q1JSUnafYVHjhw5f/78OXPmeHp6dunS5fbt24JGNQH1/iImUalUdIJO\nSPtFREQ0Xv5iWXbq1Km7du3Ky8vbuHHjkCFDAJw6dWrZsmX+/v4A1Gq1SqUSMiwhFkMVhRBz\n0X8G3tPT8+WXXz537ty5c+defvllLy8vzYlLUVFRYGDgq6++evHiRSFyEkIIsQP3XVg1ZMiQ\njRs35uXl7dy5c+rUqSzL3rlzZ8OGDYMGDRoxYoQ1IxJCCLEXrazWlUqls2fP/vHHH3Nzc1ev\nXt2rVy8AZ86csUo2QgghdsbYFhCBgYErVqy4du1acnLy/PnzLZqJEIviOG7OnDn79+8XOggh\nHZDJ9yfHjRs3btw4S0QhxDpiY2N37txZXV0dFRUldBZCOhpqVkc6F22Pr7i4OKGzENIB0ZOU\npBOhHl+EWBqdqZBOhHp8EWJpVFRIZ0E9vgixArr8RToLHx+fZ555ZtSoUXThixDLoaJCOgsX\nF5cvv/xS6BSEdHB0+YsQQojZUFEhhBBiNuIZM2a04bC9e/eaPQohhBB7J05MTBQ6AyGWolar\nRSKR0CkI6UTEzdcV5+bmfvLJJzzPR0ZG9u/fv0uXLgUFBZcuXTpw4ADDMK+//npwcLAgWQkx\nCcdxU6ZMGTFixOrVq2nHFEKsQ7x06VLd13l5eUOHDh06dOiOHTt69Oih+1ZmZuacOXO2bt16\n9uxZ64YkpC1iYmIOHz7s6OhIFYUQq9G/Ub9q1aqSkpLvv/9er6IA6NWr1549e4qKit59911r\nxSOkjWipIyGC0P8N7qeffgoLC+vatavB2cHBwWFhYT/99JPlgxHSdtTjixCh6J+pFBYW8jzf\nwgE8z9+5c8eSkQhpL02Pr6ioKOrxRYiV6ReVLl26/PHHHwqFwuDsrKysCxcu+Pv7Wz4YIW2U\nl5e3YsUKDw+PzZs3C52FkE5Hv6jMnDlTrVY//vjjFy9e1HvrwoULM2bMUKvVM2fOtFY8QkwW\nEBCwefPmuLi4gIAAobMQ0ukwehe7iouLR4wYoVAoGIaZOHGi9pHi9PT0I0eO8Dzfs2fP3377\nzcPDQ6jExkhKSsrPz1+yZInQQQghpBOJiIjQv1Hv5eWVkpKycOHCn3/++Zdffvnll190350y\nZcq2bdtsvKIQQjqgujrcuYP6ekil8PGBk5PQgYhhBp7fDwoKOnTo0G+//fbDDz9kZGRUVla6\nurr27ds3MjJy+PDh1o9ICOnsystx7Ro4rvHlnTvo3h3e3oJmIobdd1HYiBEjRowYYc0ohLSm\nGqrPwe0DXwy2H0R/BTtB6EjE8jgOWVn3KgoAnkdODuRySCTCxSKGtbTSmOO4srKympoaU5/0\nr6ysPHHixMmTJ3Nzc0tLSz08PIYNGzZnzhzvZr9ZpKWl7dix4/r16yzL9u/ff968ed27d2/D\nHNIJcFAuApd899Vv4P4MyTawUwGUlJS4u7uzrJ103eZ5NDQIHcJ+VFdDqdQfVKtRUgJ3dyEC\n2SeJBFb5B6J/o14jJSXl448/Pnr0aHV1NQDtnLVr12ZkZKxfv755edC1devWvXv3uri49OnT\nx9HRMSsrKz8/383N7ZNPPtF9HPnUqVMfffSRs7PzmDFjlErl8ePHAaxZs6ZXr14mzWmObtR3\nQNyPUD6rP8j4Q3qG4zBhwgQA+/fvd3V1FSCbqdRqFBcLHcJ+1NXh9m0D4z4+cHa2ehq75eFh\nhRM7AzfqAaxfv/6NN94wWGzc3Ny2b98eHh6+cOHCFj43ODj4zTffHDVqlKZBLMdx//znP/ft\n25eQkPDmm29q5jQ0NMTFxTk6Om7YsMHPzw/A1KlT33rrrbi4uE8//dT4OcRY3O/gLwsdoh04\nQ30c+HyoNh05/Fvf3mfCwsJcnRKhtnqwtvG6+wfRdMAeCqGAVCoUFKD5TyR/fzg4CBGItES/\nqCQnJ7/++usODg5vv/323LlzP/jgg4SEBO27jz/++Isvvrhv376Wi8ojjzyi+5Jl2fnz5//w\nww+XL9/7oXbu3LmSkpLp06drqgWAvn37Pvjgg6mpqTk5OSEhIUbOIcZieoCx5xubfCbwS/Ph\nG3k9l//tLZFI+v6Hn4P1s36udqMfi60Ri9G1K3JzmwxSRbFV+kVlw4YNAOLi4hYsWACAYRjd\nd/39/QMDA69cuWLyl7lLO5Keng5g8ODButOGDBmSmpqanp6uKRjGzCHGYjyAFp4FV4FLB3cD\nonAwNvmLs+hJqPVXyHN4cN4zay6mVyYkJPj5jxQkF7EGPz9Ipbh9u/GRYl9f+PgInYkYpl9U\nTpw44enpqakoBvn7+2dmZpr6ZU6ePFlfXz9s2DDtSH5+vubTdKdpzkg0bxk5R+vq1atqdeO1\nj7KyMlMTdmrqVNSvBH8LAOAA6QuQPC9wpOaYgRC/BdVanRHvmH8MTk7+kHp8dQqenvD0FDoE\naZ1+USkvLx84cGALB3AcV1dXZ9LXKC0t3bJli4uLy+zZs7WDNTU1AJyarmDSvNQ8HWDkHK3F\nixdr5gMYMmQIPQ9tLP4G6l8GX3X3dR0aPgPjDbHtNeMRvQLmIe0jxdV1T364eiD1+CLEpugX\nFQ8Pj1y9a5c6VCrV1atXtXc4jFFTU/P++++Xl5evWLGi+TNjepfXDDJmDoDo6OiGu49pcrqP\ntJOWKXfqVBTt4BZbLCoA2BFgG39dcHbG8ePHs7KyqMcXIbZDv6iMGDHiwIEDBw8enDJlSvPZ\n//73v6uqqqKjo4389Nra2nfffVehUPztb3/TW42vPeFw13nSXHOq4Xz3MUFj5mi99tpr2j9r\nHik2MqTdUP0I7pL5P1Z92MAgl4sGSzxfJ4X0ZTN+XGhoaGhoqBk/kBDSTvpFZfHixQcOHHj+\n+ef37NmjewsEwKFDh/7yl78AeO6554z56Lq6uvfff//q1asvv/xyeHi43ruaOyX5+fmBgYHa\nQb2bKMbM6UTE04Bp5v/YhnpwzXY6YPwhfdX8X4sQ0tHpL7CcMWPGrFmzcnJyRo4c+fDDD6em\npgJ48803x4wZM2XKlIqKimeffXb8+PGtfm59ff0HH3xw6dKlpUuX6j1hrDFgwAAAaWlpuoOa\nl5q3jJxD2kv8ZNOnWhnUeaH2SdTS6jxCiMkMrNr/17/+9fLLL/M8f+zYMc3Twx9//PGJEydY\nln355ZeNuSna0NCwevXqixcvPvfcc9OmGf7leujQoZ6enocOHbp9d61sRkbG6dOne/furX1W\n2Jg5pL3YPpCtBuMGACpHKB5D1nRkVeLiVlz9HqpaofMRQuyJ4TYtABQKxZ49e9LS0kpLS11c\nXAYNGvTkk0/26dPHmA/95z//mZiY6O7urncBDcArr7yivfGempq6Zs0aFxcXTQuWY8eO8Ty/\ndu1a3RYsxsxpjtq0mIwvh+oksn9FWdNmSh690WuGQJkMyM3NdXR09KE1CoTYpIiIiPsWlfb4\n/PPPDx82dPsX+O9//6vp3aKhbRbJMIymWWSPHj30DjFmjh4qKm1RnoWr3xsYD3seMrnV0xjA\ncdyECRMuX7585syZ4OBgoeMQQvQZKCpLly4dPXr0/Pnz73fMhg0brl69umnTJsvHazsqKsYq\ny7x376Q6H6XXDMzxGXyvqLgGwSXQwByr+OKLL5YvXx4VFbVv3z6hMhBCWmCgoeTmzZvr6upa\nKCpJSUnJyck2XlSIsdx7wf3uhcTyLMNFxX+kLZypKBSKlStXyuXyuLg4obMQQu6rpf1UDOI4\nzsjViMTOuIXAyQc1hU0GPXrbQkXhOG7hwoVVVVUJCQmm7u5DCLEmk/dsuXnzpn1sWUFMxYjQ\nczqcddoluPdEt6nCBbonJiYmOTmZenwRYvvEALKysrKysrRD+fn5P//8c/OpNTU1v/zyi0Kh\neOihh6wXkFiTgwf6P42aQjRUwsEDDjbRv4/juISEBOrxRYhdEANISEh4//33tUMHDx48ePBg\nC8e89NJLFs9FBMPAyRdOvkLHuIdl2WPHjl28eJF6fBFi+8QAfH19tQvU09PT3d3ddduiaDAM\n4+Tk1Lt373nz5j366KPWjkk6N0dHR2o7TYhdEANYtmzZsmXLNK8Zhpk+fXp8fLyQoQghhNgn\n/ae/tm3b1vJidUIIIeR+9ItKC3s+EkIIIS1raZ1KUVFRcXGxUqls/lbLu0MS0k7Xr1+/devW\nuHHjhA5CCDGNgaJSV1e3Zs2a+Pj4FraAtETHMEI0OI579tlnjx07lpqaSvfnrUFdCa4OYk8w\notYnE9Ii/aJSX18/YcIEzTYqEolEqVR6eHhUVFSo1WoAYrFYLhd+fTXp2GJiYlJSUqKioqii\nWFxDHor2oP4WALAO8HgEbmOEzkTsm/6K+tjY2NTU1PHjx+fn58+ePRtASUlJbW3tsWPHoqOj\neZ5ftWpVUVGREFFJp0A9vqxHXY3b8Y0VBQBXh+L9qPpd0EzE7ukXlV27djEM8/XXX/v53WvX\nIZFIxowZk5iYuGzZsuXLlx86dMi6IUlnoe3xFRMTQz2+LK7yNNSV+oOlBrppEGI8/aJy+fLl\nkJCQnj17AtA0jtRc+NJYt26di4vLZ599Zs2IpPOgHl9WpTS0Y7SqDLzawDghxtEvKvX19dpt\n9WQyGYCysjLtu46Ojv379z9z5ozV8pFOJT09nXp8WY/I2cAg60i360l76BcVPz+/0tJSzZ/9\n/f0BXL58WXdCYWFheXm5dcKRzuarr76iHl/W4zIUTLPnP12HCxGFdBz6RaVnz575+fkcxwEY\nOXIkgNjYWM1LAPv27cvKyqKdXInlUEWxHqkfvGeAkd4bceoHjynCBSIdgf7vKVOmTDly5MjJ\nkyfHjBkzZcqUkJCQnTt3KhSKsWPH5uXl7d69G8DcuXOFiEoIMZa6BqwjWt9Oz+UBOPZG7XVw\ndZAFQka/L5L20i8qM2fOPHPmzK1btwBIpdIdO3ZEREScPn369OnTmglTp0595513rB2zM6sv\nR5kCjAgePSAxdBGcEC0exadQ+CvUNWBEkA9Cl8kQO7V4iMgNLkOtFI90AvpFpU+fPprTEY1R\no0Zdu3Zt165dV65ckclk4eHh06ZNo+2EredqIq7sgVoJAGJHDJqHkPECRyI2rOgkCu4+8M+r\nUXYeDaXoNt+IUxZCzKT1Peq9vLxeeOEFK0Qh+m6dwqWd916qanHuK7j4wytUuExmdv369e+/\n//5vf/ubWNz6X0XSMk6FwqP6gzU5qLoK147zV4bYOvqXbMOyfjQ0eNBQUeHA3wScwXhZPpbZ\naHp8paSk9OnTZ8aMGdrxigzU3hQwl71S14Iz0P0VRSdRc8PqaewfK4UPdTQ1HRUVG1Zbamiw\n2YI19XdQfwC+CACYQZB8DGaIxbOZQ2xsbEpKSmRkpG5FAeDWF259AQD19bh1C9XVEIng7g4/\nP7D6zysSLVUVSs8aGJcPhCc9J0ysxXBROXLkyL59+zIzM6uqqrTPE+s6evSoZXMRAI5eqCnU\nH3TyafKSOwTVX+695C9A+WdIDoPxg21TKBQrVqyQy+WbNm0yPKOuDunp0DZ0qKpCRQVCQ+n+\nwP2IXeDcDdXZTQZZKVz7CJOHdE76RaW2tvZPf/rTvn37BElDmugVieKMJiMiCXo+2mRE9Yn+\nUXwp1Fsg/j/Tv14D+CIw1lgmou3xtX379vv2+MrOhrppv5CKChQVwcfH8HwCBM5AdgIaShpf\nshIETofETdBMpJPRLyqrVq3at2+fWCyeMWPGyJEjfX19WbrgYEbc/8AZ3eTGBxjriKKMxl5M\nrAQ+A+G6EyqdOfwVQ1/lR6hYAKivh/E73/B1QAGYEANvqR4DZ85Npv/344++YvGa119/JioK\nJSWGJ1U263UIoKgIIrttIuLgAKeWH+9tL4kcvZah4hLqCyF2gWtfqijE2vSLyrfffgvg+++/\nj46OFiJPR8c+CvbR1qdpeQPyGpQpwIohD4HYQX8Clwi+2U1YdjTEKwCgoQYwfju1IvAnwBj6\n/11iQmRjNDBMtUq1aNkyyGSmHSkWm3yI7bDKE26a5SmECEX/b3lhYaGfnx9VFBsicYLPgCYj\n1QVwcIdIBgCiOQaugLGzG/9g0u/FfAW4WsNNBs1t+p//PO3JJ6VSaUuT5HLoNDNt5OkJZ1oB\nSojt0r+0FRQU5OLiIkgUYqy81HsPhon+AjZS5z0pxO+BHWn6h6rB54LPA+raH9AYrVQUACEh\n+r/au52F83vg8y2XihDSTgbatHz66afXr1/XbKlCbEtJJjJ2oaEcN0/AvRf6/wkyN0i+Bvc7\n+LOAE9iHwZjevok7BdWr4K8DgHo7xG9A9JzZs5tMJsOgQchLQdUtiGrgkgaPFKg51OXCcSfQ\n7EogIcQGMHzTG7llZWWjRo3y8PDYuXOn/XYjTkpKys/PX7JkidBBzKr0Oi5shaM76qsgloEV\nob4GD62AqLVf+VvG30LDJKDpdgbiLyGa2a6PNQ8ONePAN1uaI/sA4llC5CGEtCQiIkL/TMXd\n3T0lJWXu3LmhoaGRkZG9evUyeDVs5cqVVknYKXGXoDK0lr7sJEJYAFArwYrAsABw50V49W3f\nlzsJvl7/F/+G1RAp2vWx5lFnoKIAUO4Cl2v1MNagqkZtHrhasDI4dIHEvbUDGA9InrVGMkKM\nY+BxlB07dvz22291dXXff//9/Q6jomKs4gxU5pl+mKGusXf+gLQKADgeDAdGc4pZitr23WPg\nqgFPAPAugaP2hsodsOa8uVJWVnb06NFJk6a5enxgynH1UO5Ak2eoAQDiiZB0wH50lVdxY1eT\nzXy7TIb3Q8IFIsR0+kXlm2++eeWVVwD4+fkNHjyY1qm0l7oefIOZPqsfGhgA4BrAiBr3fGUY\nMGHt+lTGDXwGAPAX7t2lZ/waH0o2B47jpj8xISXlTELCX0zce14G8RSofmg66ACRcRtJcTVg\nLbsuxIx4NfIS9beHv3MYbv0g9RAoEyGm0y8qn376KYDXXnvto48+kkjMvTyhE/IdDAw2z0cV\np4PnAECpgljU2AXLtRu6T23Xx/JBaIgC6psMip5p12c2FRMTo+nxNW/ePGUlVFUmxXsfDSw4\n7bU4KaSLUWHcUyQVaXAbbWJYwdQXQlWjP8irUfYH9VkxTCSD1FPoEKQZ/aJy9epVFxeXdevW\n0QmKzQl5BNkHmw4x6DGtvR/LDIR4HVQrgbs/7EV/gujF9n7sXQqFYuXKldoeX+paKA31ybw/\nF2AduHRwN8G4gO2POqM7MVc7Qd36LBuhqjA8rq4y9b9YZ8G7UFGxRfpFxdXV1dPTkyqKLfIZ\nzGWlsKK7zc2lrug1HVJzLCoS/QnsJHA/gjsF8ctgzLb5hrbHV0JCgqbHl4MvHHxN/RgWGASY\nvky89DY8zHSaaHmcCkXHoW52J8tzFGT2tKEB6ez0i8f48eMVCkWlwbZLRGhcWR4eWA55d/SZ\nicFL4exvto9mvME+AnaYGSsKgJiYmOTk5KioqHkm3kvphFgx/O8uY9U+5u/zMFUUYmf0i8p7\n770nFotff/11gx3vifAYFqFPwN2c7R0t5+GHHw4PD9+8ebPQQeyDfCC6L4BrKBy84dIDQU/C\nd6LQmQgxkf7lr/Ly8rVr17722munTp1asmTJ/dapjBo1yirxiCFSV6ETGGvYsGG09Y5JnEIQ\nbKhPNCH2Qr+ojB7d+LTM+fPnW9ianje+oTqxF4wr2BFCh9DBq1B5BjXpEHvBeQAce5twbEMe\nyo6gLgt1OXAOg9uDzU/KCSGWoF9UQkLo1ySbpKxV/7GTUxxVH/+CHTiTkXe1wNdwAWMzPdO5\nGuTFQVkEAMhE5Sm4jYaXcc2z67KQv6Xxz2oF6hSoz4HPnyyUlBCiS7+oZGdnCxGDtIQvVSi3\nTOJLFTzA56Ti4ArJrHh24JNNJ5WAcQHa1wfMdhTvv1tR7qo4Ccc+cGq1Jw2Poj36Y1Xn4fIA\nHO3jRhQhds0auwZ1UrzaXGvpVf99lq/Jh8zh7ubsauW+F6RdhzGuOk9/qfeDfdDwvo3WxXGc\nGR5Jr7lkYLD6Dzi09g2qK6E01C6s9hpkge1NZddYR6ETkE6BiorFqEpRk97+j+HryhnnOlG/\nIfrjN3YzXXX2TeFKwFwGU9D+r9gexcXF8fHx06dP79WrPacFPHilgWFlASpPt3Iod59C3pDX\n+rEdGQP5OKEzkE5BvH//fgBBQUFDhgwBoHnZqqioKMvmskN80VX1ma3m/9zqIvX5VANfrkLG\n3dTZ3Z2/BCYQkLf9C3EclEq293i2//S2fgA3M3pCSkqKb+9ZvR4Ib3sSANWXUN9sm2TnoZCP\nbf3YmktouK0/6P5I62c5hJB2Ez/22GMA5s6d+69//QuA5mWr6Omv5hjvPuKpa83/ucoaddq3\nUOq3hRKNe4MNjWh8wRdBHQPmAYgmA229ytHQgNJSdOnS5qSaHl/mWeroFYX8LeB1+hNLu8DN\nuB0tvZ9E/uYm5zpuY6ii3FdNBmoywNdBGgjXkWA7ym05IhDxAw88AKBHjx6a15qXxKpUZVBV\nQupt+Kq3xEn8yHuqH9/QHWN7TmL73O0jqfoE6ligAQDUXSBeC7Z9LSbbRNPjy93dPS4uzgwf\nJwuG3yKUHkT9DbAyOPWHxxQwxnU4lQUi6K8o/xVV5+DYG85hcB5ohkgdUnEiKrTnwWmoOIGA\nZRDZzUIoYoPEZ86c0X2t95JYlrIUhXtQmwUAYOE2HN6RYPRvdIkefhUiiTp5HV95GxIn0ZC5\n4qlrGzfpUv8b6g33pvIFUC6D9CcwJja2ValQWYmaGtTVwcHknXo5jluwYIFujy8zcOgG/+fB\nq8CIAKb1+bpEzpD4gJVA4guJt3nydDy1V3QqCgBAVYbiRPg+LVAg0hHQjXrh8CoU/Bv12i22\nOFScBsPCu9kVSIYVjVkuGrNctf+v4shPG8uJhrp5B5RaqLdD/HcTkhQXIycHKhUAFBbC1xfd\nuplwOLBly5aUlJTHHnvM/D2+mpXY1qnKkL8JqnIAKPsF5cnwjLCjHvjWU3PlPoO8yVWckLv0\n/8UuXbp09OjR8+fPv98BGzZsuHr1qqaNOTEZ9z9wd88FlUVwuAT9s4LfoTx7v5+kbGg61Gua\nDPHZhr7KEaiMLipKJWqL4dP0JlmZK3Tb84iebLnR5FNPPZWenv7WW28Z+0Utqmh3Y0XR4FUo\n+QGOPSExuT1yB2fwETteDZ5r3AKOENPp//DavHlzXV1dC0UlKSkpOTmZigoAlCaDa8Oeu8Mb\n/7f+JmoN7UvIDYToPg3ty6tRPrzJiPoK0HS3DUkJXMNN2LfxVg4Kmj2IXCLDYBOaxru5uW3c\nuNH4+RbE1dy9nKiDV6H6EtypqDQlC0Jls8vdsgCqKKQ9TL62wHEcw9CpMQDAo31PzValGfjx\nB8BzMsRuBsZLSlBTiJr+TQb5p8AdbTpPjKpZQLPnce+nvNzAYH09bhj9CcZjWQRaeAUip9Tp\nHK/DbJs6dyAuw1F5BvU3740wYmN74RByHyYXlZs3b7q60sMh5uAUCrG8yYUaAM79DFcUAJ6e\nXG0621XvJmpXqM5CvRlQAgDjBfFasPorJVuRn68/4uCArpZoL2Z5YleInKGu1h+XBgiRxgx4\nFRjWMv0wGRH8nkXZYdRchroWsiB4PAKZff7/TmyGGEBWVlZW1r1fmfPz83/++efmU2tqan75\n5ReFQvHQQw9ZL2AHxjqgyxwU7ISqrHHEoRt8Hm/hCPHDrxsaXQHRIqhjwQyBaBrgbFoMX1/c\nuQN10313/c23/Ze1sfCMROGuJmMO3eHc/z7zbZc6Dw0XwVUCLES+kA4Ga459PptgHeEZCc/I\n1mcSYhwxgISEhPfff187dPDgwYMHD97/ELz00ksWz9VJOAQjeDlqFVBVQOoDh+BWnrpxus+W\n3IwfmH5gHzC5ogCQydC7NxQK1NcDAMsiIAA+Pq0eV1pa6uHhYfKXswKXoWBYlB6GshAiJziH\nwWOy3bW+V99B3cm7Lziob6OuAo6TwNDaRGLbxAB8fX0HDBigeZ2enu7u7h7Y7MI3wzBOTk69\ne/eeN2/eo48+au2YHRgjgZOJa0rMzs0NYWGoqEB5OQIDIWr9Pm1mZubw4cPfeeedN954o9XJ\nAnAeDOfBKP0JHgKsAzWLhgv6I3wNVNch6SdEGkKMJgawbNmyZcuWaV4zDDN9+vT4+HghQxHr\nYxg4OqKuzpiKwnHcokWLysvL/W3jKpk6D+oSQ2/UhTZ7YttucIaen1DdAK82MG7XxCFg6S5t\nB6J/o37btm3t6y9LBMJOA2P2K+6GmbPHlzmIAiAyeBu+9Co8uls7jZmossHX6w+y3pBSxxli\n2/SLyoIFC4SIQdqNuc/tFuOxLBxbb0ap6fEll8vN0+PLouQPC52g7cRdocw0MEiIjdO/e5mb\nm7t79+60tDTtCMdxH330Ubdu3aRS6ZgxY86dO2fdhMRaxGK43edp5rs4jlu4cGFVVVVMTIzZ\nenxZDmtobamdkA6EyKvpSH+IWn9+ghCB6ReV2NjYWbNmXbt2TTvyySefrFixIicnR6lUnjhx\nYtKkSXl5edYNSWxFYmJicnKy7Vz4ap397tEggsN4OIyGJBTSgXCcRLfoiX3QLypHjhyRyWTa\nPbhUKtWnn34K4JNPPvntt99mzZpVWlqqGSGd0OOPP759+/bNm5t3sbQxKhUUCvz+O377DRcu\noMTgfXw7IAqAdCAkoWDdhY5CiHH0i8rNmzeDgoIc7jY/P3XqVGFh4fjx41977bXhw4dv2bLF\nwcGh5VUspGN75plnAgJse3U6z+PqVRQWNq7orK1FZqb91hVC7It+USkuLvb1vdd37/jx4wCi\noxvbAcnl8j59+uguvyfWpPrf2wAADnx+Y18W0lxxMaqq9Adzc4WIQkino//0l0QiKdfpMPjr\nr78CGDv23sbgzs7OanWHe1TeuviyHNSUMN59IDV1ATwH9WdQ/QOoAiQQDVItbQAAIABJREFU\nTYfoPTBerR9npNJS1LWh77KNMdgis6EBN28aswrH1nl5QUqr6ont0i8qPXv2vHTpUl5eXkBA\nQFlZ2eHDh11cXIYOHaqdcPv27S7t2Ma8k+NvX1B+v4i/+RsAiB1E414XP/Jek023VB9B/M59\nj+dOQ5Vx94US6t3g8yD5zmw9SNzc0AG6hapUqKgwMO7rC9bOmrUY0AHqIunQ9ItKdHT0hQsX\nIiIinnnmmb1799bU1MydO1csbpxWVFSUnZ398MN2/Pi/kOrKlNsf48tyGl+q6tSHP2RkLqJx\nRnY6qQR/Fmj6mCx3AtxRsBPNEI/nwKggkukNX7x4ccCAAfa034GXFwoKwHFNBt3d6Rd8QqxA\nv6i8+uqr3333XVpa2quvvgrAw8Pjvffe076blJTE8/y4ceOsGbHDUJ/7F9u/iHFqeirAfwJl\nA7Q/srmT99+0sZDtaWirAnUcuJMGxo0kfhlwAwB1JaovQz5K983r16+PGjVq6tSpu3fvbvuX\nsDInJwQFNbmJIpOhu70urSfEvuj/kPLw8Dh9+vSWLVsyMjKCg4MXL16s+6jPpUuXJk2apH3g\nmOji88+r03a0MIG7fpi/2WyfD1Ty5XcgvXv+wVWCrdR9m3GQi8a/DQD8Te7q12y3Zr9us7Mg\nmt2O4PcPzHGLFi2qrq6ePn16ez9Lrcbt26iuBstCLjemC3K7+PnBzQ2lpVCp4OQEL6+OcOGL\nEHtg4DdfuVz+2muvGZy9fv16C+exY4z/ELF/S7tjqZPXqTR3U3SJHcSR6yHSlAoVVCsgfqfx\n1EGDU0LVoP59q/roWr6sWn22VhTmIJ7oCgcGABgPsJPM+41oxcTEJCcnR0ZGtnepo1KJ9HQ0\n3N17saQEpaXoY+HezE5OcLLjFfWE2KmWdn7kOK6srKympsYOGnLYA3bwHBz5CPVN7iGLHlgA\nkRTgoY6BaiNQDXUC2IkQr0G5GhcSUJIJnmOqihhVNQ+gjlOfruFL1JK5HmDcII4159NfOrQ9\nvjZt2tTez8rNvVdRNMrKUFho8fMVQojVGS4qKSkpH3/88dGjR6urqwHwd3tdrF27NiMjY/36\n9d7e3tbL2FEw7iGSP/1LtXshX1OsGWFDI8SRnwKAejNUa+5N5Q6jfi5Se2sf8GVdvNi+E+rT\nkqCsB8Bl1nPZz7ChbxioKDU1bexNoq5DHSCuBsBx3JqVK0ODgj744IMgDw9UN79qZ4qyMgOD\nxcWtnEnwatSkoaEYrAwO3SALblcGY4jFkOk/p0AIMYmBorJ+/fo33niDN/SDyc3Nbfv27eHh\n4QsXLrR8NjvDlyq4P3a1Ok300Et8cRavrGZcAxh5kPpEDKCG6jNA0+hcc8eeB9JQnIfyJnf1\nGYkDr2zsh65OvcAXfN388xnWC0ybnjrlG6CqYHzrGP+w7Kys6pKSWdHREZMmoS4P3HnwFWB8\nwQ4HY/qPXYNFTq1u3GvSIPUlNHwLtgosoHZDcTCkYXAdYfKXNgnPU1EhpJ0YveKRnJw8fvx4\nBweHt99+e+7cuR988EFCQoJ2Tn5+fkBAwOOPP75nzx4h0horKSkpPz9/yZIlZvis6gJkHzbD\n59yPQxac08Df3eePZwAWjBoA6mSocsb1EO1crjyPr278rZ/tPYUJGKr/ae3B1UNZDFnjcxlF\nRUUODg4uTnegTkZAIZzrAIDxhcNWsD1N++SrVw2crAQHw8/vPkn+QM1cMCqdERlKJsLneTj1\nNe1LE0KsKCIiQv9MZcOGDQDi4uI0G6vorU7w9/cPDAy8cuWKtRLaAOcuGPBUWw7kG6Bu1izE\nsBo0PAJwAMBJwUkgbgCAIh/c9IfOr85cXTFXfpP19mO8AhA2Ae6DIDLfvWh1JWoy4dpYqLxD\nAb4Ydc+CrwVEUGsW/1ej5h04mLiTSqAram5DtxGDoyO8JFDdpx9X/UZwMjR+5yKAA3g45qD6\nHKS+hg8hrWAg9hA6A+kU9IvKiRMnPD09W9iqy9/fPzOz2eZBpDl1NWr1/kOdApNjeDLfHfwd\nAAALnoWKBURw5RCarzuLDZSI3YfDQbOVVhwqRJD6QmSONfA8B64afA1q94G5+7eCvw1Oqf+X\nRJ2D2v8D0/p2Xk30UKOuHmo1GKbx1kX9/VdTqq/c+6K8CAwH8JAUgj+Aut9N+7qdEB8GND+f\nYyx+8ZAQAM2LSnl5+cCBLW1YynFcXQdoD2UFYg+4Pth06EHDMwGgDMq54M6Ck4GTQsxAsgHX\ncnHjV+0M3sFHffsU+/CDTTpJMhJ0fQliT9SXg5VA2qYdhavTUbQXakcAYESQj4LXNICBMgEN\nhn6IO74Itr/JX6WVDcB01E4Dl60/WB8I0VK4jG0+nedx8whuJaO+FM4B6BENT9PTEULMwsDi\nx9z793NVqVRXr171u9+lcNJ27pDsA5eChk8gmgLpXDDeeAAICUfRZfAcvPsxPv2ZneH6x/FK\nFBxCYTFUtQDg6INuU+BiSmv6hjso+A783UrFq1F2HGJ3yB8Ca3ApiQxMNxO/OxOJpoFrdoVN\nNRAeowzNxuVtyP6x8c/V+bjzO4a9Cj/DcwkhlqVfVEaMGHHgwIGDBw9OmTKl+ex///vfVVVV\n2k74pIna66hp94VBdX/AE6K75wcM4KM5+biFolw2sJuBQ6ovQyKGRPMiF7nx8B50dzWlEWqv\ng1cC/I2b5X4+LhKpCAyDkl+gqgQAVQT4XLikg7n7QIf0L2AsvKhQ+gK481Dr9J5RPQSv1feu\ny+moUNyrKFoXv4LvcLAtrcIihFiE/j+7xYsXHzhw4Pnnn9+zZ8+wYcN03zp06NBf/vIXAM89\n95z1AtoRx55wNPGxqObqfwAzCFJDK/Or/mjSz1iLb3pzglOh+jbcjF7VwdVDqSrLL/vfiRsD\ne3uPDHZjnGVwuvuZ4vGlmXfqSsYBSsABbAiYQCDN+G+oCYaFyyAj5kmAf4K7BE4BRgI2FEy3\n+00tPG9gsKES2T/A0YbXVrp1g7O/0CEIsQD9ojJjxoxZs2Z99913I0eOHDVqVGFhIYA333zz\n2LFjJ06cAPDss8+OHz/e+kE7iLJMVOW1NEEtBzIhqgAAZS1un0VlPsDBxR/+w6D0Q23TO+Q8\ng3op9NaB8AwkRt9Ir3bmC7gfUkqkvHN/d1+mlkEtIHeATPMJjjKHLmy3PpA5Adbs8ssAA4AB\nrc6T/T97dx4YVXUvcPx7l7kzk0z2fSPsICC7iqBIKzwVxO25V0SrVnxdbNXaBftstRZfa23r\nRtUKaKXV2kq1WutSiwoKiAIKCLIGCAlkX2afe+/7YybJZGaSTPYQzucfM2fOvfcM18wv9yy/\nkxK73J5FwgDeokEVGWSEQSpGB8Hzzz+fm5v7xBNPrFu3Lljyy1/+EpBl+Zvf/GZwzrHQRakj\nSR3ZXgXv35BGok3GW8+Ll9AYNvvry38ZWdPkyfOpWYvhA7AVUaNjuiJPklREYdyZpD/f+8jz\n7373mU+/d8m4689KwqwGiZo8pobOkDCwc/SoNvatiSy0Z5J7RuznOkEQelWMoKJp2iOPPPK9\n733v5Zdf3rZtW01NjcPhOPXUUy+//PLRvZ0EUJBmhxasbH6iVUQBTF3xHqf0KIxCdyOreDSc\nR2kojTyJmoLzz3FesG7fZsMwf/P1Kd+4uBilkbQGAKORz3/e6UWOHVIsjL28Z0+ZmM+Ya9gd\n9nFlCxO/KSKKIPSPNocyhw0bFtxS5WTnruJoVGrh3qCX4/k3+hEAdQgHj0S1pEZSrNhaL2Gz\npqJ7aGyKK5JCxrj4B1RM0/zNn/6zc1/pty4dllBUQk06WnPv3Gos30YeDpA7hcSB25c04jJS\nRnJkLd5qEgsYdqEYrhCEfiPmx3REtZFc1OtXMSqpfwmbp2lj4CNIsVabx2xMyhDcVbgrkVUS\nc7F0Yt/7iuPHtx3xDc1Om71Qw27i1ghf6KJsQDsHToARgMyJZE7s70YIgiCCSscsiWR1PFzc\nXfW/QjYJT8lSaKc2apHp8P/q2cZkZ41f/c7nrj3vkncvGjhUwse95Vrsvf/ZBUEYRETH88Cg\nH4wsGZNCRus16JljmX5bj185ISEhc9KFOE5FNrG03tddGrhdXoIgDEziSWVgiE6lJUvMm03p\nZEo3gUnedCZc3YkljZ1lXUTg+5GFlqt763KCIAxSIqgMDNaz8O+MLLTP5tSFnPq1vmiAci7a\nTXjfbm4Q2jdRemujYkEQBqveCir/+te/du3atXfv3sOHD5um+eSTT+blxZiRs23bthdeeGHf\nvn2yLI8bN27RokXDhg3rQp0Tnv1i/J/h3dBSYp2F/UIAw4vvGJKMloNk6cU2qNdhGYXVBFAm\ni74vQRC6oLeCyooVKzweT0ZGRlJSUn19fcw6Gzdu/MUvfpGYmHjOOef4/f7169fffffdy5Yt\nGzlyZKfqDAoSyf+LbxOedwFsc9GmA9RtoPotDC+AkkjmwvjSnLRn9erVw4YNmzlzZqxWJKO2\nnYjRbIQapHzo0s6SgiCcBHorqPzwhz8cNmxYWlragw8+GMzvEsHn8y1fvtxutz/88MPBtMfn\nn3/+D3/4w+XLl//617+Ov86gop0OFpBCub9cu6j8R8u7upPjf8WSjrWgy1fYt2/frbfearPZ\nSkpKEhPjnnxsluK9D/19ACkRy61Ybm7a+VgQBKFFb83+mjp1alpaezvNbdmypbq6et68ec2J\n9MeOHXv66afv2bOnpKQk/jqDWe26yBIzQO36Lp/PMIybbrrJ6XQ+/PDDMSKKmkzy9FjHefDc\nFooogOnE9zD+VV1uhiAIg5gKLFmypLOH/f73v+/mhXfs2AFMmjQpvHDy5MkbNmzYsWNHcXFx\nnHUGM3/Uvu5AoKbL53vsscfee++9BQsWXH/99bHel2LmlifwBsaeqLY9gWWRmOghCEIEFXjy\nySc7e1j3g0pZWRkQMXoffCIJvhVnncFMTSJQHdnLpLaRlbcjBw4cWLp0aUpKSuS9Mz4n8FZ7\nR+qxstSYjfgegHY2mpTRvteVhgqCcCJTgQULFvT9hV0uF5CQ0Cr/R/Cl0+mMv06zO+64o3mf\n45SUlKFDh/ZGs/tUypl4onbhTD6jC2cyDOPGG29sbGx89tlnCwtbpx2WT0Vrd/DfvxJf9AYq\nCpa7kDqREkYQhJOBCrz22mv9dXlJ6niwN546wObNm4NBCJg8efJgCCqOifgqqH0fMwAga2Rc\ngL0r06ldLld2dnbbHV/tUs/D/1hkgn31v0REEQQhWr/1iTc/cKSmpjYXBqNC8xhyPHWavf76\n66YZ2qzq7bffrqys7MXW95n0c0k+De8RJBlrEUoXv8cdDsdf/vKX5ie5zpHy0X6B7x7MxlCJ\nPBHt3q61RBCEwS0UVHRd9/v9kiRZrda2qnq9XtM0LRaLovTAMoXgSElZWVlBQcsE2YhBlHjq\nNEtKSmr+2WLpzUWCfUxNRh3XXgW9gdr38B5G1rCPJnkmUuwbZLPZutqG81Cmo7+PWY08GmWW\nyBonCEJMoa+GK664wm63/+hHP2qn6j333GO326+88soeufD48eOBbdtaddYHXwbfirPOyS5Q\nR+nvqF+P9xDuvVT/k/JnQtt89SwpA/VSLDehnC0iiiAIbZGBLVu2rFmzZtiwYf/3f//XTtXg\nOvaXX35569at3b/wlClT0tPT33777fLy8mDJrl27Nm3aNGrUqOa5wvHUGWzkJOQkdJ3KSkpL\nqaggEIis4zsW2k4YqH4NvfWcBc8B6jf1RVMFQRCiqMCqVauAu+66q/1eI1VVv//97996662r\nVq367W9/2/55//GPf+zbtw/Yu3dv8BJ2ux1YvHhxcFGkpmlLlixZtmzZnXfeOWvWLL/fv27d\nOlVVb7utJbt7PHVOMP4KAnUd1PF6OPIOfn/oZZlCQQHhU+BcO7EWh8ZXXFErSADnNiyZPdLe\nEC0XpZ3Zw4IgCCEq8P777wMXXXRRh7UXLlx46623Buu377PPPtu4cWPzy48++ij4w+WXX968\n0n7GjBn33XffCy+8sHbtWkmSJkyYsGjRouHDh4efJ546g4ppUlraElEAXaesjOHDiW8WXLPX\nXnvN4/Fcdtllsix6qwRB6COSaZopKSm6rjc2NnZcHVJSUiRJqq2Ntdh7wHj11VfLyspuvfXW\n/m5I5zmd7NgRo3z0aJqnwNV/RMK40CrI48/jjKqfcfHe45mTJ0/WNG3nzp3NSW4EQRB61fz5\n81XA5XKlp6fHeUxiYuIgma3bN5xOqmPtNt8Wrzd2+fHjNDQ01ZGwVCDXAxgzcFkww55slBSz\nNu+JB+93Op3Lly8fjBGlDrMKaYhIEhMSCGCaDKYZj8KJTAVSU1Orq6sDgYCqdvBbqut6VVVV\n+5kihVYSE4k/GTDg88UOQgUFLeepP0JCVku+Fj2H2rV4DyFpJIwheeYjjzz+m2eeufDCCxct\nWtS91g8w5kECP8AI9r4moH4H5TsndbJkp5OSEoJ9DJrGkCHE/dehIPQSGRgxYkQgEAgfAmnL\nxx9/7PP5RowY0fsNO1lpGtnZkYXp6e1FJiWJjIXkf5O8W0iZfeDg4XvuuSclJWX58uW92tI+\n58a/uCmiAC4CD6J3Om3d4OHzsXs3zb3WPh9791LX0TQQQehlMnDuuecCv/vd7zqsHawTrC/0\nliFDyMsjOLouy+Tk0OFOl34/dXU0NBiBQDDH16OPPhqZ46vLKip65jzdpL+C+WVkYeA34I9V\n+yRw7FiM6eZHjvRHUwShhQrccsstv/rVr1566aXHHnvsW9/6VltVly9f/sILL2iadsstt/Rh\nC094zs/+Xbf+Jb2hMuWsq5PP/O/Yk7iM/6CvhnIoRv0GRZMoKsLnw2LpeNLXkSOUlRFMUaMo\nl51/fm5uboyOL+MdjI4fRmNQ6gkkd+XAdlQU4evk8n6zDGIlLpNeBK1HGtU/5CnQpUwHNbE2\nQXC5OHy4my0SKCzs7GRLoZkKDB069O67737ggQe+/e1vr1u37q677po2bVpzGkfTND/99NOH\nHnrohRdeAH70ox8NGTKkP5t8Qjn62E01/14R/Ln+o78lTphT/L//kiytc+HoTxC4v+nFJ/he\nxvIH5AVocXxXVlRw9GjzK1nXvzN37nduvz1GTXku8txOfwCPh5pSHEVxNSZ+kUl24qD/nsBz\nUaUq1t2QEKP+oBcIEJ3MTdMoKuqP1ghCSGhk/r777ispKXn++edffPHFF198MS0tbcSIEQ6H\no7Gxcd++fTVNfxPdcMMN994rMgnGq+79PzVHlCDn9rUVf7k/+2s/bykyDxN4MPJI/11Yz43r\nD9imXAMtDIPjx+l+xgGvl/37Q1POqqrIyGDoUHoi7VsXyRfCr6H1xHf5opM0ogAZGTF6JjN7\ndNGrIHReKKjIsvzHP/7x7LPPvv/++48cOVJTU7N58+bwekVFRf/7v/97880390cj+5MZ8Bme\nyL1b2mN83NzL7znw+4Rxrf7At2edYVM8+q43wy5QinlpjPPIf4fwWXZuzBJJrZG1bPypqB5k\nK4BRg8UAMC0Emmb+1NbS/QWPERliqqqQJPpx2alUiOV3+L8H9aES+TQsy/qtPf0uOZnCQkpL\naUrOTVoa+fn92iZBaD3T/xvf+MYNN9zw3nvvffDBB0eOHGloaEhOTi4sLDzrrLPmzJkzqFL/\nxs13bH/Dxlc6cYB5CPTgj+4vSwLVevibDdUfOg9s9VnC/tw2D2B8FOM88hGkrKY6lRjvQiBh\nrCVhiIaniIAD83SSZ+KrxucDMBJagkpqanf7QGpqiN5bs7KSoqL+XA8hz0c7HeM9qEIai3x2\nm/OJDYxGkJAdg3rKcX4+6enU16PrOByEJeoWhP4SuTBF07R58+bNmzevX1ozAFkLxlovG9u1\nYwMNdzlf+XVEoWPqWZn/Hbahr3kQ35mtapggJWN9HuwA+HF/lZqL8OWCSRn4M1AacRdzzIsy\nkQZ/q0FFycAIdHe0NmpjzZBDh3p4cKUdJqYlhZRkKbx/S8pE+e/2jwscwbcN0wMg2dAmoxa0\nf8SJzGajyzsaCEIv6Lf9VAYjN+bx8NdZl13r2vknva6lUNJsuTfcjlkSVktC+Qb6UxAMJyCB\nelfoVN6PcP8JQ8N6GPt+bCXIPlzDsZbhGo1rJElvPPuvPR9t1B9YcltGSgpqA7mrSf0qyhVd\n/RRJSOlUV1NfH+PNop4esW+D/wt8u0OPfHIa1mnIKR0dA4BRhXdz87Mipgfvx8h25O4sCqyr\no6ICrxebjZwcHCK3piC0KRRUrrjiijVr1nzve997+OGH26p6zz33PPTQQ5dddtnf/va3vmre\nCcW9l/rV+J0oNhx5JGQriQy9+wbfkc2BhmpMQ0lItRYVy/aXaYg++ByMavCBDTkL72bYjOFG\nD1t2YKh4hiDpmBZ8uUh+7Ae9bvepk10TJ5Nyyh9QJWQfGDS+gxwre3H7rGkoVihEHkOKSfqB\nUMca4BlGIIW0tE5ElJoa6uowDBwOsrI6NUHTvxffzpaXRg2eDwz7OX4pqc2/eJr5vmyJKCE6\n/i+xzoj/+q2Vl3PoUOhnp5OqKkaMICOjq6cThEFOMk1zy5YtU6dOHTZs2O7du9sZOAkEAqec\ncsrevXu3bNkyefLkvmxlZ/VDQsm6g+x5GTPs+yx/BgVnB3803PW6q86SUYS5D7M03nM6VxDY\n1/zKqB9jeHJAwVSQnfiyTcP2nw37j1d6Z5xhGVoc/viYj3xadz9RIECjE10HTOcoU8olLS3e\n8f/aWtzulpeqSmZm/HHFvw+iVvUptno5U+kw503gIGZU+jTJijo0zou3puscPx5ZKEnk5Ay+\ndQxKJsrgSxQn9K1QQsne2E/l5GKaHHyjVUQBjm4gfSz2LEC2J8v2ZABpBFLcSW78K9Fbhl7l\nhKNy2mYCqb79t4KEN2/zZ+UbP3SOGKEMybQZ4YMg8hykCd35QCEaeL04naQkdWJ83u1uFVGA\nQID6elLi7MCKEVEA01AlZ6WketpviWLHjPq2l2zIXdsM0+9DjZXi01fd4xMW5OR2++gsFuz2\nnr2iIPSG3tpPZZDzNeAJS/vorccXa+OA49tIG9XyUrWTkI3fibuS5DjWkcip6Meii7W8N/Hn\nHjj03nnfX6Go2vYt+Vp+A76cpqOmoX4d2sh2HJuXwF8JfAhO5OGo1yGHTR0uqycvsRMnPHQE\nM2qxt8XCqHFxHW4SONwqrsgWl6HbLImVqqMcUyY9t52vV8ke/nQXohajhE/PVpR4H7kavBhR\nTypAgY2Ek3EypCB0SAX279+fmJgYT6qovLy85OTk/fv3937DTixmx1WaGX68tRBHULGdj393\nqxJvPq7h6Ekg3fzDNxqdvmcfvryw+CH0p2g0wYI0FnlmywrB4KhGh43Xt4MJzZPQPkJ2IjU9\nJHm9bSbkjynmzLFAgIMH4zyBLRvT1fJSUr3oqqS5AAyDsjIcjraiggJSFqaz6Z5IyIlIOoRv\n12C1xruKU9djFEoSPl+rjdTilJwc7+OaIJywxH4qXaIloYWtCTANStfhj/oyzZpIQuuUw+5K\nqnfhrsCa2vHDiu08Aodwrwm9lDTcWQRSkExM6cHvf/VP/9hx/UVDcVXhuDd24pPohMfRAq/h\n/UlkoTwe+187Pjamo0djpDVMTmbMmDhPIOt4NqI3rZORFL+WVqLKTZHSNElNJa/NTC8ymE70\nKgAlA6kzOw/EYLO1DNQHDRsmFq4LQlvEfio9QZIZeh57Xm5VmDs9MqIc/Yjqd0OTkw59jtVL\nWkGMIRa/P2xMIhW+FlpzYSo4y9GswanHp52Sedopp+KH8k0oX3S6zUo16lEAScc4M0YF9Y8g\ngw3f6Z07s2miqq1W40sSmtappTO2IswUn1njRjZkxYfU+nmrujpGgt4wEqjBkZVq6MweabGl\np+NyEQigqiQm4nYPoKSNqtpOfBWEvqcCI0aM2Lhx48aNG2fNmtV+bbGfSptSRzBuEeWbcFeh\nJZExnoxTWlWoL6F0Xat8um471ncp8KPEyv8YzVPJ+0sYMSb4pNJSnjMXx6mdbrBZhVkO4F9J\nIHpJv4z9dlDBglxk+JA7tTolL48jR0Kdb4mJFBWR0OkMXRJIFRUcPNiShqRZRgaDcEdLQRgM\nVODcc8/duHHj7373uw6DithPpT2JuYxoe7JDVayHiepTyPk18mVIcWRVURLRciILLRkkxNut\n1IqUgZQBoF5E4PWoa81AnmR4OfYutdswvKhJZM4i4/T4sp5YLB3vAROPrCx8PkpbT8K2WETv\nkyAMWGI/lW5wV1K1s+NqQY2tvxmttXhTCTgon4H8JtLojs9gzyRxLImpuJrik5ZDzpWdfIiI\nosxGvYxAWN+dlIr1p5gceZmGpm2xAg2U/wvTT+ZZ3bpap+XnEwhw/HjoecVuZ/hwOuqnFQSh\nv4j9VLrBnknh7E7ULwvbI0urxZuK/Ti5H2D5GvJsALMS8zOQkCaGHiPCGK7qgMup5X6bmrdR\n0rDmouUjdTsbMWD9OcpZ6O9g1iOPw7IYKd15sCWiNDu+lvTTQvmR+4gkUVxMfj5uN6qK3T74\nVh0KwmAimaYJGIaxePHi559/Pljazn4qK1askAb8b3U/rKjvkN/JjlX4Xa0Kh/8NRznaBqRc\nvfHZyvXupgUaFuQzkSaGqnnrOfLRlh17A4ZZlOXIHTeJlHE9/9VumgQCzWv6PGU0RkwdN0Ei\ndRLqgMl9JWtkdSasC4LQq0Ir6hH7qfQBSyKjr6DkJRqdIKHVk/cejhLUB5ByMd5RLD/MmRNx\nyJ+R5+B38pcrDhzft3hVye1fSZucn5JjH8XwbzDykh5uoc9PTQ05oWGb2m1RQUUCk6zZaN1J\nzigIwqAm9lPpQwnZnPJNXOuofYOsz2ECyv8hnwmgPxOjvv4H5Dl88Tej9tCNfyxzeo0F4x2F\nqSrAp0/2cFAxDJxO3G78/uDDimMkihW99apHW36fRRQT1048h5D+o1U8AAAgAElEQVQs2Edi\nG9o3VxUEoZvEfip9TplAYyUlwe/m9ehrMBsx9yLbo1bm70b5NYfXfXrIc8G4xO/OSZtUaAWo\nrcbp5LWbSR2GEsdeGolZTLy+vQq1tRw8GMpJXFFBXh6FhWoi+RdTugajaeW4JYnCyzr7aTvg\nqUa1oUbMNzYDlK/E0/SgVPtvks8ko+M0Qt3RUELdAVQ76eNaLWwVBKFTxCyaPic9z9AbGH0J\n+lHq7ycQ3FslCzmZhP3InuaKhnN84PCdh93VX/ndq4rMjnua8nElOPD5yR6NLZXxi1G6N7ji\n8bBvX0s+EtPk6FE0jezs5FOwF1C/A3891kxSJiL33MPqkbXsXo23FiB9HONvIql5/kftuy0R\nJaj+I2zDSeyJLJlRTJ1tj3F0XeilJZHxN5Pfx5PcBGGw6Im5Q0Ln+NAcYFD/YFNEAcCw4h4a\nvgzE99k3/Hv5wZOfNnqNR67IKUht+gugvBRHIZKEt45jn3a3OcePx8hwVV4e/K8lmYwzST3D\n/HJd4PX/8b/xHf/2F3QjVkKsTinfxGePhyIKUL2Tj3+Or3mbGefnMY5xbuvuVduw56WWiAL4\nnXy+nMYBs2ReEE4s4kmll9V8iTP0BY1ZhlGP2Yj0NKaHgAVOiaxfNw7JwFBMd4GWsoOUHX96\n5OKqukl5SU7UxNCML9mCooIBUPchjd2LK3qAxGASlEQIexI5uCv4XyNAwx5z6HCGNj0p1b8v\npXa8tFEnUIfhBRPZipoCKpIU3EfdX8KYCyIPcH6OFty4ORBr00lvKdX/avNiHrwVGD4UO7Yc\npM7sTarpMRrjPYijnaRhJqYXdCTrwPsdShiDrSdWngpClwy0X4gTn34Ez9stLxVIDn9bRa9E\nKUJ34otK0Q5oI/W6TKM+HSP0/S7JambamIDcoMob8dSRkIE1yWzMx5cEkDGeIV9tqy2SAmFf\nr6ZB7TbcpShWHCNJDH7zHDrU/FzSwmpl6KTgj/++27/vzVDqLVuCbEuQgSGz5IwxEmD4qY3e\nZNI08JW33oJRRstt/rKv3RMj94p1HQnBLFa+aaF0Z+GUJNTUyDI7KcPwVtCwNxRkAdlCygSU\nOPPCmOx7NUaa6aTtZB+KVR9MD3oZZtOumHIqSnZ8iQb62/BLsHQzvaYgdEQElZ6mFJJ4Y/BH\n00WgLOwt04NZguFAng6puKNyrgD2hYHDmUbUfsOSgpmzm/ItJOcHS5w1mrvRQtoo9rSZeF9O\nQ24KaYaPo6/iC8uumDyBzJngzeZQQ+R3fF4eO0Mlhz9secvjMjwuA3Ack0ddHfqfJzM64WT9\nehq3Rn20MaSFJoBsui9GTueMqQy/GACfQeU/gjEpOafG6nCjJFHwHWI9f/gb2PsYqVlNr02Q\nsOqMuDbeL/qjH+KuiCzMPZNRV8SobPpwv43ZOrpZRqN1PvuaIAxKIqj0IikBS3NeLn093u+3\n7F4lj8c/Hu/HrQ7QppOSYRrouyK/D+UMLFPzePe3JA8Pfm8GarJdttOxO9rbzaUemnqSaj6J\nHCdwb0S3YM/TUIbYfNu1hEoAScJux+KkKbCNmaMbURmBk/Iks7btATnXAfSoCOA6grQp+OPo\nBTREDVpkT8FsGmXBOhpvKbrL0K2Gko59HHWtM+KomaY2HKj/AsMXVi4BeI7hLot39vPwi/li\nZasSLYmCs9GjHpYA/wF0V2Sh90uUEZ0boJRVJPHLJwxG4v/rPmFWtYoogLEDLR2+gndtKCpY\nzybxm7pHkotgP4YnGDsAkNFGo/s0UqdTNAfXMRQtbWRxmj0rxrXaENiGPWobtpQk8mYDSQQm\nUF+J00lWVsRGudrbuqsMIC2PxORQixx5ks3d9oNAIA3DI0mto51pwRNKLWzLxyERaH5YkbBn\nYtUg/HtcnopsBqqlQKzc9aauBbdvNhtIi5Ww2LMZX3xJ0VJh8oW4KzENAMVKYj7+rcTchMtw\nYsbasaxhbecy5lhSB1Bigp5iGYEktjw+6XU6qGzZsmXlypWPPPJIb7Rm0NL/E2OHXX0dSctI\nWoJ+FDkPOdnwUfMJpmlWeirTAllmI6aJbEfOxbsXdIWy8fiy8TgxvMjHsMpYIlOEtdmEWF+F\n3uPUfBL8MQk9Abeb45FfdfnTzM9X67qPxqY+osRcafwUxdfed2i9anyWOvKTVmWpc0hr2VE4\nGaq2U7sXSwKZk0iI1RcYD+dBjj0bWSir5H69ExOgU0D30ngESyL2nPayi/n34ouehqaQeL6Y\nSikIEH9QqaqqWr169cqVK7du3QqIoNI50REFwMSsRh6FGuojkzUyZ/Hoo4/dddddf/zjH6+8\n5cqwpxUwJQ5+jvGPVudIPZuM8+NpQsNuXFE9TikTyGze7kAHj0SMgVwpZbKy+Um9YoehWKXi\ns+VJixW1gzWXQyh/B3dYgbWA1MgJBRkTyOj2ypPEoSSPpX5Xq8Lsczu9pEaxkhLHPkFqEf5d\nkQ8rluEioghCSMdbPb711lsrV6585ZVXfL5Q1/WkSZN6v2GDixRz52ANqSCi6MCBAz/+8Y/t\ndvvMmTOh9VBz3UcYByPPUfsBCWOwdzyFNPc8DqzCDBsd0TJIDx9jVxQSY88NcuRJc37aqYda\nmdybaNyCex/o2IbhmN65eb6dUXAp2vvUbiXgREsncxZpU3rpUkhWrDPwbsZs6rtTh6D1yqJM\nQTghtflNsWfPnlWrVj377LOlTVskZWRkXHvttTfeeOOUKb32K3tCM9zo7jbem4wxGaP13FvL\n1wh4wocRDMNYevdt2WnqQw89VJiTgL/1YELth7HP3bgVNaXD1tmzGXYdlR/iPYZkwTGUjFnI\nErGHDiJY0jo/Z1bCMRXH1E4e1RWyRs5ccuZi6r0XuVoomST8F3oNeJFSkMUkXUEIExlUnE7n\nSy+9tGLFig8++CBUQ1UDgUBmZmZpaammdW8/qMHNX433aGSh7yi+YN/XVzCKMINxQkYuQEqF\nV8PrHj5Usnh+2l2LF02dqlDxauSp9KiJxkGuvfjr4mmg3ULROeEHQvhEJltxm2PH6rQTYheT\nPogoITJKvINZgnByaQkq69evX7FixV/+8pfGxsZgyamnnrp48eLrrrsuNzdXURQRUTpgLcAa\n2Z0VyWzA9yusP2m1dh2AAwcOTJw3UVGU7du3kx81Tws49H/4Yy01T59LUq89Oxr/QH8RfznS\nSNQlSJN760KCIAwKKvDggw+uXLnyyy9D+/xlZmZec801N9xww9SpfdF3cXKRkpBSoyMKAc/T\nyx9pbGxctWpVYWGsiKL/G/sH+KNGs6wFJPXaEFdgGXrTjAxzB75XsKxCPq+3LicIwolPBX70\nox8BFotl/vz5ixcvvvDCC8XWKX3HW8vBt6gveeDyvLMKb5k/bzStpnyFKuH9CQk1GBYax4Zm\nGkkGiWPIuqa3Jh6Zu1siSrPAXWhfjREUBUEQgPDuL03TUlNTU1JSVFWsiOxRphPzYNjLSowd\noZ8NnUOv46/FjiTr8y/04FlO9TuktJ4tZpTCcSRI+pykHeh2MJA9WC7BfJFu5QzOQGrZPMRT\nhrMEw4slleRRa2PMyjUr0f+MNLQ7l+xRGvKM/m6DIAgtVODHP/7xc889d+TIkWefffbZZ58d\nMmTIddddd/31148ZM6bD44U4eDDCV4gktrxsOIxxOPR3v6SjuACc23HYWw2Mm1XB/xoNo+Sk\nPShNs1nNOoyorFWdIidCKKjUbqW2OeX8IRp2zcqb93c1qaytQwVBEKJJpmkChmG89dZbK1as\nePXVV73e0MquM844Y/HixVdffXV6enpOTk55dC7bgerVV18tKyu79dZb+7kd7kqqdrZXoeEI\njaUxyrMnt956y49/NQT0qhlK+kZkH1lbAexvIg+JcXgXWlrK/j9EFiYUfDxsUev9FqVstM2i\n+0sQhJjmz58f6umSZfn8888///zzq6urV69evWLFiq1bt27cuHHjxo3f+973AF3XA4GA6Bnr\nHHsmhbMBw0sgOHnX+AzzI/AijUP+Ku4duJwASQeRTDK24EuhZgKJc1DCvrhNAgcK/QdyTH8q\n8i1q6jZL4+tSYi6psYb0u6Qu1rZYrtLT3McmKNawqczqwz25+2P3SWiR6fAFQehPoSeVaFu3\nbl2xYsWf/vSnqqpQ30t2dvZ111134403Tpgw0BcQD5QnlSbeClyHwHgV44PmQpPibZ9Nn5Th\nlJL2kLyPxiIcTd1iyrVILbOE9WMEWj/PyNZKS9Z6rDmknNEjW3nU76Jxb4zy3Lm7ZcsGzDrk\nbDgHKW9gbRwikSamKArCgDF//vw2g0qQz+f7+9//vnLlyrfeesswQrsgTZ8+/eOPP27nqH43\n0IIKgPEW/sXhBY8+4frOHfU//cHie3/2ZlTtZKxbwQ6g4/wH0aPxtuHPKcm7yb68RxapNOzi\n0IuRhVoqo74DEvoxfNsx6kBGyUabiDzoMuwKgtB9HQeVZqWlpatWrVq1atXevXuBOI/qL30V\nVPyYTur2465EtRvq8EC5A7OsZQ9CwPSFMqqbX4YPqnu85sebfSCdMTFbS6qNOjPIpyIlAwQw\nagBMQ0W3AZLiMQ1N1qolrQY1GS2Y4NcCmV3/KCb1e+2+KtXrxNXU3VX8NRwj0avwrG1VV7Jj\nn4sk1sIKgtBay5hKhwoKCpYuXbp06dL3339/xYoVvdqsE0ZgD8d/FdrC0IcsyVrBKBK8rR4r\ndGdoDylzJ4RyeZmwfYufYmPcWM2RlomtKsbJpYnBjYhNA6PaL9sPo7qMqlly4n6jfoLROFxJ\n2i/bS9FySRwHICVgjO3Op0kfO6Rqg9+1w6IamjXbyDonIbEYwBc13GK48e9BG9+dqwmCMDh1\neuB99uzZs2fP7o2mnHhK9lI9rlVJhcr4xdjCdhxs/gcO/Ar94eCP/1nrO/f86gvn2/7xxAIO\nn8KYlUgR3VupWJ8HGyDhk1zXSPZjgO/gYvuMa5SkLwOf/l7S0wLHzsM+CmtenO31N1L9Bd5a\nZJWEHFJHI4fff31DSsr2lJlNL2tP9TWcAaHnpHASBI60t+FkDzBNnE4CATXDJecnktJxxkxB\nEAaCjoPKhg0b1q1b5/V6R48ePX/+/MQ2sqMPQt5aKj5r813ToObLyEIjwMG3cOTHOmAy+nxo\nqKszt//b/Zs7zZsWO6iahG5h31UtQ/RB8gXNO+9ifCHriTSeBlhsezl+GmDN+xOeIhzJJJmw\nJ/JSzawpZIWSuDSWsv7BVlt1pYzgzJ83xZXAq3h/EHX4L1EXBg5hRiVfVjJ6M9+7z8eOHch+\nNGiA3ZCXR1FRr11PEIQeowJlZWXPPPOMzWa76667wt/zer3XXHPNmjVrmksKCgpefvnl008/\nPfI0g5I1NTghuJW6A6Hd1U2dmANL4fu5RxxujiLws9f+89qqtxqffiQ/KX08vqa9pSwe0v1Q\nj5SOdDqSDk0RK/AfjNBeg5Iqk940RUJfiC0Lqe2IEuT/GCkd9bKdKyI3f6zbx6G3GDo/eJU1\nMY4NvIy6UC3EH3URtccmM8dy4AD+1hn5y8pITSUpqY0DBEEYKFTg9ddf/8lPfnLttddGvHf3\n3XcHI4osy6mpqdXV1aWlpQsXLvzyyy9TTtruiJRhpAR3xDKp2tW0/CRM9iTSnPgfw9iNKxV1\nLpb/CaVCkYZiWfm1a6pmZv1qmCOJY2FHZUzA+hXdR2X0VrUBB3poL3r/kUsshUmynAgK2u3x\nTiY2ZdPweo6SELWko3obCcG+Ot9UiA4U2WheDPxOzLAPqmTjPAgH27umxU5a14Z4TJP6WMmY\nq6oYMHmy/XU496N70TJwjOjc7vRtUhTEOjDhxKcCa9euBa688srwN8rLy5cvXw4sWrTo8ccf\nT0pK2rx580UXXVRWVvb0009HPNOclCQKz+Zg69nACVmk1OL5RtPrRvyrMD7H9iw07fVhzRh2\n5g0cfBM9tJMmycUUzUeyyCq26AlcxiS8fw3+KNd5tPQyzT8JeTgqcQ9r6FCXOTQ0YyCcI5+k\nZAACaRhRk9DkdNQ6gGkYDZgekJAdSPY4rmlQ+wG+KjDR0kkagxLPUYBpxnwENBvcyHWStUeW\n5XSL6zB1n4fm9Hn34f6CzBnI1o4O61BCAg4xU1s44anAZ599JknSnDlzwt9Ys2aN3+8vKCh4\n6qmnbDYbMH369AceeODrX//6P//5TxFUALImYuoc/Qi/E0kmdSRDvkrgishq+icEXkcNy3eS\nPpakIuoPEXCTkE1S6BFBUkgZHn2ZU/Cdjf/3gM93VBu6A7Mc7Um07E411vcWRzdHFk6egz04\n1cCYivshCO8gs2H/E3LnrhKke9j3JP6wIKVuY8QS1Di7r44fxx05jOM7khX4MlNOxjodOa0L\njeoZ3ipK/tWqjxPwGhRd1U8NEoQBRgWOHTuWnZ0d0aO1bt064JJLLglGlKCrr776pptu+uKL\nL/q4lf3P2IvxaYzydEjPRE9CtiB5Mf+OURKjWmBNy7bBwb/EZZnQv/deWr6hNNRLYhyu3U5g\nGM5nCCTTMAnPEMznybycpGnxf4JTbqR6F56w2cu5Z5B/VtMLeRy23+G9H7MUQCrCeg/yKfGf\nP1zlB60iChBwcezfFMT6cDEUF7NrV3iB7k0KuDIAox7Ph9jnInX/yaBLGr6IjChAw24MH/JA\n6ZwThP6kAtXV1Tk5ORFvfPLJJ0DE44vdbs/MzKyuruZkI+WinNnmuy272PrwSTF6peTi0OG6\nTmMDTic5OaEOdF3n2DFqawkEsCWQXUNa1N/hxlEqP0YfhzcH97BQYdUrJIxGiXfs2prC7Ic5\n+E9q96JYyZ5G/tktXUmeY/iqzsE7A1cphoGaRXJyREeT+0jTzsgdcR2KUVj/BYY3RnksyQSm\n4najGxiSoVsMvy2820suR02P+7mnRzkPxig0TY69I4IK6WdgEXMpTnoqkJiYeOzYMcMwZDk0\n4FhXVxfcCPK0006LPEBVpRNhu/IeJjkgvv5u5Sz0D8ILDF158g81X1ukJxsGpaUEAgDHS8jO\nJjeXfftodIEGGo3QuNXIGB2oD9sA3TxI4FOz/nLDlWcEEgO1p8rWKjmhHEyq6ujkdmpDRjNk\ndOhn/+cgWYIbuxtuqHXjdAZXXIKfihpSUlFaxqDtCdgT4vs38BBojCq0kdTRbsthVEhCJ3Ak\nxntyEpZcLPE1pmclyDREpcyRVDJ6Jlt0p0kaltEdVxOEPqMCY8aM2bRp07/+9a/584PTS3nr\nrbdM0ywoKCgubrVblM/nq6yszM3N7YeWniis9+G+CvN4c8GqZ5K2fvx+Au7F585DNmn+e7bm\nOIESfA20/gtXdlVrw5rWZJjV6A8b1dP8jSNlx0EZJNVjBmyytULN2EzSVKytt/PqLNtQLNmA\n5nKxfTsRc/pSUujSnjo+mZq3IwszZ5J8VqzabQkEcLo8Ltlw202z5WHQBOvYfvsmtegc34un\n9S4z+Qt7c9WOIJxQVGDBggWbNm36wQ9+MHHixMLCwvLy8vvvvx+45JLILvBPPvnE7/efckoX\nu9pPClIu9n/ifgL3O3jznEdPO7ZvW1EKl067CFfUoLdHwsyIcZKaXBQFwChDn6gfvEkym+ZO\n+ZEM2Vc9VdJqlNyzsGR1t8HBJ6eYXZp1dXi9oZZ0RsZ0nHtwhz1kWLPJOguiRiPaVF5OWRmm\nacvA1BVf3RDdHeoVlC2oBWGn6ttpuJJC8TWUv0n9LkwdNYnsc0SmZEFooQLf+ta3Hn/88e3b\ntw8bNqygoKC0tDQQCFit1u9+97sRtV9++WVg5syZMc50EnK7qawEMMsxDxDQDFfTSpDAGMyR\nIAVc/q+dPzsjLTlBc5imJ/IMbU0JrjzcNISQhDlPcRwHkLyGEeqM0pJ34x9i7NsNu3vmswT8\nyDqAL09Ww4Y+Kiq6EFQkGDIPz1F81WBiScNegBQrbWZsLhdVLTMKJEW3ph/0N7pN3SJZUAqQ\nwtex5MWbpaanqEkUXo5pYHhQ+qMLThAGMhVIT0//5z//eemllx4+fLikpASw2WzPPPPMyJEj\nw6u63e7nnnsOaO4lO0nVfYjZ9Hdyy7BkLoYsJQR7skxqPwXzk8/L6p0+l9u3YMQofFnoKWbD\nASlpWMupFBO99QCVnoxWxMiRGKX4n0DfbHjzPBtXRbdCG2eqQ6IGtwyDigqqqggE0DSys0lP\njz42htpaSkqAVlnINI3CLi6dl8CeT5xLUyLt2BFVZCrZupk9RMkInxbRnyRZRBRBiCHUdTBt\n2rTdu3e/9dZb+/fvT01NPf/88/Oi/gCsqqp64IEHFEWJHr0/uSRNbesRo+U73vNGyZHKS2//\n421fm/L1KyZLWjWqj7oRprtcSshECmBqAEoNCcU0hP3hLaukqFTvw/8yqDBDAWvm56a/9Wp4\nGVVDiu6yqq0NrfBQQPdQVk9jUrxL6hJMfK2XRyYmcvhwG7V7U9QiFUAO1OE9zNG+b82JRuSz\nEfpVS3+03W6/+OKL26laWFh48803936TBjy5aeGO7xgNW2NU8JRgBDRVWfo/My+ZNzo3MxHD\nNCt2G9Xr8HkMywY58xTkTCy1aLWkKKT6cbsxDCwWEhKQqjG2YmlZqagMfSJQtkBvHKHXhUaz\ntIlII6Ku63RSVhZZ2NjI6NFxdWHl5VFaSnU1gQB2OwUFMSY39436epzOyMKUFJFTUhAGPpFr\nqBu0HDLOiyysXY+nBMjLdlx/6akJdgsQ2PBPKfcoVrBiWkoM/YCkuKT0PGQFbQualZQClLBJ\nqfo6jJbdfaUkLGmb5OrTLPVnSRqSVZMsED3X1ufDETZs4yvEl45pcuRIB1mzcnORJFSV4mKK\nizFN+nfWeE4O+/e3KpFlsruytl8QhD6mAo2NjZIkxZnTfv369X6/P2JRpNDEpHZt84tgRDGr\njuk7t7GzqVSpk9Qq099g/drtpB/B9IAL9mAbTtLtoTo+V3hQAVBcSuYHvurTtaGPY/0NSqy5\nEtXVVB6MUZ6ejr3d0Y2IENLv65AyM/F6OXo0lAQsGO1Onj0XBOFEpgJJSUkZGRmVwYlMTS65\n5JLk5OTgyHy4iy++uKqqaoBvJ9zzPIdwtk5O43frW/4RWc00go8prcp8XmXC6UgSPp/pqg8O\nx0hkBLa/J9nC09uuRv2IxCkARgWBpulPiqSckQ4gGUg6igv9XqzvxkismJbG4cPordfm2Wwn\nZA97QQHZ2bhcSBKJiV2YgSYIQr9os/vrlVdeyciItYTi5GQbgq31mmnTUOacE/rZOBDa8sTw\nU9eAGbXkuolRetCsrcLQAfmUNMneulfKYmBRQIJijAvQPwWQwFDQHRiakvIF3jy0avzPhHaw\nDyfBSCcVFS0lskxODoFdkTXboV7R/3mAgywWseGjIJxwxJhKV0ky9qZxbNMCWQBGI4FjuA+2\nfVillJ1l7N8pJahSmh3D1upNpRx1PepVYIMRmLPQ38HYjzsffyayF08e7lo8xWSdihJrf8lk\nsHqprcXnw2olI6Pzf+MPjIgiCMKJSQSVjhhu/PEk0JQNw3jggd9ddunF43NzojvBgsyqI/LQ\nMcaxHep56ch+dAd602iHpCP7CZRjfop2OwS/3k/BvQzn+NDhzpHYqwGqvyDnjNgNsYFIoyMI\nQj8RQaVtuhPPfnQX/qqOK8O2LVsc5r59n70yfuhFqCkYTrzl6K2mxkoZOZLNZrn4LMmi4gZD\nw2jK4a64MYJj0WWo61tujXt681pLOblp9N79JfUfdvxUoSRgLQIFVfQjCYLQF0RQaZukoqaj\npmNtY1W5eRAzlDexsbFx58FXc4ZLcxdOIWFTqIJ3P8bBVqe0OUncIyHjDy50lzCCgygSctjC\nQ+kNaBrDt3kw/QCGJqn1KF5MCX8mgfqOt7E1XBhe5AQRVARB6BsiqLRNtmJtP1d7AcwCDMO4\n8IKvvvfenueeey4hc1HL+9JHlL2METYaX1POyF1YqrFUA+iJVM0DsFSR1pQwX0ok4WVoymnf\n+CkVLwV/NOpHKsGHFS2X9PO7/xEFQRB6lggqPeDRRx997733LrzwwkWLmiOKTsMjeN4mUcWb\ni2FFCgBSURW6tTlehHbckgIkh63Mt9zaElEAx2QaPsZzEAhFFEklo73cB4IgCP0lFFScTueS\nJUsi3mursC/aNXAEDuL9Tzvv19XVGQ0rfvPziTfdNA/nylCpfyf+HQBSAFvrte+mNdT3ZaSA\nHcdxLPUYFox0UJAn4VPwrQTQMVxgIil1kr0Ow4OegmUcaRe02SMnCILQr0JBxePxPPnkkxHv\nxSw86ahDUW9s531P47H3P3nv0ksvTcq9vqW06trYtb1+7CZaJZIHuSkTiZSHuhpU5KHNzyiB\nQ/i2hgZTADV9i3XoX8FA748Mj4IgCPEJbdLV3804oThXQ8ugeo6DNc9fBHrLYwomRl2rQ3TD\nOFpjVjSgG1hkOS9RKshADrTkmZeWIi+EdVhOQZth1OH9FMLWUAaqp8jWKkvevzH9VP6Vgsit\nbgRBEAYCFXjttdf6uxkDkwfzWIzihOZNcQPgBtC96A2t6khqy54roG87bBwL7VElabLhdUoN\nNnlcMnJz/sc9qEWgYnrwrjWOo0ZlMzAMkF0AgQO4PkCOZ7MSDamTaRE6mJsgCILQHjFQ3zaz\nFuODditUYn4OYOjo/lZvWUswLABSwPQjDdWlwnmht1QJCcNvmjUKMmFbs7zTMo1YRsmJvJrh\nHO4r+6/Qi0o7UgdL5dXs/XKqG2lS+9UiWfPFonpBELpMBJW2Sbko18UoDzwEXrzewHvvtXGk\nibkPQ8XUkPy4DLPWDQdCb6qSGTABMq3YzKagYkMaH7qoNEyvxGhecClpRsF9gGytso9/CMCS\nSWE8PZZT4vucgiAIPUYElc5T7wJQUdvZVdl3NuZeTAUjydhV73+pLrqK9l95Un7TbvCWPyF/\npfktxY37HczW2zBacv8DIKlk/nc3P4EgCEIv6WhJthDFMNeXi9gAAB0dSURBVIz58+c/8sgj\n7eX/V5cCSDqKUx4uSQmR/85SllXKTQI78mlYXgyPKIBkxzoTuSljvaTo2tBNau5hEieR/01s\nQ3vy8wiCIPQc8aTSaY8++ugbb7why/J3vvOdNivJ52N5nMAyzCPYLep/n+3/yyd4G4NvSknJ\nlmvWYP9qO1dRMrDPw3CCHzlZQTkdTu/ZDyIIgtDjRFDpnAMHDtxzzz0pKSm///3vO6gqX4Z2\nGWYVkkMeZ9XuLDc+f8msLZGyxigTr8Yax8ZZErKjR1otCILQR0RQ6QTDMG688cbGxsbnnnuu\nsDC+Ne1NM3qlpFxl5rc7dTnThX4cM4CchiL2SxME4UQggkonBHN8LViwICzHV2/x78f3Wcv6\nRyUP2wwxBCYIwkAnvqXidfDgwaVLl6alpT311FO9fS2jplVEAfQyfDt7+7KCIAjdJZ5U4lVU\nVPSzn/0sLy8vPz/WPr49KnCoVUQJFR5Em9DbVxYEQegWEVTipSjKnXfe2cWDjeBzRgOmEykZ\nEkLlPh9+P4qCpiG3PDXqx2Ocw/Th296Ja6r5yOldbK8gCELXiKDSJ6RybeSP0DeEXqoXotzD\n3jJc9UhggF9h+HDS0oLv+5UYnV2yQzypCIIw0IkxlT6g47m9JaIAgdeo+wH19WFVdPbvxxta\nYK8OR7KFZQUDwDKuD5oqCILQLSKo9D59E8ZnkYW299CqWlfTqQqVSFZss1o6ryQN61RUsS+X\nIAgD3gnQ/bVt27YXXnhh3759siyPGzdu0aJFw4YN65tLO53OxMTE2O+ZNfj/EBmVdZ0YO2NW\nY4yNcYaM1zAi0tdbqAxtaC+DfSKYYCj4rgeF5t257HYyMzv1QQRBEPrGQA8qGzdu/MUvfpGY\nmHjOOef4/f7169fffffdy5YtGzlyZG9fOpjjKycn59lnn7XbozYvkdLQvh/jsOhdTvS1eG6L\nUfPojfhyW5UUF5MZlfJeEAThxDGgu798Pt/y5cvtdvvDDz/8zW9+87vf/e7999/v9/uXL1/e\nB1d/9NFH33//fZfLFSOidIoyA3loZKE+LTKiWK3i+UMQhBPdgA4qW7Zsqa6unjdvXm5u6Pt3\n7Nixp59++p49e0pKSnr10p3I8dUxG9bfIod12clTSHqYwsKWacQOB6NHo3Sw75YgCMIAN6C7\nv3bs2AFMmtRq78LJkydv2LBhx44dxcXFvXTdruT4ap88Bvur6Jsxy5GHIk8CiXzIy8PjQVWx\nWHrgKoIgCP1tQAeVsrIyIC8vL7ww+NQSfCvc5s2bDcMI/lxRUdGd6/ZOji8VZUZkmSTRzb41\nQRCEgWRABxWXywUkJCSEFwZfOqMmWd1xxx3B+sDkyZNPO+20rl20trb2Jz/5Sd/k+BIEQRhk\nBnRQCZIkKZ5qS5Ys8fv9wZ+rqqrar9yO1NTUN9988/jx432Q40sQBGGQGdBBpfmhJDU1tbkw\n+DgSvXzk2muvbf751Vdfje4fi9+ZZ57Z5WMFQRBOZgN69ldwNCUiPMQcaBEEQRAGggEdVMaP\nHw9s27YtvDD4MviWIAiCMKAM6KAyZcqU9PT0t99+u7y8PFiya9euTZs2jRo1qvfmEwuCIAhd\nNqDHVDRNW7JkybJly+68885Zs2b5/f5169apqnrbbbGynnTD0aNHU1JS2kzzJQiCIMRnQD+p\nADNmzLjvvvuGDBmydu3aDz/8cMKECb/85S97NvGXYRjXXHPNpEmTjh071oOnFQRBOAkN6CeV\noEmTJkUsqu9ZwRxfCxYsyMkRyRwFQRC6ZaA/qfS2Hs3xJQiCcLI7AZ5Uek/P5/gSBEE4uZ3U\nTyq9k+NLEATh5HXyBhW/3//oo4+KHF+CIAg96OTt/rJYLJs2bdq+fbvI8SUIgtBTTt4nFSA9\nPX327Nn93QpBEITB46QOKoIgCELPEkFFEARB6DEiqAiCIAg95uQKKgcOHAjuey8IgiD0hpMo\nqASXOk6bNm379u393RZBEITB6SQKKo899th77703d+7cCRMm9HdbBEEQBifJNM3+bkPPe+ed\ndx599NHwEl3Xm7eMVBSl/cN1XQc6rCb0L9M0DcNA3KkTga7rkiTJ8kn0V+yJKPg71c07NTiD\nSjedccYZY8aMee655/q7IUJ7XC7X7NmzzzjjjMcff7y/2yK0p7y8/MILL5w3b96yZcv6uy1C\ne/bs2XPNNddcdtllP/7xj7t8EvGHgyAIgtBjRFARBEEQeowIKoIgCEKPUX7605/2dxsGHKvV\nOn369NGjR/d3Q4QOJCQkTJ8+fcSIEf3dEKE9kiQlJSVNnz596NCh/d0WoT2yLKempk6bNq2o\nqKjLJxED9YIgCEKPEd1fgiAIQo8RQUUQBEHoMSfvJl0xbdu27YUXXti3b58sy+PGjVu0aNGw\nYcP6u1EnkYaGhg8//PCjjz46dOhQTU1NWlra1KlTr7766szMzIia8dwpcTf7zNKlSz///POM\njIyVK1dGvCXu1EBgGMYbb7zx73//+8iRI7Is5+fnz5kz56KLLgqv01N3SoyptNi4ceMvfvGL\nxMTEWbNm+f3+9evXA8uWLRs5cmR/N+1ksWLFir///e8Oh2P06NF2u33//v1lZWXJycm/+tWv\n8vLymqvFc6fE3ewzb7755pNPPmmaZmpqakRQEXdqIPD5fD//+c+3bt2akZExZswY0zSPHj2q\nKMpvf/vb5jo9eadMwTRN0/R6vYsXL77qqqvKysqCJV988cXFF198xx139G/DTipvv/32unXr\nAoFA8KWu60899dTChQsffPDB5jrx3ClxN/tMVVXVVVdd9fzzz1911VU33HBD+FviTg0QTz/9\n9MKFC1euXNn8m2WaZkNDQ/PPPXunxJhKyJYtW6qrq+fNm5ebmxssGTt27Omnn75nz56SkpL+\nbdvJY+7cubNmzWrO5SXL8uLFixVF+eKLL5rrxHOnxN3sM8uXL09LS7vyyiuj3xJ3aiCora19\n/fXXx4wZE/xVai53OBzNP/fsnRJBJSS4z8qkSZPCCydPntz8ltAv1CbNJfHcKXE3+8YHH3yw\ncePG//mf/7FYLNHvijs1EGzcuFHX9XPPPTcYXf785z+/++67TqczvE7P3ikxUB/SnMM4vDAY\nk4NvCf3io48+8nq9U6dObS6J506Ju9kHGhoannrqqblz55566qkxK4g7NRDs27cPqKmpWbJk\nidvtDhY6HI4f/OAHzRGiZ++UeFIJcblcQEJCQnhh8GVEVBf6TE1NzdNPP+1wOMJ7V+K5U+Ju\n9oGnn34auPHGG9uqIO7UQFBfXw+8+OKLM2bM+MMf/rB69erbbrvN6/UuW7asrq4uWKdn75QI\nKq1IktTfTRBCXC7Xz372s7q6ujvuuCN6SnE8d0rczd7z6aefrl279uabb05KSmq/prhT/cs0\nTSA/P//222/Pzs5OSkq64IILLrroIpfL9e6774bX7Kk7JYJKSMyQGwzOiYmJ/dOmk5jb7b73\n3nsPHDjw3e9+d/r06eFvxXOnxN3sVX6///HHH586deo555zTTjVxpwaC4L/wlClTwvfdCv5O\n7d+/P7xOT90pMaYSEuwrLCsrKygoaC6M2Y0o9DaPx/Ozn/3syy+//Pa3vx39tRXPnRJ3s1c1\nNjZWVFRUVFRErJ5zuVwXXXTRkCFDHnvsMcSdGhjy8/Npo9vK5/MFX/bsnRJPKiHjx48Htm3b\nFl4YfBl8S+gbXq/3vvvu27lz55IlS+bOnRtdIZ47Je5mr7JarfOiqKoaLJ85c2awmrhTA8GE\nCROAw4cPhxcGX2ZnZwdf9uydEk8qIVOmTElPT3/77bcXLFgQnNKwa9euTZs2jRo1qri4uL9b\nd7IILv3dvn37LbfccsEFF8SsE8+dEnezVyUkJHz729+OKFy/fr3dbg8vF3dqIBg7dmxxcfHG\njRv37NkzatQowOVy/fWvfwWaw3/P3imRpqXFhg0bli1b5nA4gkkI1q1bZ5rmgw8+KNJF9Jln\nnnnmlVdeSU1NDZ9DHHT77bc3DxLGc6fE3exjV199td1uj0jTIu7UQLB79+6lS5cCZ5xxRkJC\nwqefflpRUXHBBRfcdtttzXV68E6JoNJKc7o0SZKC6dKGDx/e3406ifz2t7+NmJHSbM2aNeHr\ngeO5U+Ju9qWYQQVxpwaG/fv3r169eufOnT6fr6Cg4IILLjj//PMjpnL11J0SQUUQBEHoMWKg\nXhAEQegxIqgIgiAIPUYEFUEQBKHHiKAiCIIg9BgRVARBEIQeI4KKIAiC0GNEUBFOVNOnT5ck\n6bXXXuvvhgghUphgdpCBY+jQoZIkbdiwoWdPO3fu3PBPXV5e3rPnPxGJoDKYXXjhhZIkLVmy\nJLqwmaIoaWlpZ5555oMPPtjY2BjzPIcOHfrJT34yc+bMnJwcTdPS0tKmTZt25513RiQC6nJ9\noLa2Vorb3//+9+78s3RNeXn5888/f/vtt8+aNSsxMVGSpNTU1C6fbenSpcHP8uCDD3ZY+ejR\no/fdd9+cOXPy8/OtVmtSUtKIESOuuOKKFStWNG+J0Szi/kqSpGlafn7+woUL16xZE33yiPo2\nmy07O/vUU09dtGjR008/HdyNo1OuvPLKxYsXX3LJJTGvUlhYqOt6zANnzZoVrDN27NjOXjTa\nunXrJElauHBh90/VjvPOO2/x4sXXX399r17lBGMKg9eCBQuAW2+9NbrQ4XAUFxcXFxcXFBQ0\n58QeMWLE4cOHwysbhnHvvfdqmhasoChKVlZWeMbTyy67LBAIdLl+s7q6uowowUOSk5P/v71z\nD2rq6AL4BhPQikEeIkhA8EWRirwqMpUiUEcRH1hRhCRNsSi1ijgVwSJ0LIN1Sm3pVOygFgYt\nikKhBqUwBSwoU4QKWqUzEMsISCAgCVJASUKS749T79zmZYCAfmV/f5HN2b1794Z7ds+ec1ap\n/Oeff1YoFElJSUwm886dOxMzeMqkpaUp/e+YmJiMrSmZTMZgMKCRJUuWaJGUy+XJyclGRkYg\nbGBgYGZmRlZmdDo9IyODXEXp+c6fP9/U1JSQ37lzp9IllOQZDAb5iJTXXnstNTVVJpPpcl9Q\npaurS/UruApQUlKiKsDj8QgBR0dHXS6nnYMHDyKEzp49Cx8hP1VNTc34W1ZFKpVqufepBlYq\n/2W0KBVy4fDwcHp6Ohwzvn79erLw+++/D/8tISEhN2/elEqlUP7o0aNTp045ODgghJ49ezZm\neS0QR5+qfQdNPpmZmQEBAfHx8fn5+V999dV4lEpJSQlCaObMmTDmkENJLcR4BgcHV1RUEEM3\nNDRUWlrKZrNpNNratWvJVdQ+dIFA8MEHH0BToJK1y/f09OTn569atQqqsFgsXe7rhUoFliCh\noaGqAgkJCQghJycnfSmVRYsWGRgYdHd3w0esVCYNrFT+y+ioVABIOUehUHp6eqAEzotFCJ08\neVJt+xKJ5MCBA8PDw2OT186rplTI5ObmjkepbNu2DSHE4XA2b96sdvUAnDlzBkYgPT1dU1M8\nHi85OZlcoun5ymQySNO0f/9+XeQVCoVcLodfBULo9OnTL7yvFyqVQ4cOmZubT58+va+vT6lv\nDAaDSqWmpKToRancv38fIfTWW28RJVipTBp4TwXzD+vWrUMIKRSKv/76CyEklUqTk5MRQqGh\nofv27VNbhUajpaWlgXFmtPLjR9NGPZfL3bhxo5WVlaGhoaWlZXBw8I0bN5RkiG3bpqYmNptt\nY2NDpVI1dVu/iESioqIihNB7773H4XAQQnl5earnsUskEhjP8PDwvXv3ampt8eLFSUlJulzX\nwMAAMp+LxWIdu0qhUFJSUgICAhBCx44dk8vlOlbUhKGhYVhY2PDw8KVLl8jl5eXlHR0dgYGB\nc+fOVVuxt7d3//798+fPNzIysrW1/fDDDwUCQUZGBoVCUdq8AbhcLkJI7Vetra0cDsfa2trI\nyGjRokUJCQnE9IWAx+N98cUX/v7+9vb206dPNzEx8fb2TktL033opjJYqWD+QemVUVlZCSf5\nxMbG6lJ9tPITgUQiCQ0NDQ4OvnbtmlQqfeONN0ZGRrhc7urVq0+cOKEqX1dX5+npmZOTgxCa\nPXv2+F+aunDhwgWxWGxnZ+fn57dhwwYLC4vBwcH8/Hwlsaqqqo6ODqS/8RSLxY2Njei5iUl3\nYHOivb39zp074+9GREQEQig7O5tcCB/hK1UePXrk6el58uRJPp/v7OxsaWmZmZnp7u4O46MW\ncOWAhSCZP/74w83N7eLFi3Q63djYuKWl5fjx45s3b1b8O69uQkLC4cOHa2pqpk2b5uLiYmpq\nWltb+/HHH7/zzjtYr7wQrFQw/1BaWooQolAoMJ+trq5GCIHjli7VRys/ERw6dCgvL8/Ozq6k\npEQoFDY0NIhEoqysLCMjo7i4ONX1SlxcnJ+fX1tbG5/P7+3thZXBRJOVlYUQYrFYFAqFRqOF\nhYURhWRgPM3MzNzc3MZ5xYGBgd9//z0kJITP58+bN4/Yp9ERHx8fOHRAL/647u7uLi4utbW1\nTU1NUNLf3//TTz9ZWFhs2LBBbRUOh9PW1ubm5tbS0tLQ0FBfX9/a2mpvb5+amqpWns/n19fX\nL126FH7JZA4cOBAUFCQQCJqbm4VC4eXLl6lUallZGawdCbZt21ZZWTk4ONjS0lJXV9fa2trU\n1OTj41NdXX38+PFxj8F/HKxUMOjp06fffvstzOXXrVtnYWGBEIJp4MKFC5UOXdDEaOX1zsOH\nD0+dOkWlUgsKCsCUB0RERHzyyScKhUL1HWRvb19QUGBnZwcf4cYnlLt37969exchRDihwiv+\n5s2bDx48IEvCeIJrwxg4ffo04SVMp9NXrFhRWloaFRVVV1dnYmIyqqaMjY1hZLq7u8fWGSXg\nlonFyqVLl4aHh5lMJrgtKFFbW/vrr78aGhoWFhYSJwza2NgUFBSolUcIXblyRaFQqLV9LViw\nIDs7m3As3L59+44dOxBCSkbU0NBQX19f8vk9S5YsycvLQwipHhiDUQIrlSlKTk4Og8FgMBhW\nVlbGxsYxMTFSqdTBwSEjIwMEIEDB2NhYxwZHK693CgsLZTLZypUrPT09lb5iMpkIocrKSiUD\nV2RkJOH9PDnAisTLy8vR0RFK3N3dly1bhlQsQlrGEzaEyBCzfgI6nb7wOQwGY9q0aWAJVBuq\n8kKgGwMDA2OoqwqLxaLRaD/88AMErMBrWtP6CTzl1qxZY29vTy63trbWtLIB25dapfLRRx9R\nqf86Q93HxwchBPuIZCQSybVr15KSknbt2sVms1ksVmxsLI1Ga29v7+3t1eU2pyz4jPopytDQ\nEGwOw0z29ddf37hxY3R0NJ1OBwEIVtAUDqnKaOX1DkRWPn78WPX1BBbzoaGhJ0+emJmZEeXL\nly+fxA4iiURy8eJFhBDszxNwOJzY2Nhz584lJycTs2N4EGrH09raemRkBCEkk8k0hXCHhYUR\n8wOE0MjIyOXLl/fu3RsdHT00NBQfHz+qnoM6Ge0SRxNz5swJDAwsKioqKyuzt7evra1dvny5\nq6urWuHm5mak4Um5urrC6oFMf39/VVWVjY2N6twCIUTocgI4bl1pnG/durVjx462tja1XRIK\nhZOwqP3/BSuVKUpUVBT5paMKROe1tLQoFApdLFqjldc7fX19CKHm5mZ4Danl6dOnZKVCjvKb\nBK5cuSIUCg0NDUNDQ8nlTCbz8OHDfD7/l19+CQwMhEIbGxuE0MOHD1XbqampgT86OjpsbW11\nuTSVSmUymQMDA3v27ElJSdm9ezc5IlI7AwMDMDfX5Jo1BiIiIoqKirKzs2H9oWmLHj3XZ8Rc\nh4zax1dcXCyVSjdt2qT2R6i68oPIX/JGvVAoDAoKEolE27dv37dvn5OT0+zZs2F9Y2Zm1tfX\nRzgQY9SCzV8Y9YBZoK+vr6GhYSLk9Q68L+Li4rR40BNx7C8FsPNIJBJzc3Oy8YpYeZDt9TCe\nIpFIS26b0bJ69WqE0ODg4L1793SvdePGDTAbent766snQUFBc+bM4XK52dnZNBoN7JNqAc2h\nNluMWnOcFtuXjuTl5YlEohUrVuTm5vr4+FhYWIBGkUqlY0haMwXBSgWjHl9fX3gFQ/S43uX1\nDuxMgNPUKwgsRBBCFhYWc1UAcwqXyxUKhSDv6+sLi5Wvv/5aX30g5uOPHz/WvRZ0wMHBwcXF\nRV89AUUyPDzc3d0NftWaJMFgpVazqhaKxeLS0lITExM/P78x9w1WuqtWrSLSFwF1dXWaspZh\nyGClglGPoaEhRNXl5uZqMpSNjIzExcWB5/5o5fXO1q1bDQwMfvvtt4qKiolof5xkZ2fL5XJL\nS8uuri6BCnw+39zcXCKRXLhwAeSJ8Tx//nxmZqZe+kCMzMKFC3WRVygUiYmJ169fRwglJiYq\nvWTHSWRkZEBAQEBAgPaYU7AHlpWVtbe3k8sFAoFq3GtFRcXAwMD69es1OYbpAgTndnZ2KpVr\n8mDGKIGVCkYju3fvZrFYCKE9e/aEh4fX1tYSMzWBQHDmzBknJ6cvv/ySmP+OVl6/ODo6QuR5\nSEhITk4OGJSArq6u7777Tpd8wBMHOHexWCwl7yPA0NAwPDwc/dsCFhUVxWazEUKRkZFhYWHV\n1dWENV8ul9++ffvYsWM6Xl0sFp8/fx5yrri6ur4w9qW3t7egoMDX1xcuweFwdu7cqeO1dMTZ\n2bm8vLy8vNzf31+LmJeXl5+fn0Qi2bp1K6FXOjs7Q0JCJBKJkrCWQHrdefvttxFCP/7449Wr\nV6Hk2bNnMTExxcXFap8dRpkJTQKDebmMKveXWmQy2ZEjR4h5n5GR0bx588heQFu2bCFnHR6t\nvBZemPsLoiyvXr1KlEilUmLLd9asWR4eHm+++SYYkRBCHA6HkBxDJqjOzk4iTTIY+ikUClHC\nZrO11K2qqoI+3Lt3T5MMsRfV0NBAFMpksk8//ZTwe6bRaHPnzoUE+FAyY8aMo0ePisVioopq\nlmIrKyti15rBYDQ1NZGvqyRva2tLfl4zZ848ceKEvrIUHzlyRHsLkD5OKfdXW1sbPC8qleru\n7u7h4UGj0aysrCAH5bvvvgticrkccvP8/fffqi1reuKgOTw8PIgSuVy+Zs0auJcFCxasXLkS\nHvc333wDAS73799XagTn/iKDVyoYbRgYGKSkpPB4vISEBC8vr1mzZkG6STc3t5iYmIaGhsLC\nQnKM2Gjl9QuVSs3Kyrp+/XpYWJipqWljYyOPx6PT6Vu2bMnMzFSbqUV3ZDKZ8DmwRaxQKIgS\n7Vu4sP7w8PCAjR+1uLm5geMsObrewMDgs88+a2lpOXr0qI+Pj5mZmUgk6u/vt7a2Dg4OTk9P\n5/P55LMGCAYHB9ue09PTA9mrPv/88z///FPVrZYs393dTaPRnJ2dmUzm2bNnu7q6Dh48qF/D\n12ixs7O7fft2dHS0tbV1Y2OjQCDgcDj19fXgyEc4ht26dUsgEPj7+4/TqY9CoRQVFSUmJsJJ\nEA8ePPD29i4pKYmJidHDzUwBKIqJsUVgMJipBqyHurq6IPhjotm1a9f333+fnJwMm0/x8fGp\nqakZGRlRUVGTcHUyIyMjsDqftHt/lcErFQwGo0+sra0pE3+c8JMnTwoLCxFCvr6+UMLlcikU\nyqZNmyb0ukrAccLj8Qv474H3nTAYjH4gZwrQY0hQW1tbcXExm80m7Frt7e0cDkckErm6ukJA\nD0JINVfNJLB27Vrync6YMWPy+/Cqgc1fGAzmlaaxsXHZsmU0Gs3BwcHGxkYkEjU2NspkMisr\nq4qKiqVLl77sDmL+xbSjR4++7D5gMBiMRoyMjKhUqlgs7u7u5vF4/f39ixcvjoiIOHfu3Jiz\nOGMmDrxSwWAwGIzewBv1GAwGg9EbWKlgMBgMRm9gpYLBYDAYvYGVCgaDwWD0BlYqGAwGg9Eb\nWKlgMBgMRm9gpYLBYDAYvYGVCgaDwWD0BlYqGAwGg9EbWKlgMBgMRm/8D8w1Ihg2+9jyAAAA\nAElFTkSuQmCC", - "text/plain": [ - "plot without title" - ] - }, - "metadata": { - "image/png": { - "height": 270, - "width": 270 - } - }, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Warning message:\n", - "“\u001b[1m\u001b[22mRemoved 80 rows containing missing values (`geom_point()`).â€\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhwAAAIcCAIAAAAynOArAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdeUBVZf4/8Pe5K8gOiiAGKu4baJmW5pJLioqA5VRmaVmS0+IvSyvnazmV\naYs1TTNmNm41hUuKml2Rcs/cJsQVV8QNjUX27S7n98fFKxwucNF772F5v/6Ze57znHM/NuKH\nc57n8zyCKIogIiKyB4XcARARUePBpEJERHbDpEJERHbDpEJERHbDpEJERHbDpEJERHbDpEJE\nRHajkjsAhzh79uy+ffvkjoKIqAlJTU29dOlS40wqp06dSkpKGjhwoNyBEBE1FTdu3EhKSmqc\nSQVAly5dYmJi5I6CiKipiImJGTFiBMdUiIjIPlQqFZMKERHZDZMKERHZDZMKERHVmU6nW7hw\nYdX2RjtQT0REDqLT6WJiYkRRfOyxx9q1a1fxFJMKERHVQUJCQkxMjMlkWrdunSSjgK+/iIjI\ndgkJCVFRUeaMMnbs2KodmFSIiMgmtWYU8PUXERHZKCEhQRTFDRs2REREVNeHTypERGSTTz/9\n9PDhwzVkFDCpEBGRjQRB6N69e819mFSIiMhunDGmMmfOnGPHjvn5+S1fvlxyKjk5OS4u7vz5\n8wqFomvXrpMmTWrbtu0d9CEiovrA4U8qCQkJp06dUiqVVU8dOHBg7ty5aWlpgwYN6tev37Fj\nx2bNmnXu3Lm69iEiIrvT6XSrVq2q61WOTSrZ2dnLly8fP368VquVnCorK1u8eLGrq+uiRYv+\n+te/zpgx47333tPr9YsXL65THyIisjudThcdHf3iiy9ev369Thc6NqksXrzYx8dnwoQJVU8l\nJSVlZ2cPHz48ICDA3NK5c+f777//7NmzaWlptvchIiL7MtfMi6IYFxdn+efXRg5MKnv27Dlw\n4MD06dPVanXVsydOnAAQFhZWsTE8PNxyysY+RERkR7ZUONbAUQP1+fn5X3/99bBhw3r06GG1\nQ3p6OoDAwMCKjeaUaD5lY5+K3yiKovmzXq+/+z8CEVFTc5cZBY5LKkuXLgUwZcqU6joUFRUB\naNasWcVG82FhYaHtfSxGjx5t7g8gPDy8T58+d/cnICJqclasWCGKYnx8/KhRo+7sDg5JKn/8\n8cfOnTtnzpzp4eFRc09BEGq9my19AAwZMqS0tNT8WaPR2HIJERFVtGrVqiNHjtzNL+X2Typ6\nvf5f//pX7969Bw0aVEM3ywOHt7e3pdH8qOHm5mZ7H4t58+ZZPm/atKnq+zEiIqqZWq2+y9c8\n9k8qBQUFGRkZGRkZkZGRFduLiooiIyODg4O//PJL3BopSU9PDwoKsvSRDKLY0oeIiOoP+ycV\nrVY7fPhwSeOOHTuUSuXAgQP9/PzMLd26dYuPj09OTr7vvvss3ZKTk82nbO9DRET1h/2TSrNm\nzV5++WVJ42+//ebq6lqxvVevXr6+vomJiaNHjzZP6EpJSTl48GCHDh1CQkJs70NERHdm69at\nSqWy6mPA3ZBtPxWNRhMbG/vhhx/OnDmzf//+er1+7969KpXqxRdfrFMfIiK6A+Z95l1cXFJT\nUyuOW98lOTfp6tev39///ve4uLidO3eaV1SeNGmSZMdjW/oQEVGdWPaZX7VqlR0zCpyWVOLi\n4qy2h4WFSQrm76wPERHZ6O4rHGvA/VSIiJoQh2YUcI96IqIm5aOPPrrLmvmaMakQETUh8fHx\nR44ceeihhxx0f77+IiJqQjw8PByXUcCkQkREdsSkQkREdsOkQkTUaCUkJCQlJTnzGzlQT0TU\nOJlr5n18fM6fP+/q6uqcL+WTChFRI2SpmV+yZInTMgqYVIiIGh9HVzjWgEmFiKhRkTGjgGMq\nRESNiclkmj17tkNr5mumun79+h1f7Orq6uXlZcdoiIjobigUiq1bt544cWLo0KGyBKC6m315\nn3nmmRUrVtgvGCIiulsBAQHmXQ1lwTEVIiKyGwWAp59+Wl93ckdORET1jgqAIAgqFUfsiYga\nnsTExA4dOrRp00buQMophg4d2q1btzu48o4vJCIiu9DpdGPHjh05cqTBYJA7lnKqX3755c6u\nvOMLiYjo7plr5kVR/Pjjj+vP2yYO1BMRNTzyVjjWgEmFiKiBqbcZBTVX1GdmZmZlZVmd6NW9\ne3eHhURERNUqKyuLjY0VRXHDhg0RERFyhyNlJamUlJR8+OGHK1asuHTpUnWXiaLoyKiIiMg6\njUaj0+nS0tIeeeQRuWOxQppUSktLhwwZsn//fgBqtVqv1/v4+OTl5RmNRgAqlYrrshARyatz\n586dO3eWOwrrpGMqX3755f79+wcPHpyenj5hwgQA2dnZxcXFe/fujYyMFEVx7ty5mZmZcoRK\nRET1nTSprFmzRhCEb775puLSMWq1un///hs3bpw+ffqMGTMSExOdGyQRETUM0qRy6tSpkJCQ\n0NBQAIIgADC/+DJbuHChu7v7Z5995swQiYiasp07d2ZlZckdha2kSaW0tLRFixbmz1qtFkBO\nTo7lrKura9euXQ8fPuy0+IiImjKdTjdy5MgxY8Y0lOlR0qQSEBBw8+ZN82fzqvinTp2q2CEj\nIyM3N9c5wRERNWWWmvm3337b/Oqo/pMmldDQ0PT0dJPJBKBv374AvvzyS/MhgM2bN1+4cCE4\nONjJURIRNTX1ucKxBtIpxSNGjNixY8fvv//ev3//ESNGhISErF69OjU1dcCAAdeuXVu3bh2A\niRMnyhEqEVFT0UAzCqomlZiYmMOHD1+9ehWARqOJi4uLiIg4ePDgwYMHzR1Gjhz59ttvOztM\nIqImo6Cg4KmnnpJxn/m7IU0qHTt2ND+OmPXr1+/s2bNr1qw5ffq0VqsdNGjQqFGjGsqrPSKi\nhsjd3T0+Pj4vL6/BZRTUvPaXmZ+f34svvuiEUIiIyKx///5yh3CHuEoxERHZDZMKERHZjZXX\nX6Iobty4ccuWLefOnSsoKLBaccP6RyIie/n999/Dw8NdXV3lDsQOpEmlqKho7Nix27dvlyUa\nIqKmRqfTxcTEDBs2bPPmzXLHYgfSpPL3v/99+/btarX68ccfHzBgQEBAgELBV2RERA5hrpk3\nmUwvvPCC3LHYhzSprFmzBsAPP/wwfvx4OeIhImoqGm6FYw2kTyFXrlzx8/NjRiEicqhGmVFQ\n9UnFz8+PezsSETlUZmbmY4891kBr5msmfVIZMWLE+fPnG9Da/UREDU7z5s1Xrly5YcOGRpZR\nUDWpvPvuu+7u7jNmzDAYDLIERETUFERHRze+jAJAtX//fknTggULZsyYkZSU9OKLL3bq1Mnd\n3b3qZf369XNKeERE1JCoHnjgAasnTpw48dJLL1V3WUPZg4yIiJxJFRISIncMRESNXFJSUs+e\nPZVKpdyBOJzq4sWLcsdARNSYmWvmn3rqqaVLl8odi8OxWp6IyIEsNfORkZFyx+IMCgBjxoz5\n5ptv/vzzT7mDISJqVBprhWMNFAC2bNny/PPPBwYGDhgw4JNPPjl79qzcURERNXhNMKPAnFT2\n7Nkzc+bMdu3a/fbbb2+88UbHjh27des2Z86cQ4cOcZYXEdEduHz5clRUlLlmvulkFABCxbRx\n/PjxjRs3xsfH/+9//zO3BwUFRUZGRkVFDRkyRK1Wyxdn3WzatCk9PX3atGlyB0JETdfixYvb\ntGnTKCscqxMRESFYfRa5cuWKObvs2rVLr9cD8PLyioiIiIqKGjVqlIeHh9NDrRsmFSIi56s2\nqVjk5uZu2bIlPj5+69at+fn5ADQazcMPPxwVFRUZGRkYGOisUOuGSYWIyPlqTyoWpaWlv/76\n68aNGzdt2nT9+nUAgiCYTCYHR3iHmFSIiJwvIiLC1joVrVYbERGxZMmSa9eu7du3b9asWR07\ndnRocEREDcjp06flDqFeqHPxoyAIDzzwwMKFC1NSUhwREBFRg6PT6cLCwt555x25A5EfK+qJ\niO6KuWZeFMX77rtP7ljkJ935MSoqquYLlEqlp6dnu3btBg0aNHDgQIcFRkTUADTNCscaSJPK\nxo0bbb+4V69e33//fefOne0aEhFRw8CMUpU0qSxevPjy5csff/yxRqMZM2ZMWFiYh4dHfn7+\nkSNHfvrpJ71e/8Ybb/j6+qakpKxfvz4pKWno0KFHjhxp0aKFLNETEcklJSXFXDO/YcOGiIgI\nucOpL6RJJTIy8t57773//vvXrVsXEBBQ8VR6evr48eOXL1/+xx9/BAQEfPTRR+PGjduzZ89n\nn302f/58J8ZMRCS/zp07z5w588EHH2RGqUg6UP/OO+9kZWWtWbNGklEABAYGrl27NiMj4913\n3wXg4+Pz7bffKhSKLVu2OCdWIqJ65f3332dGkZAmFZ1O17Nnz1atWlntHRQU1LNnT0sWCQkJ\n6d69e2pqqmNjJCKiBkKaVDIyMmqusRdFseLOK35+fmVlZQ4JjYiIGhppUmnZsuXRo0cvXbpk\ntXdaWtrRo0crvhm7cuUKR+mJqCm4cuWK3CE0ANKkEhUVZTAYxo8fXzWvXLx4MTo62mg0jhs3\nztySl5d38eLFNm3aOCFQIiIZ6XS6Dh06LFmyRO5A6jvp7K+5c+du2rTp8OHDHTp0GD58eFhY\nmKenZ15eXnJycmJiYllZWUhIyNy5c82dv/vuO71e//DDDzs9bCIi57HsM1/deDNZSJNK8+bN\nd+/ePXny5B07dmzZskUys2vIkCErV65s3ry5+XD06NEDBw685557nBQsEZHTscKxTqRJBUBw\ncPD27dsPHDig0+lOnz6dn5/v4eHRqVOnUaNG9e3bt2LPkJAQZ8VJRCQDZpS6spJUzPr27StJ\nIURETcoff/xhHkKOj49vUrsC3w2uUkxEZF1YWNjEiRM3bNjAjGK7ap9UiIiaOKVS+Z///Efu\nKBoYFYA7WGaYO3QREVFVKnAXTCIispPbr7+6dOkyceLEli1byhgNEZGMsrOzfX195Y6iYVMB\n6N+//2+//Xbq1Kl333131KhRU6ZMGTNmjFqtljs2oiZBX4iiG3BtDo2n3KE0bQkJCRMmTFi5\ncmWtG+BSDVQA9u7de/bs2RUrVqxatWrz5s2bN29u3rz5xIkTJ0+eHB4eLneERI2WoRgnl+HK\nLkAEgID70e0FaL3kDqtJstSjKJVKuWNp2MqnFHfo0OGDDz5IS0tLSEh44oknCgoK/vGPf/Tq\n1Ss8PPwf//hHZmamvFESNUrHl+LKzvKMAuD6QRz5HDWuEk4OwQpHO6pUp6JQKEaMGPH9999f\nv379q6++6tu3b3Jy8owZM1q1ahUTE7N9+3a5oiRqfIr+xLU90sas47jJmZXOxYxiX9aLH728\nvKZNm7Z///5Tp07Nnj3b19d3w4YN3DOYyI6Kb1hvL7ru3Diatn379o0bN04Uxfj4eGYUu6ip\not5oNF68ePHixYu5ublOC4ioidBUM3ai9XZuHE1br169hg0bxpp5O7JeUZ+SkrJixYpvv/32\n2rVrAFq0aBEbGzt16lTnxkbUmHncA59OuFm5SMwtEH7dZQqoSXJ1df3pp5/kjqJRqZRUcnJy\n4uLiVqxYceDAAQBqtToyMnLKlCmjR4/mDGMiOxMQ/ir+9xHyLpY3NAtAr9eg4I8aNWQqAEaj\nMTExccWKFRs3biwpKQHQs2fPyZMnP/XUU9wqmMhxXFug/0Jkn0BhOlxbwK87Mwo1eCoAwcHB\n5tdcfn5+U6dOnTJlSu/eveUOjKhJEBTw6wG/HnLH0WQUFha6ubnJHUVjpgJgziidO3ceO3as\nRqNZv379+vXra77s/fffd0Z0RET2k5CQ8NRTT/34448DBw6UO5ZG6/aYSkpKiu1rDzOpEFHD\nsnXr1ujoaFEUCwsL5Y6lMVMBGD16tNxhEBE5UEJCQnR0tLnCkbOHHUoFgDPqiKgRY828Mzlk\n58f8/Px169adOnXqxo0bBQUFPj4+7dq1e/TRRzt27CjpmZycHBcXd/78eYVC0bVr10mTJrVt\n2/YO+hARWbVz586oqChRFDds2BARESF3OI2fQ/aoz87Ojo+PLygoCA0N7devn5+f34EDB954\n442dO3dW7HbgwIG5c+empaUNGjSoX79+x44dmzVr1rlz5+rah4ioOmFhYb179167di0zinMI\nogPWRC0rKysrK3N3d7e0pKSkvPXWW15eXitWrLD0eeGFF0pKSj7//POAgABznzfffDM0NPTT\nTz+1vY9VmzZtSk9PnzZtmt3/aETU4IiiKAiC3FE0CREREYru3bv/7W9/u4OLa7hQo9FUzCgA\nOnfu3Lp16+zsbL1eb25JSkrKzs4ePny4OVuY+9x///1nz55NS0uzvQ8RUc2YUZxJceLEiStX\nrtzBlXW68PLly+np6a1atbIs93LixAkAYWFhFbuZ9wQzn7KxDxER1R8qAMXFxdev23+57Rs3\nbvz4448mkykzM/Po0aNKpTI2NtZyNj09HUBgYGDFS8xPJOZTNvYhIqqorKxMo9HIHUXTpQKw\nZs2aNWvW2P3WOTk5W7duNX92d3d/7bXXKm5OXFRUBKBZs2YVLzEfWkqTbOlj8c4775SWlpo/\nazSaoKAg+/1RiKhhSEhImDZt2s8//9y1a1e5Y2miHDKl2KxTp06bNm3S6/Xp6enr169/7733\npk6dKpkkbsu7Thvfh+7YscOchACEh4czqRA1NTqdLiYmRhTFy5cvM6nIReWI2V8VqdXq4ODg\nGTNmZGRkLFu2rG/fvv7+/qjwwOHtfXtPInNWsCz3Zksfi7i4OMufZffu3Xl5eY77QxFRfZOQ\nkBATE2OucHzkkUfkDqfpckidilXdunUzGo1nzpwxH5pHSiRDI5JBFFv6WLRq1SroFq5CStSk\nsGa+/nBeUrlx4wYApVJpPuzWrRuA5OTkin3Mh+ZTNvYhoiYuMTHRUjPPjCI7hySVY8eO/fnn\nnxVb9u3bt3v3bo1GY0kGvXr18vX1TUxMtEw8S0lJOXjwYIcOHUJCQmzvQ0RNXKdOnUJCQlgz\nX084ZKB+3759P//8c3BwsL+/vyAIV69evXr1qiAIsbGxnp6e5j4ajSY2NvbDDz+cOXNm//79\n9Xr93r17VSrViy++aLmPLX2IqIkLDg4+duwYtzyvJxyyTMuZM2cSExNPnDiRlZWl1+u9vb27\ndu06duzYTp06SXpaFosUBMG8WGS7du3uoI8El2khInK+iIgIhzypdOzYseqCxFaFhYVJCubv\nrA8REdUHzhuoJyKyC5PJJHcIVC0mFSJqSBISEnr37n3t2jW5AyHrHFhRT0RkXzqdLjo6GsCp\nU6datWoldzhkhTSpGI3GI0eO7N+//8aNG/n5+V5eXi1btnzggQd69uypUPCxhohkY66ZF0Vx\n3bp1Q4cOlTscsu52UhFF8euvv/7ggw8uX75ctV/btm3/7//+b8qUKU6MjYioHGvmG4ryhw+j\n0fjkk0/GxsaaM4pSqWzZsmVoaKi/v7/5ASU1NfXZZ5+dMmUKh8iIyMm2bt06btw4URTj4+OZ\nUeq58qSycOHCuLg4AEOHDv35559zcnKuX79+7ty5Gzdu5OTkbN68efDgwQBWrFjx+eefyxgu\nETVBAQEBvr6+a9euHTVqlNyxUC0EURRzc3MDAwOLi4vnzJnz/vvvW+0niuLbb7+9YMECNze3\n9PR0Dw8PJwdaJyx+JGpkioqKJFsrUT0UERGhALB69eri4uKHHnrovffeq66rIAjz58/v379/\nYWHh6tWrnRgkEZF0sz6qtxQAdu3aBeDVV1+teTssQRBeffVVS38iIiIJBYAjR44AGDRoUK29\nzSMr5v5EREQSCgA3btzw8vJq3rx5rb1btGjh4eFh3hmFiMgREhIShg0blp+fL3cgdCcUAPLz\n8y0r0tfKy8uLO/USkYPodLqoqKi9e/fyjUgDpQJQVlZme7W8UqksLS11ZEhE1ERV3Gf+oYce\nkjscuhNceYWI6gXWzDcO5cu0ZGVlxcbG2nJBVlaWI+MhoqaIGaXRKE8qBQUFS5YskTcUImqy\nBEHQarXffvstM0pDpwIwevRoucMgoiZtxIgRFy9e9Pb2ljsQulsqAD/99JPcYRBRU8eM0jhw\noJ6IiOyGSYWIiOym9qRy8+bNXbt2rVu3LikpyQkBEVGjl5CQ8NRTT+n1erkDIfu7vfPjzz//\nnJCQUFpa2qVLlylTpphr7BcuXPjee+8VFhaa+/Tq1Wv16tUdOnSQJ1giavi2bt0aHR0tiuKr\nr77ap08fucMhOytPKpMnT165cqWl9ZNPPjlw4MD69evffPPNir2TkpKGDx9+7Nixer6fChHV\nTwkJCdHR0eZ6FGaURkkBYN26deaM0q5du0ceeSQoKOjKlSvvv//+Bx984O3t/dVXX506derk\nyZNffPGFh4dHWlrav//9b7nDJqKGhxWOTYEKwPLlywFMnTp1yZIlCoWipKQkJiZm6dKlBoPh\nhx9+ePzxx81du3Tp4ubm9txzz23evHn27NlyRk1EDQ0zShOhAPDHH38A+OCDD8zLSrq4uLz7\n7rsGg0GpVD766KMVe0+cOFEQhFOnTskSKxE1XOnp6YIgbNiwgRmlcVMByMzM9PX19ff3t7R2\n7twZQGBgoEqlqthbq9X6+/tnZmY6OUoiaugmT578yCOPBAYGyh0IOZYCgMFgkAy8m6d+abXa\nqhe4uLgYjUbnBEdEjQkzSlPA4kciIrIbJhUiIrKbmvZTycjIqNrI/VSIqFY6nW779u0fffSR\nIAhyx0JOVdN+Knl5edxkhYjqSqfTxcTEiKI4efLkbt26yR0OORX3UyEie6q4zzwzShPE/VSI\nyG5Y4UgcqCci+2BGIVRcpZiI6G788ccfoihu2LAhIiJC7lhINjUllZSUlKqN7dq102g0DouH\niBqqt956a8KECaGhoXIHQnIqTypfffVVfHz8gAED/va3v1nOdenSpeoF8+bNmzt3rpOiI6IG\nhRmFFABycnJmz569Y8cOy4LENVi4cGFubq7jAyMiooZHAWDNmjV5eXkTJ05s37695HRAQMDl\nCmJjY4uKiuLi4uQIlYiI6jsFAJ1OB+Cpp56qelqpVLau4LnnngOQmJjo5CiJqL7R6XSfffaZ\n3FFQvaMCkJycLAjCAw88UGvv3r17a7Va8/4rRNRk6XS66OhoQRCio6PbtGkjdzhUj6gA3Lhx\nw9vb29XVVXIuJCREslS1QqHw9fXNyMhwXoBEVM+Ya+ZFUVy7di0zCkmoAOj1+qoZBcDFixer\nNhqNxrKyMkeHRUT1EyscqWYKAL6+vjk5OaWlpbX2Lisry87O9vPzc3xgRFTvMKNQrRQAOnbs\naDQaf//991p779+/32AwdOzY0fGBEVG9s3nzZlEU4+PjmVGoOgoAQ4cOBfCvf/2r1t7//Oc/\nATz88MOODouI6qF//vOfBw8eHDVqlNyBUP2lAPDcc89pNJp169bVvHvKkiVL1q1bp9Vqp06d\n6qzwiKgeEQShZ8+eckdB9ZoCQOvWrd98800AsbGxkyZNOnLkiKTTkSNHJk2aZN4Fcs6cOa1a\ntXJ+oERNhQmGiyhLRtlJmHLkDqZxyMjA0aM4dAjJybh2DaIod0CNmSCKIgCTyTR58uRvv/3W\n3Orr69u2bVt3d/eCgoLU1NTs7Gxz++TJk5ctW1b/9wfdtGlTenr6tGnT5A6EqG7EUpTsgin/\ndoumG9Sd5QuoEUhPx+XLlVpatEDbtjJF08hFRESULyipUChWrVrVv3//99577+rVq9nZ2ZZE\nYta6deu5c+c+//zzcsRJ1FSUHamUUQCUnYDSHwpfGYLZunVrTk6OLUsC1l8GA65ckTZmZMDf\nH25ucgTU+FVa+n7atGlTpkzZtWvXnj17rl69mpeX5+np2bp16wEDBgwaNIgr3hM5lgjDNSvN\nhqvQOD2pmPeZVygUDz/8sL+/v7O/3l6Ki62/7CoqYlJxEOl+KhqNZvjw4cOHD5clGqImzQSY\nqjSKEA3ODsSyz/yaNWsacEYBoKhmc9vq2umu1fm/bFJS0iuvvOKIUIiaOiUU7lUaBSi9nBpF\no6pwbNYMWq20UamEp6cc0TQJtiaVrKysL774olevXr179zZXqxCR3WnCpC0KL6hCnBdAo8oo\nAAQBoaFQKm+3KBRo2xZqtXwxNXK17FFvNBq3bdu2fPnyjRs3Wpb8Cgur8hefiOxBGQCXB1B2\nEqY8CCooW0HTHVDWfqG9LF261Fwz33gqHN3d0bMnMjJQUgKNBs2bw8VF7pgas2qTytmzZ1es\nWLFy5cqrV6+aW/z8/J588skpU6b06tXLWeERNTnKVnBtBZju4OW0HXz//fdJSUl9+/aV4bsd\nR60Gq+ucRZpUCgsL165du2zZsj179pT3UKkMBkPz5s2vXr3KCWBETiLTQLJGo2lsGYWc63ZS\n+e2335YtW7ZmzZqCggJzS48ePZ555pmnnnoqICBAqVQyoxARUc1UABYsWLB8+fIzZ86Ym5o3\nb/7EE09Mnjy5d+/essZGREQNjArAW2+9BUCtVkdERDzzzDNjxoxRc2oEUROwdetWrVY7ZMgQ\nuQOhxuP26y+NRuPt7e3l5aVS1TIljIgaga1bt0ZHR7u6ul68eNGTdRtkJwoAb7/9duvWrQsL\nC1euXDl06NA2bdrMmTPn9OnTcsdGRI6SkJAQHR1tMplWrlzJjEJ2pADwwQcfpKWl6XS6xx57\nTKvVXrp0af78+Z07d+7Xr9/ixYtv3rwpd5BEZE+NrcKR6pPyeYsKhWLkyJFr1qy5du3aF198\nER4eDuDAgQPTp08PDAwEYDQaDQanr0BERPbGjEIOJZ0M7+vr+/LLLyclJSUlJb388st+fn6l\npaUAMjMzg4KCZs6cefz4cTniJCI7EEVx/vz5oihu2LCBGYUcoXyTruqUlZXFx8cvX75827Zt\nJlP5Aqr33XffoUOHnBLeHeImXUTVyc3NPXLkyKBBg+QOhBqhiIiIWsp2NRrNhAkTdDrdpUuX\n3n///fbt2wM4fPiwU8IjIvvz8vJiRiHHsXUtiKCgoDlz5pw9e3bXrl3PPPOMQwQz4eQAACAA\nSURBVGMiIqIGqs4lKQMHDhw4cKAjQiEiooaO258RNWYJCQnHjh2TOwpqQlg8T9RomfeZb968\n+dmzZ124iQg5BZ9UiBonyz7z//73v5lRyGmYVIgaIVY4klyYVIgaG2YUkhHHVIgaFaPR+Prr\nr5tr5iMiIuQOh5ocJhWiRkWpVG7duvXUqVPDhg2TOxZqiphUiBqboKCgoKAguaOgJkoVFRV1\nB5fFx8fbPRQiImroVBs3bpQ7BiIiaiRUixcvljRdunTp448/FkVx9OjRXbt2bdmy5Y0bN06e\nPLllyxZBEN54443g4GBZYiWiqn755ZdOnTrdc889cgdCBACq2NjYisfXrl3r1atXr1694uLi\n2rVrV/HUuXPnHn/88WXLlv3xxx/ODZKIrNPpdNHR0aGhocnJySoVh0hJftI6lblz52ZnZ//4\n44+SjAKgffv269evz8zMfOedd5wVHhFVy1wzL4riggULmFGonpAmla1bt/bs2bO6R+ng4OCe\nPXtu3brV8YERUU1Y4Uj1kzSpZGRk1LwXpCiKf/75pyNDIqJaMKNQvSVNKi1btjx69GhqaqrV\n3hcuXDh27FhgYKDjAyMi60pKSp5//nlRFOPj45lRqL6RJpWYmBij0RgdHX38+HHJqWPHjkVF\nRRmNxpiYGGeFR0RSLi4uP//888aNG0eNGiV3LERSguRlV1ZWVp8+fVJTUwVBePjhhy1Tik+c\nOLFjxw5RFENDQw8dOuTj4yNXxLbYtGlTenr6tGnT5A6EiKgJiYiIkM4Y8fPz271795QpU375\n5Zdff/31119/rXh2xIgRy5cvr+cZhYjISUQRmZnIy4MowsMD/v4QBLljkpmVaYitW7dOTEw8\ndOjQzz//nJKSkp+f7+Hh0blz59GjR993333OD5GIqD4SRZw+jby88sPsbGRkoGtXKJr0liLV\nzm3v06dPnz59nBkKEVkhpu3e8UrP7ue8vQUI/aB6G4K0hozkcePG7YxiVlSEq1fRtFc3qKlg\nymQy5eTkFBUVtW7duk43zc/P37dv3++//37p0qWbN2/6+Pj07t378ccfb968uaRncnJyXFzc\n+fPnFQpF165dJ02a1LZt2zvoQ9Q4iRm6nwbHTEi7r7d696++grAFZb9B8yuEVnJHRkBOjvXG\npp1UrD+m7d69e8yYMZ6enn5+fhULIRcsWDB58uTMzMyab7p27dp//etfZ86cCQ4O7tevn1qt\n3rZt24wZM9LT0yt2O3DgwNy5c9PS0gYNGtSvX79jx47NmjXr3Llzde1D1Fgl6F6OmZBmMmHW\nTLdb7+pzYFwgb1RUzmpJX411fk2BlSeVTz75ZNasWVZLID09PVeuXDlo0KApU6bUcNPg4ODZ\ns2f369dPqVQCMJlM//nPfzZv3rxq1arZs2eb+5SVlS1evNjV1XXRokUBAQEARo4c+eabby5e\nvPjTTz+1vQ9RY5WQkBA1fq3JhHU/eI8drb19wnREvqCoAnd35OdLG93c5AilHpE+qezateuN\nN97QarXz5s07d+7c008/XfFsdHQ0gM2bN9d802HDhvXv39+cUQAoFIpnnnlGqVSeOnXK0icp\nKSk7O3v48OHmbAGgc+fO999//9mzZ9PS0mzvQ9Qo3aqZr5JRAMBVnphIolUraCv/X6NSNfF3\nX6iaVBYtWgRg8eLFc+fODQ0NFSpPjwsMDAwKCjp9+nRdv0Z1i6XlxIkTAMLCwip2Cw8Pt5yy\nsQ81HCUwnYDpGFAsdyT1XX5+/pNPPimKYvz66VUyCqB8RI6gqAqlEl27okULaLXQauHnh27d\noNHIHZbMpK+/9u3b5+vrO3ny5OouCAwMvIMhjd9//720tLR3796WFvP4imTFF/MTiWXoxZY+\nFmfOnDEajebPOVYH0EhGBh3KPoCYBQCCJzSzoBovd0z1l4eHx/r164uKikaNGgF9Bky7bp9T\n3A/ly/KFRpWp1eC8ocqkSSU3N7d79+41XGAymUpKSur0HTdv3ly6dKm7u/uECRMsjUVFRQCa\nNWtWsaf5sLCw0PY+FlOnTjX3BxAeHs750PWI6ShK3wJKyw/FPJT+DUIglA/KGla9NmjQoPJP\n6u9hjIe4DxAh9IVyPKCUNTSimkiTio+Pz6VLl6rrbTAYzpw5YxnhsEVRUdG8efNyc3PnzJlT\ndUqxYEP1qS19AERGRpaVlZk/m0wm2yMkh9OvuJ1Rbjd+w6RiGwWUMQAX3KOGQZpU+vTps2XL\nlm3bto0YMaJq7//+978FBQWRkZE23r24uPidd95JTU197bXXJNX4lgcOb29vS6P5UcPt1vQJ\nW/pYvP7665bP5rW/bAySHM501UqjaK2RiBo46UD91KlTAbzwwgtV9wxOTEx85ZVXADz//PO2\n3LqkpGTevHlnzpx5+eWXbz/L32IeKZH80y8ZRLGlDzUAQgtrjf5Oj6P+OnDgQGlplYc5ogZI\nmlSioqIee+yxtLS0vn37PvTQQ/v37wcwe/bs/v37jxgxIi8v79lnnx08eHCt9y0tLf373/9+\n8uTJ2NjYYcOGVe3QrVs3AMnJyRUbzYfmUzb2oQZA/WSlQ3MFlOpJa12dpTgTOedQVC+2m9u6\ndevgwYOfeOIJuQMhsgMrFfXffffdyy+/LIri3r17zbOHP/roo3379ikUipdffnnJkiW13rSs\nrOz9998/fvz4888/X92WD7169fL19U1MTLx+/bq5JSUl5eDBgx06dAgJCbG9DzUAygeheQtw\nKT8UNNC8DJVMe4HoC3F6NY4vx9kNOLESp75Haa48kQAAEhISoqOjTSZTzQXFRA2FdD8Vi9TU\n1PXr1ycnJ9+8edPd3b1Hjx6PPvpox44dbbnpf/7zn40bN3p7e1ecQ2z26quvWgbe9+/f/+GH\nH7q7u/fv31+v1+/du1cUxQULFrRv397S35Y+VXE/lfpIzIQpGaIByjAIdZjrYWen1yCvcuWs\nWyC6PAlBhpVluSswNTIRERHVJpW78fnnn2/fvt3qqQ0bNlgq7VFhsUhBEMyLRbZrJ12B1ZY+\nEkwqZF1xBo6vsNLe+Ql41G3V1LvHjEKNj5WkEhsb+8ADDzzzzDPVXbNo0aIzZ8589dVXjg/v\nzjGpkHW5F3DmRyvt7UbDr6szA8nIyGjbtq3BYFi/fn1ERIQzv5rIcSIiIqSP/EuWLNmxY0cN\n12zatMmWYRWi+kjjUU27p3PjQIsWLZYtW8aMQo1PTfupWGUymWysRiSqd1xbwDNEOqbi3gru\nQc6PpeICE0SNRp0HJ69cueLhUc2ve0T1X7vR8KwwddC9NULHcl9xIntRAbhw4cKFCxcsTenp\n6b/88kvVrkVFRb/++mtqauqDD3J1DWqw1G7oNAHFmSjNhcYTzawVZhLRnVIBWLVq1bx58yxN\n27Zt27ZtWw3XvPTSSw6Pi8ihXJvDVboSnUMlJyf36NFDoZBh4jKRM6kA+Pv7WwrUT5w44e3t\nHRQkfcUsCEKzZs06dOgwadKkRx7hdg5EdaDT6aKjo5977rl//etfcsdC5FgqANOnT58+fbr5\nWBCEcePGrVixQs6giBqRhISEmJgYURRHjhwpdyxEDied/bV8+fKai9WJyHascKSmRppUatjz\nkYjqhBmFmqCa6lQyMzOzsrL0en3VUzXvDklEaWlpUVFRoihu2LCBFY7UdFhJKiUlJR9++OGK\nFStq2ALSESuGEdWNqRSGHKi8odDKHYoVISEhCxYs6NChAzMKNSnSpFJaWjpkyBDzNipqtVqv\n1/v4+OTl5RmNRgAqlcrLy0uGMIkqMpUi+yfk/w8QAQHu4fAbA0UzucOSevXVV+UOgcjZpLPm\nv/zyy/379w8ePDg9Pd28jER2dnZxcfHevXsjIyNFUZw7d25mZqYcoRLdkrkB+Ydv7fYloiAJ\nGetuHRKRnKRJZc2aNYIgfPPNNwEBt3e8UKvV/fv337hx4/Tp02fMmJGYmOjcIIkq0GegMFna\nWHQKpdfkiIaIKpEmlVOnToWEhISGhgIwLxxpfvFltnDhQnd3988++8yZIRJVos+qpl3mB+hz\n587JGwBRfSBNKqWlpS1alK+GpNVqAeTk5FjOurq6du3a9fDhw06Lj0hK6VZNu7tz46hEp9N1\n7979/ffflzEGovpAmlQCAgJu3rxp/hwYGAjg1KlTFTtkZGTk5sq5pzc1ddogaAKljeoWcAmx\n1tsZLDXzYWFhcsVAVE9Ik0poaGh6errJZALQt29fAF9++aX5EMDmzZsvXLgQHBzs5CiJKlDA\n/wmoKywHqfKF/5MQ6rw5kF2wwpGoIunP4YgRI3bs2PH777/3799/xIgRISEhq1evTk1NHTBg\nwLVr19atWwdg4sSJcoRKdIu6BYJmoPgMDNlQ+Yiajia9SilHIMwoRBLSpBITE3P48OGrV68C\n0Gg0cXFxERERBw8ePHjwoLnDyJEj3377bWeHSSQhKNGsiz4H6ZtQcBaiCWov+D8M757OC+HE\niRPjxo0DEB8fP2rUqLu9nb4IORdgMsArBC4+doiPSA7SpNKxY0fz44hZv379zp49u2bNmtOn\nT2u12kGDBo0aNYrbCVN9YNIj7TuU3poLps/F1Q1QqODZ1UkBdOvW7ZVXXhkyZIgdMsqVfTi6\nAmUFAKBQocMYdOFmw9Qg1f4a2s/P78UXX3RCKER1kpN0O6NYXE90XlIB8NFHH9nhLrkXkbQE\nxluL7JkMOB2PZi0QMsQONydyLu5DR7XKgXgRMNbaz8lKM6w06nNgsrICav2W+svtjGJxfqsc\noRDdLXkmzFDDIJ6BYRZMBwAAnlC9AeVUJ311YSHS01FUBI0Gvr7w96/aReFi5TpBJdcssLtQ\nctNKY3E1NZ5E9Zv1n78dO3Zs3rz53LlzBQUFlvnEFe3cudOxcZH88qCfCPHK7UPD/wFuUD7h\n+G/OQ0pK+eeSEuTlobAQbdtKenl1ReZe6aVe3eG4Ib/09HRz8ZadufpZaWzWwv5fROR40qRS\nXFz8l7/8ZfPmzbJEQ/WI8YcKGcXS+JEzkkpqqrQlIwPNm8PDo2KbSyACRuJGIsRbb+ZcWyHA\nYTv26nS68ePHf/nll88++6ydb912OC7thrGsUmN7LphPDZI0qcydO3fz5s0qlSoqKqpv377+\n/v4KBcddmiTxvLXG60AhUM1CKXZRWorSUivt+fmSpALAry882iP/DIwlcAmEZyfAMY8p5pp5\nk8lkWcTInjzvwX1/RfJylOQAgFKDjlG45yH7fxGR40mTyg8//ADgxx9/jIyMlCMeqj98rTU2\nA1wd+7V1fHul8YPfAw4KpZwzKhwD+8C/J3IvwVgKrzbQyLmOGdHdkD6FZGRkBAQEMKMQlNFA\nlaFw5QSHzxjUaOBibQhept3hqmSUMojZDvkmpRa+HdCiOzMKNWjSfyBat27t7s6/0wQInaBa\nAFTYTlExEKq5Dvs+A8QLEI8DpWjXDpKXroGBcHPkO7dqHD58eNy4caIoxsfHjx0dhpJpKOyN\nov4oGgLDRufHQ1T/WVmm5dNPPz1//rx5SxVq0pR/gWIQTDuBXAg9oHjQUV9U8ityv4bpJlyv\nw7UUrm+ix5NIT0dxMdRquOpxeTWOnYGgQItu6Pq402ZGhYeHT5gw4Yknnhg1ciBKYmC6VH5C\nvI7SNwEtVA6bGEDUMAmiWGkT1pycnH79+vn4+Kxevbrhrka8adOm9PT0adOmyR0I2eD6L7h6\nGKZbC0L6nMA926D+GooxAFCUgR1vQV90u7+LD4Z8CK2nU4PUr0TZAmmjcA+abXNqGET1W0RE\nhPRJxdvbe/fu3RMnTuzUqdPo0aPbt29v9W3Y3/72N6dESI1dwRVcSsq5GpZ3o71R7+rq+adf\nqLvaJQv+n0MzBgBOxlXKKABKbuJMPHo87dQ4TVbnwl0GSqyMPBE1YVaKH+Pi4g4dOlRSUvLj\njz9WdxmTCtlHxvEryaNzr5Uv11WU3frmle7thBJti3+Xd8i5aOWqmxecFJ6FYPXByBXQOjsS\novpNmlS+/fbbV199FUBAQEBYWBjrVMih8tM8LRnFzGTQXEsa37bPraWylRorl1lttIebN2/6\n+Fhbdl41Cvr/VGkc46i6GKIGS5pUPv30UwCvv/76/Pnz1Wq1HCFRE1KYeU/VxqKse0RxSvm/\n1gG9kZsm7RF4nyOCSUhImDBhwrfffmtlSr2iGzRvo+wT4FbduyIcmtmOCIOoQZMmlTNnzri7\nuy9cuJAPKOQMri2tNovKZ8uTSqcoZBxH9tnb5wJ6oe1wuwdiqUepdrsg9SQoH4JxN5APRVco\nB3GRb6KqpEnFw8PD19eXGYWco1lbTdZhaaNrkKBQ3fqXXaHGQ+/g8l5knS6fUhzU1+4vnWyt\nmVe0gaKNfb+aqJGRJpXBgwdv3LgxPz/fo8o6S0R259kFHh2Rf+Z2i0KFVmMqdxIUCB6I4IEO\nioH7zBPZkfSJ5N1331WpVG+88YbVFe+J7EzAPX9BwAg0C4a2Bbx7ol0sXAKc9/179+6NiooS\nRXHDhg3MKER3T/qkkpubu2DBgtdff/3AgQPTpk2rrk6lX79+TgmPGj9BAb8HHL4oZHV69er1\n0EMPzZgxIyKCS80T2YG0or7aUcrKJFfVN6yor+9KLiB3D/RZUHnCvQ/ce9YyTCLqkX8IZdeg\ncIVrZ7hyDSGi+shKRX1ISIgsoVATUnAEGavLP+szUHwe+uvweaTa/sYCpH8F/a3tdXP3wush\n+Nr5wULMOG1K2SwWZSsCwxTdx0PR4DYlJqoXpD85Fy9elCMMajJEPbKqrO+bsxPuvaC2shE9\nAGRtvp1RzHL3wLUjXNvbKyjj/n8btrwGQykAIyAE9FQ/v11oZm2XXyKqEacOk3OVXYepxEp7\nSZUKx3Iiik5aabbaaIOioiJJi3j9qGHLTHNGud2y8a93dn+iJo5JhZysmrEToZq/iqJ4ew/6\nSu1lVhprk5CQ0K5du4MHD1ZsNB7/EQZpnjOdWF8xzRCRjVQ//fQTgNatW4eHhwMwH9ZqzJgx\ntXciqkoTCKU7jAWVGgUVXNpZ7y8ooAlAWXqV+wTV9Zt1Ol1MTIwoitnZlbduLMm10tuoR1kh\nVFwvkqhuVOa5+RMnTvzuu+8A2DhVv57P/iKnyIXpOKCAojtgc6msoETz8fjzu0rPHz4joLK2\njKOZ31ikf12pRdMKHn3qFGtCQkJMTIy5wnHkyEo7awktu1kJ0zMIrtWHVJFoRP4hlF6CoIRL\nKNzDuMokNWWqe++9F0C7duW/J5oPqckxlUCfCaU7VN429Tcug2E+UAgA8IRqHpSP2/pdzTqj\n1UvI2wd9BlTecL+vlinCLm0R+DxuJqL0KhSuaNYFPsMh1GF2Vs0188pek4z7/ileP1axUTXq\nI9gyvV7U49pXKLtWfph/GIXJaPk08wo1WarDhystvSQ5pAZJFFFQgLIyaLWwVrtaubMRWTrk\nHYBoAgCXEPjHQN28pktMv8Iwp8JxHgz/D0IbKGwuidUEoHlMLX2KT6P4AkQjXELg1h2Bd1h1\ntH37dkvNvPUKR5WLevLPhp9nmk5uhKFU8GmjHDZPEf6kTXe/mXg7o5gVpSDvADxZHUxNFCfj\nNzolJTh3DpY5Tm5uaN8e2urHBrJ/Qe7vFS5PQ/p3aD0diur3LDF+ba1xaR2SSi1EZKxBwZHy\no7zf4BqKllMgKGu8yroePXp069btnXfeqaFmXvBqrX5iNUwGlBXAxbZnNbOiFOuNTCrUVEmn\n3MTGxq5cubKGCxYtWhQbG+vIkOguiCLOn0fFWbOFhThvbSvc8v565O6TNuozUHiixm+5aq3x\niu1h1iL/f7czilnxeeTsuLObtWjR4uDBgzYNFipUdcsoAESDtUZ93W5C1IhIk8qSJUt27Kjp\np3fTpk1LlixxZEh0FwoKUFhoU6OZIc/6P4v6bCuNFkIra411no5VrSJrKa3o+B3fz4FbOWhb\nW2u0svMYURNR5x+2mnYxItnpq/kduayaqg6lm/W/A6oaZ3Mpn7O18c6YrBWImO6kMMXhfEdB\n4VKpReUN78HyBENUD9Q5qVy5coVbrdRfmmoGQqobU1G4wL2HtFHpBjcrs2wrXPUIVO8CrreO\n3aH6CIr+NkdZG02grY3W6KvLrI6g8kGr6XDrBqU7VF7wuBetXpSmmbt2R4WeRPJQAbhw4cKF\nCxcsTenp6b/88kvVrkVFRb/++mtqauqDDz7ovACpTtzd4emJvLxKjd7eaNas2ktaRMJYgOJb\n4y4qT/hPgNKtli9SToPiMYhHAQGKcMDr7uKuzHsICo9WKpAUNPCtfsXJChISEl566SWdTte+\nvd1WBquFugX8n3LInUXoz0B/BmIZBBVUbaDuVqep1EQyUAFYtWrVvHnzLE3btm3btm1bDde8\n9NJLDo+L7lhoKC5cQO6tKnEfH7RtW1N/hQtaPYuSy9D/CaU7XNrWNO+rIsEXwuC7DNY6pTsC\nX0D2zyi+AJigDYbvqGqXm6xAp9NFR0cDuHDhgvOSisOUnYT+1uQy0QD9OZiK4CLTxjNENlIB\n8Pf379at/HXHiRMnvL29g4Kkg66CIDRr1qxDhw6TJk165BGbfmckeajV6NQJpaXldSrVvRCT\ncLkHLvVpeFndAi2fAUSIYrXLglVmrpkXRXHdunUjRoxwdICOJpZCf1raaLwGYxaUXD2Z6jEV\ngOnTp0+fPt18LAjCuHHjVqxYIWdQdPe02ppqUxoMwaay9sa4z7ypALC2FpKYCzCpUD0mfUG7\nfPnyRvDegJqUbdu2jRs3DkB8fPyoUaPkDsc+BHU1J2x78iSSizSpTJ48WY4wiO5c27Ztg4KC\nPv/880aTUQAoPKHwgqnyAsqCFsrah5aI5CR9W33p0qV169YlJydbWkwm0/z589u0aaPRaPr3\n75+UlOTcCIlq0aFDh5SUlMbx1qsi7f0QXG8fCmpo+0DgkwrVb9Kk8uWXXz722GNnz561tHz8\n8cdz5sxJS0vT6/X79u0bOnTotWvXQFR/iKJaXd3bogZM4QnXEdD2hrojNOFwHQFlS7ljIqqN\nNKns2LFDq9Va9uAyGAyffvopgI8//vjQoUOPPfbYzZs3zS1E8svOxrFjOHQI//sfUlOrXVCg\nwRJUULWFpgfUoRDsXFJJ5BDSpHLlypXWrVu7uJT//T1w4EBGRsbgwYNff/31++67b+nSpS4u\nLjVXsRA5WvkecdnZOHcOxcUAYDQiIwNnzoDbxxHJSppUsrKy/P1vDwX+9ttvACIjI82HXl5e\nHTt2rFh+T42NeAMoljuImiQkJNx7773Xr1/HpUvSc4WFyMyUIygiKidNKmq1Ojf39oyTPXv2\nABgwYIClxc3NzWg0ghof4w8oC0NZOErbQ/84xPr4q4NOp4uKijp58uTJY8esr5JZXK8zIlGj\nJ00qoaGhp0+fNg/F5+TkbN++3d3dvVevXpYO169fb9mSw4WNjikehtcg/mk+gGkX9E8C+TJH\nVZlln/m1cd8PLN5SvlWlhONWuSciG0h/AiMjI41GY0RExKJFiyIjI4uKisaNG6dSlZezZGZm\nXrx4sU2bNs4OkxzN8KG0RUyD8b9yhGJdxZr5Uao9xt//Ybq+x0o/X1+nh0ZEt0mTysyZMzt2\n7JicnDxz5sw9e/b4+Pi8++67lrObNm0SRXHgwIFOjZEcrgxilfEJAOJZK41y0Ol048aNE0Ux\nPj5+7PCHjL9/CcBwZKFYWHm7yeDgmtZjJiLHk1bU+/j4HDx4cOnSpSkpKcHBwVOnTm3V6vY2\nfydPnhw6dKhlwjE1FmqgGVBUpd3nTm4misjIQF4eRBFubggIuPtXUi1btvTx8fn6669HjRol\nXj8KkwGAWJJV9usTytaPCF4dxbJcRbtwRcD9d/lFleiLoGaKIqobK5szeHl5vf7661Z7f/LJ\nJw6Oh5wpD+JNCK0BJZTjYfy28lktlFF1vqUo4vTp2xu63LyJzEx06wal8m4C7d2797lz59zc\n3ADAvcKQnrHMmLbZ/FHoseJuvuK2klxD4v8Z//gWJTmCd4hy0Cxl3xel61oaiqFyreZ6oiat\nph1/TCZTTk5OUVFR69bWNuKmhku8AMMsmH4DAHhCNROqdyCehungrR5aqN6F0L3Od/7zT+kW\nYSUluHwZdz0OV55RAMG9paLrONPJjRXPCh6Byi6Rd/kVACCK+rgnTad/Lj/KSTNs/Cv0xcqH\nZgKAsQynNyA1EfoiaNzR7hF0jISiERbzE90x6+8ldu/ePWbMGE9PTz8/v3vuub3NxoIFCyZP\nnpzJUoCGrQD6ibcyCoA8GN6BcT3U8VB/B9VsqOZDsxPKyXdy79xcWxvvgipmqSLk9u7Fgoef\natwcaCWvqox3UHBjOveLJaNYGBL/D2UFAHB0Bc5shL4IAMoKkPIjjtejuQxE9YGVJ5VPPvlk\n1qxZorXKZE9Pz5UrVw4aNGjKlCmOj40cw7gG4sUqjR9B+RQUQ4Ghd3VzqwXttVa5my7A+AvE\nTCg6QDUWqGVBEsGthXraHtOJf4iXEoRm7opWIVBfwZVFaPUiVN4Qr6FsAQy7gDIo2kL9KlS2\nbisn3jhmpVVfLGaeFTz8kbZTeurCNoRGwI1LBxOVkz6p7Nq164033tBqtfPmzTt37tzTTz9d\n8ax5r9bNmzc7L0CyO6tVjWImYI/nCXd3WxstDD+iOBpln0H/LUrnomhMwtbvR4wYUVBQUNNV\nZVcUbjeUXcIVIe1hXk3SmIfMH4FilEyFIREoAwBTKkpnwLjD1vi1ntbbXbyQf8X6qfzLtt6c\nqAmQPqksWrQIwOLFi80bqwiVxycDAwODgoJOn66yzSk1IILVSg4t4GaHmwcGIisLJSW3W1Qq\nBAdX29+UhtL3yxMAAGDrtjPRTzwtiqojR44M6NcTJakwlUAbBG3lgb2iFOmtABSfR1kcTKnS\n9rKP4TrElvAVnUZB6yGW5lf8ey+0vk/wbYc/q0lyanv8dyNqLKRPKvv2PgCHpgAAIABJREFU\n7fP19a1hq67AwEAufd+wKcYBVWYuKccD9hhwVijQtSsCAtCsGVxc0KIFunWDpvo9QIw7gdsZ\nKOGXwugnrphMprVrlg3o6YJLi3BjDTI24cpi3PgBYoX1gUSrCxKLMFn7jcd0EYVHUXwephIr\nZysQPIPU0V8LatdKLRO+AwC/TnCtko+btYBPaM33JGpSpE8qubm53bvXNOfHZDKVlNTyk0n1\nQcYRXNyCwutwbY57hqJVf8D867cQCtXHMMy6XZiieACqeXb74pofTaRu//qf8Eth1ONXTCas\n+y5o7IguuBYP0VCh43Gom8N3ePmhJsjaV/tAYULVpelEBW6sBgCFK1qMg3uPGgJShD2uCe5r\nOrZWzL0q+HdV9poIjTsAKLW47yUcWFQ+aA9A44H7XubsL6KKrBQ/Xqq6+OstBoPhzJkzAQEB\nDo6K7tbl7Ti2uPxz0XVkHUfBVXT8y63TyvFQ9IdpJ5ADoRsUA24lHKdTdDL/b6WMMroVCq5U\nyihmN/fBayCUWgBw74H8Ayip/KbLLxKqEuhXSi8sufXqzFSMP3+Epjk0gTUEJfi0VQ6cZeWE\nX2cM+xRXfkfRn3ALQOsH+O6LSEL6+qtPnz5ZWVnV7Zjy3//+t6Cg4MEHH3R8YHTnDMU4uUza\neG4diq5XOBYCoHwcylgoHpItowBQDoGyDwCTCRq1sO67oLER7tC8AaPV2cBlSNXd+qxAy6fh\nNQAqbwhquIQg4Fk06wxFODSvVbpI7428nrcPRT1yD+KOaTzQbgS6P4W2wwAB2edQcN360pZE\nTZL0SWXq1Klbtmx54YUX1q9f37t374qnEhMTX3nlFQDPP/+88wKkusu7CGOplfabp9Gs3j1k\nKqH9J8o+G/XIz6knXXz92kIdC1U01L9a6WtUIPcsijPg2gIAFC7wHQ3f0dJu6uehHAjjLoh5\nyExBsb80axrypJfUmYhT63D2J5j0AOB5D3pPg3e7u74tUYMnTSpRUVGPPfbY2rVr+/bt269f\nv4yMDACzZ8/eu3fvvn37ADz77LODBw92fqBkO6GapbaEu1oqxWEEL2jfBd71bVZyu0LF637k\n7pOOq5e4AEDJzfKkUgNFp/IXa8YvgBvSs2pv61cV3sChL3HtMCAgqC/6/BXNmlvveU6H0xtu\nH+Zdxv5PMGRBtTOSiZoMK8WP3333XUBAwL///e+9e/eaWz766CMACoXir3/9q3nOMdVnXu2g\n8UBZPgBoPbPcAi6W5PiX5LT27SLfay6bVKh5VHrAezQy4qE0AoAooMgVpRoAdVvk0XsA/vyx\nUoughmdfKz2Ls7D2MRRllB/mpCJtJ/4SD61Xla4izm6StpXk4NIudBhbh9iIGiMrSUWj0Xzx\nxRf/7//9v/Xr1ycnJ9+8edPd3b1Hjx6PPvpox44dnR8i1ZVCjR7TcfTL4i5PvNd6QPkv1CW5\n97n4zgfuqfnaOhP1EBwz/ck7HFePoDQDAmAUyl9huTaHW6varqzAozcMubi5s3zYX+mBFuOg\nsVYAf/CftzOKWcF1HPo3Brwl7WkoRam1F2iFf9YhMKJGqtoFJdu2bTtz5kxnhkJ21PI+DP50\nvtrl9isaF6/DKHkFrquB6qtG6qRsPwpXwXAJghaavnB/Dgo/Gy/V6XRr1qz55ptvlDWsXiwo\nEBqJsxtQmlPeovVB6Nhq3+5Vx2cIPPuiLB2CBtqAalPg9SPWGpOsNCq1ULnAUGVivcsd7RRA\n1LjUtEoxNWBittplvbTRlALjHijvbnUvs7LDyP37re8qRulOGFPh/Q8ItWcsnU4XExMjiuJL\nL71077331tTVtTl6PIvcVJTmQusFr7Z3OC6kbAbX2koUFdZ+Fqw2CgLaDMO5nyo1qlxwz4A7\niY2oceGG3o2UeA2wNs/VVM0CVnVVsFTaYkhDydZar7u9z/zatbVkFDNBCe/2aHkvvNs7dqZB\n8EO2NgLo+hiCKgzMaDxw31+5rCQR+KTSaAnVzI8S7PIPnwFGa8nJUGXRrcoq7jM/dmw9G9O+\ndxrSdiKzwpJiLXui13PWOyvU6PMqOl1G7kWo3eHXiXtEEpkxqTRSQksoh8JYudpDCIJyoD3u\nroSghlgmbRZq+oe1XmcUACoXjF+N43FIN08pvh/d/mL99ZeF5z3wtPfEB6IGjkml8dK+h9J8\nGG9VjyuCoV0EwS7LigjQDkDJ9irf2N9a53Lm5X82bNgQERFhjxgcQKlB2NMIe7r2nkRUDUcl\nla1bt6akpJw7d+7y5cuiKC5ZsiQw0MpqS8nJyXFxcefPn1coFF27dp00aVLbtm3voA9ZIfjA\nZSVMR2FKhdASyt52m/cFwH0aDOdhSLvd4jYJ6q41XPH8889HREQEBVlbCPIuGXKhz4LKE2o/\nOZecISLHJZVly5aVlJT4+fl5eHjk5VlfFePAgQPz5893c3MbNGiQXq//7bffZs2a9eGHH7Zv\n375Ofagmip5Q9Ky9W10JHvD5J0p2wXAOgju0faGq/f8Re2QUA0zXoPAvr5Q0lSIjHgVHy0+6\nBMP/UahtndlMRHbnqKTy5ptvtm3b1sfHZ8GCBeb1XSTKysoWL17s6uq6aNEi87LHI0eOfPPN\nNxcvXvzpp5/a3ofko4LLXW8/XAd6lH0B/SqgDFBANRKat5G583ZGAVByCdf/i9bTIfC9LpE8\nHDWluHfv3j4+NdWCJSUlZWdnDx8+3LKQfufOne+///6zZ8+mpaXZ3oeairLPoP/m1h6RJhh+\nRsmryP+jSrcbKDrj9OCIqJwKQGxsbF0v++qrr+7yi0+cOAEgLCysYmN4ePj+/ftPnDgREhJi\nYx+qn3Q63Z49e+bPn2+f24k50K+SNpr+B60rSqtMkjbkSFuIyFlUAJYsWVLXy+4+qaSnpwOQ\njN6bn0jMp2zsQ/WQpWZ+0qRJXbp0scMdxUuwsqEjoMwHqiQVJZcKJpKNCsDo0VV2pHC8oqIi\nAM2aVapsMB8WFhba3sfitddes+xz7OXl1aZNG0eETbWy1MyvW7fOPhkFAKpZrF5dZQsTtS+a\ncdlTItmoAPz000+19nMQQah9AqgtfQAcPnzYnIQAhIeHM6nIwlEVjopgKO+F8X+VGoXm8H4V\nZVtQfL68Rd0CLf8Chf1mThNRHck2ScbywOHtffuXUHNWcHNzs72PxZYtW0RRNH9OTEzMzMx0\nYPRkjWNr5rUfoeQFmG7lD8EP2k+hbIlWz6L0GvSZUHrC5Z76uhMZUVNRnlSMRqNerxcEQavV\nVte1tLRUFEW1Wl3TcuU2M4+UpKenV6xdkAyi2NLHwuP/s3fegVFU3d//zuzs7G56I500eu9N\nQFRAKVJFOk8sIFiwIGJBLChifeT3qKD4Uuw0IfSmdIFA6CChJaQX0tvWmXn/mGSzZXazSTaV\n+/lr98yZmTt3d+bMvfcUd3fjZ7m8bip8NEW4YhQcgTYVNAtVO3gMqLvHbmxsrCAIdRUzTwVD\nFQPuaEUs50OgKn5xRTAU1SmyQiAQ6oxyl+Inn3xSpVK9/bZVPSIT3n33XZVKNXnyZKecuFOn\nTgAuXbpkKhS/ipsc1CHYw1CA1BUoOgltMtS3kbcbWeuksxc7g/fee+/y5ct1mYWFgWwo5LPB\njKm0KAQCoTFBA7hw4cK2bdsiIyM/++wzO6piHPvWrVsvXpQqZ1RNevTo4ePjc/DgwczMTFES\nHx9/5syZNm3aGH2FHdFpnggCcnORlobsbOj1NT9O7k7wZWYS9R0Ux9WydXYgtUEJhPscBsD6\n9esBLFy40P6sEcMwb7zxxty5c9evX79ixQr7x925c+edO3cA3L59WzyFSqUCEB0dLQZFsiw7\nb9685cuXv/766wMHDtTr9SdOnGAY5vnnnzcexBGdZohWixs3UOHJhpQUtGoFLxvuT/bRJEgI\n1Qlw71vz5hEIBIJtGADHjh0DMHbs2Cq1x4wZM3fuXFHfPpcvX46NjTV+PXXqlPhh0qRJxkj7\n/v37L126dMOGDUeOHKEoqnPnzrNmzYqKMnMSdUSnuZGQUGlRAHAcEhLQpQvIQhGBQGj0UIIg\neHp6chxXUlLiyA6enp4URRUUNOqg5R07dmRkZMydO7ehG1J9dDpIzi5GRqKFjbpbdsj6BWX/\nWgr9JjhlpLJv3747d+68+OKLtT8UgUBoHowaNYoGUFZWZu2hawtXV1djOAjB+RgM1ZPbx3cM\naJWZRBkF9941OZQ5e/funTBhwsKFC8UqKQQno9OBF/0pSiHcrsh4RiA0ARgAXl5eeXl5BoOB\nYaoIW+E4Ljc3136mSEKtUChAUagIuKnEpUbVahkvhL6KgiPQpoBWQNUOHg/UPouoacx8WFhY\nLY9GMCMzE2lp4DgA8ExF8FKwWYAcsqfAvFOe8J9AaMTQAFq1amUwGEyXQGxx9uxZnU7XqlWr\num/Y/YpMBuuiIx4e8PSs6QE94DsWwS8icDY8B9c+SKWxVwVu0mRlITm53KIAKAxF4rvgWUAP\n7kcY3m/QxhEIDkEDGDp0KID/+7//q1Jb1BH1CXVFUBBatoQYYUpR8PNDVBSKi1FYWCv3YmdA\nLEodIghIS7MUasJQMKT8M/cLhMx6bhSBUF0YAHPmzPniiy82b9787bffvvTSS7ZUV61atWHD\nBpZl58yZU48tvP+gKAQFISgIOh3kchQU4Nq1cnMibgoNld5RyAT3HYRLgBvoRyGb6fQ0PFu3\nbhUEISYmZuTIkc49sk0EoejUn2U3T1MyuVu3Ya5dm+8LjcEgvXKmNf7cAoQ7oALrsU0EQrWh\nAURERCxatAjA/Pnzp06dGhcXJ5jM6QuCcO7cuWnTpr3wwgsA3n77bTKNXk+wLDQa3LlTOUAR\nBKSnIztbQllIgm4IuP8H/iz4wzC8Df0zgNXaTI0RBJSVrfrii9MnT9abRREMurvvD0354snc\n7V/lbP307vvD0r59pn5O3QDIZJDMnSozqcZN+dVbcwiEmlH+Jrt06dKkpKRff/1148aNGzdu\n9Pb2btWqlZubW0lJyZ07d/Lz80W1p5566v33ycRuPXLvXoUXkAmZmfC3rkz1NlBkJuEPgtsG\n2UQnNKOoCImJ0GppoDtNIz0dwfWRa+ve5o9Lrxw2lRT8vc61yyNeQ2bWw9nrG5qGjw9yc82F\nGnidBAABoHuAIgkLCI2dckcgmqZ/+eWXH374ITQ0FEB+fn5cXNyRI0fi4uJEi9KyZcsff/xx\n3bp1DiaiJzgHrVZCqLN2MBXAn5TQFI7bOK4APgaG+dA/De7/gOIq2nDrVmVLeB6pqbh3z267\nnUPRyS1Sws31cOqGITwcps79tBah34HNAAC6NeQrAXL3ERo7ZnPuzz333FNPPXX06NHjx4+n\npqYWFxd7eHiEhoYOGjTooYceIql/GwBWqjSIpFBypsvW7Jf+RfDbyj/z+8D9DPk+UDaCK7Oz\nK/2RjGRkoEULoAyGlRCOQdCB7gPZK86dn+E1EgG5vNquCWzSMAw6dUJBAcrKIJfDUw5mBoSH\nQUWAHgqQG5DQBLBcyGVZdvjw4cOHD2+Q1hAs8QayOQjmfsAtrBP0UqAHgD9qIdVeHEC7QW5R\nfZHfWWlRRIR0GN6F/AcAgh5CKSgVKAX27dtXWlr6RLduEg3TagEddOMgXC2XcJfA74D8ICir\nqTlpDDCkgWIgC7IVOqMM76rPSbEURnZ37PhNFi8vk1RvVSdPIhAaFQ1WT4XgEOqjcC9ESXfw\n4u/Cw+U25ClApKUm8wl0jwGVr/ZczhBDyiQIgBzy1iaa/CGJE/GHwEF7GYbE8vHN30n7piye\nwDDMg8eOSQxhWBbcD5UWRUTIBvcRmG+qvi7tYZT8CL4AAOgWcH8JbB9rLf9Zy0uvHOJ16sqr\n9Ar0m/hW1cdvNqjVyMiAWg2Wha8vfHwaukEEQhU0WD0VgkPos6FIh88BeB2H5yn47ofrNeik\nvL+oKLCH+ZIZfGFnLvcB3b/va878AoEGoI+3PKjUmXTayzAklFuUvy7un/LWBN7A//7b7y3a\ntwct/k/KgBug4kHlAlqkCTBY5VbgTzlwUZdR9EW5RQHA30PRMhgSrRWV4V3Cl/7t0mEQxbC0\nwsW922MRL29idFSDx+vUE0VFuHoVOTkoLUV+Pm7fBkmKQ2j0MKhOPZWYmBixnkr37s19CqKR\nIGbuogyQm1RHltlI2UKFGlK+1N+xFAtaCHpQxgl5qifwp6WOfpjxqf7Xxf1TPxvPC/yvC7eM\n6jsGKiAqCokXwF8EAiC0AWhogcz+uNcVUe/B5ZZpI6q+qLKNVk3UQf0n3Bda67q0GxD5yXFB\nU0bdug21BnogMREyGaKi0OzTBSUmWibsycyEry8cztRHINQ/NKpZT8WoT6gP3HpICW1adEpy\n8pIBZbp2JpsFymKZRCVolxjHKJUWpfcYvhQA4OMN5jbAQmhltv7BuSB5gZmEHizdMkMBym5C\nmw6BB5choSApNF5XcirUVuUAJLzgmhEajbTvX1GRhJBAaDTQqGY9FaM+oT7wGGBpQjwegKvU\nyjkAQBZmbj8AAPIIi/GDHOwmyF4A1RZUMOhRYPdQyghx24/7VwoQ/li0bVTvMTBaKW0BdEWA\nF2C1nKYNhqYiWRkVBNm7lgqCHtlbkPQFMn5C6ndI/RYwedGmBMgLoEwHcwya+eCvS1yVwQDr\nUgsch4rwKQKB0HhgACQkJLi6uobaSv5hQlBQkIeHR0KCVD1BQp1AocUUuPeD5i4oGspWUFil\nmzSBdgXbG7rzECpe4mVBYDtbK3qAWQIsqTyNK2T+4LLx04KNlxIv9Gs7AADlApmYE0ScgxFs\nOGjwfUGHguoN5kXAKvFl7j4UX6j8qssCzcLoFM1mQSauw2vB/QX1MSjXQ2Y+PrN2aBapWTmA\npoJSCZaVGI15eDREawgER2EAlJWV+TjsVeLq6pqTk1O1HsGJKCNQMZKoEiYEshbg7gE60F6g\nHVl3KElHSaoinNVoOykLlUaLouxXMe5ReoF1h65YOvCl9C1423gj4XUoOmsp1CihegDcSchK\nKyyKER1070O1w0zGspDJJEyLSmUpaWZERuLGDTNJYCBZUCE0ckg9lWYBHwduZXm2QXoyxU5k\nQhwOvb67H/cuA6AAlcdfXODDgksvSgWZv+lcF4WIx3BzC5AFBFgewY4vFlcMQXKcMQA+T0O7\nDIKVJxt/C0IxKJNYHIpCcDBSzANWXF2b/0K9pyc6dy53KZbL4ecHX9+GbhOBUAWknkr9wRsk\nim8547h7oR8Dfi+Em+CPwfASDB84uu+9y6JFKYcSZOpDjMcVWZDV6olnJDr9B3QhqDRAaxas\nbzu2CTI3UFKBjYwnZCFgoqT2oSTWhSzKAfj4oE0b6fSLzQwXF7Rqhc6d0a4dsSiEJgGpp1If\nFN/E7ZW4vgzXlyF5I3RWq861QA/DG5YybjWEa47svHfbbycu3rWU5lqVtRdxCUDoMAghgKJy\n6Z9h4Gc7NQutgHsvSyHjCbfOACAbJLGLrBcgNa8VFIRevdC9O3r1QuvWNnLVEAiEBoYGMGfO\nHLlcLtZTsaNK6qnUjNIEJP8B7T0AEDgUxyPpZ/BSzqI1QbgNIVdCzp+ucte9e/dOfPnrCYt+\nKi4zb41BY2MPIDAQQUGVQwSlEm3aVPF89x1VbkJE5H4InA5aCQCy/mCmmilT7mCX2jsay1ZE\nYhIIhMYIg4p6KsuWLZs/f/6JEycWLlzYq1cvYzZiQRDOnz//5ZdfbtiwAaSeSvXJPGgp0eUj\n7yz8pF7Tq4+NJ6ygBn8YEEB1lUzyWFFnXli75El3F/P5K6XdaZaWLREUhLIyMAxUqqrnoGgW\nAdPgkwNdNmRuUISYlTRWvA+qLwx7QGtAt4f8KVBkkodAaMKQeip1jlYqqYomy0lHp1qDCpSo\nMst9BU4ccKjAvAXZc6YbK6sC/7F+TEQ2eBPfXFqO4AFVnJRhqu3YKveD3Mq2FaXg+DIkn4DA\nwdUffUegA7EoBELThtRTqXNoqWVsmdJZh5eBWSGVFN04haWG4X3wlcMlszrzT8xAmyegqnjc\nu/ij7SSo6uXJri/Drudw92i5e1hpNg6/i1u76uPUBAKhziD1VOocz07Ii7MUenRy3gnoIWAP\nglsN4RYQBCEFwgVLHW4N6OEABEFYunSpIAjbtm0bNWoUAHiEofPT5esojJStMxhQVgaahkoF\nRxJUCxxKL0GXAdoFLh3A2qipHr8VBXctU4Wd+gptHq/6FAQCobFC6qnUOQHDoc6AOq1S0mII\nXCOceg6qHZivyj/rpH47Ib1ckaJ27dp16dyOwX1kBddOleV1dQ1x9YyyYU4AZGQgLa28pDHD\nICKiiuzrfBkyVkNXMbtXcAjej8JTKiFYvlRehpJM6EsFxlWTC9YdMtu+ygQCoXFSRbQjofbQ\nLKKeRdF1qNNAK+HeGsogABBKYUgBrwbtBiYclLNcZKlQyzInAKiW5R8EtTf95UPdLkAHL3+4\nqLwu/fQ67dKr+2uQWTcgL88s5NBgQEICFAp7Qd05OyotCgDBgLw9UEZCYRVyLxW/IshUCTtV\nd2JgUIOiENAHHZ+pwm+AQCA0Koh3Zr1AwaMjWjyMzGTu8DL9zuf0p5cbCnZCdw2GO9BdhvpA\nZXmR2mK+Jl8hnFv+oeR76Conx1j3gu7PfFZ4Ozf+F6lDZVhlDuZ5ZEs5HogIPMqs7BmAUimh\nyt3MDQwAkJD3zo0/aIMaAAQBmWdw7nMzNwICgdDIIUalnuA57Jqr/+dzQ9JxPi2Wv7iB27VS\npykTxEUFQQvtGdsl5asFPQDMf00SO3qA+RL0g+Wn0Ry2UJe7lAT1OpZ6SCqdimRuecl87OUY\nJJOy8JK7yGQI6wtKJshCOMVgnunAu4TevjLeQqswAZlVh9yYIxhQcBhpK5D8MTJWQ32r6l0I\nBIKTINNf9cS/m7j0ON5UUloonD/IPTCu/Cfgi8EXgTZP8ltyGyUJEPRQhcKzq8N5SWTTIBsD\n/l9A2H8wIyysXQexTL1QDEi89is88jkd9GVg3c03sKxEXi87oY4UC8YbBsuM9NknAt16wK21\nuVSmQIuuWrxi0JRn8tdq8zi9xB+yNM1aZpd7GyvHRlwiMhPhPwOuErmaCQSC0yEjlXoiNZa3\nFmYkmAkFAwA9uL+h/wmGA+k7NUm/IfcU8uKQFoPENeCrUUXXDXTfvfvzxo2bOnLkSK04VqC9\nQElkQCm9Fyx3g9zNakOAVe5ImpYQmuI72kKgyQ/Mu9ErbRs4i+GKT3tt/kNGiwJARvlI1o2U\nu0sIbaK+JTHblrsdkOh/AoHgdIhRqScEqWeaWX5JGrT7XajHQvMSdJ9C+0qL3qNUAZUpvNRp\nyLacu7KHGDMvCMI333yjKM/5yMBlkoVa2b3gjLghrSZIDYP8/BASUrlB9P6yn3rdpZNWNkNb\n2AICxRvYwsTuSX8/LXCMoQxlSWaKgv8DhhKzamMMC99gy+MxKgT2q/JaTdCmSgi5EuhJRS8C\noT4g01/1RFBPOumopWHxD6t8kLMdeYpbAP6uUSL3yAgdu+DOuu28odzft+g6Ah916HRmEY5j\nxlRucJkCQYuybYAeQH5Ch2sbX40YpYocY+NAISHw90dpKWgarq6OxKno9Z2TtnemZXqeZyBU\nXqBFujNBK3Gotn1wlUNxRX4ARoWuL1XT+8s6w7EITaKsCIT6oNpG5cKFC+vWrfvf//5XF61p\nxnSZLru9l8uJrxybKN2pPmMYALQr5G3BhMdDY1lMl/VMdml5piTxQfGr4FhRdpsWBQBouD4F\nlykwpKnzPWnfFv2XgbFf7Eouh5eXQycGACj9QVHgOcuHuNI8CJJSApSlbwKrRP8FyMtFSTJY\nL/j3gsKqkqRN9DkoioPOKmMNADYYMlIwkUCoDxw1Krm5ub/99tu6desuXrwIgBiV6iJjMW4d\ne3GdIeUkz+kR0IXuNVfm6k+Br5iD5KTnZxiXSrkY4GIfg8Hw2muvmcXMW0OpIG+t8ofKv9oX\nUgW8mine4NspKufqEFOxdy8oWpg3QQ4mHIa75kIXMKEIiERA72qet/QasjaJq1KgKFAmxopW\nosWT1TwcgUCoIVWXejxw4MC6deu2b9+uq3Aw7datm/29CJLIXdDnRabPi+ZS46oWHS65lzYv\nsnw7gwAH5r4Yhtm3b9+NGzcaJi3CvRiob/t3S2AUpbnxD+hLveQuJd59lX6DJP5pbDdAD0OF\ncxftDkUfUDWYpuI1yN5WblEACBQEQMZA1RpsMDz6Q2bthEAgEOoEm0bl1q1b69ev/+mnn9LS\nym96X1/f6dOnP/300z169Kiv5t1PUKFgxsMQYyrTZA/R5Xeh5VCFIGAYlI4NLMLCwhqmPAFX\njJJrACiK9+3wj2+HfwReRtEcAqZA1tVanWKg6A95MYRiUErQXjV1HNHcBW9R654Cx8FjEFSS\nxSUJBEJdYWlUSktLN2/evHbt2uPHj5drMIzBYPDz80tLS2NJub06RfEeKBX0mwAOoMCMUUa8\n0/5NCgIkfW0bHYZii0USiuYAwFBoZyfaHaiW07A1tmLuhWq4YBMIBKdQaVT++eeftWvXbtq0\nqaSkRJR06dIlOjp65syZgYGBMpmMWJS6RwX2PbCLwKeBCgLlUi52rkUxHAS3F0Iu6NaQPw3K\nKitXjWG8JBbfAcjt5qB0BCEB3P/A/wvKB/RIyGYCppW+QiR2oWgorDyUCQRCHcMA+PTTT9et\nW3fz5k1R5OfnN23atKeeeqpnz54N2rb7FiXoVo5r//333x06dAgOduwBqvsc+nXln7kz0G+F\n6mfQXcBpoS+FwtM6H1c1kLnAozeKzpoJ2QC4tKv5MQEIV6EbU14hRgD4o+BPQv5DpYLcG15D\nUHDUbC/vRyCr5QiIQCBUGwbA22+/DUAul48aNSo6Ovrxxx8npVOaCnv37p04cWLbtm3Pnz8v\nqzKIhL9caVHK0UDzJtJmo+AOIDoD9EbIQMkUwg7hOwqCAcUVOSsK+5ScAAAgAElEQVSVYfCf\nZDN2xEH0C01qjgEA+B3gnwBt4rfgOwxyLxSegSEPcl949oc7eSUiEBqAyrudZVkvLy9PT0+G\nIRGRjlKWisJLMJRA0QI+fcDU75txRZ15/uOPP67aogDgTkkIhUSUXgZcAYA3IOM0KCBEqgKK\nI9As/CfB9zHocsC4Q+5b68m7MgiXJMT8STOjAhoefeHRt3bnIhAItYUG8M4774SGhpaWlv70\n009Dhw6NiIhYvHjxjRs3GrptjZ3c00hcg7w4FMXj3nHc+hbq9Po7u90IR1s4lv8q4yw4x8Is\nbSFzhyoScr8m4mBAIBCcBg1g2bJlSUlJe/fuffLJJxUKRXJy8ieffNK+ffv+/fuvWrVKrFFP\nsECXi6y/zSS8Dmlbq0pfLzgaFW+fGlkUgO4lIdS5Qe9iJhE46Oz5a9UvLqClJrLomo6lCARC\nXVI+00XT9IgRI0aMGJGXl/fbb7+tXbv24sWLsbGxsbGxr732GgCO4wwGA5kZM1KSUBlsZ0Sb\nA10+WClfJ0ED3SUY0gEelApsBzCRjp2JjwV/GNCC7gl6NECr1epnn31WEISYmJiRI0dCSAT3\nf+CvgvIGPQKyaJvhR7K+YMbBsN1MmDFYYjzBuFhKao/6NorOwVAE1g+eA8E6HM3PfAHd44BJ\nJAo9EfRQ57eQQCDUGsunj4+Pz/z58+fPn3/x4sW1a9f+/vvvubm5AHJyckJCQmbOnPn00093\n7kxKU0hYFACgbMh5aP6prO0oqKE9D1BgIqo6jeEdcEZnLYDuC/kmlUq1e/fujIyMESNGQPi3\n8oErAPwJ8CcgX2tz3kmxDHQ3cHsg5IJuA+o/UMcBRWY6nlGQ201FXAMKjiF3f/lnzV0UX0Tg\nDLi0dWhfqiPYI+C+hXAN8AI9GrKpTm4egUBwEpQg2Juv0el0MTEx69atO3DgAM+Xz8j37t37\n7NmzdvZqcHbs2JGRkTF37tyqVWtKWTIS11kKZUq0WyjhlGtIgjbOUkgp4DLa7qIDvwf6Z63O\n8QKYJZVf9Y+DP2epI/9/oC3rmlgg6KC7Ci4FggEUU8R6nGTcrgCASwDaPuGQURF4aPIhV1U9\nrNHnIuV/lvZW5o7wN2rlwUwgEBoZo0aNqmI6i2XZyZMnT548OS0tbf369evXr799+3ZcnNUD\n8v7DJQxeXVFw2UwYNEr6IckXSQgFLQQtKKXtc3A7pY61E1gCgUfBbZRlguLg4QG5+Qn4k1UY\nFQHaU+ByKr4ZPLR5I+DTgYng4Rnh0Op6RizST5VXDXMLRcSjUNnOUK9OlBjBccXQZZH4RAKh\nmeFoOEJISMjixYtv3bp19OjR6OjoOm1TUyF4LAKGQxkAxgUu4QifDs8u0prSSRKpKuM3SiRk\nQjEMZfh3DW5vR3os0h7BjadQ0MFcSfxZBRj+hHo0Sjuj7BHovjFGexjSKy2KEV1yONwjHbIo\n2eeReqyyDmVJKm79aVXZ0azRNuSkGiOB0Nyo9sL7gw8++OCDD9ZFU5oclAx+D8DvAXs6JSm4\nuQm6LHTqA9rcgsuCqup+qiPwF4Dj/+i6dZF7eFAAQHdCwmqUmWS14hmkDocqE4oKPz16IADo\nf4Lus3KJkAH9SgjJUHwBgJfy7RJ0ENSgHFlMSbOKd9EWIucaAmzEGyqlEjDTKrCBAJCTg+Ji\nCALc3eHnJ1WBkkAgNBmqNiqnT58+ceKEVqtt27btqFGjXO1XkyWYUJyEk++Uh3zcptC6d6Vd\noT2gqDLiWzYP/OZ9++9OmFzQv6/80H4filIAj6Moy3KIyTMobA3/swBAjwM9AkIpdCssD2jY\nBfkM0N1tppd35B3DoIGhTEKuse16zvrD60EUHDMTthgHyBAfj6KKubucHNy7hw4diF0hEJou\nDICMjIw1a9YolcqFCxeabtNqtdOmTdu2bZtREhISsnXr1r59SdyyQ1xbUxlEmJGA/Gz4hSC4\nH7x6gAlxYJ6J8t5/6OUJk2fzPBa84kHRPcAsgXobhBYSykIkaE/QI8s9o4QEQGo+ivsXdHdZ\nEHAN4My2yPxBKRy4KhkLmpFIDCy3u1zv+ygUgSg6B0Mh2BbwHARVBDIzKy2KSEkJ0tMRIpUg\nkkAgNAVoALt3716yZMmFCxcsti1atEi0KDRN+/j4AEhLSxszZkxhYeOJjGvECMi/aSbQlCD9\njl7v8f8Y35Eo6wn1EzDsthMtuX///vETnud52ZYtMWMmpoPdA3oA6FzIpKyFy3OQ/wLZ9IpB\njHSJ4NK7LoYS0G5QdDcb7VCuUDhYbJGi4dvJUkjL4dPe/m5w64bgZxD2GgJnQhUBAAUFEook\n2JZAaMrQAI4cOQJg8uTJphsyMzNXrVoFYNasWQUFBbm5uWfPng0KCsrOzv7xxx8boqlNDQq0\nlSdY5+gPgnp/Bf4uBDX4f6FdCP0fknubx8yPBSpmrGThaGHlQ6xUw7c9AAjgi8Hdg6CLAm1Z\nn4rXu6TueODWtyi+CSYCquGQtUF+KdKTkXYDaXuhc/B5HvYwPEyWSWQsIkdA6e3YzqYNklqo\nt+vjTiAQGjk0gMuXL1MU9dBDD5lu2LZtm16vDwkJWb16tbu7O4DevXsvW7YMwJ49exqiqU0P\nv+5mXz0jr4YO3lr+xTj3pfsCguUSRWFh4bRp08Q685ZZWJin4JuKoFNg1ABACXC/i1b9QMn4\nYqgPQ30AmmMo203rEj4H5WHcT+DY9AMfGkr8eS3SYmAoBVikHEVhIrRF0BWg8AoSVkPvyCiU\nlqPdZLSfhrChiHocXWZXNUyxgeT6HFm0IxCaMgyArKwsf39/T09P0w0nTpwAMH78eKWyMpJi\n6tSpzz777PXr1+u5lU2UTs+i4Ca0FXM8npFXpbQ0EG6DMqu26+npuWnTJp1ON2rUKEt1OgyK\n7+H9Brz/gEEFikJJJ9w7Cb/O2lMhfHGloj6+E7h9svCtxdcT9CUBBf+O1eVHiJs4NUpuQ5cP\nXR5gYuA4DTIPoOWTjl2eeyjca1fgKyQE+fnQmWRDYxiEOq9oGIFAqHcYAHl5eQEBARYbzp07\nB8Bi+KJSqfz8/PLy8uqreU0KnkdpKTgOLi5gWQBKHzy4And3o/AOGBVCh9gKdDRZH9fpkJqK\ngoJhXl5wc0NJCdzcrE4UhnsDQRWD4sGJ7/U6w+1LfHH5+jYt1zAuuRSt47NUWven0vZLBGRy\nGqhTJZoiKawrGAYdOyIlpdKlODQUpMAogdCUYQC4urpmZWXxPE9XeLwWFhaKhSD79OljuQPD\nUMTj05qCAiQmQq8HAIoS3AK02WF8MSgVInpAPgmgAaE/ylRmiREB0GGg25R/5jjEx0NTUZCq\nqAjx8ejYES7mjlXq2xAMEMyW4gV1ueVgXHMV3gmgylcmZNlZlKybYO7oBUDpj9I7nFlRXgCo\n97QpLItW1ShzSSAQGjk0gHbt2hkMhn379hmlBw4cEAQhJCQkPNwsbE2n0+Xk5Pj7O5xf9j5B\no8GdO+UWBYAgUMWZtDZD0IIvgO4ytOcBAFQgFO9WLrlDdLr6vNINKyur0qKI8DySky1PJ5W0\nkmKKAFAyHet912hRAMgobUCHdDe/QpVXKUWXL4y7hd9zDdO6tdplfRy3NrmOXjWBQCBYQQMY\nPXo0gDfffDM1NRVAZmbmRx99BGD8+PEW2ufOndPr9R06dLA6zv3NvXvgLMcCcvcs42dDEjjx\nWc1MhGoL5M+CGQ35i1DtBd0NwJkzZ3Q6HUpLJQ5uLVS0tNaS+SRSKsiUhRRl2RLflqnhfW5E\nDbjW5sHL7v553m3Ohvb7Adkbvbu96RZhVtdd4Xsr4ME1jlwxgUAgSMIAeOmll7777rurV69G\nRkaGhISkpaUZDAaFQvHqq69aaG/duhXAAw/YzUxyH6KTKLxFyXSgKqNQ+DzIxIyLdFuwZkGm\ne/funTBhwrhx4zZ+8onEwWmr/GzKCLj1QIlZXBEV8JjSC9xle9m05CpdWO/r8DwMmRplNygX\nt7ApMwquTC69+6DAsS4hZ717rqcVE+xfK4FAINiBAeDj47Nnz54JEyakpKQkJSUBUCqVa9as\nad26tamqWq3++eefAUi4JN3nKCQi0QWONYtrtJG6U6wzLwjCzJkz4e2NXKvZJ2+T+I+SEqSk\noLQUdGu4tITqOJANWSFcE8BwtEsI3cMF9stAC3Jow+ESDwCGVpQyzbvrH95dTWJlqDa2diUQ\nCIQqKU/21KtXrxs3bhw4cCAhIcHLy2vEiBFBQUEWqrm5ucuWLZPJZNar9/c7LVogK8tiBkxf\nFFj5RQaZpXsdIFkVuEUL3LtXqeHigpYVk12lpYiPLw8Y5HkUyaDugNZ/gNYAgCEdfBI8f4OP\nD+y75/EVy/6yRwDzfFxUGGQzqr5eAoFAsEFlBkGVSjVu3Dg7qqGhobNnz677JjVBFAq0bo3E\nxPJ5MIrSlwTqSyqNCtsZtJVjsHSd+chI+PigsBAcBzc3s6y9ycmWIej6AOQ+hhYV5YH5yzDs\nh7cCmmxoQiEoIEAixRhdBgCUHK6TQbuB+wzCPYACPRjMJ4CHpX4TRyjJ5g4s5q/vFLRFdEgv\n2aMf05FDGrpRBEKzhdScdxKenujaFWVlYpwKY5ALd8AXg1aCCQdtVbU+KytLnPXatm2b5XSi\npyfMA1HLKZPMDWyeVT53PUraQgWorkGgoGmDMnOvCsoAZQoA+I2C3BuYAdkMCJmg3AAru9cM\nMGj0a4YLmeXF1Pi7J/jVD8nnHqMjBjdsuwiE5goDoKSkhKIoB3Pa//PPP3q93iIokgAANG0M\nVKTkYDvb0w0ICFi9erW3t3c1Fqho2trHDJSJC7JAodQk3xclQHULvBKayIojaOB2EXQpvAbD\nwyTVNGUyU9e84M6sNloUI4adr7DzzzdIewiEZg8DwN3d3dfXNyfHrBbg+PHjPTw8xJV5U8aN\nG5ebm2u/sj3BEWbMqObqhbc3srMthR4mySV5JQSLoacA18twj4XeH4ICsnzIWHiPgNegmrS4\nCSKkW+beBiBkXALPSeT7JBAItcbm9Nf27dt9fW1XHSdUF4FD0SmUXQVXBjYIXg+X1z0008mE\nkA0qHFTF9JdgQHEsNMmgGPi0QgmFMhNz7nPOzKjQOlACBOtFFDW8j0E5HqpnwHg4VDC42SBZ\n5UWuAuVoIW0CgVAtyJpKfZH9B8qulX/W30PZvwiaA0VYuUTIgHYxOLFMLw3mCSjeAU8hfSX0\nFaOTkvPwuQcvGprWoPTw7gafOTCEgT9Xnj+f4qBMgToMFnBeENJAAYzUUk2zhu44nju90lpI\niksSCHUEeV+rF8quX7lwxGzKUDAgpyINPgzQvFJhUQDwMGyG9hPkH6i0KCLaFlCmImgdAn+F\n4l3wt8CMBrsEdEX6LHER3gKBBucGud1FnmYK3Wa4bNACUwnl15YZ838N1R4CodlDjEp9sHfX\nlj7j1r/60V9mUl0WeDUAcP+Av2K5j+FPqP+VOJbOGPCihSEGAEBB8RkoFwCmWb/MYNpCMaCG\nrW/iMKO/ks85JBv8uqz3M8y4lewrlykXMq9LINQVZPqrztm/f//E/3wsCBg2MMJqIw0AvGS6\neR6CRPYXCCbLy0JFkCPdCaq90P8G6o5pbphKvF66v5ZSzKGjHqajHm7oVhAI9wVkpFK3lEc4\nCsKWlRPGDDVLewNFGGgFAFA2XpwVwRJCuUm0PB1R+ZnyB/saZDPBplnu4tUHcr9qN51AIBCq\nDzEqdYhJzPyfY8ZPN9tGs/CbWP5ZNhiUlf2QDYbPOMv1ZFkZXG6Vf6Z8wUy13KvsdyiyoUqE\nrASUHrJSqJKgyHTO9RAIBEJVlE9/lZaWzps3z2KbLWF9tKvpk5iYOH78eJOYeQGqVii9Cq4U\nbBA8B1f6YlGuUH4NzesQKubBhO5QLEPBT1Bdhy4IvAoUB3k2VHfLFegwMG3AfQSqC2QzgIqa\nklwGAMgLIC+obApHjAqBQKgnKEEQalDJsZEHP+7YsSMjI2Pu3LkN24wvv/yyY8eOljHzQi70\n34GLBTjQvcG+JAa0G9I03N04MFlCaQSX35PxS1K0fxW0DvJ8KJNMVuBVoB8Gv6fygFQk5DvL\n59Dy5oCzmv5SPgp3yyoGzkFbDLkLiSIkEAgio0aNYlBRpIvgdBYuXGgpEoqhngKh4rnPJ4E7\nAlUMX+KnPasEVxnobsiJUFB6UHooU8x9utRmFgWAkAjDu5CvAgDlCJRaVdlSPuqMqzGDO7eO\n++tDoSAJjJLu/AQz6kvKvdnmeiEQCI7DANi1S6KsLKFO0H9faVFEhFzoVhiSP4ZVWi9BG0C5\n/wurSo4S8PsBAaDgMhFcMjQHy+UUC9fZkHd0RtMr4c7/ZNjyTPkXg4a/+Jv+Xjz7/EnIWOee\niEAgNDmIS3H9wl+UEl4QtBJiXcoURad3HTuuDuABGUDB/TWoJsAQD0oJeWfQzvb7Enhu75uW\nsrRz3KU/ZD2jnXwuAoHQ1CBGxWkkJiZGRkZWpSXZ4QwtlSGayxkATUsoJaNYzKE6ASYLG0wE\nmIiq96oRQuk9oSRLQp55tY7OSCAQmhDEpdg57N27t2PHjp9//nkVejKp9MCywUwEKKuSxPLA\nwyhrB3W41Q5WjhXMxw63tLZQrJvkyjylvO8SixEIBGuIUXECYp15nuc7dOhQhar8adA9zCR0\nO7AvUQooB4I2PpZlYDvy8raeUEagdAA0Lc1+KdkMyP4DKghwBf0A5NtB12OBZ9aVbj/GUihX\n0Z0nSmkTCIT7CzL9VVukqwLbhIHqZ+g3g4+FwEHWG/KpgAIA7Q3VUPBlgA60O8DQwEPweggo\nhuFTcL8DGsANstlgXgNY4LO6vzgb1zDhB33ODSH7esV3BfP4Csrfye4ABAKhKUKMSq2opkUR\nYSCfBkyT2EKBdgUs11fcwSwDsxRCDij/xpDCi3LzZ1++xF3ZJGRcplz96I7jKb82Dd0oAoHQ\nKCBGpeZcvXp13LhxAGJiYkaOHFmlPp8PLg8UDdofkivzdpGBCqhaq96QyWXdZ6B7NYtXEgiE\n5g4xKjWnU6dOzz///KOPPlq1RRGgjYMhueIrDbYT5G3ruH0EAoFQ7xCjUnMoivr6668d0dTf\nNLEoAHjoroD2hqxFHTWNQCAQGgbi/VUfGJKkhHfruxkEAoFQ15CRSq0pKoJaDbkcHh5gpPtT\nMmC+XCjkg08A1QJ0KLHxBAKhqUOMSjXIysoKCDBZLTcYcPMmSkrKvzIMWrWCp0QMIOUOIddS\nSHvooVsO/SaIab/oLlAsr6w2TyAQCE0Q8mrsKPv27YuKivrll18qRXfvVloUAAYD7tyBTqIG\nMGsVE0nJwbZaAf0fMCaS5K9A+yKEMie3m0AgEOoRYlQcYv/+/RMmTDAYDF5eXuUijkN+vqWe\nwSAhBGQBUPQBVVFJi/aEYpAG+NVSj08Cd8CZ7SYQCIT6pQlMf126dGnDhg137tyhabpjx46z\nZs1yIG+jM5GOcDQYIFmpTK+XPAgTBiYMQikgA6UE+GyoJcY04FOc1WwCgUCofxr7SCU2Nva9\n995LSkoaMmRI//79r1y5smjRotu3b9dbA2zGzMvloKV6T6mUEFZAuVaMVygfs7zCRmj/2rSW\nQCAQGpZGbVR0Ot2qVatUKtV///vfF1988dVXX/3oo4/0ev2qVavqpwFnz5411pm3zMJC0wgK\nstxBpYKPj0OHptzAPG4l9IXM+VUaCQQCod5o1EblwoULeXl5w4cPDwwsL1Xbvn37vn373rp1\nKylJKvTD2XTv3n3cuHFbt261rDMvEhyM4GBQFcm4PDzQtq308EUS9l3IBld+pQKhWAHKu3ZN\nJhAIhIakUa+pXLt2DUC3bt1Mhd27dz99+vS1a9fCw60LjTgZuVy+YcMGm5spCqGhCA6GRgOW\ntRWkYnt3NyhXg/8X/E1QLSDrBdibOiMQCITGT6M2KhkZGQCCzGeZxFGLuMmUuLg4nufFz/fu\n3auXBgIAaBouLrXYvSNokjSeQCA0Exq1USkrKwPgYv7IFr+WlpZaKC9YsEDUB9C9e/c+feqx\nbhWBQCAQADRyoyJCUQ5VEJk3b56+wp03N9cqft0xCgsLPaVC4gkEAoHgCI3aqBgHJZUhhxXD\nF1dXy4Ik06dPN37esWOH9fxYlezfv3/KlCm//fbb6NGja9hiAoFAuL9p1N5f4mqKhXmQXGip\nPWI8ilqtNi7MEAgEAqG6NGqj0qlTJwCXLl0yFYpfxU3OokZVgQkEAoFgSaM2Kj169PDx8Tl4\n8GBmZqYoiY+PP3PmTJs2bZzoT0wsCoFAIDiLRr2mwrLsvHnzli9f/vrrrw8cOFCv1584cYJh\nmOeff95Zpzh+/LgxZl46wpFAIBAIDtOojQqA/v37L126dMOGDUeOHKEoqnPnzrNmzYqKinLW\n8Xv27Dl48OD58+cTi0IgEAi1p7EbFQDdunWzCKp3Iq6urgcOkGzzBAKB4Bwa9ZoKgUAgEJoW\nxKgQCAQCwWncd0ZFrVY3dBMIBAKh2XJ/GZX9+/dHRUXFxcU1dEMIBAKhedIEFuqdxd69eydO\nnCgIQk5OTkO3hUAgEJon94tR2b9//8SJE8UIxxEjRjR0cwgEAqF5cl9Mf5GYeQKBQKgfmv9I\n5dChQyRmnkAgEOqH5j9S6dSpU4cOHTZv3kwsCoFAINQ1zX+kEhAQEBcXR9PN33wSCARCg3Nf\nPGqJRSEQCIT6gTxtCQQCgeA0muf0l4uLy549e/bs2VOz3TmOAyCTyZzaqPsFnucFQSC9V2M4\njqMoigyva4Z489I0TVFUQ7el6SEIAs/ztfn7yeVyShAE5zarGdCvX7927dr9/PPPDd2QJsk3\n33zz008/rV69umfPng3dlqZHfn7+8OHDH3zwwf/+978N3ZYmyfvvv7979+6tW7eGhYU1dFua\nHrdu3Zo2bdrEiRPfeeedGh+EvA0RCAQCwWkQo0IgEAgEp0GMCoFAIBCchuyDDz5o6DY0OhQK\nRe/evdu2bdvQDWmSMAwTGRnZs2dPNze3hm5L04OiKFdX1z59+kRGRjZ0W5okcrm8TZs2PXr0\nUCgUDd2WpgdN015eXr169WrZsmWND0IW6gkEAoHgNMj0F4FAIBCcBjEqBAKBQHAazTP4scZc\nunRpw4YNd+7coWm6Y8eOs2bNIlPbAPbt2xcfH3/79u2UlBRBEH744YegoCBrNUd67z7s4eLi\n4pMnT546dSo5OTk/P9/b27tnz55Tp0718/Oz0CQdaE1xcfGWLVuuX7+elZVVUlLi7e0dFRU1\nadIk6yVP0nuOsHjx4itXrvj6+q5bt85ik7M6kKypVBIbG/vJJ5+4uroOHDhQr9f/888/AJYv\nX966deuGbloDM3nyZI1G4+vrq9fri4qKJI2KI713f/bw2rVrY2Ji3Nzc2rZtq1KpEhISMjIy\nPDw8vvjiC9NuJB0oSVJS0ssvvxwSEhIYGKhSqXJycuLj4wG89tprDz30kFGN9J4j7N+//4cf\nfhAEwcvLy8KoOLMDBYIgCIKg1Wqjo6OnTJmSkZEhSq5fvz5u3LgFCxY0bMMaA+fOncvLyxME\nYfny5WPGjElPT7dQcKT37tsePnjw4IkTJwwGg/iV47jVq1ePGTPm008/NeqQDrSFVqstLi42\nlVy/fn38+PHR0dGmOqT3qiQ3N3fKlCm//vrrlClTnnrqKdNNzu1AsqZSzoULF/Ly8oYPHx4Y\nGChK2rdv37dv31u3biUlJTVs2xqcnj17ent721FwpPfu2x4eNmzYwIEDjcnQaJqOjo6WyWTX\nr1836pAOtAXLsha+6e3btw8NDc3Ly9Pr9aKE9J4jrFq1ytvbe/LkydabnNuBxKiUc+3aNQDd\nunUzFXbv3t24iWAHR3qP9LARpgKjhHSg46SkpGRkZAQHB8vlclFCeq9Kjh8/Hhsb+8ILLxg7\nzRTndiBZqC8nIyMDgMVSgWiTxU0EOzjSe6SHjZw6dUqr1Zom3CQdaJ+srKw///yT5/mcnJzL\nly/LZLJ58+YZt5Les09xcfHq1auHDRvWpUsXSQXndiAxKuWUlZUBcHFxMRWKX0tLSxumTU0H\nR3qP9LBIfn7+jz/+6ObmZjoRQTrQPgUFBfv27RM/u7m5LViwQHxHFiG9Z58ff/wRwNNPP21L\nwbkdSIyKGaQGQ21wpPfu8x4uKyv78MMPCwsLFy9ebO1STDrQFu3atduxY4der8/IyNi6detH\nH300e/bsMWPGmOqQ3pPk/PnzR44cef31193d3e1rOqsDyZpKOZImVzTOrq6uDdOmpoMjvUd6\nWK1Wv//++4mJia+++mrv3r1NN5EOdAS5XB4WFvbqq6927tx57dq12dnZopz0ni30ev13333X\ns2fPIUOG2FFzbgcSo1KOOFdoMTkoOY1IsMaR3rvPe1ij0Xz44Yc3b96cP3++9R1OOrBadOrU\nieO4mzdvil9J79mipKTk3r1758+fH2tCWVlZbm7u2LFjX3rpJVHNuR1IjEo5nTp1AnDp0iVT\nofhV3ESwgyO9dz/3sFarXbp06b///jtv3rxhw4ZZK5AOrBZZWVkwKfhNes8WCoViuBUMw4jy\nBx54QFRzbgcSo1JOjx49fHx8Dh48mJmZKUri4+PPnDnTpk2b8PDwhm1b48eR3rtve1in0338\n8cdXr16dM2fOyJEjJXVIB9riypUrxmkukZMnTx47doxlWeOzjPSeLVxcXOZbIYb+zJ8/f/r0\n6aKaczuQpGmp5PTp08uXL3dzcxOTEJw4cUIQhE8//fT+yeJgi507d965cwfA1atXs7OzBwwY\noFKpAERHRxuDIh3pvfuzh9esWbN9+3YvLy9TH2KRV155xbjySTpQkh9++GHPnj1hYWH+/v4U\nRaWlpaWlpVEU9cILLzz22GNGNdJ7jjN16lSVSmWRpsWJHUiMihnGdGkURYnp0qKiohq6UQ3P\nsmXLYmNjreUrV64MDQ01fnWk9+7DHl6xYsWhQ4ckN23btub30n8AABamSURBVM04hwPSgVLc\nvHnz4MGD165dy83N1ev1Xl5eHTt2HDNmTLt27Sw0Se85iKRRgfM6kBgVAoFAIDgNsqZCIBAI\nBKdBjAqBQCAQnAYxKgQCgUBwGsSoEAgEAsFpEKNCIBAIBKdBjAqBQCAQnAYxKgRCPdG7d2+K\nonbt2tXQDakTvv/+e4qixo8f39ANaXgoEzp37tzQzTEjIiKCoqjTp08797DDhg0zXnIzNyrp\n6elLly596KGHgoODFQqFu7t7q1atnnzyybVr1xYWFlooP/7445RdSkpKbCkrlUp/f/8uXbrM\nmjXrxx9/LCoqkmyPuJdpfaEqOXHiBEVRFlm+q3XY5OTkJUuWPPDAAwEBASzLent79+rV6/XX\nX7dI41OtyweQl5f30Ucf9e/f39vbm2XZwMDAbt26zZo1a82aNcZEDtVl5cqVH3zwQUJCguO7\nJCcnf/3116NHjw4ODmZZ1svLq3///p9++mlxcXHN2lBLanAJ9UYjbNvixYvFf9enn35apXIt\nb2eWZYODg8eMGbNt2zbrg9fsjrbD5MmTo6OjLays8SyhoaEcx0nuOHDgQFGnffv21T2pNY48\nQGrPY489Fh0d/Z///AcAhGYKz/NLly5VKBTiNdM07ePj4+XlZewFDw+P77//3nSX0aNHA1Aq\nlb42KCkpsVB2c3MLDw8PDw8PDQ01LVfg4uLy+eefcxxn0Spxr7lz5zp+Ia+//jqAH3/80Y6O\nrcPyPP/++++zLCu2SiaTtWjRwrTMzsSJEw0GQw0uPy4uzt/fXzwIwzAhISHGrwA++ugjxy/Q\nFDGb08GDBx3Uj4+Pp0wKPCiVSuPniIiIW7du1awZtcHOJSxZsmTGjBkXLlyo/1aJVLd7q8Wq\nVasAjBs3zvFdOI4zZmRo27atHc0a387GOzQ8PNyYUgjAM888Y3GKmt3Rkoi7ZGRkWG8SzyKy\nd+9eawVj6mUA7dq1c+R09rF4gIh5uk6dOlX7I1uj1+ubs1F56qmnxB9m/Pjxf//9t1qtFuWl\npaX79u2bNWuWXC5/7LHHTHep1hNfUjk7O3vz5s2DBg0STz1z5kxH9rJP69ataZrOysqqbmME\nk06YNGnS8ePH9Xq9KE9JSfnuu+8iIyMBGHvG8baVlZWFhYUB6Ny5865du4xmKT8/PyYmZtq0\naZ9//rnjF2hKdZ96V65cYVl2xowZu3btKigoEAShoKBg9erV4uOma9euDj4FnEidPrhrSWMz\nKnv37gXg6uoqFk4Xc0lJ4qzbOTMz89lnnxUPtWfPnir1q7yjJanSqIhDkClTplgrvPPOOwA6\ndOjgLKNi8QAhRqWGrF69Wvxdv/32W1s6N2/eXLp0qamk9kZFhOf5xYsXiw344YcfanwKQRCu\nXLkCYODAgTVojFhDFMA333wjuZdOp3v11Vc1Gk112xYTEwOAYZiUlBTHrsNRqvvUy8/PT05O\ntpZv3bpVvPZjx445tYFVQ4yK47s8+eSTAKKjo8eNGyc5ehBx7u3McZyYrurll192RF+we0dL\nUqVReeONN3x9fZVKZX5+vkXbQkNDGYb5+OOPnWJUrB8g9WBUmuGaik6nW7p0KYDp06e/+OKL\nttTatGmzZMmSumgARVEff/zx0KFDASxbtozn+Rofavv27QBqsPip1+vFTpgyZYqxFI8Fcrn8\n66+/Nk4pOI44KR8SEmKaTdION2/e/Oyzzx555JGIiAilUunp6TlgwICvv/5aq9UaddavX09R\n1LVr1wAMHz7cOLVtf/3Jy8urZcuW1vKxY8eKeZRNJxPss3379jFjxgQGBrIs6+/vP378+GPH\njlnoFBYWvvfee926dXNzc1MoFKGhoQMGDHj77bdTUlIcuQTrhXrjqumNGzemT58eGBjo4uLS\no0ePX3/91XjGt956q3Xr1kqlMiwsbNGiRWq12qJVTuxeRzoBQH5+/oIFCyIiIhQKRcuWLefM\nmZOenu5gPxvJy8vbsWMHgP/85z/R0dEANm3aZF0u3um3M03Tbdq0AWDaP/Zx4h0twrLstGnT\nNBrNhg0bTOV//fVXamrqyJEjAwICJHfMycl5+eWXw8PDxZ6fN29eZmamHRcJOw+Qu3fvRkdH\nBwUFKRSK1q1bv/POOzX7a0lQF/aqYTlw4IB4aefPn6/Wjs4aqYjs2bNHbEZcXFzNTiEIglh0\n9ubNm9VtjLETzp496+C5HG/b2rVrATAMI/kuZs0TTzwBQKlURkVF9enTJzw8XFwIGTRokHGc\ndPz48ejoaHHa6tFHH42uYP369Q623xSDwSAalY0bN1aprNVqJ0+eLHaXj49Pjx49xMl3iqK+\n+OILo1phYaE4a0HTdIcOHQYMGBAVFSWa5M2bNztyCb169QKwc+dO4zHF18ZvvvlGtFLt2rVz\nc3MTW/K///0vKyurffv2FEVFRUUZnzJjx46ti+51sBMEQUhLS2vVqhUAmUzWvXv3Hj16yGSy\ngICAt99+G9UZqfzvf/8DEBYWxvO8Tqfz8/MDsG7dOgs1p9/OGo0mJCQEwIoVKxzRNyJ5R0si\nqtkZqSxevPjcuXMA+vXrZ7p12rRpALZu3SpOM1iMVJKTk8U/jEwm69GjR8+ePRmGCQoKEkdR\nkj1v/QARj/D99997eXkxDNO2bVsfHx+xwcOHD+d53nR3R/5apjTb6a/33ntPvDGqu6NzjUpx\ncbGY1dx0zF6tU6SmplIU1bFjxxo0RuwEb29vi39JtQ5ii7S0NPFh2qVLl82bNxcWFtrX37Bh\nw5EjR4xLL4Ig3LhxY/DgwQDef/99U01nzc9s2bIFgFwut78WJfLyyy+LTzfThdO1a9cqlUqK\noo4ePSpKvvjiCwBdu3Y1nfRTq9WbNm26ePGiI5dgy6goFIrnnntO7EaO48SVVU9Pz2HDhvXr\n1+/27duisjFP/qFDh0wP65TudbATBEF49NFHxZ/+zp07oiQpKalXr14Mw1TLqHTv3h3AO++8\nI36dP38+gMGDB1uoOfF2LioqOnPmzOOPPw4gODhYXISzo2+B5B0tiSNGRRCErl27Arh+/bq4\nqaCgQKlU+vn56XQ6SaPy8MMPA+jRo8fdu3dFSWpq6oABA8QVKeuel3yAiH85pVI5Y8aMnJwc\nUbhx40bx54uJiTFVdvyvJdJsjcozzzwDoFevXtXd0dQxwxqL38yRR7D4drlkyZJq7WXk22+/\nNb3rqmy56WHFTujdu7cjJzI9iIOX//PPPxudymiabt++/fTp07///vvMzEwHTydWtw4LCzMV\nOsWo5ObminNiFpPmkiQkJMhkMoZhrId0H374IYDRo0eLX8UF3i+//NL+AWtgVLp3727qUKDV\nasV/jlKpTEpKMj3CpEmTALz22mtVXle1utfxTjh79iwAiqIuX75sqnbr1i3xgeugUblw4YL4\n54mPjxcl4ps7rMblTr+dGYaZO3duamqqpH5172hJHDQq//3vfwG8+eab4qbvv/8ewCuvvCJU\nLIiaGhUxsoRl2cTERNMDpqeni/6c1j0v+QAR/3IdO3Y0uu2IzJw5E8Ds2bPtX5pg468l0mzX\nVESPcuM0giniFLYp8fHxFjq2fGo9PDyq2xKxDTUOmBDXw2sWTWanE+zj4OXPmjXrypUrzz//\nfHBwMM/z8fHxv//++7x581q2bLlgwQKdTmdxWJ1Ot2vXriVLlsyZM2fWrFkzZ85cuHChXC5P\nTk7OycmpwQXaQqfTPfHEEykpKZ06dVq+fHmV+lu3buU4rn///uJEgSkzZswAcOTIEXEOXXR4\n2759u3VIRC2ZO3cuTVfeiSzLim/xo0ePFk9qpF+/fgBu375tcYRadq/jnbB7924ADz/8cJcu\nXUzVWrdubf+lxAJxBrVfv37GWls9e/YUj7l+/XpTzVrezh4eHq0qCA0NlclkBoNh+/btkqEq\nVVLLO9qCmTNnyuXyX375RQxYEatmGf3cLBA95YYPHx4REWEqDwoKEsde1th5gLzwwgvi0MSI\nOP5wyl+LkZQ2acTHn0WknkhQUJDBYADAcZytAL3o6GjxlaH2iH8+T0/PGuxbWFh49OjRkJAQ\n6/vcEUQXe8lOsI/jl9+2bduVK1euXLny7t27cXFxhw8fjomJSU9P//rrr1NSUjZv3mzUPH36\n9NSpU5OSkiSPk5ubK86n1x6DwTBlypQjR46EhYXt3r3bNCLHFmIE6L1796xvZvGVs7S0tKCg\nwMfH59lnn12xYsXx48eDg4OHDh06aNCgQYMG9evXz7R0Y82wLmcrBv3Yklv8rLXvXsc7QXxq\nG4vDm9KxY0dx4b1KdDrd77//DkBcnzcSHR29cOHCn376aenSpcZereXtPG3aNNP/s8Fg2Lhx\n44svvjh//vzS0tI333zTkQYbqc0dbU2LFi1Gjhy5Y8eOgwcPRkRExMbGduvWTXyfsObGjRsA\nunXrZr2pe/fumzZtshDaf4BY180MDAyEk/5azdCoiKtwiYmJ1ptOnTolfkhNTZX0GnIixcXF\noiW35chhn927d+v1+rFjx5oG9zmO6JclznrX7AiOExERERERMWnSpC+//HL27Nm///77li1b\nYmNjxdfq3Nzc0aNH5+XlTZ48+aWXXurQoYO4QgjAx8cnPz+/fB7WLkOHDrX4Z69bt058tzJi\nMBimTp0aExMTGhp66NAhcZhfJfn5+QBu3Lgh3rSSlJWV+fj4hISExMbGfvjhhzExMTt37ty5\ncycAf3//hQsXvv7666ZDjepi/RouHs2W3NT7yCnd63gniE9Vyb+04//zmJiY3NxclmWnTJli\nKp8xY8Zbb72VlpZ24MCBkSNHikLn3s4Mw8yYMaO4uPj555//+OOPn3vuOdOISPvU8o6W5Omn\nn96xY8f69evF8cfTTz9t5+yoMLEWmAZpGrH/ALH11xJMCgHX+K/VDKe/xGdNXl6eRRqSeubY\nsWPizT9gwIAa7F6buS9UdEJ+fv758+drdoQaoFKpVq1aJf47jx8/Lgo3bdqUl5fXt2/fP/74\nY/DgwX5+fuL/Uq/XO576Iikp6Y45Fr6ner1+8uTJf/75Z0hIyOHDh0X3JEcQ765FixbZmUQ2\nek63adPm119/zc/PP3PmzFdffTVkyJDs7OxFixY5kmKkjnBK9zreCeLzKysry/ogkkJJxHke\nnU7n6+trOnllHHmYlk+vi9v5oYceAlBSUnL58mXH96rlHS3J6NGjW7RosX379vXr18vlcnGy\nURKx5yV/U8npuFo+QFCLv1YzNCpDhgwR327EdbCGQjx7ZGSk6ONRLbRa7b59+zw9PUV/jxow\nZMgQ8Snw1Vdf1ewINcPDw0P0WzV6sosvv4MGDbJ4lz9z5ox17iNbgyqjB5SRESNGGLfqdLon\nn3xy27ZtwcHBhw8ftp41soM4j3/ixAnHd5HL5X369FmwYMGRI0dElzBjdJ6dS6gjnNK9jneC\n6FT977//Wm+SFFojDkQA+Pn5BVghTqds3749NzdX1K+L29n4Pn7v3j3H96rNHW0L0ZBoNJqs\nrKzHH3/czkSlOGElaVmthbV/gKCafy1TmqFRYVlWDIP6+eef16xZU/8NEATh3XffPXToEIB3\n3323BhMjf//9d3Fx8ahRo0RnwRpg7IQ//vjD1hqJwWBYtGiR4yFgRlJTU63jpETOnTuXl5cH\noG3btqJEdD62Do77/PPPrXcXg0vKysocb4xOp5s0adL27dtFiyLGtTnOE088QdP0yZMn//77\n72rtKCK+85peXQ0uoTY4pXsd74RRo0YBOHTo0NWrV03lCQkJ4hp+laxfv57neX9//4yMjEwr\n0tLSfH19dTrdb7/9JurXxe1svEwHR7S1v6PtMHv27KFDhw4dOtRWkLKIOB948ODB5ORkU3lm\nZqZ13uvaP0BQzb+WKc3QqACYO3furFmzAMyePXvatGknTpwwTv/xPB8XF7ds2bK6OG9OTs6f\nf/45ZMgQ8fjR0dGiQ2R1qXEgvSnPPfec6Cb4/PPPT58+PTY21vh+kZmZuXr16g4dOohxbdU9\n8r59+yIiIt56662zZ88aO1aj0fzyyy9ivo3g4GDx6QPgwQcfBLBlyxZxEQKAWq1+5ZVXdu/e\nbeF/AkA0CY4/30WLsnPnTtGiGC2Z47Rr106M0540adKvv/4qTr+IZGRkrFy50ji19cYbb6xb\nt05cfhApLCwUb7A+ffrU+BJqiVO61/FO6NOnz7Bhw0QPVOM6R0pKytSpUx0coonOXTNnzrRu\nHgCWZadPnw7zGTAn3s5arfbnn38WowXFyE37+s66o+3QqVOnv/7666+//nrkkUfsqPXr1+/h\nhx8WnRuNdiU9PX3SpEnWzpZOeYBU669lRpVeyU0UjuPee+89YyyFXC4PCAgQM2aLEpVK9cEH\nH2i1WuMuVabpNU14Z5HTtGXLlqY+Ia6url9++WXNshTzPC/mySgqKnLwYu2kOVq8eLHxbUWh\nUAQHB5u2c8KECY5nKTZevugPKsKyrJii2PhM8ff3P336tOnlDB8+XNwUFRXVv39/cXZ4xYoV\nvr6+AK5cuWJUFv0mAURGRg4ePHjIkCFfffWVnQs3vqOpVCrJNn/22WdV9p5erzcukLq7u/fq\n1atPnz7ilAuA6OhoUU3M0kHTdOvWrR944IFu3bqJSZG9vb3PnTvnyCXYilOxTsQkukVZJ3v+\n5ZdfAAwZMsTp3etgJwiCkJKSIqYiNY3r9vf3dySi/ujRo+IBLcJcTDGuApqG0Nf4djbNUhwY\nGGj8l4aGhhpDZP5/e/fzkkwQxgF8LceFwhKS2liSIjqYBP44xAZRIJQnsW4RUaHHZKFDkHjw\nZBAevXbo4B/goWN1q3Owpy6xxh7EWPQkHmLfw7xI2LquvdPra+/3c1zGZXaYmUfdeWZMy9sc\n0aboR3rmqVgwTX5UVZV2GKfTGQ6HI5EIIUQQBLoH5e7uLi1mPYF063I0cnzMB+qra1E/Nvnx\no9fX11wut76+PjMzQwgZHx+fn59PJBLFYlHX9Y7CPRfa39/fdyvscrm8Xm8gENjf36enL5jW\nx05QeXh44DguFovZf0zr2768vGQymdXVVfqqbWJiIhQKybLcse9FX4//9PR0cXERjUbpKSaE\nkOnp6c3NzcvLy4498gzDaDab2Wx2cXGREDI1NbW1tUXTtk27ZqlUkiTJ7XbT8W/dVu3vUN2Y\n5v2auru729vb8/l8PM9PTk76/f6dnZ2rq6tarUYLPD4+np+fr62tiaLocrnGxsYCgcDp6amm\naR236vYI3xFUDKbN27MRqLe3N1mW5+bm6FeKZDKpaZqdDSXpkuWemYx04ezJyUnH9T8cziMj\nIx6PR5KkfD7/eRuIr41oU/QOzIOKYRi1Wi2dTrdbPpVKaZpWKBQ4jjs6OqJlrCcQ+0HF6LNr\nGf9JUBlGZ2dnHMd1HA4BAMPCIqh8h1QqxXFce5PmAU4gPzajftiVy2WHwxGPxwddEQD4utnZ\nWcf3Hydcr9fpQQ8bGxv0ykAmEHqcMP2n/QcmPw67z1tNAMAQ+bhTgM3jIexQVfXm5ubg4KCd\n7VipVA4PD3VdDwaD7VzggUwg29vb7Sd1GP0v/gEAgL9MUZSVlRVCyMLCgiiKuq4rivL+/i4I\nwu3t7fLy8qAr+NtoLpcbdB0AAKAHnuedTmer1apWq8/Pz41GY2lp6fj4+Pr6mq7H+0fglwoA\nADCDF/UAAMAMggoAADCDoAIAAMwgqAAAADMIKgAAwAyCCgAAMIOgAgAAzCCoAAAAMwgqAADA\nDIIKAAAw8wsDhvIYziNadAAAAABJRU5ErkJggg==", - "text/plain": [ - "plot without title" - ] - }, - "metadata": { - "image/png": { - "height": 270, - "width": 270 + "height": 270, + "width": 270 } }, "output_type": "display_data" @@ -1904,7 +1335,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 21, "id": "3f908519-8578-455f-862d-692a091bf131", "metadata": { "tags": [] @@ -1948,7 +1379,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 22, "id": "365291c3-2c18-4f9a-b58d-7ccfdc49a573", "metadata": {}, "outputs": [ @@ -2107,7 +1538,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 34, "id": "0cb6103f-a430-4620-bbd1-35f6c48f29ad", "metadata": {}, "outputs": [ @@ -2118,50 +1549,6 @@ " MAP - NFI ~ null: Coefficient SE t-value p-value\n", "1 Intercept -1.3 4.5 -0.29 0.77\n" ] - }, - { - "data": { - "text/plain": [ - "\n", - "Call:\n", - "lm(formula = IPCC_Table$region_mean ~ IPCC_Table$CCI_mean)\n", - "\n", - "Residuals:\n", - " Min 1Q Median 3Q Max \n", - "-73.082 -26.009 -3.178 21.187 157.885 \n", - "\n", - "Coefficients:\n", - " Estimate Std. Error t value Pr(>|t|) \n", - "(Intercept) 36.20943 5.92930 6.107 9.73e-09 ***\n", - "IPCC_Table$CCI_mean 0.69355 0.05771 12.018 < 2e-16 ***\n", - "---\n", - "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1\n", - "\n", - "Residual standard error: 39.26 on 138 degrees of freedom\n", - "Multiple R-squared: 0.5114,\tAdjusted R-squared: 0.5078 \n", - "F-statistic: 144.4 on 1 and 138 DF, p-value: < 2.2e-16\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "140" - ], - "text/latex": [ - "140" - ], - "text/markdown": [ - "140" - ], - "text/plain": [ - "[1] 140" - ] - }, - "metadata": {}, - "output_type": "display_data" } ], "source": [ @@ -2171,7 +1558,7 @@ "# IPCC_Table$region_stderr = 0\n", "# IPCC_Table$Uncertainty[is.na(IPCC_Table$Uncertainty)] <- 0\n", "NFI = IPCC_Table$AGB # Mean AGBD estimate from IPCC\n", - "NFI.var = (IPCC_Table$Uncertainty)^2 # Variance of AGBD estimate from IPCC\n", + "NFI.var = ((IPCC_Table$Uncertainty)^2) # Variance of AGBD estimate from IPCC\n", "# NFI = IPCC_Table$CCI_mean # Mean AGBD estimate from IPCC\n", "# NFI.var = (IPCC_Table$CCI_stdev)^2 # Variance of AGBD estimate from IPCC\n", "MAP = IPCC_Table$region_mean # Mean AGBD estimate from Spaceborne lidar estimates map\n", @@ -2190,13 +1577,13 @@ "Table['MAP - NFI ~ null:'] <- c('Intercept')\n", "print(Table)\n", "\n", - "summary(lm(IPCC_Table$region_mean~IPCC_Table$CCI_mean))\n", - "nrow(IPCC_Table)" + "# summary(lm(IPCC_Table$region_mean~IPCC_Table$CCI_mean))\n", + "# nrow(IPCC_Table)" ] }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 28, "id": "b571bd45-dff2-423b-b4b0-63c97f07d39f", "metadata": {}, "outputs": [ @@ -2204,32 +1591,24 @@ "name": "stdout", "output_type": "stream", "text": [ - " GEZ_NAME N Coefficient SE t.value p.value\n", - "1 Tr. rainforest 12 -0.36 15.13 -0.02 0.982\n", - "2 Tr. moist d. forest 12 -13.61 14.22 -0.96 0.359\n", - "3 Tr. dry forest 12 -9.81 14.86 -0.66 0.523\n", - "4 Tr. shrubland 11 25.39 13.53 1.88 0.090\n", - "5 Tr. m. system 12 25.00 25.92 0.96 0.355\n", - "6 St. h. forest 12 -0.85 11.11 -0.08 0.940\n", - "7 St. dry forest 12 -1.90 11.26 -0.17 0.869\n", - "8 St. m. system 12 15.30 12.33 1.24 0.241\n", - "9 St. steppe 11 13.91 10.24 1.36 0.204\n", - "10 Bo. t. woodland 3 -47.81 22.84 -2.09 0.171\n", - "11 Tm. o. forest 10 -38.69 33.43 -1.16 0.277\n", - "12 Tm. c. forest 7 -2.60 11.17 -0.23 0.824\n", - "13 Tm. steppe 4 -9.14 60.67 -0.15 0.890\n", - "14 Tm. m. system 8 -27.66 23.04 -1.20 0.269\n" + " Continent N Coefficient SE t.value p.value\n", + "1 Africa 26 -32.65 12.85 -2.54 0.018\n", + "2 North_America 39 -16.53 7.53 -2.20 0.034\n", + "3 South_America 33 -26.24 11.38 -2.31 0.028\n", + "4 Asia 30 -9.73 14.63 -0.67 0.511\n", + "5 Europe 9 -62.07 27.00 -2.30 0.051\n", + "6 Oceania 3 -54.72 60.18 -0.91 0.459\n" ] } ], "source": [ - "SUBSET <- 'GEZ_NAME' #GEZ_NAME\n", + "SUBSET <- 'Continent' #GEZ_NAME\n", "Table <- data.frame(matrix(ncol=6,nrow=0, dimnames=list(NULL, c(SUBSET,'N','Coefficient','SE','t-value','p-value'))))\n", "\n", "for (i in 1:nrow(unique(IPCC_Table[SUBSET]))){\n", " IPCC_Table_SUBSET <- IPCC_Table[IPCC_Table[SUBSET] == as.character(unique(IPCC_Table[SUBSET])[i,1]),]\n", " NFI = IPCC_Table_SUBSET$AGB # Mean AGBD estimate from IPCC\n", - " NFI.var = (IPCC_Table_SUBSET$Uncertainty)^2 # Variance of AGBD estimate from IPCC\n", + " NFI.var = ((IPCC_Table_SUBSET$Uncertainty)^2) # Variance of AGBD estimate from IPCC\n", " MAP = IPCC_Table_SUBSET$region_mean # Mean AGBD estimate from Spaceborne lidar estimates map\n", " MAP.var = (IPCC_Table_SUBSET$region_stderr)^2 # Variance of AGBD estimate from Spaceborne lidar estimates map\n", " # MAP = IPCC_Table_SUBSET$CCI_mean # Mean AGBD estimate from Spaceborne lidar estimates map\n", diff --git a/country_summaries/IPCC_classes_DPS/NOTES.ipynb b/country_summaries/IPCC_classes_DPS/NOTES.ipynb index 11108ac46882be0114a400603d14adc582e18244..fdb55129f0b1dc4b6b0a4f831672dbcb9ab5aec8 100644 --- a/country_summaries/IPCC_classes_DPS/NOTES.ipynb +++ b/country_summaries/IPCC_classes_DPS/NOTES.ipynb @@ -18,7 +18,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "id": "925dfbb2-d2a6-4503-8603-70f30acde654", "metadata": { "tags": [] @@ -112,16 +112,8561 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "id": "frequent-cardiff", "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + }, "tags": [] }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "--2024-02-17 09:17:27-- https://glad.umd.edu/users/Potapov/GLCLUC2020/Forest_extent_2020/00N_000E.tif\n", + "Resolving glad.umd.edu (glad.umd.edu)... 128.8.149.19\n", + "Connecting to glad.umd.edu (glad.umd.edu)|128.8.149.19|:443... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: 1605475071 (1.5G) [image/tiff]\n", + "Saving to: ‘/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/00N_000E.tif’\n", + "\n", + " 0K .......... .......... .......... .......... .......... 0% 326K 80m14s\n", + " 50K .......... .......... .......... .......... .......... 0% 652K 60m8s\n", + " 100K .......... .......... .......... .......... .......... 0% 658K 53m20s\n", + " 150K .......... .......... .......... .......... .......... 0% 665K 49m49s\n", + " 200K .......... .......... .......... .......... .......... 0% 33.5M 40m0s\n", + " 250K .......... .......... .......... .......... .......... 0% 49.5M 33m25s\n", + " 300K .......... .......... .......... .......... .......... 0% 51.2M 28m43s\n", + " 350K .......... .......... .......... .......... .......... 0% 680K 29m56s\n", + " 400K .......... .......... .......... .......... .......... 0% 40.0M 26m41s\n", + " 450K .......... .......... .......... .......... .......... 0% 50.2M 24m4s\n", + " 500K .......... .......... .......... .......... .......... 0% 49.9M 21m55s\n", + " 550K .......... .......... .......... .......... .......... 0% 49.6M 20m8s\n", + " 600K .......... .......... .......... .......... .......... 0% 697K 21m28s\n", + " 650K .......... .......... .......... .......... .......... 0% 48.7M 19m58s\n", + " 700K .......... .......... .......... .......... .......... 0% 50.3M 18m40s\n", + " 750K .......... .......... .......... .......... .......... 0% 49.7M 17m32s\n", + " 800K .......... .......... .......... .......... .......... 0% 43.0M 16m32s\n", + " 850K .......... .......... .......... .......... .......... 0% 49.4M 15m39s\n", + " 900K .......... .......... .......... .......... .......... 0% 50.5M 14m51s\n", + " 950K .......... .......... .......... .......... .......... 0% 718K 15m56s\n", + " 1000K .......... .......... .......... .......... .......... 0% 39.0M 15m12s\n", + " 1050K .......... .......... .......... .......... .......... 0% 49.3M 14m32s\n", + " 1100K .......... .......... .......... .......... .......... 0% 49.3M 13m55s\n", + " 1150K .......... .......... .......... .......... .......... 0% 49.8M 13m22s\n", + " 1200K .......... .......... .......... .......... .......... 0% 41.8M 12m51s\n", + " 1250K .......... .......... .......... .......... .......... 0% 50.1M 12m23s\n", + " 1300K .......... .......... .......... .......... .......... 0% 51.1M 11m56s\n", + " 1350K .......... .......... .......... .......... .......... 0% 50.0M 11m32s\n", + " 1400K .......... .......... .......... .......... .......... 0% 43.3M 11m9s\n", + " 1450K .......... .......... .......... .......... .......... 0% 50.6M 10m48s\n", + " 1500K .......... .......... .......... .......... .......... 0% 51.5M 10m28s\n", + " 1550K .......... .......... .......... .......... .......... 0% 51.1M 10m9s\n", + " 1600K .......... .......... .......... .......... .......... 0% 42.9M 9m52s\n", + " 1650K .......... .......... .......... .......... .......... 0% 51.6M 9m35s\n", + " 1700K .......... .......... .......... .......... .......... 0% 51.1M 9m20s\n", + " 1750K .......... .......... .......... .......... .......... 0% 49.5M 9m5s\n", + " 1800K .......... .......... .......... .......... .......... 0% 43.6M 8m51s\n", + " 1850K .......... .......... .......... .......... .......... 0% 50.4M 8m38s\n", + " 1900K .......... .......... .......... .......... .......... 0% 867K 9m11s\n", + " 1950K .......... .......... .......... .......... .......... 0% 46.0M 8m58s\n", + " 2000K .......... .......... .......... .......... .......... 0% 41.2M 8m46s\n", + " 2050K .......... .......... .......... .......... .......... 0% 50.8M 8m34s\n", + " 2100K .......... .......... .......... .......... .......... 0% 49.2M 8m23s\n", + " 2150K .......... .......... .......... .......... .......... 0% 49.8M 8m12s\n", + " 2200K .......... .......... .......... .......... .......... 0% 43.5M 8m2s\n", + " 2250K .......... .......... .......... .......... .......... 0% 50.2M 7m52s\n", + " 2300K .......... .......... .......... .......... .......... 0% 50.0M 7m42s\n", + " 2350K .......... .......... .......... .......... .......... 0% 49.8M 7m33s\n", + " 2400K .......... .......... .......... .......... .......... 0% 42.6M 7m25s\n", + " 2450K .......... .......... .......... .......... .......... 0% 50.8M 7m17s\n", + " 2500K .......... .......... .......... .......... .......... 0% 50.0M 7m9s\n", + " 2550K .......... .......... .......... .......... .......... 0% 49.6M 7m1s\n", + " 2600K .......... .......... .......... .......... .......... 0% 14.6M 6m55s\n", + " 2650K .......... .......... .......... .......... .......... 0% 48.8M 6m48s\n", + " 2700K .......... .......... .......... .......... .......... 0% 49.0M 6m41s\n", + " 2750K .......... .......... .......... .......... .......... 0% 50.4M 6m34s\n", + " 2800K .......... .......... .......... .......... .......... 0% 41.6M 6m28s\n", + " 2850K .......... .......... .......... .......... .......... 0% 50.3M 6m22s\n", + " 2900K .......... .......... .......... .......... .......... 0% 49.8M 6m16s\n", + " 2950K .......... .......... .......... .......... .......... 0% 50.0M 6m10s\n", + " 3000K .......... .......... .......... .......... .......... 0% 42.5M 6m5s\n", + " 3050K .......... .......... .......... .......... .......... 0% 49.0M 5m59s\n", + " 3100K .......... .......... .......... .......... .......... 0% 51.0M 5m54s\n", + " 3150K .......... .......... .......... .......... .......... 0% 51.0M 5m49s\n", + " 3200K .......... .......... .......... .......... .......... 0% 42.1M 5m44s\n", + " 3250K .......... .......... .......... .......... .......... 0% 50.9M 5m39s\n", + " 3300K .......... .......... .......... .......... .......... 0% 1.05M 5m56s\n", + " 3350K .......... .......... .......... .......... .......... 0% 48.7M 5m51s\n", + " 3400K .......... .......... .......... .......... .......... 0% 44.6M 5m47s\n", + " 3450K .......... .......... .......... .......... .......... 0% 50.9M 5m42s\n", + " 3500K .......... .......... .......... .......... .......... 0% 51.1M 5m38s\n", + " 3550K .......... .......... .......... .......... .......... 0% 50.1M 5m33s\n", + " 3600K .......... .......... .......... .......... .......... 0% 44.3M 5m29s\n", + " 3650K .......... .......... .......... .......... .......... 0% 48.4M 5m25s\n", + " 3700K .......... .......... .......... .......... .......... 0% 47.9M 5m21s\n", + " 3750K .......... .......... .......... .......... .......... 0% 50.9M 5m17s\n", + " 3800K .......... .......... .......... .......... .......... 0% 45.6M 5m14s\n", + " 3850K .......... .......... .......... .......... .......... 0% 52.7M 5m10s\n", + " 3900K .......... .......... .......... .......... .......... 0% 52.3M 5m7s\n", + " 3950K .......... .......... .......... .......... .......... 0% 50.6M 5m3s\n", + " 4000K .......... .......... .......... .......... .......... 0% 45.3M 5m0s\n", + " 4050K .......... .......... .......... .......... .......... 0% 51.9M 4m56s\n", + " 4100K .......... .......... .......... .......... .......... 0% 46.2M 4m53s\n", + " 4150K .......... .......... .......... .......... .......... 0% 49.6M 4m50s\n", + " 4200K .......... .......... .......... .......... .......... 0% 44.5M 4m47s\n", + " 4250K .......... .......... .......... .......... .......... 0% 52.1M 4m44s\n", + " 4300K .......... .......... .......... .......... .......... 0% 51.1M 4m41s\n", + " 4350K .......... .......... .......... .......... .......... 0% 51.5M 4m38s\n", + " 4400K .......... .......... .......... .......... .......... 0% 44.2M 4m36s\n", + " 4450K .......... .......... .......... .......... .......... 0% 52.7M 4m33s\n", + " 4500K .......... .......... .......... .......... .......... 0% 51.3M 4m30s\n", + " 4550K .......... .......... .......... .......... .......... 0% 51.0M 4m28s\n", + " 4600K .......... .......... .......... .......... .......... 0% 44.9M 4m25s\n", + " 4650K .......... .......... .......... .......... .......... 0% 52.1M 4m22s\n", + " 4700K .......... .......... .......... .......... .......... 0% 51.2M 4m20s\n", + " 4750K .......... .......... .......... .......... .......... 0% 50.6M 4m18s\n", + " 4800K .......... .......... .......... .......... .......... 0% 1.05M 4m30s\n", + " 4850K .......... .......... .......... .......... .......... 0% 43.0M 4m28s\n", + " 4900K .......... .......... .......... .......... .......... 0% 50.9M 4m25s\n", + " 4950K .......... .......... .......... .......... .......... 0% 49.2M 4m23s\n", + " 5000K .......... .......... .......... .......... .......... 0% 43.1M 4m21s\n", + " 5050K .......... .......... .......... .......... .......... 0% 49.6M 4m18s\n", + " 5100K .......... .......... .......... .......... .......... 0% 51.4M 4m16s\n", + " 5150K .......... .......... .......... .......... .......... 0% 50.7M 4m14s\n", + " 5200K .......... .......... .......... .......... .......... 0% 44.1M 4m12s\n", + " 5250K .......... .......... .......... .......... .......... 0% 50.0M 4m10s\n", + " 5300K .......... .......... .......... .......... .......... 0% 51.7M 4m8s\n", + " 5350K .......... .......... .......... .......... .......... 0% 52.1M 4m6s\n", + " 5400K .......... .......... .......... .......... .......... 0% 45.3M 4m4s\n", + " 5450K .......... .......... .......... .......... .......... 0% 49.9M 4m2s\n", + " 5500K .......... .......... .......... .......... .......... 0% 52.3M 4m0s\n", + " 5550K .......... .......... .......... .......... .......... 0% 52.0M 3m58s\n", + " 5600K .......... .......... .......... .......... .......... 0% 43.8M 3m56s\n", + " 5650K .......... .......... .......... .......... .......... 0% 49.8M 3m54s\n", + " 5700K .......... .......... .......... .......... .......... 0% 49.7M 3m53s\n", + " 5750K .......... .......... .......... .......... .......... 0% 51.4M 3m51s\n", + " 5800K .......... .......... .......... .......... .......... 0% 44.5M 3m49s\n", + " 5850K .......... .......... .......... .......... .......... 0% 50.6M 3m47s\n", + " 5900K .......... .......... .......... .......... .......... 0% 51.6M 3m46s\n", + " 5950K .......... .......... .......... .......... .......... 0% 52.3M 3m44s\n", + " 6000K .......... .......... .......... .......... .......... 0% 45.0M 3m42s\n", + " 6050K .......... .......... .......... .......... .......... 0% 51.8M 3m41s\n", + " 6100K .......... .......... .......... .......... .......... 0% 52.1M 3m39s\n", + " 6150K .......... .......... .......... .......... .......... 0% 52.6M 3m38s\n", + " 6200K .......... .......... .......... .......... .......... 0% 45.7M 3m36s\n", + " 6250K .......... .......... .......... .......... .......... 0% 52.2M 3m35s\n", + " 6300K .......... .......... .......... .......... .......... 0% 51.7M 3m33s\n", + " 6350K .......... .......... .......... .......... .......... 0% 1.05M 3m43s\n", + " 6400K .......... .......... .......... .......... .......... 0% 41.7M 3m42s\n", + " 6450K .......... .......... .......... .......... .......... 0% 50.6M 3m40s\n", + " 6500K .......... .......... .......... .......... .......... 0% 50.5M 3m39s\n", + " 6550K .......... .......... .......... .......... .......... 0% 50.5M 3m37s\n", + " 6600K .......... .......... .......... .......... .......... 0% 43.7M 3m36s\n", + " 6650K .......... .......... .......... .......... .......... 0% 52.2M 3m34s\n", + " 6700K .......... .......... .......... .......... .......... 0% 50.0M 3m33s\n", + " 6750K .......... .......... .......... .......... .......... 0% 50.0M 3m32s\n", + " 6800K .......... .......... .......... .......... .......... 0% 42.6M 3m30s\n", + " 6850K .......... .......... .......... .......... .......... 0% 52.0M 3m29s\n", + " 6900K .......... .......... .......... .......... .......... 0% 51.3M 3m28s\n", + " 6950K .......... .......... .......... .......... .......... 0% 50.8M 3m27s\n", + " 7000K .......... .......... .......... .......... .......... 0% 44.3M 3m25s\n", + " 7050K .......... .......... .......... .......... .......... 0% 52.2M 3m24s\n", + " 7100K .......... .......... .......... .......... .......... 0% 52.8M 3m23s\n", + " 7150K .......... .......... .......... .......... .......... 0% 51.6M 3m22s\n", + " 7200K .......... .......... .......... .......... .......... 0% 42.6M 3m20s\n", + " 7250K .......... .......... .......... .......... .......... 0% 51.7M 3m19s\n", + " 7300K .......... .......... .......... .......... .......... 0% 51.7M 3m18s\n", + " 7350K .......... .......... .......... .......... .......... 0% 51.8M 3m17s\n", + " 7400K .......... .......... .......... .......... .......... 0% 44.3M 3m16s\n", + " 7450K .......... .......... .......... .......... .......... 0% 52.0M 3m15s\n", + " 7500K .......... .......... .......... .......... .......... 0% 52.0M 3m14s\n", + " 7550K .......... .......... .......... .......... .......... 0% 51.6M 3m13s\n", + " 7600K .......... .......... .......... .......... .......... 0% 41.5M 3m12s\n", + " 7650K .......... .......... .......... .......... .......... 0% 51.4M 3m11s\n", + " 7700K .......... .......... .......... .......... .......... 0% 52.5M 3m9s\n", + " 7750K .......... .......... .......... .......... .......... 0% 48.9M 3m8s\n", + " 7800K .......... .......... .......... .......... .......... 0% 43.8M 3m7s\n", + " 7850K .......... .......... .......... .......... .......... 0% 52.1M 3m6s\n", + " 7900K .......... .......... .......... .......... .......... 0% 1.05M 3m14s\n", + " 7950K .......... .......... .......... .......... .......... 0% 51.4M 3m13s\n", + " 8000K .......... .......... .......... .......... .......... 0% 43.9M 3m12s\n", + " 8050K .......... .......... .......... .......... .......... 0% 49.8M 3m11s\n", + " 8100K .......... .......... .......... .......... .......... 0% 48.2M 3m10s\n", + " 8150K .......... .......... .......... .......... .......... 0% 51.6M 3m9s\n", + " 8200K .......... .......... .......... .......... .......... 0% 43.0M 3m8s\n", + " 8250K .......... .......... .......... .......... .......... 0% 52.1M 3m8s\n", + " 8300K .......... .......... .......... .......... .......... 0% 49.6M 3m7s\n", + " 8350K .......... .......... .......... .......... .......... 0% 49.7M 3m6s\n", + " 8400K .......... .......... .......... .......... .......... 0% 44.1M 3m5s\n", + " 8450K .......... .......... .......... .......... .......... 0% 51.6M 3m4s\n", + " 8500K .......... .......... .......... .......... .......... 0% 50.8M 3m3s\n", + " 8550K .......... .......... .......... .......... .......... 0% 50.0M 3m2s\n", + " 8600K .......... .......... .......... .......... .......... 0% 44.7M 3m1s\n", + " 8650K .......... .......... .......... .......... .......... 0% 52.0M 3m0s\n", + " 8700K .......... .......... .......... .......... .......... 0% 50.6M 2m59s\n", + " 8750K .......... .......... .......... .......... .......... 0% 46.3M 2m59s\n", + " 8800K .......... .......... .......... .......... .......... 0% 44.6M 2m58s\n", + " 8850K .......... .......... .......... .......... .......... 0% 49.7M 2m57s\n", + " 8900K .......... .......... .......... .......... .......... 0% 51.2M 2m56s\n", + " 8950K .......... .......... .......... .......... .......... 0% 51.5M 2m55s\n", + " 9000K .......... .......... .......... .......... .......... 0% 45.5M 2m54s\n", + " 9050K .......... .......... .......... .......... .......... 0% 52.5M 2m54s\n", + " 9100K .......... .......... .......... .......... .......... 0% 50.8M 2m53s\n", + " 9150K .......... .......... .......... .......... .......... 0% 52.6M 2m52s\n", + " 9200K .......... .......... .......... .......... .......... 0% 43.8M 2m51s\n", + " 9250K .......... .......... .......... .......... .......... 0% 52.1M 2m51s\n", + " 9300K .......... .......... .......... .......... .......... 0% 50.0M 2m50s\n", + " 9350K .......... .......... .......... .......... .......... 0% 50.3M 2m49s\n", + " 9400K .......... .......... .......... .......... .......... 0% 1.05M 2m56s\n", + " 9450K .......... .......... .......... .......... .......... 0% 46.3M 2m55s\n", + " 9500K .......... .......... .......... .......... .......... 0% 49.4M 2m54s\n", + " 9550K .......... .......... .......... .......... .......... 0% 51.8M 2m54s\n", + " 9600K .......... .......... .......... .......... .......... 0% 43.6M 2m53s\n", + " 9650K .......... .......... .......... .......... .......... 0% 48.0M 2m52s\n", + " 9700K .......... .......... .......... .......... .......... 0% 52.5M 2m51s\n", + " 9750K .......... .......... .......... .......... .......... 0% 52.0M 2m51s\n", + " 9800K .......... .......... .......... .......... .......... 0% 44.1M 2m50s\n", + " 9850K .......... .......... .......... .......... .......... 0% 51.4M 2m49s\n", + " 9900K .......... .......... .......... .......... .......... 0% 52.3M 2m49s\n", + " 9950K .......... .......... .......... .......... .......... 0% 51.6M 2m48s\n", + " 10000K .......... .......... .......... .......... .......... 0% 41.3M 2m47s\n", + " 10050K .......... .......... .......... .......... .......... 0% 50.0M 2m47s\n", + " 10100K .......... .......... .......... .......... .......... 0% 51.3M 2m46s\n", + " 10150K .......... .......... .......... .......... .......... 0% 52.7M 2m45s\n", + " 10200K .......... .......... .......... .......... .......... 0% 44.5M 2m45s\n", + " 10250K .......... .......... .......... .......... .......... 0% 40.8M 2m44s\n", + " 10300K .......... .......... .......... .......... .......... 0% 52.1M 2m43s\n", + " 10350K .......... .......... .......... .......... .......... 0% 49.7M 2m43s\n", + " 10400K .......... .......... .......... .......... .......... 0% 43.0M 2m42s\n", + " 10450K .......... .......... .......... .......... .......... 0% 50.0M 2m41s\n", + " 10500K .......... .......... .......... .......... .......... 0% 52.7M 2m41s\n", + " 10550K .......... .......... .......... .......... .......... 0% 53.0M 2m40s\n", + " 10600K .......... .......... .......... .......... .......... 0% 44.1M 2m39s\n", + " 10650K .......... .......... .......... .......... .......... 0% 51.2M 2m39s\n", + " 10700K .......... .......... .......... .......... .......... 0% 52.1M 2m38s\n", + " 10750K .......... .......... .......... .......... .......... 0% 52.5M 2m38s\n", + " 10800K .......... .......... .......... .......... .......... 0% 43.7M 2m37s\n", + " 10850K .......... .......... .......... .......... .......... 0% 49.2M 2m37s\n", + " 10900K .......... .......... .......... .......... .......... 0% 52.0M 2m36s\n", + " 10950K .......... .......... .......... .......... .......... 0% 1.04M 2m42s\n", + " 11000K .......... .......... .......... .......... .......... 0% 43.1M 2m41s\n", + " 11050K .......... .......... .......... .......... .......... 0% 50.2M 2m41s\n", + " 11100K .......... .......... .......... .......... .......... 0% 48.4M 2m40s\n", + " 11150K .......... .......... .......... .......... .......... 0% 49.9M 2m39s\n", + " 11200K .......... .......... .......... .......... .......... 0% 43.8M 2m39s\n", + " 11250K .......... .......... .......... .......... .......... 0% 51.2M 2m38s\n", + " 11300K .......... .......... .......... .......... .......... 0% 51.4M 2m38s\n", + " 11350K .......... .......... .......... .......... .......... 0% 51.5M 2m37s\n", + " 11400K .......... .......... .......... .......... .......... 0% 45.7M 2m37s\n", + " 11450K .......... .......... .......... .......... .......... 0% 52.3M 2m36s\n", + " 11500K .......... .......... .......... .......... .......... 0% 51.8M 2m36s\n", + " 11550K .......... .......... .......... .......... .......... 0% 51.8M 2m35s\n", + " 11600K .......... .......... .......... .......... .......... 0% 43.2M 2m34s\n", + " 11650K .......... .......... .......... .......... .......... 0% 52.6M 2m34s\n", + " 11700K .......... .......... .......... .......... .......... 0% 51.8M 2m33s\n", + " 11750K .......... .......... .......... .......... .......... 0% 51.1M 2m33s\n", + " 11800K .......... .......... .......... .......... .......... 0% 42.9M 2m32s\n", + " 11850K .......... .......... .......... .......... .......... 0% 51.1M 2m32s\n", + " 11900K .......... .......... .......... .......... .......... 0% 51.4M 2m31s\n", + " 11950K .......... .......... .......... .......... .......... 0% 49.7M 2m31s\n", + " 12000K .......... .......... .......... .......... .......... 0% 44.6M 2m30s\n", + " 12050K .......... .......... .......... .......... .......... 0% 53.0M 2m30s\n", + " 12100K .......... .......... .......... .......... .......... 0% 51.0M 2m29s\n", + " 12150K .......... .......... .......... .......... .......... 0% 47.9M 2m29s\n", + " 12200K .......... .......... .......... .......... .......... 0% 45.2M 2m28s\n", + " 12250K .......... .......... .......... .......... .......... 0% 52.4M 2m28s\n", + " 12300K .......... .......... .......... .......... .......... 0% 50.8M 2m27s\n", + " 12350K .......... .......... .......... .......... .......... 0% 52.0M 2m27s\n", + " 12400K .......... .......... .......... .......... .......... 0% 44.7M 2m26s\n", + " 12450K .......... .......... .......... .......... .......... 0% 1.05M 2m32s\n", + " 12500K .......... .......... .......... .......... .......... 0% 50.0M 2m31s\n", + " 12550K .......... .......... .......... .......... .......... 0% 51.1M 2m31s\n", + " 12600K .......... .......... .......... .......... .......... 0% 44.7M 2m30s\n", + " 12650K .......... .......... .......... .......... .......... 0% 48.5M 2m30s\n", + " 12700K .......... .......... .......... .......... .......... 0% 48.3M 2m29s\n", + " 12750K .......... .......... .......... .......... .......... 0% 50.7M 2m29s\n", + " 12800K .......... .......... .......... .......... .......... 0% 43.1M 2m28s\n", + " 12850K .......... .......... .......... .......... .......... 0% 47.3M 2m28s\n", + " 12900K .......... .......... .......... .......... .......... 0% 50.8M 2m27s\n", + " 12950K .......... .......... .......... .......... .......... 0% 51.0M 2m27s\n", + " 13000K .......... .......... .......... .......... .......... 0% 42.8M 2m27s\n", + " 13050K .......... .......... .......... .......... .......... 0% 50.7M 2m26s\n", + " 13100K .......... .......... .......... .......... .......... 0% 50.6M 2m26s\n", + " 13150K .......... .......... .......... .......... .......... 0% 51.5M 2m25s\n", + " 13200K .......... .......... .......... .......... .......... 0% 43.2M 2m25s\n", + " 13250K .......... .......... .......... .......... .......... 0% 49.5M 2m24s\n", + " 13300K .......... .......... .......... .......... .......... 0% 51.0M 2m24s\n", + " 13350K .......... .......... .......... .......... .......... 0% 48.7M 2m24s\n", + " 13400K .......... .......... .......... .......... .......... 0% 44.5M 2m23s\n", + " 13450K .......... .......... .......... .......... .......... 0% 40.3M 2m23s\n", + " 13500K .......... .......... .......... .......... .......... 0% 45.6M 2m22s\n", + " 13550K .......... .......... .......... .......... .......... 0% 47.7M 2m22s\n", + " 13600K .......... .......... .......... .......... .......... 0% 43.2M 2m21s\n", + " 13650K .......... .......... .......... .......... .......... 0% 49.3M 2m21s\n", + " 13700K .......... .......... .......... .......... .......... 0% 52.6M 2m21s\n", + " 13750K .......... .......... .......... .......... .......... 0% 52.3M 2m20s\n", + " 13800K .......... .......... .......... .......... .......... 0% 44.8M 2m20s\n", + " 13850K .......... .......... .......... .......... .......... 0% 47.5M 2m19s\n", + " 13900K .......... .......... .......... .......... .......... 0% 51.7M 2m19s\n", + " 13950K .......... .......... .......... .......... .......... 0% 52.1M 2m19s\n", + " 14000K .......... .......... .......... .......... .......... 0% 1.06M 2m23s\n", + " 14050K .......... .......... .......... .......... .......... 0% 47.1M 2m23s\n", + " 14100K .......... .......... .......... .......... .......... 0% 50.9M 2m22s\n", + " 14150K .......... .......... .......... .......... .......... 0% 49.9M 2m22s\n", + " 14200K .......... .......... .......... .......... .......... 0% 43.4M 2m22s\n", + " 14250K .......... .......... .......... .......... .......... 0% 48.6M 2m21s\n", + " 14300K .......... .......... .......... .......... .......... 0% 51.1M 2m21s\n", + " 14350K .......... .......... .......... .......... .......... 0% 50.8M 2m21s\n", + " 14400K .......... .......... .......... .......... .......... 0% 43.6M 2m20s\n", + " 14450K .......... .......... .......... .......... .......... 0% 51.9M 2m20s\n", + " 14500K .......... .......... .......... .......... .......... 0% 53.1M 2m19s\n", + " 14550K .......... .......... .......... .......... .......... 0% 47.4M 2m19s\n", + " 14600K .......... .......... .......... .......... .......... 0% 44.1M 2m19s\n", + " 14650K .......... .......... .......... .......... .......... 0% 51.8M 2m18s\n", + " 14700K .......... .......... .......... .......... .......... 0% 52.0M 2m18s\n", + " 14750K .......... .......... .......... .......... .......... 0% 50.4M 2m18s\n", + " 14800K .......... .......... .......... .......... .......... 0% 43.0M 2m17s\n", + " 14850K .......... .......... .......... .......... .......... 0% 46.2M 2m17s\n", + " 14900K .......... .......... .......... .......... .......... 0% 47.8M 2m16s\n", + " 14950K .......... .......... .......... .......... .......... 0% 50.4M 2m16s\n", + " 15000K .......... .......... .......... .......... .......... 0% 44.4M 2m16s\n", + " 15050K .......... .......... .......... .......... .......... 0% 50.2M 2m15s\n", + " 15100K .......... .......... .......... .......... .......... 0% 51.6M 2m15s\n", + " 15150K .......... .......... .......... .......... .......... 0% 50.8M 2m15s\n", + " 15200K .......... .......... .......... .......... .......... 0% 43.2M 2m14s\n", + " 15250K .......... .......... .......... .......... .......... 0% 49.1M 2m14s\n", + " 15300K .......... .......... .......... .......... .......... 0% 52.6M 2m14s\n", + " 15350K .......... .......... .......... .......... .......... 0% 50.0M 2m13s\n", + " 15400K .......... .......... .......... .......... .......... 0% 45.1M 2m13s\n", + " 15450K .......... .......... .......... .......... .......... 0% 50.5M 2m13s\n", + " 15500K .......... .......... .......... .......... .......... 0% 1.05M 2m17s\n", + " 15550K .......... .......... .......... .......... .......... 0% 47.8M 2m17s\n", + " 15600K .......... .......... .......... .......... .......... 0% 43.6M 2m16s\n", + " 15650K .......... .......... .......... .......... .......... 1% 48.4M 2m16s\n", + " 15700K .......... .......... .......... .......... .......... 1% 47.8M 2m16s\n", + " 15750K .......... .......... .......... .......... .......... 1% 52.2M 2m15s\n", + " 15800K .......... .......... .......... .......... .......... 1% 43.8M 2m15s\n", + " 15850K .......... .......... .......... .......... .......... 1% 50.4M 2m15s\n", + " 15900K .......... .......... .......... .......... .......... 1% 50.6M 2m14s\n", + " 15950K .......... .......... .......... .......... .......... 1% 52.3M 2m14s\n", + " 16000K .......... .......... .......... .......... .......... 1% 43.2M 2m14s\n", + " 16050K .......... .......... .......... .......... .......... 1% 52.1M 2m13s\n", + " 16100K .......... .......... .......... .......... .......... 1% 51.2M 2m13s\n", + " 16150K .......... .......... .......... .......... .......... 1% 52.4M 2m13s\n", + " 16200K .......... .......... .......... .......... .......... 1% 45.6M 2m12s\n", + " 16250K .......... .......... .......... .......... .......... 1% 52.0M 2m12s\n", + " 16300K .......... .......... .......... .......... .......... 1% 51.6M 2m12s\n", + " 16350K .......... .......... .......... .......... .......... 1% 44.2M 2m11s\n", + " 16400K .......... .......... .......... .......... .......... 1% 43.2M 2m11s\n", + " 16450K .......... .......... .......... .......... .......... 1% 51.9M 2m11s\n", + " 16500K .......... .......... .......... .......... .......... 1% 50.6M 2m10s\n", + " 16550K .......... .......... .......... .......... .......... 1% 52.0M 2m10s\n", + " 16600K .......... .......... .......... .......... .......... 1% 45.6M 2m10s\n", + " 16650K .......... .......... .......... .......... .......... 1% 49.0M 2m10s\n", + " 16700K .......... .......... .......... .......... .......... 1% 51.2M 2m9s\n", + " 16750K .......... .......... .......... .......... .......... 1% 49.6M 2m9s\n", + " 16800K .......... .......... .......... .......... .......... 1% 42.3M 2m9s\n", + " 16850K .......... .......... .......... .......... .......... 1% 50.5M 2m8s\n", + " 16900K .......... .......... .......... .......... .......... 1% 50.2M 2m8s\n", + " 16950K .......... .......... .......... .......... .......... 1% 50.3M 2m8s\n", + " 17000K .......... .......... .......... .......... .......... 1% 43.4M 2m7s\n", + " 17050K .......... .......... .......... .......... .......... 1% 1.05M 2m11s\n", + " 17100K .......... .......... .......... .......... .......... 1% 44.0M 2m11s\n", + " 17150K .......... .......... .......... .......... .......... 1% 49.8M 2m11s\n", + " 17200K .......... .......... .......... .......... .......... 1% 40.3M 2m10s\n", + " 17250K .......... .......... .......... .......... .......... 1% 49.4M 2m10s\n", + " 17300K .......... .......... .......... .......... .......... 1% 51.2M 2m10s\n", + " 17350K .......... .......... .......... .......... .......... 1% 49.1M 2m10s\n", + " 17400K .......... .......... .......... .......... .......... 1% 43.0M 2m9s\n", + " 17450K .......... .......... .......... .......... .......... 1% 50.1M 2m9s\n", + " 17500K .......... .......... .......... .......... .......... 1% 49.1M 2m9s\n", + " 17550K .......... .......... .......... .......... .......... 1% 49.7M 2m8s\n", + " 17600K .......... .......... .......... .......... .......... 1% 41.7M 2m8s\n", + " 17650K .......... .......... .......... .......... .......... 1% 49.3M 2m8s\n", + " 17700K .......... .......... .......... .......... .......... 1% 50.6M 2m8s\n", + " 17750K .......... .......... .......... .......... .......... 1% 50.3M 2m7s\n", + " 17800K .......... .......... .......... .......... .......... 1% 41.9M 2m7s\n", + " 17850K .......... .......... .......... .......... .......... 1% 51.4M 2m7s\n", + " 17900K .......... .......... .......... .......... .......... 1% 50.2M 2m7s\n", + " 17950K .......... .......... .......... .......... .......... 1% 46.9M 2m6s\n", + " 18000K .......... .......... .......... .......... .......... 1% 41.1M 2m6s\n", + " 18050K .......... .......... .......... .......... .......... 1% 50.6M 2m6s\n", + " 18100K .......... .......... .......... .......... .......... 1% 51.1M 2m5s\n", + " 18150K .......... .......... .......... .......... .......... 1% 46.1M 2m5s\n", + " 18200K .......... .......... .......... .......... .......... 1% 43.8M 2m5s\n", + " 18250K .......... .......... .......... .......... .......... 1% 50.4M 2m5s\n", + " 18300K .......... .......... .......... .......... .......... 1% 50.6M 2m4s\n", + " 18350K .......... .......... .......... .......... .......... 1% 46.1M 2m4s\n", + " 18400K .......... .......... .......... .......... .......... 1% 43.8M 2m4s\n", + " 18450K .......... .......... .......... .......... .......... 1% 51.8M 2m4s\n", + " 18500K .......... .......... .......... .......... .......... 1% 52.0M 2m3s\n", + " 18550K .......... .......... .......... .......... .......... 1% 50.1M 2m3s\n", + " 18600K .......... .......... .......... .......... .......... 1% 1.07M 2m7s\n", + " 18650K .......... .......... .......... .......... .......... 1% 49.0M 2m6s\n", + " 18700K .......... .......... .......... .......... .......... 1% 48.3M 2m6s\n", + " 18750K .......... .......... .......... .......... .......... 1% 49.8M 2m6s\n", + " 18800K .......... .......... .......... .......... .......... 1% 38.0M 2m6s\n", + " 18850K .......... .......... .......... .......... .......... 1% 48.5M 2m5s\n", + " 18900K .......... .......... .......... .......... .......... 1% 46.9M 2m5s\n", + " 18950K .......... .......... .......... .......... .......... 1% 50.0M 2m5s\n", + " 19000K .......... .......... .......... .......... .......... 1% 42.9M 2m5s\n", + " 19050K .......... .......... .......... .......... .......... 1% 50.6M 2m4s\n", + " 19100K .......... .......... .......... .......... .......... 1% 48.6M 2m4s\n", + " 19150K .......... .......... .......... .......... .......... 1% 50.7M 2m4s\n", + " 19200K .......... .......... .......... .......... .......... 1% 41.8M 2m4s\n", + " 19250K .......... .......... .......... .......... .......... 1% 50.4M 2m3s\n", + " 19300K .......... .......... .......... .......... .......... 1% 48.8M 2m3s\n", + " 19350K .......... .......... .......... .......... .......... 1% 47.1M 2m3s\n", + " 19400K .......... .......... .......... .......... .......... 1% 44.0M 2m3s\n", + " 19450K .......... .......... .......... .......... .......... 1% 48.7M 2m2s\n", + " 19500K .......... .......... .......... .......... .......... 1% 45.7M 2m2s\n", + " 19550K .......... .......... .......... .......... .......... 1% 50.4M 2m2s\n", + " 19600K .......... .......... .......... .......... .......... 1% 43.0M 2m2s\n", + " 19650K .......... .......... .......... .......... .......... 1% 50.2M 2m2s\n", + " 19700K .......... .......... .......... .......... .......... 1% 49.7M 2m1s\n", + " 19750K .......... .......... .......... .......... .......... 1% 49.0M 2m1s\n", + " 19800K .......... .......... .......... .......... .......... 1% 44.6M 2m1s\n", + " 19850K .......... .......... .......... .......... .......... 1% 50.6M 2m1s\n", + " 19900K .......... .......... .......... .......... .......... 1% 50.6M 2m0s\n", + " 19950K .......... .......... .......... .......... .......... 1% 51.3M 2m0s\n", + " 20000K .......... .......... .......... .......... .......... 1% 42.5M 2m0s\n", + " 20050K .......... .......... .......... .......... .......... 1% 49.7M 2m0s\n", + " 20100K .......... .......... .......... .......... .......... 1% 1.09M 2m3s\n", + " 20150K .......... .......... .......... .......... .......... 1% 27.5M 2m3s\n", + " 20200K .......... .......... .......... .......... .......... 1% 43.3M 2m2s\n", + " 20250K .......... .......... .......... .......... .......... 1% 47.0M 2m2s\n", + " 20300K .......... .......... .......... .......... .......... 1% 49.6M 2m2s\n", + " 20350K .......... .......... .......... .......... .......... 1% 50.1M 2m2s\n", + " 20400K .......... .......... .......... .......... .......... 1% 42.4M 2m2s\n", + " 20450K .......... .......... .......... .......... .......... 1% 49.8M 2m1s\n", + " 20500K .......... .......... .......... .......... .......... 1% 50.2M 2m1s\n", + " 20550K .......... .......... .......... .......... .......... 1% 48.9M 2m1s\n", + " 20600K .......... .......... .......... .......... .......... 1% 43.4M 2m1s\n", + " 20650K .......... .......... .......... .......... .......... 1% 50.5M 2m0s\n", + " 20700K .......... .......... .......... .......... .......... 1% 51.5M 2m0s\n", + " 20750K .......... .......... .......... .......... .......... 1% 49.8M 2m0s\n", + " 20800K .......... .......... .......... .......... .......... 1% 43.2M 2m0s\n", + " 20850K .......... .......... .......... .......... .......... 1% 50.7M 2m0s\n", + " 20900K .......... .......... .......... .......... .......... 1% 51.8M 1m59s\n", + " 20950K .......... .......... .......... .......... .......... 1% 49.0M 1m59s\n", + " 21000K .......... .......... .......... .......... .......... 1% 42.1M 1m59s\n", + " 21050K .......... .......... .......... .......... .......... 1% 50.4M 1m59s\n", + " 21100K .......... .......... .......... .......... .......... 1% 49.8M 1m59s\n", + " 21150K .......... .......... .......... .......... .......... 1% 51.4M 1m58s\n", + " 21200K .......... .......... .......... .......... .......... 1% 42.3M 1m58s\n", + " 21250K .......... .......... .......... .......... .......... 1% 51.2M 1m58s\n", + " 21300K .......... .......... .......... .......... .......... 1% 51.4M 1m58s\n", + " 21350K .......... .......... .......... .......... .......... 1% 52.3M 1m57s\n", + " 21400K .......... .......... .......... .......... .......... 1% 42.0M 1m57s\n", + " 21450K .......... .......... .......... .......... .......... 1% 48.8M 1m57s\n", + " 21500K .......... .......... .......... .......... .......... 1% 49.5M 1m57s\n", + " 21550K .......... .......... .......... .......... .......... 1% 50.5M 1m57s\n", + " 21600K .......... .......... .......... .......... .......... 1% 20.1M 1m57s\n", + " 21650K .......... .......... .......... .......... .......... 1% 1.08M 2m0s\n", + " 21700K .......... .......... .......... .......... .......... 1% 48.1M 1m59s\n", + " 21750K .......... .......... .......... .......... .......... 1% 48.1M 1m59s\n", + " 21800K .......... .......... .......... .......... .......... 1% 36.5M 1m59s\n", + " 21850K .......... .......... .......... .......... .......... 1% 44.0M 1m59s\n", + " 21900K .......... .......... .......... .......... .......... 1% 46.6M 1m59s\n", + " 21950K .......... .......... .......... .......... .......... 1% 49.6M 1m58s\n", + " 22000K .......... .......... .......... .......... .......... 1% 43.3M 1m58s\n", + " 22050K .......... .......... .......... .......... .......... 1% 45.8M 1m58s\n", + " 22100K .......... .......... .......... .......... .......... 1% 48.3M 1m58s\n", + " 22150K .......... .......... .......... .......... .......... 1% 52.0M 1m58s\n", + " 22200K .......... .......... .......... .......... .......... 1% 44.7M 1m57s\n", + " 22250K .......... .......... .......... .......... .......... 1% 50.4M 1m57s\n", + " 22300K .......... .......... .......... .......... .......... 1% 51.1M 1m57s\n", + " 22350K .......... .......... .......... .......... .......... 1% 50.3M 1m57s\n", + " 22400K .......... .......... .......... .......... .......... 1% 42.6M 1m57s\n", + " 22450K .......... .......... .......... .......... .......... 1% 49.0M 1m56s\n", + " 22500K .......... .......... .......... .......... .......... 1% 42.2M 1m56s\n", + " 22550K .......... .......... .......... .......... .......... 1% 43.7M 1m56s\n", + " 22600K .......... .......... .......... .......... .......... 1% 43.0M 1m56s\n", + " 22650K .......... .......... .......... .......... .......... 1% 50.4M 1m56s\n", + " 22700K .......... .......... .......... .......... .......... 1% 51.3M 1m55s\n", + " 22750K .......... .......... .......... .......... .......... 1% 51.7M 1m55s\n", + " 22800K .......... .......... .......... .......... .......... 1% 44.5M 1m55s\n", + " 22850K .......... .......... .......... .......... .......... 1% 49.1M 1m55s\n", + " 22900K .......... .......... .......... .......... .......... 1% 51.5M 1m55s\n", + " 22950K .......... .......... .......... .......... .......... 1% 52.2M 1m54s\n", + " 23000K .......... .......... .......... .......... .......... 1% 45.0M 1m54s\n", + " 23050K .......... .......... .......... .......... .......... 1% 49.5M 1m54s\n", + " 23100K .......... .......... .......... .......... .......... 1% 50.8M 1m54s\n", + " 23150K .......... .......... .......... .......... .......... 1% 1.09M 1m57s\n", + " 23200K .......... .......... .......... .......... .......... 1% 25.6M 1m57s\n", + " 23250K .......... .......... .......... .......... .......... 1% 48.5M 1m56s\n", + " 23300K .......... .......... .......... .......... .......... 1% 46.0M 1m56s\n", + " 23350K .......... .......... .......... .......... .......... 1% 50.2M 1m56s\n", + " 23400K .......... .......... .......... .......... .......... 1% 39.0M 1m56s\n", + " 23450K .......... .......... .......... .......... .......... 1% 51.0M 1m56s\n", + " 23500K .......... .......... .......... .......... .......... 1% 48.9M 1m55s\n", + " 23550K .......... .......... .......... .......... .......... 1% 51.4M 1m55s\n", + " 23600K .......... .......... .......... .......... .......... 1% 42.9M 1m55s\n", + " 23650K .......... .......... .......... .......... .......... 1% 52.3M 1m55s\n", + " 23700K .......... .......... .......... .......... .......... 1% 52.1M 1m55s\n", + " 23750K .......... .......... .......... .......... .......... 1% 50.6M 1m55s\n", + " 23800K .......... .......... .......... .......... .......... 1% 43.5M 1m54s\n", + " 23850K .......... .......... .......... .......... .......... 1% 47.0M 1m54s\n", + " 23900K .......... .......... .......... .......... .......... 1% 51.3M 1m54s\n", + " 23950K .......... .......... .......... .......... .......... 1% 40.8M 1m54s\n", + " 24000K .......... .......... .......... .......... .......... 1% 41.3M 1m54s\n", + " 24050K .......... .......... .......... .......... .......... 1% 44.8M 1m54s\n", + " 24100K .......... .......... .......... .......... .......... 1% 44.8M 1m53s\n", + " 24150K .......... .......... .......... .......... .......... 1% 50.0M 1m53s\n", + " 24200K .......... .......... .......... .......... .......... 1% 44.4M 1m53s\n", + " 24250K .......... .......... .......... .......... .......... 1% 52.6M 1m53s\n", + " 24300K .......... .......... .......... .......... .......... 1% 52.0M 1m53s\n", + " 24350K .......... .......... .......... .......... .......... 1% 50.0M 1m52s\n", + " 24400K .......... .......... .......... .......... .......... 1% 44.1M 1m52s\n", + " 24450K .......... .......... .......... .......... .......... 1% 52.6M 1m52s\n", + " 24500K .......... .......... .......... .......... .......... 1% 52.5M 1m52s\n", + " 24550K .......... .......... .......... .......... .......... 1% 50.1M 1m52s\n", + " 24600K .......... .......... .......... .......... .......... 1% 45.8M 1m52s\n", + " 24650K .......... .......... .......... .......... .......... 1% 1.08M 1m54s\n", + " 24700K .......... .......... .......... .......... .......... 1% 30.4M 1m54s\n", + " 24750K .......... .......... .......... .......... .......... 1% 44.0M 1m54s\n", + " 24800K .......... .......... .......... .......... .......... 1% 36.4M 1m54s\n", + " 24850K .......... .......... .......... .......... .......... 1% 47.2M 1m54s\n", + " 24900K .......... .......... .......... .......... .......... 1% 47.3M 1m53s\n", + " 24950K .......... .......... .......... .......... .......... 1% 48.8M 1m53s\n", + " 25000K .......... .......... .......... .......... .......... 1% 41.9M 1m53s\n", + " 25050K .......... .......... .......... .......... .......... 1% 49.7M 1m53s\n", + " 25100K .......... .......... .......... .......... .......... 1% 50.0M 1m53s\n", + " 25150K .......... .......... .......... .......... .......... 1% 50.3M 1m53s\n", + " 25200K .......... .......... .......... .......... .......... 1% 40.9M 1m52s\n", + " 25250K .......... .......... .......... .......... .......... 1% 51.5M 1m52s\n", + " 25300K .......... .......... .......... .......... .......... 1% 50.2M 1m52s\n", + " 25350K .......... .......... .......... .......... .......... 1% 48.7M 1m52s\n", + " 25400K .......... .......... .......... .......... .......... 1% 42.3M 1m52s\n", + " 25450K .......... .......... .......... .......... .......... 1% 50.7M 1m52s\n", + " 25500K .......... .......... .......... .......... .......... 1% 45.8M 1m51s\n", + " 25550K .......... .......... .......... .......... .......... 1% 49.3M 1m51s\n", + " 25600K .......... .......... .......... .......... .......... 1% 42.8M 1m51s\n", + " 25650K .......... .......... .......... .......... .......... 1% 46.3M 1m51s\n", + " 25700K .......... .......... .......... .......... .......... 1% 47.2M 1m51s\n", + " 25750K .......... .......... .......... .......... .......... 1% 51.1M 1m51s\n", + " 25800K .......... .......... .......... .......... .......... 1% 44.4M 1m51s\n", + " 25850K .......... .......... .......... .......... .......... 1% 51.6M 1m50s\n", + " 25900K .......... .......... .......... .......... .......... 1% 50.3M 1m50s\n", + " 25950K .......... .......... .......... .......... .......... 1% 49.7M 1m50s\n", + " 26000K .......... .......... .......... .......... .......... 1% 44.5M 1m50s\n", + " 26050K .......... .......... .......... .......... .......... 1% 51.3M 1m50s\n", + " 26100K .......... .......... .......... .......... .......... 1% 51.3M 1m50s\n", + " 26150K .......... .......... .......... .......... .......... 1% 49.7M 1m49s\n", + " 26200K .......... .......... .......... .......... .......... 1% 1.08M 1m52s\n", + " 26250K .......... .......... .......... .......... .......... 1% 25.6M 1m52s\n", + " 26300K .......... .......... .......... .......... .......... 1% 50.8M 1m52s\n", + " 26350K .......... .......... .......... .......... .......... 1% 43.4M 1m51s\n", + " 26400K .......... .......... .......... .......... .......... 1% 41.9M 1m51s\n", + " 26450K .......... .......... .......... .......... .......... 1% 46.2M 1m51s\n", + " 26500K .......... .......... .......... .......... .......... 1% 51.8M 1m51s\n", + " 26550K .......... .......... .......... .......... .......... 1% 49.7M 1m51s\n", + " 26600K .......... .......... .......... .......... .......... 1% 44.7M 1m51s\n", + " 26650K .......... .......... .......... .......... .......... 1% 50.0M 1m51s\n", + " 26700K .......... .......... .......... .......... .......... 1% 51.9M 1m50s\n", + " 26750K .......... .......... .......... .......... .......... 1% 52.0M 1m50s\n", + " 26800K .......... .......... .......... .......... .......... 1% 42.5M 1m50s\n", + " 26850K .......... .......... .......... .......... .......... 1% 50.5M 1m50s\n", + " 26900K .......... .......... .......... .......... .......... 1% 52.0M 1m50s\n", + " 26950K .......... .......... .......... .......... .......... 1% 49.1M 1m50s\n", + " 27000K .......... .......... .......... .......... .......... 1% 44.0M 1m49s\n", + " 27050K .......... .......... .......... .......... .......... 1% 47.4M 1m49s\n", + " 27100K .......... .......... .......... .......... .......... 1% 46.3M 1m49s\n", + " 27150K .......... .......... .......... .......... .......... 1% 48.3M 1m49s\n", + " 27200K .......... .......... .......... .......... .......... 1% 40.0M 1m49s\n", + " 27250K .......... .......... .......... .......... .......... 1% 48.6M 1m49s\n", + " 27300K .......... .......... .......... .......... .......... 1% 51.7M 1m49s\n", + " 27350K .......... .......... .......... .......... .......... 1% 51.5M 1m48s\n", + " 27400K .......... .......... .......... .......... .......... 1% 43.8M 1m48s\n", + " 27450K .......... .......... .......... .......... .......... 1% 49.1M 1m48s\n", + " 27500K .......... .......... .......... .......... .......... 1% 52.1M 1m48s\n", + " 27550K .......... .......... .......... .......... .......... 1% 51.8M 1m48s\n", + " 27600K .......... .......... .......... .......... .......... 1% 44.2M 1m48s\n", + " 27650K .......... .......... .......... .......... .......... 1% 49.8M 1m48s\n", + " 27700K .......... .......... .......... .......... .......... 1% 1.09M 1m50s\n", + " 27750K .......... .......... .......... .......... .......... 1% 24.8M 1m50s\n", + " 27800K .......... .......... .......... .......... .......... 1% 41.5M 1m50s\n", + " 27850K .......... .......... .......... .......... .......... 1% 51.7M 1m50s\n", + " 27900K .......... .......... .......... .......... .......... 1% 40.9M 1m49s\n", + " 27950K .......... .......... .......... .......... .......... 1% 47.1M 1m49s\n", + " 28000K .......... .......... .......... .......... .......... 1% 41.7M 1m49s\n", + " 28050K .......... .......... .......... .......... .......... 1% 45.1M 1m49s\n", + " 28100K .......... .......... .......... .......... .......... 1% 50.2M 1m49s\n", + " 28150K .......... .......... .......... .......... .......... 1% 47.3M 1m49s\n", + " 28200K .......... .......... .......... .......... .......... 1% 44.9M 1m49s\n", + " 28250K .......... .......... .......... .......... .......... 1% 52.5M 1m48s\n", + " 28300K .......... .......... .......... .......... .......... 1% 50.2M 1m48s\n", + " 28350K .......... .......... .......... .......... .......... 1% 50.5M 1m48s\n", + " 28400K .......... .......... .......... .......... .......... 1% 44.3M 1m48s\n", + " 28450K .......... .......... .......... .......... .......... 1% 52.4M 1m48s\n", + " 28500K .......... .......... .......... .......... .......... 1% 49.9M 1m48s\n", + " 28550K .......... .......... .......... .......... .......... 1% 48.7M 1m48s\n", + " 28600K .......... .......... .......... .......... .......... 1% 42.6M 1m47s\n", + " 28650K .......... .......... .......... .......... .......... 1% 43.9M 1m47s\n", + " 28700K .......... .......... .......... .......... .......... 1% 50.8M 1m47s\n", + " 28750K .......... .......... .......... .......... .......... 1% 50.5M 1m47s\n", + " 28800K .......... .......... .......... .......... .......... 1% 45.2M 1m47s\n", + " 28850K .......... .......... .......... .......... .......... 1% 52.7M 1m47s\n", + " 28900K .......... .......... .......... .......... .......... 1% 52.7M 1m47s\n", + " 28950K .......... .......... .......... .......... .......... 1% 48.6M 1m47s\n", + " 29000K .......... .......... .......... .......... .......... 1% 44.7M 1m46s\n", + " 29050K .......... .......... .......... .......... .......... 1% 52.0M 1m46s\n", + " 29100K .......... .......... .......... .......... .......... 1% 52.3M 1m46s\n", + " 29150K .......... .......... .......... .......... .......... 1% 50.9M 1m46s\n", + " 29200K .......... .......... .......... .......... .......... 1% 1.07M 1m48s\n", + " 29250K .......... .......... .......... .......... .......... 1% 45.5M 1m48s\n", + " 29300K .......... .......... .......... .......... .......... 1% 37.2M 1m48s\n", + " 29350K .......... .......... .......... .......... .......... 1% 48.9M 1m48s\n", + " 29400K .......... .......... .......... .......... .......... 1% 44.7M 1m48s\n", + " 29450K .......... .......... .......... .......... .......... 1% 49.0M 1m48s\n", + " 29500K .......... .......... .......... .......... .......... 1% 47.9M 1m47s\n", + " 29550K .......... .......... .......... .......... .......... 1% 40.3M 1m47s\n", + " 29600K .......... .......... .......... .......... .......... 1% 44.3M 1m47s\n", + " 29650K .......... .......... .......... .......... .......... 1% 52.2M 1m47s\n", + " 29700K .......... .......... .......... .......... .......... 1% 47.2M 1m47s\n", + " 29750K .......... .......... .......... .......... .......... 1% 49.4M 1m47s\n", + " 29800K .......... .......... .......... .......... .......... 1% 43.1M 1m47s\n", + " 29850K .......... .......... .......... .......... .......... 1% 50.8M 1m46s\n", + " 29900K .......... .......... .......... .......... .......... 1% 50.7M 1m46s\n", + " 29950K .......... .......... .......... .......... .......... 1% 50.3M 1m46s\n", + " 30000K .......... .......... .......... .......... .......... 1% 43.4M 1m46s\n", + " 30050K .......... .......... .......... .......... .......... 1% 52.9M 1m46s\n", + " 30100K .......... .......... .......... .......... .......... 1% 43.9M 1m46s\n", + " 30150K .......... .......... .......... .......... .......... 1% 49.5M 1m46s\n", + " 30200K .......... .......... .......... .......... .......... 1% 38.7M 1m46s\n", + " 30250K .......... .......... .......... .......... .......... 1% 49.1M 1m45s\n", + " 30300K .......... .......... .......... .......... .......... 1% 47.0M 1m45s\n", + " 30350K .......... .......... .......... .......... .......... 1% 51.1M 1m45s\n", + " 30400K .......... .......... .......... .......... .......... 1% 44.0M 1m45s\n", + " 30450K .......... .......... .......... .......... .......... 1% 48.6M 1m45s\n", + " 30500K .......... .......... .......... .......... .......... 1% 50.5M 1m45s\n", + " 30550K .......... .......... .......... .......... .......... 1% 51.1M 1m45s\n", + " 30600K .......... .......... .......... .......... .......... 1% 42.8M 1m45s\n", + " 30650K .......... .......... .......... .......... .......... 1% 50.4M 1m44s\n", + " 30700K .......... .......... .......... .......... .......... 1% 49.7M 1m44s\n", + " 30750K .......... .......... .......... .......... .......... 1% 1.08M 1m46s\n", + " 30800K .......... .......... .......... .......... .......... 1% 29.6M 1m46s\n", + " 30850K .......... .......... .......... .......... .......... 1% 47.9M 1m46s\n", + " 30900K .......... .......... .......... .......... .......... 1% 49.6M 1m46s\n", + " 30950K .......... .......... .......... .......... .......... 1% 46.3M 1m46s\n", + " 31000K .......... .......... .......... .......... .......... 1% 42.5M 1m46s\n", + " 31050K .......... .......... .......... .......... .......... 1% 47.9M 1m46s\n", + " 31100K .......... .......... .......... .......... .......... 1% 42.0M 1m46s\n", + " 31150K .......... .......... .......... .......... .......... 1% 51.8M 1m45s\n", + " 31200K .......... .......... .......... .......... .......... 1% 42.7M 1m45s\n", + " 31250K .......... .......... .......... .......... .......... 1% 51.7M 1m45s\n", + " 31300K .......... .......... .......... .......... .......... 1% 52.4M 1m45s\n", + " 31350K .......... .......... .......... .......... .......... 2% 49.6M 1m45s\n", + " 31400K .......... .......... .......... .......... .......... 2% 43.3M 1m45s\n", + " 31450K .......... .......... .......... .......... .......... 2% 50.3M 1m45s\n", + " 31500K .......... .......... .......... .......... .......... 2% 51.8M 1m45s\n", + " 31550K .......... .......... .......... .......... .......... 2% 49.3M 1m45s\n", + " 31600K .......... .......... .......... .......... .......... 2% 42.8M 1m44s\n", + " 31650K .......... .......... .......... .......... .......... 2% 49.8M 1m44s\n", + " 31700K .......... .......... .......... .......... .......... 2% 47.7M 1m44s\n", + " 31750K .......... .......... .......... .......... .......... 2% 42.5M 1m44s\n", + " 31800K .......... .......... .......... .......... .......... 2% 41.0M 1m44s\n", + " 31850K .......... .......... .......... .......... .......... 2% 51.5M 1m44s\n", + " 31900K .......... .......... .......... .......... .......... 2% 51.0M 1m44s\n", + " 31950K .......... .......... .......... .......... .......... 2% 50.7M 1m44s\n", + " 32000K .......... .......... .......... .......... .......... 2% 41.8M 1m43s\n", + " 32050K .......... .......... .......... .......... .......... 2% 51.6M 1m43s\n", + " 32100K .......... .......... .......... .......... .......... 2% 52.0M 1m43s\n", + " 32150K .......... .......... .......... .......... .......... 2% 51.0M 1m43s\n", + " 32200K .......... .......... .......... .......... .......... 2% 44.1M 1m43s\n", + " 32250K .......... .......... .......... .......... .......... 2% 51.8M 1m43s\n", + " 32300K .......... .......... .......... .......... .......... 2% 1.08M 1m45s\n", + " 32350K .......... .......... .......... .......... .......... 2% 23.7M 1m45s\n", + " 32400K .......... .......... .......... .......... .......... 2% 43.9M 1m45s\n", + " 32450K .......... .......... .......... .......... .......... 2% 51.9M 1m45s\n", + " 32500K .......... .......... .......... .......... .......... 2% 46.6M 1m44s\n", + " 32550K .......... .......... .......... .......... .......... 2% 41.7M 1m44s\n", + " 32600K .......... .......... .......... .......... .......... 2% 44.9M 1m44s\n", + " 32650K .......... .......... .......... .......... .......... 2% 52.0M 1m44s\n", + " 32700K .......... .......... .......... .......... .......... 2% 51.6M 1m44s\n", + " 32750K .......... .......... .......... .......... .......... 2% 49.0M 1m44s\n", + " 32800K .......... .......... .......... .......... .......... 2% 44.8M 1m44s\n", + " 32850K .......... .......... .......... .......... .......... 2% 52.3M 1m44s\n", + " 32900K .......... .......... .......... .......... .......... 2% 51.7M 1m44s\n", + " 32950K .......... .......... .......... .......... .......... 2% 50.4M 1m43s\n", + " 33000K .......... .......... .......... .......... .......... 2% 45.5M 1m43s\n", + " 33050K .......... .......... .......... .......... .......... 2% 51.9M 1m43s\n", + " 33100K .......... .......... .......... .......... .......... 2% 51.9M 1m43s\n", + " 33150K .......... .......... .......... .......... .......... 2% 47.6M 1m43s\n", + " 33200K .......... .......... .......... .......... .......... 2% 39.9M 1m43s\n", + " 33250K .......... .......... .......... .......... .......... 2% 46.3M 1m43s\n", + " 33300K .......... .......... .......... .......... .......... 2% 46.0M 1m43s\n", + " 33350K .......... .......... .......... .......... .......... 2% 50.8M 1m43s\n", + " 33400K .......... .......... .......... .......... .......... 2% 42.4M 1m42s\n", + " 33450K .......... .......... .......... .......... .......... 2% 51.4M 1m42s\n", + " 33500K .......... .......... .......... .......... .......... 2% 48.9M 1m42s\n", + " 33550K .......... .......... .......... .......... .......... 2% 51.2M 1m42s\n", + " 33600K .......... .......... .......... .......... .......... 2% 42.5M 1m42s\n", + " 33650K .......... .......... .......... .......... .......... 2% 50.9M 1m42s\n", + " 33700K .......... .......... .......... .......... .......... 2% 49.9M 1m42s\n", + " 33750K .......... .......... .......... .......... .......... 2% 51.3M 1m42s\n", + " 33800K .......... .......... .......... .......... .......... 2% 1.07M 1m44s\n", + " 33850K .......... .......... .......... .......... .......... 2% 27.5M 1m43s\n", + " 33900K .......... .......... .......... .......... .......... 2% 49.7M 1m43s\n", + " 33950K .......... .......... .......... .......... .......... 2% 50.0M 1m43s\n", + " 34000K .......... .......... .......... .......... .......... 2% 38.9M 1m43s\n", + " 34050K .......... .......... .......... .......... .......... 2% 45.7M 1m43s\n", + " 34100K .......... .......... .......... .......... .......... 2% 48.9M 1m43s\n", + " 34150K .......... .......... .......... .......... .......... 2% 45.8M 1m43s\n", + " 34200K .......... .......... .......... .......... .......... 2% 43.1M 1m43s\n", + " 34250K .......... .......... .......... .......... .......... 2% 49.8M 1m43s\n", + " 34300K .......... .......... .......... .......... .......... 2% 49.3M 1m43s\n", + " 34350K .......... .......... .......... .......... .......... 2% 50.1M 1m42s\n", + " 34400K .......... .......... .......... .......... .......... 2% 42.1M 1m42s\n", + " 34450K .......... .......... .......... .......... .......... 2% 50.7M 1m42s\n", + " 34500K .......... .......... .......... .......... .......... 2% 50.5M 1m42s\n", + " 34550K .......... .......... .......... .......... .......... 2% 49.2M 1m42s\n", + " 34600K .......... .......... .......... .......... .......... 2% 42.8M 1m42s\n", + " 34650K .......... .......... .......... .......... .......... 2% 50.2M 1m42s\n", + " 34700K .......... .......... .......... .......... .......... 2% 49.9M 1m42s\n", + " 34750K .......... .......... .......... .......... .......... 2% 48.6M 1m42s\n", + " 34800K .......... .......... .......... .......... .......... 2% 40.6M 1m41s\n", + " 34850K .......... .......... .......... .......... .......... 2% 49.5M 1m41s\n", + " 34900K .......... .......... .......... .......... .......... 2% 50.4M 1m41s\n", + " 34950K .......... .......... .......... .......... .......... 2% 50.9M 1m41s\n", + " 35000K .......... .......... .......... .......... .......... 2% 41.5M 1m41s\n", + " 35050K .......... .......... .......... .......... .......... 2% 50.3M 1m41s\n", + " 35100K .......... .......... .......... .......... .......... 2% 51.0M 1m41s\n", + " 35150K .......... .......... .......... .......... .......... 2% 51.0M 1m41s\n", + " 35200K .......... .......... .......... .......... .......... 2% 40.9M 1m41s\n", + " 35250K .......... .......... .......... .......... .......... 2% 51.0M 1m41s\n", + " 35300K .......... .......... .......... .......... .......... 2% 1.09M 1m42s\n", + " 35350K .......... .......... .......... .......... .......... 2% 48.7M 1m42s\n", + " 35400K .......... .......... .......... .......... .......... 2% 31.0M 1m42s\n", + " 35450K .......... .......... .......... .......... .......... 2% 49.5M 1m42s\n", + " 35500K .......... .......... .......... .......... .......... 2% 50.8M 1m42s\n", + " 35550K .......... .......... .......... .......... .......... 2% 42.9M 1m42s\n", + " 35600K .......... .......... .......... .......... .......... 2% 39.4M 1m42s\n", + " 35650K .......... .......... .......... .......... .......... 2% 41.6M 1m42s\n", + " 35700K .......... .......... .......... .......... .......... 2% 50.4M 1m42s\n", + " 35750K .......... .......... .......... .......... .......... 2% 49.0M 1m41s\n", + " 35800K .......... .......... .......... .......... .......... 2% 43.9M 1m41s\n", + " 35850K .......... .......... .......... .......... .......... 2% 47.7M 1m41s\n", + " 35900K .......... .......... .......... .......... .......... 2% 50.7M 1m41s\n", + " 35950K .......... .......... .......... .......... .......... 2% 49.0M 1m41s\n", + " 36000K .......... .......... .......... .......... .......... 2% 42.9M 1m41s\n", + " 36050K .......... .......... .......... .......... .......... 2% 50.2M 1m41s\n", + " 36100K .......... .......... .......... .......... .......... 2% 48.2M 1m41s\n", + " 36150K .......... .......... .......... .......... .......... 2% 49.5M 1m41s\n", + " 36200K .......... .......... .......... .......... .......... 2% 42.4M 1m41s\n", + " 36250K .......... .......... .......... .......... .......... 2% 50.0M 1m40s\n", + " 36300K .......... .......... .......... .......... .......... 2% 41.9M 1m40s\n", + " 36350K .......... .......... .......... .......... .......... 2% 43.3M 1m40s\n", + " 36400K .......... .......... .......... .......... .......... 2% 43.0M 1m40s\n", + " 36450K .......... .......... .......... .......... .......... 2% 51.0M 1m40s\n", + " 36500K .......... .......... .......... .......... .......... 2% 50.0M 1m40s\n", + " 36550K .......... .......... .......... .......... .......... 2% 47.3M 1m40s\n", + " 36600K .......... .......... .......... .......... .......... 2% 43.9M 1m40s\n", + " 36650K .......... .......... .......... .......... .......... 2% 50.9M 1m40s\n", + " 36700K .......... .......... .......... .......... .......... 2% 49.0M 1m40s\n", + " 36750K .......... .......... .......... .......... .......... 2% 48.5M 1m40s\n", + " 36800K .......... .......... .......... .......... .......... 2% 42.8M 99s\n", + " 36850K .......... .......... .......... .......... .......... 2% 1.09M 1m41s\n", + " 36900K .......... .......... .......... .......... .......... 2% 33.3M 1m41s\n", + " 36950K .......... .......... .......... .......... .......... 2% 50.0M 1m41s\n", + " 37000K .......... .......... .......... .......... .......... 2% 41.2M 1m41s\n", + " 37050K .......... .......... .......... .......... .......... 2% 51.0M 1m41s\n", + " 37100K .......... .......... .......... .......... .......... 2% 49.1M 1m41s\n", + " 37150K .......... .......... .......... .......... .......... 2% 43.1M 1m41s\n", + " 37200K .......... .......... .......... .......... .......... 2% 40.9M 1m40s\n", + " 37250K .......... .......... .......... .......... .......... 2% 51.2M 1m40s\n", + " 37300K .......... .......... .......... .......... .......... 2% 50.9M 1m40s\n", + " 37350K .......... .......... .......... .......... .......... 2% 51.5M 1m40s\n", + " 37400K .......... .......... .......... .......... .......... 2% 45.3M 1m40s\n", + " 37450K .......... .......... .......... .......... .......... 2% 49.9M 1m40s\n", + " 37500K .......... .......... .......... .......... .......... 2% 50.6M 1m40s\n", + " 37550K .......... .......... .......... .......... .......... 2% 50.9M 1m40s\n", + " 37600K .......... .......... .......... .......... .......... 2% 43.9M 1m40s\n", + " 37650K .......... .......... .......... .......... .......... 2% 49.3M 1m40s\n", + " 37700K .......... .......... .......... .......... .......... 2% 50.7M 1m40s\n", + " 37750K .......... .......... .......... .......... .......... 2% 51.3M 99s\n", + " 37800K .......... .......... .......... .......... .......... 2% 42.9M 99s\n", + " 37850K .......... .......... .......... .......... .......... 2% 50.7M 99s\n", + " 37900K .......... .......... .......... .......... .......... 2% 42.7M 99s\n", + " 37950K .......... .......... .......... .......... .......... 2% 52.5M 99s\n", + " 38000K .......... .......... .......... .......... .......... 2% 44.8M 99s\n", + " 38050K .......... .......... .......... .......... .......... 2% 51.6M 99s\n", + " 38100K .......... .......... .......... .......... .......... 2% 49.8M 99s\n", + " 38150K .......... .......... .......... .......... .......... 2% 52.4M 99s\n", + " 38200K .......... .......... .......... .......... .......... 2% 44.8M 99s\n", + " 38250K .......... .......... .......... .......... .......... 2% 51.3M 99s\n", + " 38300K .......... .......... .......... .......... .......... 2% 50.5M 98s\n", + " 38350K .......... .......... .......... .......... .......... 2% 1.07M 1m40s\n", + " 38400K .......... .......... .......... .......... .......... 2% 27.6M 1m40s\n", + " 38450K .......... .......... .......... .......... .......... 2% 50.4M 1m40s\n", + " 38500K .......... .......... .......... .......... .......... 2% 49.4M 1m40s\n", + " 38550K .......... .......... .......... .......... .......... 2% 49.2M 1m40s\n", + " 38600K .......... .......... .......... .......... .......... 2% 43.4M 1m40s\n", + " 38650K .......... .......... .......... .......... .......... 2% 47.7M 1m40s\n", + " 38700K .......... .......... .......... .......... .......... 2% 51.0M 99s\n", + " 38750K .......... .......... .......... .......... .......... 2% 51.1M 99s\n", + " 38800K .......... .......... .......... .......... .......... 2% 42.0M 99s\n", + " 38850K .......... .......... .......... .......... .......... 2% 52.5M 99s\n", + " 38900K .......... .......... .......... .......... .......... 2% 52.6M 99s\n", + " 38950K .......... .......... .......... .......... .......... 2% 53.2M 99s\n", + " 39000K .......... .......... .......... .......... .......... 2% 41.2M 99s\n", + " 39050K .......... .......... .......... .......... .......... 2% 50.3M 99s\n", + " 39100K .......... .......... .......... .......... .......... 2% 50.7M 99s\n", + " 39150K .......... .......... .......... .......... .......... 2% 50.7M 99s\n", + " 39200K .......... .......... .......... .......... .......... 2% 42.2M 99s\n", + " 39250K .......... .......... .......... .......... .......... 2% 43.8M 98s\n", + " 39300K .......... .......... .......... .......... .......... 2% 47.6M 98s\n", + " 39350K .......... .......... .......... .......... .......... 2% 50.6M 98s\n", + " 39400K .......... .......... .......... .......... .......... 2% 41.5M 98s\n", + " 39450K .......... .......... .......... .......... .......... 2% 45.3M 98s\n", + " 39500K .......... .......... .......... .......... .......... 2% 50.7M 98s\n", + " 39550K .......... .......... .......... .......... .......... 2% 50.3M 98s\n", + " 39600K .......... .......... .......... .......... .......... 2% 43.0M 98s\n", + " 39650K .......... .......... .......... .......... .......... 2% 51.5M 98s\n", + " 39700K .......... .......... .......... .......... .......... 2% 49.8M 98s\n", + " 39750K .......... .......... .......... .......... .......... 2% 50.5M 98s\n", + " 39800K .......... .......... .......... .......... .......... 2% 43.7M 98s\n", + " 39850K .......... .......... .......... .......... .......... 2% 51.1M 97s\n", + " 39900K .......... .......... .......... .......... .......... 2% 1.08M 99s\n", + " 39950K .......... .......... .......... .......... .......... 2% 31.7M 99s\n", + " 40000K .......... .......... .......... .......... .......... 2% 43.3M 99s\n", + " 40050K .......... .......... .......... .......... .......... 2% 50.3M 99s\n", + " 40100K .......... .......... .......... .......... .......... 2% 45.4M 99s\n", + " 40150K .......... .......... .......... .......... .......... 2% 46.8M 99s\n", + " 40200K .......... .......... .......... .......... .......... 2% 40.1M 99s\n", + " 40250K .......... .......... .......... .......... .......... 2% 50.4M 98s\n", + " 40300K .......... .......... .......... .......... .......... 2% 50.1M 98s\n", + " 40350K .......... .......... .......... .......... .......... 2% 47.6M 98s\n", + " 40400K .......... .......... .......... .......... .......... 2% 43.1M 98s\n", + " 40450K .......... .......... .......... .......... .......... 2% 50.6M 98s\n", + " 40500K .......... .......... .......... .......... .......... 2% 49.3M 98s\n", + " 40550K .......... .......... .......... .......... .......... 2% 50.9M 98s\n", + " 40600K .......... .......... .......... .......... .......... 2% 42.1M 98s\n", + " 40650K .......... .......... .......... .......... .......... 2% 50.8M 98s\n", + " 40700K .......... .......... .......... .......... .......... 2% 49.6M 98s\n", + " 40750K .......... .......... .......... .......... .......... 2% 50.1M 98s\n", + " 40800K .......... .......... .......... .......... .......... 2% 40.0M 98s\n", + " 40850K .......... .......... .......... .......... .......... 2% 48.9M 97s\n", + " 40900K .......... .......... .......... .......... .......... 2% 46.8M 97s\n", + " 40950K .......... .......... .......... .......... .......... 2% 43.5M 97s\n", + " 41000K .......... .......... .......... .......... .......... 2% 42.9M 97s\n", + " 41050K .......... .......... .......... .......... .......... 2% 50.1M 97s\n", + " 41100K .......... .......... .......... .......... .......... 2% 49.7M 97s\n", + " 41150K .......... .......... .......... .......... .......... 2% 51.2M 97s\n", + " 41200K .......... .......... .......... .......... .......... 2% 43.0M 97s\n", + " 41250K .......... .......... .......... .......... .......... 2% 49.1M 97s\n", + " 41300K .......... .......... .......... .......... .......... 2% 49.5M 97s\n", + " 41350K .......... .......... .......... .......... .......... 2% 51.5M 97s\n", + " 41400K .......... .......... .......... .......... .......... 2% 44.2M 97s\n", + " 41450K .......... .......... .......... .......... .......... 2% 1.09M 98s\n", + " 41500K .......... .......... .......... .......... .......... 2% 34.2M 98s\n", + " 41550K .......... .......... .......... .......... .......... 2% 40.3M 98s\n", + " 41600K .......... .......... .......... .......... .......... 2% 43.1M 98s\n", + " 41650K .......... .......... .......... .......... .......... 2% 49.7M 98s\n", + " 41700K .......... .......... .......... .......... .......... 2% 49.0M 98s\n", + " 41750K .......... .......... .......... .......... .......... 2% 45.1M 98s\n", + " 41800K .......... .......... .......... .......... .......... 2% 41.5M 98s\n", + " 41850K .......... .......... .......... .......... .......... 2% 49.8M 97s\n", + " 41900K .......... .......... .......... .......... .......... 2% 49.2M 97s\n", + " 41950K .......... .......... .......... .......... .......... 2% 51.0M 97s\n", + " 42000K .......... .......... .......... .......... .......... 2% 42.8M 97s\n", + " 42050K .......... .......... .......... .......... .......... 2% 50.3M 97s\n", + " 42100K .......... .......... .......... .......... .......... 2% 51.2M 97s\n", + " 42150K .......... .......... .......... .......... .......... 2% 49.5M 97s\n", + " 42200K .......... .......... .......... .......... .......... 2% 43.8M 97s\n", + " 42250K .......... .......... .......... .......... .......... 2% 50.5M 97s\n", + " 42300K .......... .......... .......... .......... .......... 2% 49.9M 97s\n", + " 42350K .......... .......... .......... .......... .......... 2% 48.8M 97s\n", + " 42400K .......... .......... .......... .......... .......... 2% 41.7M 97s\n", + " 42450K .......... .......... .......... .......... .......... 2% 49.6M 96s\n", + " 42500K .......... .......... .......... .......... .......... 2% 49.0M 96s\n", + " 42550K .......... .......... .......... .......... .......... 2% 48.4M 96s\n", + " 42600K .......... .......... .......... .......... .......... 2% 42.0M 96s\n", + " 42650K .......... .......... .......... .......... .......... 2% 50.4M 96s\n", + " 42700K .......... .......... .......... .......... .......... 2% 51.1M 96s\n", + " 42750K .......... .......... .......... .......... .......... 2% 51.7M 96s\n", + " 42800K .......... .......... .......... .......... .......... 2% 41.3M 96s\n", + " 42850K .......... .......... .......... .......... .......... 2% 50.9M 96s\n", + " 42900K .......... .......... .......... .......... .......... 2% 51.2M 96s\n", + " 42950K .......... .......... .......... .......... .......... 2% 1.09M 97s\n", + " 43000K .......... .......... .......... .......... .......... 2% 22.1M 97s\n", + " 43050K .......... .......... .......... .......... .......... 2% 43.4M 97s\n", + " 43100K .......... .......... .......... .......... .......... 2% 50.0M 97s\n", + " 43150K .......... .......... .......... .......... .......... 2% 48.6M 97s\n", + " 43200K .......... .......... .......... .......... .......... 2% 42.3M 97s\n", + " 43250K .......... .......... .......... .......... .......... 2% 40.9M 97s\n", + " 43300K .......... .......... .......... .......... .......... 2% 47.5M 97s\n", + " 43350K .......... .......... .......... .......... .......... 2% 50.2M 97s\n", + " 43400K .......... .......... .......... .......... .......... 2% 45.7M 97s\n", + " 43450K .......... .......... .......... .......... .......... 2% 52.9M 96s\n", + " 43500K .......... .......... .......... .......... .......... 2% 48.6M 96s\n", + " 43550K .......... .......... .......... .......... .......... 2% 51.0M 96s\n", + " 43600K .......... .......... .......... .......... .......... 2% 44.8M 96s\n", + " 43650K .......... .......... .......... .......... .......... 2% 50.4M 96s\n", + " 43700K .......... .......... .......... .......... .......... 2% 50.0M 96s\n", + " 43750K .......... .......... .......... .......... .......... 2% 49.4M 96s\n", + " 43800K .......... .......... .......... .......... .......... 2% 43.2M 96s\n", + " 43850K .......... .......... .......... .......... .......... 2% 48.6M 96s\n", + " 43900K .......... .......... .......... .......... .......... 2% 48.7M 96s\n", + " 43950K .......... .......... .......... .......... .......... 2% 45.2M 96s\n", + " 44000K .......... .......... .......... .......... .......... 2% 35.3M 96s\n", + " 44050K .......... .......... .......... .......... .......... 2% 50.3M 96s\n", + " 44100K .......... .......... .......... .......... .......... 2% 49.5M 95s\n", + " 44150K .......... .......... .......... .......... .......... 2% 50.4M 95s\n", + " 44200K .......... .......... .......... .......... .......... 2% 44.3M 95s\n", + " 44250K .......... .......... .......... .......... .......... 2% 49.5M 95s\n", + " 44300K .......... .......... .......... .......... .......... 2% 49.6M 95s\n", + " 44350K .......... .......... .......... .......... .......... 2% 50.5M 95s\n", + " 44400K .......... .......... .......... .......... .......... 2% 43.6M 95s\n", + " 44450K .......... .......... .......... .......... .......... 2% 1.08M 96s\n", + " 44500K .......... .......... .......... .......... .......... 2% 45.7M 96s\n", + " 44550K .......... .......... .......... .......... .......... 2% 39.9M 96s\n", + " 44600K .......... .......... .......... .......... .......... 2% 33.1M 96s\n", + " 44650K .......... .......... .......... .......... .......... 2% 42.0M 96s\n", + " 44700K .......... .......... .......... .......... .......... 2% 46.5M 96s\n", + " 44750K .......... .......... .......... .......... .......... 2% 50.4M 96s\n", + " 44800K .......... .......... .......... .......... .......... 2% 42.7M 96s\n", + " 44850K .......... .......... .......... .......... .......... 2% 41.9M 96s\n", + " 44900K .......... .......... .......... .......... .......... 2% 48.8M 96s\n", + " 44950K .......... .......... .......... .......... .......... 2% 51.5M 96s\n", + " 45000K .......... .......... .......... .......... .......... 2% 44.0M 96s\n", + " 45050K .......... .......... .......... .......... .......... 2% 50.3M 96s\n", + " 45100K .......... .......... .......... .......... .......... 2% 51.6M 96s\n", + " 45150K .......... .......... .......... .......... .......... 2% 49.1M 95s\n", + " 45200K .......... .......... .......... .......... .......... 2% 43.4M 95s\n", + " 45250K .......... .......... .......... .......... .......... 2% 47.9M 95s\n", + " 45300K .......... .......... .......... .......... .......... 2% 51.2M 95s\n", + " 45350K .......... .......... .......... .......... .......... 2% 40.6M 95s\n", + " 45400K .......... .......... .......... .......... .......... 2% 42.4M 95s\n", + " 45450K .......... .......... .......... .......... .......... 2% 50.1M 95s\n", + " 45500K .......... .......... .......... .......... .......... 2% 42.6M 95s\n", + " 45550K .......... .......... .......... .......... .......... 2% 48.6M 95s\n", + " 45600K .......... .......... .......... .......... .......... 2% 41.5M 95s\n", + " 45650K .......... .......... .......... .......... .......... 2% 51.7M 95s\n", + " 45700K .......... .......... .......... .......... .......... 2% 51.4M 95s\n", + " 45750K .......... .......... .......... .......... .......... 2% 51.7M 95s\n", + " 45800K .......... .......... .......... .......... .......... 2% 41.8M 95s\n", + " 45850K .......... .......... .......... .......... .......... 2% 51.8M 94s\n", + " 45900K .......... .......... .......... .......... .......... 2% 51.9M 94s\n", + " 45950K .......... .......... .......... .......... .......... 2% 51.3M 94s\n", + " 46000K .......... .......... .......... .......... .......... 2% 1.10M 96s\n", + " 46050K .......... .......... .......... .......... .......... 2% 22.0M 96s\n", + " 46100K .......... .......... .......... .......... .......... 2% 50.6M 96s\n", + " 46150K .......... .......... .......... .......... .......... 2% 50.0M 95s\n", + " 46200K .......... .......... .......... .......... .......... 2% 41.6M 95s\n", + " 46250K .......... .......... .......... .......... .......... 2% 47.4M 95s\n", + " 46300K .......... .......... .......... .......... .......... 2% 50.8M 95s\n", + " 46350K .......... .......... .......... .......... .......... 2% 47.4M 95s\n", + " 46400K .......... .......... .......... .......... .......... 2% 42.6M 95s\n", + " 46450K .......... .......... .......... .......... .......... 2% 49.4M 95s\n", + " 46500K .......... .......... .......... .......... .......... 2% 51.1M 95s\n", + " 46550K .......... .......... .......... .......... .......... 2% 50.7M 95s\n", + " 46600K .......... .......... .......... .......... .......... 2% 43.4M 95s\n", + " 46650K .......... .......... .......... .......... .......... 2% 50.8M 95s\n", + " 46700K .......... .......... .......... .......... .......... 2% 49.7M 95s\n", + " 46750K .......... .......... .......... .......... .......... 2% 47.7M 95s\n", + " 46800K .......... .......... .......... .......... .......... 2% 43.5M 95s\n", + " 46850K .......... .......... .......... .......... .......... 2% 51.5M 94s\n", + " 46900K .......... .......... .......... .......... .......... 2% 41.4M 94s\n", + " 46950K .......... .......... .......... .......... .......... 2% 41.8M 94s\n", + " 47000K .......... .......... .......... .......... .......... 3% 43.5M 94s\n", + " 47050K .......... .......... .......... .......... .......... 3% 50.9M 94s\n", + " 47100K .......... .......... .......... .......... .......... 3% 50.6M 94s\n", + " 47150K .......... .......... .......... .......... .......... 3% 46.5M 94s\n", + " 47200K .......... .......... .......... .......... .......... 3% 43.5M 94s\n", + " 47250K .......... .......... .......... .......... .......... 3% 51.8M 94s\n", + " 47300K .......... .......... .......... .......... .......... 3% 51.0M 94s\n", + " 47350K .......... .......... .......... .......... .......... 3% 48.4M 94s\n", + " 47400K .......... .......... .......... .......... .......... 3% 44.2M 94s\n", + " 47450K .......... .......... .......... .......... .......... 3% 51.2M 94s\n", + " 47500K .......... .......... .......... .......... .......... 3% 49.3M 94s\n", + " 47550K .......... .......... .......... .......... .......... 3% 1.11M 95s\n", + " 47600K .......... .......... .......... .......... .......... 3% 16.5M 95s\n", + " 47650K .......... .......... .......... .......... .......... 3% 50.1M 95s\n", + " 47700K .......... .......... .......... .......... .......... 3% 50.1M 95s\n", + " 47750K .......... .......... .......... .......... .......... 3% 48.1M 95s\n", + " 47800K .......... .......... .......... .......... .......... 3% 41.5M 95s\n", + " 47850K .......... .......... .......... .......... .......... 3% 46.6M 95s\n", + " 47900K .......... .......... .......... .......... .......... 3% 45.1M 94s\n", + " 47950K .......... .......... .......... .......... .......... 3% 51.1M 94s\n", + " 48000K .......... .......... .......... .......... .......... 3% 43.5M 94s\n", + " 48050K .......... .......... .......... .......... .......... 3% 48.4M 94s\n", + " 48100K .......... .......... .......... .......... .......... 3% 51.1M 94s\n", + " 48150K .......... .......... .......... .......... .......... 3% 50.3M 94s\n", + " 48200K .......... .......... .......... .......... .......... 3% 44.5M 94s\n", + " 48250K .......... .......... .......... .......... .......... 3% 48.1M 94s\n", + " 48300K .......... .......... .......... .......... .......... 3% 50.4M 94s\n", + " 48350K .......... .......... .......... .......... .......... 3% 45.6M 94s\n", + " 48400K .......... .......... .......... .......... .......... 3% 38.9M 94s\n", + " 48450K .......... .......... .......... .......... .......... 3% 48.0M 94s\n", + " 48500K .......... .......... .......... .......... .......... 3% 51.6M 94s\n", + " 48550K .......... .......... .......... .......... .......... 3% 50.2M 94s\n", + " 48600K .......... .......... .......... .......... .......... 3% 40.6M 94s\n", + " 48650K .......... .......... .......... .......... .......... 3% 50.5M 93s\n", + " 48700K .......... .......... .......... .......... .......... 3% 50.4M 93s\n", + " 48750K .......... .......... .......... .......... .......... 3% 52.3M 93s\n", + " 48800K .......... .......... .......... .......... .......... 3% 44.4M 93s\n", + " 48850K .......... .......... .......... .......... .......... 3% 52.5M 93s\n", + " 48900K .......... .......... .......... .......... .......... 3% 52.7M 93s\n", + " 48950K .......... .......... .......... .......... .......... 3% 50.1M 93s\n", + " 49000K .......... .......... .......... .......... .......... 3% 46.1M 93s\n", + " 49050K .......... .......... .......... .......... .......... 3% 1.11M 94s\n", + " 49100K .......... .......... .......... .......... .......... 3% 17.4M 94s\n", + " 49150K .......... .......... .......... .......... .......... 3% 46.2M 94s\n", + " 49200K .......... .......... .......... .......... .......... 3% 38.2M 94s\n", + " 49250K .......... .......... .......... .......... .......... 3% 51.1M 94s\n", + " 49300K .......... .......... .......... .......... .......... 3% 50.1M 94s\n", + " 49350K .......... .......... .......... .......... .......... 3% 49.4M 94s\n", + " 49400K .......... .......... .......... .......... .......... 3% 43.7M 94s\n", + " 49450K .......... .......... .......... .......... .......... 3% 51.8M 94s\n", + " 49500K .......... .......... .......... .......... .......... 3% 52.1M 94s\n", + " 49550K .......... .......... .......... .......... .......... 3% 52.1M 94s\n", + " 49600K .......... .......... .......... .......... .......... 3% 42.1M 94s\n", + " 49650K .......... .......... .......... .......... .......... 3% 52.9M 93s\n", + " 49700K .......... .......... .......... .......... .......... 3% 52.3M 93s\n", + " 49750K .......... .......... .......... .......... .......... 3% 50.9M 93s\n", + " 49800K .......... .......... .......... .......... .......... 3% 44.2M 93s\n", + " 49850K .......... .......... .......... .......... .......... 3% 52.8M 93s\n", + " 49900K .......... .......... .......... .......... .......... 3% 49.5M 93s\n", + " 49950K .......... .......... .......... .......... .......... 3% 52.6M 93s\n", + " 50000K .......... .......... .......... .......... .......... 3% 43.2M 93s\n", + " 50050K .......... .......... .......... .......... .......... 3% 50.9M 93s\n", + " 50100K .......... .......... .......... .......... .......... 3% 52.2M 93s\n", + " 50150K .......... .......... .......... .......... .......... 3% 52.0M 93s\n", + " 50200K .......... .......... .......... .......... .......... 3% 44.2M 93s\n", + " 50250K .......... .......... .......... .......... .......... 3% 50.4M 93s\n", + " 50300K .......... .......... .......... .......... .......... 3% 53.1M 93s\n", + " 50350K .......... .......... .......... .......... .......... 3% 52.0M 93s\n", + " 50400K .......... .......... .......... .......... .......... 3% 43.8M 92s\n", + " 50450K .......... .......... .......... .......... .......... 3% 50.3M 92s\n", + " 50500K .......... .......... .......... .......... .......... 3% 53.0M 92s\n", + " 50550K .......... .......... .......... .......... .......... 3% 1.09M 94s\n", + " 50600K .......... .......... .......... .......... .......... 3% 38.5M 94s\n", + " 50650K .......... .......... .......... .......... .......... 3% 20.9M 94s\n", + " 50700K .......... .......... .......... .......... .......... 3% 48.1M 93s\n", + " 50750K .......... .......... .......... .......... .......... 3% 50.3M 93s\n", + " 50800K .......... .......... .......... .......... .......... 3% 44.4M 93s\n", + " 50850K .......... .......... .......... .......... .......... 3% 52.0M 93s\n", + " 50900K .......... .......... .......... .......... .......... 3% 52.2M 93s\n", + " 50950K .......... .......... .......... .......... .......... 3% 48.8M 93s\n", + " 51000K .......... .......... .......... .......... .......... 3% 45.1M 93s\n", + " 51050K .......... .......... .......... .......... .......... 3% 52.2M 93s\n", + " 51100K .......... .......... .......... .......... .......... 3% 52.7M 93s\n", + " 51150K .......... .......... .......... .......... .......... 3% 45.6M 93s\n", + " 51200K .......... .......... .......... .......... .......... 3% 44.5M 93s\n", + " 51250K .......... .......... .......... .......... .......... 3% 53.3M 93s\n", + " 51300K .......... .......... .......... .......... .......... 3% 53.3M 93s\n", + " 51350K .......... .......... .......... .......... .......... 3% 50.9M 93s\n", + " 51400K .......... .......... .......... .......... .......... 3% 44.9M 93s\n", + " 51450K .......... .......... .......... .......... .......... 3% 47.8M 92s\n", + " 51500K .......... .......... .......... .......... .......... 3% 40.5M 92s\n", + " 51550K .......... .......... .......... .......... .......... 3% 50.5M 92s\n", + " 51600K .......... .......... .......... .......... .......... 3% 45.0M 92s\n", + " 51650K .......... .......... .......... .......... .......... 3% 52.1M 92s\n", + " 51700K .......... .......... .......... .......... .......... 3% 50.8M 92s\n", + " 51750K .......... .......... .......... .......... .......... 3% 51.4M 92s\n", + " 51800K .......... .......... .......... .......... .......... 3% 45.6M 92s\n", + " 51850K .......... .......... .......... .......... .......... 3% 53.4M 92s\n", + " 51900K .......... .......... .......... .......... .......... 3% 50.9M 92s\n", + " 51950K .......... .......... .......... .......... .......... 3% 50.7M 92s\n", + " 52000K .......... .......... .......... .......... .......... 3% 45.3M 92s\n", + " 52050K .......... .......... .......... .......... .......... 3% 53.0M 92s\n", + " 52100K .......... .......... .......... .......... .......... 3% 1.08M 93s\n", + " 52150K .......... .......... .......... .......... .......... 3% 20.1M 93s\n", + " 52200K .......... .......... .......... .......... .......... 3% 35.6M 93s\n", + " 52250K .......... .......... .......... .......... .......... 3% 51.3M 93s\n", + " 52300K .......... .......... .......... .......... .......... 3% 52.5M 93s\n", + " 52350K .......... .......... .......... .......... .......... 3% 52.7M 93s\n", + " 52400K .......... .......... .......... .......... .......... 3% 43.6M 93s\n", + " 52450K .......... .......... .......... .......... .......... 3% 51.9M 93s\n", + " 52500K .......... .......... .......... .......... .......... 3% 50.8M 92s\n", + " 52550K .......... .......... .......... .......... .......... 3% 52.6M 92s\n", + " 52600K .......... .......... .......... .......... .......... 3% 45.4M 92s\n", + " 52650K .......... .......... .......... .......... .......... 3% 51.2M 92s\n", + " 52700K .......... .......... .......... .......... .......... 3% 50.5M 92s\n", + " 52750K .......... .......... .......... .......... .......... 3% 52.6M 92s\n", + " 52800K .......... .......... .......... .......... .......... 3% 45.2M 92s\n", + " 52850K .......... .......... .......... .......... .......... 3% 51.8M 92s\n", + " 52900K .......... .......... .......... .......... .......... 3% 52.7M 92s\n", + " 52950K .......... .......... .......... .......... .......... 3% 54.1M 92s\n", + " 53000K .......... .......... .......... .......... .......... 3% 41.3M 92s\n", + " 53050K .......... .......... .......... .......... .......... 3% 34.9M 92s\n", + " 53100K .......... .......... .......... .......... .......... 3% 53.8M 92s\n", + " 53150K .......... .......... .......... .......... .......... 3% 53.6M 92s\n", + " 53200K .......... .......... .......... .......... .......... 3% 45.7M 92s\n", + " 53250K .......... .......... .......... .......... .......... 3% 52.0M 92s\n", + " 53300K .......... .......... .......... .......... .......... 3% 51.4M 92s\n", + " 53350K .......... .......... .......... .......... .......... 3% 54.0M 91s\n", + " 53400K .......... .......... .......... .......... .......... 3% 46.9M 91s\n", + " 53450K .......... .......... .......... .......... .......... 3% 51.6M 91s\n", + " 53500K .......... .......... .......... .......... .......... 3% 53.1M 91s\n", + " 53550K .......... .......... .......... .......... .......... 3% 51.6M 91s\n", + " 53600K .......... .......... .......... .......... .......... 3% 1.08M 92s\n", + " 53650K .......... .......... .......... .......... .......... 3% 19.8M 92s\n", + " 53700K .......... .......... .......... .......... .......... 3% 49.5M 92s\n", + " 53750K .......... .......... .......... .......... .......... 3% 32.4M 92s\n", + " 53800K .......... .......... .......... .......... .......... 3% 45.1M 92s\n", + " 53850K .......... .......... .......... .......... .......... 3% 52.2M 92s\n", + " 53900K .......... .......... .......... .......... .......... 3% 51.0M 92s\n", + " 53950K .......... .......... .......... .......... .......... 3% 50.4M 92s\n", + " 54000K .......... .......... .......... .......... .......... 3% 44.7M 92s\n", + " 54050K .......... .......... .......... .......... .......... 3% 53.0M 92s\n", + " 54100K .......... .......... .......... .......... .......... 3% 52.6M 92s\n", + " 54150K .......... .......... .......... .......... .......... 3% 52.8M 92s\n", + " 54200K .......... .......... .......... .......... .......... 3% 39.9M 92s\n", + " 54250K .......... .......... .......... .......... .......... 3% 48.3M 92s\n", + " 54300K .......... .......... .......... .......... .......... 3% 48.6M 92s\n", + " 54350K .......... .......... .......... .......... .......... 3% 48.1M 92s\n", + " 54400K .......... .......... .......... .......... .......... 3% 41.3M 92s\n", + " 54450K .......... .......... .......... .......... .......... 3% 49.1M 91s\n", + " 54500K .......... .......... .......... .......... .......... 3% 39.2M 91s\n", + " 54550K .......... .......... .......... .......... .......... 3% 47.6M 91s\n", + " 54600K .......... .......... .......... .......... .......... 3% 40.0M 91s\n", + " 54650K .......... .......... .......... .......... .......... 3% 46.1M 91s\n", + " 54700K .......... .......... .......... .......... .......... 3% 46.0M 91s\n", + " 54750K .......... .......... .......... .......... .......... 3% 47.7M 91s\n", + " 54800K .......... .......... .......... .......... .......... 3% 43.6M 91s\n", + " 54850K .......... .......... .......... .......... .......... 3% 54.0M 91s\n", + " 54900K .......... .......... .......... .......... .......... 3% 53.0M 91s\n", + " 54950K .......... .......... .......... .......... .......... 3% 52.0M 91s\n", + " 55000K .......... .......... .......... .......... .......... 3% 46.3M 91s\n", + " 55050K .......... .......... .......... .......... .......... 3% 50.2M 91s\n", + " 55100K .......... .......... .......... .......... .......... 3% 50.7M 91s\n", + " 55150K .......... .......... .......... .......... .......... 3% 1.11M 92s\n", + " 55200K .......... .......... .......... .......... .......... 3% 20.5M 92s\n", + " 55250K .......... .......... .......... .......... .......... 3% 27.2M 92s\n", + " 55300K .......... .......... .......... .......... .......... 3% 51.9M 92s\n", + " 55350K .......... .......... .......... .......... .......... 3% 52.2M 92s\n", + " 55400K .......... .......... .......... .......... .......... 3% 43.4M 92s\n", + " 55450K .......... .......... .......... .......... .......... 3% 50.7M 92s\n", + " 55500K .......... .......... .......... .......... .......... 3% 51.7M 91s\n", + " 55550K .......... .......... .......... .......... .......... 3% 49.2M 91s\n", + " 55600K .......... .......... .......... .......... .......... 3% 44.8M 91s\n", + " 55650K .......... .......... .......... .......... .......... 3% 51.5M 91s\n", + " 55700K .......... .......... .......... .......... .......... 3% 51.7M 91s\n", + " 55750K .......... .......... .......... .......... .......... 3% 53.1M 91s\n", + " 55800K .......... .......... .......... .......... .......... 3% 45.7M 91s\n", + " 55850K .......... .......... .......... .......... .......... 3% 52.0M 91s\n", + " 55900K .......... .......... .......... .......... .......... 3% 48.8M 91s\n", + " 55950K .......... .......... .......... .......... .......... 3% 53.1M 91s\n", + " 56000K .......... .......... .......... .......... .......... 3% 43.8M 91s\n", + " 56050K .......... .......... .......... .......... .......... 3% 52.4M 91s\n", + " 56100K .......... .......... .......... .......... .......... 3% 52.6M 91s\n", + " 56150K .......... .......... .......... .......... .......... 3% 54.2M 91s\n", + " 56200K .......... .......... .......... .......... .......... 3% 45.9M 91s\n", + " 56250K .......... .......... .......... .......... .......... 3% 54.2M 91s\n", + " 56300K .......... .......... .......... .......... .......... 3% 51.4M 91s\n", + " 56350K .......... .......... .......... .......... .......... 3% 54.0M 90s\n", + " 56400K .......... .......... .......... .......... .......... 3% 44.6M 90s\n", + " 56450K .......... .......... .......... .......... .......... 3% 53.7M 90s\n", + " 56500K .......... .......... .......... .......... .......... 3% 53.3M 90s\n", + " 56550K .......... .......... .......... .......... .......... 3% 53.1M 90s\n", + " 56600K .......... .......... .......... .......... .......... 3% 46.4M 90s\n", + " 56650K .......... .......... .......... .......... .......... 3% 1.09M 91s\n", + " 56700K .......... .......... .......... .......... .......... 3% 43.3M 91s\n", + " 56750K .......... .......... .......... .......... .......... 3% 21.8M 91s\n", + " 56800K .......... .......... .......... .......... .......... 3% 27.1M 91s\n", + " 56850K .......... .......... .......... .......... .......... 3% 52.3M 91s\n", + " 56900K .......... .......... .......... .......... .......... 3% 53.0M 91s\n", + " 56950K .......... .......... .......... .......... .......... 3% 53.8M 91s\n", + " 57000K .......... .......... .......... .......... .......... 3% 43.3M 91s\n", + " 57050K .......... .......... .......... .......... .......... 3% 50.7M 91s\n", + " 57100K .......... .......... .......... .......... .......... 3% 52.3M 91s\n", + " 57150K .......... .......... .......... .......... .......... 3% 53.3M 91s\n", + " 57200K .......... .......... .......... .......... .......... 3% 43.1M 91s\n", + " 57250K .......... .......... .......... .......... .......... 3% 51.4M 91s\n", + " 57300K .......... .......... .......... .......... .......... 3% 50.6M 91s\n", + " 57350K .......... .......... .......... .......... .......... 3% 53.7M 91s\n", + " 57400K .......... .......... .......... .......... .......... 3% 43.7M 91s\n", + " 57450K .......... .......... .......... .......... .......... 3% 52.5M 90s\n", + " 57500K .......... .......... .......... .......... .......... 3% 52.6M 90s\n", + " 57550K .......... .......... .......... .......... .......... 3% 47.4M 90s\n", + " 57600K .......... .......... .......... .......... .......... 3% 34.3M 90s\n", + " 57650K .......... .......... .......... .......... .......... 3% 55.3M 90s\n", + " 57700K .......... .......... .......... .......... .......... 3% 55.2M 90s\n", + " 57750K .......... .......... .......... .......... .......... 3% 55.1M 90s\n", + " 57800K .......... .......... .......... .......... .......... 3% 45.1M 90s\n", + " 57850K .......... .......... .......... .......... .......... 3% 55.8M 90s\n", + " 57900K .......... .......... .......... .......... .......... 3% 55.5M 90s\n", + " 57950K .......... .......... .......... .......... .......... 3% 55.8M 90s\n", + " 58000K .......... .......... .......... .......... .......... 3% 47.0M 90s\n", + " 58050K .......... .......... .......... .......... .......... 3% 54.3M 90s\n", + " 58100K .......... .......... .......... .......... .......... 3% 55.7M 90s\n", + " 58150K .......... .......... .......... .......... .......... 3% 52.9M 90s\n", + " 58200K .......... .......... .......... .......... .......... 3% 1.08M 91s\n", + " 58250K .......... .......... .......... .......... .......... 3% 18.7M 91s\n", + " 58300K .......... .......... .......... .......... .......... 3% 31.9M 91s\n", + " 58350K .......... .......... .......... .......... .......... 3% 53.5M 91s\n", + " 58400K .......... .......... .......... .......... .......... 3% 46.3M 91s\n", + " 58450K .......... .......... .......... .......... .......... 3% 54.2M 91s\n", + " 58500K .......... .......... .......... .......... .......... 3% 53.4M 90s\n", + " 58550K .......... .......... .......... .......... .......... 3% 51.0M 90s\n", + " 58600K .......... .......... .......... .......... .......... 3% 45.9M 90s\n", + " 58650K .......... .......... .......... .......... .......... 3% 53.8M 90s\n", + " 58700K .......... .......... .......... .......... .......... 3% 50.5M 90s\n", + " 58750K .......... .......... .......... .......... .......... 3% 52.9M 90s\n", + " 58800K .......... .......... .......... .......... .......... 3% 45.8M 90s\n", + " 58850K .......... .......... .......... .......... .......... 3% 53.4M 90s\n", + " 58900K .......... .......... .......... .......... .......... 3% 52.9M 90s\n", + " 58950K .......... .......... .......... .......... .......... 3% 52.5M 90s\n", + " 59000K .......... .......... .......... .......... .......... 3% 44.9M 90s\n", + " 59050K .......... .......... .......... .......... .......... 3% 53.5M 90s\n", + " 59100K .......... .......... .......... .......... .......... 3% 46.1M 90s\n", + " 59150K .......... .......... .......... .......... .......... 3% 36.5M 90s\n", + " 59200K .......... .......... .......... .......... .......... 3% 46.9M 90s\n", + " 59250K .......... .......... .......... .......... .......... 3% 53.1M 90s\n", + " 59300K .......... .......... .......... .......... .......... 3% 53.4M 90s\n", + " 59350K .......... .......... .......... .......... .......... 3% 51.6M 90s\n", + " 59400K .......... .......... .......... .......... .......... 3% 46.9M 90s\n", + " 59450K .......... .......... .......... .......... .......... 3% 52.2M 89s\n", + " 59500K .......... .......... .......... .......... .......... 3% 54.2M 89s\n", + " 59550K .......... .......... .......... .......... .......... 3% 52.3M 89s\n", + " 59600K .......... .......... .......... .......... .......... 3% 46.3M 89s\n", + " 59650K .......... .......... .......... .......... .......... 3% 54.3M 89s\n", + " 59700K .......... .......... .......... .......... .......... 3% 1.08M 90s\n", + " 59750K .......... .......... .......... .......... .......... 3% 25.0M 90s\n", + " 59800K .......... .......... .......... .......... .......... 3% 27.6M 90s\n", + " 59850K .......... .......... .......... .......... .......... 3% 29.8M 90s\n", + " 59900K .......... .......... .......... .......... .......... 3% 54.5M 90s\n", + " 59950K .......... .......... .......... .......... .......... 3% 54.6M 90s\n", + " 60000K .......... .......... .......... .......... .......... 3% 45.3M 90s\n", + " 60050K .......... .......... .......... .......... .......... 3% 53.5M 90s\n", + " 60100K .......... .......... .......... .......... .......... 3% 51.5M 90s\n", + " 60150K .......... .......... .......... .......... .......... 3% 53.8M 90s\n", + " 60200K .......... .......... .......... .......... .......... 3% 46.1M 90s\n", + " 60250K .......... .......... .......... .......... .......... 3% 50.3M 90s\n", + " 60300K .......... .......... .......... .......... .......... 3% 54.3M 90s\n", + " 60350K .......... .......... .......... .......... .......... 3% 54.2M 90s\n", + " 60400K .......... .......... .......... .......... .......... 3% 45.7M 90s\n", + " 60450K .......... .......... .......... .......... .......... 3% 50.7M 90s\n", + " 60500K .......... .......... .......... .......... .......... 3% 53.3M 90s\n", + " 60550K .......... .......... .......... .......... .......... 3% 51.0M 89s\n", + " 60600K .......... .......... .......... .......... .......... 3% 40.4M 89s\n", + " 60650K .......... .......... .......... .......... .......... 3% 40.7M 89s\n", + " 60700K .......... .......... .......... .......... .......... 3% 51.2M 89s\n", + " 60750K .......... .......... .......... .......... .......... 3% 52.4M 89s\n", + " 60800K .......... .......... .......... .......... .......... 3% 45.3M 89s\n", + " 60850K .......... .......... .......... .......... .......... 3% 50.1M 89s\n", + " 60900K .......... .......... .......... .......... .......... 3% 55.2M 89s\n", + " 60950K .......... .......... .......... .......... .......... 3% 54.6M 89s\n", + " 61000K .......... .......... .......... .......... .......... 3% 46.7M 89s\n", + " 61050K .......... .......... .......... .......... .......... 3% 53.2M 89s\n", + " 61100K .......... .......... .......... .......... .......... 3% 53.4M 89s\n", + " 61150K .......... .......... .......... .......... .......... 3% 53.5M 89s\n", + " 61200K .......... .......... .......... .......... .......... 3% 44.9M 89s\n", + " 61250K .......... .......... .......... .......... .......... 3% 1.09M 90s\n", + " 61300K .......... .......... .......... .......... .......... 3% 17.7M 90s\n", + " 61350K .......... .......... .......... .......... .......... 3% 29.3M 90s\n", + " 61400K .......... .......... .......... .......... .......... 3% 45.3M 90s\n", + " 61450K .......... .......... .......... .......... .......... 3% 53.5M 90s\n", + " 61500K .......... .......... .......... .......... .......... 3% 51.3M 90s\n", + " 61550K .......... .......... .......... .......... .......... 3% 53.0M 90s\n", + " 61600K .......... .......... .......... .......... .......... 3% 45.1M 90s\n", + " 61650K .......... .......... .......... .......... .......... 3% 53.8M 89s\n", + " 61700K .......... .......... .......... .......... .......... 3% 51.4M 89s\n", + " 61750K .......... .......... .......... .......... .......... 3% 51.0M 89s\n", + " 61800K .......... .......... .......... .......... .......... 3% 42.8M 89s\n", + " 61850K .......... .......... .......... .......... .......... 3% 47.3M 89s\n", + " 61900K .......... .......... .......... .......... .......... 3% 48.8M 89s\n", + " 61950K .......... .......... .......... .......... .......... 3% 51.0M 89s\n", + " 62000K .......... .......... .......... .......... .......... 3% 44.1M 89s\n", + " 62050K .......... .......... .......... .......... .......... 3% 53.8M 89s\n", + " 62100K .......... .......... .......... .......... .......... 3% 54.1M 89s\n", + " 62150K .......... .......... .......... .......... .......... 3% 51.9M 89s\n", + " 62200K .......... .......... .......... .......... .......... 3% 36.6M 89s\n", + " 62250K .......... .......... .......... .......... .......... 3% 51.4M 89s\n", + " 62300K .......... .......... .......... .......... .......... 3% 49.8M 89s\n", + " 62350K .......... .......... .......... .......... .......... 3% 51.6M 89s\n", + " 62400K .......... .......... .......... .......... .......... 3% 45.4M 89s\n", + " 62450K .......... .......... .......... .......... .......... 3% 54.5M 89s\n", + " 62500K .......... .......... .......... .......... .......... 3% 54.8M 89s\n", + " 62550K .......... .......... .......... .......... .......... 3% 52.9M 89s\n", + " 62600K .......... .......... .......... .......... .......... 3% 46.1M 89s\n", + " 62650K .......... .......... .......... .......... .......... 3% 54.7M 88s\n", + " 62700K .......... .......... .......... .......... .......... 4% 53.9M 88s\n", + " 62750K .......... .......... .......... .......... .......... 4% 51.4M 88s\n", + " 62800K .......... .......... .......... .......... .......... 4% 1.05M 89s\n", + " 62850K .......... .......... .......... .......... .......... 4% 52.8M 89s\n", + " 62900K .......... .......... .......... .......... .......... 4% 36.1M 89s\n", + " 62950K .......... .......... .......... .......... .......... 4% 54.1M 89s\n", + " 63000K .......... .......... .......... .......... .......... 4% 44.8M 89s\n", + " 63050K .......... .......... .......... .......... .......... 4% 52.9M 89s\n", + " 63100K .......... .......... .......... .......... .......... 4% 51.1M 89s\n", + " 63150K .......... .......... .......... .......... .......... 4% 51.2M 89s\n", + " 63200K .......... .......... .......... .......... .......... 4% 45.3M 89s\n", + " 63250K .......... .......... .......... .......... .......... 4% 52.2M 89s\n", + " 63300K .......... .......... .......... .......... .......... 4% 52.6M 89s\n", + " 63350K .......... .......... .......... .......... .......... 4% 50.1M 89s\n", + " 63400K .......... .......... .......... .......... .......... 4% 47.1M 89s\n", + " 63450K .......... .......... .......... .......... .......... 4% 53.8M 89s\n", + " 63500K .......... .......... .......... .......... .......... 4% 51.8M 89s\n", + " 63550K .......... .......... .......... .......... .......... 4% 51.7M 89s\n", + " 63600K .......... .......... .......... .......... .......... 4% 44.9M 89s\n", + " 63650K .......... .......... .......... .......... .......... 4% 51.3M 89s\n", + " 63700K .......... .......... .......... .......... .......... 4% 30.3M 89s\n", + " 63750K .......... .......... .......... .......... .......... 4% 52.6M 88s\n", + " 63800K .......... .......... .......... .......... .......... 4% 46.9M 88s\n", + " 63850K .......... .......... .......... .......... .......... 4% 53.0M 88s\n", + " 63900K .......... .......... .......... .......... .......... 4% 52.9M 88s\n", + " 63950K .......... .......... .......... .......... .......... 4% 54.8M 88s\n", + " 64000K .......... .......... .......... .......... .......... 4% 46.6M 88s\n", + " 64050K .......... .......... .......... .......... .......... 4% 53.4M 88s\n", + " 64100K .......... .......... .......... .......... .......... 4% 52.8M 88s\n", + " 64150K .......... .......... .......... .......... .......... 4% 51.5M 88s\n", + " 64200K .......... .......... .......... .......... .......... 4% 46.9M 88s\n", + " 64250K .......... .......... .......... .......... .......... 4% 52.5M 88s\n", + " 64300K .......... .......... .......... .......... .......... 4% 1.10M 89s\n", + " 64350K .......... .......... .......... .......... .......... 4% 15.7M 89s\n", + " 64400K .......... .......... .......... .......... .......... 4% 30.1M 89s\n", + " 64450K .......... .......... .......... .......... .......... 4% 52.8M 89s\n", + " 64500K .......... .......... .......... .......... .......... 4% 54.0M 89s\n", + " 64550K .......... .......... .......... .......... .......... 4% 51.5M 89s\n", + " 64600K .......... .......... .......... .......... .......... 4% 46.3M 89s\n", + " 64650K .......... .......... .......... .......... .......... 4% 54.4M 89s\n", + " 64700K .......... .......... .......... .......... .......... 4% 54.4M 89s\n", + " 64750K .......... .......... .......... .......... .......... 4% 51.6M 89s\n", + " 64800K .......... .......... .......... .......... .......... 4% 45.9M 89s\n", + " 64850K .......... .......... .......... .......... .......... 4% 54.6M 88s\n", + " 64900K .......... .......... .......... .......... .......... 4% 54.5M 88s\n", + " 64950K .......... .......... .......... .......... .......... 4% 54.7M 88s\n", + " 65000K .......... .......... .......... .......... .......... 4% 44.3M 88s\n", + " 65050K .......... .......... .......... .......... .......... 4% 54.3M 88s\n", + " 65100K .......... .......... .......... .......... .......... 4% 54.9M 88s\n", + " 65150K .......... .......... .......... .......... .......... 4% 52.4M 88s\n", + " 65200K .......... .......... .......... .......... .......... 4% 45.6M 88s\n", + " 65250K .......... .......... .......... .......... .......... 4% 36.1M 88s\n", + " 65300K .......... .......... .......... .......... .......... 4% 53.7M 88s\n", + " 65350K .......... .......... .......... .......... .......... 4% 51.6M 88s\n", + " 65400K .......... .......... .......... .......... .......... 4% 46.4M 88s\n", + " 65450K .......... .......... .......... .......... .......... 4% 52.7M 88s\n", + " 65500K .......... .......... .......... .......... .......... 4% 54.6M 88s\n", + " 65550K .......... .......... .......... .......... .......... 4% 54.7M 88s\n", + " 65600K .......... .......... .......... .......... .......... 4% 43.7M 88s\n", + " 65650K .......... .......... .......... .......... .......... 4% 54.7M 88s\n", + " 65700K .......... .......... .......... .......... .......... 4% 54.7M 88s\n", + " 65750K .......... .......... .......... .......... .......... 4% 54.8M 88s\n", + " 65800K .......... .......... .......... .......... .......... 4% 1.08M 89s\n", + " 65850K .......... .......... .......... .......... .......... 4% 18.1M 89s\n", + " 65900K .......... .......... .......... .......... .......... 4% 50.4M 89s\n", + " 65950K .......... .......... .......... .......... .......... 4% 32.6M 88s\n", + " 66000K .......... .......... .......... .......... .......... 4% 44.7M 88s\n", + " 66050K .......... .......... .......... .......... .......... 4% 52.8M 88s\n", + " 66100K .......... .......... .......... .......... .......... 4% 50.9M 88s\n", + " 66150K .......... .......... .......... .......... .......... 4% 53.3M 88s\n", + " 66200K .......... .......... .......... .......... .......... 4% 43.9M 88s\n", + " 66250K .......... .......... .......... .......... .......... 4% 52.3M 88s\n", + " 66300K .......... .......... .......... .......... .......... 4% 51.8M 88s\n", + " 66350K .......... .......... .......... .......... .......... 4% 50.8M 88s\n", + " 66400K .......... .......... .......... .......... .......... 4% 45.1M 88s\n", + " 66450K .......... .......... .......... .......... .......... 4% 53.2M 88s\n", + " 66500K .......... .......... .......... .......... .......... 4% 50.9M 88s\n", + " 66550K .......... .......... .......... .......... .......... 4% 53.1M 88s\n", + " 66600K .......... .......... .......... .......... .......... 4% 44.3M 88s\n", + " 66650K .......... .......... .......... .......... .......... 4% 51.7M 88s\n", + " 66700K .......... .......... .......... .......... .......... 4% 51.3M 88s\n", + " 66750K .......... .......... .......... .......... .......... 4% 36.8M 88s\n", + " 66800K .......... .......... .......... .......... .......... 4% 44.6M 88s\n", + " 66850K .......... .......... .......... .......... .......... 4% 52.4M 88s\n", + " 66900K .......... .......... .......... .......... .......... 4% 52.6M 88s\n", + " 66950K .......... .......... .......... .......... .......... 4% 51.8M 88s\n", + " 67000K .......... .......... .......... .......... .......... 4% 46.8M 88s\n", + " 67050K .......... .......... .......... .......... .......... 4% 52.7M 87s\n", + " 67100K .......... .......... .......... .......... .......... 4% 52.5M 87s\n", + " 67150K .......... .......... .......... .......... .......... 4% 54.4M 87s\n", + " 67200K .......... .......... .......... .......... .......... 4% 46.1M 87s\n", + " 67250K .......... .......... .......... .......... .......... 4% 54.0M 87s\n", + " 67300K .......... .......... .......... .......... .......... 4% 50.7M 87s\n", + " 67350K .......... .......... .......... .......... .......... 4% 1.11M 88s\n", + " 67400K .......... .......... .......... .......... .......... 4% 15.2M 88s\n", + " 67450K .......... .......... .......... .......... .......... 4% 32.1M 88s\n", + " 67500K .......... .......... .......... .......... .......... 4% 53.2M 88s\n", + " 67550K .......... .......... .......... .......... .......... 4% 53.6M 88s\n", + " 67600K .......... .......... .......... .......... .......... 4% 44.6M 88s\n", + " 67650K .......... .......... .......... .......... .......... 4% 53.2M 88s\n", + " 67700K .......... .......... .......... .......... .......... 4% 50.7M 88s\n", + " 67750K .......... .......... .......... .......... .......... 4% 49.5M 88s\n", + " 67800K .......... .......... .......... .......... .......... 4% 45.1M 88s\n", + " 67850K .......... .......... .......... .......... .......... 4% 52.3M 88s\n", + " 67900K .......... .......... .......... .......... .......... 4% 53.2M 88s\n", + " 67950K .......... .......... .......... .......... .......... 4% 53.8M 88s\n", + " 68000K .......... .......... .......... .......... .......... 4% 44.1M 88s\n", + " 68050K .......... .......... .......... .......... .......... 4% 52.9M 88s\n", + " 68100K .......... .......... .......... .......... .......... 4% 53.6M 88s\n", + " 68150K .......... .......... .......... .......... .......... 4% 51.1M 87s\n", + " 68200K .......... .......... .......... .......... .......... 4% 46.0M 87s\n", + " 68250K .......... .......... .......... .......... .......... 4% 48.1M 87s\n", + " 68300K .......... .......... .......... .......... .......... 4% 29.4M 87s\n", + " 68350K .......... .......... .......... .......... .......... 4% 54.0M 87s\n", + " 68400K .......... .......... .......... .......... .......... 4% 43.8M 87s\n", + " 68450K .......... .......... .......... .......... .......... 4% 54.0M 87s\n", + " 68500K .......... .......... .......... .......... .......... 4% 53.7M 87s\n", + " 68550K .......... .......... .......... .......... .......... 4% 53.3M 87s\n", + " 68600K .......... .......... .......... .......... .......... 4% 44.2M 87s\n", + " 68650K .......... .......... .......... .......... .......... 4% 52.2M 87s\n", + " 68700K .......... .......... .......... .......... .......... 4% 53.0M 87s\n", + " 68750K .......... .......... .......... .......... .......... 4% 53.9M 87s\n", + " 68800K .......... .......... .......... .......... .......... 4% 44.5M 87s\n", + " 68850K .......... .......... .......... .......... .......... 4% 1.10M 88s\n", + " 68900K .......... .......... .......... .......... .......... 4% 17.3M 88s\n", + " 68950K .......... .......... .......... .......... .......... 4% 50.2M 88s\n", + " 69000K .......... .......... .......... .......... .......... 4% 37.1M 88s\n", + " 69050K .......... .......... .......... .......... .......... 4% 41.9M 88s\n", + " 69100K .......... .......... .......... .......... .......... 4% 50.4M 88s\n", + " 69150K .......... .......... .......... .......... .......... 4% 52.8M 88s\n", + " 69200K .......... .......... .......... .......... .......... 4% 45.6M 88s\n", + " 69250K .......... .......... .......... .......... .......... 4% 54.2M 87s\n", + " 69300K .......... .......... .......... .......... .......... 4% 50.6M 87s\n", + " 69350K .......... .......... .......... .......... .......... 4% 52.8M 87s\n", + " 69400K .......... .......... .......... .......... .......... 4% 47.6M 87s\n", + " 69450K .......... .......... .......... .......... .......... 4% 53.3M 87s\n", + " 69500K .......... .......... .......... .......... .......... 4% 51.9M 87s\n", + " 69550K .......... .......... .......... .......... .......... 4% 53.9M 87s\n", + " 69600K .......... .......... .......... .......... .......... 4% 46.3M 87s\n", + " 69650K .......... .......... .......... .......... .......... 4% 53.6M 87s\n", + " 69700K .......... .......... .......... .......... .......... 4% 52.6M 87s\n", + " 69750K .......... .......... .......... .......... .......... 4% 53.4M 87s\n", + " 69800K .......... .......... .......... .......... .......... 4% 22.4M 87s\n", + " 69850K .......... .......... .......... .......... .......... 4% 52.1M 87s\n", + " 69900K .......... .......... .......... .......... .......... 4% 52.0M 87s\n", + " 69950K .......... .......... .......... .......... .......... 4% 54.5M 87s\n", + " 70000K .......... .......... .......... .......... .......... 4% 47.0M 87s\n", + " 70050K .......... .......... .......... .......... .......... 4% 54.8M 87s\n", + " 70100K .......... .......... .......... .......... .......... 4% 54.5M 87s\n", + " 70150K .......... .......... .......... .......... .......... 4% 53.6M 87s\n", + " 70200K .......... .......... .......... .......... .......... 4% 45.6M 87s\n", + " 70250K .......... .......... .......... .......... .......... 4% 54.9M 87s\n", + " 70300K .......... .......... .......... .......... .......... 4% 53.6M 87s\n", + " 70350K .......... .......... .......... .......... .......... 4% 51.0M 87s\n", + " 70400K .......... .......... .......... .......... .......... 4% 1.09M 87s\n", + " 70450K .......... .......... .......... .......... .......... 4% 18.5M 87s\n", + " 70500K .......... .......... .......... .......... .......... 4% 42.7M 87s\n", + " 70550K .......... .......... .......... .......... .......... 4% 42.4M 87s\n", + " 70600K .......... .......... .......... .......... .......... 4% 45.4M 87s\n", + " 70650K .......... .......... .......... .......... .......... 4% 49.8M 87s\n", + " 70700K .......... .......... .......... .......... .......... 4% 51.7M 87s\n", + " 70750K .......... .......... .......... .......... .......... 4% 41.6M 87s\n", + " 70800K .......... .......... .......... .......... .......... 4% 42.4M 87s\n", + " 70850K .......... .......... .......... .......... .......... 4% 51.1M 87s\n", + " 70900K .......... .......... .......... .......... .......... 4% 52.9M 87s\n", + " 70950K .......... .......... .......... .......... .......... 4% 50.7M 87s\n", + " 71000K .......... .......... .......... .......... .......... 4% 45.3M 87s\n", + " 71050K .......... .......... .......... .......... .......... 4% 52.4M 87s\n", + " 71100K .......... .......... .......... .......... .......... 4% 53.4M 87s\n", + " 71150K .......... .......... .......... .......... .......... 4% 53.2M 87s\n", + " 71200K .......... .......... .......... .......... .......... 4% 43.8M 87s\n", + " 71250K .......... .......... .......... .......... .......... 4% 50.8M 87s\n", + " 71300K .......... .......... .......... .......... .......... 4% 50.7M 87s\n", + " 71350K .......... .......... .......... .......... .......... 4% 35.8M 87s\n", + " 71400K .......... .......... .......... .......... .......... 4% 45.2M 87s\n", + " 71450K .......... .......... .......... .......... .......... 4% 52.5M 87s\n", + " 71500K .......... .......... .......... .......... .......... 4% 53.6M 87s\n", + " 71550K .......... .......... .......... .......... .......... 4% 52.6M 86s\n", + " 71600K .......... .......... .......... .......... .......... 4% 43.7M 86s\n", + " 71650K .......... .......... .......... .......... .......... 4% 52.3M 86s\n", + " 71700K .......... .......... .......... .......... .......... 4% 53.2M 86s\n", + " 71750K .......... .......... .......... .......... .......... 4% 53.5M 86s\n", + " 71800K .......... .......... .......... .......... .......... 4% 44.2M 86s\n", + " 71850K .......... .......... .......... .......... .......... 4% 52.2M 86s\n", + " 71900K .......... .......... .......... .......... .......... 4% 1.10M 87s\n", + " 71950K .......... .......... .......... .......... .......... 4% 17.6M 87s\n", + " 72000K .......... .......... .......... .......... .......... 4% 26.9M 87s\n", + " 72050K .......... .......... .......... .......... .......... 4% 53.7M 87s\n", + " 72100K .......... .......... .......... .......... .......... 4% 54.3M 87s\n", + " 72150K .......... .......... .......... .......... .......... 4% 52.0M 87s\n", + " 72200K .......... .......... .......... .......... .......... 4% 43.2M 87s\n", + " 72250K .......... .......... .......... .......... .......... 4% 53.5M 87s\n", + " 72300K .......... .......... .......... .......... .......... 4% 43.1M 87s\n", + " 72350K .......... .......... .......... .......... .......... 4% 49.6M 87s\n", + " 72400K .......... .......... .......... .......... .......... 4% 46.7M 87s\n", + " 72450K .......... .......... .......... .......... .......... 4% 54.8M 87s\n", + " 72500K .......... .......... .......... .......... .......... 4% 54.7M 87s\n", + " 72550K .......... .......... .......... .......... .......... 4% 51.4M 87s\n", + " 72600K .......... .......... .......... .......... .......... 4% 46.2M 87s\n", + " 72650K .......... .......... .......... .......... .......... 4% 53.3M 86s\n", + " 72700K .......... .......... .......... .......... .......... 4% 53.9M 86s\n", + " 72750K .......... .......... .......... .......... .......... 4% 53.0M 86s\n", + " 72800K .......... .......... .......... .......... .......... 4% 45.3M 86s\n", + " 72850K .......... .......... .......... .......... .......... 4% 31.5M 86s\n", + " 72900K .......... .......... .......... .......... .......... 4% 50.5M 86s\n", + " 72950K .......... .......... .......... .......... .......... 4% 52.6M 86s\n", + " 73000K .......... .......... .......... .......... .......... 4% 47.1M 86s\n", + " 73050K .......... .......... .......... .......... .......... 4% 51.0M 86s\n", + " 73100K .......... .......... .......... .......... .......... 4% 53.9M 86s\n", + " 73150K .......... .......... .......... .......... .......... 4% 52.6M 86s\n", + " 73200K .......... .......... .......... .......... .......... 4% 46.4M 86s\n", + " 73250K .......... .......... .......... .......... .......... 4% 54.8M 86s\n", + " 73300K .......... .......... .......... .......... .......... 4% 54.1M 86s\n", + " 73350K .......... .......... .......... .......... .......... 4% 51.2M 86s\n", + " 73400K .......... .......... .......... .......... .......... 4% 46.5M 86s\n", + " 73450K .......... .......... .......... .......... .......... 4% 1.11M 87s\n", + " 73500K .......... .......... .......... .......... .......... 4% 13.9M 87s\n", + " 73550K .......... .......... .......... .......... .......... 4% 37.7M 87s\n", + " 73600K .......... .......... .......... .......... .......... 4% 46.0M 87s\n", + " 73650K .......... .......... .......... .......... .......... 4% 49.5M 87s\n", + " 73700K .......... .......... .......... .......... .......... 4% 52.4M 87s\n", + " 73750K .......... .......... .......... .......... .......... 4% 53.4M 86s\n", + " 73800K .......... .......... .......... .......... .......... 4% 46.5M 86s\n", + " 73850K .......... .......... .......... .......... .......... 4% 52.0M 86s\n", + " 73900K .......... .......... .......... .......... .......... 4% 52.5M 86s\n", + " 73950K .......... .......... .......... .......... .......... 4% 53.0M 86s\n", + " 74000K .......... .......... .......... .......... .......... 4% 44.0M 86s\n", + " 74050K .......... .......... .......... .......... .......... 4% 53.3M 86s\n", + " 74100K .......... .......... .......... .......... .......... 4% 52.4M 86s\n", + " 74150K .......... .......... .......... .......... .......... 4% 54.7M 86s\n", + " 74200K .......... .......... .......... .......... .......... 4% 47.7M 86s\n", + " 74250K .......... .......... .......... .......... .......... 4% 54.6M 86s\n", + " 74300K .......... .......... .......... .......... .......... 4% 50.8M 86s\n", + " 74350K .......... .......... .......... .......... .......... 4% 55.0M 86s\n", + " 74400K .......... .......... .......... .......... .......... 4% 26.6M 86s\n", + " 74450K .......... .......... .......... .......... .......... 4% 54.2M 86s\n", + " 74500K .......... .......... .......... .......... .......... 4% 50.2M 86s\n", + " 74550K .......... .......... .......... .......... .......... 4% 54.3M 86s\n", + " 74600K .......... .......... .......... .......... .......... 4% 46.3M 86s\n", + " 74650K .......... .......... .......... .......... .......... 4% 52.1M 86s\n", + " 74700K .......... .......... .......... .......... .......... 4% 53.2M 86s\n", + " 74750K .......... .......... .......... .......... .......... 4% 55.0M 86s\n", + " 74800K .......... .......... .......... .......... .......... 4% 46.3M 86s\n", + " 74850K .......... .......... .......... .......... .......... 4% 54.2M 86s\n", + " 74900K .......... .......... .......... .......... .......... 4% 51.9M 86s\n", + " 74950K .......... .......... .......... .......... .......... 4% 1.10M 86s\n", + " 75000K .......... .......... .......... .......... .......... 4% 16.9M 86s\n", + " 75050K .......... .......... .......... .......... .......... 4% 41.2M 86s\n", + " 75100K .......... .......... .......... .......... .......... 4% 28.6M 86s\n", + " 75150K .......... .......... .......... .......... .......... 4% 52.9M 86s\n", + " 75200K .......... .......... .......... .......... .......... 4% 45.2M 86s\n", + " 75250K .......... .......... .......... .......... .......... 4% 53.6M 86s\n", + " 75300K .......... .......... .......... .......... .......... 4% 54.2M 86s\n", + " 75350K .......... .......... .......... .......... .......... 4% 49.3M 86s\n", + " 75400K .......... .......... .......... .......... .......... 4% 46.4M 86s\n", + " 75450K .......... .......... .......... .......... .......... 4% 55.0M 86s\n", + " 75500K .......... .......... .......... .......... .......... 4% 54.9M 86s\n", + " 75550K .......... .......... .......... .......... .......... 4% 53.4M 86s\n", + " 75600K .......... .......... .......... .......... .......... 4% 41.5M 86s\n", + " 75650K .......... .......... .......... .......... .......... 4% 52.1M 86s\n", + " 75700K .......... .......... .......... .......... .......... 4% 51.1M 86s\n", + " 75750K .......... .......... .......... .......... .......... 4% 51.5M 86s\n", + " 75800K .......... .......... .......... .......... .......... 4% 45.7M 86s\n", + " 75850K .......... .......... .......... .......... .......... 4% 52.0M 86s\n", + " 75900K .......... .......... .......... .......... .......... 4% 47.6M 86s\n", + " 75950K .......... .......... .......... .......... .......... 4% 52.3M 86s\n", + " 76000K .......... .......... .......... .......... .......... 4% 44.6M 86s\n", + " 76050K .......... .......... .......... .......... .......... 4% 46.5M 86s\n", + " 76100K .......... .......... .......... .......... .......... 4% 54.1M 86s\n", + " 76150K .......... .......... .......... .......... .......... 4% 52.2M 85s\n", + " 76200K .......... .......... .......... .......... .......... 4% 43.8M 85s\n", + " 76250K .......... .......... .......... .......... .......... 4% 54.3M 85s\n", + " 76300K .......... .......... .......... .......... .......... 4% 54.0M 85s\n", + " 76350K .......... .......... .......... .......... .......... 4% 52.4M 85s\n", + " 76400K .......... .......... .......... .......... .......... 4% 45.0M 85s\n", + " 76450K .......... .......... .......... .......... .......... 4% 54.4M 85s\n", + " 76500K .......... .......... .......... .......... .......... 4% 1.08M 86s\n", + " 76550K .......... .......... .......... .......... .......... 4% 15.3M 86s\n", + " 76600K .......... .......... .......... .......... .......... 4% 45.6M 86s\n", + " 76650K .......... .......... .......... .......... .......... 4% 53.6M 86s\n", + " 76700K .......... .......... .......... .......... .......... 4% 51.3M 86s\n", + " 76750K .......... .......... .......... .......... .......... 4% 54.8M 86s\n", + " 76800K .......... .......... .......... .......... .......... 4% 46.4M 86s\n", + " 76850K .......... .......... .......... .......... .......... 4% 54.6M 86s\n", + " 76900K .......... .......... .......... .......... .......... 4% 51.9M 86s\n", + " 76950K .......... .......... .......... .......... .......... 4% 53.5M 86s\n", + " 77000K .......... .......... .......... .......... .......... 4% 45.7M 86s\n", + " 77050K .......... .......... .......... .......... .......... 4% 55.2M 86s\n", + " 77100K .......... .......... .......... .......... .......... 4% 53.7M 86s\n", + " 77150K .......... .......... .......... .......... .......... 4% 52.8M 86s\n", + " 77200K .......... .......... .......... .......... .......... 4% 46.8M 86s\n", + " 77250K .......... .......... .......... .......... .......... 4% 55.1M 85s\n", + " 77300K .......... .......... .......... .......... .......... 4% 54.2M 85s\n", + " 77350K .......... .......... .......... .......... .......... 4% 51.1M 85s\n", + " 77400K .......... .......... .......... .......... .......... 4% 47.4M 85s\n", + " 77450K .......... .......... .......... .......... .......... 4% 28.4M 85s\n", + " 77500K .......... .......... .......... .......... .......... 4% 52.3M 85s\n", + " 77550K .......... .......... .......... .......... .......... 4% 54.0M 85s\n", + " 77600K .......... .......... .......... .......... .......... 4% 46.5M 85s\n", + " 77650K .......... .......... .......... .......... .......... 4% 54.3M 85s\n", + " 77700K .......... .......... .......... .......... .......... 4% 54.0M 85s\n", + " 77750K .......... .......... .......... .......... .......... 4% 54.1M 85s\n", + " 77800K .......... .......... .......... .......... .......... 4% 45.8M 85s\n", + " 77850K .......... .......... .......... .......... .......... 4% 55.4M 85s\n", + " 77900K .......... .......... .......... .......... .......... 4% 53.7M 85s\n", + " 77950K .......... .......... .......... .......... .......... 4% 54.3M 85s\n", + " 78000K .......... .......... .......... .......... .......... 4% 1.08M 86s\n", + " 78050K .......... .......... .......... .......... .......... 4% 23.9M 86s\n", + " 78100K .......... .......... .......... .......... .......... 4% 26.5M 86s\n", + " 78150K .......... .......... .......... .......... .......... 4% 41.4M 86s\n", + " 78200K .......... .......... .......... .......... .......... 4% 43.7M 86s\n", + " 78250K .......... .......... .......... .......... .......... 4% 54.0M 86s\n", + " 78300K .......... .......... .......... .......... .......... 4% 52.1M 86s\n", + " 78350K .......... .......... .......... .......... .......... 5% 53.8M 86s\n", + " 78400K .......... .......... .......... .......... .......... 5% 44.3M 85s\n", + " 78450K .......... .......... .......... .......... .......... 5% 51.3M 85s\n", + " 78500K .......... .......... .......... .......... .......... 5% 53.5M 85s\n", + " 78550K .......... .......... .......... .......... .......... 5% 53.7M 85s\n", + " 78600K .......... .......... .......... .......... .......... 5% 44.5M 85s\n", + " 78650K .......... .......... .......... .......... .......... 5% 54.3M 85s\n", + " 78700K .......... .......... .......... .......... .......... 5% 54.7M 85s\n", + " 78750K .......... .......... .......... .......... .......... 5% 54.7M 85s\n", + " 78800K .......... .......... .......... .......... .......... 5% 46.4M 85s\n", + " 78850K .......... .......... .......... .......... .......... 5% 52.7M 85s\n", + " 78900K .......... .......... .......... .......... .......... 5% 52.9M 85s\n", + " 78950K .......... .......... .......... .......... .......... 5% 30.8M 85s\n", + " 79000K .......... .......... .......... .......... .......... 5% 44.9M 85s\n", + " 79050K .......... .......... .......... .......... .......... 5% 53.3M 85s\n", + " 79100K .......... .......... .......... .......... .......... 5% 51.2M 85s\n", + " 79150K .......... .......... .......... .......... .......... 5% 53.8M 85s\n", + " 79200K .......... .......... .......... .......... .......... 5% 44.3M 85s\n", + " 79250K .......... .......... .......... .......... .......... 5% 54.1M 85s\n", + " 79300K .......... .......... .......... .......... .......... 5% 54.1M 85s\n", + " 79350K .......... .......... .......... .......... .......... 5% 54.2M 85s\n", + " 79400K .......... .......... .......... .......... .......... 5% 43.9M 85s\n", + " 79450K .......... .......... .......... .......... .......... 5% 54.8M 85s\n", + " 79500K .......... .......... .......... .......... .......... 5% 54.7M 85s\n", + " 79550K .......... .......... .......... .......... .......... 5% 1.08M 85s\n", + " 79600K .......... .......... .......... .......... .......... 5% 16.7M 85s\n", + " 79650K .......... .......... .......... .......... .......... 5% 38.0M 85s\n", + " 79700K .......... .......... .......... .......... .......... 5% 51.2M 85s\n", + " 79750K .......... .......... .......... .......... .......... 5% 52.7M 85s\n", + " 79800K .......... .......... .......... .......... .......... 5% 44.3M 85s\n", + " 79850K .......... .......... .......... .......... .......... 5% 53.2M 85s\n", + " 79900K .......... .......... .......... .......... .......... 5% 51.1M 85s\n", + " 79950K .......... .......... .......... .......... .......... 5% 50.3M 85s\n", + " 80000K .......... .......... .......... .......... .......... 5% 45.4M 85s\n", + " 80050K .......... .......... .......... .......... .......... 5% 53.8M 85s\n", + " 80100K .......... .......... .......... .......... .......... 5% 53.1M 85s\n", + " 80150K .......... .......... .......... .......... .......... 5% 53.4M 85s\n", + " 80200K .......... .......... .......... .......... .......... 5% 46.4M 85s\n", + " 80250K .......... .......... .......... .......... .......... 5% 51.9M 85s\n", + " 80300K .......... .......... .......... .......... .......... 5% 54.1M 85s\n", + " 80350K .......... .......... .......... .......... .......... 5% 53.4M 85s\n", + " 80400K .......... .......... .......... .......... .......... 5% 46.0M 85s\n", + " 80450K .......... .......... .......... .......... .......... 5% 34.6M 85s\n", + " 80500K .......... .......... .......... .......... .......... 5% 52.0M 85s\n", + " 80550K .......... .......... .......... .......... .......... 5% 52.3M 85s\n", + " 80600K .......... .......... .......... .......... .......... 5% 46.3M 85s\n", + " 80650K .......... .......... .......... .......... .......... 5% 54.8M 85s\n", + " 80700K .......... .......... .......... .......... .......... 5% 49.6M 85s\n", + " 80750K .......... .......... .......... .......... .......... 5% 53.8M 85s\n", + " 80800K .......... .......... .......... .......... .......... 5% 46.5M 85s\n", + " 80850K .......... .......... .......... .......... .......... 5% 55.3M 85s\n", + " 80900K .......... .......... .......... .......... .......... 5% 51.9M 84s\n", + " 80950K .......... .......... .......... .......... .......... 5% 54.2M 84s\n", + " 81000K .......... .......... .......... .......... .......... 5% 48.0M 84s\n", + " 81050K .......... .......... .......... .......... .......... 5% 1.09M 85s\n", + " 81100K .......... .......... .......... .......... .......... 5% 28.8M 85s\n", + " 81150K .......... .......... .......... .......... .......... 5% 19.8M 85s\n", + " 81200K .......... .......... .......... .......... .......... 5% 36.7M 85s\n", + " 81250K .......... .......... .......... .......... .......... 5% 50.9M 85s\n", + " 81300K .......... .......... .......... .......... .......... 5% 53.1M 85s\n", + " 81350K .......... .......... .......... .......... .......... 5% 52.9M 85s\n", + " 81400K .......... .......... .......... .......... .......... 5% 45.2M 85s\n", + " 81450K .......... .......... .......... .......... .......... 5% 52.1M 85s\n", + " 81500K .......... .......... .......... .......... .......... 5% 51.1M 85s\n", + " 81550K .......... .......... .......... .......... .......... 5% 54.6M 85s\n", + " 81600K .......... .......... .......... .......... .......... 5% 45.4M 85s\n", + " 81650K .......... .......... .......... .......... .......... 5% 52.9M 85s\n", + " 81700K .......... .......... .......... .......... .......... 5% 52.4M 85s\n", + " 81750K .......... .......... .......... .......... .......... 5% 54.8M 85s\n", + " 81800K .......... .......... .......... .......... .......... 5% 47.2M 85s\n", + " 81850K .......... .......... .......... .......... .......... 5% 53.1M 85s\n", + " 81900K .......... .......... .......... .......... .......... 5% 54.4M 85s\n", + " 81950K .......... .......... .......... .......... .......... 5% 54.6M 85s\n", + " 82000K .......... .......... .......... .......... .......... 5% 34.2M 85s\n", + " 82050K .......... .......... .......... .......... .......... 5% 53.6M 84s\n", + " 82100K .......... .......... .......... .......... .......... 5% 52.6M 84s\n", + " 82150K .......... .......... .......... .......... .......... 5% 52.0M 84s\n", + " 82200K .......... .......... .......... .......... .......... 5% 46.6M 84s\n", + " 82250K .......... .......... .......... .......... .......... 5% 50.0M 84s\n", + " 82300K .......... .......... .......... .......... .......... 5% 54.2M 84s\n", + " 82350K .......... .......... .......... .......... .......... 5% 54.8M 84s\n", + " 82400K .......... .......... .......... .......... .......... 5% 45.2M 84s\n", + " 82450K .......... .......... .......... .......... .......... 5% 52.9M 84s\n", + " 82500K .......... .......... .......... .......... .......... 5% 55.1M 84s\n", + " 82550K .......... .......... .......... .......... .......... 5% 1.08M 85s\n", + " 82600K .......... .......... .......... .......... .......... 5% 42.0M 85s\n", + " 82650K .......... .......... .......... .......... .......... 5% 19.0M 85s\n", + " 82700K .......... .......... .......... .......... .......... 5% 32.4M 85s\n", + " 82750K .......... .......... .......... .......... .......... 5% 53.1M 85s\n", + " 82800K .......... .......... .......... .......... .......... 5% 46.1M 85s\n", + " 82850K .......... .......... .......... .......... .......... 5% 54.7M 85s\n", + " 82900K .......... .......... .......... .......... .......... 5% 54.4M 85s\n", + " 82950K .......... .......... .......... .......... .......... 5% 50.3M 85s\n", + " 83000K .......... .......... .......... .......... .......... 5% 47.2M 85s\n", + " 83050K .......... .......... .......... .......... .......... 5% 53.1M 85s\n", + " 83100K .......... .......... .......... .......... .......... 5% 55.4M 85s\n", + " 83150K .......... .......... .......... .......... .......... 5% 53.0M 84s\n", + " 83200K .......... .......... .......... .......... .......... 5% 46.4M 84s\n", + " 83250K .......... .......... .......... .......... .......... 5% 53.0M 84s\n", + " 83300K .......... .......... .......... .......... .......... 5% 55.3M 84s\n", + " 83350K .......... .......... .......... .......... .......... 5% 54.2M 84s\n", + " 83400K .......... .......... .......... .......... .......... 5% 45.2M 84s\n", + " 83450K .......... .......... .......... .......... .......... 5% 55.5M 84s\n", + " 83500K .......... .......... .......... .......... .......... 5% 50.6M 84s\n", + " 83550K .......... .......... .......... .......... .......... 5% 32.8M 84s\n", + " 83600K .......... .......... .......... .......... .......... 5% 45.2M 84s\n", + " 83650K .......... .......... .......... .......... .......... 5% 54.0M 84s\n", + " 83700K .......... .......... .......... .......... .......... 5% 54.6M 84s\n", + " 83750K .......... .......... .......... .......... .......... 5% 52.2M 84s\n", + " 83800K .......... .......... .......... .......... .......... 5% 45.1M 84s\n", + " 83850K .......... .......... .......... .......... .......... 5% 54.8M 84s\n", + " 83900K .......... .......... .......... .......... .......... 5% 54.2M 84s\n", + " 83950K .......... .......... .......... .......... .......... 5% 53.6M 84s\n", + " 84000K .......... .......... .......... .......... .......... 5% 46.2M 84s\n", + " 84050K .......... .......... .......... .......... .......... 5% 54.3M 84s\n", + " 84100K .......... .......... .......... .......... .......... 5% 1.09M 85s\n", + " 84150K .......... .......... .......... .......... .......... 5% 30.8M 85s\n", + " 84200K .......... .......... .......... .......... .......... 5% 19.2M 85s\n", + " 84250K .......... .......... .......... .......... .......... 5% 29.2M 85s\n", + " 84300K .......... .......... .......... .......... .......... 5% 53.7M 84s\n", + " 84350K .......... .......... .......... .......... .......... 5% 54.4M 84s\n", + " 84400K .......... .......... .......... .......... .......... 5% 46.2M 84s\n", + " 84450K .......... .......... .......... .......... .......... 5% 52.0M 84s\n", + " 84500K .......... .......... .......... .......... .......... 5% 53.3M 84s\n", + " 84550K .......... .......... .......... .......... .......... 5% 50.8M 84s\n", + " 84600K .......... .......... .......... .......... .......... 5% 45.3M 84s\n", + " 84650K .......... .......... .......... .......... .......... 5% 51.6M 84s\n", + " 84700K .......... .......... .......... .......... .......... 5% 51.2M 84s\n", + " 84750K .......... .......... .......... .......... .......... 5% 52.8M 84s\n", + " 84800K .......... .......... .......... .......... .......... 5% 45.5M 84s\n", + " 84850K .......... .......... .......... .......... .......... 5% 52.5M 84s\n", + " 84900K .......... .......... .......... .......... .......... 5% 52.7M 84s\n", + " 84950K .......... .......... .......... .......... .......... 5% 53.7M 84s\n", + " 85000K .......... .......... .......... .......... .......... 5% 44.5M 84s\n", + " 85050K .......... .......... .......... .......... .......... 5% 36.3M 84s\n", + " 85100K .......... .......... .......... .......... .......... 5% 49.5M 84s\n", + " 85150K .......... .......... .......... .......... .......... 5% 51.4M 84s\n", + " 85200K .......... .......... .......... .......... .......... 5% 45.7M 84s\n", + " 85250K .......... .......... .......... .......... .......... 5% 50.6M 84s\n", + " 85300K .......... .......... .......... .......... .......... 5% 49.7M 84s\n", + " 85350K .......... .......... .......... .......... .......... 5% 51.0M 84s\n", + " 85400K .......... .......... .......... .......... .......... 5% 45.3M 84s\n", + " 85450K .......... .......... .......... .......... .......... 5% 49.3M 84s\n", + " 85500K .......... .......... .......... .......... .......... 5% 52.5M 84s\n", + " 85550K .......... .......... .......... .......... .......... 5% 52.1M 84s\n", + " 85600K .......... .......... .......... .......... .......... 5% 45.3M 84s\n", + " 85650K .......... .......... .......... .......... .......... 5% 1.11M 84s\n", + " 85700K .......... .......... .......... .......... .......... 5% 15.0M 84s\n", + " 85750K .......... .......... .......... .......... .......... 5% 28.5M 84s\n", + " 85800K .......... .......... .......... .......... .......... 5% 43.0M 84s\n", + " 85850K .......... .......... .......... .......... .......... 5% 52.0M 84s\n", + " 85900K .......... .......... .......... .......... .......... 5% 52.0M 84s\n", + " 85950K .......... .......... .......... .......... .......... 5% 47.8M 84s\n", + " 86000K .......... .......... .......... .......... .......... 5% 45.7M 84s\n", + " 86050K .......... .......... .......... .......... .......... 5% 52.1M 84s\n", + " 86100K .......... .......... .......... .......... .......... 5% 51.6M 84s\n", + " 86150K .......... .......... .......... .......... .......... 5% 51.2M 84s\n", + " 86200K .......... .......... .......... .......... .......... 5% 44.4M 84s\n", + " 86250K .......... .......... .......... .......... .......... 5% 52.6M 84s\n", + " 86300K .......... .......... .......... .......... .......... 5% 53.5M 84s\n", + " 86350K .......... .......... .......... .......... .......... 5% 52.8M 84s\n", + " 86400K .......... .......... .......... .......... .......... 5% 42.3M 84s\n", + " 86450K .......... .......... .......... .......... .......... 5% 53.0M 84s\n", + " 86500K .......... .......... .......... .......... .......... 5% 52.6M 84s\n", + " 86550K .......... .......... .......... .......... .......... 5% 50.8M 84s\n", + " 86600K .......... .......... .......... .......... .......... 5% 44.7M 84s\n", + " 86650K .......... .......... .......... .......... .......... 5% 52.9M 84s\n", + " 86700K .......... .......... .......... .......... .......... 5% 52.8M 84s\n", + " 86750K .......... .......... .......... .......... .......... 5% 49.6M 84s\n", + " 86800K .......... .......... .......... .......... .......... 5% 42.8M 84s\n", + " 86850K .......... .......... .......... .......... .......... 5% 52.2M 84s\n", + " 86900K .......... .......... .......... .......... .......... 5% 54.0M 83s\n", + " 86950K .......... .......... .......... .......... .......... 5% 53.2M 83s\n", + " 87000K .......... .......... .......... .......... .......... 5% 44.2M 83s\n", + " 87050K .......... .......... .......... .......... .......... 5% 53.6M 83s\n", + " 87100K .......... .......... .......... .......... .......... 5% 54.5M 83s\n", + " 87150K .......... .......... .......... .......... .......... 5% 1.10M 84s\n", + " 87200K .......... .......... .......... .......... .......... 5% 13.0M 84s\n", + " 87250K .......... .......... .......... .......... .......... 5% 39.8M 84s\n", + " 87300K .......... .......... .......... .......... .......... 5% 52.6M 84s\n", + " 87350K .......... .......... .......... .......... .......... 5% 51.9M 84s\n", + " 87400K .......... .......... .......... .......... .......... 5% 45.8M 84s\n", + " 87450K .......... .......... .......... .......... .......... 5% 51.7M 84s\n", + " 87500K .......... .......... .......... .......... .......... 5% 51.9M 84s\n", + " 87550K .......... .......... .......... .......... .......... 5% 53.9M 84s\n", + " 87600K .......... .......... .......... .......... .......... 5% 43.9M 84s\n", + " 87650K .......... .......... .......... .......... .......... 5% 53.5M 84s\n", + " 87700K .......... .......... .......... .......... .......... 5% 52.6M 84s\n", + " 87750K .......... .......... .......... .......... .......... 5% 54.7M 84s\n", + " 87800K .......... .......... .......... .......... .......... 5% 46.5M 84s\n", + " 87850K .......... .......... .......... .......... .......... 5% 53.7M 84s\n", + " 87900K .......... .......... .......... .......... .......... 5% 49.9M 84s\n", + " 87950K .......... .......... .......... .......... .......... 5% 54.2M 84s\n", + " 88000K .......... .......... .......... .......... .......... 5% 43.5M 84s\n", + " 88050K .......... .......... .......... .......... .......... 5% 52.2M 83s\n", + " 88100K .......... .......... .......... .......... .......... 5% 50.5M 83s\n", + " 88150K .......... .......... .......... .......... .......... 5% 51.7M 83s\n", + " 88200K .......... .......... .......... .......... .......... 5% 45.5M 83s\n", + " 88250K .......... .......... .......... .......... .......... 5% 51.4M 83s\n", + " 88300K .......... .......... .......... .......... .......... 5% 48.8M 83s\n", + " 88350K .......... .......... .......... .......... .......... 5% 53.7M 83s\n", + " 88400K .......... .......... .......... .......... .......... 5% 46.1M 83s\n", + " 88450K .......... .......... .......... .......... .......... 5% 55.0M 83s\n", + " 88500K .......... .......... .......... .......... .......... 5% 52.9M 83s\n", + " 88550K .......... .......... .......... .......... .......... 5% 48.4M 83s\n", + " 88600K .......... .......... .......... .......... .......... 5% 44.2M 83s\n", + " 88650K .......... .......... .......... .......... .......... 5% 52.3M 83s\n", + " 88700K .......... .......... .......... .......... .......... 5% 1.10M 84s\n", + " 88750K .......... .......... .......... .......... .......... 5% 14.6M 84s\n", + " 88800K .......... .......... .......... .......... .......... 5% 32.7M 84s\n", + " 88850K .......... .......... .......... .......... .......... 5% 51.6M 84s\n", + " 88900K .......... .......... .......... .......... .......... 5% 52.8M 84s\n", + " 88950K .......... .......... .......... .......... .......... 5% 50.8M 84s\n", + " 89000K .......... .......... .......... .......... .......... 5% 44.8M 84s\n", + " 89050K .......... .......... .......... .......... .......... 5% 52.1M 84s\n", + " 89100K .......... .......... .......... .......... .......... 5% 50.0M 84s\n", + " 89150K .......... .......... .......... .......... .......... 5% 52.4M 84s\n", + " 89200K .......... .......... .......... .......... .......... 5% 43.7M 83s\n", + " 89250K .......... .......... .......... .......... .......... 5% 53.8M 83s\n", + " 89300K .......... .......... .......... .......... .......... 5% 52.8M 83s\n", + " 89350K .......... .......... .......... .......... .......... 5% 52.9M 83s\n", + " 89400K .......... .......... .......... .......... .......... 5% 44.2M 83s\n", + " 89450K .......... .......... .......... .......... .......... 5% 54.5M 83s\n", + " 89500K .......... .......... .......... .......... .......... 5% 54.6M 83s\n", + " 89550K .......... .......... .......... .......... .......... 5% 54.0M 83s\n", + " 89600K .......... .......... .......... .......... .......... 5% 40.5M 83s\n", + " 89650K .......... .......... .......... .......... .......... 5% 51.9M 83s\n", + " 89700K .......... .......... .......... .......... .......... 5% 54.8M 83s\n", + " 89750K .......... .......... .......... .......... .......... 5% 53.0M 83s\n", + " 89800K .......... .......... .......... .......... .......... 5% 44.4M 83s\n", + " 89850K .......... .......... .......... .......... .......... 5% 53.5M 83s\n", + " 89900K .......... .......... .......... .......... .......... 5% 52.0M 83s\n", + " 89950K .......... .......... .......... .......... .......... 5% 53.5M 83s\n", + " 90000K .......... .......... .......... .......... .......... 5% 45.0M 83s\n", + " 90050K .......... .......... .......... .......... .......... 5% 48.8M 83s\n", + " 90100K .......... .......... .......... .......... .......... 5% 53.4M 83s\n", + " 90150K .......... .......... .......... .......... .......... 5% 53.3M 83s\n", + " 90200K .......... .......... .......... .......... .......... 5% 1.08M 84s\n", + " 90250K .......... .......... .......... .......... .......... 5% 15.7M 84s\n", + " 90300K .......... .......... .......... .......... .......... 5% 47.0M 84s\n", + " 90350K .......... .......... .......... .......... .......... 5% 43.3M 83s\n", + " 90400K .......... .......... .......... .......... .......... 5% 44.5M 83s\n", + " 90450K .......... .......... .......... .......... .......... 5% 49.8M 83s\n", + " 90500K .......... .......... .......... .......... .......... 5% 51.0M 83s\n", + " 90550K .......... .......... .......... .......... .......... 5% 49.8M 83s\n", + " 90600K .......... .......... .......... .......... .......... 5% 43.0M 83s\n", + " 90650K .......... .......... .......... .......... .......... 5% 50.1M 83s\n", + " 90700K .......... .......... .......... .......... .......... 5% 50.4M 83s\n", + " 90750K .......... .......... .......... .......... .......... 5% 53.0M 83s\n", + " 90800K .......... .......... .......... .......... .......... 5% 42.9M 83s\n", + " 90850K .......... .......... .......... .......... .......... 5% 52.6M 83s\n", + " 90900K .......... .......... .......... .......... .......... 5% 51.2M 83s\n", + " 90950K .......... .......... .......... .......... .......... 5% 50.7M 83s\n", + " 91000K .......... .......... .......... .......... .......... 5% 46.8M 83s\n", + " 91050K .......... .......... .......... .......... .......... 5% 49.0M 83s\n", + " 91100K .......... .......... .......... .......... .......... 5% 47.8M 83s\n", + " 91150K .......... .......... .......... .......... .......... 5% 50.3M 83s\n", + " 91200K .......... .......... .......... .......... .......... 5% 45.1M 83s\n", + " 91250K .......... .......... .......... .......... .......... 5% 53.1M 83s\n", + " 91300K .......... .......... .......... .......... .......... 5% 51.0M 83s\n", + " 91350K .......... .......... .......... .......... .......... 5% 53.6M 83s\n", + " 91400K .......... .......... .......... .......... .......... 5% 46.2M 83s\n", + " 91450K .......... .......... .......... .......... .......... 5% 53.4M 83s\n", + " 91500K .......... .......... .......... .......... .......... 5% 51.0M 83s\n", + " 91550K .......... .......... .......... .......... .......... 5% 52.1M 83s\n", + " 91600K .......... .......... .......... .......... .......... 5% 46.0M 83s\n", + " 91650K .......... .......... .......... .......... .......... 5% 53.5M 83s\n", + " 91700K .......... .......... .......... .......... .......... 5% 48.2M 83s\n", + " 91750K .......... .......... .......... .......... .......... 5% 1.11M 83s\n", + " 91800K .......... .......... .......... .......... .......... 5% 12.5M 83s\n", + " 91850K .......... .......... .......... .......... .......... 5% 45.9M 83s\n", + " 91900K .......... .......... .......... .......... .......... 5% 52.8M 83s\n", + " 91950K .......... .......... .......... .......... .......... 5% 52.1M 83s\n", + " 92000K .......... .......... .......... .......... .......... 5% 44.9M 83s\n", + " 92050K .......... .......... .......... .......... .......... 5% 50.9M 83s\n", + " 92100K .......... .......... .......... .......... .......... 5% 52.7M 83s\n", + " 92150K .......... .......... .......... .......... .......... 5% 53.7M 83s\n", + " 92200K .......... .......... .......... .......... .......... 5% 45.4M 83s\n", + " 92250K .......... .......... .......... .......... .......... 5% 53.2M 83s\n", + " 92300K .......... .......... .......... .......... .......... 5% 53.9M 83s\n", + " 92350K .......... .......... .......... .......... .......... 5% 53.2M 83s\n", + " 92400K .......... .......... .......... .......... .......... 5% 44.1M 83s\n", + " 92450K .......... .......... .......... .......... .......... 5% 54.1M 83s\n", + " 92500K .......... .......... .......... .......... .......... 5% 54.3M 83s\n", + " 92550K .......... .......... .......... .......... .......... 5% 52.2M 83s\n", + " 92600K .......... .......... .......... .......... .......... 5% 46.7M 83s\n", + " 92650K .......... .......... .......... .......... .......... 5% 53.5M 83s\n", + " 92700K .......... .......... .......... .......... .......... 5% 52.3M 83s\n", + " 92750K .......... .......... .......... .......... .......... 5% 51.6M 83s\n", + " 92800K .......... .......... .......... .......... .......... 5% 46.0M 83s\n", + " 92850K .......... .......... .......... .......... .......... 5% 51.3M 83s\n", + " 92900K .......... .......... .......... .......... .......... 5% 54.4M 83s\n", + " 92950K .......... .......... .......... .......... .......... 5% 53.4M 83s\n", + " 93000K .......... .......... .......... .......... .......... 5% 47.3M 83s\n", + " 93050K .......... .......... .......... .......... .......... 5% 51.9M 82s\n", + " 93100K .......... .......... .......... .......... .......... 5% 52.9M 82s\n", + " 93150K .......... .......... .......... .......... .......... 5% 54.4M 82s\n", + " 93200K .......... .......... .......... .......... .......... 5% 46.7M 82s\n", + " 93250K .......... .......... .......... .......... .......... 5% 1.09M 83s\n", + " 93300K .......... .......... .......... .......... .......... 5% 13.2M 83s\n", + " 93350K .......... .......... .......... .......... .......... 5% 37.6M 83s\n", + " 93400K .......... .......... .......... .......... .......... 5% 44.7M 83s\n", + " 93450K .......... .......... .......... .......... .......... 5% 53.2M 83s\n", + " 93500K .......... .......... .......... .......... .......... 5% 52.5M 83s\n", + " 93550K .......... .......... .......... .......... .......... 5% 52.5M 83s\n", + " 93600K .......... .......... .......... .......... .......... 5% 45.4M 83s\n", + " 93650K .......... .......... .......... .......... .......... 5% 52.8M 83s\n", + " 93700K .......... .......... .......... .......... .......... 5% 52.4M 83s\n", + " 93750K .......... .......... .......... .......... .......... 5% 50.5M 83s\n", + " 93800K .......... .......... .......... .......... .......... 5% 47.1M 83s\n", + " 93850K .......... .......... .......... .......... .......... 5% 54.5M 83s\n", + " 93900K .......... .......... .......... .......... .......... 5% 53.9M 83s\n", + " 93950K .......... .......... .......... .......... .......... 5% 51.7M 83s\n", + " 94000K .......... .......... .......... .......... .......... 5% 45.2M 83s\n", + " 94050K .......... .......... .......... .......... .......... 6% 51.8M 83s\n", + " 94100K .......... .......... .......... .......... .......... 6% 53.7M 83s\n", + " 94150K .......... .......... .......... .......... .......... 6% 52.8M 83s\n", + " 94200K .......... .......... .......... .......... .......... 6% 45.6M 82s\n", + " 94250K .......... .......... .......... .......... .......... 6% 53.8M 82s\n", + " 94300K .......... .......... .......... .......... .......... 6% 53.1M 82s\n", + " 94350K .......... .......... .......... .......... .......... 6% 54.0M 82s\n", + " 94400K .......... .......... .......... .......... .......... 6% 45.6M 82s\n", + " 94450K .......... .......... .......... .......... .......... 6% 52.9M 82s\n", + " 94500K .......... .......... .......... .......... .......... 6% 54.8M 82s\n", + " 94550K .......... .......... .......... .......... .......... 6% 54.4M 82s\n", + " 94600K .......... .......... .......... .......... .......... 6% 45.0M 82s\n", + " 94650K .......... .......... .......... .......... .......... 6% 55.1M 82s\n", + " 94700K .......... .......... .......... .......... .......... 6% 53.7M 82s\n", + " 94750K .......... .......... .......... .......... .......... 6% 54.9M 82s\n", + " 94800K .......... .......... .......... .......... .......... 6% 1.08M 83s\n", + " 94850K .......... .......... .......... .......... .......... 6% 14.8M 83s\n", + " 94900K .......... .......... .......... .......... .......... 6% 32.6M 83s\n", + " 94950K .......... .......... .......... .......... .......... 6% 53.3M 83s\n", + " 95000K .......... .......... .......... .......... .......... 6% 45.9M 83s\n", + " 95050K .......... .......... .......... .......... .......... 6% 53.0M 83s\n", + " 95100K .......... .......... .......... .......... .......... 6% 54.8M 83s\n", + " 95150K .......... .......... .......... .......... .......... 6% 54.7M 83s\n", + " 95200K .......... .......... .......... .......... .......... 6% 46.1M 83s\n", + " 95250K .......... .......... .......... .......... .......... 6% 53.7M 83s\n", + " 95300K .......... .......... .......... .......... .......... 6% 52.7M 83s\n", + " 95350K .......... .......... .......... .......... .......... 6% 54.0M 82s\n", + " 95400K .......... .......... .......... .......... .......... 6% 47.8M 82s\n", + " 95450K .......... .......... .......... .......... .......... 6% 54.8M 82s\n", + " 95500K .......... .......... .......... .......... .......... 6% 51.4M 82s\n", + " 95550K .......... .......... .......... .......... .......... 6% 54.4M 82s\n", + " 95600K .......... .......... .......... .......... .......... 6% 46.1M 82s\n", + " 95650K .......... .......... .......... .......... .......... 6% 51.8M 82s\n", + " 95700K .......... .......... .......... .......... .......... 6% 33.8M 82s\n", + " 95750K .......... .......... .......... .......... .......... 6% 55.0M 82s\n", + " 95800K .......... .......... .......... .......... .......... 6% 48.2M 82s\n", + " 95850K .......... .......... .......... .......... .......... 6% 52.8M 82s\n", + " 95900K .......... .......... .......... .......... .......... 6% 52.9M 82s\n", + " 95950K .......... .......... .......... .......... .......... 6% 53.8M 82s\n", + " 96000K .......... .......... .......... .......... .......... 6% 45.1M 82s\n", + " 96050K .......... .......... .......... .......... .......... 6% 53.8M 82s\n", + " 96100K .......... .......... .......... .......... .......... 6% 53.2M 82s\n", + " 96150K .......... .......... .......... .......... .......... 6% 55.2M 82s\n", + " 96200K .......... .......... .......... .......... .......... 6% 47.4M 82s\n", + " 96250K .......... .......... .......... .......... .......... 6% 55.1M 82s\n", + " 96300K .......... .......... .......... .......... .......... 6% 1.08M 83s\n", + " 96350K .......... .......... .......... .......... .......... 6% 17.7M 83s\n", + " 96400K .......... .......... .......... .......... .......... 6% 26.4M 83s\n", + " 96450K .......... .......... .......... .......... .......... 6% 51.9M 83s\n", + " 96500K .......... .......... .......... .......... .......... 6% 51.9M 82s\n", + " 96550K .......... .......... .......... .......... .......... 6% 48.1M 82s\n", + " 96600K .......... .......... .......... .......... .......... 6% 45.3M 82s\n", + " 96650K .......... .......... .......... .......... .......... 6% 50.0M 82s\n", + " 96700K .......... .......... .......... .......... .......... 6% 42.5M 82s\n", + " 96750K .......... .......... .......... .......... .......... 6% 44.7M 82s\n", + " 96800K .......... .......... .......... .......... .......... 6% 41.4M 82s\n", + " 96850K .......... .......... .......... .......... .......... 6% 51.0M 82s\n", + " 96900K .......... .......... .......... .......... .......... 6% 49.2M 82s\n", + " 96950K .......... .......... .......... .......... .......... 6% 49.5M 82s\n", + " 97000K .......... .......... .......... .......... .......... 6% 44.1M 82s\n", + " 97050K .......... .......... .......... .......... .......... 6% 51.9M 82s\n", + " 97100K .......... .......... .......... .......... .......... 6% 50.9M 82s\n", + " 97150K .......... .......... .......... .......... .......... 6% 50.4M 82s\n", + " 97200K .......... .......... .......... .......... .......... 6% 44.1M 82s\n", + " 97250K .......... .......... .......... .......... .......... 6% 51.4M 82s\n", + " 97300K .......... .......... .......... .......... .......... 6% 49.3M 82s\n", + " 97350K .......... .......... .......... .......... .......... 6% 50.6M 82s\n", + " 97400K .......... .......... .......... .......... .......... 6% 44.7M 82s\n", + " 97450K .......... .......... .......... .......... .......... 6% 50.6M 82s\n", + " 97500K .......... .......... .......... .......... .......... 6% 49.6M 82s\n", + " 97550K .......... .......... .......... .......... .......... 6% 50.2M 82s\n", + " 97600K .......... .......... .......... .......... .......... 6% 44.1M 82s\n", + " 97650K .......... .......... .......... .......... .......... 6% 49.2M 82s\n", + " 97700K .......... .......... .......... .......... .......... 6% 51.5M 82s\n", + " 97750K .......... .......... .......... .......... .......... 6% 50.3M 82s\n", + " 97800K .......... .......... .......... .......... .......... 6% 45.0M 82s\n", + " 97850K .......... .......... .......... .......... .......... 6% 1.12M 82s\n", + " 97900K .......... .......... .......... .......... .......... 6% 18.0M 82s\n", + " 97950K .......... .......... .......... .......... .......... 6% 25.2M 82s\n", + " 98000K .......... .......... .......... .......... .......... 6% 43.6M 82s\n", + " 98050K .......... .......... .......... .......... .......... 6% 48.1M 82s\n", + " 98100K .......... .......... .......... .......... .......... 6% 51.3M 82s\n", + " 98150K .......... .......... .......... .......... .......... 6% 50.9M 82s\n", + " 98200K .......... .......... .......... .......... .......... 6% 44.6M 82s\n", + " 98250K .......... .......... .......... .......... .......... 6% 48.8M 82s\n", + " 98300K .......... .......... .......... .......... .......... 6% 51.1M 82s\n", + " 98350K .......... .......... .......... .......... .......... 6% 51.9M 82s\n", + " 98400K .......... .......... .......... .......... .......... 6% 44.7M 82s\n", + " 98450K .......... .......... .......... .......... .......... 6% 51.2M 82s\n", + " 98500K .......... .......... .......... .......... .......... 6% 51.4M 82s\n", + " 98550K .......... .......... .......... .......... .......... 6% 52.5M 82s\n", + " 98600K .......... .......... .......... .......... .......... 6% 43.7M 82s\n", + " 98650K .......... .......... .......... .......... .......... 6% 50.8M 82s\n", + " 98700K .......... .......... .......... .......... .......... 6% 51.5M 82s\n", + " 98750K .......... .......... .......... .......... .......... 6% 50.1M 82s\n", + " 98800K .......... .......... .......... .......... .......... 6% 44.8M 82s\n", + " 98850K .......... .......... .......... .......... .......... 6% 51.1M 82s\n", + " 98900K .......... .......... .......... .......... .......... 6% 45.0M 82s\n", + " 98950K .......... .......... .......... .......... .......... 6% 51.1M 82s\n", + " 99000K .......... .......... .......... .......... .......... 6% 43.6M 82s\n", + " 99050K .......... .......... .......... .......... .......... 6% 50.2M 82s\n", + " 99100K .......... .......... .......... .......... .......... 6% 51.7M 82s\n", + " 99150K .......... .......... .......... .......... .......... 6% 52.1M 82s\n", + " 99200K .......... .......... .......... .......... .......... 6% 43.5M 82s\n", + " 99250K .......... .......... .......... .......... .......... 6% 51.2M 82s\n", + " 99300K .......... .......... .......... .......... .......... 6% 51.2M 82s\n", + " 99350K .......... .......... .......... .......... .......... 6% 1.12M 82s\n", + " 99400K .......... .......... .......... .......... .......... 6% 17.4M 82s\n", + " 99450K .......... .......... .......... .......... .......... 6% 22.4M 82s\n", + " 99500K .......... .......... .......... .......... .......... 6% 54.1M 82s\n", + " 99550K .......... .......... .......... .......... .......... 6% 52.2M 82s\n", + " 99600K .......... .......... .......... .......... .......... 6% 43.2M 82s\n", + " 99650K .......... .......... .......... .......... .......... 6% 54.4M 82s\n", + " 99700K .......... .......... .......... .......... .......... 6% 54.1M 82s\n", + " 99750K .......... .......... .......... .......... .......... 6% 50.5M 82s\n", + " 99800K .......... .......... .......... .......... .......... 6% 43.4M 82s\n", + " 99850K .......... .......... .......... .......... .......... 6% 53.9M 82s\n", + " 99900K .......... .......... .......... .......... .......... 6% 53.5M 82s\n", + " 99950K .......... .......... .......... .......... .......... 6% 50.8M 82s\n", + "100000K .......... .......... .......... .......... .......... 6% 44.7M 82s\n", + "100050K .......... .......... .......... .......... .......... 6% 53.5M 82s\n", + "100100K .......... .......... .......... .......... .......... 6% 53.0M 82s\n", + "100150K .......... .......... .......... .......... .......... 6% 53.1M 82s\n", + "100200K .......... .......... .......... .......... .......... 6% 45.1M 82s\n", + "100250K .......... .......... .......... .......... .......... 6% 52.0M 82s\n", + "100300K .......... .......... .......... .......... .......... 6% 54.5M 82s\n", + "100350K .......... .......... .......... .......... .......... 6% 54.9M 82s\n", + "100400K .......... .......... .......... .......... .......... 6% 45.3M 82s\n", + "100450K .......... .......... .......... .......... .......... 6% 52.7M 82s\n", + "100500K .......... .......... .......... .......... .......... 6% 51.8M 81s\n", + "100550K .......... .......... .......... .......... .......... 6% 52.9M 81s\n", + "100600K .......... .......... .......... .......... .......... 6% 45.9M 81s\n", + "100650K .......... .......... .......... .......... .......... 6% 52.7M 81s\n", + "100700K .......... .......... .......... .......... .......... 6% 51.6M 81s\n", + "100750K .......... .......... .......... .......... .......... 6% 53.8M 81s\n", + "100800K .......... .......... .......... .......... .......... 6% 45.4M 81s\n", + "100850K .......... .......... .......... .......... .......... 6% 54.0M 81s\n", + "100900K .......... .......... .......... .......... .......... 6% 1.09M 82s\n", + "100950K .......... .......... .......... .......... .......... 6% 19.8M 82s\n", + "101000K .......... .......... .......... .......... .......... 6% 21.3M 82s\n", + "101050K .......... .......... .......... .......... .......... 6% 54.0M 82s\n", + "101100K .......... .......... .......... .......... .......... 6% 53.1M 82s\n", + "101150K .......... .......... .......... .......... .......... 6% 53.9M 82s\n", + "101200K .......... .......... .......... .......... .......... 6% 44.3M 82s\n", + "101250K .......... .......... .......... .......... .......... 6% 53.0M 82s\n", + "101300K .......... .......... .......... .......... .......... 6% 50.4M 82s\n", + "101350K .......... .......... .......... .......... .......... 6% 53.0M 82s\n", + "101400K .......... .......... .......... .......... .......... 6% 47.3M 82s\n", + "101450K .......... .......... .......... .......... .......... 6% 53.5M 82s\n", + "101500K .......... .......... .......... .......... .......... 6% 51.1M 82s\n", + "101550K .......... .......... .......... .......... .......... 6% 53.7M 82s\n", + "101600K .......... .......... .......... .......... .......... 6% 46.5M 82s\n", + "101650K .......... .......... .......... .......... .......... 6% 54.8M 81s\n", + "101700K .......... .......... .......... .......... .......... 6% 55.1M 81s\n", + "101750K .......... .......... .......... .......... .......... 6% 47.4M 81s\n", + "101800K .......... .......... .......... .......... .......... 6% 46.7M 81s\n", + "101850K .......... .......... .......... .......... .......... 6% 52.2M 81s\n", + "101900K .......... .......... .......... .......... .......... 6% 54.8M 81s\n", + "101950K .......... .......... .......... .......... .......... 6% 52.3M 81s\n", + "102000K .......... .......... .......... .......... .......... 6% 46.5M 81s\n", + "102050K .......... .......... .......... .......... .......... 6% 54.8M 81s\n", + "102100K .......... .......... .......... .......... .......... 6% 54.0M 81s\n", + "102150K .......... .......... .......... .......... .......... 6% 52.2M 81s\n", + "102200K .......... .......... .......... .......... .......... 6% 47.4M 81s\n", + "102250K .......... .......... .......... .......... .......... 6% 55.4M 81s\n", + "102300K .......... .......... .......... .......... .......... 6% 55.5M 81s\n", + "102350K .......... .......... .......... .......... .......... 6% 54.8M 81s\n", + "102400K .......... .......... .......... .......... .......... 6% 1.07M 82s\n", + "102450K .......... .......... .......... .......... .......... 6% 22.0M 82s\n", + "102500K .......... .......... .......... .......... .......... 6% 22.6M 82s\n", + "102550K .......... .......... .......... .......... .......... 6% 49.2M 82s\n", + "102600K .......... .......... .......... .......... .......... 6% 44.9M 82s\n", + "102650K .......... .......... .......... .......... .......... 6% 53.1M 82s\n", + "102700K .......... .......... .......... .......... .......... 6% 53.3M 82s\n", + "102750K .......... .......... .......... .......... .......... 6% 51.6M 82s\n", + "102800K .......... .......... .......... .......... .......... 6% 45.1M 82s\n", + "102850K .......... .......... .......... .......... .......... 6% 51.9M 81s\n", + "102900K .......... .......... .......... .......... .......... 6% 53.2M 81s\n", + "102950K .......... .......... .......... .......... .......... 6% 52.6M 81s\n", + "103000K .......... .......... .......... .......... .......... 6% 43.3M 81s\n", + "103050K .......... .......... .......... .......... .......... 6% 45.5M 81s\n", + "103100K .......... .......... .......... .......... .......... 6% 51.3M 81s\n", + "103150K .......... .......... .......... .......... .......... 6% 52.4M 81s\n", + "103200K .......... .......... .......... .......... .......... 6% 44.2M 81s\n", + "103250K .......... .......... .......... .......... .......... 6% 50.1M 81s\n", + "103300K .......... .......... .......... .......... .......... 6% 53.7M 81s\n", + "103350K .......... .......... .......... .......... .......... 6% 53.3M 81s\n", + "103400K .......... .......... .......... .......... .......... 6% 40.5M 81s\n", + "103450K .......... .......... .......... .......... .......... 6% 49.9M 81s\n", + "103500K .......... .......... .......... .......... .......... 6% 53.2M 81s\n", + "103550K .......... .......... .......... .......... .......... 6% 54.5M 81s\n", + "103600K .......... .......... .......... .......... .......... 6% 46.3M 81s\n", + "103650K .......... .......... .......... .......... .......... 6% 53.1M 81s\n", + "103700K .......... .......... .......... .......... .......... 6% 51.2M 81s\n", + "103750K .......... .......... .......... .......... .......... 6% 52.2M 81s\n", + "103800K .......... .......... .......... .......... .......... 6% 45.7M 81s\n", + "103850K .......... .......... .......... .......... .......... 6% 45.9M 81s\n", + "103900K .......... .......... .......... .......... .......... 6% 1.10M 82s\n", + "103950K .......... .......... .......... .......... .......... 6% 48.6M 81s\n", + "104000K .......... .......... .......... .......... .......... 6% 19.8M 81s\n", + "104050K .......... .......... .......... .......... .......... 6% 22.5M 81s\n", + "104100K .......... .......... .......... .......... .......... 6% 46.6M 81s\n", + "104150K .......... .......... .......... .......... .......... 6% 50.2M 81s\n", + "104200K .......... .......... .......... .......... .......... 6% 48.2M 81s\n", + "104250K .......... .......... .......... .......... .......... 6% 55.4M 81s\n", + "104300K .......... .......... .......... .......... .......... 6% 54.3M 81s\n", + "104350K .......... .......... .......... .......... .......... 6% 44.8M 81s\n", + "104400K .......... .......... .......... .......... .......... 6% 43.8M 81s\n", + "104450K .......... .......... .......... .......... .......... 6% 52.9M 81s\n", + "104500K .......... .......... .......... .......... .......... 6% 52.6M 81s\n", + "104550K .......... .......... .......... .......... .......... 6% 51.4M 81s\n", + "104600K .......... .......... .......... .......... .......... 6% 42.1M 81s\n", + "104650K .......... .......... .......... .......... .......... 6% 47.9M 81s\n", + "104700K .......... .......... .......... .......... .......... 6% 53.1M 81s\n", + "104750K .......... .......... .......... .......... .......... 6% 51.1M 81s\n", + "104800K .......... .......... .......... .......... .......... 6% 44.2M 81s\n", + "104850K .......... .......... .......... .......... .......... 6% 46.3M 81s\n", + "104900K .......... .......... .......... .......... .......... 6% 52.8M 81s\n", + "104950K .......... .......... .......... .......... .......... 6% 50.0M 81s\n", + "105000K .......... .......... .......... .......... .......... 6% 46.4M 81s\n", + "105050K .......... .......... .......... .......... .......... 6% 51.5M 81s\n", + "105100K .......... .......... .......... .......... .......... 6% 54.0M 81s\n", + "105150K .......... .......... .......... .......... .......... 6% 48.4M 81s\n", + "105200K .......... .......... .......... .......... .......... 6% 43.7M 81s\n", + "105250K .......... .......... .......... .......... .......... 6% 54.0M 81s\n", + "105300K .......... .......... .......... .......... .......... 6% 52.3M 81s\n", + "105350K .......... .......... .......... .......... .......... 6% 51.2M 81s\n", + "105400K .......... .......... .......... .......... .......... 6% 45.9M 81s\n", + "105450K .......... .......... .......... .......... .......... 6% 1.11M 81s\n", + "105500K .......... .......... .......... .......... .......... 6% 25.4M 81s\n", + "105550K .......... .......... .......... .......... .......... 6% 29.5M 81s\n", + "105600K .......... .......... .......... .......... .......... 6% 20.1M 81s\n", + "105650K .......... .......... .......... .......... .......... 6% 47.4M 81s\n", + "105700K .......... .......... .......... .......... .......... 6% 50.4M 81s\n", + "105750K .......... .......... .......... .......... .......... 6% 50.6M 81s\n", + "105800K .......... .......... .......... .......... .......... 6% 43.1M 81s\n", + "105850K .......... .......... .......... .......... .......... 6% 48.4M 81s\n", + "105900K .......... .......... .......... .......... .......... 6% 48.8M 81s\n", + "105950K .......... .......... .......... .......... .......... 6% 48.7M 81s\n", + "106000K .......... .......... .......... .......... .......... 6% 40.9M 81s\n", + "106050K .......... .......... .......... .......... .......... 6% 48.2M 81s\n", + "106100K .......... .......... .......... .......... .......... 6% 53.0M 81s\n", + "106150K .......... .......... .......... .......... .......... 6% 52.8M 81s\n", + "106200K .......... .......... .......... .......... .......... 6% 44.0M 81s\n", + "106250K .......... .......... .......... .......... .......... 6% 51.2M 81s\n", + "106300K .......... .......... .......... .......... .......... 6% 53.3M 81s\n", + "106350K .......... .......... .......... .......... .......... 6% 53.4M 81s\n", + "106400K .......... .......... .......... .......... .......... 6% 44.4M 81s\n", + "106450K .......... .......... .......... .......... .......... 6% 48.4M 81s\n", + "106500K .......... .......... .......... .......... .......... 6% 53.4M 81s\n", + "106550K .......... .......... .......... .......... .......... 6% 53.6M 81s\n", + "106600K .......... .......... .......... .......... .......... 6% 35.7M 81s\n", + "106650K .......... .......... .......... .......... .......... 6% 42.4M 81s\n", + "106700K .......... .......... .......... .......... .......... 6% 48.3M 81s\n", + "106750K .......... .......... .......... .......... .......... 6% 52.7M 81s\n", + "106800K .......... .......... .......... .......... .......... 6% 44.2M 81s\n", + "106850K .......... .......... .......... .......... .......... 6% 50.3M 81s\n", + "106900K .......... .......... .......... .......... .......... 6% 49.1M 81s\n", + "106950K .......... .......... .......... .......... .......... 6% 51.5M 81s\n", + "107000K .......... .......... .......... .......... .......... 6% 1.12M 81s\n", + "107050K .......... .......... .......... .......... .......... 6% 22.0M 81s\n", + "107100K .......... .......... .......... .......... .......... 6% 23.4M 81s\n", + "107150K .......... .......... .......... .......... .......... 6% 50.4M 81s\n", + "107200K .......... .......... .......... .......... .......... 6% 42.9M 81s\n", + "107250K .......... .......... .......... .......... .......... 6% 51.8M 81s\n", + "107300K .......... .......... .......... .......... .......... 6% 50.9M 81s\n", + "107350K .......... .......... .......... .......... .......... 6% 50.9M 81s\n", + "107400K .......... .......... .......... .......... .......... 6% 39.4M 81s\n", + "107450K .......... .......... .......... .......... .......... 6% 55.0M 81s\n", + "107500K .......... .......... .......... .......... .......... 6% 46.2M 81s\n", + "107550K .......... .......... .......... .......... .......... 6% 47.8M 81s\n", + "107600K .......... .......... .......... .......... .......... 6% 44.5M 81s\n", + "107650K .......... .......... .......... .......... .......... 6% 52.3M 81s\n", + "107700K .......... .......... .......... .......... .......... 6% 53.0M 81s\n", + "107750K .......... .......... .......... .......... .......... 6% 50.8M 81s\n", + "107800K .......... .......... .......... .......... .......... 6% 43.4M 81s\n", + "107850K .......... .......... .......... .......... .......... 6% 54.0M 81s\n", + "107900K .......... .......... .......... .......... .......... 6% 50.0M 81s\n", + "107950K .......... .......... .......... .......... .......... 6% 47.5M 81s\n", + "108000K .......... .......... .......... .......... .......... 6% 43.4M 81s\n", + "108050K .......... .......... .......... .......... .......... 6% 52.8M 81s\n", + "108100K .......... .......... .......... .......... .......... 6% 51.0M 81s\n", + "108150K .......... .......... .......... .......... .......... 6% 45.5M 80s\n", + "108200K .......... .......... .......... .......... .......... 6% 44.4M 80s\n", + "108250K .......... .......... .......... .......... .......... 6% 50.9M 80s\n", + "108300K .......... .......... .......... .......... .......... 6% 51.1M 80s\n", + "108350K .......... .......... .......... .......... .......... 6% 51.6M 80s\n", + "108400K .......... .......... .......... .......... .......... 6% 43.9M 80s\n", + "108450K .......... .......... .......... .......... .......... 6% 52.7M 80s\n", + "108500K .......... .......... .......... .......... .......... 6% 1.12M 81s\n", + "108550K .......... .......... .......... .......... .......... 6% 17.5M 81s\n", + "108600K .......... .......... .......... .......... .......... 6% 22.6M 81s\n", + "108650K .......... .......... .......... .......... .......... 6% 49.6M 81s\n", + "108700K .......... .......... .......... .......... .......... 6% 43.6M 81s\n", + "108750K .......... .......... .......... .......... .......... 6% 53.0M 81s\n", + "108800K .......... .......... .......... .......... .......... 6% 44.4M 81s\n", + "108850K .......... .......... .......... .......... .......... 6% 50.3M 81s\n", + "108900K .......... .......... .......... .......... .......... 6% 49.0M 81s\n", + "108950K .......... .......... .......... .......... .......... 6% 50.1M 81s\n", + "109000K .......... .......... .......... .......... .......... 6% 45.4M 81s\n", + "109050K .......... .......... .......... .......... .......... 6% 50.2M 81s\n", + "109100K .......... .......... .......... .......... .......... 6% 49.1M 81s\n", + "109150K .......... .......... .......... .......... .......... 6% 52.9M 81s\n", + "109200K .......... .......... .......... .......... .......... 6% 44.7M 81s\n", + "109250K .......... .......... .......... .......... .......... 6% 49.9M 81s\n", + "109300K .......... .......... .......... .......... .......... 6% 51.1M 80s\n", + "109350K .......... .......... .......... .......... .......... 6% 52.4M 80s\n", + "109400K .......... .......... .......... .......... .......... 6% 43.6M 80s\n", + "109450K .......... .......... .......... .......... .......... 6% 51.4M 80s\n", + "109500K .......... .......... .......... .......... .......... 6% 48.2M 80s\n", + "109550K .......... .......... .......... .......... .......... 6% 46.4M 80s\n", + "109600K .......... .......... .......... .......... .......... 6% 43.6M 80s\n", + "109650K .......... .......... .......... .......... .......... 6% 45.9M 80s\n", + "109700K .......... .......... .......... .......... .......... 7% 50.4M 80s\n", + "109750K .......... .......... .......... .......... .......... 7% 52.8M 80s\n", + "109800K .......... .......... .......... .......... .......... 7% 44.4M 80s\n", + "109850K .......... .......... .......... .......... .......... 7% 51.5M 80s\n", + "109900K .......... .......... .......... .......... .......... 7% 51.4M 80s\n", + "109950K .......... .......... .......... .......... .......... 7% 53.9M 80s\n", + "110000K .......... .......... .......... .......... .......... 7% 45.7M 80s\n", + "110050K .......... .......... .......... .......... .......... 7% 1.09M 81s\n", + "110100K .......... .......... .......... .......... .......... 7% 28.0M 81s\n", + "110150K .......... .......... .......... .......... .......... 7% 25.4M 81s\n", + "110200K .......... .......... .......... .......... .......... 7% 41.2M 81s\n", + "110250K .......... .......... .......... .......... .......... 7% 53.1M 81s\n", + "110300K .......... .......... .......... .......... .......... 7% 48.1M 81s\n", + "110350K .......... .......... .......... .......... .......... 7% 53.8M 81s\n", + "110400K .......... .......... .......... .......... .......... 7% 43.1M 81s\n", + "110450K .......... .......... .......... .......... .......... 7% 49.7M 81s\n", + "110500K .......... .......... .......... .......... .......... 7% 50.8M 80s\n", + "110550K .......... .......... .......... .......... .......... 7% 49.8M 80s\n", + "110600K .......... .......... .......... .......... .......... 7% 42.8M 80s\n", + "110650K .......... .......... .......... .......... .......... 7% 48.1M 80s\n", + "110700K .......... .......... .......... .......... .......... 7% 53.4M 80s\n", + "110750K .......... .......... .......... .......... .......... 7% 51.9M 80s\n", + "110800K .......... .......... .......... .......... .......... 7% 44.8M 80s\n", + "110850K .......... .......... .......... .......... .......... 7% 52.2M 80s\n", + "110900K .......... .......... .......... .......... .......... 7% 54.4M 80s\n", + "110950K .......... .......... .......... .......... .......... 7% 53.8M 80s\n", + "111000K .......... .......... .......... .......... .......... 7% 42.3M 80s\n", + "111050K .......... .......... .......... .......... .......... 7% 51.4M 80s\n", + "111100K .......... .......... .......... .......... .......... 7% 49.9M 80s\n", + "111150K .......... .......... .......... .......... .......... 7% 51.0M 80s\n", + "111200K .......... .......... .......... .......... .......... 7% 39.2M 80s\n", + "111250K .......... .......... .......... .......... .......... 7% 46.2M 80s\n", + "111300K .......... .......... .......... .......... .......... 7% 54.3M 80s\n", + "111350K .......... .......... .......... .......... .......... 7% 54.3M 80s\n", + "111400K .......... .......... .......... .......... .......... 7% 45.3M 80s\n", + "111450K .......... .......... .......... .......... .......... 7% 52.7M 80s\n", + "111500K .......... .......... .......... .......... .......... 7% 54.8M 80s\n", + "111550K .......... .......... .......... .......... .......... 7% 1.11M 80s\n", + "111600K .......... .......... .......... .......... .......... 7% 17.5M 80s\n", + "111650K .......... .......... .......... .......... .......... 7% 26.7M 80s\n", + "111700K .......... .......... .......... .......... .......... 7% 31.3M 80s\n", + "111750K .......... .......... .......... .......... .......... 7% 52.1M 80s\n", + "111800K .......... .......... .......... .......... .......... 7% 45.2M 80s\n", + "111850K .......... .......... .......... .......... .......... 7% 51.2M 80s\n", + "111900K .......... .......... .......... .......... .......... 7% 49.7M 80s\n", + "111950K .......... .......... .......... .......... .......... 7% 52.2M 80s\n", + "112000K .......... .......... .......... .......... .......... 7% 44.1M 80s\n", + "112050K .......... .......... .......... .......... .......... 7% 51.4M 80s\n", + "112100K .......... .......... .......... .......... .......... 7% 50.2M 80s\n", + "112150K .......... .......... .......... .......... .......... 7% 52.7M 80s\n", + "112200K .......... .......... .......... .......... .......... 7% 47.3M 80s\n", + "112250K .......... .......... .......... .......... .......... 7% 52.7M 80s\n", + "112300K .......... .......... .......... .......... .......... 7% 53.9M 80s\n", + "112350K .......... .......... .......... .......... .......... 7% 44.0M 80s\n", + "112400K .......... .......... .......... .......... .......... 7% 46.2M 80s\n", + "112450K .......... .......... .......... .......... .......... 7% 53.5M 80s\n", + "112500K .......... .......... .......... .......... .......... 7% 51.4M 80s\n", + "112550K .......... .......... .......... .......... .......... 7% 45.0M 80s\n", + "112600K .......... .......... .......... .......... .......... 7% 35.6M 80s\n", + "112650K .......... .......... .......... .......... .......... 7% 53.0M 80s\n", + "112700K .......... .......... .......... .......... .......... 7% 52.0M 80s\n", + "112750K .......... .......... .......... .......... .......... 7% 53.7M 80s\n", + "112800K .......... .......... .......... .......... .......... 7% 47.6M 80s\n", + "112850K .......... .......... .......... .......... .......... 7% 52.9M 80s\n", + "112900K .......... .......... .......... .......... .......... 7% 54.8M 80s\n", + "112950K .......... .......... .......... .......... .......... 7% 54.1M 80s\n", + "113000K .......... .......... .......... .......... .......... 7% 48.3M 80s\n", + "113050K .......... .......... .......... .......... .......... 7% 55.7M 80s\n", + "113100K .......... .......... .......... .......... .......... 7% 1.11M 80s\n", + "113150K .......... .......... .......... .......... .......... 7% 17.0M 80s\n", + "113200K .......... .......... .......... .......... .......... 7% 20.9M 80s\n", + "113250K .......... .......... .......... .......... .......... 7% 52.0M 80s\n", + "113300K .......... .......... .......... .......... .......... 7% 51.9M 80s\n", + "113350K .......... .......... .......... .......... .......... 7% 53.4M 80s\n", + "113400K .......... .......... .......... .......... .......... 7% 46.4M 80s\n", + "113450K .......... .......... .......... .......... .......... 7% 49.7M 80s\n", + "113500K .......... .......... .......... .......... .......... 7% 53.6M 80s\n", + "113550K .......... .......... .......... .......... .......... 7% 54.4M 80s\n", + "113600K .......... .......... .......... .......... .......... 7% 45.5M 80s\n", + "113650K .......... .......... .......... .......... .......... 7% 49.7M 80s\n", + "113700K .......... .......... .......... .......... .......... 7% 53.8M 80s\n", + "113750K .......... .......... .......... .......... .......... 7% 54.2M 80s\n", + "113800K .......... .......... .......... .......... .......... 7% 47.6M 80s\n", + "113850K .......... .......... .......... .......... .......... 7% 52.4M 80s\n", + "113900K .......... .......... .......... .......... .......... 7% 54.1M 80s\n", + "113950K .......... .......... .......... .......... .......... 7% 54.6M 80s\n", + "114000K .......... .......... .......... .......... .......... 7% 38.9M 80s\n", + "114050K .......... .......... .......... .......... .......... 7% 50.4M 80s\n", + "114100K .......... .......... .......... .......... .......... 7% 54.0M 80s\n", + "114150K .......... .......... .......... .......... .......... 7% 54.3M 80s\n", + "114200K .......... .......... .......... .......... .......... 7% 47.8M 80s\n", + "114250K .......... .......... .......... .......... .......... 7% 52.1M 80s\n", + "114300K .......... .......... .......... .......... .......... 7% 53.3M 80s\n", + "114350K .......... .......... .......... .......... .......... 7% 54.9M 80s\n", + "114400K .......... .......... .......... .......... .......... 7% 45.4M 80s\n", + "114450K .......... .......... .......... .......... .......... 7% 53.9M 80s\n", + "114500K .......... .......... .......... .......... .......... 7% 53.5M 80s\n", + "114550K .......... .......... .......... .......... .......... 7% 54.1M 80s\n", + "114600K .......... .......... .......... .......... .......... 7% 1.08M 80s\n", + "114650K .......... .......... .......... .......... .......... 7% 21.3M 80s\n", + "114700K .......... .......... .......... .......... .......... 7% 32.3M 80s\n", + "114750K .......... .......... .......... .......... .......... 7% 31.4M 80s\n", + "114800K .......... .......... .......... .......... .......... 7% 39.4M 80s\n", + "114850K .......... .......... .......... .......... .......... 7% 54.9M 80s\n", + "114900K .......... .......... .......... .......... .......... 7% 53.2M 80s\n", + "114950K .......... .......... .......... .......... .......... 7% 49.8M 80s\n", + "115000K .......... .......... .......... .......... .......... 7% 40.7M 80s\n", + "115050K .......... .......... .......... .......... .......... 7% 53.0M 80s\n", + "115100K .......... .......... .......... .......... .......... 7% 53.1M 80s\n", + "115150K .......... .......... .......... .......... .......... 7% 43.5M 80s\n", + "115200K .......... .......... .......... .......... .......... 7% 39.4M 80s\n", + "115250K .......... .......... .......... .......... .......... 7% 54.6M 80s\n", + "115300K .......... .......... .......... .......... .......... 7% 55.2M 80s\n", + "115350K .......... .......... .......... .......... .......... 7% 52.7M 80s\n", + "115400K .......... .......... .......... .......... .......... 7% 45.4M 80s\n", + "115450K .......... .......... .......... .......... .......... 7% 52.5M 80s\n", + "115500K .......... .......... .......... .......... .......... 7% 54.4M 80s\n", + "115550K .......... .......... .......... .......... .......... 7% 46.0M 80s\n", + "115600K .......... .......... .......... .......... .......... 7% 45.0M 80s\n", + "115650K .......... .......... .......... .......... .......... 7% 52.8M 80s\n", + "115700K .......... .......... .......... .......... .......... 7% 51.6M 80s\n", + "115750K .......... .......... .......... .......... .......... 7% 48.3M 80s\n", + "115800K .......... .......... .......... .......... .......... 7% 38.2M 80s\n", + "115850K .......... .......... .......... .......... .......... 7% 53.3M 80s\n", + "115900K .......... .......... .......... .......... .......... 7% 55.4M 80s\n", + "115950K .......... .......... .......... .......... .......... 7% 52.5M 79s\n", + "116000K .......... .......... .......... .......... .......... 7% 44.9M 79s\n", + "116050K .......... .......... .......... .......... .......... 7% 54.9M 79s\n", + "116100K .......... .......... .......... .......... .......... 7% 1.11M 80s\n", + "116150K .......... .......... .......... .......... .......... 7% 47.4M 80s\n", + "116200K .......... .......... .......... .......... .......... 7% 22.2M 80s\n", + "116250K .......... .......... .......... .......... .......... 7% 20.1M 80s\n", + "116300K .......... .......... .......... .......... .......... 7% 47.5M 80s\n", + "116350K .......... .......... .......... .......... .......... 7% 46.4M 80s\n", + "116400K .......... .......... .......... .......... .......... 7% 41.7M 80s\n", + "116450K .......... .......... .......... .......... .......... 7% 45.5M 80s\n", + "116500K .......... .......... .......... .......... .......... 7% 52.3M 80s\n", + "116550K .......... .......... .......... .......... .......... 7% 44.9M 80s\n", + "116600K .......... .......... .......... .......... .......... 7% 41.7M 80s\n", + "116650K .......... .......... .......... .......... .......... 7% 42.2M 80s\n", + "116700K .......... .......... .......... .......... .......... 7% 47.3M 80s\n", + "116750K .......... .......... .......... .......... .......... 7% 52.6M 80s\n", + "116800K .......... .......... .......... .......... .......... 7% 43.2M 80s\n", + "116850K .......... .......... .......... .......... .......... 7% 50.9M 80s\n", + "116900K .......... .......... .......... .......... .......... 7% 49.6M 80s\n", + "116950K .......... .......... .......... .......... .......... 7% 50.8M 80s\n", + "117000K .......... .......... .......... .......... .......... 7% 39.1M 80s\n", + "117050K .......... .......... .......... .......... .......... 7% 50.0M 80s\n", + "117100K .......... .......... .......... .......... .......... 7% 50.5M 80s\n", + "117150K .......... .......... .......... .......... .......... 7% 43.4M 79s\n", + "117200K .......... .......... .......... .......... .......... 7% 40.7M 79s\n", + "117250K .......... .......... .......... .......... .......... 7% 48.8M 79s\n", + "117300K .......... .......... .......... .......... .......... 7% 44.5M 79s\n", + "117350K .......... .......... .......... .......... .......... 7% 50.6M 79s\n", + "117400K .......... .......... .......... .......... .......... 7% 42.9M 79s\n", + "117450K .......... .......... .......... .......... .......... 7% 53.0M 79s\n", + "117500K .......... .......... .......... .......... .......... 7% 51.5M 79s\n", + "117550K .......... .......... .......... .......... .......... 7% 49.8M 79s\n", + "117600K .......... .......... .......... .......... .......... 7% 43.4M 79s\n", + "117650K .......... .......... .......... .......... .......... 7% 1.15M 80s\n", + "117700K .......... .......... .......... .......... .......... 7% 20.0M 80s\n", + "117750K .......... .......... .......... .......... .......... 7% 23.1M 80s\n", + "117800K .......... .......... .......... .......... .......... 7% 40.2M 80s\n", + "117850K .......... .......... .......... .......... .......... 7% 46.4M 80s\n", + "117900K .......... .......... .......... .......... .......... 7% 46.8M 80s\n", + "117950K .......... .......... .......... .......... .......... 7% 49.3M 80s\n", + "118000K .......... .......... .......... .......... .......... 7% 37.9M 80s\n", + "118050K .......... .......... .......... .......... .......... 7% 48.2M 80s\n", + "118100K .......... .......... .......... .......... .......... 7% 51.7M 80s\n", + "118150K .......... .......... .......... .......... .......... 7% 43.6M 80s\n", + "118200K .......... .......... .......... .......... .......... 7% 35.7M 80s\n", + "118250K .......... .......... .......... .......... .......... 7% 48.4M 80s\n", + "118300K .......... .......... .......... .......... .......... 7% 51.3M 79s\n", + "118350K .......... .......... .......... .......... .......... 7% 49.4M 79s\n", + "118400K .......... .......... .......... .......... .......... 7% 42.5M 79s\n", + "118450K .......... .......... .......... .......... .......... 7% 49.8M 79s\n", + "118500K .......... .......... .......... .......... .......... 7% 42.6M 79s\n", + "118550K .......... .......... .......... .......... .......... 7% 48.6M 79s\n", + "118600K .......... .......... .......... .......... .......... 7% 43.7M 79s\n", + "118650K .......... .......... .......... .......... .......... 7% 44.2M 79s\n", + "118700K .......... .......... .......... .......... .......... 7% 49.8M 79s\n", + "118750K .......... .......... .......... .......... .......... 7% 46.4M 79s\n", + "118800K .......... .......... .......... .......... .......... 7% 38.0M 79s\n", + "118850K .......... .......... .......... .......... .......... 7% 51.0M 79s\n", + "118900K .......... .......... .......... .......... .......... 7% 50.7M 79s\n", + "118950K .......... .......... .......... .......... .......... 7% 52.8M 79s\n", + "119000K .......... .......... .......... .......... .......... 7% 45.8M 79s\n", + "119050K .......... .......... .......... .......... .......... 7% 52.0M 79s\n", + "119100K .......... .......... .......... .......... .......... 7% 51.1M 79s\n", + "119150K .......... .......... .......... .......... .......... 7% 43.2M 79s\n", + "119200K .......... .......... .......... .......... .......... 7% 1.12M 80s\n", + "119250K .......... .......... .......... .......... .......... 7% 33.4M 80s\n", + "119300K .......... .......... .......... .......... .......... 7% 23.7M 80s\n", + "119350K .......... .......... .......... .......... .......... 7% 38.8M 80s\n", + "119400K .......... .......... .......... .......... .......... 7% 40.7M 80s\n", + "119450K .......... .......... .......... .......... .......... 7% 48.7M 79s\n", + "119500K .......... .......... .......... .......... .......... 7% 45.2M 79s\n", + "119550K .......... .......... .......... .......... .......... 7% 51.9M 79s\n", + "119600K .......... .......... .......... .......... .......... 7% 39.3M 79s\n", + "119650K .......... .......... .......... .......... .......... 7% 45.9M 79s\n", + "119700K .......... .......... .......... .......... .......... 7% 40.4M 79s\n", + "119750K .......... .......... .......... .......... .......... 7% 47.0M 79s\n", + "119800K .......... .......... .......... .......... .......... 7% 45.3M 79s\n", + "119850K .......... .......... .......... .......... .......... 7% 48.2M 79s\n", + "119900K .......... .......... .......... .......... .......... 7% 50.4M 79s\n", + "119950K .......... .......... .......... .......... .......... 7% 46.7M 79s\n", + "120000K .......... .......... .......... .......... .......... 7% 43.8M 79s\n", + "120050K .......... .......... .......... .......... .......... 7% 49.2M 79s\n", + "120100K .......... .......... .......... .......... .......... 7% 52.5M 79s\n", + "120150K .......... .......... .......... .......... .......... 7% 46.7M 79s\n", + "120200K .......... .......... .......... .......... .......... 7% 44.7M 79s\n", + "120250K .......... .......... .......... .......... .......... 7% 48.3M 79s\n", + "120300K .......... .......... .......... .......... .......... 7% 49.0M 79s\n", + "120350K .......... .......... .......... .......... .......... 7% 48.9M 79s\n", + "120400K .......... .......... .......... .......... .......... 7% 41.3M 79s\n", + "120450K .......... .......... .......... .......... .......... 7% 49.8M 79s\n", + "120500K .......... .......... .......... .......... .......... 7% 51.2M 79s\n", + "120550K .......... .......... .......... .......... .......... 7% 49.6M 79s\n", + "120600K .......... .......... .......... .......... .......... 7% 43.5M 79s\n", + "120650K .......... .......... .......... .......... .......... 7% 49.7M 79s\n", + "120700K .......... .......... .......... .......... .......... 7% 1.14M 79s\n", + "120750K .......... .......... .......... .......... .......... 7% 29.1M 79s\n", + "120800K .......... .......... .......... .......... .......... 7% 18.4M 79s\n", + "120850K .......... .......... .......... .......... .......... 7% 39.8M 79s\n", + "120900K .......... .......... .......... .......... .......... 7% 45.9M 79s\n", + "120950K .......... .......... .......... .......... .......... 7% 49.0M 79s\n", + "121000K .......... .......... .......... .......... .......... 7% 43.3M 79s\n", + "121050K .......... .......... .......... .......... .......... 7% 50.9M 79s\n", + "121100K .......... .......... .......... .......... .......... 7% 51.6M 79s\n", + "121150K .......... .......... .......... .......... .......... 7% 50.5M 79s\n", + "121200K .......... .......... .......... .......... .......... 7% 40.9M 79s\n", + "121250K .......... .......... .......... .......... .......... 7% 50.6M 79s\n", + "121300K .......... .......... .......... .......... .......... 7% 50.6M 79s\n", + "121350K .......... .......... .......... .......... .......... 7% 49.8M 79s\n", + "121400K .......... .......... .......... .......... .......... 7% 43.8M 79s\n", + "121450K .......... .......... .......... .......... .......... 7% 52.2M 79s\n", + "121500K .......... .......... .......... .......... .......... 7% 51.5M 79s\n", + "121550K .......... .......... .......... .......... .......... 7% 49.7M 79s\n", + "121600K .......... .......... .......... .......... .......... 7% 42.4M 79s\n", + "121650K .......... .......... .......... .......... .......... 7% 51.9M 79s\n", + "121700K .......... .......... .......... .......... .......... 7% 52.0M 79s\n", + "121750K .......... .......... .......... .......... .......... 7% 52.5M 79s\n", + "121800K .......... .......... .......... .......... .......... 7% 43.0M 79s\n", + "121850K .......... .......... .......... .......... .......... 7% 51.7M 79s\n", + "121900K .......... .......... .......... .......... .......... 7% 52.8M 79s\n", + "121950K .......... .......... .......... .......... .......... 7% 52.6M 79s\n", + "122000K .......... .......... .......... .......... .......... 7% 43.5M 79s\n", + "122050K .......... .......... .......... .......... .......... 7% 50.1M 79s\n", + "122100K .......... .......... .......... .......... .......... 7% 52.4M 79s\n", + "122150K .......... .......... .......... .......... .......... 7% 50.0M 79s\n", + "122200K .......... .......... .......... .......... .......... 7% 1.10M 79s\n", + "122250K .......... .......... .......... .......... .......... 7% 45.1M 79s\n", + "122300K .......... .......... .......... .......... .......... 7% 26.0M 79s\n", + "122350K .......... .......... .......... .......... .......... 7% 25.8M 79s\n", + "122400K .......... .......... .......... .......... .......... 7% 35.2M 79s\n", + "122450K .......... .......... .......... .......... .......... 7% 43.7M 79s\n", + "122500K .......... .......... .......... .......... .......... 7% 49.8M 79s\n", + "122550K .......... .......... .......... .......... .......... 7% 50.3M 79s\n", + "122600K .......... .......... .......... .......... .......... 7% 43.8M 79s\n", + "122650K .......... .......... .......... .......... .......... 7% 50.5M 79s\n", + "122700K .......... .......... .......... .......... .......... 7% 50.3M 79s\n", + "122750K .......... .......... .......... .......... .......... 7% 48.3M 79s\n", + "122800K .......... .......... .......... .......... .......... 7% 43.7M 79s\n", + "122850K .......... .......... .......... .......... .......... 7% 52.0M 79s\n", + "122900K .......... .......... .......... .......... .......... 7% 48.7M 79s\n", + "122950K .......... .......... .......... .......... .......... 7% 48.1M 79s\n", + "123000K .......... .......... .......... .......... .......... 7% 44.3M 79s\n", + "123050K .......... .......... .......... .......... .......... 7% 50.6M 79s\n", + "123100K .......... .......... .......... .......... .......... 7% 47.7M 79s\n", + "123150K .......... .......... .......... .......... .......... 7% 50.0M 79s\n", + "123200K .......... .......... .......... .......... .......... 7% 43.8M 79s\n", + "123250K .......... .......... .......... .......... .......... 7% 50.7M 79s\n", + "123300K .......... .......... .......... .......... .......... 7% 50.1M 79s\n", + "123350K .......... .......... .......... .......... .......... 7% 47.3M 79s\n", + "123400K .......... .......... .......... .......... .......... 7% 44.6M 79s\n", + "123450K .......... .......... .......... .......... .......... 7% 49.9M 79s\n", + "123500K .......... .......... .......... .......... .......... 7% 50.4M 79s\n", + "123550K .......... .......... .......... .......... .......... 7% 48.4M 79s\n", + "123600K .......... .......... .......... .......... .......... 7% 43.7M 79s\n", + "123650K .......... .......... .......... .......... .......... 7% 51.6M 79s\n", + "123700K .......... .......... .......... .......... .......... 7% 51.0M 79s\n", + "123750K .......... .......... .......... .......... .......... 7% 1.12M 79s\n", + "123800K .......... .......... .......... .......... .......... 7% 22.6M 79s\n", + "123850K .......... .......... .......... .......... .......... 7% 28.8M 79s\n", + "123900K .......... .......... .......... .......... .......... 7% 36.3M 79s\n", + "123950K .......... .......... .......... .......... .......... 7% 32.8M 79s\n", + "124000K .......... .......... .......... .......... .......... 7% 43.4M 79s\n", + "124050K .......... .......... .......... .......... .......... 7% 48.7M 79s\n", + "124100K .......... .......... .......... .......... .......... 7% 51.6M 79s\n", + "124150K .......... .......... .......... .......... .......... 7% 48.6M 79s\n", + "124200K .......... .......... .......... .......... .......... 7% 42.9M 79s\n", + "124250K .......... .......... .......... .......... .......... 7% 51.2M 79s\n", + "124300K .......... .......... .......... .......... .......... 7% 49.8M 79s\n", + "124350K .......... .......... .......... .......... .......... 7% 51.1M 79s\n", + "124400K .......... .......... .......... .......... .......... 7% 43.1M 79s\n", + "124450K .......... .......... .......... .......... .......... 7% 50.5M 79s\n", + "124500K .......... .......... .......... .......... .......... 7% 50.1M 79s\n", + "124550K .......... .......... .......... .......... .......... 7% 51.4M 79s\n", + "124600K .......... .......... .......... .......... .......... 7% 44.4M 79s\n", + "124650K .......... .......... .......... .......... .......... 7% 51.1M 79s\n", + "124700K .......... .......... .......... .......... .......... 7% 50.3M 79s\n", + "124750K .......... .......... .......... .......... .......... 7% 51.9M 79s\n", + "124800K .......... .......... .......... .......... .......... 7% 41.4M 79s\n", + "124850K .......... .......... .......... .......... .......... 7% 48.9M 79s\n", + "124900K .......... .......... .......... .......... .......... 7% 51.1M 79s\n", + "124950K .......... .......... .......... .......... .......... 7% 50.9M 79s\n", + "125000K .......... .......... .......... .......... .......... 7% 44.1M 79s\n", + "125050K .......... .......... .......... .......... .......... 7% 48.2M 79s\n", + "125100K .......... .......... .......... .......... .......... 7% 50.7M 78s\n", + "125150K .......... .......... .......... .......... .......... 7% 51.8M 78s\n", + "125200K .......... .......... .......... .......... .......... 7% 43.1M 78s\n", + "125250K .......... .......... .......... .......... .......... 7% 1.11M 79s\n", + "125300K .......... .......... .......... .......... .......... 7% 26.9M 79s\n", + "125350K .......... .......... .......... .......... .......... 7% 51.7M 79s\n", + "125400K .......... .......... .......... .......... .......... 8% 20.8M 79s\n", + "125450K .......... .......... .......... .......... .......... 8% 28.6M 79s\n", + "125500K .......... .......... .......... .......... .......... 8% 51.5M 79s\n", + "125550K .......... .......... .......... .......... .......... 8% 48.4M 79s\n", + "125600K .......... .......... .......... .......... .......... 8% 42.1M 79s\n", + "125650K .......... .......... .......... .......... .......... 8% 51.1M 79s\n", + "125700K .......... .......... .......... .......... .......... 8% 52.6M 79s\n", + "125750K .......... .......... .......... .......... .......... 8% 49.4M 79s\n", + "125800K .......... .......... .......... .......... .......... 8% 44.9M 79s\n", + "125850K .......... .......... .......... .......... .......... 8% 49.7M 79s\n", + "125900K .......... .......... .......... .......... .......... 8% 51.1M 79s\n", + "125950K .......... .......... .......... .......... .......... 8% 49.9M 79s\n", + "126000K .......... .......... .......... .......... .......... 8% 44.5M 79s\n", + "126050K .......... .......... .......... .......... .......... 8% 51.3M 79s\n", + "126100K .......... .......... .......... .......... .......... 8% 52.6M 79s\n", + "126150K .......... .......... .......... .......... .......... 8% 50.7M 79s\n", + "126200K .......... .......... .......... .......... .......... 8% 43.3M 79s\n", + "126250K .......... .......... .......... .......... .......... 8% 51.7M 78s\n", + "126300K .......... .......... .......... .......... .......... 8% 52.0M 78s\n", + "126350K .......... .......... .......... .......... .......... 8% 49.4M 78s\n", + "126400K .......... .......... .......... .......... .......... 8% 42.8M 78s\n", + "126450K .......... .......... .......... .......... .......... 8% 50.1M 78s\n", + "126500K .......... .......... .......... .......... .......... 8% 51.7M 78s\n", + "126550K .......... .......... .......... .......... .......... 8% 47.3M 78s\n", + "126600K .......... .......... .......... .......... .......... 8% 44.2M 78s\n", + "126650K .......... .......... .......... .......... .......... 8% 52.4M 78s\n", + "126700K .......... .......... .......... .......... .......... 8% 51.6M 78s\n", + "126750K .......... .......... .......... .......... .......... 8% 48.2M 78s\n", + "126800K .......... .......... .......... .......... .......... 8% 1.12M 79s\n", + "126850K .......... .......... .......... .......... .......... 8% 29.4M 79s\n", + "126900K .......... .......... .......... .......... .......... 8% 27.8M 79s\n", + "126950K .......... .......... .......... .......... .......... 8% 20.9M 79s\n", + "127000K .......... .......... .......... .......... .......... 8% 43.3M 79s\n", + "127050K .......... .......... .......... .......... .......... 8% 47.0M 79s\n", + "127100K .......... .......... .......... .......... .......... 8% 50.8M 79s\n", + "127150K .......... .......... .......... .......... .......... 8% 50.0M 79s\n", + "127200K .......... .......... .......... .......... .......... 8% 43.7M 79s\n", + "127250K .......... .......... .......... .......... .......... 8% 49.5M 79s\n", + "127300K .......... .......... .......... .......... .......... 8% 48.7M 79s\n", + "127350K .......... .......... .......... .......... .......... 8% 51.3M 79s\n", + "127400K .......... .......... .......... .......... .......... 8% 44.5M 78s\n", + "127450K .......... .......... .......... .......... .......... 8% 47.4M 78s\n", + "127500K .......... .......... .......... .......... .......... 8% 51.2M 78s\n", + "127550K .......... .......... .......... .......... .......... 8% 51.5M 78s\n", + "127600K .......... .......... .......... .......... .......... 8% 43.9M 78s\n", + "127650K .......... .......... .......... .......... .......... 8% 48.8M 78s\n", + "127700K .......... .......... .......... .......... .......... 8% 49.4M 78s\n", + "127750K .......... .......... .......... .......... .......... 8% 52.3M 78s\n", + "127800K .......... .......... .......... .......... .......... 8% 45.2M 78s\n", + "127850K .......... .......... .......... .......... .......... 8% 50.5M 78s\n", + "127900K .......... .......... .......... .......... .......... 8% 52.2M 78s\n", + "127950K .......... .......... .......... .......... .......... 8% 50.7M 78s\n", + "128000K .......... .......... .......... .......... .......... 8% 44.4M 78s\n", + "128050K .......... .......... .......... .......... .......... 8% 51.6M 78s\n", + "128100K .......... .......... .......... .......... .......... 8% 51.0M 78s\n", + "128150K .......... .......... .......... .......... .......... 8% 53.1M 78s\n", + "128200K .......... .......... .......... .......... .......... 8% 44.8M 78s\n", + "128250K .......... .......... .......... .......... .......... 8% 51.7M 78s\n", + "128300K .......... .......... .......... .......... .......... 8% 1.12M 79s\n", + "128350K .......... .......... .......... .......... .......... 8% 46.6M 79s\n", + "128400K .......... .......... .......... .......... .......... 8% 26.1M 79s\n", + "128450K .......... .......... .......... .......... .......... 8% 22.5M 79s\n", + "128500K .......... .......... .......... .......... .......... 8% 30.0M 79s\n", + "128550K .......... .......... .......... .......... .......... 8% 36.4M 79s\n", + "128600K .......... .......... .......... .......... .......... 8% 42.9M 78s\n", + "128650K .......... .......... .......... .......... .......... 8% 49.0M 78s\n", + "128700K .......... .......... .......... .......... .......... 8% 50.3M 78s\n", + "128750K .......... .......... .......... .......... .......... 8% 49.6M 78s\n", + "128800K .......... .......... .......... .......... .......... 8% 42.5M 78s\n", + "128850K .......... .......... .......... .......... .......... 8% 49.0M 78s\n", + "128900K .......... .......... .......... .......... .......... 8% 49.6M 78s\n", + "128950K .......... .......... .......... .......... .......... 8% 51.0M 78s\n", + "129000K .......... .......... .......... .......... .......... 8% 43.3M 78s\n", + "129050K .......... .......... .......... .......... .......... 8% 48.7M 78s\n", + "129100K .......... .......... .......... .......... .......... 8% 51.1M 78s\n", + "129150K .......... .......... .......... .......... .......... 8% 49.6M 78s\n", + "129200K .......... .......... .......... .......... .......... 8% 43.0M 78s\n", + "129250K .......... .......... .......... .......... .......... 8% 48.9M 78s\n", + "129300K .......... .......... .......... .......... .......... 8% 50.3M 78s\n", + "129350K .......... .......... .......... .......... .......... 8% 51.4M 78s\n", + "129400K .......... .......... .......... .......... .......... 8% 43.8M 78s\n", + "129450K .......... .......... .......... .......... .......... 8% 51.7M 78s\n", + "129500K .......... .......... .......... .......... .......... 8% 50.6M 78s\n", + "129550K .......... .......... .......... .......... .......... 8% 48.1M 78s\n", + "129600K .......... .......... .......... .......... .......... 8% 43.1M 78s\n", + "129650K .......... .......... .......... .......... .......... 8% 51.5M 78s\n", + "129700K .......... .......... .......... .......... .......... 8% 49.8M 78s\n", + "129750K .......... .......... .......... .......... .......... 8% 49.3M 78s\n", + "129800K .......... .......... .......... .......... .......... 8% 43.8M 78s\n", + "129850K .......... .......... .......... .......... .......... 8% 1.13M 78s\n", + "129900K .......... .......... .......... .......... .......... 8% 24.1M 78s\n", + "129950K .......... .......... .......... .......... .......... 8% 24.1M 78s\n", + "130000K .......... .......... .......... .......... .......... 8% 34.8M 78s\n", + "130050K .......... .......... .......... .......... .......... 8% 45.1M 78s\n", + "130100K .......... .......... .......... .......... .......... 8% 33.6M 78s\n", + "130150K .......... .......... .......... .......... .......... 8% 50.9M 78s\n", + "130200K .......... .......... .......... .......... .......... 8% 42.6M 78s\n", + "130250K .......... .......... .......... .......... .......... 8% 49.5M 78s\n", + "130300K .......... .......... .......... .......... .......... 8% 50.2M 78s\n", + "130350K .......... .......... .......... .......... .......... 8% 51.4M 78s\n", + "130400K .......... .......... .......... .......... .......... 8% 41.7M 78s\n", + "130450K .......... .......... .......... .......... .......... 8% 47.6M 78s\n", + "130500K .......... .......... .......... .......... .......... 8% 49.5M 78s\n", + "130550K .......... .......... .......... .......... .......... 8% 51.5M 78s\n", + "130600K .......... .......... .......... .......... .......... 8% 42.8M 78s\n", + "130650K .......... .......... .......... .......... .......... 8% 50.4M 78s\n", + "130700K .......... .......... .......... .......... .......... 8% 50.3M 78s\n", + "130750K .......... .......... .......... .......... .......... 8% 52.0M 78s\n", + "130800K .......... .......... .......... .......... .......... 8% 43.0M 78s\n", + "130850K .......... .......... .......... .......... .......... 8% 51.5M 78s\n", + "130900K .......... .......... .......... .......... .......... 8% 51.6M 78s\n", + "130950K .......... .......... .......... .......... .......... 8% 52.3M 78s\n", + "131000K .......... .......... .......... .......... .......... 8% 43.8M 78s\n", + "131050K .......... .......... .......... .......... .......... 8% 51.9M 78s\n", + "131100K .......... .......... .......... .......... .......... 8% 50.9M 78s\n", + "131150K .......... .......... .......... .......... .......... 8% 51.8M 78s\n", + "131200K .......... .......... .......... .......... .......... 8% 44.4M 78s\n", + "131250K .......... .......... .......... .......... .......... 8% 49.9M 78s\n", + "131300K .......... .......... .......... .......... .......... 8% 50.8M 78s\n", + "131350K .......... .......... .......... .......... .......... 8% 1.13M 78s\n", + "131400K .......... .......... .......... .......... .......... 8% 22.5M 78s\n", + "131450K .......... .......... .......... .......... .......... 8% 51.3M 78s\n", + "131500K .......... .......... .......... .......... .......... 8% 23.2M 78s\n", + "131550K .......... .......... .......... .......... .......... 8% 39.3M 78s\n", + "131600K .......... .......... .......... .......... .......... 8% 25.2M 78s\n", + "131650K .......... .......... .......... .......... .......... 8% 50.4M 78s\n", + "131700K .......... .......... .......... .......... .......... 8% 51.1M 78s\n", + "131750K .......... .......... .......... .......... .......... 8% 51.3M 78s\n", + "131800K .......... .......... .......... .......... .......... 8% 41.7M 78s\n", + "131850K .......... .......... .......... .......... .......... 8% 51.5M 78s\n", + "131900K .......... .......... .......... .......... .......... 8% 50.9M 78s\n", + "131950K .......... .......... .......... .......... .......... 8% 50.0M 78s\n", + "132000K .......... .......... .......... .......... .......... 8% 42.6M 78s\n", + "132050K .......... .......... .......... .......... .......... 8% 52.0M 78s\n", + "132100K .......... .......... .......... .......... .......... 8% 49.6M 78s\n", + "132150K .......... .......... .......... .......... .......... 8% 51.3M 78s\n", + "132200K .......... .......... .......... .......... .......... 8% 43.2M 78s\n", + "132250K .......... .......... .......... .......... .......... 8% 51.4M 78s\n", + "132300K .......... .......... .......... .......... .......... 8% 51.4M 78s\n", + "132350K .......... .......... .......... .......... .......... 8% 51.9M 78s\n", + "132400K .......... .......... .......... .......... .......... 8% 42.3M 78s\n", + "132450K .......... .......... .......... .......... .......... 8% 49.7M 78s\n", + "132500K .......... .......... .......... .......... .......... 8% 52.2M 78s\n", + "132550K .......... .......... .......... .......... .......... 8% 51.5M 78s\n", + "132600K .......... .......... .......... .......... .......... 8% 43.3M 78s\n", + "132650K .......... .......... .......... .......... .......... 8% 51.9M 78s\n", + "132700K .......... .......... .......... .......... .......... 8% 49.9M 78s\n", + "132750K .......... .......... .......... .......... .......... 8% 51.8M 78s\n", + "132800K .......... .......... .......... .......... .......... 8% 43.0M 78s\n", + "132850K .......... .......... .......... .......... .......... 8% 49.5M 78s\n", + "132900K .......... .......... .......... .......... .......... 8% 1.13M 78s\n", + "132950K .......... .......... .......... .......... .......... 8% 31.9M 78s\n", + "133000K .......... .......... .......... .......... .......... 8% 21.2M 78s\n", + "133050K .......... .......... .......... .......... .......... 8% 46.4M 78s\n", + "133100K .......... .......... .......... .......... .......... 8% 37.7M 78s\n", + "133150K .......... .......... .......... .......... .......... 8% 28.3M 78s\n", + "133200K .......... .......... .......... .......... .......... 8% 44.8M 78s\n", + "133250K .......... .......... .......... .......... .......... 8% 52.0M 78s\n", + "133300K .......... .......... .......... .......... .......... 8% 52.1M 78s\n", + "133350K .......... .......... .......... .......... .......... 8% 49.1M 78s\n", + "133400K .......... .......... .......... .......... .......... 8% 43.5M 78s\n", + "133450K .......... .......... .......... .......... .......... 8% 52.4M 78s\n", + "133500K .......... .......... .......... .......... .......... 8% 51.3M 78s\n", + "133550K .......... .......... .......... .......... .......... 8% 49.1M 78s\n", + "133600K .......... .......... .......... .......... .......... 8% 44.2M 78s\n", + "133650K .......... .......... .......... .......... .......... 8% 52.1M 78s\n", + "133700K .......... .......... .......... .......... .......... 8% 51.0M 78s\n", + "133750K .......... .......... .......... .......... .......... 8% 50.9M 78s\n", + "133800K .......... .......... .......... .......... .......... 8% 43.3M 78s\n", + "133850K .......... .......... .......... .......... .......... 8% 51.4M 78s\n", + "133900K .......... .......... .......... .......... .......... 8% 52.3M 78s\n", + "133950K .......... .......... .......... .......... .......... 8% 49.7M 78s\n", + "134000K .......... .......... .......... .......... .......... 8% 43.0M 78s\n", + "134050K .......... .......... .......... .......... .......... 8% 51.8M 78s\n", + "134100K .......... .......... .......... .......... .......... 8% 50.8M 78s\n", + "134150K .......... .......... .......... .......... .......... 8% 50.3M 78s\n", + "134200K .......... .......... .......... .......... .......... 8% 44.6M 78s\n", + "134250K .......... .......... .......... .......... .......... 8% 46.9M 78s\n", + "134300K .......... .......... .......... .......... .......... 8% 50.8M 78s\n", + "134350K .......... .......... .......... .......... .......... 8% 49.8M 78s\n", + "134400K .......... .......... .......... .......... .......... 8% 1.11M 78s\n", + "134450K .......... .......... .......... .......... .......... 8% 41.0M 78s\n", + "134500K .......... .......... .......... .......... .......... 8% 46.0M 78s\n", + "134550K .......... .......... .......... .......... .......... 8% 3.42M 78s\n", + "134600K .......... .......... .......... .......... .......... 8% 42.6M 78s\n", + "134650K .......... .......... .......... .......... .......... 8% 51.4M 78s\n", + "134700K .......... .......... .......... .......... .......... 8% 50.0M 78s\n", + "134750K .......... .......... .......... .......... .......... 8% 51.6M 78s\n", + "134800K .......... .......... .......... .......... .......... 8% 1.57M 78s\n", + "134850K .......... .......... .......... .......... .......... 8% 50.7M 78s\n", + "134900K .......... .......... .......... .......... .......... 8% 51.2M 78s\n", + "134950K .......... .......... .......... .......... .......... 8% 2.35M 78s\n", + "135000K .......... .......... .......... .......... .......... 8% 40.9M 78s\n", + "135050K .......... .......... .......... .......... .......... 8% 1.04M 79s\n", + "135100K .......... .......... .......... .......... .......... 8% 49.9M 79s\n", + "135150K .......... .......... .......... .......... .......... 8% 49.1M 79s\n", + "135200K .......... .......... .......... .......... .......... 8% 45.7M 79s\n", + "135250K .......... .......... .......... .......... .......... 8% 53.8M 79s\n", + "135300K .......... .......... .......... .......... .......... 8% 52.8M 79s\n", + "135350K .......... .......... .......... .......... .......... 8% 50.3M 79s\n", + "135400K .......... .......... .......... .......... .......... 8% 44.4M 79s\n", + "135450K .......... .......... .......... .......... .......... 8% 53.7M 79s\n", + "135500K .......... .......... .......... .......... .......... 8% 49.9M 79s\n", + "135550K .......... .......... .......... .......... .......... 8% 53.7M 79s\n", + "135600K .......... .......... .......... .......... .......... 8% 44.2M 79s\n", + "135650K .......... .......... .......... .......... .......... 8% 53.6M 79s\n", + "135700K .......... .......... .......... .......... .......... 8% 52.6M 79s\n", + "135750K .......... .......... .......... .......... .......... 8% 53.1M 79s\n", + "135800K .......... .......... .......... .......... .......... 8% 46.8M 79s\n", + "135850K .......... .......... .......... .......... .......... 8% 54.8M 78s\n", + "135900K .......... .......... .......... .......... .......... 8% 53.3M 78s\n", + "135950K .......... .......... .......... .......... .......... 8% 52.8M 78s\n", + "136000K .......... .......... .......... .......... .......... 8% 45.3M 78s\n", + "136050K .......... .......... .......... .......... .......... 8% 54.3M 78s\n", + "136100K .......... .......... .......... .......... .......... 8% 51.7M 78s\n", + "136150K .......... .......... .......... .......... .......... 8% 53.9M 78s\n", + "136200K .......... .......... .......... .......... .......... 8% 45.5M 78s\n", + "136250K .......... .......... .......... .......... .......... 8% 53.8M 78s\n", + "136300K .......... .......... .......... .......... .......... 8% 49.8M 78s\n", + "136350K .......... .......... .......... .......... .......... 8% 51.6M 78s\n", + "136400K .......... .......... .......... .......... .......... 8% 45.2M 78s\n", + "136450K .......... .......... .......... .......... .......... 8% 54.4M 78s\n", + "136500K .......... .......... .......... .......... .......... 8% 53.1M 78s\n", + "136550K .......... .......... .......... .......... .......... 8% 50.9M 78s\n", + "136600K .......... .......... .......... .......... .......... 8% 46.1M 78s\n", + "136650K .......... .......... .......... .......... .......... 8% 54.6M 78s\n", + "136700K .......... .......... .......... .......... .......... 8% 52.5M 78s\n", + "136750K .......... .......... .......... .......... .......... 8% 53.2M 78s\n", + "136800K .......... .......... .......... .......... .......... 8% 45.9M 78s\n", + "136850K .......... .......... .......... .......... .......... 8% 53.1M 78s\n", + "136900K .......... .......... .......... .......... .......... 8% 53.7M 78s\n", + "136950K .......... .......... .......... .......... .......... 8% 52.8M 78s\n", + "137000K .......... .......... .......... .......... .......... 8% 45.3M 78s\n", + "137050K .......... .......... .......... .......... .......... 8% 54.0M 78s\n", + "137100K .......... .......... .......... .......... .......... 8% 52.4M 78s\n", + "137150K .......... .......... .......... .......... .......... 8% 52.0M 78s\n", + "137200K .......... .......... .......... .......... .......... 8% 42.9M 78s\n", + "137250K .......... .......... .......... .......... .......... 8% 51.7M 78s\n", + "137300K .......... .......... .......... .......... .......... 8% 53.0M 78s\n", + "137350K .......... .......... .......... .......... .......... 8% 51.1M 78s\n", + "137400K .......... .......... .......... .......... .......... 8% 41.9M 78s\n", + "137450K .......... .......... .......... .......... .......... 8% 51.4M 78s\n", + "137500K .......... .......... .......... .......... .......... 8% 53.7M 78s\n", + "137550K .......... .......... .......... .......... .......... 8% 50.4M 78s\n", + "137600K .......... .......... .......... .......... .......... 8% 6.78M 78s\n", + "137650K .......... .......... .......... .......... .......... 8% 16.1M 78s\n", + "137700K .......... .......... .......... .......... .......... 8% 53.2M 78s\n", + "137750K .......... .......... .......... .......... .......... 8% 1.05M 78s\n", + "137800K .......... .......... .......... .......... .......... 8% 40.9M 78s\n", + "137850K .......... .......... .......... .......... .......... 8% 52.1M 78s\n", + "137900K .......... .......... .......... .......... .......... 8% 52.9M 78s\n", + "137950K .......... .......... .......... .......... .......... 8% 53.3M 78s\n", + "138000K .......... .......... .......... .......... .......... 8% 44.1M 78s\n", + "138050K .......... .......... .......... .......... .......... 8% 51.3M 78s\n", + "138100K .......... .......... .......... .......... .......... 8% 48.7M 78s\n", + "138150K .......... .......... .......... .......... .......... 8% 51.9M 78s\n", + "138200K .......... .......... .......... .......... .......... 8% 45.5M 78s\n", + "138250K .......... .......... .......... .......... .......... 8% 53.1M 78s\n", + "138300K .......... .......... .......... .......... .......... 8% 49.6M 78s\n", + "138350K .......... .......... .......... .......... .......... 8% 53.8M 78s\n", + "138400K .......... .......... .......... .......... .......... 8% 45.7M 78s\n", + "138450K .......... .......... .......... .......... .......... 8% 53.4M 78s\n", + "138500K .......... .......... .......... .......... .......... 8% 51.1M 78s\n", + "138550K .......... .......... .......... .......... .......... 8% 4.29M 78s\n", + "138600K .......... .......... .......... .......... .......... 8% 23.8M 78s\n", + "138650K .......... .......... .......... .......... .......... 8% 53.1M 78s\n", + "138700K .......... .......... .......... .......... .......... 8% 50.3M 78s\n", + "138750K .......... .......... .......... .......... .......... 8% 51.4M 78s\n", + "138800K .......... .......... .......... .......... .......... 8% 43.4M 78s\n", + "138850K .......... .......... .......... .......... .......... 8% 53.1M 78s\n", + "138900K .......... .......... .......... .......... .......... 8% 50.9M 78s\n", + "138950K .......... .......... .......... .......... .......... 8% 51.4M 78s\n", + "139000K .......... .......... .......... .......... .......... 8% 1.16M 78s\n", + "139050K .......... .......... .......... .......... .......... 8% 52.1M 78s\n", + "139100K .......... .......... .......... .......... .......... 8% 51.2M 78s\n", + "139150K .......... .......... .......... .......... .......... 8% 51.4M 78s\n", + "139200K .......... .......... .......... .......... .......... 8% 45.8M 78s\n", + "139250K .......... .......... .......... .......... .......... 8% 51.6M 78s\n", + "139300K .......... .......... .......... .......... .......... 8% 51.2M 78s\n", + "139350K .......... .......... .......... .......... .......... 8% 53.0M 78s\n", + "139400K .......... .......... .......... .......... .......... 8% 44.8M 78s\n", + "139450K .......... .......... .......... .......... .......... 8% 53.6M 78s\n", + "139500K .......... .......... .......... .......... .......... 8% 51.6M 78s\n", + "139550K .......... .......... .......... .......... .......... 8% 52.5M 78s\n", + "139600K .......... .......... .......... .......... .......... 8% 28.9M 78s\n", + "139650K .......... .......... .......... .......... .......... 8% 47.3M 78s\n", + "139700K .......... .......... .......... .......... .......... 8% 48.8M 78s\n", + "139750K .......... .......... .......... .......... .......... 8% 49.9M 78s\n", + "139800K .......... .......... .......... .......... .......... 8% 41.9M 78s\n", + "139850K .......... .......... .......... .......... .......... 8% 47.4M 78s\n", + "139900K .......... .......... .......... .......... .......... 8% 50.7M 78s\n", + "139950K .......... .......... .......... .......... .......... 8% 49.6M 78s\n", + "140000K .......... .......... .......... .......... .......... 8% 40.1M 78s\n", + "140050K .......... .......... .......... .......... .......... 8% 11.1M 78s\n", + "140100K .......... .......... .......... .......... .......... 8% 29.8M 78s\n", + "140150K .......... .......... .......... .......... .......... 8% 50.4M 78s\n", + "140200K .......... .......... .......... .......... .......... 8% 43.0M 78s\n", + "140250K .......... .......... .......... .......... .......... 8% 48.0M 78s\n", + "140300K .......... .......... .......... .......... .......... 8% 47.9M 78s\n", + "140350K .......... .......... .......... .......... .......... 8% 47.9M 78s\n", + "140400K .......... .......... .......... .......... .......... 8% 41.8M 78s\n", + "140450K .......... .......... .......... .......... .......... 8% 48.6M 78s\n", + "140500K .......... .......... .......... .......... .......... 8% 1.18M 78s\n", + "140550K .......... .......... .......... .......... .......... 8% 45.0M 78s\n", + "140600K .......... .......... .......... .......... .......... 8% 42.2M 78s\n", + "140650K .......... .......... .......... .......... .......... 8% 47.6M 78s\n", + "140700K .......... .......... .......... .......... .......... 8% 49.6M 78s\n", + "140750K .......... .......... .......... .......... .......... 8% 46.7M 78s\n", + "140800K .......... .......... .......... .......... .......... 8% 42.7M 78s\n", + "140850K .......... .......... .......... .......... .......... 8% 52.0M 78s\n", + "140900K .......... .......... .......... .......... .......... 8% 51.5M 78s\n", + "140950K .......... .......... .......... .......... .......... 8% 48.9M 78s\n", + "141000K .......... .......... .......... .......... .......... 8% 43.2M 78s\n", + "141050K .......... .......... .......... .......... .......... 8% 50.0M 78s\n", + "141100K .......... .......... .......... .......... .......... 9% 49.4M 78s\n", + "141150K .......... .......... .......... .......... .......... 9% 49.8M 78s\n", + "141200K .......... .......... .......... .......... .......... 9% 41.1M 78s\n", + "141250K .......... .......... .......... .......... .......... 9% 49.4M 78s\n", + "141300K .......... .......... .......... .......... .......... 9% 50.5M 78s\n", + "141350K .......... .......... .......... .......... .......... 9% 49.5M 78s\n", + "141400K .......... .......... .......... .......... .......... 9% 42.9M 78s\n", + "141450K .......... .......... .......... .......... .......... 9% 48.6M 78s\n", + "141500K .......... .......... .......... .......... .......... 9% 50.6M 78s\n", + "141550K .......... .......... .......... .......... .......... 9% 49.5M 78s\n", + "141600K .......... .......... .......... .......... .......... 9% 11.2M 78s\n", + "141650K .......... .......... .......... .......... .......... 9% 23.5M 78s\n", + "141700K .......... .......... .......... .......... .......... 9% 47.4M 78s\n", + "141750K .......... .......... .......... .......... .......... 9% 51.1M 78s\n", + "141800K .......... .......... .......... .......... .......... 9% 44.0M 78s\n", + "141850K .......... .......... .......... .......... .......... 9% 51.4M 78s\n", + "141900K .......... .......... .......... .......... .......... 9% 50.1M 78s\n", + "141950K .......... .......... .......... .......... .......... 9% 47.1M 78s\n", + "142000K .......... .......... .......... .......... .......... 9% 42.3M 78s\n", + "142050K .......... .......... .......... .......... .......... 9% 1.18M 78s\n", + "142100K .......... .......... .......... .......... .......... 9% 49.0M 78s\n", + "142150K .......... .......... .......... .......... .......... 9% 49.2M 78s\n", + "142200K .......... .......... .......... .......... .......... 9% 42.0M 78s\n", + "142250K .......... .......... .......... .......... .......... 9% 49.2M 78s\n", + "142300K .......... .......... .......... .......... .......... 9% 47.9M 78s\n", + "142350K .......... .......... .......... .......... .......... 9% 47.7M 78s\n", + "142400K .......... .......... .......... .......... .......... 9% 42.9M 78s\n", + "142450K .......... .......... .......... .......... .......... 9% 49.7M 78s\n", + "142500K .......... .......... .......... .......... .......... 9% 50.2M 78s\n", + "142550K .......... .......... .......... .......... .......... 9% 51.0M 78s\n", + "142600K .......... .......... .......... .......... .......... 9% 41.8M 78s\n", + "142650K .......... .......... .......... .......... .......... 9% 50.5M 78s\n", + "142700K .......... .......... .......... .......... .......... 9% 49.2M 78s\n", + "142750K .......... .......... .......... .......... .......... 9% 49.8M 78s\n", + "142800K .......... .......... .......... .......... .......... 9% 42.9M 78s\n", + "142850K .......... .......... .......... .......... .......... 9% 49.0M 78s\n", + "142900K .......... .......... .......... .......... .......... 9% 48.2M 78s\n", + "142950K .......... .......... .......... .......... .......... 9% 50.5M 78s\n", + "143000K .......... .......... .......... .......... .......... 9% 42.7M 78s\n", + "143050K .......... .......... .......... .......... .......... 9% 49.8M 78s\n", + "143100K .......... .......... .......... .......... .......... 9% 11.9M 78s\n", + "143150K .......... .......... .......... .......... .......... 9% 40.4M 78s\n", + "143200K .......... .......... .......... .......... .......... 9% 22.6M 78s\n", + "143250K .......... .......... .......... .......... .......... 9% 48.2M 78s\n", + "143300K .......... .......... .......... .......... .......... 9% 49.9M 78s\n", + "143350K .......... .......... .......... .......... .......... 9% 50.9M 77s\n", + "143400K .......... .......... .......... .......... .......... 9% 44.0M 77s\n", + "143450K .......... .......... .......... .......... .......... 9% 50.2M 77s\n", + "143500K .......... .......... .......... .......... .......... 9% 48.4M 77s\n", + "143550K .......... .......... .......... .......... .......... 9% 1.18M 78s\n", + "143600K .......... .......... .......... .......... .......... 9% 41.3M 78s\n", + "143650K .......... .......... .......... .......... .......... 9% 49.5M 78s\n", + "143700K .......... .......... .......... .......... .......... 9% 48.4M 78s\n", + "143750K .......... .......... .......... .......... .......... 9% 48.3M 78s\n", + "143800K .......... .......... .......... .......... .......... 9% 42.9M 78s\n", + "143850K .......... .......... .......... .......... .......... 9% 50.1M 78s\n", + "143900K .......... .......... .......... .......... .......... 9% 51.3M 78s\n", + "143950K .......... .......... .......... .......... .......... 9% 48.6M 78s\n", + "144000K .......... .......... .......... .......... .......... 9% 43.0M 78s\n", + "144050K .......... .......... .......... .......... .......... 9% 49.1M 78s\n", + "144100K .......... .......... .......... .......... .......... 9% 50.5M 78s\n", + "144150K .......... .......... .......... .......... .......... 9% 50.7M 78s\n", + "144200K .......... .......... .......... .......... .......... 9% 42.1M 78s\n", + "144250K .......... .......... .......... .......... .......... 9% 49.0M 78s\n", + "144300K .......... .......... .......... .......... .......... 9% 50.5M 78s\n", + "144350K .......... .......... .......... .......... .......... 9% 49.3M 77s\n", + "144400K .......... .......... .......... .......... .......... 9% 42.0M 77s\n", + "144450K .......... .......... .......... .......... .......... 9% 51.5M 77s\n", + "144500K .......... .......... .......... .......... .......... 9% 50.9M 77s\n", + "144550K .......... .......... .......... .......... .......... 9% 51.8M 77s\n", + "144600K .......... .......... .......... .......... .......... 9% 42.7M 77s\n", + "144650K .......... .......... .......... .......... .......... 9% 10.7M 77s\n", + "144700K .......... .......... .......... .......... .......... 9% 23.0M 77s\n", + "144750K .......... .......... .......... .......... .......... 9% 49.0M 77s\n", + "144800K .......... .......... .......... .......... .......... 9% 43.8M 77s\n", + "144850K .......... .......... .......... .......... .......... 9% 51.5M 77s\n", + "144900K .......... .......... .......... .......... .......... 9% 54.2M 77s\n", + "144950K .......... .......... .......... .......... .......... 9% 52.7M 77s\n", + "145000K .......... .......... .......... .......... .......... 9% 45.7M 77s\n", + "145050K .......... .......... .......... .......... .......... 9% 53.3M 77s\n", + "145100K .......... .......... .......... .......... .......... 9% 1.17M 78s\n", + "145150K .......... .......... .......... .......... .......... 9% 48.8M 78s\n", + "145200K .......... .......... .......... .......... .......... 9% 43.4M 78s\n", + "145250K .......... .......... .......... .......... .......... 9% 53.1M 78s\n", + "145300K .......... .......... .......... .......... .......... 9% 50.8M 78s\n", + "145350K .......... .......... .......... .......... .......... 9% 51.2M 78s\n", + "145400K .......... .......... .......... .......... .......... 9% 45.6M 78s\n", + "145450K .......... .......... .......... .......... .......... 9% 51.9M 78s\n", + "145500K .......... .......... .......... .......... .......... 9% 51.7M 77s\n", + "145550K .......... .......... .......... .......... .......... 9% 48.8M 77s\n", + "145600K .......... .......... .......... .......... .......... 9% 44.5M 77s\n", + "145650K .......... .......... .......... .......... .......... 9% 53.9M 77s\n", + "145700K .......... .......... .......... .......... .......... 9% 53.2M 77s\n", + "145750K .......... .......... .......... .......... .......... 9% 49.3M 77s\n", + "145800K .......... .......... .......... .......... .......... 9% 46.4M 77s\n", + "145850K .......... .......... .......... .......... .......... 9% 54.1M 77s\n", + "145900K .......... .......... .......... .......... .......... 9% 53.0M 77s\n", + "145950K .......... .......... .......... .......... .......... 9% 52.7M 77s\n", + "146000K .......... .......... .......... .......... .......... 9% 43.1M 77s\n", + "146050K .......... .......... .......... .......... .......... 9% 53.1M 77s\n", + "146100K .......... .......... .......... .......... .......... 9% 53.0M 77s\n", + "146150K .......... .......... .......... .......... .......... 9% 10.2M 77s\n", + "146200K .......... .......... .......... .......... .......... 9% 16.7M 77s\n", + "146250K .......... .......... .......... .......... .......... 9% 50.9M 77s\n", + "146300K .......... .......... .......... .......... .......... 9% 48.5M 77s\n", + "146350K .......... .......... .......... .......... .......... 9% 50.6M 77s\n", + "146400K .......... .......... .......... .......... .......... 9% 42.2M 77s\n", + "146450K .......... .......... .......... .......... .......... 9% 51.0M 77s\n", + "146500K .......... .......... .......... .......... .......... 9% 51.1M 77s\n", + "146550K .......... .......... .......... .......... .......... 9% 50.9M 77s\n", + "146600K .......... .......... .......... .......... .......... 9% 1.18M 78s\n", + "146650K .......... .......... .......... .......... .......... 9% 43.4M 77s\n", + "146700K .......... .......... .......... .......... .......... 9% 50.8M 77s\n", + "146750K .......... .......... .......... .......... .......... 9% 50.9M 77s\n", + "146800K .......... .......... .......... .......... .......... 9% 45.1M 77s\n", + "146850K .......... .......... .......... .......... .......... 9% 52.0M 77s\n", + "146900K .......... .......... .......... .......... .......... 9% 50.1M 77s\n", + "146950K .......... .......... .......... .......... .......... 9% 51.5M 77s\n", + "147000K .......... .......... .......... .......... .......... 9% 45.3M 77s\n", + "147050K .......... .......... .......... .......... .......... 9% 50.1M 77s\n", + "147100K .......... .......... .......... .......... .......... 9% 49.4M 77s\n", + "147150K .......... .......... .......... .......... .......... 9% 51.5M 77s\n", + "147200K .......... .......... .......... .......... .......... 9% 43.9M 77s\n", + "147250K .......... .......... .......... .......... .......... 9% 50.4M 77s\n", + "147300K .......... .......... .......... .......... .......... 9% 51.9M 77s\n", + "147350K .......... .......... .......... .......... .......... 9% 50.3M 77s\n", + "147400K .......... .......... .......... .......... .......... 9% 45.6M 77s\n", + "147450K .......... .......... .......... .......... .......... 9% 52.1M 77s\n", + "147500K .......... .......... .......... .......... .......... 9% 50.9M 77s\n", + "147550K .......... .......... .......... .......... .......... 9% 50.6M 77s\n", + "147600K .......... .......... .......... .......... .......... 9% 42.4M 77s\n", + "147650K .......... .......... .......... .......... .......... 9% 48.7M 77s\n", + "147700K .......... .......... .......... .......... .......... 9% 10.5M 77s\n", + "147750K .......... .......... .......... .......... .......... 9% 22.2M 77s\n", + "147800K .......... .......... .......... .......... .......... 9% 41.7M 77s\n", + "147850K .......... .......... .......... .......... .......... 9% 49.0M 77s\n", + "147900K .......... .......... .......... .......... .......... 9% 47.9M 77s\n", + "147950K .......... .......... .......... .......... .......... 9% 49.9M 77s\n", + "148000K .......... .......... .......... .......... .......... 9% 41.4M 77s\n", + "148050K .......... .......... .......... .......... .......... 9% 50.5M 77s\n", + "148100K .......... .......... .......... .......... .......... 9% 50.9M 77s\n", + "148150K .......... .......... .......... .......... .......... 9% 1.17M 77s\n", + "148200K .......... .......... .......... .......... .......... 9% 42.0M 77s\n", + "148250K .......... .......... .......... .......... .......... 9% 48.0M 77s\n", + "148300K .......... .......... .......... .......... .......... 9% 49.5M 77s\n", + "148350K .......... .......... .......... .......... .......... 9% 47.8M 77s\n", + "148400K .......... .......... .......... .......... .......... 9% 40.2M 77s\n", + "148450K .......... .......... .......... .......... .......... 9% 50.3M 77s\n", + "148500K .......... .......... .......... .......... .......... 9% 50.7M 77s\n", + "148550K .......... .......... .......... .......... .......... 9% 48.8M 77s\n", + "148600K .......... .......... .......... .......... .......... 9% 42.3M 77s\n", + "148650K .......... .......... .......... .......... .......... 9% 48.4M 77s\n", + "148700K .......... .......... .......... .......... .......... 9% 49.8M 77s\n", + "148750K .......... .......... .......... .......... .......... 9% 48.4M 77s\n", + "148800K .......... .......... .......... .......... .......... 9% 42.0M 77s\n", + "148850K .......... .......... .......... .......... .......... 9% 48.3M 77s\n", + "148900K .......... .......... .......... .......... .......... 9% 50.2M 77s\n", + "148950K .......... .......... .......... .......... .......... 9% 48.1M 77s\n", + "149000K .......... .......... .......... .......... .......... 9% 42.5M 77s\n", + "149050K .......... .......... .......... .......... .......... 9% 48.0M 77s\n", + "149100K .......... .......... .......... .......... .......... 9% 48.4M 77s\n", + "149150K .......... .......... .......... .......... .......... 9% 48.4M 77s\n", + "149200K .......... .......... .......... .......... .......... 9% 12.9M 77s\n", + "149250K .......... .......... .......... .......... .......... 9% 24.7M 77s\n", + "149300K .......... .......... .......... .......... .......... 9% 46.6M 77s\n", + "149350K .......... .......... .......... .......... .......... 9% 47.6M 77s\n", + "149400K .......... .......... .......... .......... .......... 9% 43.6M 77s\n", + "149450K .......... .......... .......... .......... .......... 9% 51.1M 77s\n", + "149500K .......... .......... .......... .......... .......... 9% 47.7M 77s\n", + "149550K .......... .......... .......... .......... .......... 9% 49.7M 77s\n", + "149600K .......... .......... .......... .......... .......... 9% 42.7M 77s\n", + "149650K .......... .......... .......... .......... .......... 9% 1.16M 77s\n", + "149700K .......... .......... .......... .......... .......... 9% 42.0M 77s\n", + "149750K .......... .......... .......... .......... .......... 9% 45.9M 77s\n", + "149800K .......... .......... .......... .......... .......... 9% 40.2M 77s\n", + "149850K .......... .......... .......... .......... .......... 9% 43.4M 77s\n", + "149900K .......... .......... .......... .......... .......... 9% 49.5M 77s\n", + "149950K .......... .......... .......... .......... .......... 9% 51.1M 77s\n", + "150000K .......... .......... .......... .......... .......... 9% 44.1M 77s\n", + "150050K .......... .......... .......... .......... .......... 9% 50.9M 77s\n", + "150100K .......... .......... .......... .......... .......... 9% 51.0M 77s\n", + "150150K .......... .......... .......... .......... .......... 9% 50.3M 77s\n", + "150200K .......... .......... .......... .......... .......... 9% 44.4M 77s\n", + "150250K .......... .......... .......... .......... .......... 9% 50.4M 77s\n", + "150300K .......... .......... .......... .......... .......... 9% 52.0M 77s\n", + "150350K .......... .......... .......... .......... .......... 9% 51.1M 77s\n", + "150400K .......... .......... .......... .......... .......... 9% 44.5M 77s\n", + "150450K .......... .......... .......... .......... .......... 9% 49.1M 77s\n", + "150500K .......... .......... .......... .......... .......... 9% 51.0M 77s\n", + "150550K .......... .......... .......... .......... .......... 9% 50.3M 77s\n", + "150600K .......... .......... .......... .......... .......... 9% 45.5M 77s\n", + "150650K .......... .......... .......... .......... .......... 9% 50.4M 77s\n", + "150700K .......... .......... .......... .......... .......... 9% 52.7M 77s\n", + "150750K .......... .......... .......... .......... .......... 9% 13.6M 77s\n", + "150800K .......... .......... .......... .......... .......... 9% 20.9M 77s\n", + "150850K .......... .......... .......... .......... .......... 9% 50.7M 77s\n", + "150900K .......... .......... .......... .......... .......... 9% 50.1M 77s\n", + "150950K .......... .......... .......... .......... .......... 9% 52.6M 77s\n", + "151000K .......... .......... .......... .......... .......... 9% 44.0M 77s\n", + "151050K .......... .......... .......... .......... .......... 9% 51.2M 77s\n", + "151100K .......... .......... .......... .......... .......... 9% 52.2M 77s\n", + "151150K .......... .......... .......... .......... .......... 9% 50.9M 77s\n", + "151200K .......... .......... .......... .......... .......... 9% 1.15M 77s\n", + "151250K .......... .......... .......... .......... .......... 9% 47.3M 77s\n", + "151300K .......... .......... .......... .......... .......... 9% 52.7M 77s\n", + "151350K .......... .......... .......... .......... .......... 9% 51.9M 77s\n", + "151400K .......... .......... .......... .......... .......... 9% 44.0M 77s\n", + "151450K .......... .......... .......... .......... .......... 9% 54.5M 77s\n", + "151500K .......... .......... .......... .......... .......... 9% 53.9M 77s\n", + "151550K .......... .......... .......... .......... .......... 9% 54.7M 77s\n", + "151600K .......... .......... .......... .......... .......... 9% 44.7M 77s\n", + "151650K .......... .......... .......... .......... .......... 9% 52.2M 77s\n", + "151700K .......... .......... .......... .......... .......... 9% 49.7M 77s\n", + "151750K .......... .......... .......... .......... .......... 9% 52.5M 77s\n", + "151800K .......... .......... .......... .......... .......... 9% 44.6M 77s\n", + "151850K .......... .......... .......... .......... .......... 9% 52.2M 77s\n", + "151900K .......... .......... .......... .......... .......... 9% 53.2M 77s\n", + "151950K .......... .......... .......... .......... .......... 9% 52.0M 77s\n", + "152000K .......... .......... .......... .......... .......... 9% 42.1M 77s\n", + "152050K .......... .......... .......... .......... .......... 9% 52.4M 77s\n", + "152100K .......... .......... .......... .......... .......... 9% 53.4M 77s\n", + "152150K .......... .......... .......... .......... .......... 9% 52.0M 77s\n", + "152200K .......... .......... .......... .......... .......... 9% 44.1M 77s\n", + "152250K .......... .......... .......... .......... .......... 9% 13.4M 77s\n", + "152300K .......... .......... .......... .......... .......... 9% 26.1M 77s\n", + "152350K .......... .......... .......... .......... .......... 9% 22.7M 77s\n", + "152400K .......... .......... .......... .......... .......... 9% 43.0M 77s\n", + "152450K .......... .......... .......... .......... .......... 9% 50.4M 77s\n", + "152500K .......... .......... .......... .......... .......... 9% 53.6M 77s\n", + "152550K .......... .......... .......... .......... .......... 9% 52.2M 77s\n", + "152600K .......... .......... .......... .......... .......... 9% 43.6M 77s\n", + "152650K .......... .......... .......... .......... .......... 9% 52.8M 77s\n", + "152700K .......... .......... .......... .......... .......... 9% 1.15M 77s\n", + "152750K .......... .......... .......... .......... .......... 9% 49.8M 77s\n", + "152800K .......... .......... .......... .......... .......... 9% 42.5M 77s\n", + "152850K .......... .......... .......... .......... .......... 9% 49.7M 77s\n", + "152900K .......... .......... .......... .......... .......... 9% 48.4M 77s\n", + "152950K .......... .......... .......... .......... .......... 9% 50.9M 77s\n", + "153000K .......... .......... .......... .......... .......... 9% 42.6M 77s\n", + "153050K .......... .......... .......... .......... .......... 9% 49.5M 77s\n", + "153100K .......... .......... .......... .......... .......... 9% 49.3M 77s\n", + "153150K .......... .......... .......... .......... .......... 9% 51.1M 77s\n", + "153200K .......... .......... .......... .......... .......... 9% 43.6M 77s\n", + "153250K .......... .......... .......... .......... .......... 9% 51.3M 77s\n", + "153300K .......... .......... .......... .......... .......... 9% 48.6M 77s\n", + "153350K .......... .......... .......... .......... .......... 9% 51.7M 77s\n", + "153400K .......... .......... .......... .......... .......... 9% 44.6M 77s\n", + "153450K .......... .......... .......... .......... .......... 9% 51.1M 77s\n", + "153500K .......... .......... .......... .......... .......... 9% 50.0M 77s\n", + "153550K .......... .......... .......... .......... .......... 9% 52.1M 77s\n", + "153600K .......... .......... .......... .......... .......... 9% 42.8M 77s\n", + "153650K .......... .......... .......... .......... .......... 9% 52.0M 77s\n", + "153700K .......... .......... .......... .......... .......... 9% 50.3M 77s\n", + "153750K .......... .......... .......... .......... .......... 9% 52.2M 77s\n", + "153800K .......... .......... .......... .......... .......... 9% 12.3M 77s\n", + "153850K .......... .......... .......... .......... .......... 9% 24.7M 77s\n", + "153900K .......... .......... .......... .......... .......... 9% 49.0M 77s\n", + "153950K .......... .......... .......... .......... .......... 9% 48.5M 76s\n", + "154000K .......... .......... .......... .......... .......... 9% 43.1M 76s\n", + "154050K .......... .......... .......... .......... .......... 9% 50.8M 76s\n", + "154100K .......... .......... .......... .......... .......... 9% 47.7M 76s\n", + "154150K .......... .......... .......... .......... .......... 9% 50.8M 76s\n", + "154200K .......... .......... .......... .......... .......... 9% 44.3M 76s\n", + "154250K .......... .......... .......... .......... .......... 9% 1.16M 77s\n", + "154300K .......... .......... .......... .......... .......... 9% 49.4M 77s\n", + "154350K .......... .......... .......... .......... .......... 9% 49.8M 77s\n", + "154400K .......... .......... .......... .......... .......... 9% 42.5M 77s\n", + "154450K .......... .......... .......... .......... .......... 9% 50.0M 77s\n", + "154500K .......... .......... .......... .......... .......... 9% 51.5M 77s\n", + "154550K .......... .......... .......... .......... .......... 9% 52.6M 77s\n", + "154600K .......... .......... .......... .......... .......... 9% 43.6M 77s\n", + "154650K .......... .......... .......... .......... .......... 9% 50.1M 77s\n", + "154700K .......... .......... .......... .......... .......... 9% 51.9M 77s\n", + "154750K .......... .......... .......... .......... .......... 9% 51.6M 77s\n", + "154800K .......... .......... .......... .......... .......... 9% 43.3M 77s\n", + "154850K .......... .......... .......... .......... .......... 9% 51.2M 77s\n", + "154900K .......... .......... .......... .......... .......... 9% 52.3M 77s\n", + "154950K .......... .......... .......... .......... .......... 9% 50.1M 77s\n", + "155000K .......... .......... .......... .......... .......... 9% 44.5M 76s\n", + "155050K .......... .......... .......... .......... .......... 9% 51.1M 76s\n", + "155100K .......... .......... .......... .......... .......... 9% 51.3M 76s\n", + "155150K .......... .......... .......... .......... .......... 9% 51.3M 76s\n", + "155200K .......... .......... .......... .......... .......... 9% 44.1M 76s\n", + "155250K .......... .......... .......... .......... .......... 9% 51.2M 76s\n", + "155300K .......... .......... .......... .......... .......... 9% 11.3M 76s\n", + "155350K .......... .......... .......... .......... .......... 9% 21.9M 76s\n", + "155400K .......... .......... .......... .......... .......... 9% 43.5M 76s\n", + "155450K .......... .......... .......... .......... .......... 9% 50.2M 76s\n", + "155500K .......... .......... .......... .......... .......... 9% 51.1M 76s\n", + "155550K .......... .......... .......... .......... .......... 9% 51.1M 76s\n", + "155600K .......... .......... .......... .......... .......... 9% 41.7M 76s\n", + "155650K .......... .......... .......... .......... .......... 9% 50.2M 76s\n", + "155700K .......... .......... .......... .......... .......... 9% 48.9M 76s\n", + "155750K .......... .......... .......... .......... .......... 9% 1.15M 77s\n", + "155800K .......... .......... .......... .......... .......... 9% 42.2M 77s\n", + "155850K .......... .......... .......... .......... .......... 9% 50.3M 77s\n", + "155900K .......... .......... .......... .......... .......... 9% 46.8M 77s\n", + "155950K .......... .......... .......... .......... .......... 9% 48.0M 77s\n", + "156000K .......... .......... .......... .......... .......... 9% 43.5M 77s\n", + "156050K .......... .......... .......... .......... .......... 9% 51.4M 77s\n", + "156100K .......... .......... .......... .......... .......... 9% 51.1M 77s\n", + "156150K .......... .......... .......... .......... .......... 9% 50.7M 76s\n", + "156200K .......... .......... .......... .......... .......... 9% 44.6M 76s\n", + "156250K .......... .......... .......... .......... .......... 9% 51.9M 76s\n", + "156300K .......... .......... .......... .......... .......... 9% 48.6M 76s\n", + "156350K .......... .......... .......... .......... .......... 9% 51.2M 76s\n", + "156400K .......... .......... .......... .......... .......... 9% 44.0M 76s\n", + "156450K .......... .......... .......... .......... .......... 9% 51.3M 76s\n", + "156500K .......... .......... .......... .......... .......... 9% 48.3M 76s\n", + "156550K .......... .......... .......... .......... .......... 9% 52.3M 76s\n", + "156600K .......... .......... .......... .......... .......... 9% 45.1M 76s\n", + "156650K .......... .......... .......... .......... .......... 9% 50.7M 76s\n", + "156700K .......... .......... .......... .......... .......... 9% 50.6M 76s\n", + "156750K .......... .......... .......... .......... .......... 10% 52.1M 76s\n", + "156800K .......... .......... .......... .......... .......... 10% 21.3M 76s\n", + "156850K .......... .......... .......... .......... .......... 10% 22.5M 76s\n", + "156900K .......... .......... .......... .......... .......... 10% 19.5M 76s\n", + "156950K .......... .......... .......... .......... .......... 10% 47.5M 76s\n", + "157000K .......... .......... .......... .......... .......... 10% 41.7M 76s\n", + "157050K .......... .......... .......... .......... .......... 10% 50.6M 76s\n", + "157100K .......... .......... .......... .......... .......... 10% 49.4M 76s\n", + "157150K .......... .......... .......... .......... .......... 10% 50.5M 76s\n", + "157200K .......... .......... .......... .......... .......... 10% 42.4M 76s\n", + "157250K .......... .......... .......... .......... .......... 10% 51.6M 76s\n", + "157300K .......... .......... .......... .......... .......... 10% 1.16M 76s\n", + "157350K .......... .......... .......... .......... .......... 10% 49.0M 76s\n", + "157400K .......... .......... .......... .......... .......... 10% 41.3M 76s\n", + "157450K .......... .......... .......... .......... .......... 10% 48.3M 76s\n", + "157500K .......... .......... .......... .......... .......... 10% 50.9M 76s\n", + "157550K .......... .......... .......... .......... .......... 10% 47.5M 76s\n", + "157600K .......... .......... .......... .......... .......... 10% 42.0M 76s\n", + "157650K .......... .......... .......... .......... .......... 10% 48.5M 76s\n", + "157700K .......... .......... .......... .......... .......... 10% 49.9M 76s\n", + "157750K .......... .......... .......... .......... .......... 10% 47.8M 76s\n", + "157800K .......... .......... .......... .......... .......... 10% 41.3M 76s\n", + "157850K .......... .......... .......... .......... .......... 10% 49.7M 76s\n", + "157900K .......... .......... .......... .......... .......... 10% 50.9M 76s\n", + "157950K .......... .......... .......... .......... .......... 10% 47.4M 76s\n", + "158000K .......... .......... .......... .......... .......... 10% 40.9M 76s\n", + "158050K .......... .......... .......... .......... .......... 10% 49.0M 76s\n", + "158100K .......... .......... .......... .......... .......... 10% 47.7M 76s\n", + "158150K .......... .......... .......... .......... .......... 10% 49.9M 76s\n", + "158200K .......... .......... .......... .......... .......... 10% 41.8M 76s\n", + "158250K .......... .......... .......... .......... .......... 10% 49.2M 76s\n", + "158300K .......... .......... .......... .......... .......... 10% 49.0M 76s\n", + "158350K .......... .......... .......... .......... .......... 10% 41.6M 76s\n", + "158400K .......... .......... .......... .......... .......... 10% 14.2M 76s\n", + "158450K .......... .......... .......... .......... .......... 10% 29.5M 76s\n", + "158500K .......... .......... .......... .......... .......... 10% 49.2M 76s\n", + "158550K .......... .......... .......... .......... .......... 10% 50.3M 76s\n", + "158600K .......... .......... .......... .......... .......... 10% 42.1M 76s\n", + "158650K .......... .......... .......... .......... .......... 10% 49.6M 76s\n", + "158700K .......... .......... .......... .......... .......... 10% 51.7M 76s\n", + "158750K .......... .......... .......... .......... .......... 10% 51.2M 76s\n", + "158800K .......... .......... .......... .......... .......... 10% 1.14M 76s\n", + "158850K .......... .......... .......... .......... .......... 10% 48.8M 76s\n", + "158900K .......... .......... .......... .......... .......... 10% 46.4M 76s\n", + "158950K .......... .......... .......... .......... .......... 10% 47.0M 76s\n", + "159000K .......... .......... .......... .......... .......... 10% 42.4M 76s\n", + "159050K .......... .......... .......... .......... .......... 10% 49.3M 76s\n", + "159100K .......... .......... .......... .......... .......... 10% 47.4M 76s\n", + "159150K .......... .......... .......... .......... .......... 10% 49.8M 76s\n", + "159200K .......... .......... .......... .......... .......... 10% 42.8M 76s\n", + "159250K .......... .......... .......... .......... .......... 10% 48.9M 76s\n", + "159300K .......... .......... .......... .......... .......... 10% 50.0M 76s\n", + "159350K .......... .......... .......... .......... .......... 10% 49.5M 76s\n", + "159400K .......... .......... .......... .......... .......... 10% 44.1M 76s\n", + "159450K .......... .......... .......... .......... .......... 10% 47.7M 76s\n", + "159500K .......... .......... .......... .......... .......... 10% 49.0M 76s\n", + "159550K .......... .......... .......... .......... .......... 10% 47.9M 76s\n", + "159600K .......... .......... .......... .......... .......... 10% 41.8M 76s\n", + "159650K .......... .......... .......... .......... .......... 10% 50.0M 76s\n", + "159700K .......... .......... .......... .......... .......... 10% 48.9M 76s\n", + "159750K .......... .......... .......... .......... .......... 10% 48.7M 76s\n", + "159800K .......... .......... .......... .......... .......... 10% 43.9M 76s\n", + "159850K .......... .......... .......... .......... .......... 10% 51.1M 76s\n", + "159900K .......... .......... .......... .......... .......... 10% 18.3M 76s\n", + "159950K .......... .......... .......... .......... .......... 10% 20.2M 76s\n", + "160000K .......... .......... .......... .......... .......... 10% 41.2M 76s\n", + "160050K .......... .......... .......... .......... .......... 10% 50.8M 76s\n", + "160100K .......... .......... .......... .......... .......... 10% 51.1M 76s\n", + "160150K .......... .......... .......... .......... .......... 10% 47.1M 76s\n", + "160200K .......... .......... .......... .......... .......... 10% 44.5M 76s\n", + "160250K .......... .......... .......... .......... .......... 10% 51.6M 76s\n", + "160300K .......... .......... .......... .......... .......... 10% 50.9M 76s\n", + "160350K .......... .......... .......... .......... .......... 10% 1.15M 76s\n", + "160400K .......... .......... .......... .......... .......... 10% 40.0M 76s\n", + "160450K .......... .......... .......... .......... .......... 10% 44.1M 76s\n", + "160500K .......... .......... .......... .......... .......... 10% 48.2M 76s\n", + "160550K .......... .......... .......... .......... .......... 10% 50.2M 76s\n", + "160600K .......... .......... .......... .......... .......... 10% 40.7M 76s\n", + "160650K .......... .......... .......... .......... .......... 10% 45.9M 76s\n", + "160700K .......... .......... .......... .......... .......... 10% 47.9M 76s\n", + "160750K .......... .......... .......... .......... .......... 10% 50.4M 76s\n", + "160800K .......... .......... .......... .......... .......... 10% 42.1M 76s\n", + "160850K .......... .......... .......... .......... .......... 10% 46.1M 76s\n", + "160900K .......... .......... .......... .......... .......... 10% 51.9M 76s\n", + "160950K .......... .......... .......... .......... .......... 10% 50.1M 76s\n", + "161000K .......... .......... .......... .......... .......... 10% 43.9M 76s\n", + "161050K .......... .......... .......... .......... .......... 10% 48.6M 76s\n", + "161100K .......... .......... .......... .......... .......... 10% 51.5M 76s\n", + "161150K .......... .......... .......... .......... .......... 10% 52.1M 76s\n", + "161200K .......... .......... .......... .......... .......... 10% 44.3M 76s\n", + "161250K .......... .......... .......... .......... .......... 10% 50.4M 76s\n", + "161300K .......... .......... .......... .......... .......... 10% 52.7M 76s\n", + "161350K .......... .......... .......... .......... .......... 10% 50.7M 76s\n", + "161400K .......... .......... .......... .......... .......... 10% 29.8M 76s\n", + "161450K .......... .......... .......... .......... .......... 10% 15.9M 76s\n", + "161500K .......... .......... .......... .......... .......... 10% 26.5M 76s\n", + "161550K .......... .......... .......... .......... .......... 10% 52.1M 76s\n", + "161600K .......... .......... .......... .......... .......... 10% 43.3M 76s\n", + "161650K .......... .......... .......... .......... .......... 10% 50.5M 76s\n", + "161700K .......... .......... .......... .......... .......... 10% 50.0M 76s\n", + "161750K .......... .......... .......... .......... .......... 10% 50.2M 76s\n", + "161800K .......... .......... .......... .......... .......... 10% 41.5M 76s\n", + "161850K .......... .......... .......... .......... .......... 10% 1.16M 76s\n", + "161900K .......... .......... .......... .......... .......... 10% 45.7M 76s\n", + "161950K .......... .......... .......... .......... .......... 10% 49.8M 76s\n", + "162000K .......... .......... .......... .......... .......... 10% 41.2M 76s\n", + "162050K .......... .......... .......... .......... .......... 10% 50.8M 76s\n", + "162100K .......... .......... .......... .......... .......... 10% 51.9M 76s\n", + "162150K .......... .......... .......... .......... .......... 10% 49.6M 76s\n", + "162200K .......... .......... .......... .......... .......... 10% 43.0M 76s\n", + "162250K .......... .......... .......... .......... .......... 10% 52.8M 76s\n", + "162300K .......... .......... .......... .......... .......... 10% 53.4M 76s\n", + "162350K .......... .......... .......... .......... .......... 10% 51.4M 76s\n", + "162400K .......... .......... .......... .......... .......... 10% 41.1M 76s\n", + "162450K .......... .......... .......... .......... .......... 10% 51.4M 76s\n", + "162500K .......... .......... .......... .......... .......... 10% 52.1M 76s\n", + "162550K .......... .......... .......... .......... .......... 10% 52.1M 76s\n", + "162600K .......... .......... .......... .......... .......... 10% 43.3M 76s\n", + "162650K .......... .......... .......... .......... .......... 10% 50.3M 76s\n", + "162700K .......... .......... .......... .......... .......... 10% 52.0M 76s\n", + "162750K .......... .......... .......... .......... .......... 10% 51.6M 76s\n", + "162800K .......... .......... .......... .......... .......... 10% 43.2M 76s\n", + "162850K .......... .......... .......... .......... .......... 10% 49.1M 76s\n", + "162900K .......... .......... .......... .......... .......... 10% 50.8M 76s\n", + "162950K .......... .......... .......... .......... .......... 10% 14.8M 76s\n", + "163000K .......... .......... .......... .......... .......... 10% 17.1M 76s\n", + "163050K .......... .......... .......... .......... .......... 10% 37.4M 76s\n", + "163100K .......... .......... .......... .......... .......... 10% 50.4M 76s\n", + "163150K .......... .......... .......... .......... .......... 10% 50.0M 76s\n", + "163200K .......... .......... .......... .......... .......... 10% 43.0M 76s\n", + "163250K .......... .......... .......... .......... .......... 10% 51.0M 76s\n", + "163300K .......... .......... .......... .......... .......... 10% 49.4M 76s\n", + "163350K .......... .......... .......... .......... .......... 10% 50.1M 76s\n", + "163400K .......... .......... .......... .......... .......... 10% 1.16M 76s\n", + "163450K .......... .......... .......... .......... .......... 10% 49.5M 76s\n", + "163500K .......... .......... .......... .......... .......... 10% 48.3M 76s\n", + "163550K .......... .......... .......... .......... .......... 10% 47.9M 76s\n", + "163600K .......... .......... .......... .......... .......... 10% 43.0M 76s\n", + "163650K .......... .......... .......... .......... .......... 10% 51.4M 76s\n", + "163700K .......... .......... .......... .......... .......... 10% 49.8M 76s\n", + "163750K .......... .......... .......... .......... .......... 10% 49.3M 76s\n", + "163800K .......... .......... .......... .......... .......... 10% 44.5M 76s\n", + "163850K .......... .......... .......... .......... .......... 10% 51.8M 76s\n", + "163900K .......... .......... .......... .......... .......... 10% 50.0M 76s\n", + "163950K .......... .......... .......... .......... .......... 10% 49.7M 76s\n", + "164000K .......... .......... .......... .......... .......... 10% 43.9M 76s\n", + "164050K .......... .......... .......... .......... .......... 10% 51.8M 76s\n", + "164100K .......... .......... .......... .......... .......... 10% 49.8M 76s\n", + "164150K .......... .......... .......... .......... .......... 10% 52.2M 76s\n", + "164200K .......... .......... .......... .......... .......... 10% 42.8M 76s\n", + "164250K .......... .......... .......... .......... .......... 10% 51.6M 76s\n", + "164300K .......... .......... .......... .......... .......... 10% 49.8M 76s\n", + "164350K .......... .......... .......... .......... .......... 10% 52.1M 76s\n", + "164400K .......... .......... .......... .......... .......... 10% 41.8M 76s\n", + "164450K .......... .......... .......... .......... .......... 10% 15.5M 76s\n", + "164500K .......... .......... .......... .......... .......... 10% 24.7M 76s\n", + "164550K .......... .......... .......... .......... .......... 10% 26.8M 76s\n", + "164600K .......... .......... .......... .......... .......... 10% 35.3M 76s\n", + "164650K .......... .......... .......... .......... .......... 10% 48.9M 76s\n", + "164700K .......... .......... .......... .......... .......... 10% 49.8M 76s\n", + "164750K .......... .......... .......... .......... .......... 10% 51.1M 76s\n", + "164800K .......... .......... .......... .......... .......... 10% 44.2M 75s\n", + "164850K .......... .......... .......... .......... .......... 10% 49.7M 75s\n", + "164900K .......... .......... .......... .......... .......... 10% 1.16M 76s\n", + "164950K .......... .......... .......... .......... .......... 10% 48.4M 76s\n", + "165000K .......... .......... .......... .......... .......... 10% 42.9M 76s\n", + "165050K .......... .......... .......... .......... .......... 10% 48.0M 76s\n", + "165100K .......... .......... .......... .......... .......... 10% 48.5M 76s\n", + "165150K .......... .......... .......... .......... .......... 10% 49.3M 76s\n", + "165200K .......... .......... .......... .......... .......... 10% 42.6M 76s\n", + "165250K .......... .......... .......... .......... .......... 10% 49.4M 76s\n", + "165300K .......... .......... .......... .......... .......... 10% 49.1M 76s\n", + "165350K .......... .......... .......... .......... .......... 10% 50.9M 76s\n", + "165400K .......... .......... .......... .......... .......... 10% 43.7M 76s\n", + "165450K .......... .......... .......... .......... .......... 10% 50.1M 76s\n", + "165500K .......... .......... .......... .......... .......... 10% 50.4M 76s\n", + "165550K .......... .......... .......... .......... .......... 10% 50.2M 76s\n", + "165600K .......... .......... .......... .......... .......... 10% 42.5M 76s\n", + "165650K .......... .......... .......... .......... .......... 10% 50.4M 76s\n", + "165700K .......... .......... .......... .......... .......... 10% 50.9M 76s\n", + "165750K .......... .......... .......... .......... .......... 10% 49.7M 76s\n", + "165800K .......... .......... .......... .......... .......... 10% 42.8M 75s\n", + "165850K .......... .......... .......... .......... .......... 10% 50.2M 75s\n", + "165900K .......... .......... .......... .......... .......... 10% 50.9M 75s\n", + "165950K .......... .......... .......... .......... .......... 10% 50.8M 75s\n", + "166000K .......... .......... .......... .......... .......... 10% 15.7M 75s\n", + "166050K .......... .......... .......... .......... .......... 10% 15.2M 75s\n", + "166100K .......... .......... .......... .......... .......... 10% 47.4M 75s\n", + "166150K .......... .......... .......... .......... .......... 10% 49.6M 75s\n", + "166200K .......... .......... .......... .......... .......... 10% 41.3M 75s\n", + "166250K .......... .......... .......... .......... .......... 10% 51.3M 75s\n", + "166300K .......... .......... .......... .......... .......... 10% 50.8M 75s\n", + "166350K .......... .......... .......... .......... .......... 10% 50.9M 75s\n", + "166400K .......... .......... .......... .......... .......... 10% 1.16M 76s\n", + "166450K .......... .......... .......... .......... .......... 10% 47.7M 76s\n", + "166500K .......... .......... .......... .......... .......... 10% 51.1M 76s\n", + "166550K .......... .......... .......... .......... .......... 10% 48.6M 76s\n", + "166600K .......... .......... .......... .......... .......... 10% 43.8M 76s\n", + "166650K .......... .......... .......... .......... .......... 10% 49.1M 76s\n", + "166700K .......... .......... .......... .......... .......... 10% 48.6M 76s\n", + "166750K .......... .......... .......... .......... .......... 10% 50.3M 76s\n", + "166800K .......... .......... .......... .......... .......... 10% 43.8M 76s\n", + "166850K .......... .......... .......... .......... .......... 10% 49.2M 76s\n", + "166900K .......... .......... .......... .......... .......... 10% 51.2M 76s\n", + "166950K .......... .......... .......... .......... .......... 10% 50.7M 75s\n", + "167000K .......... .......... .......... .......... .......... 10% 44.3M 75s\n", + "167050K .......... .......... .......... .......... .......... 10% 51.3M 75s\n", + "167100K .......... .......... .......... .......... .......... 10% 48.6M 75s\n", + "167150K .......... .......... .......... .......... .......... 10% 50.4M 75s\n", + "167200K .......... .......... .......... .......... .......... 10% 43.9M 75s\n", + "167250K .......... .......... .......... .......... .......... 10% 51.5M 75s\n", + "167300K .......... .......... .......... .......... .......... 10% 49.5M 75s\n", + "167350K .......... .......... .......... .......... .......... 10% 49.9M 75s\n", + "167400K .......... .......... .......... .......... .......... 10% 44.5M 75s\n", + "167450K .......... .......... .......... .......... .......... 10% 52.4M 75s\n", + "167500K .......... .......... .......... .......... .......... 10% 34.0M 75s\n", + "167550K .......... .......... .......... .......... .......... 10% 13.8M 75s\n", + "167600K .......... .......... .......... .......... .......... 10% 18.5M 75s\n", + "167650K .......... .......... .......... .......... .......... 10% 50.8M 75s\n", + "167700K .......... .......... .......... .......... .......... 10% 47.4M 75s\n", + "167750K .......... .......... .......... .......... .......... 10% 48.5M 75s\n", + "167800K .......... .......... .......... .......... .......... 10% 44.3M 75s\n", + "167850K .......... .......... .......... .......... .......... 10% 51.3M 75s\n", + "167900K .......... .......... .......... .......... .......... 10% 49.9M 75s\n", + "167950K .......... .......... .......... .......... .......... 10% 1.16M 76s\n", + "168000K .......... .......... .......... .......... .......... 10% 40.4M 76s\n", + "168050K .......... .......... .......... .......... .......... 10% 47.5M 76s\n", + "168100K .......... .......... .......... .......... .......... 10% 50.1M 75s\n", + "168150K .......... .......... .......... .......... .......... 10% 49.1M 75s\n", + "168200K .......... .......... .......... .......... .......... 10% 40.8M 75s\n", + "168250K .......... .......... .......... .......... .......... 10% 49.4M 75s\n", + "168300K .......... .......... .......... .......... .......... 10% 50.2M 75s\n", + "168350K .......... .......... .......... .......... .......... 10% 51.1M 75s\n", + "168400K .......... .......... .......... .......... .......... 10% 42.0M 75s\n", + "168450K .......... .......... .......... .......... .......... 10% 47.3M 75s\n", + "168500K .......... .......... .......... .......... .......... 10% 49.6M 75s\n", + "168550K .......... .......... .......... .......... .......... 10% 50.8M 75s\n", + "168600K .......... .......... .......... .......... .......... 10% 43.0M 75s\n", + "168650K .......... .......... .......... .......... .......... 10% 47.6M 75s\n", + "168700K .......... .......... .......... .......... .......... 10% 50.1M 75s\n", + "168750K .......... .......... .......... .......... .......... 10% 50.3M 75s\n", + "168800K .......... .......... .......... .......... .......... 10% 42.0M 75s\n", + "168850K .......... .......... .......... .......... .......... 10% 50.4M 75s\n", + "168900K .......... .......... .......... .......... .......... 10% 48.6M 75s\n", + "168950K .......... .......... .......... .......... .......... 10% 50.1M 75s\n", + "169000K .......... .......... .......... .......... .......... 10% 42.8M 75s\n", + "169050K .......... .......... .......... .......... .......... 10% 29.7M 75s\n", + "169100K .......... .......... .......... .......... .......... 10% 14.0M 75s\n", + "169150K .......... .......... .......... .......... .......... 10% 38.9M 75s\n", + "169200K .......... .......... .......... .......... .......... 10% 43.2M 75s\n", + "169250K .......... .......... .......... .......... .......... 10% 48.4M 75s\n", + "169300K .......... .......... .......... .......... .......... 10% 51.3M 75s\n", + "169350K .......... .......... .......... .......... .......... 10% 51.4M 75s\n", + "169400K .......... .......... .......... .......... .......... 10% 42.4M 75s\n", + "169450K .......... .......... .......... .......... .......... 10% 1.17M 75s\n", + "169500K .......... .......... .......... .......... .......... 10% 38.5M 75s\n", + "169550K .......... .......... .......... .......... .......... 10% 49.0M 75s\n", + "169600K .......... .......... .......... .......... .......... 10% 42.0M 75s\n", + "169650K .......... .......... .......... .......... .......... 10% 51.3M 75s\n", + "169700K .......... .......... .......... .......... .......... 10% 50.7M 75s\n", + "169750K .......... .......... .......... .......... .......... 10% 47.6M 75s\n", + "169800K .......... .......... .......... .......... .......... 10% 43.9M 75s\n", + "169850K .......... .......... .......... .......... .......... 10% 51.8M 75s\n", + "169900K .......... .......... .......... .......... .......... 10% 52.1M 75s\n", + "169950K .......... .......... .......... .......... .......... 10% 50.3M 75s\n", + "170000K .......... .......... .......... .......... .......... 10% 41.6M 75s\n", + "170050K .......... .......... .......... .......... .......... 10% 52.2M 75s\n", + "170100K .......... .......... .......... .......... .......... 10% 51.8M 75s\n", + "170150K .......... .......... .......... .......... .......... 10% 51.5M 75s\n", + "170200K .......... .......... .......... .......... .......... 10% 43.0M 75s\n", + "170250K .......... .......... .......... .......... .......... 10% 51.6M 75s\n", + "170300K .......... .......... .......... .......... .......... 10% 52.2M 75s\n", + "170350K .......... .......... .......... .......... .......... 10% 51.2M 75s\n", + "170400K .......... .......... .......... .......... .......... 10% 43.5M 75s\n", + "170450K .......... .......... .......... .......... .......... 10% 52.2M 75s\n", + "170500K .......... .......... .......... .......... .......... 10% 52.1M 75s\n", + "170550K .......... .......... .......... .......... .......... 10% 19.2M 75s\n", + "170600K .......... .......... .......... .......... .......... 10% 21.1M 75s\n", + "170650K .......... .......... .......... .......... .......... 10% 22.3M 75s\n", + "170700K .......... .......... .......... .......... .......... 10% 32.4M 75s\n", + "170750K .......... .......... .......... .......... .......... 10% 48.6M 75s\n", + "170800K .......... .......... .......... .......... .......... 10% 43.4M 75s\n", + "170850K .......... .......... .......... .......... .......... 10% 52.2M 75s\n", + "170900K .......... .......... .......... .......... .......... 10% 49.5M 75s\n", + "170950K .......... .......... .......... .......... .......... 10% 51.2M 75s\n", + "171000K .......... .......... .......... .......... .......... 10% 1.16M 75s\n", + "171050K .......... .......... .......... .......... .......... 10% 50.9M 75s\n", + "171100K .......... .......... .......... .......... .......... 10% 47.2M 75s\n", + "171150K .......... .......... .......... .......... .......... 10% 51.6M 75s\n", + "171200K .......... .......... .......... .......... .......... 10% 43.1M 75s\n", + "171250K .......... .......... .......... .......... .......... 10% 51.2M 75s\n", + "171300K .......... .......... .......... .......... .......... 10% 50.4M 75s\n", + "171350K .......... .......... .......... .......... .......... 10% 51.8M 75s\n", + "171400K .......... .......... .......... .......... .......... 10% 43.8M 75s\n", + "171450K .......... .......... .......... .......... .......... 10% 51.8M 75s\n", + "171500K .......... .......... .......... .......... .......... 10% 50.1M 75s\n", + "171550K .......... .......... .......... .......... .......... 10% 52.2M 75s\n", + "171600K .......... .......... .......... .......... .......... 10% 44.1M 75s\n", + "171650K .......... .......... .......... .......... .......... 10% 48.5M 75s\n", + "171700K .......... .......... .......... .......... .......... 10% 49.7M 75s\n", + "171750K .......... .......... .......... .......... .......... 10% 51.1M 75s\n", + "171800K .......... .......... .......... .......... .......... 10% 43.7M 75s\n", + "171850K .......... .......... .......... .......... .......... 10% 51.5M 75s\n", + "171900K .......... .......... .......... .......... .......... 10% 50.5M 75s\n", + "171950K .......... .......... .......... .......... .......... 10% 52.1M 75s\n", + "172000K .......... .......... .......... .......... .......... 10% 44.0M 75s\n", + "172050K .......... .......... .......... .......... .......... 10% 41.0M 75s\n", + "172100K .......... .......... .......... .......... .......... 10% 21.9M 75s\n", + "172150K .......... .......... .......... .......... .......... 10% 14.0M 75s\n", + "172200K .......... .......... .......... .......... .......... 10% 25.2M 75s\n", + "172250K .......... .......... .......... .......... .......... 10% 50.0M 75s\n", + "172300K .......... .......... .......... .......... .......... 10% 50.1M 75s\n", + "172350K .......... .......... .......... .......... .......... 10% 52.2M 75s\n", + "172400K .......... .......... .......... .......... .......... 10% 44.6M 75s\n", + "172450K .......... .......... .......... .......... .......... 11% 50.4M 75s\n", + "172500K .......... .......... .......... .......... .......... 11% 1.19M 75s\n", + "172550K .......... .......... .......... .......... .......... 11% 25.1M 75s\n", + "172600K .......... .......... .......... .......... .......... 11% 43.2M 75s\n", + "172650K .......... .......... .......... .......... .......... 11% 49.3M 75s\n", + "172700K .......... .......... .......... .......... .......... 11% 49.5M 75s\n", + "172750K .......... .......... .......... .......... .......... 11% 47.8M 75s\n", + "172800K .......... .......... .......... .......... .......... 11% 41.1M 75s\n", + "172850K .......... .......... .......... .......... .......... 11% 51.1M 75s\n", + "172900K .......... .......... .......... .......... .......... 11% 49.7M 75s\n", + "172950K .......... .......... .......... .......... .......... 11% 49.1M 75s\n", + "173000K .......... .......... .......... .......... .......... 11% 41.4M 75s\n", + "173050K .......... .......... .......... .......... .......... 11% 50.4M 75s\n", + "173100K .......... .......... .......... .......... .......... 11% 50.0M 75s\n", + "173150K .......... .......... .......... .......... .......... 11% 50.0M 75s\n", + "173200K .......... .......... .......... .......... .......... 11% 41.6M 75s\n", + "173250K .......... .......... .......... .......... .......... 11% 51.2M 75s\n", + "173300K .......... .......... .......... .......... .......... 11% 51.5M 75s\n", + "173350K .......... .......... .......... .......... .......... 11% 51.6M 75s\n", + "173400K .......... .......... .......... .......... .......... 11% 42.3M 75s\n", + "173450K .......... .......... .......... .......... .......... 11% 52.0M 75s\n", + "173500K .......... .......... .......... .......... .......... 11% 50.7M 75s\n", + "173550K .......... .......... .......... .......... .......... 11% 47.4M 75s\n", + "173600K .......... .......... .......... .......... .......... 11% 30.0M 75s\n", + "173650K .......... .......... .......... .......... .......... 11% 19.9M 75s\n", + "173700K .......... .......... .......... .......... .......... 11% 16.2M 75s\n", + "173750K .......... .......... .......... .......... .......... 11% 50.7M 75s\n", + "173800K .......... .......... .......... .......... .......... 11% 43.0M 75s\n", + "173850K .......... .......... .......... .......... .......... 11% 50.1M 75s\n", + "173900K .......... .......... .......... .......... .......... 11% 47.3M 75s\n", + "173950K .......... .......... .......... .......... .......... 11% 49.0M 75s\n", + "174000K .......... .......... .......... .......... .......... 11% 41.4M 75s\n", + "174050K .......... .......... .......... .......... .......... 11% 1.17M 75s\n", + "174100K .......... .......... .......... .......... .......... 11% 44.5M 75s\n", + "174150K .......... .......... .......... .......... .......... 11% 49.3M 75s\n", + "174200K .......... .......... .......... .......... .......... 11% 44.0M 75s\n", + "174250K .......... .......... .......... .......... .......... 11% 51.8M 75s\n", + "174300K .......... .......... .......... .......... .......... 11% 49.0M 75s\n", + "174350K .......... .......... .......... .......... .......... 11% 50.5M 75s\n", + "174400K .......... .......... .......... .......... .......... 11% 44.6M 75s\n", + "174450K .......... .......... .......... .......... .......... 11% 51.1M 75s\n", + "174500K .......... .......... .......... .......... .......... 11% 51.5M 75s\n", + "174550K .......... .......... .......... .......... .......... 11% 48.5M 75s\n", + "174600K .......... .......... .......... .......... .......... 11% 44.0M 75s\n", + "174650K .......... .......... .......... .......... .......... 11% 51.3M 75s\n", + "174700K .......... .......... .......... .......... .......... 11% 50.5M 75s\n", + "174750K .......... .......... .......... .......... .......... 11% 48.7M 75s\n", + "174800K .......... .......... .......... .......... .......... 11% 42.3M 75s\n", + "174850K .......... .......... .......... .......... .......... 11% 51.5M 75s\n", + "174900K .......... .......... .......... .......... .......... 11% 50.6M 75s\n", + "174950K .......... .......... .......... .......... .......... 11% 49.8M 75s\n", + "175000K .......... .......... .......... .......... .......... 11% 42.5M 75s\n", + "175050K .......... .......... .......... .......... .......... 11% 51.1M 75s\n", + "175100K .......... .......... .......... .......... .......... 11% 49.7M 75s\n", + "175150K .......... .......... .......... .......... .......... 11% 24.2M 75s\n", + "175200K .......... .......... .......... .......... .......... 11% 14.7M 75s\n", + "175250K .......... .......... .......... .......... .......... 11% 25.9M 75s\n", + "175300K .......... .......... .......... .......... .......... 11% 48.3M 75s\n", + "175350K .......... .......... .......... .......... .......... 11% 48.4M 75s\n", + "175400K .......... .......... .......... .......... .......... 11% 42.4M 75s\n", + "175450K .......... .......... .......... .......... .......... 11% 49.2M 75s\n", + "175500K .......... .......... .......... .......... .......... 11% 48.5M 75s\n", + "175550K .......... .......... .......... .......... .......... 11% 50.4M 75s\n", + "175600K .......... .......... .......... .......... .......... 11% 1.16M 75s\n", + "175650K .......... .......... .......... .......... .......... 11% 49.5M 75s\n", + "175700K .......... .......... .......... .......... .......... 11% 48.5M 75s\n", + "175750K .......... .......... .......... .......... .......... 11% 49.8M 75s\n", + "175800K .......... .......... .......... .......... .......... 11% 42.3M 75s\n", + "175850K .......... .......... .......... .......... .......... 11% 45.9M 75s\n", + "175900K .......... .......... .......... .......... .......... 11% 49.6M 75s\n", + "175950K .......... .......... .......... .......... .......... 11% 49.7M 75s\n", + "176000K .......... .......... .......... .......... .......... 11% 41.8M 75s\n", + "176050K .......... .......... .......... .......... .......... 11% 50.3M 75s\n", + "176100K .......... .......... .......... .......... .......... 11% 47.9M 75s\n", + "176150K .......... .......... .......... .......... .......... 11% 50.2M 75s\n", + "176200K .......... .......... .......... .......... .......... 11% 42.9M 75s\n", + "176250K .......... .......... .......... .......... .......... 11% 49.2M 75s\n", + "176300K .......... .......... .......... .......... .......... 11% 48.4M 75s\n", + "176350K .......... .......... .......... .......... .......... 11% 49.4M 75s\n", + "176400K .......... .......... .......... .......... .......... 11% 41.7M 75s\n", + "176450K .......... .......... .......... .......... .......... 11% 50.3M 75s\n", + "176500K .......... .......... .......... .......... .......... 11% 49.1M 75s\n", + "176550K .......... .......... .......... .......... .......... 11% 50.5M 75s\n", + "176600K .......... .......... .......... .......... .......... 11% 42.8M 75s\n", + "176650K .......... .......... .......... .......... .......... 11% 33.6M 75s\n", + "176700K .......... .......... .......... .......... .......... 11% 24.5M 75s\n", + "176750K .......... .......... .......... .......... .......... 11% 19.6M 75s\n", + "176800K .......... .......... .......... .......... .......... 11% 24.4M 75s\n", + "176850K .......... .......... .......... .......... .......... 11% 49.4M 75s\n", + "176900K .......... .......... .......... .......... .......... 11% 48.5M 74s\n", + "176950K .......... .......... .......... .......... .......... 11% 47.4M 74s\n", + "177000K .......... .......... .......... .......... .......... 11% 42.0M 74s\n", + "177050K .......... .......... .......... .......... .......... 11% 48.6M 74s\n", + "177100K .......... .......... .......... .......... .......... 11% 1.17M 75s\n", + "177150K .......... .......... .......... .......... .......... 11% 43.9M 75s\n", + "177200K .......... .......... .......... .......... .......... 11% 40.1M 75s\n", + "177250K .......... .......... .......... .......... .......... 11% 49.7M 75s\n", + "177300K .......... .......... .......... .......... .......... 11% 49.0M 75s\n", + "177350K .......... .......... .......... .......... .......... 11% 47.1M 75s\n", + "177400K .......... .......... .......... .......... .......... 11% 41.5M 75s\n", + "177450K .......... .......... .......... .......... .......... 11% 48.9M 75s\n", + "177500K .......... .......... .......... .......... .......... 11% 49.1M 75s\n", + "177550K .......... .......... .......... .......... .......... 11% 48.3M 75s\n", + "177600K .......... .......... .......... .......... .......... 11% 40.7M 75s\n", + "177650K .......... .......... .......... .......... .......... 11% 50.4M 75s\n", + "177700K .......... .......... .......... .......... .......... 11% 49.9M 75s\n", + "177750K .......... .......... .......... .......... .......... 11% 48.9M 75s\n", + "177800K .......... .......... .......... .......... .......... 11% 43.3M 75s\n", + "177850K .......... .......... .......... .......... .......... 11% 47.7M 75s\n", + "177900K .......... .......... .......... .......... .......... 11% 49.2M 75s\n", + "177950K .......... .......... .......... .......... .......... 11% 48.2M 74s\n", + "178000K .......... .......... .......... .......... .......... 11% 41.7M 74s\n", + "178050K .......... .......... .......... .......... .......... 11% 47.7M 74s\n", + "178100K .......... .......... .......... .......... .......... 11% 47.6M 74s\n", + "178150K .......... .......... .......... .......... .......... 11% 49.4M 74s\n", + "178200K .......... .......... .......... .......... .......... 11% 41.1M 74s\n", + "178250K .......... .......... .......... .......... .......... 11% 13.9M 74s\n", + "178300K .......... .......... .......... .......... .......... 11% 26.9M 74s\n", + "178350K .......... .......... .......... .......... .......... 11% 47.7M 74s\n", + "178400K .......... .......... .......... .......... .......... 11% 42.4M 74s\n", + "178450K .......... .......... .......... .......... .......... 11% 50.2M 74s\n", + "178500K .......... .......... .......... .......... .......... 11% 48.7M 74s\n", + "178550K .......... .......... .......... .......... .......... 11% 48.8M 74s\n", + "178600K .......... .......... .......... .......... .......... 11% 1.20M 75s\n", + "178650K .......... .......... .......... .......... .......... 11% 19.5M 75s\n", + "178700K .......... .......... .......... .......... .......... 11% 48.4M 75s\n", + "178750K .......... .......... .......... .......... .......... 11% 48.0M 75s\n", + "178800K .......... .......... .......... .......... .......... 11% 41.3M 75s\n", + "178850K .......... .......... .......... .......... .......... 11% 48.6M 75s\n", + "178900K .......... .......... .......... .......... .......... 11% 49.6M 75s\n", + "178950K .......... .......... .......... .......... .......... 11% 47.4M 75s\n", + "179000K .......... .......... .......... .......... .......... 11% 43.6M 75s\n", + "179050K .......... .......... .......... .......... .......... 11% 48.6M 74s\n", + "179100K .......... .......... .......... .......... .......... 11% 50.5M 74s\n", + "179150K .......... .......... .......... .......... .......... 11% 50.7M 74s\n", + "179200K .......... .......... .......... .......... .......... 11% 41.2M 74s\n", + "179250K .......... .......... .......... .......... .......... 11% 49.4M 74s\n", + "179300K .......... .......... .......... .......... .......... 11% 50.6M 74s\n", + "179350K .......... .......... .......... .......... .......... 11% 50.5M 74s\n", + "179400K .......... .......... .......... .......... .......... 11% 42.6M 74s\n", + "179450K .......... .......... .......... .......... .......... 11% 50.0M 74s\n", + "179500K .......... .......... .......... .......... .......... 11% 50.4M 74s\n", + "179550K .......... .......... .......... .......... .......... 11% 50.5M 74s\n", + "179600K .......... .......... .......... .......... .......... 11% 42.6M 74s\n", + "179650K .......... .......... .......... .......... .......... 11% 46.5M 74s\n", + "179700K .......... .......... .......... .......... .......... 11% 50.4M 74s\n", + "179750K .......... .......... .......... .......... .......... 11% 25.1M 74s\n", + "179800K .......... .......... .......... .......... .......... 11% 18.9M 74s\n", + "179850K .......... .......... .......... .......... .......... 11% 27.0M 74s\n", + "179900K .......... .......... .......... .......... .......... 11% 48.9M 74s\n", + "179950K .......... .......... .......... .......... .......... 11% 49.8M 74s\n", + "180000K .......... .......... .......... .......... .......... 11% 43.4M 74s\n", + "180050K .......... .......... .......... .......... .......... 11% 48.5M 74s\n", + "180100K .......... .......... .......... .......... .......... 11% 48.8M 74s\n", + "180150K .......... .......... .......... .......... .......... 11% 1.16M 74s\n", + "180200K .......... .......... .......... .......... .......... 11% 29.5M 74s\n", + "180250K .......... .......... .......... .......... .......... 11% 50.7M 74s\n", + "180300K .......... .......... .......... .......... .......... 11% 48.0M 74s\n", + "180350K .......... .......... .......... .......... .......... 11% 49.0M 74s\n", + "180400K .......... .......... .......... .......... .......... 11% 41.3M 74s\n", + "180450K .......... .......... .......... .......... .......... 11% 49.9M 74s\n", + "180500K .......... .......... .......... .......... .......... 11% 51.0M 74s\n", + "180550K .......... .......... .......... .......... .......... 11% 48.6M 74s\n", + "180600K .......... .......... .......... .......... .......... 11% 43.3M 74s\n", + "180650K .......... .......... .......... .......... .......... 11% 51.3M 74s\n", + "180700K .......... .......... .......... .......... .......... 11% 50.3M 74s\n", + "180750K .......... .......... .......... .......... .......... 11% 48.8M 74s\n", + "180800K .......... .......... .......... .......... .......... 11% 42.5M 74s\n", + "180850K .......... .......... .......... .......... .......... 11% 50.6M 74s\n", + "180900K .......... .......... .......... .......... .......... 11% 51.4M 74s\n", + "180950K .......... .......... .......... .......... .......... 11% 49.6M 74s\n", + "181000K .......... .......... .......... .......... .......... 11% 43.7M 74s\n", + "181050K .......... .......... .......... .......... .......... 11% 49.5M 74s\n", + "181100K .......... .......... .......... .......... .......... 11% 51.4M 74s\n", + "181150K .......... .......... .......... .......... .......... 11% 48.8M 74s\n", + "181200K .......... .......... .......... .......... .......... 11% 43.2M 74s\n", + "181250K .......... .......... .......... .......... .......... 11% 49.6M 74s\n", + "181300K .......... .......... .......... .......... .......... 11% 13.0M 74s\n", + "181350K .......... .......... .......... .......... .......... 11% 23.2M 74s\n", + "181400K .......... .......... .......... .......... .......... 11% 42.4M 74s\n", + "181450K .......... .......... .......... .......... .......... 11% 48.6M 74s\n", + "181500K .......... .......... .......... .......... .......... 11% 50.2M 74s\n", + "181550K .......... .......... .......... .......... .......... 11% 49.4M 74s\n", + "181600K .......... .......... .......... .......... .......... 11% 40.5M 74s\n", + "181650K .......... .......... .......... .......... .......... 11% 1.22M 74s\n", + "181700K .......... .......... .......... .......... .......... 11% 20.4M 74s\n", + "181750K .......... .......... .......... .......... .......... 11% 35.6M 74s\n", + "181800K .......... .......... .......... .......... .......... 11% 43.0M 74s\n", + "181850K .......... .......... .......... .......... .......... 11% 49.4M 74s\n", + "181900K .......... .......... .......... .......... .......... 11% 49.3M 74s\n", + "181950K .......... .......... .......... .......... .......... 11% 48.8M 74s\n", + "182000K .......... .......... .......... .......... .......... 11% 42.9M 74s\n", + "182050K .......... .......... .......... .......... .......... 11% 50.4M 74s\n", + "182100K .......... .......... .......... .......... .......... 11% 49.4M 74s\n", + "182150K .......... .......... .......... .......... .......... 11% 50.4M 74s\n", + "182200K .......... .......... .......... .......... .......... 11% 42.2M 74s\n", + "182250K .......... .......... .......... .......... .......... 11% 48.7M 74s\n", + "182300K .......... .......... .......... .......... .......... 11% 48.4M 74s\n", + "182350K .......... .......... .......... .......... .......... 11% 47.9M 74s\n", + "182400K .......... .......... .......... .......... .......... 11% 42.5M 74s\n", + "182450K .......... .......... .......... .......... .......... 11% 49.7M 74s\n", + "182500K .......... .......... .......... .......... .......... 11% 49.1M 74s\n", + "182550K .......... .......... .......... .......... .......... 11% 49.3M 74s\n", + "182600K .......... .......... .......... .......... .......... 11% 43.8M 74s\n", + "182650K .......... .......... .......... .......... .......... 11% 48.5M 74s\n", + "182700K .......... .......... .......... .......... .......... 11% 48.9M 74s\n", + "182750K .......... .......... .......... .......... .......... 11% 50.0M 74s\n", + "182800K .......... .......... .......... .......... .......... 11% 12.6M 74s\n", + "182850K .......... .......... .......... .......... .......... 11% 21.9M 74s\n", + "182900K .......... .......... .......... .......... .......... 11% 49.6M 74s\n", + "182950K .......... .......... .......... .......... .......... 11% 49.6M 74s\n", + "183000K .......... .......... .......... .......... .......... 11% 43.9M 74s\n", + "183050K .......... .......... .......... .......... .......... 11% 47.4M 74s\n", + "183100K .......... .......... .......... .......... .......... 11% 50.6M 74s\n", + "183150K .......... .......... .......... .......... .......... 11% 50.4M 74s\n", + "183200K .......... .......... .......... .......... .......... 11% 1.18M 74s\n", + "183250K .......... .......... .......... .......... .......... 11% 30.4M 74s\n", + "183300K .......... .......... .......... .......... .......... 11% 49.4M 74s\n", + "183350K .......... .......... .......... .......... .......... 11% 50.8M 74s\n", + "183400K .......... .......... .......... .......... .......... 11% 43.3M 74s\n", + "183450K .......... .......... .......... .......... .......... 11% 48.9M 74s\n", + "183500K .......... .......... .......... .......... .......... 11% 51.5M 74s\n", + "183550K .......... .......... .......... .......... .......... 11% 50.9M 74s\n", + "183600K .......... .......... .......... .......... .......... 11% 42.1M 74s\n", + "183650K .......... .......... .......... .......... .......... 11% 50.3M 74s\n", + "183700K .......... .......... .......... .......... .......... 11% 48.5M 74s\n", + "183750K .......... .......... .......... .......... .......... 11% 51.6M 74s\n", + "183800K .......... .......... .......... .......... .......... 11% 43.3M 74s\n", + "183850K .......... .......... .......... .......... .......... 11% 50.9M 74s\n", + "183900K .......... .......... .......... .......... .......... 11% 50.8M 74s\n", + "183950K .......... .......... .......... .......... .......... 11% 49.7M 74s\n", + "184000K .......... .......... .......... .......... .......... 11% 42.4M 74s\n", + "184050K .......... .......... .......... .......... .......... 11% 51.1M 74s\n", + "184100K .......... .......... .......... .......... .......... 11% 50.8M 74s\n", + "184150K .......... .......... .......... .......... .......... 11% 50.5M 74s\n", + "184200K .......... .......... .......... .......... .......... 11% 41.7M 74s\n", + "184250K .......... .......... .......... .......... .......... 11% 50.8M 74s\n", + "184300K .......... .......... .......... .......... .......... 11% 51.2M 74s\n", + "184350K .......... .......... .......... .......... .......... 11% 12.0M 74s\n", + "184400K .......... .......... .......... .......... .......... 11% 22.5M 74s\n", + "184450K .......... .......... .......... .......... .......... 11% 51.7M 74s\n", + "184500K .......... .......... .......... .......... .......... 11% 52.4M 74s\n", + "184550K .......... .......... .......... .......... .......... 11% 48.4M 74s\n", + "184600K .......... .......... .......... .......... .......... 11% 41.9M 74s\n", + "184650K .......... .......... .......... .......... .......... 11% 49.1M 74s\n", + "184700K .......... .......... .......... .......... .......... 11% 1.22M 74s\n", + "184750K .......... .......... .......... .......... .......... 11% 25.2M 74s\n", + "184800K .......... .......... .......... .......... .......... 11% 22.2M 74s\n", + "184850K .......... .......... .......... .......... .......... 11% 41.7M 74s\n", + "184900K .......... .......... .......... .......... .......... 11% 48.2M 74s\n", + "184950K .......... .......... .......... .......... .......... 11% 46.1M 74s\n", + "185000K .......... .......... .......... .......... .......... 11% 42.9M 74s\n", + "185050K .......... .......... .......... .......... .......... 11% 50.5M 74s\n", + "185100K .......... .......... .......... .......... .......... 11% 47.6M 74s\n", + "185150K .......... .......... .......... .......... .......... 11% 47.4M 74s\n", + "185200K .......... .......... .......... .......... .......... 11% 42.6M 74s\n", + "185250K .......... .......... .......... .......... .......... 11% 50.6M 74s\n", + "185300K .......... .......... .......... .......... .......... 11% 49.0M 74s\n", + "185350K .......... .......... .......... .......... .......... 11% 50.6M 74s\n", + "185400K .......... .......... .......... .......... .......... 11% 43.5M 74s\n", + "185450K .......... .......... .......... .......... .......... 11% 50.9M 74s\n", + "185500K .......... .......... .......... .......... .......... 11% 49.5M 74s\n", + "185550K .......... .......... .......... .......... .......... 11% 50.5M 74s\n", + "185600K .......... .......... .......... .......... .......... 11% 41.6M 74s\n", + "185650K .......... .......... .......... .......... .......... 11% 48.9M 74s\n", + "185700K .......... .......... .......... .......... .......... 11% 48.9M 74s\n", + "185750K .......... .......... .......... .......... .......... 11% 50.1M 74s\n", + "185800K .......... .......... .......... .......... .......... 11% 43.2M 74s\n", + "185850K .......... .......... .......... .......... .......... 11% 16.2M 74s\n", + "185900K .......... .......... .......... .......... .......... 11% 39.8M 74s\n", + "185950K .......... .......... .......... .......... .......... 11% 26.7M 74s\n", + "186000K .......... .......... .......... .......... .......... 11% 41.0M 74s\n", + "186050K .......... .......... .......... .......... .......... 11% 49.6M 74s\n", + "186100K .......... .......... .......... .......... .......... 11% 49.3M 74s\n", + "186150K .......... .......... .......... .......... .......... 11% 47.7M 74s\n", + "186200K .......... .......... .......... .......... .......... 11% 43.2M 74s\n", + "186250K .......... .......... .......... .......... .......... 11% 1.19M 74s\n", + "186300K .......... .......... .......... .......... .......... 11% 24.7M 74s\n", + "186350K .......... .......... .......... .......... .......... 11% 29.3M 74s\n", + "186400K .......... .......... .......... .......... .......... 11% 41.1M 74s\n", + "186450K .......... .......... .......... .......... .......... 11% 48.1M 74s\n", + "186500K .......... .......... .......... .......... .......... 11% 47.2M 74s\n", + "186550K .......... .......... .......... .......... .......... 11% 48.9M 74s\n", + "186600K .......... .......... .......... .......... .......... 11% 41.7M 74s\n", + "186650K .......... .......... .......... .......... .......... 11% 49.5M 74s\n", + "186700K .......... .......... .......... .......... .......... 11% 45.8M 74s\n", + "186750K .......... .......... .......... .......... .......... 11% 50.6M 74s\n", + "186800K .......... .......... .......... .......... .......... 11% 41.3M 74s\n", + "186850K .......... .......... .......... .......... .......... 11% 50.8M 74s\n", + "186900K .......... .......... .......... .......... .......... 11% 50.5M 74s\n", + "186950K .......... .......... .......... .......... .......... 11% 50.8M 74s\n", + "187000K .......... .......... .......... .......... .......... 11% 41.6M 74s\n", + "187050K .......... .......... .......... .......... .......... 11% 50.6M 74s\n", + "187100K .......... .......... .......... .......... .......... 11% 51.5M 74s\n", + "187150K .......... .......... .......... .......... .......... 11% 48.8M 74s\n", + "187200K .......... .......... .......... .......... .......... 11% 42.5M 74s\n", + "187250K .......... .......... .......... .......... .......... 11% 50.8M 74s\n", + "187300K .......... .......... .......... .......... .......... 11% 48.4M 74s\n", + "187350K .......... .......... .......... .......... .......... 11% 51.4M 74s\n", + "187400K .......... .......... .......... .......... .......... 11% 16.1M 74s\n", + "187450K .......... .......... .......... .......... .......... 11% 25.3M 74s\n", + "187500K .......... .......... .......... .......... .......... 11% 48.2M 74s\n", + "187550K .......... .......... .......... .......... .......... 11% 50.1M 74s\n", + "187600K .......... .......... .......... .......... .......... 11% 42.0M 74s\n", + "187650K .......... .......... .......... .......... .......... 11% 49.5M 74s\n", + "187700K .......... .......... .......... .......... .......... 11% 50.6M 74s\n", + "187750K .......... .......... .......... .......... .......... 11% 1.22M 74s\n", + "187800K .......... .......... .......... .......... .......... 11% 19.8M 74s\n", + "187850K .......... .......... .......... .......... .......... 11% 24.8M 74s\n", + "187900K .......... .......... .......... .......... .......... 11% 37.8M 74s\n", + "187950K .......... .......... .......... .......... .......... 11% 44.5M 74s\n", + "188000K .......... .......... .......... .......... .......... 11% 41.4M 74s\n", + "188050K .......... .......... .......... .......... .......... 11% 49.9M 74s\n", + "188100K .......... .......... .......... .......... .......... 12% 44.0M 74s\n", + "188150K .......... .......... .......... .......... .......... 12% 50.1M 74s\n", + "188200K .......... .......... .......... .......... .......... 12% 44.2M 74s\n", + "188250K .......... .......... .......... .......... .......... 12% 49.5M 74s\n", + "188300K .......... .......... .......... .......... .......... 12% 50.3M 74s\n", + "188350K .......... .......... .......... .......... .......... 12% 49.2M 74s\n", + "188400K .......... .......... .......... .......... .......... 12% 41.6M 74s\n", + "188450K .......... .......... .......... .......... .......... 12% 51.2M 74s\n", + "188500K .......... .......... .......... .......... .......... 12% 50.8M 74s\n", + "188550K .......... .......... .......... .......... .......... 12% 50.2M 74s\n", + "188600K .......... .......... .......... .......... .......... 12% 44.3M 74s\n", + "188650K .......... .......... .......... .......... .......... 12% 49.7M 74s\n", + "188700K .......... .......... .......... .......... .......... 12% 50.1M 74s\n", + "188750K .......... .......... .......... .......... .......... 12% 48.6M 74s\n", + "188800K .......... .......... .......... .......... .......... 12% 43.6M 74s\n", + "188850K .......... .......... .......... .......... .......... 12% 51.1M 74s\n", + "188900K .......... .......... .......... .......... .......... 12% 15.0M 74s\n", + "188950K .......... .......... .......... .......... .......... 12% 27.3M 74s\n", + "189000K .......... .......... .......... .......... .......... 12% 39.6M 74s\n", + "189050K .......... .......... .......... .......... .......... 12% 47.0M 74s\n", + "189100K .......... .......... .......... .......... .......... 12% 51.3M 74s\n", + "189150K .......... .......... .......... .......... .......... 12% 48.7M 74s\n", + "189200K .......... .......... .......... .......... .......... 12% 42.3M 73s\n", + "189250K .......... .......... .......... .......... .......... 12% 51.1M 73s\n", + "189300K .......... .......... .......... .......... .......... 12% 1.18M 74s\n", + "189350K .......... .......... .......... .......... .......... 12% 23.9M 74s\n", + "189400K .......... .......... .......... .......... .......... 12% 32.0M 74s\n", + "189450K .......... .......... .......... .......... .......... 12% 47.0M 74s\n", + "189500K .......... .......... .......... .......... .......... 12% 48.5M 74s\n", + "189550K .......... .......... .......... .......... .......... 12% 48.1M 74s\n", + "189600K .......... .......... .......... .......... .......... 12% 38.9M 74s\n", + "189650K .......... .......... .......... .......... .......... 12% 48.8M 74s\n", + "189700K .......... .......... .......... .......... .......... 12% 49.3M 74s\n", + "189750K .......... .......... .......... .......... .......... 12% 49.5M 74s\n", + "189800K .......... .......... .......... .......... .......... 12% 41.3M 74s\n", + "189850K .......... .......... .......... .......... .......... 12% 47.6M 74s\n", + "189900K .......... .......... .......... .......... .......... 12% 50.3M 74s\n", + "189950K .......... .......... .......... .......... .......... 12% 48.3M 74s\n", + "190000K .......... .......... .......... .......... .......... 12% 42.4M 74s\n", + "190050K .......... .......... .......... .......... .......... 12% 50.1M 74s\n", + "190100K .......... .......... .......... .......... .......... 12% 50.9M 74s\n", + "190150K .......... .......... .......... .......... .......... 12% 50.5M 74s\n", + "190200K .......... .......... .......... .......... .......... 12% 42.0M 73s\n", + "190250K .......... .......... .......... .......... .......... 12% 49.6M 73s\n", + "190300K .......... .......... .......... .......... .......... 12% 49.2M 73s\n", + "190350K .......... .......... .......... .......... .......... 12% 50.7M 73s\n", + "190400K .......... .......... .......... .......... .......... 12% 39.4M 73s\n", + "190450K .......... .......... .......... .......... .......... 12% 17.8M 73s\n", + "190500K .......... .......... .......... .......... .......... 12% 23.9M 73s\n", + "190550K .......... .......... .......... .......... .......... 12% 41.7M 73s\n", + "190600K .......... .......... .......... .......... .......... 12% 43.9M 73s\n", + "190650K .......... .......... .......... .......... .......... 12% 49.7M 73s\n", + "190700K .......... .......... .......... .......... .......... 12% 50.8M 73s\n", + "190750K .......... .......... .......... .......... .......... 12% 49.3M 73s\n", + "190800K .......... .......... .......... .......... .......... 12% 1.19M 74s\n", + "190850K .......... .......... .......... .......... .......... 12% 24.9M 74s\n", + "190900K .......... .......... .......... .......... .......... 12% 49.4M 74s\n", + "190950K .......... .......... .......... .......... .......... 12% 28.7M 74s\n", + "191000K .......... .......... .......... .......... .......... 12% 39.0M 74s\n", + "191050K .......... .......... .......... .......... .......... 12% 42.0M 74s\n", + "191100K .......... .......... .......... .......... .......... 12% 44.5M 74s\n", + "191150K .......... .......... .......... .......... .......... 12% 45.8M 74s\n", + "191200K .......... .......... .......... .......... .......... 12% 41.5M 74s\n", + "191250K .......... .......... .......... .......... .......... 12% 49.5M 74s\n", + "191300K .......... .......... .......... .......... .......... 12% 49.4M 74s\n", + "191350K .......... .......... .......... .......... .......... 12% 46.9M 73s\n", + "191400K .......... .......... .......... .......... .......... 12% 43.5M 73s\n", + "191450K .......... .......... .......... .......... .......... 12% 50.3M 73s\n", + "191500K .......... .......... .......... .......... .......... 12% 48.8M 73s\n", + "191550K .......... .......... .......... .......... .......... 12% 48.8M 73s\n", + "191600K .......... .......... .......... .......... .......... 12% 41.3M 73s\n", + "191650K .......... .......... .......... .......... .......... 12% 49.6M 73s\n", + "191700K .......... .......... .......... .......... .......... 12% 49.7M 73s\n", + "191750K .......... .......... .......... .......... .......... 12% 49.3M 73s\n", + "191800K .......... .......... .......... .......... .......... 12% 44.3M 73s\n", + "191850K .......... .......... .......... .......... .......... 12% 48.3M 73s\n", + "191900K .......... .......... .......... .......... .......... 12% 48.5M 73s\n", + "191950K .......... .......... .......... .......... .......... 12% 27.3M 73s\n", + "192000K .......... .......... .......... .......... .......... 12% 21.2M 73s\n", + "192050K .......... .......... .......... .......... .......... 12% 30.2M 73s\n", + "192100K .......... .......... .......... .......... .......... 12% 43.7M 73s\n", + "192150K .......... .......... .......... .......... .......... 12% 48.3M 73s\n", + "192200K .......... .......... .......... .......... .......... 12% 42.7M 73s\n", + "192250K .......... .......... .......... .......... .......... 12% 51.1M 73s\n", + "192300K .......... .......... .......... .......... .......... 12% 49.3M 73s\n", + "192350K .......... .......... .......... .......... .......... 12% 1.21M 74s\n", + "192400K .......... .......... .......... .......... .......... 12% 18.7M 74s\n", + "192450K .......... .......... .......... .......... .......... 12% 29.6M 73s\n", + "192500K .......... .......... .......... .......... .......... 12% 47.9M 73s\n", + "192550K .......... .......... .......... .......... .......... 12% 39.6M 73s\n", + "192600K .......... .......... .......... .......... .......... 12% 42.0M 73s\n", + "192650K .......... .......... .......... .......... .......... 12% 40.3M 73s\n", + "192700K .......... .......... .......... .......... .......... 12% 49.8M 73s\n", + "192750K .......... .......... .......... .......... .......... 12% 48.4M 73s\n", + "192800K .......... .......... .......... .......... .......... 12% 42.7M 73s\n", + "192850K .......... .......... .......... .......... .......... 12% 48.2M 73s\n", + "192900K .......... .......... .......... .......... .......... 12% 50.2M 73s\n", + "192950K .......... .......... .......... .......... .......... 12% 49.8M 73s\n", + "193000K .......... .......... .......... .......... .......... 12% 41.6M 73s\n", + "193050K .......... .......... .......... .......... .......... 12% 49.4M 73s\n", + "193100K .......... .......... .......... .......... .......... 12% 50.1M 73s\n", + "193150K .......... .......... .......... .......... .......... 12% 50.6M 73s\n", + "193200K .......... .......... .......... .......... .......... 12% 41.7M 73s\n", + "193250K .......... .......... .......... .......... .......... 12% 48.7M 73s\n", + "193300K .......... .......... .......... .......... .......... 12% 50.1M 73s\n", + "193350K .......... .......... .......... .......... .......... 12% 50.5M 73s\n", + "193400K .......... .......... .......... .......... .......... 12% 40.9M 73s\n", + "193450K .......... .......... .......... .......... .......... 12% 48.2M 73s\n", + "193500K .......... .......... .......... .......... .......... 12% 19.2M 73s\n", + "193550K .......... .......... .......... .......... .......... 12% 23.5M 73s\n", + "193600K .......... .......... .......... .......... .......... 12% 41.4M 73s\n", + "193650K .......... .......... .......... .......... .......... 12% 46.8M 73s\n", + "193700K .......... .......... .......... .......... .......... 12% 44.7M 73s\n", + "193750K .......... .......... .......... .......... .......... 12% 50.8M 73s\n", + "193800K .......... .......... .......... .......... .......... 12% 43.7M 73s\n", + "193850K .......... .......... .......... .......... .......... 12% 1.30M 73s\n", + "193900K .......... .......... .......... .......... .......... 12% 13.5M 73s\n", + "193950K .......... .......... .......... .......... .......... 12% 18.6M 73s\n", + "194000K .......... .......... .......... .......... .......... 12% 25.8M 73s\n", + "194050K .......... .......... .......... .......... .......... 12% 43.8M 73s\n", + "194100K .......... .......... .......... .......... .......... 12% 49.2M 73s\n", + "194150K .......... .......... .......... .......... .......... 12% 45.4M 73s\n", + "194200K .......... .......... .......... .......... .......... 12% 40.0M 73s\n", + "194250K .......... .......... .......... .......... .......... 12% 53.7M 73s\n", + "194300K .......... .......... .......... .......... .......... 12% 54.2M 73s\n", + "194350K .......... .......... .......... .......... .......... 12% 53.4M 73s\n", + "194400K .......... .......... .......... .......... .......... 12% 42.6M 73s\n", + "194450K .......... .......... .......... .......... .......... 12% 51.5M 73s\n", + "194500K .......... .......... .......... .......... .......... 12% 52.0M 73s\n", + "194550K .......... .......... .......... .......... .......... 12% 51.7M 73s\n", + "194600K .......... .......... .......... .......... .......... 12% 44.1M 73s\n", + "194650K .......... .......... .......... .......... .......... 12% 54.4M 73s\n", + "194700K .......... .......... .......... .......... .......... 12% 54.0M 73s\n", + "194750K .......... .......... .......... .......... .......... 12% 54.5M 73s\n", + "194800K .......... .......... .......... .......... .......... 12% 42.0M 73s\n", + "194850K .......... .......... .......... .......... .......... 12% 52.4M 73s\n", + "194900K .......... .......... .......... .......... .......... 12% 52.5M 73s\n", + "194950K .......... .......... .......... .......... .......... 12% 51.4M 73s\n", + "195000K .......... .......... .......... .......... .......... 12% 18.7M 73s\n", + "195050K .......... .......... .......... .......... .......... 12% 13.9M 73s\n", + "195100K .......... .......... .......... .......... .......... 12% 45.6M 73s\n", + "195150K .......... .......... .......... .......... .......... 12% 47.5M 73s\n", + "195200K .......... .......... .......... .......... .......... 12% 41.2M 73s\n", + "195250K .......... .......... .......... .......... .......... 12% 53.3M 73s\n", + "195300K .......... .......... .......... .......... .......... 12% 51.0M 73s\n", + "195350K .......... .......... .......... .......... .......... 12% 53.4M 73s\n", + "195400K .......... .......... .......... .......... .......... 12% 1.21M 73s\n", + "195450K .......... .......... .......... .......... .......... 12% 20.1M 73s\n", + "195500K .......... .......... .......... .......... .......... 12% 27.2M 73s\n", + "195550K .......... .......... .......... .......... .......... 12% 42.7M 73s\n", + "195600K .......... .......... .......... .......... .......... 12% 42.7M 73s\n", + "195650K .......... .......... .......... .......... .......... 12% 48.7M 73s\n", + "195700K .......... .......... .......... .......... .......... 12% 35.7M 73s\n", + "195750K .......... .......... .......... .......... .......... 12% 50.9M 73s\n", + "195800K .......... .......... .......... .......... .......... 12% 44.7M 73s\n", + "195850K .......... .......... .......... .......... .......... 12% 50.9M 73s\n", + "195900K .......... .......... .......... .......... .......... 12% 51.5M 73s\n", + "195950K .......... .......... .......... .......... .......... 12% 52.0M 73s\n", + "196000K .......... .......... .......... .......... .......... 12% 45.6M 73s\n", + "196050K .......... .......... .......... .......... .......... 12% 53.0M 73s\n", + "196100K .......... .......... .......... .......... .......... 12% 51.8M 73s\n", + "196150K .......... .......... .......... .......... .......... 12% 52.5M 73s\n", + "196200K .......... .......... .......... .......... .......... 12% 44.1M 73s\n", + "196250K .......... .......... .......... .......... .......... 12% 51.4M 73s\n", + "196300K .......... .......... .......... .......... .......... 12% 50.6M 73s\n", + "196350K .......... .......... .......... .......... .......... 12% 51.3M 73s\n", + "196400K .......... .......... .......... .......... .......... 12% 43.5M 73s\n", + "196450K .......... .......... .......... .......... .......... 12% 51.1M 73s\n", + "196500K .......... .......... .......... .......... .......... 12% 51.4M 73s\n", + "196550K .......... .......... .......... .......... .......... 12% 18.1M 73s\n", + "196600K .......... .......... .......... .......... .......... 12% 15.8M 73s\n", + "196650K .......... .......... .......... .......... .......... 12% 40.0M 73s\n", + "196700K .......... .......... .......... .......... .......... 12% 48.0M 73s\n", + "196750K .......... .......... .......... .......... .......... 12% 52.6M 73s\n", + "196800K .......... .......... .......... .......... .......... 12% 44.6M 73s\n", + "196850K .......... .......... .......... .......... .......... 12% 49.4M 73s\n", + "196900K .......... .......... .......... .......... .......... 12% 1.21M 73s\n", + "196950K .......... .......... .......... .......... .......... 12% 32.4M 73s\n", + "197000K .......... .......... .......... .......... .......... 12% 29.3M 73s\n", + "197050K .......... .......... .......... .......... .......... 12% 29.3M 73s\n", + "197100K .......... .......... .......... .......... .......... 12% 44.9M 73s\n", + "197150K .......... .......... .......... .......... .......... 12% 50.5M 73s\n", + "197200K .......... .......... .......... .......... .......... 12% 34.2M 73s\n", + "197250K .......... .......... .......... .......... .......... 12% 43.6M 73s\n", + "197300K .......... .......... .......... .......... .......... 12% 52.3M 73s\n", + "197350K .......... .......... .......... .......... .......... 12% 52.4M 73s\n", + "197400K .......... .......... .......... .......... .......... 12% 45.1M 73s\n", + "197450K .......... .......... .......... .......... .......... 12% 52.2M 73s\n", + "197500K .......... .......... .......... .......... .......... 12% 53.1M 73s\n", + "197550K .......... .......... .......... .......... .......... 12% 50.3M 73s\n", + "197600K .......... .......... .......... .......... .......... 12% 43.6M 73s\n", + "197650K .......... .......... .......... .......... .......... 12% 52.1M 73s\n", + "197700K .......... .......... .......... .......... .......... 12% 51.9M 73s\n", + "197750K .......... .......... .......... .......... .......... 12% 50.4M 73s\n", + "197800K .......... .......... .......... .......... .......... 12% 43.7M 73s\n", + "197850K .......... .......... .......... .......... .......... 12% 47.4M 73s\n", + "197900K .......... .......... .......... .......... .......... 12% 50.2M 73s\n", + "197950K .......... .......... .......... .......... .......... 12% 49.7M 73s\n", + "198000K .......... .......... .......... .......... .......... 12% 41.3M 73s\n", + "198050K .......... .......... .......... .......... .......... 12% 18.3M 73s\n", + "198100K .......... .......... .......... .......... .......... 12% 16.9M 73s\n", + "198150K .......... .......... .......... .......... .......... 12% 48.5M 73s\n", + "198200K .......... .......... .......... .......... .......... 12% 40.6M 73s\n", + "198250K .......... .......... .......... .......... .......... 12% 50.9M 73s\n", + "198300K .......... .......... .......... .......... .......... 12% 51.4M 73s\n", + "198350K .......... .......... .......... .......... .......... 12% 47.4M 73s\n", + "198400K .......... .......... .......... .......... .......... 12% 42.8M 73s\n", + "198450K .......... .......... .......... .......... .......... 12% 1.22M 73s\n", + "198500K .......... .......... .......... .......... .......... 12% 20.3M 73s\n", + "198550K .......... .......... .......... .......... .......... 12% 34.7M 73s\n", + "198600K .......... .......... .......... .......... .......... 12% 37.7M 73s\n", + "198650K .......... .......... .......... .......... .......... 12% 49.0M 73s\n", + "198700K .......... .......... .......... .......... .......... 12% 51.3M 73s\n", + "198750K .......... .......... .......... .......... .......... 12% 38.5M 73s\n", + "198800K .......... .......... .......... .......... .......... 12% 39.0M 73s\n", + "198850K .......... .......... .......... .......... .......... 12% 52.1M 73s\n", + "198900K .......... .......... .......... .......... .......... 12% 50.8M 73s\n", + "198950K .......... .......... .......... .......... .......... 12% 51.3M 73s\n", + "199000K .......... .......... .......... .......... .......... 12% 45.2M 73s\n", + "199050K .......... .......... .......... .......... .......... 12% 49.6M 73s\n", + "199100K .......... .......... .......... .......... .......... 12% 52.0M 73s\n", + "199150K .......... .......... .......... .......... .......... 12% 50.4M 73s\n", + "199200K .......... .......... .......... .......... .......... 12% 44.3M 73s\n", + "199250K .......... .......... .......... .......... .......... 12% 50.5M 73s\n", + "199300K .......... .......... .......... .......... .......... 12% 52.2M 73s\n", + "199350K .......... .......... .......... .......... .......... 12% 50.7M 73s\n", + "199400K .......... .......... .......... .......... .......... 12% 44.9M 73s\n", + "199450K .......... .......... .......... .......... .......... 12% 52.9M 73s\n", + "199500K .......... .......... .......... .......... .......... 12% 49.4M 73s\n", + "199550K .......... .......... .......... .......... .......... 12% 51.4M 73s\n", + "199600K .......... .......... .......... .......... .......... 12% 14.0M 73s\n", + "199650K .......... .......... .......... .......... .......... 12% 18.2M 73s\n", + "199700K .......... .......... .......... .......... .......... 12% 48.0M 73s\n", + "199750K .......... .......... .......... .......... .......... 12% 49.6M 73s\n", + "199800K .......... .......... .......... .......... .......... 12% 45.5M 73s\n", + "199850K .......... .......... .......... .......... .......... 12% 52.0M 73s\n", + "199900K .......... .......... .......... .......... .......... 12% 52.2M 73s\n", + "199950K .......... .......... .......... .......... .......... 12% 1.22M 73s\n", + "200000K .......... .......... .......... .......... .......... 12% 29.5M 73s\n", + "200050K .......... .......... .......... .......... .......... 12% 27.0M 73s\n", + "200100K .......... .......... .......... .......... .......... 12% 29.3M 73s\n", + "200150K .......... .......... .......... .......... .......... 12% 45.2M 73s\n", + "200200K .......... .......... .......... .......... .......... 12% 45.0M 73s\n", + "200250K .......... .......... .......... .......... .......... 12% 39.9M 73s\n", + "200300K .......... .......... .......... .......... .......... 12% 50.5M 73s\n", + "200350K .......... .......... .......... .......... .......... 12% 51.6M 73s\n", + "200400K .......... .......... .......... .......... .......... 12% 43.7M 73s\n", + "200450K .......... .......... .......... .......... .......... 12% 50.6M 73s\n", + "200500K .......... .......... .......... .......... .......... 12% 53.0M 73s\n", + "200550K .......... .......... .......... .......... .......... 12% 53.6M 73s\n", + "200600K .......... .......... .......... .......... .......... 12% 44.8M 73s\n", + "200650K .......... .......... .......... .......... .......... 12% 51.4M 73s\n", + "200700K .......... .......... .......... .......... .......... 12% 52.1M 73s\n", + "200750K .......... .......... .......... .......... .......... 12% 52.0M 73s\n", + "200800K .......... .......... .......... .......... .......... 12% 43.1M 73s\n", + "200850K .......... .......... .......... .......... .......... 12% 51.1M 73s\n", + "200900K .......... .......... .......... .......... .......... 12% 50.9M 73s\n", + "200950K .......... .......... .......... .......... .......... 12% 52.1M 73s\n", + "201000K .......... .......... .......... .......... .......... 12% 45.6M 73s\n", + "201050K .......... .......... .......... .......... .......... 12% 47.8M 73s\n", + "201100K .......... .......... .......... .......... .......... 12% 29.4M 73s\n", + "201150K .......... .......... .......... .......... .......... 12% 10.6M 73s\n", + "201200K .......... .......... .......... .......... .......... 12% 40.0M 73s\n", + "201250K .......... .......... .......... .......... .......... 12% 47.5M 73s\n", + "201300K .......... .......... .......... .......... .......... 12% 46.9M 73s\n", + "201350K .......... .......... .......... .......... .......... 12% 52.2M 73s\n", + "201400K .......... .......... .......... .......... .......... 12% 44.9M 73s\n", + "201450K .......... .......... .......... .......... .......... 12% 51.3M 73s\n", + "201500K .......... .......... .......... .......... .......... 12% 1.23M 73s\n", + "201550K .......... .......... .......... .......... .......... 12% 19.0M 73s\n", + "201600K .......... .......... .......... .......... .......... 12% 24.2M 73s\n", + "201650K .......... .......... .......... .......... .......... 12% 49.1M 73s\n", + "201700K .......... .......... .......... .......... .......... 12% 46.7M 73s\n", + "201750K .......... .......... .......... .......... .......... 12% 47.0M 73s\n", + "201800K .......... .......... .......... .......... .......... 12% 40.9M 73s\n", + "201850K .......... .......... .......... .......... .......... 12% 44.7M 73s\n", + "201900K .......... .......... .......... .......... .......... 12% 52.5M 73s\n", + "201950K .......... .......... .......... .......... .......... 12% 49.0M 73s\n", + "202000K .......... .......... .......... .......... .......... 12% 44.3M 73s\n", + "202050K .......... .......... .......... .......... .......... 12% 53.0M 73s\n", + "202100K .......... .......... .......... .......... .......... 12% 52.6M 73s\n", + "202150K .......... .......... .......... .......... .......... 12% 48.6M 73s\n", + "202200K .......... .......... .......... .......... .......... 12% 45.0M 73s\n", + "202250K .......... .......... .......... .......... .......... 12% 52.5M 73s\n", + "202300K .......... .......... .......... .......... .......... 12% 52.5M 73s\n", + "202350K .......... .......... .......... .......... .......... 12% 51.0M 73s\n", + "202400K .......... .......... .......... .......... .......... 12% 42.8M 73s\n", + "202450K .......... .......... .......... .......... .......... 12% 51.8M 73s\n", + "202500K .......... .......... .......... .......... .......... 12% 52.9M 73s\n", + "202550K .......... .......... .......... .......... .......... 12% 50.2M 73s\n", + "202600K .......... .......... .......... .......... .......... 12% 43.4M 73s\n", + "202650K .......... .......... .......... .......... .......... 12% 18.4M 73s\n", + "202700K .......... .......... .......... .......... .......... 12% 15.7M 73s\n", + "202750K .......... .......... .......... .......... .......... 12% 51.2M 72s\n", + "202800K .......... .......... .......... .......... .......... 12% 41.9M 72s\n", + "202850K .......... .......... .......... .......... .......... 12% 52.6M 72s\n", + "202900K .......... .......... .......... .......... .......... 12% 53.1M 72s\n", + "202950K .......... .......... .......... .......... .......... 12% 52.3M 72s\n", + "203000K .......... .......... .......... .......... .......... 12% 1.22M 73s\n", + "203050K .......... .......... .......... .......... .......... 12% 38.1M 73s\n", + "203100K .......... .......... .......... .......... .......... 12% 18.3M 73s\n", + "203150K .......... .......... .......... .......... .......... 12% 24.2M 73s\n", + "203200K .......... .......... .......... .......... .......... 12% 43.2M 73s\n", + "203250K .......... .......... .......... .......... .......... 12% 51.0M 73s\n", + "203300K .......... .......... .......... .......... .......... 12% 49.9M 73s\n", + "203350K .......... .......... .......... .......... .......... 12% 51.0M 73s\n", + "203400K .......... .......... .......... .......... .......... 12% 42.3M 73s\n", + "203450K .......... .......... .......... .......... .......... 12% 51.7M 73s\n", + "203500K .......... .......... .......... .......... .......... 12% 49.8M 73s\n", + "203550K .......... .......... .......... .......... .......... 12% 51.6M 73s\n", + "203600K .......... .......... .......... .......... .......... 12% 44.4M 73s\n", + "203650K .......... .......... .......... .......... .......... 12% 48.8M 73s\n", + "203700K .......... .......... .......... .......... .......... 12% 51.8M 73s\n", + "203750K .......... .......... .......... .......... .......... 12% 52.9M 73s\n", + "203800K .......... .......... .......... .......... .......... 13% 45.5M 72s\n", + "203850K .......... .......... .......... .......... .......... 13% 50.5M 72s\n", + "203900K .......... .......... .......... .......... .......... 13% 48.8M 72s\n", + "203950K .......... .......... .......... .......... .......... 13% 51.3M 72s\n", + "204000K .......... .......... .......... .......... .......... 13% 44.6M 72s\n", + "204050K .......... .......... .......... .......... .......... 13% 51.4M 72s\n", + "204100K .......... .......... .......... .......... .......... 13% 49.1M 72s\n", + "204150K .......... .......... .......... .......... .......... 13% 18.4M 72s\n", + "204200K .......... .......... .......... .......... .......... 13% 14.0M 72s\n", + "204250K .......... .......... .......... .......... .......... 13% 50.4M 72s\n", + "204300K .......... .......... .......... .......... .......... 13% 46.4M 72s\n", + "204350K .......... .......... .......... .......... .......... 13% 51.5M 72s\n", + "204400K .......... .......... .......... .......... .......... 13% 45.8M 72s\n", + "204450K .......... .......... .......... .......... .......... 13% 52.1M 72s\n", + "204500K .......... .......... .......... .......... .......... 13% 52.0M 72s\n", + "204550K .......... .......... .......... .......... .......... 13% 1.22M 73s\n", + "204600K .......... .......... .......... .......... .......... 13% 18.7M 73s\n", + "204650K .......... .......... .......... .......... .......... 13% 22.0M 73s\n", + "204700K .......... .......... .......... .......... .......... 13% 50.3M 73s\n", + "204750K .......... .......... .......... .......... .......... 13% 46.0M 73s\n", + "204800K .......... .......... .......... .......... .......... 13% 40.5M 73s\n", + "204850K .......... .......... .......... .......... .......... 13% 47.7M 73s\n", + "204900K .......... .......... .......... .......... .......... 13% 50.8M 72s\n", + "204950K .......... .......... .......... .......... .......... 13% 49.3M 72s\n", + "205000K .......... .......... .......... .......... .......... 13% 44.3M 72s\n", + "205050K .......... .......... .......... .......... .......... 13% 51.9M 72s\n", + "205100K .......... .......... .......... .......... .......... 13% 50.9M 72s\n", + "205150K .......... .......... .......... .......... .......... 13% 48.4M 72s\n", + "205200K .......... .......... .......... .......... .......... 13% 42.9M 72s\n", + "205250K .......... .......... .......... .......... .......... 13% 51.1M 72s\n", + "205300K .......... .......... .......... .......... .......... 13% 52.1M 72s\n", + "205350K .......... .......... .......... .......... .......... 13% 48.5M 72s\n", + "205400K .......... .......... .......... .......... .......... 13% 43.2M 72s\n", + "205450K .......... .......... .......... .......... .......... 13% 52.6M 72s\n", + "205500K .......... .......... .......... .......... .......... 13% 51.0M 72s\n", + "205550K .......... .......... .......... .......... .......... 13% 50.2M 72s\n", + "205600K .......... .......... .......... .......... .......... 13% 44.0M 72s\n", + "205650K .......... .......... .......... .......... .......... 13% 48.1M 72s\n", + "205700K .......... .......... .......... .......... .......... 13% 15.0M 72s\n", + "205750K .......... .......... .......... .......... .......... 13% 22.3M 72s\n", + "205800K .......... .......... .......... .......... .......... 13% 42.5M 72s\n", + "205850K .......... .......... .......... .......... .......... 13% 48.6M 72s\n", + "205900K .......... .......... .......... .......... .......... 13% 50.6M 72s\n", + "205950K .......... .......... .......... .......... .......... 13% 49.8M 72s\n", + "206000K .......... .......... .......... .......... .......... 13% 41.4M 72s\n", + "206050K .......... .......... .......... .......... .......... 13% 1.24M 72s\n", + "206100K .......... .......... .......... .......... .......... 13% 17.0M 72s\n", + "206150K .......... .......... .......... .......... .......... 13% 51.4M 72s\n", + "206200K .......... .......... .......... .......... .......... 13% 21.2M 72s\n", + "206250K .......... .......... .......... .......... .......... 13% 49.8M 72s\n", + "206300K .......... .......... .......... .......... .......... 13% 49.2M 72s\n", + "206350K .......... .......... .......... .......... .......... 13% 51.2M 72s\n", + "206400K .......... .......... .......... .......... .......... 13% 43.2M 72s\n", + "206450K .......... .......... .......... .......... .......... 13% 50.6M 72s\n", + "206500K .......... .......... .......... .......... .......... 13% 50.9M 72s\n", + "206550K .......... .......... .......... .......... .......... 13% 52.7M 72s\n", + "206600K .......... .......... .......... .......... .......... 13% 46.3M 72s\n", + "206650K .......... .......... .......... .......... .......... 13% 50.3M 72s\n", + "206700K .......... .......... .......... .......... .......... 13% 52.0M 72s\n", + "206750K .......... .......... .......... .......... .......... 13% 52.4M 72s\n", + "206800K .......... .......... .......... .......... .......... 13% 45.6M 72s\n", + "206850K .......... .......... .......... .......... .......... 13% 53.4M 72s\n", + "206900K .......... .......... .......... .......... .......... 13% 49.0M 72s\n", + "206950K .......... .......... .......... .......... .......... 13% 52.1M 72s\n", + "207000K .......... .......... .......... .......... .......... 13% 46.2M 72s\n", + "207050K .......... .......... .......... .......... .......... 13% 52.7M 72s\n", + "207100K .......... .......... .......... .......... .......... 13% 50.7M 72s\n", + "207150K .......... .......... .......... .......... .......... 13% 51.8M 72s\n", + "207200K .......... .......... .......... .......... .......... 13% 12.5M 72s\n", + "207250K .......... .......... .......... .......... .......... 13% 24.6M 72s\n", + "207300K .......... .......... .......... .......... .......... 13% 51.4M 72s\n", + "207350K .......... .......... .......... .......... .......... 13% 47.9M 72s\n", + "207400K .......... .......... .......... .......... .......... 13% 45.9M 72s\n", + "207450K .......... .......... .......... .......... .......... 13% 51.8M 72s\n", + "207500K .......... .......... .......... .......... .......... 13% 52.9M 72s\n", + "207550K .......... .......... .......... .......... .......... 13% 48.9M 72s\n", + "207600K .......... .......... .......... .......... .......... 13% 1.21M 72s\n", + "207650K .......... .......... .......... .......... .......... 13% 19.2M 72s\n", + "207700K .......... .......... .......... .......... .......... 13% 22.3M 72s\n", + "207750K .......... .......... .......... .......... .......... 13% 47.0M 72s\n", + "207800K .......... .......... .......... .......... .......... 13% 36.3M 72s\n", + "207850K .......... .......... .......... .......... .......... 13% 35.0M 72s\n", + "207900K .......... .......... .......... .......... .......... 13% 36.8M 72s\n", + "207950K .......... .......... .......... .......... .......... 13% 50.7M 72s\n", + "208000K .......... .......... .......... .......... .......... 13% 43.3M 72s\n", + "208050K .......... .......... .......... .......... .......... 13% 51.3M 72s\n", + "208100K .......... .......... .......... .......... .......... 13% 49.3M 72s\n", + "208150K .......... .......... .......... .......... .......... 13% 51.0M 72s\n", + "208200K .......... .......... .......... .......... .......... 13% 43.9M 72s\n", + "208250K .......... .......... .......... .......... .......... 13% 51.7M 72s\n", + "208300K .......... .......... .......... .......... .......... 13% 49.5M 72s\n", + "208350K .......... .......... .......... .......... .......... 13% 50.3M 72s\n", + "208400K .......... .......... .......... .......... .......... 13% 41.1M 72s\n", + "208450K .......... .......... .......... .......... .......... 13% 52.0M 72s\n", + "208500K .......... .......... .......... .......... .......... 13% 52.6M 72s\n", + "208550K .......... .......... .......... .......... .......... 13% 47.8M 72s\n", + "208600K .......... .......... .......... .......... .......... 13% 44.2M 72s\n", + "208650K .......... .......... .......... .......... .......... 13% 52.9M 72s\n", + "208700K .......... .......... .......... .......... .......... 13% 49.5M 72s\n", + "208750K .......... .......... .......... .......... .......... 13% 21.8M 72s\n", + "208800K .......... .......... .......... .......... .......... 13% 20.9M 72s\n", + "208850K .......... .......... .......... .......... .......... 13% 45.7M 72s\n", + "208900K .......... .......... .......... .......... .......... 13% 43.9M 72s\n", + "208950K .......... .......... .......... .......... .......... 13% 50.8M 72s\n", + "209000K .......... .......... .......... .......... .......... 13% 42.9M 72s\n", + "209050K .......... .......... .......... .......... .......... 13% 52.1M 72s\n", + "209100K .......... .......... .......... .......... .......... 13% 1.24M 72s\n", + "209150K .......... .......... .......... .......... .......... 13% 37.6M 72s\n", + "209200K .......... .......... .......... .......... .......... 13% 17.2M 72s\n", + "209250K .......... .......... .......... .......... .......... 13% 26.9M 72s\n", + "209300K .......... .......... .......... .......... .......... 13% 41.0M 72s\n", + "209350K .......... .......... .......... .......... .......... 13% 42.2M 72s\n", + "209400K .......... .......... .......... .......... .......... 13% 33.0M 72s\n", + "209450K .......... .......... .......... .......... .......... 13% 32.8M 72s\n", + "209500K .......... .......... .......... .......... .......... 13% 49.5M 72s\n", + "209550K .......... .......... .......... .......... .......... 13% 49.5M 72s\n", + "209600K .......... .......... .......... .......... .......... 13% 41.9M 72s\n", + "209650K .......... .......... .......... .......... .......... 13% 45.8M 72s\n", + "209700K .......... .......... .......... .......... .......... 13% 47.3M 72s\n", + "209750K .......... .......... .......... .......... .......... 13% 50.5M 72s\n", + "209800K .......... .......... .......... .......... .......... 13% 43.0M 72s\n", + "209850K .......... .......... .......... .......... .......... 13% 48.7M 72s\n", + "209900K .......... .......... .......... .......... .......... 13% 45.0M 72s\n", + "209950K .......... .......... .......... .......... .......... 13% 50.0M 72s\n", + "210000K .......... .......... .......... .......... .......... 13% 43.9M 72s\n", + "210050K .......... .......... .......... .......... .......... 13% 48.6M 72s\n", + "210100K .......... .......... .......... .......... .......... 13% 44.8M 72s\n", + "210150K .......... .......... .......... .......... .......... 13% 48.5M 72s\n", + "210200K .......... .......... .......... .......... .......... 13% 42.7M 72s\n", + "210250K .......... .......... .......... .......... .......... 13% 28.3M 72s\n", + "210300K .......... .......... .......... .......... .......... 13% 40.8M 72s\n", + "210350K .......... .......... .......... .......... .......... 13% 25.4M 72s\n", + "210400K .......... .......... .......... .......... .......... 13% 38.7M 72s\n", + "210450K .......... .......... .......... .......... .......... 13% 53.6M 72s\n", + "210500K .......... .......... .......... .......... .......... 13% 54.1M 72s\n", + "210550K .......... .......... .......... .......... .......... 13% 51.0M 72s\n", + "210600K .......... .......... .......... .......... .......... 13% 45.9M 72s\n", + "210650K .......... .......... .......... .......... .......... 13% 1.22M 72s\n", + "210700K .......... .......... .......... .......... .......... 13% 17.6M 72s\n", + "210750K .......... .......... .......... .......... .......... 13% 29.5M 72s\n", + "210800K .......... .......... .......... .......... .......... 13% 34.4M 72s\n", + "210850K .......... .......... .......... .......... .......... 13% 49.6M 72s\n", + "210900K .......... .......... .......... .......... .......... 13% 49.7M 72s\n", + "210950K .......... .......... .......... .......... .......... 13% 52.2M 72s\n", + "211000K .......... .......... .......... .......... .......... 13% 43.9M 72s\n", + "211050K .......... .......... .......... .......... .......... 13% 51.8M 72s\n", + "211100K .......... .......... .......... .......... .......... 13% 49.2M 72s\n", + "211150K .......... .......... .......... .......... .......... 13% 52.2M 72s\n", + "211200K .......... .......... .......... .......... .......... 13% 45.0M 72s\n", + "211250K .......... .......... .......... .......... .......... 13% 51.5M 72s\n", + "211300K .......... .......... .......... .......... .......... 13% 49.8M 72s\n", + "211350K .......... .......... .......... .......... .......... 13% 53.1M 72s\n", + "211400K .......... .......... .......... .......... .......... 13% 44.0M 72s\n", + "211450K .......... .......... .......... .......... .......... 13% 52.1M 72s\n", + "211500K .......... .......... .......... .......... .......... 13% 51.9M 72s\n", + "211550K .......... .......... .......... .......... .......... 13% 53.0M 72s\n", + "211600K .......... .......... .......... .......... .......... 13% 43.1M 72s\n", + "211650K .......... .......... .......... .......... .......... 13% 51.9M 72s\n", + "211700K .......... .......... .......... .......... .......... 13% 52.0M 72s\n", + "211750K .......... .......... .......... .......... .......... 13% 28.9M 72s\n", + "211800K .......... .......... .......... .......... .......... 13% 16.7M 72s\n", + "211850K .......... .......... .......... .......... .......... 13% 16.5M 72s\n", + "211900K .......... .......... .......... .......... .......... 13% 50.8M 72s\n", + "211950K .......... .......... .......... .......... .......... 13% 52.1M 72s\n", + "212000K .......... .......... .......... .......... .......... 13% 45.4M 72s\n", + "212050K .......... .......... .......... .......... .......... 13% 50.3M 72s\n", + "212100K .......... .......... .......... .......... .......... 13% 53.5M 72s\n", + "212150K .......... .......... .......... .......... .......... 13% 1.24M 72s\n", + "212200K .......... .......... .......... .......... .......... 13% 15.0M 72s\n", + "212250K .......... .......... .......... .......... .......... 13% 51.0M 72s\n", + "212300K .......... .......... .......... .......... .......... 13% 30.3M 72s\n", + "212350K .......... .......... .......... .......... .......... 13% 48.3M 72s\n", + "212400K .......... .......... .......... .......... .......... 13% 42.9M 72s\n", + "212450K .......... .......... .......... .......... .......... 13% 52.1M 72s\n", + "212500K .......... .......... .......... .......... .......... 13% 51.0M 72s\n", + "212550K .......... .......... .......... .......... .......... 13% 50.4M 72s\n", + "212600K .......... .......... .......... .......... .......... 13% 44.7M 72s\n", + "212650K .......... .......... .......... .......... .......... 13% 53.3M 72s\n", + "212700K .......... .......... .......... .......... .......... 13% 53.9M 72s\n", + "212750K .......... .......... .......... .......... .......... 13% 53.6M 72s\n", + "212800K .......... .......... .......... .......... .......... 13% 42.9M 72s\n", + "212850K .......... .......... .......... .......... .......... 13% 53.3M 72s\n", + "212900K .......... .......... .......... .......... .......... 13% 54.2M 72s\n", + "212950K .......... .......... .......... .......... .......... 13% 54.0M 72s\n", + "213000K .......... .......... .......... .......... .......... 13% 43.9M 72s\n", + "213050K .......... .......... .......... .......... .......... 13% 53.0M 72s\n", + "213100K .......... .......... .......... .......... .......... 13% 53.9M 72s\n", + "213150K .......... .......... .......... .......... .......... 13% 53.8M 72s\n", + "213200K .......... .......... .......... .......... .......... 13% 44.1M 72s\n", + "213250K .......... .......... .......... .......... .......... 13% 51.5M 72s\n", + "213300K .......... .......... .......... .......... .......... 13% 12.4M 72s\n", + "213350K .......... .......... .......... .......... .......... 13% 17.6M 72s\n", + "213400K .......... .......... .......... .......... .......... 13% 45.1M 72s\n", + "213450K .......... .......... .......... .......... .......... 13% 52.5M 72s\n", + "213500K .......... .......... .......... .......... .......... 13% 51.8M 72s\n", + "213550K .......... .......... .......... .......... .......... 13% 53.3M 72s\n", + "213600K .......... .......... .......... .......... .......... 13% 44.7M 72s\n", + "213650K .......... .......... .......... .......... .......... 13% 54.2M 72s\n", + "213700K .......... .......... .......... .......... .......... 13% 1.24M 72s\n", + "213750K .......... .......... .......... .......... .......... 13% 14.8M 72s\n", + "213800K .......... .......... .......... .......... .......... 13% 20.8M 72s\n", + "213850K .......... .......... .......... .......... .......... 13% 49.0M 72s\n", + "213900K .......... .......... .......... .......... .......... 13% 48.3M 72s\n", + "213950K .......... .......... .......... .......... .......... 13% 49.1M 72s\n", + "214000K .......... .......... .......... .......... .......... 13% 42.2M 72s\n", + "214050K .......... .......... .......... .......... .......... 13% 49.9M 72s\n", + "214100K .......... .......... .......... .......... .......... 13% 49.4M 72s\n", + "214150K .......... .......... .......... .......... .......... 13% 52.4M 72s\n", + "214200K .......... .......... .......... .......... .......... 13% 43.9M 72s\n", + "214250K .......... .......... .......... .......... .......... 13% 50.8M 72s\n", + "214300K .......... .......... .......... .......... .......... 13% 51.3M 72s\n", + "214350K .......... .......... .......... .......... .......... 13% 51.4M 72s\n", + "214400K .......... .......... .......... .......... .......... 13% 42.4M 72s\n", + "214450K .......... .......... .......... .......... .......... 13% 52.2M 72s\n", + "214500K .......... .......... .......... .......... .......... 13% 50.0M 72s\n", + "214550K .......... .......... .......... .......... .......... 13% 52.4M 72s\n", + "214600K .......... .......... .......... .......... .......... 13% 45.7M 72s\n", + "214650K .......... .......... .......... .......... .......... 13% 49.2M 72s\n", + "214700K .......... .......... .......... .......... .......... 13% 50.5M 72s\n", + "214750K .......... .......... .......... .......... .......... 13% 52.2M 72s\n", + "214800K .......... .......... .......... .......... .......... 13% 43.6M 72s\n", + "214850K .......... .......... .......... .......... .......... 13% 16.5M 72s\n", + "214900K .......... .......... .......... .......... .......... 13% 18.8M 72s\n", + "214950K .......... .......... .......... .......... .......... 13% 52.7M 72s\n", + "215000K .......... .......... .......... .......... .......... 13% 42.0M 72s\n", + "215050K .......... .......... .......... .......... .......... 13% 46.3M 72s\n", + "215100K .......... .......... .......... .......... .......... 13% 48.5M 72s\n", + "215150K .......... .......... .......... .......... .......... 13% 49.3M 72s\n", + "215200K .......... .......... .......... .......... .......... 13% 1.24M 72s\n", + "215250K .......... .......... .......... .......... .......... 13% 14.5M 72s\n", + "215300K .......... .......... .......... .......... .......... 13% 49.3M 72s\n", + "215350K .......... .......... .......... .......... .......... 13% 27.7M 72s\n", + "215400K .......... .......... .......... .......... .......... 13% 45.0M 72s\n", + "215450K .......... .......... .......... .......... .......... 13% 51.1M 72s\n", + "215500K .......... .......... .......... .......... .......... 13% 52.0M 72s\n", + "215550K .......... .......... .......... .......... .......... 13% 50.1M 72s\n", + "215600K .......... .......... .......... .......... .......... 13% 41.8M 72s\n", + "215650K .......... .......... .......... .......... .......... 13% 52.1M 72s\n", + "215700K .......... .......... .......... .......... .......... 13% 50.9M 72s\n", + "215750K .......... .......... .......... .......... .......... 13% 52.0M 72s\n", + "215800K .......... .......... .......... .......... .......... 13% 44.9M 72s\n", + "215850K .......... .......... .......... .......... .......... 13% 51.9M 72s\n", + "215900K .......... .......... .......... .......... .......... 13% 51.5M 72s\n", + "215950K .......... .......... .......... .......... .......... 13% 53.1M 72s\n", + "216000K .......... .......... .......... .......... .......... 13% 43.5M 72s\n", + "216050K .......... .......... .......... .......... .......... 13% 52.4M 72s\n", + "216100K .......... .......... .......... .......... .......... 13% 52.8M 72s\n", + "216150K .......... .......... .......... .......... .......... 13% 51.6M 72s\n", + "216200K .......... .......... .......... .......... .......... 13% 43.8M 72s\n", + "216250K .......... .......... .......... .......... .......... 13% 50.4M 72s\n", + "216300K .......... .......... .......... .......... .......... 13% 51.0M 72s\n", + "216350K .......... .......... .......... .......... .......... 13% 13.6M 72s\n", + "216400K .......... .......... .......... .......... .......... 13% 18.4M 72s\n", + "216450K .......... .......... .......... .......... .......... 13% 45.4M 72s\n", + "216500K .......... .......... .......... .......... .......... 13% 50.9M 71s\n", + "216550K .......... .......... .......... .......... .......... 13% 50.7M 71s\n", + "216600K .......... .......... .......... .......... .......... 13% 42.8M 71s\n", + "216650K .......... .......... .......... .......... .......... 13% 49.7M 71s\n", + "216700K .......... .......... .......... .......... .......... 13% 52.4M 71s\n", + "216750K .......... .......... .......... .......... .......... 13% 1.23M 72s\n", + "216800K .......... .......... .......... .......... .......... 13% 15.2M 72s\n", + "216850K .......... .......... .......... .......... .......... 13% 25.1M 72s\n", + "216900K .......... .......... .......... .......... .......... 13% 49.3M 72s\n", + "216950K .......... .......... .......... .......... .......... 13% 49.5M 72s\n", + "217000K .......... .......... .......... .......... .......... 13% 42.3M 72s\n", + "217050K .......... .......... .......... .......... .......... 13% 49.6M 72s\n", + "217100K .......... .......... .......... .......... .......... 13% 51.4M 72s\n", + "217150K .......... .......... .......... .......... .......... 13% 50.7M 72s\n", + "217200K .......... .......... .......... .......... .......... 13% 43.7M 72s\n", + "217250K .......... .......... .......... .......... .......... 13% 50.2M 72s\n", + "217300K .......... .......... .......... .......... .......... 13% 49.8M 72s\n", + "217350K .......... .......... .......... .......... .......... 13% 51.5M 72s\n", + "217400K .......... .......... .......... .......... .......... 13% 44.7M 72s\n", + "217450K .......... .......... .......... .......... .......... 13% 51.8M 72s\n", + "217500K .......... .......... .......... .......... .......... 13% 51.2M 71s\n", + "217550K .......... .......... .......... .......... .......... 13% 50.5M 71s\n", + "217600K .......... .......... .......... .......... .......... 13% 43.4M 71s\n", + "217650K .......... .......... .......... .......... .......... 13% 52.7M 71s\n", + "217700K .......... .......... .......... .......... .......... 13% 50.8M 71s\n", + "217750K .......... .......... .......... .......... .......... 13% 49.4M 71s\n", + "217800K .......... .......... .......... .......... .......... 13% 44.0M 71s\n", + "217850K .......... .......... .......... .......... .......... 13% 52.3M 71s\n", + "217900K .......... .......... .......... .......... .......... 13% 17.1M 71s\n", + "217950K .......... .......... .......... .......... .......... 13% 19.4M 71s\n", + "218000K .......... .......... .......... .......... .......... 13% 36.7M 71s\n", + "218050K .......... .......... .......... .......... .......... 13% 51.5M 71s\n", + "218100K .......... .......... .......... .......... .......... 13% 48.9M 71s\n", + "218150K .......... .......... .......... .......... .......... 13% 49.9M 71s\n", + "218200K .......... .......... .......... .......... .......... 13% 43.4M 71s\n", + "218250K .......... .......... .......... .......... .......... 13% 1.25M 72s\n", + "218300K .......... .......... .......... .......... .......... 13% 13.4M 72s\n", + "218350K .......... .......... .......... .......... .......... 13% 47.8M 72s\n", + "218400K .......... .......... .......... .......... .......... 13% 22.0M 72s\n", + "218450K .......... .......... .......... .......... .......... 13% 48.4M 72s\n", + "218500K .......... .......... .......... .......... .......... 13% 50.7M 72s\n", + "218550K .......... .......... .......... .......... .......... 13% 49.6M 72s\n", + "218600K .......... .......... .......... .......... .......... 13% 43.0M 71s\n", + "218650K .......... .......... .......... .......... .......... 13% 47.3M 71s\n", + "218700K .......... .......... .......... .......... .......... 13% 51.1M 71s\n", + "218750K .......... .......... .......... .......... .......... 13% 49.0M 71s\n", + "218800K .......... .......... .......... .......... .......... 13% 43.9M 71s\n", + "218850K .......... .......... .......... .......... .......... 13% 50.0M 71s\n", + "218900K .......... .......... .......... .......... .......... 13% 50.4M 71s\n", + "218950K .......... .......... .......... .......... .......... 13% 52.1M 71s\n", + "219000K .......... .......... .......... .......... .......... 13% 42.5M 71s\n", + "219050K .......... .......... .......... .......... .......... 13% 50.4M 71s\n", + "219100K .......... .......... .......... .......... .......... 13% 50.4M 71s\n", + "219150K .......... .......... .......... .......... .......... 13% 50.8M 71s\n", + "219200K .......... .......... .......... .......... .......... 13% 42.5M 71s\n", + "219250K .......... .......... .......... .......... .......... 13% 47.5M 71s\n", + "219300K .......... .......... .......... .......... .......... 13% 51.8M 71s\n", + "219350K .......... .......... .......... .......... .......... 13% 52.3M 71s\n", + "219400K .......... .......... .......... .......... .......... 13% 18.7M 71s\n", + "219450K .......... .......... .......... .......... .......... 14% 18.9M 71s\n", + "219500K .......... .......... .......... .......... .......... 14% 50.1M 71s\n", + "219550K .......... .......... .......... .......... .......... 14% 39.0M 71s\n", + "219600K .......... .......... .......... .......... .......... 14% 44.0M 71s\n", + "219650K .......... .......... .......... .......... .......... 14% 48.4M 71s\n", + "219700K .......... .......... .......... .......... .......... 14% 49.6M 71s\n", + "219750K .......... .......... .......... .......... .......... 14% 52.3M 71s\n", + "219800K .......... .......... .......... .......... .......... 14% 1.24M 71s\n", + "219850K .......... .......... .......... .......... .......... 14% 15.3M 71s\n", + "219900K .......... .......... .......... .......... .......... 14% 25.1M 71s\n", + "219950K .......... .......... .......... .......... .......... 14% 45.7M 71s\n", + "220000K .......... .......... .......... .......... .......... 14% 40.5M 71s\n", + "220050K .......... .......... .......... .......... .......... 14% 51.7M 71s\n", + "220100K .......... .......... .......... .......... .......... 14% 51.7M 71s\n", + "220150K .......... .......... .......... .......... .......... 14% 49.3M 71s\n", + "220200K .......... .......... .......... .......... .......... 14% 44.3M 71s\n", + "220250K .......... .......... .......... .......... .......... 14% 52.0M 71s\n", + "220300K .......... .......... .......... .......... .......... 14% 52.9M 71s\n", + "220350K .......... .......... .......... .......... .......... 14% 49.4M 71s\n", + "220400K .......... .......... .......... .......... .......... 14% 43.7M 71s\n", + "220450K .......... .......... .......... .......... .......... 14% 52.5M 71s\n", + "220500K .......... .......... .......... .......... .......... 14% 51.2M 71s\n", + "220550K .......... .......... .......... .......... .......... 14% 49.5M 71s\n", + "220600K .......... .......... .......... .......... .......... 14% 44.7M 71s\n", + "220650K .......... .......... .......... .......... .......... 14% 51.8M 71s\n", + "220700K .......... .......... .......... .......... .......... 14% 51.2M 71s\n", + "220750K .......... .......... .......... .......... .......... 14% 47.4M 71s\n", + "220800K .......... .......... .......... .......... .......... 14% 42.5M 71s\n", + "220850K .......... .......... .......... .......... .......... 14% 52.0M 71s\n", + "220900K .......... .......... .......... .......... .......... 14% 15.7M 71s\n", + "220950K .......... .......... .......... .......... .......... 14% 51.0M 71s\n", + "221000K .......... .......... .......... .......... .......... 14% 19.3M 71s\n", + "221050K .......... .......... .......... .......... .......... 14% 33.4M 71s\n", + "221100K .......... .......... .......... .......... .......... 14% 50.8M 71s\n", + "221150K .......... .......... .......... .......... .......... 14% 49.9M 71s\n", + "221200K .......... .......... .......... .......... .......... 14% 43.3M 71s\n", + "221250K .......... .......... .......... .......... .......... 14% 48.1M 71s\n", + "221300K .......... .......... .......... .......... .......... 14% 1.23M 71s\n", + "221350K .......... .......... .......... .......... .......... 14% 20.2M 71s\n", + "221400K .......... .......... .......... .......... .......... 14% 35.1M 71s\n", + "221450K .......... .......... .......... .......... .......... 14% 23.2M 71s\n", + "221500K .......... .......... .......... .......... .......... 14% 42.5M 71s\n", + "221550K .......... .......... .......... .......... .......... 14% 51.1M 71s\n", + "221600K .......... .......... .......... .......... .......... 14% 42.4M 71s\n", + "221650K .......... .......... .......... .......... .......... 14% 43.8M 71s\n", + "221700K .......... .......... .......... .......... .......... 14% 48.8M 71s\n", + "221750K .......... .......... .......... .......... .......... 14% 45.2M 71s\n", + "221800K .......... .......... .......... .......... .......... 14% 45.4M 71s\n", + "221850K .......... .......... .......... .......... .......... 14% 50.1M 71s\n", + "221900K .......... .......... .......... .......... .......... 14% 49.7M 71s\n", + "221950K .......... .......... .......... .......... .......... 14% 52.8M 71s\n", + "222000K .......... .......... .......... .......... .......... 14% 45.0M 71s\n", + "222050K .......... .......... .......... .......... .......... 14% 51.5M 71s\n", + "222100K .......... .......... .......... .......... .......... 14% 51.5M 71s\n", + "222150K .......... .......... .......... .......... .......... 14% 52.5M 71s\n", + "222200K .......... .......... .......... .......... .......... 14% 45.7M 71s\n", + "222250K .......... .......... .......... .......... .......... 14% 53.1M 71s\n", + "222300K .......... .......... .......... .......... .......... 14% 49.6M 71s\n", + "222350K .......... .......... .......... .......... .......... 14% 51.1M 71s\n", + "222400K .......... .......... .......... .......... .......... 14% 45.5M 71s\n", + "222450K .......... .......... .......... .......... .......... 14% 16.3M 71s\n", + "222500K .......... .......... .......... .......... .......... 14% 23.1M 71s\n", + "222550K .......... .......... .......... .......... .......... 14% 29.4M 71s\n", + "222600K .......... .......... .......... .......... .......... 14% 44.0M 71s\n", + "222650K .......... .......... .......... .......... .......... 14% 46.1M 71s\n", + "222700K .......... .......... .......... .......... .......... 14% 51.4M 71s\n", + "222750K .......... .......... .......... .......... .......... 14% 53.2M 71s\n", + "222800K .......... .......... .......... .......... .......... 14% 43.4M 71s\n", + "222850K .......... .......... .......... .......... .......... 14% 1.24M 71s\n", + "222900K .......... .......... .......... .......... .......... 14% 17.5M 71s\n", + "222950K .......... .......... .......... .......... .......... 14% 18.4M 71s\n", + "223000K .......... .......... .......... .......... .......... 14% 39.8M 71s\n", + "223050K .......... .......... .......... .......... .......... 14% 45.4M 71s\n", + "223100K .......... .......... .......... .......... .......... 14% 47.6M 71s\n", + "223150K .......... .......... .......... .......... .......... 14% 49.9M 71s\n", + "223200K .......... .......... .......... .......... .......... 14% 41.1M 71s\n", + "223250K .......... .......... .......... .......... .......... 14% 52.1M 71s\n", + "223300K .......... .......... .......... .......... .......... 14% 49.7M 71s\n", + "223350K .......... .......... .......... .......... .......... 14% 51.3M 71s\n", + "223400K .......... .......... .......... .......... .......... 14% 44.0M 71s\n", + "223450K .......... .......... .......... .......... .......... 14% 50.2M 71s\n", + "223500K .......... .......... .......... .......... .......... 14% 52.2M 71s\n", + "223550K .......... .......... .......... .......... .......... 14% 51.2M 71s\n", + "223600K .......... .......... .......... .......... .......... 14% 43.1M 71s\n", + "223650K .......... .......... .......... .......... .......... 14% 50.9M 71s\n", + "223700K .......... .......... .......... .......... .......... 14% 51.8M 71s\n", + "223750K .......... .......... .......... .......... .......... 14% 48.8M 71s\n", + "223800K .......... .......... .......... .......... .......... 14% 44.8M 71s\n", + "223850K .......... .......... .......... .......... .......... 14% 52.5M 71s\n", + "223900K .......... .......... .......... .......... .......... 14% 54.0M 71s\n", + "223950K .......... .......... .......... .......... .......... 14% 52.3M 71s\n", + "224000K .......... .......... .......... .......... .......... 14% 20.6M 71s\n", + "224050K .......... .......... .......... .......... .......... 14% 18.8M 71s\n", + "224100K .......... .......... .......... .......... .......... 14% 36.3M 71s\n", + "224150K .......... .......... .......... .......... .......... 14% 53.7M 71s\n", + "224200K .......... .......... .......... .......... .......... 14% 44.3M 71s\n", + "224250K .......... .......... .......... .......... .......... 14% 52.7M 71s\n", + "224300K .......... .......... .......... .......... .......... 14% 53.7M 71s\n", + "224350K .......... .......... .......... .......... .......... 14% 51.6M 71s\n", + "224400K .......... .......... .......... .......... .......... 14% 1.19M 71s\n", + "224450K .......... .......... .......... .......... .......... 14% 16.8M 71s\n", + "224500K .......... .......... .......... .......... .......... 14% 49.5M 71s\n", + "224550K .......... .......... .......... .......... .......... 14% 50.3M 71s\n", + "224600K .......... .......... .......... .......... .......... 14% 44.6M 71s\n", + "224650K .......... .......... .......... .......... .......... 14% 49.8M 71s\n", + "224700K .......... .......... .......... .......... .......... 14% 51.0M 71s\n", + "224750K .......... .......... .......... .......... .......... 14% 49.4M 71s\n", + "224800K .......... .......... .......... .......... .......... 14% 44.3M 71s\n", + "224850K .......... .......... .......... .......... .......... 14% 50.4M 71s\n", + "224900K .......... .......... .......... .......... .......... 14% 50.7M 71s\n", + "224950K .......... .......... .......... .......... .......... 14% 52.7M 71s\n", + "225000K .......... .......... .......... .......... .......... 14% 46.2M 71s\n", + "225050K .......... .......... .......... .......... .......... 14% 53.7M 71s\n", + "225100K .......... .......... .......... .......... .......... 14% 52.0M 71s\n", + "225150K .......... .......... .......... .......... .......... 14% 52.4M 71s\n", + "225200K .......... .......... .......... .......... .......... 14% 43.9M 71s\n", + "225250K .......... .......... .......... .......... .......... 14% 53.4M 71s\n", + "225300K .......... .......... .......... .......... .......... 14% 51.6M 71s\n", + "225350K .......... .......... .......... .......... .......... 14% 51.5M 71s\n", + "225400K .......... .......... .......... .......... .......... 14% 45.6M 71s\n", + "225450K .......... .......... .......... .......... .......... 14% 52.3M 71s\n", + "225500K .......... .......... .......... .......... .......... 14% 16.0M 71s\n", + "225550K .......... .......... .......... .......... .......... 14% 23.9M 71s\n", + "225600K .......... .......... .......... .......... .......... 14% 21.5M 71s\n", + "225650K .......... .......... .......... .......... .......... 14% 52.8M 71s\n", + "225700K .......... .......... .......... .......... .......... 14% 49.2M 71s\n", + "225750K .......... .......... .......... .......... .......... 14% 52.0M 71s\n", + "225800K .......... .......... .......... .......... .......... 14% 45.7M 71s\n", + "225850K .......... .......... .......... .......... .......... 14% 51.0M 71s\n", + "225900K .......... .......... .......... .......... .......... 14% 1.24M 71s\n", + "225950K .......... .......... .......... .......... .......... 14% 15.7M 71s\n", + "226000K .......... .......... .......... .......... .......... 14% 25.9M 71s\n", + "226050K .......... .......... .......... .......... .......... 14% 35.8M 71s\n", + "226100K .......... .......... .......... .......... .......... 14% 51.9M 71s\n", + "226150K .......... .......... .......... .......... .......... 14% 53.0M 71s\n", + "226200K .......... .......... .......... .......... .......... 14% 45.1M 71s\n", + "226250K .......... .......... .......... .......... .......... 14% 51.1M 71s\n", + "226300K .......... .......... .......... .......... .......... 14% 51.1M 71s\n", + "226350K .......... .......... .......... .......... .......... 14% 53.3M 71s\n", + "226400K .......... .......... .......... .......... .......... 14% 44.1M 71s\n", + "226450K .......... .......... .......... .......... .......... 14% 53.6M 71s\n", + "226500K .......... .......... .......... .......... .......... 14% 51.8M 71s\n", + "226550K .......... .......... .......... .......... .......... 14% 53.6M 71s\n", + "226600K .......... .......... .......... .......... .......... 14% 44.6M 71s\n", + "226650K .......... .......... .......... .......... .......... 14% 52.2M 71s\n", + "226700K .......... .......... .......... .......... .......... 14% 54.1M 71s\n", + "226750K .......... .......... .......... .......... .......... 14% 52.4M 71s\n", + "226800K .......... .......... .......... .......... .......... 14% 44.0M 71s\n", + "226850K .......... .......... .......... .......... .......... 14% 50.9M 71s\n", + "226900K .......... .......... .......... .......... .......... 14% 52.6M 71s\n", + "226950K .......... .......... .......... .......... .......... 14% 51.3M 71s\n", + "227000K .......... .......... .......... .......... .......... 14% 14.8M 71s\n", + "227050K .......... .......... .......... .......... .......... 14% 52.3M 71s\n", + "227100K .......... .......... .......... .......... .......... 14% 16.5M 71s\n", + "227150K .......... .......... .......... .......... .......... 14% 34.0M 71s\n", + "227200K .......... .......... .......... .......... .......... 14% 44.3M 71s\n", + "227250K .......... .......... .......... .......... .......... 14% 50.7M 71s\n", + "227300K .......... .......... .......... .......... .......... 14% 52.6M 71s\n", + "227350K .......... .......... .......... .......... .......... 14% 53.3M 71s\n", + "227400K .......... .......... .......... .......... .......... 14% 1.24M 71s\n", + "227450K .......... .......... .......... .......... .......... 14% 18.2M 71s\n", + "227500K .......... .......... .......... .......... .......... 14% 30.6M 71s\n", + "227550K .......... .......... .......... .......... .......... 14% 26.2M 71s\n", + "227600K .......... .......... .......... .......... .......... 14% 31.5M 71s\n", + "227650K .......... .......... .......... .......... .......... 14% 53.8M 71s\n", + "227700K .......... .......... .......... .......... .......... 14% 52.8M 71s\n", + "227750K .......... .......... .......... .......... .......... 14% 51.8M 71s\n", + "227800K .......... .......... .......... .......... .......... 14% 45.2M 71s\n", + "227850K .......... .......... .......... .......... .......... 14% 49.8M 71s\n", + "227900K .......... .......... .......... .......... .......... 14% 49.2M 71s\n", + "227950K .......... .......... .......... .......... .......... 14% 52.7M 71s\n", + "228000K .......... .......... .......... .......... .......... 14% 44.5M 71s\n", + "228050K .......... .......... .......... .......... .......... 14% 54.3M 71s\n", + "228100K .......... .......... .......... .......... .......... 14% 54.4M 71s\n", + "228150K .......... .......... .......... .......... .......... 14% 52.7M 71s\n", + "228200K .......... .......... .......... .......... .......... 14% 47.1M 71s\n", + "228250K .......... .......... .......... .......... .......... 14% 52.1M 71s\n", + "228300K .......... .......... .......... .......... .......... 14% 54.0M 71s\n", + "228350K .......... .......... .......... .......... .......... 14% 52.3M 71s\n", + "228400K .......... .......... .......... .......... .......... 14% 44.5M 71s\n", + "228450K .......... .......... .......... .......... .......... 14% 52.9M 71s\n", + "228500K .......... .......... .......... .......... .......... 14% 53.9M 71s\n", + "228550K .......... .......... .......... .......... .......... 14% 16.9M 71s\n", + "228600K .......... .......... .......... .......... .......... 14% 22.5M 71s\n", + "228650K .......... .......... .......... .......... .......... 14% 29.4M 71s\n", + "228700K .......... .......... .......... .......... .......... 14% 29.9M 71s\n", + "228750K .......... .......... .......... .......... .......... 14% 49.7M 71s\n", + "228800K .......... .......... .......... .......... .......... 14% 44.0M 71s\n", + "228850K .......... .......... .......... .......... .......... 14% 50.8M 71s\n", + "228900K .......... .......... .......... .......... .......... 14% 1.24M 71s\n", + "228950K .......... .......... .......... .......... .......... 14% 48.5M 71s\n", + "229000K .......... .......... .......... .......... .......... 14% 16.6M 71s\n", + "229050K .......... .......... .......... .......... .......... 14% 22.1M 71s\n", + "229100K .......... .......... .......... .......... .......... 14% 32.2M 71s\n", + "229150K .......... .......... .......... .......... .......... 14% 49.8M 71s\n", + "229200K .......... .......... .......... .......... .......... 14% 43.5M 71s\n", + "229250K .......... .......... .......... .......... .......... 14% 51.8M 71s\n", + "229300K .......... .......... .......... .......... .......... 14% 52.0M 71s\n", + "229350K .......... .......... .......... .......... .......... 14% 48.7M 71s\n", + "229400K .......... .......... .......... .......... .......... 14% 45.5M 71s\n", + "229450K .......... .......... .......... .......... .......... 14% 52.2M 71s\n", + "229500K .......... .......... .......... .......... .......... 14% 53.7M 71s\n", + "229550K .......... .......... .......... .......... .......... 14% 51.2M 71s\n", + "229600K .......... .......... .......... .......... .......... 14% 45.1M 71s\n", + "229650K .......... .......... .......... .......... .......... 14% 52.0M 71s\n", + "229700K .......... .......... .......... .......... .......... 14% 53.6M 71s\n", + "229750K .......... .......... .......... .......... .......... 14% 53.2M 71s\n", + "229800K .......... .......... .......... .......... .......... 14% 44.4M 71s\n", + "229850K .......... .......... .......... .......... .......... 14% 52.6M 71s\n", + "229900K .......... .......... .......... .......... .......... 14% 53.0M 71s\n", + "229950K .......... .......... .......... .......... .......... 14% 53.4M 71s\n", + "230000K .......... .......... .......... .......... .......... 14% 43.5M 71s\n", + "230050K .......... .......... .......... .......... .......... 14% 23.9M 71s\n", + "230100K .......... .......... .......... .......... .......... 14% 35.3M 71s\n", + "230150K .......... .......... .......... .......... .......... 14% 18.8M 71s\n", + "230200K .......... .......... .......... .......... .......... 14% 26.4M 71s\n", + "230250K .......... .......... .......... .......... .......... 14% 52.3M 71s\n", + "230300K .......... .......... .......... .......... .......... 14% 53.0M 71s\n", + "230350K .......... .......... .......... .......... .......... 14% 53.0M 70s\n", + "230400K .......... .......... .......... .......... .......... 14% 44.2M 70s\n", + "230450K .......... .......... .......... .......... .......... 14% 1.24M 71s\n", + "230500K .......... .......... .......... .......... .......... 14% 21.2M 71s\n", + "230550K .......... .......... .......... .......... .......... 14% 38.0M 71s\n", + "230600K .......... .......... .......... .......... .......... 14% 18.2M 71s\n", + "230650K .......... .......... .......... .......... .......... 14% 36.5M 71s\n", + "230700K .......... .......... .......... .......... .......... 14% 53.7M 71s\n", + "230750K .......... .......... .......... .......... .......... 14% 51.9M 71s\n", + "230800K .......... .......... .......... .......... .......... 14% 44.1M 71s\n", + "230850K .......... .......... .......... .......... .......... 14% 52.8M 71s\n", + "230900K .......... .......... .......... .......... .......... 14% 52.7M 71s\n", + "230950K .......... .......... .......... .......... .......... 14% 49.3M 71s\n", + "231000K .......... .......... .......... .......... .......... 14% 44.6M 71s\n", + "231050K .......... .......... .......... .......... .......... 14% 53.1M 71s\n", + "231100K .......... .......... .......... .......... .......... 14% 53.2M 71s\n", + "231150K .......... .......... .......... .......... .......... 14% 50.8M 71s\n", + "231200K .......... .......... .......... .......... .......... 14% 44.6M 71s\n", + "231250K .......... .......... .......... .......... .......... 14% 52.9M 71s\n", + "231300K .......... .......... .......... .......... .......... 14% 51.5M 71s\n", + "231350K .......... .......... .......... .......... .......... 14% 52.6M 70s\n", + "231400K .......... .......... .......... .......... .......... 14% 44.6M 70s\n", + "231450K .......... .......... .......... .......... .......... 14% 52.4M 70s\n", + "231500K .......... .......... .......... .......... .......... 14% 51.2M 70s\n", + "231550K .......... .......... .......... .......... .......... 14% 52.4M 70s\n", + "231600K .......... .......... .......... .......... .......... 14% 15.7M 70s\n", + "231650K .......... .......... .......... .......... .......... 14% 20.1M 70s\n", + "231700K .......... .......... .......... .......... .......... 14% 27.4M 70s\n", + "231750K .......... .......... .......... .......... .......... 14% 53.1M 70s\n", + "231800K .......... .......... .......... .......... .......... 14% 43.9M 70s\n", + "231850K .......... .......... .......... .......... .......... 14% 54.3M 70s\n", + "231900K .......... .......... .......... .......... .......... 14% 54.3M 70s\n", + "231950K .......... .......... .......... .......... .......... 14% 53.2M 70s\n", + "232000K .......... .......... .......... .......... .......... 14% 1.24M 71s\n", + "232050K .......... .......... .......... .......... .......... 14% 16.0M 71s\n", + "232100K .......... .......... .......... .......... .......... 14% 21.2M 71s\n", + "232150K .......... .......... .......... .......... .......... 14% 36.5M 71s\n", + "232200K .......... .......... .......... .......... .......... 14% 45.9M 71s\n", + "232250K .......... .......... .......... .......... .......... 14% 50.4M 71s\n", + "232300K .......... .......... .......... .......... .......... 14% 53.2M 71s\n", + "232350K .......... .......... .......... .......... .......... 14% 53.1M 71s\n", + "232400K .......... .......... .......... .......... .......... 14% 45.7M 71s\n", + "232450K .......... .......... .......... .......... .......... 14% 52.9M 70s\n", + "232500K .......... .......... .......... .......... .......... 14% 50.7M 70s\n", + "232550K .......... .......... .......... .......... .......... 14% 53.9M 70s\n", + "232600K .......... .......... .......... .......... .......... 14% 45.9M 70s\n", + "232650K .......... .......... .......... .......... .......... 14% 53.0M 70s\n", + "232700K .......... .......... .......... .......... .......... 14% 50.3M 70s\n", + "232750K .......... .......... .......... .......... .......... 14% 53.9M 70s\n", + "232800K .......... .......... .......... .......... .......... 14% 46.3M 70s\n", + "232850K .......... .......... .......... .......... .......... 14% 54.3M 70s\n", + "232900K .......... .......... .......... .......... .......... 14% 51.5M 70s\n", + "232950K .......... .......... .......... .......... .......... 14% 51.8M 70s\n", + "233000K .......... .......... .......... .......... .......... 14% 46.6M 70s\n", + "233050K .......... .......... .......... .......... .......... 14% 53.8M 70s\n", + "233100K .......... .......... .......... .......... .......... 14% 35.4M 70s\n", + "233150K .......... .......... .......... .......... .......... 14% 18.8M 70s\n", + "233200K .......... .......... .......... .......... .......... 14% 16.0M 70s\n", + "233250K .......... .......... .......... .......... .......... 14% 36.0M 70s\n", + "233300K .......... .......... .......... .......... .......... 14% 51.2M 70s\n", + "233350K .......... .......... .......... .......... .......... 14% 51.6M 70s\n", + "233400K .......... .......... .......... .......... .......... 14% 47.1M 70s\n", + "233450K .......... .......... .......... .......... .......... 14% 53.5M 70s\n", + "233500K .......... .......... .......... .......... .......... 14% 1.23M 70s\n", + "233550K .......... .......... .......... .......... .......... 14% 25.0M 70s\n", + "233600K .......... .......... .......... .......... .......... 14% 14.1M 70s\n", + "233650K .......... .......... .......... .......... .......... 14% 52.9M 70s\n", + "233700K .......... .......... .......... .......... .......... 14% 31.6M 70s\n", + "233750K .......... .......... .......... .......... .......... 14% 32.6M 70s\n", + "233800K .......... .......... .......... .......... .......... 14% 32.8M 70s\n", + "233850K .......... .......... .......... .......... .......... 14% 35.1M 70s\n", + "233900K .......... .......... .......... .......... .......... 14% 35.9M 70s\n", + "233950K .......... .......... .......... .......... .......... 14% 53.6M 70s\n", + "234000K .......... .......... .......... .......... .......... 14% 45.6M 70s\n", + "234050K .......... .......... .......... .......... .......... 14% 52.2M 70s\n", + "234100K .......... .......... .......... .......... .......... 14% 48.0M 70s\n", + "234150K .......... .......... .......... .......... .......... 14% 53.2M 70s\n", + "234200K .......... .......... .......... .......... .......... 14% 43.8M 70s\n", + "234250K .......... .......... .......... .......... .......... 14% 48.7M 70s\n", + "234300K .......... .......... .......... .......... .......... 14% 49.9M 70s\n", + "234350K .......... .......... .......... .......... .......... 14% 50.1M 70s\n", + "234400K .......... .......... .......... .......... .......... 14% 42.8M 70s\n", + "234450K .......... .......... .......... .......... .......... 14% 51.6M 70s\n", + "234500K .......... .......... .......... .......... .......... 14% 49.2M 70s\n", + "234550K .......... .......... .......... .......... .......... 14% 50.4M 70s\n", + "234600K .......... .......... .......... .......... .......... 14% 46.8M 70s\n", + "234650K .......... .......... .......... .......... .......... 14% 54.2M 70s\n", + "234700K .......... .......... .......... .......... .......... 14% 51.6M 70s\n", + "234750K .......... .......... .......... .......... .......... 14% 22.7M 70s\n", + "234800K .......... .......... .......... .......... .......... 14% 35.2M 70s\n", + "234850K .......... .......... .......... .......... .......... 14% 48.7M 70s\n", + "234900K .......... .......... .......... .......... .......... 14% 53.1M 70s\n", + "234950K .......... .......... .......... .......... .......... 14% 55.0M 70s\n", + "235000K .......... .......... .......... .......... .......... 14% 46.6M 70s\n", + "235050K .......... .......... .......... .......... .......... 14% 1.23M 70s\n", + "235100K .......... .......... .......... .......... .......... 14% 14.3M 70s\n", + "235150K .......... .......... .......... .......... .......... 15% 22.5M 70s\n", + "235200K .......... .......... .......... .......... .......... 15% 33.3M 70s\n", + "235250K .......... .......... .......... .......... .......... 15% 54.4M 70s\n", + "235300K .......... .......... .......... .......... .......... 15% 52.0M 70s\n", + "235350K .......... .......... .......... .......... .......... 15% 53.1M 70s\n", + "235400K .......... .......... .......... .......... .......... 15% 46.3M 70s\n", + "235450K .......... .......... .......... .......... .......... 15% 52.4M 70s\n", + "235500K .......... .......... .......... .......... .......... 15% 49.6M 70s\n", + "235550K .......... .......... .......... .......... .......... 15% 54.3M 70s\n", + "235600K .......... .......... .......... .......... .......... 15% 46.3M 70s\n", + "235650K .......... .......... .......... .......... .......... 15% 54.2M 70s\n", + "235700K .......... .......... .......... .......... .......... 15% 53.7M 70s\n", + "235750K .......... .......... .......... .......... .......... 15% 50.9M 70s\n", + "235800K .......... .......... .......... .......... .......... 15% 47.4M 70s\n", + "235850K .......... .......... .......... .......... .......... 15% 54.6M 70s\n", + "235900K .......... .......... .......... .......... .......... 15% 51.9M 70s\n", + "235950K .......... .......... .......... .......... .......... 15% 52.5M 70s\n", + "236000K .......... .......... .......... .......... .......... 15% 44.8M 70s\n", + "236050K .......... .......... .......... .......... .......... 15% 52.2M 70s\n", + "236100K .......... .......... .......... .......... .......... 15% 52.5M 70s\n", + "236150K .......... .......... .......... .......... .......... 15% 50.4M 70s\n", + "236200K .......... .......... .......... .......... .......... 15% 20.5M 70s\n", + "236250K .......... .......... .......... .......... .......... 15% 14.5M 70s\n", + "236300K .......... .......... .......... .......... .......... 15% 33.9M 70s\n", + "236350K .......... .......... .......... .......... .......... 15% 51.2M 70s\n", + "236400K .......... .......... .......... .......... .......... 15% 43.6M 70s\n", + "236450K .......... .......... .......... .......... .......... 15% 53.3M 70s\n", + "236500K .......... .......... .......... .......... .......... 15% 52.5M 70s\n", + "236550K .......... .......... .......... .......... .......... 15% 1.24M 70s\n", + "236600K .......... .......... .......... .......... .......... 15% 35.9M 70s\n", + "236650K .......... .......... .......... .......... .......... 15% 17.6M 70s\n", + "236700K .......... .......... .......... .......... .......... 15% 22.0M 70s\n", + "236750K .......... .......... .......... .......... .......... 15% 37.9M 70s\n", + "236800K .......... .......... .......... .......... .......... 15% 38.7M 70s\n", + "236850K .......... .......... .......... .......... .......... 15% 49.5M 70s\n", + "236900K .......... .......... .......... .......... .......... 15% 52.6M 70s\n", + "236950K .......... .......... .......... .......... .......... 15% 52.2M 70s\n", + "237000K .......... .......... .......... .......... .......... 15% 44.6M 70s\n", + "237050K .......... .......... .......... .......... .......... 15% 51.5M 70s\n", + "237100K .......... .......... .......... .......... .......... 15% 50.5M 70s\n", + "237150K .......... .......... .......... .......... .......... 15% 53.0M 70s\n", + "237200K .......... .......... .......... .......... .......... 15% 44.4M 70s\n", + "237250K .......... .......... .......... .......... .......... 15% 49.8M 70s\n", + "237300K .......... .......... .......... .......... .......... 15% 53.0M 70s\n", + "237350K .......... .......... .......... .......... .......... 15% 51.3M 70s\n", + "237400K .......... .......... .......... .......... .......... 15% 45.5M 70s\n", + "237450K .......... .......... .......... .......... .......... 15% 52.7M 70s\n", + "237500K .......... .......... .......... .......... .......... 15% 50.4M 70s\n", + "237550K .......... .......... .......... .......... .......... 15% 53.4M 70s\n", + "237600K .......... .......... .......... .......... .......... 15% 44.8M 70s\n", + "237650K .......... .......... .......... .......... .......... 15% 51.5M 70s\n", + "237700K .......... .......... .......... .......... .......... 15% 23.5M 70s\n", + "237750K .......... .......... .......... .......... .......... 15% 14.6M 70s\n", + "237800K .......... .......... .......... .......... .......... 15% 25.1M 70s\n", + "237850K .......... .......... .......... .......... .......... 15% 50.2M 70s\n", + "237900K .......... .......... .......... .......... .......... 15% 53.0M 70s\n", + "237950K .......... .......... .......... .......... .......... 15% 51.2M 70s\n", + "238000K .......... .......... .......... .......... .......... 15% 44.5M 70s\n", + "238050K .......... .......... .......... .......... .......... 15% 1.26M 70s\n", + "238100K .......... .......... .......... .......... .......... 15% 45.3M 70s\n", + "238150K .......... .......... .......... .......... .......... 15% 14.5M 70s\n", + "238200K .......... .......... .......... .......... .......... 15% 21.5M 70s\n", + "238250K .......... .......... .......... .......... .......... 15% 34.8M 70s\n", + "238300K .......... .......... .......... .......... .......... 15% 50.5M 70s\n", + "238350K .......... .......... .......... .......... .......... 15% 45.5M 70s\n", + "238400K .......... .......... .......... .......... .......... 15% 45.0M 70s\n", + "238450K .......... .......... .......... .......... .......... 15% 49.3M 70s\n", + "238500K .......... .......... .......... .......... .......... 15% 52.2M 70s\n", + "238550K .......... .......... .......... .......... .......... 15% 51.2M 70s\n", + "238600K .......... .......... .......... .......... .......... 15% 43.9M 70s\n", + "238650K .......... .......... .......... .......... .......... 15% 53.8M 70s\n", + "238700K .......... .......... .......... .......... .......... 15% 52.8M 70s\n", + "238750K .......... .......... .......... .......... .......... 15% 51.8M 70s\n", + "238800K .......... .......... .......... .......... .......... 15% 46.0M 70s\n", + "238850K .......... .......... .......... .......... .......... 15% 48.9M 70s\n", + "238900K .......... .......... .......... .......... .......... 15% 51.4M 70s\n", + "238950K .......... .......... .......... .......... .......... 15% 49.5M 70s\n", + "239000K .......... .......... .......... .......... .......... 15% 42.9M 70s\n", + "239050K .......... .......... .......... .......... .......... 15% 52.9M 70s\n", + "239100K .......... .......... .......... .......... .......... 15% 49.3M 70s\n", + "239150K .......... .......... .......... .......... .......... 15% 49.0M 70s\n", + "239200K .......... .......... .......... .......... .......... 15% 43.6M 70s\n", + "239250K .......... .......... .......... .......... .......... 15% 29.4M 70s\n", + "239300K .......... .......... .......... .......... .......... 15% 16.2M 70s\n", + "239350K .......... .......... .......... .......... .......... 15% 24.5M 70s\n", + "239400K .......... .......... .......... .......... .......... 15% 44.4M 70s\n", + "239450K .......... .......... .......... .......... .......... 15% 48.1M 70s\n", + "239500K .......... .......... .......... .......... .......... 15% 51.7M 70s\n", + "239550K .......... .......... .......... .......... .......... 15% 52.8M 70s\n", + "239600K .......... .......... .......... .......... .......... 15% 1.26M 70s\n", + "239650K .......... .......... .......... .......... .......... 15% 14.1M 70s\n", + "239700K .......... .......... .......... .......... .......... 15% 26.9M 70s\n", + "239750K .......... .......... .......... .......... .......... 15% 33.8M 70s\n", + "239800K .......... .......... .......... .......... .......... 15% 32.3M 70s\n", + "239850K .......... .......... .......... .......... .......... 15% 51.3M 70s\n", + "239900K .......... .......... .......... .......... .......... 15% 52.3M 70s\n", + "239950K .......... .......... .......... .......... .......... 15% 51.1M 70s\n", + "240000K .......... .......... .......... .......... .......... 15% 42.9M 70s\n", + "240050K .......... .......... .......... .......... .......... 15% 51.0M 70s\n", + "240100K .......... .......... .......... .......... .......... 15% 52.6M 70s\n", + "240150K .......... .......... .......... .......... .......... 15% 52.9M 70s\n", + "240200K .......... .......... .......... .......... .......... 15% 44.8M 70s\n", + "240250K .......... .......... .......... .......... .......... 15% 50.7M 70s\n", + "240300K .......... .......... .......... .......... .......... 15% 52.7M 70s\n", + "240350K .......... .......... .......... .......... .......... 15% 51.7M 70s\n", + "240400K .......... .......... .......... .......... .......... 15% 45.4M 70s\n", + "240450K .......... .......... .......... .......... .......... 15% 47.6M 70s\n", + "240500K .......... .......... .......... .......... .......... 15% 52.7M 70s\n", + "240550K .......... .......... .......... .......... .......... 15% 52.8M 70s\n", + "240600K .......... .......... .......... .......... .......... 15% 43.5M 70s\n", + "240650K .......... .......... .......... .......... .......... 15% 49.5M 70s\n", + "240700K .......... .......... .......... .......... .......... 15% 52.6M 70s\n", + "240750K .......... .......... .......... .......... .......... 15% 25.1M 70s\n", + "240800K .......... .......... .......... .......... .......... 15% 14.8M 70s\n", + "240850K .......... .......... .......... .......... .......... 15% 33.0M 70s\n", + "240900K .......... .......... .......... .......... .......... 15% 47.1M 70s\n", + "240950K .......... .......... .......... .......... .......... 15% 51.8M 70s\n", + "241000K .......... .......... .......... .......... .......... 15% 45.2M 70s\n", + "241050K .......... .......... .......... .......... .......... 15% 51.9M 70s\n", + "241100K .......... .......... .......... .......... .......... 15% 51.5M 70s\n", + "241150K .......... .......... .......... .......... .......... 15% 1.25M 70s\n", + "241200K .......... .......... .......... .......... .......... 15% 15.3M 70s\n", + "241250K .......... .......... .......... .......... .......... 15% 19.6M 70s\n", + "241300K .......... .......... .......... .......... .......... 15% 33.5M 70s\n", + "241350K .......... .......... .......... .......... .......... 15% 50.2M 70s\n", + "241400K .......... .......... .......... .......... .......... 15% 44.3M 70s\n", + "241450K .......... .......... .......... .......... .......... 15% 51.4M 70s\n", + "241500K .......... .......... .......... .......... .......... 15% 51.0M 70s\n", + "241550K .......... .......... .......... .......... .......... 15% 50.7M 70s\n", + "241600K .......... .......... .......... .......... .......... 15% 41.9M 70s\n", + "241650K .......... .......... .......... .......... .......... 15% 52.8M 70s\n", + "241700K .......... .......... .......... .......... .......... 15% 52.5M 70s\n", + "241750K .......... .......... .......... .......... .......... 15% 50.3M 70s\n", + "241800K .......... .......... .......... .......... .......... 15% 45.7M 70s\n", + "241850K .......... .......... .......... .......... .......... 15% 52.6M 70s\n", + "241900K .......... .......... .......... .......... .......... 15% 47.8M 70s\n", + "241950K .......... .......... .......... .......... .......... 15% 41.8M 70s\n", + "242000K .......... .......... .......... .......... .......... 15% 43.5M 70s\n", + "242050K .......... .......... .......... .......... .......... 15% 52.0M 70s\n", + "242100K .......... .......... .......... .......... .......... 15% 48.7M 70s\n", + "242150K .......... .......... .......... .......... .......... 15% 49.4M 70s\n", + "242200K .......... .......... .......... .......... .......... 15% 44.7M 70s\n", + "242250K .......... .......... .......... .......... .......... 15% 51.5M 70s\n", + "242300K .......... .......... .......... .......... .......... 15% 15.5M 70s\n", + "242350K .......... .......... .......... .......... .......... 15% 29.1M 70s\n", + "242400K .......... .......... .......... .......... .......... 15% 29.1M 70s\n", + "242450K .......... .......... .......... .......... .......... 15% 50.3M 70s\n", + "242500K .......... .......... .......... .......... .......... 15% 52.1M 70s\n", + "242550K .......... .......... .......... .......... .......... 15% 49.6M 70s\n", + "242600K .......... .......... .......... .......... .......... 15% 44.7M 70s\n", + "242650K .......... .......... .......... .......... .......... 15% 1.25M 70s\n", + "242700K .......... .......... .......... .......... .......... 15% 17.5M 70s\n", + "242750K .......... .......... .......... .......... .......... 15% 47.1M 70s\n", + "242800K .......... .......... .......... .......... .......... 15% 18.4M 70s\n", + "242850K .......... .......... .......... .......... .......... 15% 36.0M 70s\n", + "242900K .......... .......... .......... .......... .......... 15% 47.0M 70s\n", + "242950K .......... .......... .......... .......... .......... 15% 50.9M 70s\n", + "243000K .......... .......... .......... .......... .......... 15% 44.4M 70s\n", + "243050K .......... .......... .......... .......... .......... 15% 51.8M 70s\n", + "243100K .......... .......... .......... .......... .......... 15% 48.9M 70s\n", + "243150K .......... .......... .......... .......... .......... 15% 53.3M 70s\n", + "243200K .......... .......... .......... .......... .......... 15% 45.1M 70s\n", + "243250K .......... .......... .......... .......... .......... 15% 52.9M 70s\n", + "243300K .......... .......... .......... .......... .......... 15% 51.9M 70s\n", + "243350K .......... .......... .......... .......... .......... 15% 50.8M 70s\n", + "243400K .......... .......... .......... .......... .......... 15% 46.6M 70s\n", + "243450K .......... .......... .......... .......... .......... 15% 53.8M 70s\n", + "243500K .......... .......... .......... .......... .......... 15% 51.9M 70s\n", + "243550K .......... .......... .......... .......... .......... 15% 53.8M 70s\n", + "243600K .......... .......... .......... .......... .......... 15% 42.4M 70s\n", + "243650K .......... .......... .......... .......... .......... 15% 53.1M 70s\n", + "243700K .......... .......... .......... .......... .......... 15% 46.5M 70s\n", + "243750K .......... .......... .......... .......... .......... 15% 52.1M 70s\n", + "243800K .......... .......... .......... .......... .......... 15% 13.1M 70s\n", + "243850K .......... .......... .......... .......... .......... 15% 32.3M 70s\n", + "243900K .......... .......... .......... .......... .......... 15% 27.8M 70s\n", + "243950K .......... .......... .......... .......... .......... 15% 52.7M 70s\n", + "244000K .......... .......... .......... .......... .......... 15% 38.7M 70s\n", + "244050K .......... .......... .......... .......... .......... 15% 51.7M 70s\n", + "244100K .......... .......... .......... .......... .......... 15% 53.2M 70s\n", + "244150K .......... .......... .......... .......... .......... 15% 1.28M 70s\n", + "244200K .......... .......... .......... .......... .......... 15% 25.2M 70s\n", + "244250K .......... .......... .......... .......... .......... 15% 16.9M 70s\n", + "244300K .......... .......... .......... .......... .......... 15% 24.4M 70s\n", + "244350K .......... .......... .......... .......... .......... 15% 28.7M 70s\n", + "244400K .......... .......... .......... .......... .......... 15% 25.5M 70s\n", + "244450K .......... .......... .......... .......... .......... 15% 51.6M 70s\n", + "244500K .......... .......... .......... .......... .......... 15% 54.2M 70s\n", + "244550K .......... .......... .......... .......... .......... 15% 53.5M 70s\n", + "244600K .......... .......... .......... .......... .......... 15% 43.9M 70s\n", + "244650K .......... .......... .......... .......... .......... 15% 51.7M 70s\n", + "244700K .......... .......... .......... .......... .......... 15% 52.5M 70s\n", + "244750K .......... .......... .......... .......... .......... 15% 50.3M 70s\n", + "244800K .......... .......... .......... .......... .......... 15% 43.3M 70s\n", + "244850K .......... .......... .......... .......... .......... 15% 52.5M 70s\n", + "244900K .......... .......... .......... .......... .......... 15% 53.0M 70s\n", + "244950K .......... .......... .......... .......... .......... 15% 50.8M 70s\n", + "245000K .......... .......... .......... .......... .......... 15% 45.8M 70s\n", + "245050K .......... .......... .......... .......... .......... 15% 53.9M 70s\n", + "245100K .......... .......... .......... .......... .......... 15% 53.7M 70s\n", + "245150K .......... .......... .......... .......... .......... 15% 53.9M 70s\n", + "245200K .......... .......... .......... .......... .......... 15% 43.7M 70s\n", + "245250K .......... .......... .......... .......... .......... 15% 53.8M 70s\n", + "245300K .......... .......... .......... .......... .......... 15% 53.7M 70s\n", + "245350K .......... .......... .......... .......... .......... 15% 17.5M 70s\n", + "245400K .......... .......... .......... .......... .......... 15% 19.9M 70s\n", + "245450K .......... .......... .......... .......... .......... 15% 34.7M 70s\n", + "245500K .......... .......... .......... .......... .......... 15% 51.5M 69s\n", + "245550K .......... .......... .......... .......... .......... 15% 52.9M 69s\n", + "245600K .......... .......... .......... .......... .......... 15% 41.8M 69s\n", + "245650K .......... .......... .......... .......... .......... 15% 47.1M 69s\n", + "245700K .......... .......... .......... .......... .......... 15% 1.26M 70s\n", + "245750K .......... .......... .......... .......... .......... 15% 17.3M 70s\n", + "245800K .......... .......... .......... .......... .......... 15% 18.4M 70s\n", + "245850K .......... .......... .......... .......... .......... 15% 53.6M 70s\n", + "245900K .......... .......... .......... .......... .......... 15% 30.5M 70s\n", + "245950K .......... .......... .......... .......... .......... 15% 30.4M 70s\n", + "246000K .......... .......... .......... .......... .......... 15% 45.1M 70s\n", + "246050K .......... .......... .......... .......... .......... 15% 53.5M 70s\n", + "246100K .......... .......... .......... .......... .......... 15% 52.3M 70s\n", + "246150K .......... .......... .......... .......... .......... 15% 51.2M 70s\n", + "246200K .......... .......... .......... .......... .......... 15% 46.9M 70s\n", + "246250K .......... .......... .......... .......... .......... 15% 54.6M 70s\n", + "246300K .......... .......... .......... .......... .......... 15% 52.2M 70s\n", + "246350K .......... .......... .......... .......... .......... 15% 51.7M 70s\n", + "246400K .......... .......... .......... .......... .......... 15% 46.3M 70s\n", + "246450K .......... .......... .......... .......... .......... 15% 54.4M 70s\n", + "246500K .......... .......... .......... .......... .......... 15% 53.6M 69s\n", + "246550K .......... .......... .......... .......... .......... 15% 50.9M 69s\n", + "246600K .......... .......... .......... .......... .......... 15% 47.5M 69s\n", + "246650K .......... .......... .......... .......... .......... 15% 54.9M 69s\n", + "246700K .......... .......... .......... .......... .......... 15% 53.3M 69s\n", + "246750K .......... .......... .......... .......... .......... 15% 52.2M 69s\n", + "246800K .......... .......... .......... .......... .......... 15% 44.1M 69s\n", + "246850K .......... .......... .......... .......... .......... 15% 16.0M 69s\n", + "246900K .......... .......... .......... .......... .......... 15% 19.4M 69s\n", + "246950K .......... .......... .......... .......... .......... 15% 31.2M 69s\n", + "247000K .......... .......... .......... .......... .......... 15% 45.1M 69s\n", + "247050K .......... .......... .......... .......... .......... 15% 54.9M 69s\n", + "247100K .......... .......... .......... .......... .......... 15% 53.3M 69s\n", + "247150K .......... .......... .......... .......... .......... 15% 54.4M 69s\n", + "247200K .......... .......... .......... .......... .......... 15% 1.29M 70s\n", + "247250K .......... .......... .......... .......... .......... 15% 23.4M 70s\n", + "247300K .......... .......... .......... .......... .......... 15% 17.2M 70s\n", + "247350K .......... .......... .......... .......... .......... 15% 23.5M 70s\n", + "247400K .......... .......... .......... .......... .......... 15% 31.6M 70s\n", + "247450K .......... .......... .......... .......... .......... 15% 47.1M 70s\n", + "247500K .......... .......... .......... .......... .......... 15% 29.0M 70s\n", + "247550K .......... .......... .......... .......... .......... 15% 53.1M 69s\n", + "247600K .......... .......... .......... .......... .......... 15% 44.4M 69s\n", + "247650K .......... .......... .......... .......... .......... 15% 50.5M 69s\n", + "247700K .......... .......... .......... .......... .......... 15% 54.0M 69s\n", + "247750K .......... .......... .......... .......... .......... 15% 54.1M 69s\n", + "247800K .......... .......... .......... .......... .......... 15% 45.6M 69s\n", + "247850K .......... .......... .......... .......... .......... 15% 53.1M 69s\n", + "247900K .......... .......... .......... .......... .......... 15% 53.7M 69s\n", + "247950K .......... .......... .......... .......... .......... 15% 51.6M 69s\n", + "248000K .......... .......... .......... .......... .......... 15% 45.8M 69s\n", + "248050K .......... .......... .......... .......... .......... 15% 52.6M 69s\n", + "248100K .......... .......... .......... .......... .......... 15% 53.8M 69s\n", + "248150K .......... .......... .......... .......... .......... 15% 54.1M 69s\n", + "248200K .......... .......... .......... .......... .......... 15% 45.1M 69s\n", + "248250K .......... .......... .......... .......... .......... 15% 51.9M 69s\n", + "248300K .......... .......... .......... .......... .......... 15% 51.6M 69s\n", + "248350K .......... .......... .......... .......... .......... 15% 23.8M 69s\n", + "248400K .......... .......... .......... .......... .......... 15% 12.0M 69s\n", + "248450K .......... .......... .......... .......... .......... 15% 52.1M 69s\n", + "248500K .......... .......... .......... .......... .......... 15% 38.6M 69s\n", + "248550K .......... .......... .......... .......... .......... 15% 51.3M 69s\n", + "248600K .......... .......... .......... .......... .......... 15% 45.9M 69s\n", + "248650K .......... .......... .......... .......... .......... 15% 52.8M 69s\n", + "248700K .......... .......... .......... .......... .......... 15% 53.9M 69s\n", + "248750K .......... .......... .......... .......... .......... 15% 1.25M 69s\n", + "248800K .......... .......... .......... .......... .......... 15% 17.5M 69s\n", + "248850K .......... .......... .......... .......... .......... 15% 27.8M 69s\n", + "248900K .......... .......... .......... .......... .......... 15% 37.5M 69s\n", + "248950K .......... .......... .......... .......... .......... 15% 32.9M 69s\n", + "249000K .......... .......... .......... .......... .......... 15% 25.7M 69s\n", + "249050K .......... .......... .......... .......... .......... 15% 40.4M 69s\n", + "249100K .......... .......... .......... .......... .......... 15% 42.1M 69s\n", + "249150K .......... .......... .......... .......... .......... 15% 39.1M 69s\n", + "249200K .......... .......... .......... .......... .......... 15% 35.0M 69s\n", + "249250K .......... .......... .......... .......... .......... 15% 41.1M 69s\n", + "249300K .......... .......... .......... .......... .......... 15% 42.2M 69s\n", + "249350K .......... .......... .......... .......... .......... 15% 42.0M 69s\n", + "249400K .......... .......... .......... .......... .......... 15% 35.2M 69s\n", + "249450K .......... .......... .......... .......... .......... 15% 43.0M 69s\n", + "249500K .......... .......... .......... .......... .......... 15% 44.7M 69s\n", + "249550K .......... .......... .......... .......... .......... 15% 43.6M 69s\n", + "249600K .......... .......... .......... .......... .......... 15% 36.4M 69s\n", + "249650K .......... .......... .......... .......... .......... 15% 20.0M 69s\n", + "249700K .......... .......... .......... .......... .......... 15% 36.4M 69s\n", + "249750K .......... .......... .......... .......... .......... 15% 37.7M 69s\n", + "249800K .......... .......... .......... .......... .......... 15% 33.4M 69s\n", + "249850K .......... .......... .......... .......... .......... 15% 37.6M 69s\n", + "249900K .......... .......... .......... .......... .......... 15% 37.9M 69s\n", + "249950K .......... .......... .......... .......... .......... 15% 38.0M 69s\n", + "250000K .......... .......... .......... .......... .......... 15% 31.5M 69s\n", + "250050K .......... .......... .......... .......... .......... 15% 37.4M 69s\n", + "250100K .......... .......... .......... .......... .......... 15% 36.7M 69s\n", + "250150K .......... .......... .......... .......... .......... 15% 35.6M 69s\n", + "250200K .......... .......... .......... .......... .......... 15% 30.6M 69s\n", + "250250K .......... .......... .......... .......... .......... 15% 1.47M 69s\n", + "250300K .......... .......... .......... .......... .......... 15% 19.2M 69s\n", + "250350K .......... .......... .......... .......... .......... 15% 21.3M 69s\n", + "250400K .......... .......... .......... .......... .......... 15% 24.7M 69s\n", + "250450K .......... .......... .......... .......... .......... 15% 28.5M 69s\n", + "250500K .......... .......... .......... .......... .......... 15% 33.4M 69s\n", + "250550K .......... .......... .......... .......... .......... 15% 33.8M 69s\n", + "250600K .......... .......... .......... .......... .......... 15% 27.4M 69s\n", + "250650K .......... .......... .......... .......... .......... 15% 34.6M 69s\n", + "250700K .......... .......... .......... .......... .......... 15% 35.1M 69s\n", + "250750K .......... .......... .......... .......... .......... 15% 35.1M 69s\n", + "250800K .......... .......... .......... .......... .......... 15% 28.7M 69s\n", + "250850K .......... .......... .......... .......... .......... 16% 34.8M 69s\n", + "250900K .......... .......... .......... .......... .......... 16% 34.0M 69s\n", + "250950K .......... .......... .......... .......... .......... 16% 35.5M 69s\n", + "251000K .......... .......... .......... .......... .......... 16% 29.7M 69s\n", + "251050K .......... .......... .......... .......... .......... 16% 36.4M 69s\n", + "251100K .......... .......... .......... .......... .......... 16% 36.2M 69s\n", + "251150K .......... .......... .......... .......... .......... 16% 35.6M 69s\n", + "251200K .......... .......... .......... .......... .......... 16% 30.9M 69s\n", + "251250K .......... .......... .......... .......... .......... 16% 37.8M 69s\n", + "251300K .......... .......... .......... .......... .......... 16% 34.5M 69s\n", + "251350K .......... .......... .......... .......... .......... 16% 34.4M 69s\n", + "251400K .......... .......... .......... .......... .......... 16% 31.4M 69s\n", + "251450K .......... .......... .......... .......... .......... 16% 34.9M 69s\n", + "251500K .......... .......... .......... .......... .......... 16% 35.2M 69s\n", + "251550K .......... .......... .......... .......... .......... 16% 35.8M 69s\n", + "251600K .......... .......... .......... .......... .......... 16% 30.2M 69s\n", + "251650K .......... .......... .......... .......... .......... 16% 36.0M 69s\n", + "251700K .......... .......... .......... .......... .......... 16% 37.6M 69s\n", + "251750K .......... .......... .......... .......... .......... 16% 36.9M 69s\n", + "251800K .......... .......... .......... .......... .......... 16% 1.53M 69s\n", + "251850K .......... .......... .......... .......... .......... 16% 30.7M 69s\n", + "251900K .......... .......... .......... .......... .......... 16% 26.7M 69s\n", + "251950K .......... .......... .......... .......... .......... 16% 23.5M 69s\n", + "252000K .......... .......... .......... .......... .......... 16% 27.5M 69s\n", + "252050K .......... .......... .......... .......... .......... 16% 27.7M 69s\n", + "252100K .......... .......... .......... .......... .......... 16% 36.3M 69s\n", + "252150K .......... .......... .......... .......... .......... 16% 33.7M 69s\n", + "252200K .......... .......... .......... .......... .......... 16% 32.8M 69s\n", + "252250K .......... .......... .......... .......... .......... 16% 37.6M 69s\n", + "252300K .......... .......... .......... .......... .......... 16% 35.7M 69s\n", + "252350K .......... .......... .......... .......... .......... 16% 38.8M 69s\n", + "252400K .......... .......... .......... .......... .......... 16% 32.5M 69s\n", + "252450K .......... .......... .......... .......... .......... 16% 35.9M 69s\n", + "252500K .......... .......... .......... .......... .......... 16% 38.3M 69s\n", + "252550K .......... .......... .......... .......... .......... 16% 37.6M 69s\n", + "252600K .......... .......... .......... .......... .......... 16% 34.3M 69s\n", + "252650K .......... .......... .......... .......... .......... 16% 38.8M 69s\n", + "252700K .......... .......... .......... .......... .......... 16% 37.2M 69s\n", + "252750K .......... .......... .......... .......... .......... 16% 37.7M 69s\n", + "252800K .......... .......... .......... .......... .......... 16% 34.3M 69s\n", + "252850K .......... .......... .......... .......... .......... 16% 40.4M 69s\n", + "252900K .......... .......... .......... .......... .......... 16% 39.2M 69s\n", + "252950K .......... .......... .......... .......... .......... 16% 37.3M 69s\n", + "253000K .......... .......... .......... .......... .......... 16% 32.6M 69s\n", + "253050K .......... .......... .......... .......... .......... 16% 37.1M 69s\n", + "253100K .......... .......... .......... .......... .......... 16% 38.4M 69s\n", + "253150K .......... .......... .......... .......... .......... 16% 37.7M 69s\n", + "253200K .......... .......... .......... .......... .......... 16% 33.0M 69s\n", + "253250K .......... .......... .......... .......... .......... 16% 40.6M 69s\n", + "253300K .......... .......... .......... .......... .......... 16% 1.41M 69s\n", + "253350K .......... .......... .......... .......... .......... 16% 35.4M 69s\n", + "253400K .......... .......... .......... .......... .......... 16% 21.4M 69s\n", + "253450K .......... .......... .......... .......... .......... 16% 30.6M 69s\n", + "253500K .......... .......... .......... .......... .......... 16% 22.1M 69s\n", + "253550K .......... .......... .......... .......... .......... 16% 40.0M 69s\n", + "253600K .......... .......... .......... .......... .......... 16% 32.7M 69s\n", + "253650K .......... .......... .......... .......... .......... 16% 42.0M 69s\n", + "253700K .......... .......... .......... .......... .......... 16% 42.5M 69s\n", + "253750K .......... .......... .......... .......... .......... 16% 43.2M 69s\n", + "253800K .......... .......... .......... .......... .......... 16% 34.7M 69s\n", + "253850K .......... .......... .......... .......... .......... 16% 41.7M 69s\n", + "253900K .......... .......... .......... .......... .......... 16% 42.0M 69s\n", + "253950K .......... .......... .......... .......... .......... 16% 42.5M 69s\n", + "254000K .......... .......... .......... .......... .......... 16% 32.3M 69s\n", + "254050K .......... .......... .......... .......... .......... 16% 38.7M 69s\n", + "254100K .......... .......... .......... .......... .......... 16% 39.2M 69s\n", + "254150K .......... .......... .......... .......... .......... 16% 40.0M 69s\n", + "254200K .......... .......... .......... .......... .......... 16% 34.1M 69s\n", + "254250K .......... .......... .......... .......... .......... 16% 38.9M 69s\n", + "254300K .......... .......... .......... .......... .......... 16% 40.1M 69s\n", + "254350K .......... .......... .......... .......... .......... 16% 39.7M 69s\n", + "254400K .......... .......... .......... .......... .......... 16% 32.4M 69s\n", + "254450K .......... .......... .......... .......... .......... 16% 36.6M 69s\n", + "254500K .......... .......... .......... .......... .......... 16% 40.1M 69s\n", + "254550K .......... .......... .......... .......... .......... 16% 36.2M 69s\n", + "254600K .......... .......... .......... .......... .......... 16% 31.0M 69s\n", + "254650K .......... .......... .......... .......... .......... 16% 36.6M 69s\n", + "254700K .......... .......... .......... .......... .......... 16% 35.3M 69s\n", + "254750K .......... .......... .......... .......... .......... 16% 36.5M 69s\n", + "254800K .......... .......... .......... .......... .......... 16% 32.4M 69s\n", + "254850K .......... .......... .......... .......... .......... 16% 1.37M 69s\n", + "254900K .......... .......... .......... .......... .......... 16% 23.2M 69s\n", + "254950K .......... .......... .......... .......... .......... 16% 35.4M 69s\n", + "255000K .......... .......... .......... .......... .......... 16% 31.4M 69s\n", + "255050K .......... .......... .......... .......... .......... 16% 23.5M 69s\n", + "255100K .......... .......... .......... .......... .......... 16% 43.0M 69s\n", + "255150K .......... .......... .......... .......... .......... 16% 45.0M 69s\n", + "255200K .......... .......... .......... .......... .......... 16% 37.4M 69s\n", + "255250K .......... .......... .......... .......... .......... 16% 46.3M 69s\n", + "255300K .......... .......... .......... .......... .......... 16% 46.6M 69s\n", + "255350K .......... .......... .......... .......... .......... 16% 48.1M 69s\n", + "255400K .......... .......... .......... .......... .......... 16% 33.4M 69s\n", + "255450K .......... .......... .......... .......... .......... 16% 40.8M 69s\n", + "255500K .......... .......... .......... .......... .......... 16% 36.3M 69s\n", + "255550K .......... .......... .......... .......... .......... 16% 40.0M 69s\n", + "255600K .......... .......... .......... .......... .......... 16% 35.0M 69s\n", + "255650K .......... .......... .......... .......... .......... 16% 41.0M 69s\n", + "255700K .......... .......... .......... .......... .......... 16% 35.9M 69s\n", + "255750K .......... .......... .......... .......... .......... 16% 40.2M 69s\n", + "255800K .......... .......... .......... .......... .......... 16% 34.6M 69s\n", + "255850K .......... .......... .......... .......... .......... 16% 41.3M 69s\n", + "255900K .......... .......... .......... .......... .......... 16% 41.2M 69s\n", + "255950K .......... .......... .......... .......... .......... 16% 39.8M 69s\n", + "256000K .......... .......... .......... .......... .......... 16% 34.6M 69s\n", + "256050K .......... .......... .......... .......... .......... 16% 43.0M 69s\n", + "256100K .......... .......... .......... .......... .......... 16% 36.7M 69s\n", + "256150K .......... .......... .......... .......... .......... 16% 34.5M 69s\n", + "256200K .......... .......... .......... .......... .......... 16% 39.6M 69s\n", + "256250K .......... .......... .......... .......... .......... 16% 46.2M 69s\n", + "256300K .......... .......... .......... .......... .......... 16% 40.9M 69s\n", + "256350K .......... .......... .......... .......... .......... 16% 38.3M 69s\n", + "256400K .......... .......... .......... .......... .......... 16% 1.26M 69s\n", + "256450K .......... .......... .......... .......... .......... 16% 34.5M 69s\n", + "256500K .......... .......... .......... .......... .......... 16% 30.7M 69s\n", + "256550K .......... .......... .......... .......... .......... 16% 28.0M 69s\n", + "256600K .......... .......... .......... .......... .......... 16% 30.5M 69s\n", + "256650K .......... .......... .......... .......... .......... 16% 36.1M 69s\n", + "256700K .......... .......... .......... .......... .......... 16% 40.1M 69s\n", + "256750K .......... .......... .......... .......... .......... 16% 40.0M 69s\n", + "256800K .......... .......... .......... .......... .......... 16% 33.9M 69s\n", + "256850K .......... .......... .......... .......... .......... 16% 42.5M 69s\n", + "256900K .......... .......... .......... .......... .......... 16% 47.1M 69s\n", + "256950K .......... .......... .......... .......... .......... 16% 42.7M 69s\n", + "257000K .......... .......... .......... .......... .......... 16% 37.9M 69s\n", + "257050K .......... .......... .......... .......... .......... 16% 45.8M 69s\n", + "257100K .......... .......... .......... .......... .......... 16% 47.5M 69s\n", + "257150K .......... .......... .......... .......... .......... 16% 45.0M 69s\n", + "257200K .......... .......... .......... .......... .......... 16% 44.0M 69s\n", + "257250K .......... .......... .......... .......... .......... 16% 49.1M 69s\n", + "257300K .......... .......... .......... .......... .......... 16% 44.9M 69s\n", + "257350K .......... .......... .......... .......... .......... 16% 49.9M 69s\n", + "257400K .......... .......... .......... .......... .......... 16% 40.7M 69s\n", + "257450K .......... .......... .......... .......... .......... 16% 51.4M 69s\n", + "257500K .......... .......... .......... .......... .......... 16% 53.4M 69s\n", + "257550K .......... .......... .......... .......... .......... 16% 51.0M 69s\n", + "257600K .......... .......... .......... .......... .......... 16% 32.3M 69s\n", + "257650K .......... .......... .......... .......... .......... 16% 28.5M 69s\n", + "257700K .......... .......... .......... .......... .......... 16% 41.8M 69s\n", + "257750K .......... .......... .......... .......... .......... 16% 51.0M 69s\n", + "257800K .......... .......... .......... .......... .......... 16% 43.7M 69s\n", + "257850K .......... .......... .......... .......... .......... 16% 48.4M 69s\n", + "257900K .......... .......... .......... .......... .......... 16% 1.26M 69s\n", + "257950K .......... .......... .......... .......... .......... 16% 21.1M 69s\n", + "258000K .......... .......... .......... .......... .......... 16% 24.0M 69s\n", + "258050K .......... .......... .......... .......... .......... 16% 53.9M 69s\n", + "258100K .......... .......... .......... .......... .......... 16% 22.2M 69s\n", + "258150K .......... .......... .......... .......... .......... 16% 38.8M 69s\n", + "258200K .......... .......... .......... .......... .......... 16% 47.0M 69s\n", + "258250K .......... .......... .......... .......... .......... 16% 52.0M 69s\n", + "258300K .......... .......... .......... .......... .......... 16% 51.3M 69s\n", + "258350K .......... .......... .......... .......... .......... 16% 53.4M 69s\n", + "258400K .......... .......... .......... .......... .......... 16% 45.0M 69s\n", + "258450K .......... .......... .......... .......... .......... 16% 52.3M 69s\n", + "258500K .......... .......... .......... .......... .......... 16% 52.8M 69s\n", + "258550K .......... .......... .......... .......... .......... 16% 52.3M 69s\n", + "258600K .......... .......... .......... .......... .......... 16% 43.1M 69s\n", + "258650K .......... .......... .......... .......... .......... 16% 51.4M 69s\n", + "258700K .......... .......... .......... .......... .......... 16% 52.1M 69s\n", + "258750K .......... .......... .......... .......... .......... 16% 52.6M 69s\n", + "258800K .......... .......... .......... .......... .......... 16% 44.6M 69s\n", + "258850K .......... .......... .......... .......... .......... 16% 50.9M 69s\n", + "258900K .......... .......... .......... .......... .......... 16% 51.9M 69s\n", + "258950K .......... .......... .......... .......... .......... 16% 51.8M 69s\n", + "259000K .......... .......... .......... .......... .......... 16% 45.1M 69s\n", + "259050K .......... .......... .......... .......... .......... 16% 19.9M 69s\n", + "259100K .......... .......... .......... .......... .......... 16% 16.9M 69s\n", + "259150K .......... .......... .......... .......... .......... 16% 28.5M 69s\n", + "259200K .......... .......... .......... .......... .......... 16% 27.8M 69s\n", + "259250K .......... .......... .......... .......... .......... 16% 49.4M 69s\n", + "259300K .......... .......... .......... .......... .......... 16% 52.9M 69s\n", + "259350K .......... .......... .......... .......... .......... 16% 50.1M 69s\n", + "259400K .......... .......... .......... .......... .......... 16% 44.2M 69s\n", + "259450K .......... .......... .......... .......... .......... 16% 1.28M 69s\n", + "259500K .......... .......... .......... .......... .......... 16% 19.3M 69s\n", + "259550K .......... .......... .......... .......... .......... 16% 27.1M 69s\n", + "259600K .......... .......... .......... .......... .......... 16% 18.2M 69s\n", + "259650K .......... .......... .......... .......... .......... 16% 40.8M 69s\n", + "259700K .......... .......... .......... .......... .......... 16% 51.4M 69s\n", + "259750K .......... .......... .......... .......... .......... 16% 51.0M 69s\n", + "259800K .......... .......... .......... .......... .......... 16% 44.1M 69s\n", + "259850K .......... .......... .......... .......... .......... 16% 52.6M 69s\n", + "259900K .......... .......... .......... .......... .......... 16% 52.3M 69s\n", + "259950K .......... .......... .......... .......... .......... 16% 48.2M 69s\n", + "260000K .......... .......... .......... .......... .......... 16% 42.8M 69s\n", + "260050K .......... .......... .......... .......... .......... 16% 52.0M 69s\n", + "260100K .......... .......... .......... .......... .......... 16% 50.9M 69s\n", + "260150K .......... .......... .......... .......... .......... 16% 48.8M 69s\n", + "260200K .......... .......... .......... .......... .......... 16% 45.1M 69s\n", + "260250K .......... .......... .......... .......... .......... 16% 51.9M 69s\n", + "260300K .......... .......... .......... .......... .......... 16% 52.1M 69s\n", + "260350K .......... .......... .......... .......... .......... 16% 50.1M 69s\n", + "260400K .......... .......... .......... .......... .......... 16% 43.3M 69s\n", + "260450K .......... .......... .......... .......... .......... 16% 52.9M 69s\n", + "260500K .......... .......... .......... .......... .......... 16% 51.9M 69s\n", + "260550K .......... .......... .......... .......... .......... 16% 50.6M 69s\n", + "260600K .......... .......... .......... .......... .......... 16% 12.5M 69s\n", + "260650K .......... .......... .......... .......... .......... 16% 50.4M 69s\n", + "260700K .......... .......... .......... .......... .......... 16% 28.6M 69s\n", + "260750K .......... .......... .......... .......... .......... 16% 26.6M 68s\n", + "260800K .......... .......... .......... .......... .......... 16% 44.6M 68s\n", + "260850K .......... .......... .......... .......... .......... 16% 50.3M 68s\n", + "260900K .......... .......... .......... .......... .......... 16% 51.8M 68s\n", + "260950K .......... .......... .......... .......... .......... 16% 1.29M 69s\n", + "261000K .......... .......... .......... .......... .......... 16% 17.0M 69s\n", + "261050K .......... .......... .......... .......... .......... 16% 29.5M 69s\n", + "261100K .......... .......... .......... .......... .......... 16% 38.5M 69s\n", + "261150K .......... .......... .......... .......... .......... 16% 21.4M 69s\n", + "261200K .......... .......... .......... .......... .......... 16% 32.0M 69s\n", + "261250K .......... .......... .......... .......... .......... 16% 48.7M 69s\n", + "261300K .......... .......... .......... .......... .......... 16% 49.3M 69s\n", + "261350K .......... .......... .......... .......... .......... 16% 49.5M 69s\n", + "261400K .......... .......... .......... .......... .......... 16% 41.5M 69s\n", + "261450K .......... .......... .......... .......... .......... 16% 49.3M 69s\n", + "261500K .......... .......... .......... .......... .......... 16% 51.1M 69s\n", + "261550K .......... .......... .......... .......... .......... 16% 51.0M 69s\n", + "261600K .......... .......... .......... .......... .......... 16% 43.4M 69s\n", + "261650K .......... .......... .......... .......... .......... 16% 49.6M 69s\n", + "261700K .......... .......... .......... .......... .......... 16% 48.7M 69s\n", + "261750K .......... .......... .......... .......... .......... 16% 50.7M 68s\n", + "261800K .......... .......... .......... .......... .......... 16% 44.2M 68s\n", + "261850K .......... .......... .......... .......... .......... 16% 49.9M 68s\n", + "261900K .......... .......... .......... .......... .......... 16% 49.5M 68s\n", + "261950K .......... .......... .......... .......... .......... 16% 51.3M 68s\n", + "262000K .......... .......... .......... .......... .......... 16% 43.1M 68s\n", + "262050K .......... .......... .......... .......... .......... 16% 48.8M 68s\n", + "262100K .......... .......... .......... .......... .......... 16% 28.3M 68s\n", + "262150K .......... .......... .......... .......... .......... 16% 17.5M 68s\n", + "262200K .......... .......... .......... .......... .......... 16% 31.8M 68s\n", + "262250K .......... .......... .......... .......... .......... 16% 50.6M 68s\n", + "262300K .......... .......... .......... .......... .......... 16% 26.9M 68s\n", + "262350K .......... .......... .......... .......... .......... 16% 54.8M 68s\n", + "262400K .......... .......... .......... .......... .......... 16% 46.2M 68s\n", + "262450K .......... .......... .......... .......... .......... 16% 51.8M 68s\n", + "262500K .......... .......... .......... .......... .......... 16% 1.28M 69s\n", + "262550K .......... .......... .......... .......... .......... 16% 20.1M 69s\n", + "262600K .......... .......... .......... .......... .......... 16% 20.3M 69s\n", + "262650K .......... .......... .......... .......... .......... 16% 21.6M 69s\n", + "262700K .......... .......... .......... .......... .......... 16% 30.7M 69s\n", + "262750K .......... .......... .......... .......... .......... 16% 52.3M 69s\n", + "262800K .......... .......... .......... .......... .......... 16% 43.0M 68s\n", + "262850K .......... .......... .......... .......... .......... 16% 51.8M 68s\n", + "262900K .......... .......... .......... .......... .......... 16% 53.4M 68s\n", + "262950K .......... .......... .......... .......... .......... 16% 51.4M 68s\n", + "263000K .......... .......... .......... .......... .......... 16% 44.1M 68s\n", + "263050K .......... .......... .......... .......... .......... 16% 52.3M 68s\n", + "263100K .......... .......... .......... .......... .......... 16% 52.5M 68s\n", + "263150K .......... .......... .......... .......... .......... 16% 51.3M 68s\n", + "263200K .......... .......... .......... .......... .......... 16% 44.4M 68s\n", + "263250K .......... .......... .......... .......... .......... 16% 51.2M 68s\n", + "263300K .......... .......... .......... .......... .......... 16% 53.2M 68s\n", + "263350K .......... .......... .......... .......... .......... 16% 52.6M 68s\n", + "263400K .......... .......... .......... .......... .......... 16% 44.6M 68s\n", + "263450K .......... .......... .......... .......... .......... 16% 49.8M 68s\n", + "263500K .......... .......... .......... .......... .......... 16% 52.7M 68s\n", + "263550K .......... .......... .......... .......... .......... 16% 51.0M 68s\n", + "263600K .......... .......... .......... .......... .......... 16% 18.6M 68s\n", + "263650K .......... .......... .......... .......... .......... 16% 28.0M 68s\n", + "263700K .......... .......... .......... .......... .......... 16% 25.8M 68s\n", + "263750K .......... .......... .......... .......... .......... 16% 35.9M 68s\n", + "263800K .......... .......... .......... .......... .......... 16% 25.6M 68s\n", + "263850K .......... .......... .......... .......... .......... 16% 52.3M 68s\n", + "263900K .......... .......... .......... .......... .......... 16% 51.5M 68s\n", + "263950K .......... .......... .......... .......... .......... 16% 49.4M 68s\n", + "264000K .......... .......... .......... .......... .......... 16% 1.28M 68s\n", + "264050K .......... .......... .......... .......... .......... 16% 22.4M 68s\n", + "264100K .......... .......... .......... .......... .......... 16% 29.5M 68s\n", + "264150K .......... .......... .......... .......... .......... 16% 29.2M 68s\n", + "264200K .......... .......... .......... .......... .......... 16% 21.9M 68s\n", + "264250K .......... .......... .......... .......... .......... 16% 31.6M 68s\n", + "264300K .......... .......... .......... .......... .......... 16% 50.7M 68s\n", + "264350K .......... .......... .......... .......... .......... 16% 52.2M 68s\n", + "264400K .......... .......... .......... .......... .......... 16% 42.8M 68s\n", + "264450K .......... .......... .......... .......... .......... 16% 50.8M 68s\n", + "264500K .......... .......... .......... .......... .......... 16% 51.2M 68s\n", + "264550K .......... .......... .......... .......... .......... 16% 48.7M 68s\n", + "264600K .......... .......... .......... .......... .......... 16% 45.3M 68s\n", + "264650K .......... .......... .......... .......... .......... 16% 51.0M 68s\n", + "264700K .......... .......... .......... .......... .......... 16% 51.1M 68s\n", + "264750K .......... .......... .......... .......... .......... 16% 51.2M 68s\n", + "264800K .......... .......... .......... .......... .......... 16% 45.5M 68s\n", + "264850K .......... .......... .......... .......... .......... 16% 51.7M 68s\n", + "264900K .......... .......... .......... .......... .......... 16% 52.5M 68s\n", + "264950K .......... .......... .......... .......... .......... 16% 52.7M 68s\n", + "265000K .......... .......... .......... .......... .......... 16% 46.8M 68s\n", + "265050K .......... .......... .......... .......... .......... 16% 52.5M 68s\n", + "265100K .......... .......... .......... .......... .......... 16% 52.2M 68s\n", + "265150K .......... .......... .......... .......... .......... 16% 22.4M 68s\n", + "265200K .......... .......... .......... .......... .......... 16% 15.4M 68s\n", + "265250K .......... .......... .......... .......... .......... 16% 30.1M 68s\n", + "265300K .......... .......... .......... .......... .......... 16% 24.5M 68s\n", + "265350K .......... .......... .......... .......... .......... 16% 52.0M 68s\n", + "265400K .......... .......... .......... .......... .......... 16% 45.6M 68s\n", + "265450K .......... .......... .......... .......... .......... 16% 50.9M 68s\n", + "265500K .......... .......... .......... .......... .......... 16% 1.28M 68s\n", + "265550K .......... .......... .......... .......... .......... 16% 52.1M 68s\n", + "265600K .......... .......... .......... .......... .......... 16% 23.1M 68s\n", + "265650K .......... .......... .......... .......... .......... 16% 21.3M 68s\n", + "265700K .......... .......... .......... .......... .......... 16% 20.1M 68s\n", + "265750K .......... .......... .......... .......... .......... 16% 44.1M 68s\n", + "265800K .......... .......... .......... .......... .......... 16% 43.8M 68s\n", + "265850K .......... .......... .......... .......... .......... 16% 49.8M 68s\n", + "265900K .......... .......... .......... .......... .......... 16% 53.0M 68s\n", + "265950K .......... .......... .......... .......... .......... 16% 51.7M 68s\n", + "266000K .......... .......... .......... .......... .......... 16% 43.8M 68s\n", + "266050K .......... .......... .......... .......... .......... 16% 53.4M 68s\n", + "266100K .......... .......... .......... .......... .......... 16% 53.4M 68s\n", + "266150K .......... .......... .......... .......... .......... 16% 51.9M 68s\n", + "266200K .......... .......... .......... .......... .......... 16% 45.5M 68s\n", + "266250K .......... .......... .......... .......... .......... 16% 53.2M 68s\n", + "266300K .......... .......... .......... .......... .......... 16% 53.6M 68s\n", + "266350K .......... .......... .......... .......... .......... 16% 53.7M 68s\n", + "266400K .......... .......... .......... .......... .......... 16% 43.9M 68s\n", + "266450K .......... .......... .......... .......... .......... 16% 52.1M 68s\n", + "266500K .......... .......... .......... .......... .......... 17% 54.1M 68s\n", + "266550K .......... .......... .......... .......... .......... 17% 54.5M 68s\n", + "266600K .......... .......... .......... .......... .......... 17% 44.6M 68s\n", + "266650K .......... .......... .......... .......... .......... 17% 51.5M 68s\n", + "266700K .......... .......... .......... .......... .......... 17% 20.3M 68s\n", + "266750K .......... .......... .......... .......... .......... 17% 18.3M 68s\n", + "266800K .......... .......... .......... .......... .......... 17% 24.7M 68s\n", + "266850K .......... .......... .......... .......... .......... 17% 24.7M 68s\n", + "266900K .......... .......... .......... .......... .......... 17% 54.2M 68s\n", + "266950K .......... .......... .......... .......... .......... 17% 53.7M 68s\n", + "267000K .......... .......... .......... .......... .......... 17% 45.6M 68s\n", + "267050K .......... .......... .......... .......... .......... 17% 1.28M 68s\n", + "267100K .......... .......... .......... .......... .......... 17% 29.8M 68s\n", + "267150K .......... .......... .......... .......... .......... 17% 16.8M 68s\n", + "267200K .......... .......... .......... .......... .......... 17% 20.4M 68s\n", + "267250K .......... .......... .......... .......... .......... 17% 53.0M 68s\n", + "267300K .......... .......... .......... .......... .......... 17% 50.4M 68s\n", + "267350K .......... .......... .......... .......... .......... 17% 38.6M 68s\n", + "267400K .......... .......... .......... .......... .......... 17% 45.4M 68s\n", + "267450K .......... .......... .......... .......... .......... 17% 53.8M 68s\n", + "267500K .......... .......... .......... .......... .......... 17% 49.6M 68s\n", + "267550K .......... .......... .......... .......... .......... 17% 51.9M 68s\n", + "267600K .......... .......... .......... .......... .......... 17% 44.1M 68s\n", + "267650K .......... .......... .......... .......... .......... 17% 51.6M 68s\n", + "267700K .......... .......... .......... .......... .......... 17% 52.3M 68s\n", + "267750K .......... .......... .......... .......... .......... 17% 50.4M 68s\n", + "267800K .......... .......... .......... .......... .......... 17% 46.3M 68s\n", + "267850K .......... .......... .......... .......... .......... 17% 53.9M 68s\n", + "267900K .......... .......... .......... .......... .......... 17% 53.5M 68s\n", + "267950K .......... .......... .......... .......... .......... 17% 52.0M 68s\n", + "268000K .......... .......... .......... .......... .......... 17% 44.3M 68s\n", + "268050K .......... .......... .......... .......... .......... 17% 52.2M 68s\n", + "268100K .......... .......... .......... .......... .......... 17% 51.3M 68s\n", + "268150K .......... .......... .......... .......... .......... 17% 53.3M 68s\n", + "268200K .......... .......... .......... .......... .......... 17% 20.6M 68s\n", + "268250K .......... .......... .......... .......... .......... 17% 17.3M 68s\n", + "268300K .......... .......... .......... .......... .......... 17% 35.0M 68s\n", + "268350K .......... .......... .......... .......... .......... 17% 41.7M 68s\n", + "268400K .......... .......... .......... .......... .......... 17% 25.2M 68s\n", + "268450K .......... .......... .......... .......... .......... 17% 52.6M 68s\n", + "268500K .......... .......... .......... .......... .......... 17% 50.8M 68s\n", + "268550K .......... .......... .......... .......... .......... 17% 1.29M 68s\n", + "268600K .......... .......... .......... .......... .......... 17% 44.1M 68s\n", + "268650K .......... .......... .......... .......... .......... 17% 21.2M 68s\n", + "268700K .......... .......... .......... .......... .......... 17% 20.7M 68s\n", + "268750K .......... .......... .......... .......... .......... 17% 22.7M 68s\n", + "268800K .......... .......... .......... .......... .......... 17% 32.6M 68s\n", + "268850K .......... .......... .......... .......... .......... 17% 50.0M 68s\n", + "268900K .......... .......... .......... .......... .......... 17% 48.7M 68s\n", + "268950K .......... .......... .......... .......... .......... 17% 53.3M 68s\n", + "269000K .......... .......... .......... .......... .......... 17% 45.7M 68s\n", + "269050K .......... .......... .......... .......... .......... 17% 50.9M 68s\n", + "269100K .......... .......... .......... .......... .......... 17% 50.7M 68s\n", + "269150K .......... .......... .......... .......... .......... 17% 51.7M 68s\n", + "269200K .......... .......... .......... .......... .......... 17% 44.7M 68s\n", + "269250K .......... .......... .......... .......... .......... 17% 52.2M 68s\n", + "269300K .......... .......... .......... .......... .......... 17% 51.0M 68s\n", + "269350K .......... .......... .......... .......... .......... 17% 53.9M 68s\n", + "269400K .......... .......... .......... .......... .......... 17% 44.5M 68s\n", + "269450K .......... .......... .......... .......... .......... 17% 51.3M 68s\n", + "269500K .......... .......... .......... .......... .......... 17% 53.7M 68s\n", + "269550K .......... .......... .......... .......... .......... 17% 54.8M 68s\n", + "269600K .......... .......... .......... .......... .......... 17% 47.1M 68s\n", + "269650K .......... .......... .......... .......... .......... 17% 53.1M 68s\n", + "269700K .......... .......... .......... .......... .......... 17% 21.2M 68s\n", + "269750K .......... .......... .......... .......... .......... 17% 16.6M 68s\n", + "269800K .......... .......... .......... .......... .......... 17% 43.6M 68s\n", + "269850K .......... .......... .......... .......... .......... 17% 28.1M 68s\n", + "269900K .......... .......... .......... .......... .......... 17% 32.2M 68s\n", + "269950K .......... .......... .......... .......... .......... 17% 52.8M 68s\n", + "270000K .......... .......... .......... .......... .......... 17% 44.1M 68s\n", + "270050K .......... .......... .......... .......... .......... 17% 54.2M 68s\n", + "270100K .......... .......... .......... .......... .......... 17% 1.27M 68s\n", + "270150K .......... .......... .......... .......... .......... 17% 21.6M 68s\n", + "270200K .......... .......... .......... .......... .......... 17% 19.4M 68s\n", + "270250K .......... .......... .......... .......... .......... 17% 53.2M 68s\n", + "270300K .......... .......... .......... .......... .......... 17% 22.2M 68s\n", + "270350K .......... .......... .......... .......... .......... 17% 35.0M 68s\n", + "270400K .......... .......... .......... .......... .......... 17% 45.6M 68s\n", + "270450K .......... .......... .......... .......... .......... 17% 52.2M 68s\n", + "270500K .......... .......... .......... .......... .......... 17% 54.6M 68s\n", + "270550K .......... .......... .......... .......... .......... 17% 53.2M 68s\n", + "270600K .......... .......... .......... .......... .......... 17% 46.2M 68s\n", + "270650K .......... .......... .......... .......... .......... 17% 52.1M 68s\n", + "270700K .......... .......... .......... .......... .......... 17% 52.0M 68s\n", + "270750K .......... .......... .......... .......... .......... 17% 52.9M 68s\n", + "270800K .......... .......... .......... .......... .......... 17% 44.8M 68s\n", + "270850K .......... .......... .......... .......... .......... 17% 54.1M 68s\n", + "270900K .......... .......... .......... .......... .......... 17% 53.7M 68s\n", + "270950K .......... .......... .......... .......... .......... 17% 53.2M 68s\n", + "271000K .......... .......... .......... .......... .......... 17% 44.7M 68s\n", + "271050K .......... .......... .......... .......... .......... 17% 53.7M 68s\n", + "271100K .......... .......... .......... .......... .......... 17% 53.4M 68s\n", + "271150K .......... .......... .......... .......... .......... 17% 51.3M 68s\n", + "271200K .......... .......... .......... .......... .......... 17% 45.0M 68s\n", + "271250K .......... .......... .......... .......... .......... 17% 19.5M 68s\n", + "271300K .......... .......... .......... .......... .......... 17% 16.9M 68s\n", + "271350K .......... .......... .......... .......... .......... 17% 23.7M 68s\n", + "271400K .......... .......... .......... .......... .......... 17% 27.3M 68s\n", + "271450K .......... .......... .......... .......... .......... 17% 53.4M 68s\n", + "271500K .......... .......... .......... .......... .......... 17% 53.0M 68s\n", + "271550K .......... .......... .......... .......... .......... 17% 52.8M 68s\n", + "271600K .......... .......... .......... .......... .......... 17% 1.29M 68s\n", + "271650K .......... .......... .......... .......... .......... 17% 25.7M 68s\n", + "271700K .......... .......... .......... .......... .......... 17% 34.9M 68s\n", + "271750K .......... .......... .......... .......... .......... 17% 22.1M 68s\n", + "271800K .......... .......... .......... .......... .......... 17% 20.5M 68s\n", + "271850K .......... .......... .......... .......... .......... 17% 29.8M 68s\n", + "271900K .......... .......... .......... .......... .......... 17% 54.3M 68s\n", + "271950K .......... .......... .......... .......... .......... 17% 54.0M 68s\n", + "272000K .......... .......... .......... .......... .......... 17% 43.2M 68s\n", + "272050K .......... .......... .......... .......... .......... 17% 52.5M 68s\n", + "272100K .......... .......... .......... .......... .......... 17% 52.1M 68s\n", + "272150K .......... .......... .......... .......... .......... 17% 53.4M 68s\n", + "272200K .......... .......... .......... .......... .......... 17% 43.7M 68s\n", + "272250K .......... .......... .......... .......... .......... 17% 53.2M 68s\n", + "272300K .......... .......... .......... .......... .......... 17% 51.6M 68s\n", + "272350K .......... .......... .......... .......... .......... 17% 54.8M 68s\n", + "272400K .......... .......... .......... .......... .......... 17% 23.1M 68s\n", + "272450K .......... .......... .......... .......... .......... 17% 54.6M 68s\n", + "272500K .......... .......... .......... .......... .......... 17% 3.84M 68s\n", + "272550K .......... .......... .......... .......... .......... 17% 52.3M 68s\n", + "272600K .......... .......... .......... .......... .......... 17% 46.0M 68s\n", + "272650K .......... .......... .......... .......... .......... 17% 4.49M 68s\n", + "272700K .......... .......... .......... .......... .......... 17% 53.5M 68s\n", + "272750K .......... .......... .......... .......... .......... 17% 52.0M 68s\n", + "272800K .......... .......... .......... .......... .......... 17% 45.3M 68s\n", + "272850K .......... .......... .......... .......... .......... 17% 53.7M 68s\n", + "272900K .......... .......... .......... .......... .......... 17% 53.4M 68s\n", + "272950K .......... .......... .......... .......... .......... 17% 52.1M 68s\n", + "273000K .......... .......... .......... .......... .......... 17% 46.2M 68s\n", + "273050K .......... .......... .......... .......... .......... 17% 53.7M 68s\n", + "273100K .......... .......... .......... .......... .......... 17% 52.9M 68s\n", + "273150K .......... .......... .......... .......... .......... 17% 2.46M 68s\n", + "273200K .......... .......... .......... .......... .......... 17% 19.1M 68s\n", + "273250K .......... .......... .......... .......... .......... 17% 19.2M 68s\n", + "273300K .......... .......... .......... .......... .......... 17% 22.0M 68s\n", + "273350K .......... .......... .......... .......... .......... 17% 53.3M 68s\n", + "273400K .......... .......... .......... .......... .......... 17% 4.18M 68s\n", + "273450K .......... .......... .......... .......... .......... 17% 50.7M 68s\n", + "273500K .......... .......... .......... .......... .......... 17% 1.58M 68s\n", + "273550K .......... .......... .......... .......... .......... 17% 49.3M 68s\n", + "273600K .......... .......... .......... .......... .......... 17% 41.9M 68s\n", + "273650K .......... .......... .......... .......... .......... 17% 47.8M 68s\n", + "273700K .......... .......... .......... .......... .......... 17% 50.7M 68s\n", + "273750K .......... .......... .......... .......... .......... 17% 51.9M 68s\n", + "273800K .......... .......... .......... .......... .......... 17% 44.5M 68s\n", + "273850K .......... .......... .......... .......... .......... 17% 53.6M 68s\n", + "273900K .......... .......... .......... .......... .......... 17% 53.3M 68s\n", + "273950K .......... .......... .......... .......... .......... 17% 52.9M 68s\n", + "274000K .......... .......... .......... .......... .......... 17% 43.1M 68s\n", + "274050K .......... .......... .......... .......... .......... 17% 53.1M 68s\n", + "274100K .......... .......... .......... .......... .......... 17% 53.1M 68s\n", + "274150K .......... .......... .......... .......... .......... 17% 52.1M 68s\n", + "274200K .......... .......... .......... .......... .......... 17% 43.8M 68s\n", + "274250K .......... .......... .......... .......... .......... 17% 53.4M 68s\n", + "274300K .......... .......... .......... .......... .......... 17% 53.0M 68s\n", + "274350K .......... .......... .......... .......... .......... 17% 51.7M 68s\n", + "274400K .......... .......... .......... .......... .......... 17% 43.7M 68s\n", + "274450K .......... .......... .......... .......... .......... 17% 53.2M 68s\n", + "274500K .......... .......... .......... .......... .......... 17% 53.1M 68s\n", + "274550K .......... .......... .......... .......... .......... 17% 51.4M 68s\n", + "274600K .......... .......... .......... .......... .......... 17% 44.8M 68s\n", + "274650K .......... .......... .......... .......... .......... 17% 20.3M 68s\n", + "274700K .......... .......... .......... .......... .......... 17% 53.7M 68s\n", + "274750K .......... .......... .......... .......... .......... 17% 22.9M 68s\n", + "274800K .......... .......... .......... .......... .......... 17% 18.5M 68s\n", + "274850K .......... .......... .......... .......... .......... 17% 21.8M 68s\n", + "274900K .......... .......... .......... .......... .......... 17% 33.3M 68s\n", + "274950K .......... .......... .......... .......... .......... 17% 51.6M 68s\n", + "275000K .......... .......... .......... .......... .......... 17% 36.5M 68s\n", + "275050K .......... .......... .......... .......... .......... 17% 53.6M 68s\n", + "275100K .......... .......... .......... .......... .......... 17% 50.5M 68s\n", + "275150K .......... .......... .......... .......... .......... 17% 54.2M 68s\n", + "275200K .......... .......... .......... .......... .......... 17% 44.9M 68s\n", + "275250K .......... .......... .......... .......... .......... 17% 53.4M 68s\n", + "275300K .......... .......... .......... .......... .......... 17% 49.7M 68s\n", + "275350K .......... .......... .......... .......... .......... 17% 51.9M 68s\n", + "275400K .......... .......... .......... .......... .......... 17% 46.3M 68s\n", + "275450K .......... .......... .......... .......... .......... 17% 52.5M 68s\n", + "275500K .......... .......... .......... .......... .......... 17% 50.1M 68s\n", + "275550K .......... .......... .......... .......... .......... 17% 53.0M 68s\n", + "275600K .......... .......... .......... .......... .......... 17% 44.2M 68s\n", + "275650K .......... .......... .......... .......... .......... 17% 51.3M 68s\n", + "275700K .......... .......... .......... .......... .......... 17% 52.7M 68s\n", + "275750K .......... .......... .......... .......... .......... 17% 53.4M 68s\n", + "275800K .......... .......... .......... .......... .......... 17% 28.0M 68s\n", + "275850K .......... .......... .......... .......... .......... 17% 17.3M 68s\n", + "275900K .......... .......... .......... .......... .......... 17% 41.6M 68s\n", + "275950K .......... .......... .......... .......... .......... 17% 21.6M 68s\n", + "276000K .......... .......... .......... .......... .......... 17% 28.9M 68s\n", + "276050K .......... .......... .......... .......... .......... 17% 1.22M 68s\n", + "276100K .......... .......... .......... .......... .......... 17% 49.9M 68s\n", + "276150K .......... .......... .......... .......... .......... 17% 52.2M 68s\n", + "276200K .......... .......... .......... .......... .......... 17% 46.3M 68s\n", + "276250K .......... .......... .......... .......... .......... 17% 54.0M 68s\n", + "276300K .......... .......... .......... .......... .......... 17% 30.2M 68s\n", + "276350K .......... .......... .......... .......... .......... 17% 53.3M 68s\n", + "276400K .......... .......... .......... .......... .......... 17% 20.7M 68s\n", + "276450K .......... .......... .......... .......... .......... 17% 31.9M 68s\n", + "276500K .......... .......... .......... .......... .......... 17% 41.6M 68s\n", + "276550K .......... .......... .......... .......... .......... 17% 53.7M 68s\n", + "276600K .......... .......... .......... .......... .......... 17% 45.2M 68s\n", + "276650K .......... .......... .......... .......... .......... 17% 53.8M 68s\n", + "276700K .......... .......... .......... .......... .......... 17% 53.7M 68s\n", + "276750K .......... .......... .......... .......... .......... 17% 52.7M 68s\n", + "276800K .......... .......... .......... .......... .......... 17% 43.5M 68s\n", + "276850K .......... .......... .......... .......... .......... 17% 50.4M 68s\n", + "276900K .......... .......... .......... .......... .......... 17% 53.8M 68s\n", + "276950K .......... .......... .......... .......... .......... 17% 51.7M 68s\n", + "277000K .......... .......... .......... .......... .......... 17% 45.8M 68s\n", + "277050K .......... .......... .......... .......... .......... 17% 49.6M 68s\n", + "277100K .......... .......... .......... .......... .......... 17% 50.5M 67s\n", + "277150K .......... .......... .......... .......... .......... 17% 50.7M 67s\n", + "277200K .......... .......... .......... .......... .......... 17% 44.9M 67s\n", + "277250K .......... .......... .......... .......... .......... 17% 52.3M 67s\n", + "277300K .......... .......... .......... .......... .......... 17% 53.1M 67s\n", + "277350K .......... .......... .......... .......... .......... 17% 25.6M 67s\n", + "277400K .......... .......... .......... .......... .......... 17% 16.6M 67s\n", + "277450K .......... .......... .......... .......... .......... 17% 21.3M 67s\n", + "277500K .......... .......... .......... .......... .......... 17% 38.7M 67s\n", + "277550K .......... .......... .......... .......... .......... 17% 53.3M 67s\n", + "277600K .......... .......... .......... .......... .......... 17% 1.22M 68s\n", + "277650K .......... .......... .......... .......... .......... 17% 50.1M 68s\n", + "277700K .......... .......... .......... .......... .......... 17% 51.2M 68s\n", + "277750K .......... .......... .......... .......... .......... 17% 52.4M 68s\n", + "277800K .......... .......... .......... .......... .......... 17% 44.0M 68s\n", + "277850K .......... .......... .......... .......... .......... 17% 23.6M 68s\n", + "277900K .......... .......... .......... .......... .......... 17% 24.2M 68s\n", + "277950K .......... .......... .......... .......... .......... 17% 28.9M 68s\n", + "278000K .......... .......... .......... .......... .......... 17% 32.0M 68s\n", + "278050K .......... .......... .......... .......... .......... 17% 50.9M 68s\n", + "278100K .......... .......... .......... .......... .......... 17% 49.3M 68s\n", + "278150K .......... .......... .......... .......... .......... 17% 51.8M 67s\n", + "278200K .......... .......... .......... .......... .......... 17% 43.7M 67s\n", + "278250K .......... .......... .......... .......... .......... 17% 52.0M 67s\n", + "278300K .......... .......... .......... .......... .......... 17% 51.0M 67s\n", + "278350K .......... .......... .......... .......... .......... 17% 53.3M 67s\n", + "278400K .......... .......... .......... .......... .......... 17% 45.9M 67s\n", + "278450K .......... .......... .......... .......... .......... 17% 53.7M 67s\n", + "278500K .......... .......... .......... .......... .......... 17% 50.4M 67s\n", + "278550K .......... .......... .......... .......... .......... 17% 53.8M 67s\n", + "278600K .......... .......... .......... .......... .......... 17% 46.7M 67s\n", + "278650K .......... .......... .......... .......... .......... 17% 54.2M 67s\n", + "278700K .......... .......... .......... .......... .......... 17% 48.2M 67s\n", + "278750K .......... .......... .......... .......... .......... 17% 50.7M 67s\n", + "278800K .......... .......... .......... .......... .......... 17% 44.3M 67s\n", + "278850K .......... .......... .......... .......... .......... 17% 49.4M 67s\n", + "278900K .......... .......... .......... .......... .......... 17% 20.0M 67s\n", + "278950K .......... .......... .......... .......... .......... 17% 30.0M 67s\n", + "279000K .......... .......... .......... .......... .......... 17% 22.8M 67s\n", + "279050K .......... .......... .......... .......... .......... 17% 28.7M 67s\n", + "279100K .......... .......... .......... .......... .......... 17% 24.3M 67s\n", + "279150K .......... .......... .......... .......... .......... 17% 1.27M 67s\n", + "279200K .......... .......... .......... .......... .......... 17% 41.1M 67s\n", + "279250K .......... .......... .......... .......... .......... 17% 52.5M 67s\n", + "279300K .......... .......... .......... .......... .......... 17% 51.7M 67s\n", + "279350K .......... .......... .......... .......... .......... 17% 28.7M 67s\n", + "279400K .......... .......... .......... .......... .......... 17% 31.8M 67s\n", + "279450K .......... .......... .......... .......... .......... 17% 22.4M 67s\n", + "279500K .......... .......... .......... .......... .......... 17% 41.5M 67s\n", + "279550K .......... .......... .......... .......... .......... 17% 27.6M 67s\n", + "279600K .......... .......... .......... .......... .......... 17% 43.6M 67s\n", + "279650K .......... .......... .......... .......... .......... 17% 51.1M 67s\n", + "279700K .......... .......... .......... .......... .......... 17% 50.4M 67s\n", + "279750K .......... .......... .......... .......... .......... 17% 52.4M 67s\n", + "279800K .......... .......... .......... .......... .......... 17% 43.9M 67s\n", + "279850K .......... .......... .......... .......... .......... 17% 51.7M 67s\n", + "279900K .......... .......... .......... .......... .......... 17% 52.7M 67s\n", + "279950K .......... .......... .......... .......... .......... 17% 52.4M 67s\n", + "280000K .......... .......... .......... .......... .......... 17% 44.2M 67s\n", + "280050K .......... .......... .......... .......... .......... 17% 51.7M 67s\n", + "280100K .......... .......... .......... .......... .......... 17% 51.1M 67s\n", + "280150K .......... .......... .......... .......... .......... 17% 53.6M 67s\n", + "280200K .......... .......... .......... .......... .......... 17% 45.8M 67s\n", + "280250K .......... .......... .......... .......... .......... 17% 50.1M 67s\n", + "280300K .......... .......... .......... .......... .......... 17% 53.9M 67s\n", + "280350K .......... .......... .......... .......... .......... 17% 54.0M 67s\n", + "280400K .......... .......... .......... .......... .......... 17% 36.0M 67s\n", + "280450K .......... .......... .......... .......... .......... 17% 15.7M 67s\n", + "280500K .......... .......... .......... .......... .......... 17% 23.0M 67s\n", + "280550K .......... .......... .......... .......... .......... 17% 33.4M 67s\n", + "280600K .......... .......... .......... .......... .......... 17% 44.2M 67s\n", + "280650K .......... .......... .......... .......... .......... 17% 1.23M 67s\n", + "280700K .......... .......... .......... .......... .......... 17% 50.1M 67s\n", + "280750K .......... .......... .......... .......... .......... 17% 52.7M 67s\n", + "280800K .......... .......... .......... .......... .......... 17% 45.4M 67s\n", + "280850K .......... .......... .......... .......... .......... 17% 53.4M 67s\n", + "280900K .......... .......... .......... .......... .......... 17% 20.2M 67s\n", + "280950K .......... .......... .......... .......... .......... 17% 25.7M 67s\n", + "281000K .......... .......... .......... .......... .......... 17% 29.0M 67s\n", + "281050K .......... .......... .......... .......... .......... 17% 52.4M 67s\n", + "281100K .......... .......... .......... .......... .......... 17% 39.1M 67s\n", + "281150K .......... .......... .......... .......... .......... 17% 48.3M 67s\n", + "281200K .......... .......... .......... .......... .......... 17% 43.2M 67s\n", + "281250K .......... .......... .......... .......... .......... 17% 50.7M 67s\n", + "281300K .......... .......... .......... .......... .......... 17% 48.8M 67s\n", + "281350K .......... .......... .......... .......... .......... 17% 49.7M 67s\n", + "281400K .......... .......... .......... .......... .......... 17% 44.7M 67s\n", + "281450K .......... .......... .......... .......... .......... 17% 51.4M 67s\n", + "281500K .......... .......... .......... .......... .......... 17% 49.5M 67s\n", + "281550K .......... .......... .......... .......... .......... 17% 50.5M 67s\n", + "281600K .......... .......... .......... .......... .......... 17% 43.9M 67s\n", + "281650K .......... .......... .......... .......... .......... 17% 51.3M 67s\n", + "281700K .......... .......... .......... .......... .......... 17% 52.0M 67s\n", + "281750K .......... .......... .......... .......... .......... 17% 49.7M 67s\n", + "281800K .......... .......... .......... .......... .......... 17% 44.9M 67s\n", + "281850K .......... .......... .......... .......... .......... 17% 49.8M 67s\n", + "281900K .......... .......... .......... .......... .......... 17% 52.6M 67s\n", + "281950K .......... .......... .......... .......... .......... 17% 22.6M 67s\n", + "282000K .......... .......... .......... .......... .......... 17% 17.4M 67s\n", + "282050K .......... .......... .......... .......... .......... 17% 34.0M 67s\n", + "282100K .......... .......... .......... .......... .......... 17% 31.6M 67s\n", + "282150K .......... .......... .......... .......... .......... 17% 1.25M 67s\n", + "282200K .......... .......... .......... .......... .......... 18% 41.2M 67s\n", + "282250K .......... .......... .......... .......... .......... 18% 50.6M 67s\n", + "282300K .......... .......... .......... .......... .......... 18% 50.8M 67s\n", + "282350K .......... .......... .......... .......... .......... 18% 51.6M 67s\n", + "282400K .......... .......... .......... .......... .......... 18% 17.7M 67s\n", + "282450K .......... .......... .......... .......... .......... 18% 27.9M 67s\n", + "282500K .......... .......... .......... .......... .......... 18% 45.4M 67s\n", + "282550K .......... .......... .......... .......... .......... 18% 34.4M 67s\n", + "282600K .......... .......... .......... .......... .......... 18% 30.7M 67s\n", + "282650K .......... .......... .......... .......... .......... 18% 48.6M 67s\n", + "282700K .......... .......... .......... .......... .......... 18% 52.7M 67s\n", + "282750K .......... .......... .......... .......... .......... 18% 52.7M 67s\n", + "282800K .......... .......... .......... .......... .......... 18% 45.2M 67s\n", + "282850K .......... .......... .......... .......... .......... 18% 50.0M 67s\n", + "282900K .......... .......... .......... .......... .......... 18% 53.6M 67s\n", + "282950K .......... .......... .......... .......... .......... 18% 51.6M 67s\n", + "283000K .......... .......... .......... .......... .......... 18% 45.8M 67s\n", + "283050K .......... .......... .......... .......... .......... 18% 52.4M 67s\n", + "283100K .......... .......... .......... .......... .......... 18% 53.9M 67s\n", + "283150K .......... .......... .......... .......... .......... 18% 51.8M 67s\n", + "283200K .......... .......... .......... .......... .......... 18% 45.6M 67s\n", + "283250K .......... .......... .......... .......... .......... 18% 53.5M 67s\n", + "283300K .......... .......... .......... .......... .......... 18% 52.9M 67s\n", + "283350K .......... .......... .......... .......... .......... 18% 51.7M 67s\n", + "283400K .......... .......... .......... .......... .......... 18% 46.7M 67s\n", + "283450K .......... .......... .......... .......... .......... 18% 36.7M 67s\n", + "283500K .......... .......... .......... .......... .......... 18% 14.9M 67s\n", + "283550K .......... .......... .......... .......... .......... 18% 25.3M 67s\n", + "283600K .......... .......... .......... .......... .......... 18% 28.6M 67s\n", + "283650K .......... .......... .......... .......... .......... 18% 51.7M 67s\n", + "283700K .......... .......... .......... .......... .......... 18% 1.23M 67s\n", + "283750K .......... .......... .......... .......... .......... 18% 48.9M 67s\n", + "283800K .......... .......... .......... .......... .......... 18% 45.0M 67s\n", + "283850K .......... .......... .......... .......... .......... 18% 46.0M 67s\n", + "283900K .......... .......... .......... .......... .......... 18% 47.2M 67s\n", + "283950K .......... .......... .......... .......... .......... 18% 22.0M 67s\n", + "284000K .......... .......... .......... .......... .......... 18% 25.1M 67s\n", + "284050K .......... .......... .......... .......... .......... 18% 36.0M 67s\n", + "284100K .......... .......... .......... .......... .......... 18% 25.3M 67s\n", + "284150K .......... .......... .......... .......... .......... 18% 50.5M 67s\n", + "284200K .......... .......... .......... .......... .......... 18% 43.4M 67s\n", + "284250K .......... .......... .......... .......... .......... 18% 53.5M 67s\n", + "284300K .......... .......... .......... .......... .......... 18% 52.8M 67s\n", + "284350K .......... .......... .......... .......... .......... 18% 52.8M 67s\n", + "284400K .......... .......... .......... .......... .......... 18% 44.5M 67s\n", + "284450K .......... .......... .......... .......... .......... 18% 54.1M 67s\n", + "284500K .......... .......... .......... .......... .......... 18% 54.6M 67s\n", + "284550K .......... .......... .......... .......... .......... 18% 51.8M 67s\n", + "284600K .......... .......... .......... .......... .......... 18% 45.4M 67s\n", + "284650K .......... .......... .......... .......... .......... 18% 54.2M 67s\n", + "284700K .......... .......... .......... .......... .......... 18% 54.1M 67s\n", + "284750K .......... .......... .......... .......... .......... 18% 51.3M 67s\n", + "284800K .......... .......... .......... .......... .......... 18% 45.3M 67s\n", + "284850K .......... .......... .......... .......... .......... 18% 54.3M 67s\n", + "284900K .......... .......... .......... .......... .......... 18% 53.9M 67s\n", + "284950K .......... .......... .......... .......... .......... 18% 37.1M 67s\n", + "285000K .......... .......... .......... .......... .......... 18% 16.2M 67s\n", + "285050K .......... .......... .......... .......... .......... 18% 53.1M 67s\n", + "285100K .......... .......... .......... .......... .......... 18% 22.9M 67s\n", + "285150K .......... .......... .......... .......... .......... 18% 31.6M 67s\n", + "285200K .......... .......... .......... .......... .......... 18% 1.22M 67s\n", + "285250K .......... .......... .......... .......... .......... 18% 49.3M 67s\n", + "285300K .......... .......... .......... .......... .......... 18% 53.1M 67s\n", + "285350K .......... .......... .......... .......... .......... 18% 56.2M 67s\n", + "285400K .......... .......... .......... .......... .......... 18% 47.5M 67s\n", + "285450K .......... .......... .......... .......... .......... 18% 23.5M 67s\n", + "285500K .......... .......... .......... .......... .......... 18% 32.9M 67s\n", + "285550K .......... .......... .......... .......... .......... 18% 30.8M 67s\n", + "285600K .......... .......... .......... .......... .......... 18% 38.9M 67s\n", + "285650K .......... .......... .......... .......... .......... 18% 25.5M 67s\n", + "285700K .......... .......... .......... .......... .......... 18% 53.2M 67s\n", + "285750K .......... .......... .......... .......... .......... 18% 53.2M 67s\n", + "285800K .......... .......... .......... .......... .......... 18% 47.8M 67s\n", + "285850K .......... .......... .......... .......... .......... 18% 55.9M 67s\n", + "285900K .......... .......... .......... .......... .......... 18% 51.9M 67s\n", + "285950K .......... .......... .......... .......... .......... 18% 54.7M 67s\n", + "286000K .......... .......... .......... .......... .......... 18% 48.1M 67s\n", + "286050K .......... .......... .......... .......... .......... 18% 53.4M 67s\n", + "286100K .......... .......... .......... .......... .......... 18% 55.5M 67s\n", + "286150K .......... .......... .......... .......... .......... 18% 54.4M 67s\n", + "286200K .......... .......... .......... .......... .......... 18% 47.9M 67s\n", + "286250K .......... .......... .......... .......... .......... 18% 56.1M 67s\n", + "286300K .......... .......... .......... .......... .......... 18% 54.2M 67s\n", + "286350K .......... .......... .......... .......... .......... 18% 51.4M 67s\n", + "286400K .......... .......... .......... .......... .......... 18% 47.7M 67s\n", + "286450K .......... .......... .......... .......... .......... 18% 24.2M 67s\n", + "286500K .......... .......... .......... .......... .......... 18% 54.2M 67s\n", + "286550K .......... .......... .......... .......... .......... 18% 14.8M 67s\n", + "286600K .......... .......... .......... .......... .......... 18% 23.1M 67s\n", + "286650K .......... .......... .......... .......... .......... 18% 34.8M 67s\n", + "286700K .......... .......... .......... .......... .......... 18% 52.8M 67s\n", + "286750K .......... .......... .......... .......... .......... 18% 1.23M 67s\n", + "286800K .......... .......... .......... .......... .......... 18% 42.9M 67s\n", + "286850K .......... .......... .......... .......... .......... 18% 53.5M 67s\n", + "286900K .......... .......... .......... .......... .......... 18% 52.4M 67s\n", + "286950K .......... .......... .......... .......... .......... 18% 51.5M 67s\n", + "287000K .......... .......... .......... .......... .......... 18% 17.1M 67s\n", + "287050K .......... .......... .......... .......... .......... 18% 26.7M 67s\n", + "287100K .......... .......... .......... .......... .......... 18% 43.5M 67s\n", + "287150K .......... .......... .......... .......... .......... 18% 54.0M 67s\n", + "287200K .......... .......... .......... .......... .......... 18% 29.9M 67s\n", + "287250K .......... .......... .......... .......... .......... 18% 53.0M 67s\n", + "287300K .......... .......... .......... .......... .......... 18% 50.7M 67s\n", + "287350K .......... .......... .......... .......... .......... 18% 52.2M 67s\n", + "287400K .......... .......... .......... .......... .......... 18% 45.6M 67s\n", + "287450K .......... .......... .......... .......... .......... 18% 52.3M 67s\n", + "287500K .......... .......... .......... .......... .......... 18% 54.8M 67s\n", + "287550K .......... .......... .......... .......... .......... 18% 52.6M 67s\n", + "287600K .......... .......... .......... .......... .......... 18% 44.4M 67s\n", + "287650K .......... .......... .......... .......... .......... 18% 53.6M 67s\n", + "287700K .......... .......... .......... .......... .......... 18% 54.3M 67s\n", + "287750K .......... .......... .......... .......... .......... 18% 55.0M 67s\n", + "287800K .......... .......... .......... .......... .......... 18% 46.3M 67s\n", + "287850K .......... .......... .......... .......... .......... 18% 53.0M 67s\n", + "287900K .......... .......... .......... .......... .......... 18% 53.0M 67s\n", + "287950K .......... .......... .......... .......... .......... 18% 54.5M 67s\n", + "288000K .......... .......... .......... .......... .......... 18% 31.2M 67s\n", + "288050K .......... .......... .......... .......... .......... 18% 15.3M 67s\n", + "288100K .......... .......... .......... .......... .......... 18% 21.2M 67s\n", + "288150K .......... .......... .......... .......... .......... 18% 53.6M 67s\n", + "288200K .......... .......... .......... .......... .......... 18% 26.1M 67s\n", + "288250K .......... .......... .......... .......... .......... 18% 1.24M 67s\n", + "288300K .......... .......... .......... .......... .......... 18% 44.6M 67s\n", + "288350K .......... .......... .......... .......... .......... 18% 53.3M 67s\n", + "288400K .......... .......... .......... .......... .......... 18% 45.9M 67s\n", + "288450K .......... .......... .......... .......... .......... 18% 52.7M 67s\n", + "288500K .......... .......... .......... .......... .......... 18% 16.5M 67s\n", + "288550K .......... .......... .......... .......... .......... 18% 31.9M 67s\n", + "288600K .......... .......... .......... .......... .......... 18% 40.1M 67s\n", + "288650K .......... .......... .......... .......... .......... 18% 41.6M 67s\n", + "288700K .......... .......... .......... .......... .......... 18% 32.1M 67s\n", + "288750K .......... .......... .......... .......... .......... 18% 54.2M 67s\n", + "288800K .......... .......... .......... .......... .......... 18% 44.7M 67s\n", + "288850K .......... .......... .......... .......... .......... 18% 54.3M 67s\n", + "288900K .......... .......... .......... .......... .......... 18% 53.1M 67s\n", + "288950K .......... .......... .......... .......... .......... 18% 53.2M 67s\n", + "289000K .......... .......... .......... .......... .......... 18% 45.2M 67s\n", + "289050K .......... .......... .......... .......... .......... 18% 54.2M 67s\n", + "289100K .......... .......... .......... .......... .......... 18% 54.8M 67s\n", + "289150K .......... .......... .......... .......... .......... 18% 50.1M 67s\n", + "289200K .......... .......... .......... .......... .......... 18% 46.4M 67s\n", + "289250K .......... .......... .......... .......... .......... 18% 54.9M 67s\n", + "289300K .......... .......... .......... .......... .......... 18% 54.1M 67s\n", + "289350K .......... .......... .......... .......... .......... 18% 51.8M 67s\n", + "289400K .......... .......... .......... .......... .......... 18% 46.3M 67s\n", + "289450K .......... .......... .......... .......... .......... 18% 51.5M 67s\n", + "289500K .......... .......... .......... .......... .......... 18% 53.5M 67s\n", + "289550K .......... .......... .......... .......... .......... 18% 32.2M 67s\n", + "289600K .......... .......... .......... .......... .......... 18% 15.0M 67s\n", + "289650K .......... .......... .......... .......... .......... 18% 25.9M 67s\n", + "289700K .......... .......... .......... .......... .......... 18% 29.7M 67s\n", + "289750K .......... .......... .......... .......... .......... 18% 49.5M 67s\n", + "289800K .......... .......... .......... .......... .......... 18% 1.24M 67s\n", + "289850K .......... .......... .......... .......... .......... 18% 37.7M 67s\n", + "289900K .......... .......... .......... .......... .......... 18% 52.4M 67s\n", + "289950K .......... .......... .......... .......... .......... 18% 52.8M 67s\n", + "290000K .......... .......... .......... .......... .......... 18% 43.3M 67s\n", + "290050K .......... .......... .......... .......... .......... 18% 17.8M 67s\n", + "290100K .......... .......... .......... .......... .......... 18% 28.4M 67s\n", + "290150K .......... .......... .......... .......... .......... 18% 33.8M 67s\n", + "290200K .......... .......... .......... .......... .......... 18% 40.9M 67s\n", + "290250K .......... .......... .......... .......... .......... 18% 49.0M 67s\n", + "290300K .......... .......... .......... .......... .......... 18% 46.0M 67s\n", + "290350K .......... .......... .......... .......... .......... 18% 53.1M 67s\n", + "290400K .......... .......... .......... .......... .......... 18% 44.8M 67s\n", + "290450K .......... .......... .......... .......... .......... 18% 51.7M 67s\n", + "290500K .......... .......... .......... .......... .......... 18% 53.0M 67s\n", + "290550K .......... .......... .......... .......... .......... 18% 50.8M 67s\n", + "290600K .......... .......... .......... .......... .......... 18% 46.3M 67s\n", + "290650K .......... .......... .......... .......... .......... 18% 50.9M 67s\n", + "290700K .......... .......... .......... .......... .......... 18% 52.3M 67s\n", + "290750K .......... .......... .......... .......... .......... 18% 53.8M 67s\n", + "290800K .......... .......... .......... .......... .......... 18% 43.8M 67s\n", + "290850K .......... .......... .......... .......... .......... 18% 52.3M 67s\n", + "290900K .......... .......... .......... .......... .......... 18% 50.8M 67s\n", + "290950K .......... .......... .......... .......... .......... 18% 53.3M 67s\n", + "291000K .......... .......... .......... .......... .......... 18% 46.1M 67s\n", + "291050K .......... .......... .......... .......... .......... 18% 30.9M 67s\n", + "291100K .......... .......... .......... .......... .......... 18% 20.8M 67s\n", + "291150K .......... .......... .......... .......... .......... 18% 29.6M 67s\n", + "291200K .......... .......... .......... .......... .......... 18% 26.4M 67s\n", + "291250K .......... .......... .......... .......... .......... 18% 28.5M 67s\n", + "291300K .......... .......... .......... .......... .......... 18% 1.24M 67s\n", + "291350K .......... .......... .......... .......... .......... 18% 45.9M 67s\n", + "291400K .......... .......... .......... .......... .......... 18% 45.2M 67s\n", + "291450K .......... .......... .......... .......... .......... 18% 53.1M 67s\n", + "291500K .......... .......... .......... .......... .......... 18% 51.2M 67s\n", + "291550K .......... .......... .......... .......... .......... 18% 28.7M 67s\n", + "291600K .......... .......... .......... .......... .......... 18% 16.7M 67s\n", + "291650K .......... .......... .......... .......... .......... 18% 39.3M 67s\n", + "291700K .......... .......... .......... .......... .......... 18% 48.5M 67s\n", + "291750K .......... .......... .......... .......... .......... 18% 33.1M 67s\n", + "291800K .......... .......... .......... .......... .......... 18% 45.2M 67s\n", + "291850K .......... .......... .......... .......... .......... 18% 53.8M 67s\n", + "291900K .......... .......... .......... .......... .......... 18% 51.8M 67s\n", + "291950K .......... .......... .......... .......... .......... 18% 50.7M 67s\n", + "292000K .......... .......... .......... .......... .......... 18% 42.6M 67s\n", + "292050K .......... .......... .......... .......... .......... 18% 53.1M 67s\n", + "292100K .......... .......... .......... .......... .......... 18% 53.8M 67s\n", + "292150K .......... .......... .......... .......... .......... 18% 52.2M 67s\n", + "292200K .......... .......... .......... .......... .......... 18% 45.3M 67s\n", + "292250K .......... .......... .......... .......... .......... 18% 53.3M 67s\n", + "292300K .......... .......... .......... .......... .......... 18% 50.6M 67s\n", + "292350K .......... .......... .......... .......... .......... 18% 52.4M 67s\n", + "292400K .......... .......... .......... .......... .......... 18% 43.7M 67s\n", + "292450K .......... .......... .......... .......... .......... 18% 52.6M 67s\n", + "292500K .......... .......... .......... .......... .......... 18% 50.1M 67s\n", + "292550K .......... .......... .......... .......... .......... 18% 51.2M 67s\n", + "292600K .......... .......... .......... .......... .......... 18% 27.6M 66s\n", + "292650K .......... .......... .......... .......... .......... 18% 16.0M 66s\n", + "292700K .......... .......... .......... .......... .......... 18% 23.7M 66s\n", + "292750K .......... .......... .......... .......... .......... 18% 33.7M 66s\n", + "292800K .......... .......... .......... .......... .......... 18% 1.24M 67s\n", + "292850K .......... .......... .......... .......... .......... 18% 48.5M 67s\n", + "292900K .......... .......... .......... .......... .......... 18% 39.9M 67s\n", + "292950K .......... .......... .......... .......... .......... 18% 53.3M 67s\n", + "293000K .......... .......... .......... .......... .......... 18% 44.6M 67s\n", + "293050K .......... .......... .......... .......... .......... 18% 50.0M 67s\n", + "293100K .......... .......... .......... .......... .......... 18% 16.7M 67s\n", + "293150K .......... .......... .......... .......... .......... 18% 22.5M 67s\n", + "293200K .......... .......... .......... .......... .......... 18% 43.8M 67s\n", + "293250K .......... .......... .......... .......... .......... 18% 37.4M 67s\n", + "293300K .......... .......... .......... .......... .......... 18% 51.7M 67s\n", + "293350K .......... .......... .......... .......... .......... 18% 52.1M 67s\n", + "293400K .......... .......... .......... .......... .......... 18% 43.5M 67s\n", + "293450K .......... .......... .......... .......... .......... 18% 52.7M 67s\n", + "293500K .......... .......... .......... .......... .......... 18% 51.5M 67s\n", + "293550K .......... .......... .......... .......... .......... 18% 51.6M 67s\n", + "293600K .......... .......... .......... .......... .......... 18% 43.7M 67s\n", + "293650K .......... .......... .......... .......... .......... 18% 52.5M 66s\n", + "293700K .......... .......... .......... .......... .......... 18% 51.2M 66s\n", + "293750K .......... .......... .......... .......... .......... 18% 53.0M 66s\n", + "293800K .......... .......... .......... .......... .......... 18% 44.9M 66s\n", + "293850K .......... .......... .......... .......... .......... 18% 52.2M 66s\n", + "293900K .......... .......... .......... .......... .......... 18% 51.6M 66s\n", + "293950K .......... .......... .......... .......... .......... 18% 52.7M 66s\n", + "294000K .......... .......... .......... .......... .......... 18% 45.2M 66s\n", + "294050K .......... .......... .......... .......... .......... 18% 48.0M 66s\n", + "294100K .......... .......... .......... .......... .......... 18% 42.0M 66s\n", + "294150K .......... .......... .......... .......... .......... 18% 23.9M 66s\n", + "294200K .......... .......... .......... .......... .......... 18% 25.8M 66s\n", + "294250K .......... .......... .......... .......... .......... 18% 22.2M 66s\n", + "294300K .......... .......... .......... .......... .......... 18% 28.6M 66s\n", + "294350K .......... .......... .......... .......... .......... 18% 1.25M 67s\n", + "294400K .......... .......... .......... .......... .......... 18% 28.4M 67s\n", + "294450K .......... .......... .......... .......... .......... 18% 50.6M 67s\n", + "294500K .......... .......... .......... .......... .......... 18% 52.6M 67s\n", + "294550K .......... .......... .......... .......... .......... 18% 51.3M 67s\n", + "294600K .......... .......... .......... .......... .......... 18% 17.3M 67s\n", + "294650K .......... .......... .......... .......... .......... 18% 22.6M 66s\n", + "294700K .......... .......... .......... .......... .......... 18% 53.0M 66s\n", + "294750K .......... .......... .......... .......... .......... 18% 51.1M 66s\n", + "294800K .......... .......... .......... .......... .......... 18% 30.1M 66s\n", + "294850K .......... .......... .......... .......... .......... 18% 50.8M 66s\n", + "294900K .......... .......... .......... .......... .......... 18% 52.6M 66s\n", + "294950K .......... .......... .......... .......... .......... 18% 51.9M 66s\n", + "295000K .......... .......... .......... .......... .......... 18% 44.7M 66s\n", + "295050K .......... .......... .......... .......... .......... 18% 54.4M 66s\n", + "295100K .......... .......... .......... .......... .......... 18% 53.9M 66s\n", + "295150K .......... .......... .......... .......... .......... 18% 54.4M 66s\n", + "295200K .......... .......... .......... .......... .......... 18% 42.7M 66s\n", + "295250K .......... .......... .......... .......... .......... 18% 52.8M 66s\n", + "295300K .......... .......... .......... .......... .......... 18% 53.7M 66s\n", + "295350K .......... .......... .......... .......... .......... 18% 53.6M 66s\n", + "295400K .......... .......... .......... .......... .......... 18% 44.5M 66s\n", + "295450K .......... .......... .......... .......... .......... 18% 51.2M 66s\n", + "295500K .......... .......... .......... .......... .......... 18% 54.6M 66s\n", + "295550K .......... .......... .......... .......... .......... 18% 53.1M 66s\n", + "295600K .......... .......... .......... .......... .......... 18% 43.0M 66s\n", + "295650K .......... .......... .......... .......... .......... 18% 37.7M 66s\n", + "295700K .......... .......... .......... .......... .......... 18% 16.9M 66s\n", + "295750K .......... .......... .......... .......... .......... 18% 24.8M 66s\n", + "295800K .......... .......... .......... .......... .......... 18% 26.5M 66s\n", + "295850K .......... .......... .......... .......... .......... 18% 53.2M 66s\n", + "295900K .......... .......... .......... .......... .......... 18% 1.25M 66s\n", + "295950K .......... .......... .......... .......... .......... 18% 34.8M 66s\n", + "296000K .......... .......... .......... .......... .......... 18% 43.8M 66s\n", + "296050K .......... .......... .......... .......... .......... 18% 48.8M 66s\n", + "296100K .......... .......... .......... .......... .......... 18% 50.3M 66s\n", + "296150K .......... .......... .......... .......... .......... 18% 17.7M 66s\n", + "296200K .......... .......... .......... .......... .......... 18% 22.7M 66s\n", + "296250K .......... .......... .......... .......... .......... 18% 45.1M 66s\n", + "296300K .......... .......... .......... .......... .......... 18% 50.6M 66s\n", + "296350K .......... .......... .......... .......... .......... 18% 33.9M 66s\n", + "296400K .......... .......... .......... .......... .......... 18% 45.1M 66s\n", + "296450K .......... .......... .......... .......... .......... 18% 51.8M 66s\n", + "296500K .......... .......... .......... .......... .......... 18% 48.5M 66s\n", + "296550K .......... .......... .......... .......... .......... 18% 51.3M 66s\n", + "296600K .......... .......... .......... .......... .......... 18% 44.4M 66s\n", + "296650K .......... .......... .......... .......... .......... 18% 52.3M 66s\n", + "296700K .......... .......... .......... .......... .......... 18% 51.4M 66s\n", + "296750K .......... .......... .......... .......... .......... 18% 50.9M 66s\n", + "296800K .......... .......... .......... .......... .......... 18% 45.0M 66s\n", + "296850K .......... .......... .......... .......... .......... 18% 52.2M 66s\n", + "296900K .......... .......... .......... .......... .......... 18% 49.8M 66s\n", + "296950K .......... .......... .......... .......... .......... 18% 50.8M 66s\n", + "297000K .......... .......... .......... .......... .......... 18% 45.8M 66s\n", + "297050K .......... .......... .......... .......... .......... 18% 53.6M 66s\n", + "297100K .......... .......... .......... .......... .......... 18% 52.7M 66s\n", + "297150K .......... .......... .......... .......... .......... 18% 41.9M 66s\n", + "297200K .......... .......... .......... .......... .......... 18% 14.8M 66s\n", + "297250K .......... .......... .......... .......... .......... 18% 32.4M 66s\n", + "297300K .......... .......... .......... .......... .......... 18% 43.1M 66s\n", + "297350K .......... .......... .......... .......... .......... 18% 26.1M 66s\n", + "297400K .......... .......... .......... .......... .......... 18% 1.25M 66s\n", + "297450K .......... .......... .......... .......... .......... 18% 36.1M 66s\n", + "297500K .......... .......... .......... .......... .......... 18% 52.3M 66s\n", + "297550K .......... .......... .......... .......... .......... 18% 52.8M 66s\n", + "297600K .......... .......... .......... .......... .......... 18% 43.4M 66s\n", + "297650K .......... .......... .......... .......... .......... 18% 16.6M 66s\n", + "297700K .......... .......... .......... .......... .......... 18% 24.7M 66s\n", + "297750K .......... .......... .......... .......... .......... 18% 48.6M 66s\n", + "297800K .......... .......... .......... .......... .......... 18% 41.4M 66s\n", + "297850K .......... .......... .......... .......... .......... 19% 38.7M 66s\n", + "297900K .......... .......... .......... .......... .......... 19% 45.0M 66s\n", + "297950K .......... .......... .......... .......... .......... 19% 52.4M 66s\n", + "298000K .......... .......... .......... .......... .......... 19% 44.5M 66s\n", + "298050K .......... .......... .......... .......... .......... 19% 51.2M 66s\n", + "298100K .......... .......... .......... .......... .......... 19% 48.5M 66s\n", + "298150K .......... .......... .......... .......... .......... 19% 51.4M 66s\n", + "298200K .......... .......... .......... .......... .......... 19% 44.2M 66s\n", + "298250K .......... .......... .......... .......... .......... 19% 49.8M 66s\n", + "298300K .......... .......... .......... .......... .......... 19% 49.4M 66s\n", + "298350K .......... .......... .......... .......... .......... 19% 51.4M 66s\n", + "298400K .......... .......... .......... .......... .......... 19% 43.1M 66s\n", + "298450K .......... .......... .......... .......... .......... 19% 51.1M 66s\n", + "298500K .......... .......... .......... .......... .......... 19% 51.5M 66s\n", + "298550K .......... .......... .......... .......... .......... 19% 49.7M 66s\n", + "298600K .......... .......... .......... .......... .......... 19% 44.7M 66s\n", + "298650K .......... .......... .......... .......... .......... 19% 50.4M 66s\n", + "298700K .......... .......... .......... .......... .......... 19% 43.2M 66s\n", + "298750K .......... .......... .......... .......... .......... 19% 16.8M 66s\n", + "298800K .......... .......... .......... .......... .......... 19% 25.7M 66s\n", + "298850K .......... .......... .......... .......... .......... 19% 24.2M 66s\n", + "298900K .......... .......... .......... .......... .......... 19% 1.26M 66s\n", + "298950K .......... .......... .......... .......... .......... 19% 35.2M 66s\n", + "299000K .......... .......... .......... .......... .......... 19% 34.4M 66s\n", + "299050K .......... .......... .......... .......... .......... 19% 51.6M 66s\n", + "299100K .......... .......... .......... .......... .......... 19% 51.0M 66s\n", + "299150K .......... .......... .......... .......... .......... 19% 52.0M 66s\n", + "299200K .......... .......... .......... .......... .......... 19% 17.3M 66s\n", + "299250K .......... .......... .......... .......... .......... 19% 23.6M 66s\n", + "299300K .......... .......... .......... .......... .......... 19% 41.6M 66s\n", + "299350K .......... .......... .......... .......... .......... 19% 44.7M 66s\n", + "299400K .......... .......... .......... .......... .......... 19% 42.1M 66s\n", + "299450K .......... .......... .......... .......... .......... 19% 40.6M 66s\n", + "299500K .......... .......... .......... .......... .......... 19% 51.4M 66s\n", + "299550K .......... .......... .......... .......... .......... 19% 51.2M 66s\n", + "299600K .......... .......... .......... .......... .......... 19% 43.9M 66s\n", + "299650K .......... .......... .......... .......... .......... 19% 50.6M 66s\n", + "299700K .......... .......... .......... .......... .......... 19% 52.1M 66s\n", + "299750K .......... .......... .......... .......... .......... 19% 50.0M 66s\n", + "299800K .......... .......... .......... .......... .......... 19% 45.0M 66s\n", + "299850K .......... .......... .......... .......... .......... 19% 50.5M 66s\n", + "299900K .......... .......... .......... .......... .......... 19% 51.7M 66s\n", + "299950K .......... .......... .......... .......... .......... 19% 50.4M 66s\n", + "300000K .......... .......... .......... .......... .......... 19% 43.8M 66s\n", + "300050K .......... .......... .......... .......... .......... 19% 52.1M 66s\n", + "300100K .......... .......... .......... .......... .......... 19% 50.2M 66s\n", + "300150K .......... .......... .......... .......... .......... 19% 49.6M 66s\n", + "300200K .......... .......... .......... .......... .......... 19% 41.9M 66s\n", + "300250K .......... .......... .......... .......... .......... 19% 31.0M 66s\n", + "300300K .......... .......... .......... .......... .......... 19% 19.8M 66s\n", + "300350K .......... .......... .......... .......... .......... 19% 34.5M 66s\n", + "300400K .......... .......... .......... .......... .......... 19% 24.6M 66s\n", + "300450K .......... .......... .......... .......... .......... 19% 1.24M 66s\n", + "300500K .......... .......... .......... .......... .......... 19% 41.0M 66s\n", + "300550K .......... .......... .......... .......... .......... 19% 49.8M 66s\n", + "300600K .......... .......... .......... .......... .......... 19% 44.4M 66s\n", + "300650K .......... .......... .......... .......... .......... 19% 49.6M 66s\n", + "300700K .......... .......... .......... .......... .......... 19% 52.0M 66s\n", + "300750K .......... .......... .......... .......... .......... 19% 13.0M 66s\n", + "300800K .......... .......... .......... .......... .......... 19% 30.5M 66s\n", + "300850K .......... .......... .......... .......... .......... 19% 50.7M 66s\n", + "300900K .......... .......... .......... .......... .......... 19% 33.5M 66s\n", + "300950K .......... .......... .......... .......... .......... 19% 48.2M 66s\n", + "301000K .......... .......... .......... .......... .......... 19% 43.1M 66s\n", + "301050K .......... .......... .......... .......... .......... 19% 48.6M 66s\n", + "301100K .......... .......... .......... .......... .......... 19% 51.3M 66s\n", + "301150K .......... .......... .......... .......... .......... 19% 51.9M 66s\n", + "301200K .......... .......... .......... .......... .......... 19% 42.3M 66s\n", + "301250K .......... .......... .......... .......... .......... 19% 51.8M 66s\n", + "301300K .......... .......... .......... .......... .......... 19% 51.8M 66s\n", + "301350K .......... .......... .......... .......... .......... 19% 52.4M 66s\n", + "301400K .......... .......... .......... .......... .......... 19% 45.5M 66s\n", + "301450K .......... .......... .......... .......... .......... 19% 48.2M 66s\n", + "301500K .......... .......... .......... .......... .......... 19% 52.9M 66s\n", + "301550K .......... .......... .......... .......... .......... 19% 52.6M 66s\n", + "301600K .......... .......... .......... .......... .......... 19% 45.2M 66s\n", + "301650K .......... .......... .......... .......... .......... 19% 49.1M 66s\n", + "301700K .......... .......... .......... .......... .......... 19% 51.8M 66s\n", + "301750K .......... .......... .......... .......... .......... 19% 51.1M 66s\n", + "301800K .......... .......... .......... .......... .......... 19% 15.6M 66s\n", + "301850K .......... .......... .......... .......... .......... 19% 27.4M 66s\n", + "301900K .......... .......... .......... .......... .......... 19% 37.7M 66s\n", + "301950K .......... .......... .......... .......... .......... 19% 52.1M 66s\n", + "302000K .......... .......... .......... .......... .......... 19% 1.24M 66s\n", + "302050K .......... .......... .......... .......... .......... 19% 33.5M 66s\n", + "302100K .......... .......... .......... .......... .......... 19% 49.7M 66s\n", + "302150K .......... .......... .......... .......... .......... 19% 50.2M 66s\n", + "302200K .......... .......... .......... .......... .......... 19% 45.5M 66s\n", + "302250K .......... .......... .......... .......... .......... 19% 22.2M 66s\n", + "302300K .......... .......... .......... .......... .......... 19% 19.7M 66s\n", + "302350K .......... .......... .......... .......... .......... 19% 39.5M 66s\n", + "302400K .......... .......... .......... .......... .......... 19% 29.0M 66s\n", + "302450K .......... .......... .......... .......... .......... 19% 52.4M 66s\n", + "302500K .......... .......... .......... .......... .......... 19% 47.6M 66s\n", + "302550K .......... .......... .......... .......... .......... 19% 50.0M 66s\n", + "302600K .......... .......... .......... .......... .......... 19% 44.2M 66s\n", + "302650K .......... .......... .......... .......... .......... 19% 52.7M 66s\n", + "302700K .......... .......... .......... .......... .......... 19% 52.1M 66s\n", + "302750K .......... .......... .......... .......... .......... 19% 51.1M 66s\n", + "302800K .......... .......... .......... .......... .......... 19% 42.1M 66s\n", + "302850K .......... .......... .......... .......... .......... 19% 51.6M 66s\n", + "302900K .......... .......... .......... .......... .......... 19% 52.7M 66s\n", + "302950K .......... .......... .......... .......... .......... 19% 51.8M 66s\n", + "303000K .......... .......... .......... .......... .......... 19% 42.9M 66s\n", + "303050K .......... .......... .......... .......... .......... 19% 52.6M 66s\n", + "303100K .......... .......... .......... .......... .......... 19% 52.3M 66s\n", + "303150K .......... .......... .......... .......... .......... 19% 51.7M 66s\n", + "303200K .......... .......... .......... .......... .......... 19% 43.7M 66s\n", + "303250K .......... .......... .......... .......... .......... 19% 51.3M 66s\n", + "303300K .......... .......... .......... .......... .......... 19% 15.3M 66s\n", + "303350K .......... .......... .......... .......... .......... 19% 26.3M 66s\n", + "303400K .......... .......... .......... .......... .......... 19% 43.9M 66s\n", + "303450K .......... .......... .......... .......... .......... 19% 37.2M 66s\n", + "303500K .......... .......... .......... .......... .......... 19% 1.24M 66s\n", + "303550K .......... .......... .......... .......... .......... 19% 33.8M 66s\n", + "303600K .......... .......... .......... .......... .......... 19% 41.3M 66s\n", + "303650K .......... .......... .......... .......... .......... 19% 34.0M 66s\n", + "303700K .......... .......... .......... .......... .......... 19% 47.0M 66s\n", + "303750K .......... .......... .......... .......... .......... 19% 28.5M 66s\n", + "303800K .......... .......... .......... .......... .......... 19% 27.2M 66s\n", + "303850K .......... .......... .......... .......... .......... 19% 33.1M 66s\n", + "303900K .......... .......... .......... .......... .......... 19% 35.1M 66s\n", + "303950K .......... .......... .......... .......... .......... 19% 39.1M 66s\n", + "304000K .......... .......... .......... .......... .......... 19% 38.4M 66s\n", + "304050K .......... .......... .......... .......... .......... 19% 51.8M 66s\n", + "304100K .......... .......... .......... .......... .......... 19% 50.7M 66s\n", + "304150K .......... .......... .......... .......... .......... 19% 51.4M 66s\n", + "304200K .......... .......... .......... .......... .......... 19% 42.3M 66s\n", + "304250K .......... .......... .......... .......... .......... 19% 51.9M 66s\n", + "304300K .......... .......... .......... .......... .......... 19% 52.8M 66s\n", + "304350K .......... .......... .......... .......... .......... 19% 52.8M 66s\n", + "304400K .......... .......... .......... .......... .......... 19% 44.6M 66s\n", + "304450K .......... .......... .......... .......... .......... 19% 53.0M 66s\n", + "304500K .......... .......... .......... .......... .......... 19% 48.7M 66s\n", + "304550K .......... .......... .......... .......... .......... 19% 52.3M 66s\n", + "304600K .......... .......... .......... .......... .......... 19% 45.3M 66s\n", + "304650K .......... .......... .......... .......... .......... 19% 52.7M 66s\n", + "304700K .......... .......... .......... .......... .......... 19% 50.7M 66s\n", + "304750K .......... .......... .......... .......... .......... 19% 50.3M 66s\n", + "304800K .......... .......... .......... .......... .......... 19% 42.7M 66s\n", + "304850K .......... .......... .......... .......... .......... 19% 16.4M 66s\n", + "304900K .......... .......... .......... .......... .......... 19% 28.2M 66s\n", + "304950K .......... .......... .......... .......... .......... 19% 31.8M 66s\n", + "305000K .......... .......... .......... .......... .......... 19% 1.26M 66s\n", + "305050K .......... .......... .......... .......... .......... 19% 30.1M 66s\n", + "305100K .......... .......... .......... .......... .......... 19% 33.1M 66s\n", + "305150K .......... .......... .......... .......... .......... 19% 51.0M 66s\n", + "305200K .......... .......... .......... .......... .......... 19% 42.0M 66s\n", + "305250K .......... .......... .......... .......... .......... 19% 19.2M 66s\n", + "305300K .......... .......... .......... .......... .......... 19% 47.1M 66s\n", + "305350K .......... .......... .......... .......... .......... 19% 26.7M 66s\n", + "305400K .......... .......... .......... .......... .......... 19% 26.0M 66s\n", + "305450K .......... .......... .......... .......... .......... 19% 48.4M 66s\n", + "305500K .......... .......... .......... .......... .......... 19% 42.3M 66s\n", + "305550K .......... .......... .......... .......... .......... 19% 45.6M 66s\n", + "305600K .......... .......... .......... .......... .......... 19% 41.5M 66s\n", + "305650K .......... .......... .......... .......... .......... 19% 51.8M 66s\n", + "305700K .......... .......... .......... .......... .......... 19% 49.7M 66s\n", + "305750K .......... .......... .......... .......... .......... 19% 49.3M 66s\n", + "305800K .......... .......... .......... .......... .......... 19% 42.6M 66s\n", + "305850K .......... .......... .......... .......... .......... 19% 54.0M 66s\n", + "305900K .......... .......... .......... .......... .......... 19% 52.6M 66s\n", + "305950K .......... .......... .......... .......... .......... 19% 50.7M 66s\n", + "306000K .......... .......... .......... .......... .......... 19% 44.0M 66s\n", + "306050K .......... .......... .......... .......... .......... 19% 53.8M 66s\n", + "306100K .......... .......... .......... .......... .......... 19% 51.2M 66s\n", + "306150K .......... .......... .......... .......... .......... 19% 52.7M 66s\n", + "306200K .......... .......... .......... .......... .......... 19% 44.5M 66s\n", + "306250K .......... .......... .......... .......... .......... 19% 53.7M 66s\n", + "306300K .......... .......... .......... .......... .......... 19% 51.8M 66s\n", + "306350K .......... .......... .......... .......... .......... 19% 54.1M 66s\n", + "306400K .......... .......... .......... .......... .......... 19% 12.9M 66s\n", + "306450K .......... .......... .......... .......... .......... 19% 53.4M 66s\n", + "306500K .......... .......... .......... .......... .......... 19% 25.8M 66s\n", + "306550K .......... .......... .......... .......... .......... 19% 1.24M 66s\n", + "306600K .......... .......... .......... .......... .......... 19% 35.3M 66s\n", + "306650K .......... .......... .......... .......... .......... 19% 52.9M 66s\n", + "306700K .......... .......... .......... .......... .......... 19% 50.8M 66s\n", + "306750K .......... .......... .......... .......... .......... 19% 52.4M 66s\n", + "306800K .......... .......... .......... .......... .......... 19% 18.3M 66s\n", + "306850K .......... .......... .......... .......... .......... 19% 37.5M 66s\n", + "306900K .......... .......... .......... .......... .......... 19% 25.2M 66s\n", + "306950K .......... .......... .......... .......... .......... 19% 37.4M 66s\n", + "307000K .......... .......... .......... .......... .......... 19% 32.3M 66s\n", + "307050K .......... .......... .......... .......... .......... 19% 43.5M 66s\n", + "307100K .......... .......... .......... .......... .......... 19% 50.9M 66s\n", + "307150K .......... .......... .......... .......... .......... 19% 52.5M 66s\n", + "307200K .......... .......... .......... .......... .......... 19% 45.0M 66s\n", + "307250K .......... .......... .......... .......... .......... 19% 54.4M 66s\n", + "307300K .......... .......... .......... .......... .......... 19% 53.1M 66s\n", + "307350K .......... .......... .......... .......... .......... 19% 53.2M 66s\n", + "307400K .......... .......... .......... .......... .......... 19% 46.9M 66s\n", + "307450K .......... .......... .......... .......... .......... 19% 54.2M 66s\n", + "307500K .......... .......... .......... .......... .......... 19% 51.5M 66s\n", + "307550K .......... .......... .......... .......... .......... 19% 53.1M 66s\n", + "307600K .......... .......... .......... .......... .......... 19% 46.5M 66s\n", + "307650K .......... .......... .......... .......... .......... 19% 53.4M 66s\n", + "307700K .......... .......... .......... .......... .......... 19% 54.3M 66s\n", + "307750K .......... .......... .......... .......... .......... 19% 49.9M 66s\n", + "307800K .......... .......... .......... .......... .......... 19% 46.7M 66s\n", + "307850K .......... .......... .......... .......... .......... 19% 44.9M 66s\n", + "307900K .......... .......... .......... .......... .......... 19% 13.5M 66s\n", + "307950K .......... .......... .......... .......... .......... 19% 35.8M 66s\n", + "308000K .......... .......... .......... .......... .......... 19% 25.0M 66s\n", + "308050K .......... .......... .......... .......... .......... 19% 1.29M 66s\n", + "308100K .......... .......... .......... .......... .......... 19% 20.5M 66s\n", + "308150K .......... .......... .......... .......... .......... 19% 41.1M 66s\n", + "308200K .......... .......... .......... .......... .......... 19% 39.6M 66s\n", + "308250K .......... .......... .......... .......... .......... 19% 54.4M 66s\n", + "308300K .......... .......... .......... .......... .......... 19% 53.2M 66s\n", + "308350K .......... .......... .......... .......... .......... 19% 20.9M 66s\n", + "308400K .......... .......... .......... .......... .......... 19% 19.4M 66s\n", + "308450K .......... .......... .......... .......... .......... 19% 34.7M 66s\n", + "308500K .......... .......... .......... .......... .......... 19% 32.5M 66s\n", + "308550K .......... .......... .......... .......... .......... 19% 54.8M 66s\n", + "308600K .......... .......... .......... .......... .......... 19% 45.4M 66s\n", + "308650K .......... .......... .......... .......... .......... 19% 53.9M 66s\n", + "308700K .......... .......... .......... .......... .......... 19% 55.1M 66s\n", + "308750K .......... .......... .......... .......... .......... 19% 54.8M 66s\n", + "308800K .......... .......... .......... .......... .......... 19% 46.7M 66s\n", + "308850K .......... .......... .......... .......... .......... 19% 51.2M 66s\n", + "308900K .......... .......... .......... .......... .......... 19% 54.7M 66s\n", + "308950K .......... .......... .......... .......... .......... 19% 55.4M 66s\n", + "309000K .......... .......... .......... .......... .......... 19% 47.7M 66s\n", + "309050K .......... .......... .......... .......... .......... 19% 51.1M 66s\n", + "309100K .......... .......... .......... .......... .......... 19% 54.8M 66s\n", + "309150K .......... .......... .......... .......... .......... 19% 54.8M 66s\n", + "309200K .......... .......... .......... .......... .......... 19% 46.9M 65s\n", + "309250K .......... .......... .......... .......... .......... 19% 52.1M 65s\n", + "309300K .......... .......... .......... .......... .......... 19% 53.3M 65s\n", + "309350K .......... .......... .......... .......... .......... 19% 51.8M 65s\n", + "309400K .......... .......... .......... .......... .......... 19% 12.2M 65s\n", + "309450K .......... .......... .......... .......... .......... 19% 39.7M 65s\n", + "309500K .......... .......... .......... .......... .......... 19% 43.0M 65s\n", + "309550K .......... .......... .......... .......... .......... 19% 29.8M 65s\n", + "309600K .......... .......... .......... .......... .......... 19% 1.23M 66s\n", + "309650K .......... .......... .......... .......... .......... 19% 33.8M 66s\n", + "309700K .......... .......... .......... .......... .......... 19% 50.1M 66s\n", + "309750K .......... .......... .......... .......... .......... 19% 53.4M 66s\n", + "309800K .......... .......... .......... .......... .......... 19% 47.4M 66s\n", + "309850K .......... .......... .......... .......... .......... 19% 20.0M 66s\n", + "309900K .......... .......... .......... .......... .......... 19% 19.8M 66s\n", + "309950K .......... .......... .......... .......... .......... 19% 51.2M 66s\n", + "310000K .......... .......... .......... .......... .......... 19% 40.4M 66s\n", + "310050K .......... .......... .......... .......... .......... 19% 29.6M 66s\n", + "310100K .......... .......... .......... .......... .......... 19% 52.0M 66s\n", + "310150K .......... .......... .......... .......... .......... 19% 51.1M 66s\n", + "310200K .......... .......... .......... .......... .......... 19% 47.4M 66s\n", + "310250K .......... .......... .......... .......... .......... 19% 54.4M 65s\n", + "310300K .......... .......... .......... .......... .......... 19% 52.3M 65s\n", + "310350K .......... .......... .......... .......... .......... 19% 52.5M 65s\n", + "310400K .......... .......... .......... .......... .......... 19% 47.2M 65s\n", + "310450K .......... .......... .......... .......... .......... 19% 55.8M 65s\n", + "310500K .......... .......... .......... .......... .......... 19% 55.1M 65s\n", + "310550K .......... .......... .......... .......... .......... 19% 54.8M 65s\n", + "310600K .......... .......... .......... .......... .......... 19% 44.5M 65s\n", + "310650K .......... .......... .......... .......... .......... 19% 54.7M 65s\n", + "310700K .......... .......... .......... .......... .......... 19% 54.3M 65s\n", + "310750K .......... .......... .......... .......... .......... 19% 53.9M 65s\n", + "310800K .......... .......... .......... .......... .......... 19% 45.7M 65s\n", + "310850K .......... .......... .......... .......... .......... 19% 53.8M 65s\n", + "310900K .......... .......... .......... .......... .......... 19% 55.2M 65s\n", + "310950K .......... .......... .......... .......... .......... 19% 14.3M 65s\n", + "311000K .......... .......... .......... .......... .......... 19% 25.0M 65s\n", + "311050K .......... .......... .......... .......... .......... 19% 35.2M 65s\n", + "311100K .......... .......... .......... .......... .......... 19% 55.3M 65s\n", + "311150K .......... .......... .......... .......... .......... 19% 1.24M 65s\n", + "311200K .......... .......... .......... .......... .......... 19% 29.7M 65s\n", + "311250K .......... .......... .......... .......... .......... 19% 51.9M 65s\n", + "311300K .......... .......... .......... .......... .......... 19% 51.3M 65s\n", + "311350K .......... .......... .......... .......... .......... 19% 21.0M 65s\n", + "311400K .......... .......... .......... .......... .......... 19% 45.6M 65s\n", + "311450K .......... .......... .......... .......... .......... 19% 18.2M 65s\n", + "311500K .......... .......... .......... .......... .......... 19% 35.8M 65s\n", + "311550K .......... .......... .......... .......... .......... 19% 33.6M 65s\n", + "311600K .......... .......... .......... .......... .......... 19% 46.3M 65s\n", + "311650K .......... .......... .......... .......... .......... 19% 52.6M 65s\n", + "311700K .......... .......... .......... .......... .......... 19% 53.4M 65s\n", + "311750K .......... .......... .......... .......... .......... 19% 51.6M 65s\n", + "311800K .......... .......... .......... .......... .......... 19% 45.2M 65s\n", + "311850K .......... .......... .......... .......... .......... 19% 52.2M 65s\n", + "311900K .......... .......... .......... .......... .......... 19% 51.5M 65s\n", + "311950K .......... .......... .......... .......... .......... 19% 50.9M 65s\n", + "312000K .......... .......... .......... .......... .......... 19% 45.1M 65s\n", + "312050K .......... .......... .......... .......... .......... 19% 52.7M 65s\n", + "312100K .......... .......... .......... .......... .......... 19% 51.1M 65s\n", + "312150K .......... .......... .......... .......... .......... 19% 51.5M 65s\n", + "312200K .......... .......... .......... .......... .......... 19% 43.5M 65s\n", + "312250K .......... .......... .......... .......... .......... 19% 51.4M 65s\n", + "312300K .......... .......... .......... .......... .......... 19% 51.5M 65s\n", + "312350K .......... .......... .......... .......... .......... 19% 51.2M 65s\n", + "312400K .......... .......... .......... .......... .......... 19% 44.8M 65s\n", + "312450K .......... .......... .......... .......... .......... 19% 16.8M 65s\n", + "312500K .......... .......... .......... .......... .......... 19% 41.5M 65s\n", + "312550K .......... .......... .......... .......... .......... 19% 33.1M 65s\n", + "312600K .......... .......... .......... .......... .......... 19% 30.5M 65s\n", + "312650K .......... .......... .......... .......... .......... 19% 1.28M 65s\n", + "312700K .......... .......... .......... .......... .......... 19% 17.5M 65s\n", + "312750K .......... .......... .......... .......... .......... 19% 51.6M 65s\n", + "312800K .......... .......... .......... .......... .......... 19% 43.6M 65s\n", + "312850K .......... .......... .......... .......... .......... 19% 52.4M 65s\n", + "312900K .......... .......... .......... .......... .......... 19% 20.0M 65s\n", + "312950K .......... .......... .......... .......... .......... 19% 22.1M 65s\n", + "313000K .......... .......... .......... .......... .......... 19% 44.1M 65s\n", + "313050K .......... .......... .......... .......... .......... 19% 30.8M 65s\n", + "313100K .......... .......... .......... .......... .......... 19% 37.5M 65s\n", + "313150K .......... .......... .......... .......... .......... 19% 48.7M 65s\n", + "313200K .......... .......... .......... .......... .......... 19% 43.9M 65s\n", + "313250K .......... .......... .......... .......... .......... 19% 51.2M 65s\n", + "313300K .......... .......... .......... .......... .......... 19% 52.1M 65s\n", + "313350K .......... .......... .......... .......... .......... 19% 51.4M 65s\n", + "313400K .......... .......... .......... .......... .......... 19% 45.1M 65s\n", + "313450K .......... .......... .......... .......... .......... 19% 53.4M 65s\n", + "313500K .......... .......... .......... .......... .......... 19% 50.6M 65s\n", + "313550K .......... .......... .......... .......... .......... 20% 52.3M 65s\n", + "313600K .......... .......... .......... .......... .......... 20% 43.2M 65s\n", + "313650K .......... .......... .......... .......... .......... 20% 52.7M 65s\n", + "313700K .......... .......... .......... .......... .......... 20% 52.2M 65s\n", + "313750K .......... .......... .......... .......... .......... 20% 49.9M 65s\n", + "313800K .......... .......... .......... .......... .......... 20% 43.9M 65s\n", + "313850K .......... .......... .......... .......... .......... 20% 51.6M 65s\n", + "313900K .......... .......... .......... .......... .......... 20% 52.0M 65s\n", + "313950K .......... .......... .......... .......... .......... 20% 52.3M 65s\n", + "314000K .......... .......... .......... .......... .......... 20% 15.1M 65s\n", + "314050K .......... .......... .......... .......... .......... 20% 24.5M 65s\n", + "314100K .......... .......... .......... .......... .......... 20% 37.0M 65s\n", + "314150K .......... .......... .......... .......... .......... 20% 1.29M 65s\n", + "314200K .......... .......... .......... .......... .......... 20% 21.8M 65s\n", + "314250K .......... .......... .......... .......... .......... 20% 28.4M 65s\n", + "314300K .......... .......... .......... .......... .......... 20% 50.3M 65s\n", + "314350K .......... .......... .......... .......... .......... 20% 52.3M 65s\n", + "314400K .......... .......... .......... .......... .......... 20% 25.1M 65s\n", + "314450K .......... .......... .......... .......... .......... 20% 32.4M 65s\n", + "314500K .......... .......... .......... .......... .......... 20% 20.7M 65s\n", + "314550K .......... .......... .......... .......... .......... 20% 33.6M 65s\n", + "314600K .......... .......... .......... .......... .......... 20% 34.8M 65s\n", + "314650K .......... .......... .......... .......... .......... 20% 50.0M 65s\n", + "314700K .......... .......... .......... .......... .......... 20% 45.6M 65s\n", + "314750K .......... .......... .......... .......... .......... 20% 51.7M 65s\n", + "314800K .......... .......... .......... .......... .......... 20% 43.8M 65s\n", + "314850K .......... .......... .......... .......... .......... 20% 50.2M 65s\n", + "314900K .......... .......... .......... .......... .......... 20% 49.9M 65s\n", + "314950K .......... .......... .......... .......... .......... 20% 51.0M 65s\n", + "315000K .......... .......... .......... .......... .......... 20% 45.3M 65s\n", + "315050K .......... .......... .......... .......... .......... 20% 52.4M 65s\n", + "315100K .......... .......... .......... .......... .......... 20% 48.5M 65s\n", + "315150K .......... .......... .......... .......... .......... 20% 51.2M 65s\n", + "315200K .......... .......... .......... .......... .......... 20% 44.4M 65s\n", + "315250K .......... .......... .......... .......... .......... 20% 51.8M 65s\n", + "315300K .......... .......... .......... .......... .......... 20% 46.8M 65s\n", + "315350K .......... .......... .......... .......... .......... 20% 47.2M 65s\n", + "315400K .......... .......... .......... .......... .......... 20% 44.2M 65s\n", + "315450K .......... .......... .......... .......... .......... 20% 51.4M 65s\n", + "315500K .......... .......... .......... .......... .......... 20% 23.2M 65s\n", + "315550K .......... .......... .......... .......... .......... 20% 35.4M 65s\n", + "315600K .......... .......... .......... .......... .......... 20% 17.5M 65s\n", + "315650K .......... .......... .......... .......... .......... 20% 50.3M 65s\n", + "315700K .......... .......... .......... .......... .......... 20% 1.30M 65s\n", + "315750K .......... .......... .......... .......... .......... 20% 17.0M 65s\n", + "315800K .......... .......... .......... .......... .......... 20% 39.1M 65s\n", + "315850K .......... .......... .......... .......... .......... 20% 51.1M 65s\n", + "315900K .......... .......... .......... .......... .......... 20% 51.1M 65s\n", + "315950K .......... .......... .......... .......... .......... 20% 18.3M 65s\n", + "316000K .......... .......... .......... .......... .......... 20% 19.7M 65s\n", + "316050K .......... .......... .......... .......... .......... 20% 41.7M 65s\n", + "316100K .......... .......... .......... .......... .......... 20% 51.8M 65s\n", + "316150K .......... .......... .......... .......... .......... 20% 42.9M 65s\n", + "316200K .......... .......... .......... .......... .......... 20% 27.2M 65s\n", + "316250K .......... .......... .......... .......... .......... 20% 50.6M 65s\n", + "316300K .......... .......... .......... .......... .......... 20% 50.2M 65s\n", + "316350K .......... .......... .......... .......... .......... 20% 50.8M 65s\n", + "316400K .......... .......... .......... .......... .......... 20% 42.5M 65s\n", + "316450K .......... .......... .......... .......... .......... 20% 49.7M 65s\n", + "316500K .......... .......... .......... .......... .......... 20% 52.6M 65s\n", + "316550K .......... .......... .......... .......... .......... 20% 51.6M 65s\n", + "316600K .......... .......... .......... .......... .......... 20% 43.8M 65s\n", + "316650K .......... .......... .......... .......... .......... 20% 49.8M 65s\n", + "316700K .......... .......... .......... .......... .......... 20% 51.7M 65s\n", + "316750K .......... .......... .......... .......... .......... 20% 50.7M 65s\n", + "316800K .......... .......... .......... .......... .......... 20% 43.3M 65s\n", + "316850K .......... .......... .......... .......... .......... 20% 51.7M 65s\n", + "316900K .......... .......... .......... .......... .......... 20% 50.3M 65s\n", + "316950K .......... .......... .......... .......... .......... 20% 52.8M 65s\n", + "317000K .......... .......... .......... .......... .......... 20% 44.3M 65s\n", + "317050K .......... .......... .......... .......... .......... 20% 24.8M 65s\n", + "317100K .......... .......... .......... .......... .......... 20% 23.5M 65s\n", + "317150K .......... .......... .......... .......... .......... 20% 30.5M 65s\n", + "317200K .......... .......... .......... .......... .......... 20% 1.30M 65s\n", + "317250K .......... .......... .......... .......... .......... 20% 18.2M 65s\n", + "317300K .......... .......... .......... .......... .......... 20% 41.4M 65s\n", + "317350K .......... .......... .......... .......... .......... 20% 35.1M 65s\n", + "317400K .......... .......... .......... .......... .......... 20% 44.8M 65s\n", + "317450K .......... .......... .......... .......... .......... 20% 52.8M 65s\n", + "317500K .......... .......... .......... .......... .......... 20% 18.5M 65s\n", + "317550K .......... .......... .......... .......... .......... 20% 22.5M 65s\n", + "317600K .......... .......... .......... .......... .......... 20% 34.3M 65s\n", + "317650K .......... .......... .......... .......... .......... 20% 36.0M 65s\n", + "317700K .......... .......... .......... .......... .......... 20% 30.2M 65s\n", + "317750K .......... .......... .......... .......... .......... 20% 50.8M 65s\n", + "317800K .......... .......... .......... .......... .......... 20% 43.9M 65s\n", + "317850K .......... .......... .......... .......... .......... 20% 53.1M 65s\n", + "317900K .......... .......... .......... .......... .......... 20% 51.2M 65s\n", + "317950K .......... .......... .......... .......... .......... 20% 52.4M 65s\n", + "318000K .......... .......... .......... .......... .......... 20% 42.8M 65s\n", + "318050K .......... .......... .......... .......... .......... 20% 52.5M 65s\n", + "318100K .......... .......... .......... .......... .......... 20% 51.0M 65s\n", + "318150K .......... .......... .......... .......... .......... 20% 52.5M 65s\n", + "318200K .......... .......... .......... .......... .......... 20% 45.4M 65s\n", + "318250K .......... .......... .......... .......... .......... 20% 50.9M 65s\n", + "318300K .......... .......... .......... .......... .......... 20% 51.5M 65s\n", + "318350K .......... .......... .......... .......... .......... 20% 51.1M 65s\n", + "318400K .......... .......... .......... .......... .......... 20% 44.9M 65s\n", + "318450K .......... .......... .......... .......... .......... 20% 49.3M 65s\n", + "318500K .......... .......... .......... .......... .......... 20% 50.0M 65s\n", + "318550K .......... .......... .......... .......... .......... 20% 23.4M 65s\n", + "318600K .......... .......... .......... .......... .......... 20% 22.9M 65s\n", + "318650K .......... .......... .......... .......... .......... 20% 51.5M 65s\n", + "318700K .......... .......... .......... .......... .......... 20% 29.8M 65s\n", + "318750K .......... .......... .......... .......... .......... 20% 1.25M 65s\n", + "318800K .......... .......... .......... .......... .......... 20% 29.7M 65s\n", + "318850K .......... .......... .......... .......... .......... 20% 40.3M 65s\n", + "318900K .......... .......... .......... .......... .......... 20% 49.8M 65s\n", + "318950K .......... .......... .......... .......... .......... 20% 52.6M 65s\n", + "319000K .......... .......... .......... .......... .......... 20% 17.8M 65s\n", + "319050K .......... .......... .......... .......... .......... 20% 25.0M 65s\n", + "319100K .......... .......... .......... .......... .......... 20% 49.1M 65s\n", + "319150K .......... .......... .......... .......... .......... 20% 35.3M 65s\n", + "319200K .......... .......... .......... .......... .......... 20% 33.9M 65s\n", + "319250K .......... .......... .......... .......... .......... 20% 31.9M 65s\n", + "319300K .......... .......... .......... .......... .......... 20% 52.5M 65s\n", + "319350K .......... .......... .......... .......... .......... 20% 50.3M 65s\n", + "319400K .......... .......... .......... .......... .......... 20% 44.7M 65s\n", + "319450K .......... .......... .......... .......... .......... 20% 51.1M 65s\n", + "319500K .......... .......... .......... .......... .......... 20% 52.6M 65s\n", + "319550K .......... .......... .......... .......... .......... 20% 53.1M 65s\n", + "319600K .......... .......... .......... .......... .......... 20% 43.2M 65s\n", + "319650K .......... .......... .......... .......... .......... 20% 51.9M 65s\n", + "319700K .......... .......... .......... .......... .......... 20% 52.7M 65s\n", + "319750K .......... .......... .......... .......... .......... 20% 53.1M 65s\n", + "319800K .......... .......... .......... .......... .......... 20% 44.1M 65s\n", + "319850K .......... .......... .......... .......... .......... 20% 51.6M 65s\n", + "319900K .......... .......... .......... .......... .......... 20% 53.1M 65s\n", + "319950K .......... .......... .......... .......... .......... 20% 52.8M 65s\n", + "320000K .......... .......... .......... .......... .......... 20% 43.1M 65s\n", + "320050K .......... .......... .......... .......... .......... 20% 23.5M 65s\n", + "320100K .......... .......... .......... .......... .......... 20% 34.5M 65s\n", + "320150K .......... .......... .......... .......... .......... 20% 27.9M 65s\n", + "320200K .......... .......... .......... .......... .......... 20% 26.0M 65s\n", + "320250K .......... .......... .......... .......... .......... 20% 1.31M 65s\n", + "320300K .......... .......... .......... .......... .......... 20% 19.9M 65s\n", + "320350K .......... .......... .......... .......... .......... 20% 23.9M 65s\n", + "320400K .......... .......... .......... .......... .......... 20% 43.4M 65s\n", + "320450K .......... .......... .......... .......... .......... 20% 34.7M 65s\n", + "320500K .......... .......... .......... .......... .......... 20% 23.6M 65s\n", + "320550K .......... .......... .......... .......... .......... 20% 50.3M 65s\n", + "320600K .......... .......... .......... .......... .......... 20% 22.3M 65s\n", + "320650K .......... .......... .......... .......... .......... 20% 38.9M 65s\n", + "320700K .......... .......... .......... .......... .......... 20% 33.5M 65s\n", + "320750K .......... .......... .......... .......... .......... 20% 51.7M 65s\n", + "320800K .......... .......... .......... .......... .......... 20% 33.3M 65s\n", + "320850K .......... .......... .......... .......... .......... 20% 52.5M 65s\n", + "320900K .......... .......... .......... .......... .......... 20% 50.2M 65s\n", + "320950K .......... .......... .......... .......... .......... 20% 50.4M 65s\n", + "321000K .......... .......... .......... .......... .......... 20% 45.1M 65s\n", + "321050K .......... .......... .......... .......... .......... 20% 51.4M 65s\n", + "321100K .......... .......... .......... .......... .......... 20% 52.3M 65s\n", + "321150K .......... .......... .......... .......... .......... 20% 49.8M 65s\n", + "321200K .......... .......... .......... .......... .......... 20% 44.8M 65s\n", + "321250K .......... .......... .......... .......... .......... 20% 53.1M 65s\n", + "321300K .......... .......... .......... .......... .......... 20% 52.9M 65s\n", + "321350K .......... .......... .......... .......... .......... 20% 48.1M 65s\n", + "321400K .......... .......... .......... .......... .......... 20% 45.4M 65s\n", + "321450K .......... .......... .......... .......... .......... 20% 53.4M 65s\n", + "321500K .......... .......... .......... .......... .......... 20% 52.5M 65s\n", + "321550K .......... .......... .......... .......... .......... 20% 52.1M 65s\n", + "321600K .......... .......... .......... .......... .......... 20% 19.2M 65s\n", + "321650K .......... .......... .......... .......... .......... 20% 29.2M 65s\n", + "321700K .......... .......... .......... .......... .......... 20% 47.2M 65s\n", + "321750K .......... .......... .......... .......... .......... 20% 29.5M 65s\n", + "321800K .......... .......... .......... .......... .......... 20% 1.24M 65s\n", + "321850K .......... .......... .......... .......... .......... 20% 29.7M 65s\n", + "321900K .......... .......... .......... .......... .......... 20% 52.8M 65s\n", + "321950K .......... .......... .......... .......... .......... 20% 53.6M 65s\n", + "322000K .......... .......... .......... .......... .......... 20% 26.2M 65s\n", + "322050K .......... .......... .......... .......... .......... 20% 22.1M 65s\n", + "322100K .......... .......... .......... .......... .......... 20% 26.1M 65s\n", + "322150K .......... .......... .......... .......... .......... 20% 38.6M 65s\n", + "322200K .......... .......... .......... .......... .......... 20% 46.3M 65s\n", + "322250K .......... .......... .......... .......... .......... 20% 32.6M 65s\n", + "322300K .......... .......... .......... .......... .......... 20% 32.8M 65s\n", + "322350K .......... .......... .......... .......... .......... 20% 52.9M 65s\n", + "322400K .......... .......... .......... .......... .......... 20% 45.5M 65s\n", + "322450K .......... .......... .......... .......... .......... 20% 52.7M 65s\n", + "322500K .......... .......... .......... .......... .......... 20% 51.2M 65s\n", + "322550K .......... .......... .......... .......... .......... 20% 54.0M 65s\n", + "322600K .......... .......... .......... .......... .......... 20% 46.9M 65s\n", + "322650K .......... .......... .......... .......... .......... 20% 53.4M 65s\n", + "322700K .......... .......... .......... .......... .......... 20% 51.2M 65s\n", + "322750K .......... .......... .......... .......... .......... 20% 53.8M 65s\n", + "322800K .......... .......... .......... .......... .......... 20% 44.9M 65s\n", + "322850K .......... .......... .......... .......... .......... 20% 53.5M 65s\n", + "322900K .......... .......... .......... .......... .......... 20% 52.2M 65s\n", + "322950K .......... .......... .......... .......... .......... 20% 51.8M 65s\n", + "323000K .......... .......... .......... .......... .......... 20% 46.7M 65s\n", + "323050K .......... .......... .......... .......... .......... 20% 53.6M 65s\n", + "323100K .......... .......... .......... .......... .......... 20% 52.2M 65s\n", + "323150K .......... .......... .......... .......... .......... 20% 18.6M 65s\n", + "323200K .......... .......... .......... .......... .......... 20% 24.1M 65s\n", + "323250K .......... .......... .......... .......... .......... 20% 33.6M 65s\n", + "323300K .......... .......... .......... .......... .......... 20% 1.31M 65s\n", + "323350K .......... .......... .......... .......... .......... 20% 17.5M 65s\n", + "323400K .......... .......... .......... .......... .......... 20% 23.8M 65s\n", + "323450K .......... .......... .......... .......... .......... 20% 55.1M 65s\n", + "323500K .......... .......... .......... .......... .......... 20% 30.8M 65s\n", + "323550K .......... .......... .......... .......... .......... 20% 51.4M 65s\n", + "323600K .......... .......... .......... .......... .......... 20% 21.7M 65s\n", + "323650K .......... .......... .......... .......... .......... 20% 28.8M 65s\n", + "323700K .......... .......... .......... .......... .......... 20% 29.6M 65s\n", + "323750K .......... .......... .......... .......... .......... 20% 38.4M 65s\n", + "323800K .......... .......... .......... .......... .......... 20% 44.1M 65s\n", + "323850K .......... .......... .......... .......... .......... 20% 28.2M 65s\n", + "323900K .......... .......... .......... .......... .......... 20% 54.2M 65s\n", + "323950K .......... .......... .......... .......... .......... 20% 53.4M 65s\n", + "324000K .......... .......... .......... .......... .......... 20% 44.0M 65s\n", + "324050K .......... .......... .......... .......... .......... 20% 54.3M 65s\n", + "324100K .......... .......... .......... .......... .......... 20% 54.0M 65s\n", + "324150K .......... .......... .......... .......... .......... 20% 53.3M 65s\n", + "324200K .......... .......... .......... .......... .......... 20% 44.8M 65s\n", + "324250K .......... .......... .......... .......... .......... 20% 54.2M 65s\n", + "324300K .......... .......... .......... .......... .......... 20% 54.2M 65s\n", + "324350K .......... .......... .......... .......... .......... 20% 54.1M 65s\n", + "324400K .......... .......... .......... .......... .......... 20% 44.6M 65s\n", + "324450K .......... .......... .......... .......... .......... 20% 53.3M 65s\n", + "324500K .......... .......... .......... .......... .......... 20% 51.5M 65s\n", + "324550K .......... .......... .......... .......... .......... 20% 52.4M 65s\n", + "324600K .......... .......... .......... .......... .......... 20% 44.8M 65s\n", + "324650K .......... .......... .......... .......... .......... 20% 18.2M 65s\n", + "324700K .......... .......... .......... .......... .......... 20% 37.5M 65s\n", + "324750K .......... .......... .......... .......... .......... 20% 38.8M 65s\n", + "324800K .......... .......... .......... .......... .......... 20% 30.3M 65s\n", + "324850K .......... .......... .......... .......... .......... 20% 1.24M 65s\n", + "324900K .......... .......... .......... .......... .......... 20% 23.8M 65s\n", + "324950K .......... .......... .......... .......... .......... 20% 52.6M 65s\n", + "325000K .......... .......... .......... .......... .......... 20% 46.0M 65s\n", + "325050K .......... .......... .......... .......... .......... 20% 34.4M 65s\n", + "325100K .......... .......... .......... .......... .......... 20% 20.8M 65s\n", + "325150K .......... .......... .......... .......... .......... 20% 29.5M 65s\n", + "325200K .......... .......... .......... .......... .......... 20% 22.1M 65s\n", + "325250K .......... .......... .......... .......... .......... 20% 49.3M 65s\n", + "325300K .......... .......... .......... .......... .......... 20% 53.1M 65s\n", + "325350K .......... .......... .......... .......... .......... 20% 32.9M 65s\n", + "325400K .......... .......... .......... .......... .......... 20% 47.0M 65s\n", + "325450K .......... .......... .......... .......... .......... 20% 54.4M 65s\n", + "325500K .......... .......... .......... .......... .......... 20% 52.0M 65s\n", + "325550K .......... .......... .......... .......... .......... 20% 53.6M 65s\n", + "325600K .......... .......... .......... .......... .......... 20% 43.8M 65s\n", + "325650K .......... .......... .......... .......... .......... 20% 54.7M 65s\n", + "325700K .......... .......... .......... .......... .......... 20% 53.5M 65s\n", + "325750K .......... .......... .......... .......... .......... 20% 53.2M 65s\n", + "325800K .......... .......... .......... .......... .......... 20% 45.8M 65s\n", + "325850K .......... .......... .......... .......... .......... 20% 54.8M 65s\n", + "325900K .......... .......... .......... .......... .......... 20% 53.4M 65s\n", + "325950K .......... .......... .......... .......... .......... 20% 53.7M 64s\n", + "326000K .......... .......... .......... .......... .......... 20% 45.1M 64s\n", + "326050K .......... .......... .......... .......... .......... 20% 53.9M 64s\n", + "326100K .......... .......... .......... .......... .......... 20% 54.1M 64s\n", + "326150K .......... .......... .......... .......... .......... 20% 28.0M 64s\n", + "326200K .......... .......... .......... .......... .......... 20% 25.4M 64s\n", + "326250K .......... .......... .......... .......... .......... 20% 21.4M 64s\n", + "326300K .......... .......... .......... .......... .......... 20% 33.6M 64s\n", + "326350K .......... .......... .......... .......... .......... 20% 1.32M 65s\n", + "326400K .......... .......... .......... .......... .......... 20% 12.6M 65s\n", + "326450K .......... .......... .......... .......... .......... 20% 52.6M 65s\n", + "326500K .......... .......... .......... .......... .......... 20% 54.0M 65s\n", + "326550K .......... .......... .......... .......... .......... 20% 30.8M 65s\n", + "326600K .......... .......... .......... .......... .......... 20% 21.2M 65s\n", + "326650K .......... .......... .......... .......... .......... 20% 37.7M 65s\n", + "326700K .......... .......... .......... .......... .......... 20% 22.7M 65s\n", + "326750K .......... .......... .......... .......... .......... 20% 38.8M 65s\n", + "326800K .......... .......... .......... .......... .......... 20% 38.6M 65s\n", + "326850K .......... .......... .......... .......... .......... 20% 31.6M 65s\n", + "326900K .......... .......... .......... .......... .......... 20% 52.1M 65s\n", + "326950K .......... .......... .......... .......... .......... 20% 52.3M 65s\n", + "327000K .......... .......... .......... .......... .......... 20% 45.1M 64s\n", + "327050K .......... .......... .......... .......... .......... 20% 54.3M 64s\n", + "327100K .......... .......... .......... .......... .......... 20% 52.8M 64s\n", + "327150K .......... .......... .......... .......... .......... 20% 52.0M 64s\n", + "327200K .......... .......... .......... .......... .......... 20% 44.6M 64s\n", + "327250K .......... .......... .......... .......... .......... 20% 53.5M 64s\n", + "327300K .......... .......... .......... .......... .......... 20% 54.0M 64s\n", + "327350K .......... .......... .......... .......... .......... 20% 52.4M 64s\n", + "327400K .......... .......... .......... .......... .......... 20% 45.4M 64s\n", + "327450K .......... .......... .......... .......... .......... 20% 52.4M 64s\n", + "327500K .......... .......... .......... .......... .......... 20% 53.9M 64s\n", + "327550K .......... .......... .......... .......... .......... 20% 53.6M 64s\n", + "327600K .......... .......... .......... .......... .......... 20% 42.5M 64s\n", + "327650K .......... .......... .......... .......... .......... 20% 51.2M 64s\n", + "327700K .......... .......... .......... .......... .......... 20% 22.8M 64s\n", + "327750K .......... .......... .......... .......... .......... 20% 24.9M 64s\n", + "327800K .......... .......... .......... .......... .......... 20% 45.6M 64s\n", + "327850K .......... .......... .......... .......... .......... 20% 28.3M 64s\n", + "327900K .......... .......... .......... .......... .......... 20% 1.26M 64s\n", + "327950K .......... .......... .......... .......... .......... 20% 24.7M 64s\n", + "328000K .......... .......... .......... .......... .......... 20% 39.5M 64s\n", + "328050K .......... .......... .......... .......... .......... 20% 50.6M 64s\n", + "328100K .......... .......... .......... .......... .......... 20% 35.3M 64s\n", + "328150K .......... .......... .......... .......... .......... 20% 19.9M 64s\n", + "328200K .......... .......... .......... .......... .......... 20% 22.8M 64s\n", + "328250K .......... .......... .......... .......... .......... 20% 49.2M 64s\n", + "328300K .......... .......... .......... .......... .......... 20% 32.8M 64s\n", + "328350K .......... .......... .......... .......... .......... 20% 35.3M 64s\n", + "328400K .......... .......... .......... .......... .......... 20% 34.5M 64s\n", + "328450K .......... .......... .......... .......... .......... 20% 50.0M 64s\n", + "328500K .......... .......... .......... .......... .......... 20% 52.7M 64s\n", + "328550K .......... .......... .......... .......... .......... 20% 51.3M 64s\n", + "328600K .......... .......... .......... .......... .......... 20% 45.4M 64s\n", + "328650K .......... .......... .......... .......... .......... 20% 51.3M 64s\n", + "328700K .......... .......... .......... .......... .......... 20% 48.3M 64s\n", + "328750K .......... .......... .......... .......... .......... 20% 50.5M 64s\n", + "328800K .......... .......... .......... .......... .......... 20% 45.2M 64s\n", + "328850K .......... .......... .......... .......... .......... 20% 51.8M 64s\n", + "328900K .......... .......... .......... .......... .......... 20% 52.2M 64s\n", + "328950K .......... .......... .......... .......... .......... 20% 48.9M 64s\n", + "329000K .......... .......... .......... .......... .......... 20% 44.7M 64s\n", + "329050K .......... .......... .......... .......... .......... 20% 51.1M 64s\n", + "329100K .......... .......... .......... .......... .......... 20% 51.7M 64s\n", + "329150K .......... .......... .......... .......... .......... 20% 48.1M 64s\n", + "329200K .......... .......... .......... .......... .......... 21% 42.6M 64s\n", + "329250K .......... .......... .......... .......... .......... 21% 30.2M 64s\n", + "329300K .......... .......... .......... .......... .......... 21% 21.7M 64s\n", + "329350K .......... .......... .......... .......... .......... 21% 29.6M 64s\n", + "329400K .......... .......... .......... .......... .......... 21% 1.32M 64s\n", + "329450K .......... .......... .......... .......... .......... 21% 17.0M 64s\n", + "329500K .......... .......... .......... .......... .......... 21% 24.3M 64s\n", + "329550K .......... .......... .......... .......... .......... 21% 41.7M 64s\n", + "329600K .......... .......... .......... .......... .......... 21% 26.5M 64s\n", + "329650K .......... .......... .......... .......... .......... 21% 31.9M 64s\n", + "329700K .......... .......... .......... .......... .......... 21% 30.4M 64s\n", + "329750K .......... .......... .......... .......... .......... 21% 22.6M 64s\n", + "329800K .......... .......... .......... .......... .......... 21% 32.3M 64s\n", + "329850K .......... .......... .......... .......... .......... 21% 45.4M 64s\n", + "329900K .......... .......... .......... .......... .......... 21% 50.4M 64s\n", + "329950K .......... .......... .......... .......... .......... 21% 30.7M 64s\n", + "330000K .......... .......... .......... .......... .......... 21% 42.4M 64s\n", + "330050K .......... .......... .......... .......... .......... 21% 48.3M 64s\n", + "330100K .......... .......... .......... .......... .......... 21% 52.4M 64s\n", + "330150K .......... .......... .......... .......... .......... 21% 52.4M 64s\n", + "330200K .......... .......... .......... .......... .......... 21% 42.9M 64s\n", + "330250K .......... .......... .......... .......... .......... 21% 49.1M 64s\n", + "330300K .......... .......... .......... .......... .......... 21% 49.5M 64s\n", + "330350K .......... .......... .......... .......... .......... 21% 51.3M 64s\n", + "330400K .......... .......... .......... .......... .......... 21% 43.6M 64s\n", + "330450K .......... .......... .......... .......... .......... 21% 50.8M 64s\n", + "330500K .......... .......... .......... .......... .......... 21% 50.0M 64s\n", + "330550K .......... .......... .......... .......... .......... 21% 52.2M 64s\n", + "330600K .......... .......... .......... .......... .......... 21% 42.9M 64s\n", + "330650K .......... .......... .......... .......... .......... 21% 50.4M 64s\n", + "330700K .......... .......... .......... .......... .......... 21% 51.7M 64s\n", + "330750K .......... .......... .......... .......... .......... 21% 50.0M 64s\n", + "330800K .......... .......... .......... .......... .......... 21% 18.4M 64s\n", + "330850K .......... .......... .......... .......... .......... 21% 28.9M 64s\n", + "330900K .......... .......... .......... .......... .......... 21% 48.9M 64s\n", + "330950K .......... .......... .......... .......... .......... 21% 1.28M 64s\n", + "331000K .......... .......... .......... .......... .......... 21% 16.9M 64s\n", + "331050K .......... .......... .......... .......... .......... 21% 44.7M 64s\n", + "331100K .......... .......... .......... .......... .......... 21% 51.4M 64s\n", + "331150K .......... .......... .......... .......... .......... 21% 31.1M 64s\n", + "331200K .......... .......... .......... .......... .......... 21% 26.2M 64s\n", + "331250K .......... .......... .......... .......... .......... 21% 19.0M 64s\n", + "331300K .......... .......... .......... .......... .......... 21% 40.8M 64s\n", + "331350K .......... .......... .......... .......... .......... 21% 51.2M 64s\n", + "331400K .......... .......... .......... .......... .......... 21% 38.9M 64s\n", + "331450K .......... .......... .......... .......... .......... 21% 29.0M 64s\n", + "331500K .......... .......... .......... .......... .......... 21% 51.0M 64s\n", + "331550K .......... .......... .......... .......... .......... 21% 47.3M 64s\n", + "331600K .......... .......... .......... .......... .......... 21% 41.8M 64s\n", + "331650K .......... .......... .......... .......... .......... 21% 51.4M 64s\n", + "331700K .......... .......... .......... .......... .......... 21% 49.2M 64s\n", + "331750K .......... .......... .......... .......... .......... 21% 50.7M 64s\n", + "331800K .......... .......... .......... .......... .......... 21% 44.9M 64s\n", + "331850K .......... .......... .......... .......... .......... 21% 51.0M 64s\n", + "331900K .......... .......... .......... .......... .......... 21% 50.3M 64s\n", + "331950K .......... .......... .......... .......... .......... 21% 50.7M 64s\n", + "332000K .......... .......... .......... .......... .......... 21% 44.4M 64s\n", + "332050K .......... .......... .......... .......... .......... 21% 48.4M 64s\n", + "332100K .......... .......... .......... .......... .......... 21% 50.1M 64s\n", + "332150K .......... .......... .......... .......... .......... 21% 50.8M 64s\n", + "332200K .......... .......... .......... .......... .......... 21% 45.6M 64s\n", + "332250K .......... .......... .......... .......... .......... 21% 50.0M 64s\n", + "332300K .......... .......... .......... .......... .......... 21% 37.8M 64s\n", + "332350K .......... .......... .......... .......... .......... 21% 28.0M 64s\n", + "332400K .......... .......... .......... .......... .......... 21% 26.4M 64s\n", + "332450K .......... .......... .......... .......... .......... 21% 1.32M 64s\n", + "332500K .......... .......... .......... .......... .......... 21% 12.5M 64s\n", + "332550K .......... .......... .......... .......... .......... 21% 34.2M 64s\n", + "332600K .......... .......... .......... .......... .......... 21% 36.7M 64s\n", + "332650K .......... .......... .......... .......... .......... 21% 32.3M 64s\n", + "332700K .......... .......... .......... .......... .......... 21% 33.8M 64s\n", + "332750K .......... .......... .......... .......... .......... 21% 26.9M 64s\n", + "332800K .......... .......... .......... .......... .......... 21% 20.1M 64s\n", + "332850K .......... .......... .......... .......... .......... 21% 48.6M 64s\n", + "332900K .......... .......... .......... .......... .......... 21% 45.0M 64s\n", + "332950K .......... .......... .......... .......... .......... 21% 27.2M 64s\n", + "333000K .......... .......... .......... .......... .......... 21% 45.6M 64s\n", + "333050K .......... .......... .......... .......... .......... 21% 50.5M 64s\n", + "333100K .......... .......... .......... .......... .......... 21% 53.5M 64s\n", + "333150K .......... .......... .......... .......... .......... 21% 52.9M 64s\n", + "333200K .......... .......... .......... .......... .......... 21% 43.8M 64s\n", + "333250K .......... .......... .......... .......... .......... 21% 50.6M 64s\n", + "333300K .......... .......... .......... .......... .......... 21% 52.8M 64s\n", + "333350K .......... .......... .......... .......... .......... 21% 52.9M 64s\n", + "333400K .......... .......... .......... .......... .......... 21% 44.1M 64s\n", + "333450K .......... .......... .......... .......... .......... 21% 50.3M 64s\n", + "333500K .......... .......... .......... .......... .......... 21% 52.3M 64s\n", + "333550K .......... .......... .......... .......... .......... 21% 52.9M 64s\n", + "333600K .......... .......... .......... .......... .......... 21% 44.4M 64s\n", + "333650K .......... .......... .......... .......... .......... 21% 50.7M 64s\n", + "333700K .......... .......... .......... .......... .......... 21% 50.6M 64s\n", + "333750K .......... .......... .......... .......... .......... 21% 51.4M 64s\n", + "333800K .......... .......... .......... .......... .......... 21% 26.7M 64s\n", + "333850K .......... .......... .......... .......... .......... 21% 28.6M 64s\n", + "333900K .......... .......... .......... .......... .......... 21% 53.4M 64s\n", + "333950K .......... .......... .......... .......... .......... 21% 28.5M 64s\n", + "334000K .......... .......... .......... .......... .......... 21% 1.26M 64s\n", + "334050K .......... .......... .......... .......... .......... 21% 18.5M 64s\n", + "334100K .......... .......... .......... .......... .......... 21% 38.1M 64s\n", + "334150K .......... .......... .......... .......... .......... 21% 52.1M 64s\n", + "334200K .......... .......... .......... .......... .......... 21% 40.3M 64s\n", + "334250K .......... .......... .......... .......... .......... 21% 19.8M 64s\n", + "334300K .......... .......... .......... .......... .......... 21% 23.2M 64s\n", + "334350K .......... .......... .......... .......... .......... 21% 53.2M 64s\n", + "334400K .......... .......... .......... .......... .......... 21% 37.7M 64s\n", + "334450K .......... .......... .......... .......... .......... 21% 51.8M 64s\n", + "334500K .......... .......... .......... .......... .......... 21% 26.5M 64s\n", + "334550K .......... .......... .......... .......... .......... 21% 53.8M 64s\n", + "334600K .......... .......... .......... .......... .......... 21% 44.6M 64s\n", + "334650K .......... .......... .......... .......... .......... 21% 51.2M 64s\n", + "334700K .......... .......... .......... .......... .......... 21% 53.3M 64s\n", + "334750K .......... .......... .......... .......... .......... 21% 52.6M 64s\n", + "334800K .......... .......... .......... .......... .......... 21% 43.5M 64s\n", + "334850K .......... .......... .......... .......... .......... 21% 52.6M 64s\n", + "334900K .......... .......... .......... .......... .......... 21% 50.6M 64s\n", + "334950K .......... .......... .......... .......... .......... 21% 52.5M 64s\n", + "335000K .......... .......... .......... .......... .......... 21% 45.3M 64s\n", + "335050K .......... .......... .......... .......... .......... 21% 52.9M 64s\n", + "335100K .......... .......... .......... .......... .......... 21% 50.9M 64s\n", + "335150K .......... .......... .......... .......... .......... 21% 53.3M 64s\n", + "335200K .......... .......... .......... .......... .......... 21% 42.5M 64s\n", + "335250K .......... .......... .......... .......... .......... 21% 52.8M 64s\n", + "335300K .......... .......... .......... .......... .......... 21% 52.0M 64s\n", + "335350K .......... .......... .......... .......... .......... 21% 29.0M 64s\n", + "335400K .......... .......... .......... .......... .......... 21% 21.1M 64s\n", + "335450K .......... .......... .......... .......... .......... 21% 28.6M 64s\n", + "335500K .......... .......... .......... .......... .......... 21% 1.33M 64s\n", + "335550K .......... .......... .......... .......... .......... 21% 17.1M 64s\n", + "335600K .......... .......... .......... .......... .......... 21% 17.3M 64s\n", + "335650K .......... .......... .......... .......... .......... 21% 36.0M 64s\n", + "335700K .......... .......... .......... .......... .......... 21% 42.1M 64s\n", + "335750K .......... .......... .......... .......... .......... 21% 35.2M 64s\n", + "335800K .......... .......... .......... .......... .......... 21% 23.1M 64s\n", + "335850K .......... .......... .......... .......... .......... 21% 25.5M 64s\n", + "335900K .......... .......... .......... .......... .......... 21% 46.3M 64s\n", + "335950K .......... .......... .......... .......... .......... 21% 32.5M 64s\n", + "336000K .......... .......... .......... .......... .......... 21% 31.5M 64s\n", + "336050K .......... .......... .......... .......... .......... 21% 43.7M 64s\n", + "336100K .......... .......... .......... .......... .......... 21% 52.3M 64s\n", + "336150K .......... .......... .......... .......... .......... 21% 52.2M 64s\n", + "336200K .......... .......... .......... .......... .......... 21% 46.1M 64s\n", + "336250K .......... .......... .......... .......... .......... 21% 51.3M 64s\n", + "336300K .......... .......... .......... .......... .......... 21% 50.9M 64s\n", + "336350K .......... .......... .......... .......... .......... 21% 54.0M 64s\n", + "336400K .......... .......... .......... .......... .......... 21% 45.2M 64s\n", + "336450K .......... .......... .......... .......... .......... 21% 51.3M 64s\n", + "336500K .......... .......... .......... .......... .......... 21% 51.3M 64s\n", + "336550K .......... .......... .......... .......... .......... 21% 52.4M 64s\n", + "336600K .......... .......... .......... .......... .......... 21% 45.3M 64s\n", + "336650K .......... .......... .......... .......... .......... 21% 52.7M 64s\n", + "336700K .......... .......... .......... .......... .......... 21% 48.8M 64s\n", + "336750K .......... .......... .......... .......... .......... 21% 50.4M 64s\n", + "336800K .......... .......... .......... .......... .......... 21% 44.6M 64s\n", + "336850K .......... .......... .......... .......... .......... 21% 28.7M 64s\n", + "336900K .......... .......... .......... .......... .......... 21% 25.8M 64s\n", + "336950K .......... .......... .......... .......... .......... 21% 32.9M 64s\n", + "337000K .......... .......... .......... .......... .......... 21% 41.6M 64s\n", + "337050K .......... .......... .......... .......... .......... 21% 1.26M 64s\n", + "337100K .......... .......... .......... .......... .......... 21% 16.0M 64s\n", + "337150K .......... .......... .......... .......... .......... 21% 48.6M 64s\n", + "337200K .......... .......... .......... .......... .......... 21% 29.7M 64s\n", + "337250K .......... .......... .......... .......... .......... 21% 51.7M 64s\n", + "337300K .......... .......... .......... .......... .......... 21% 21.7M 64s\n", + "337350K .......... .......... .......... .......... .......... 21% 24.5M 64s\n", + "337400K .......... .......... .......... .......... .......... 21% 40.1M 64s\n", + "337450K .......... .......... .......... .......... .......... 21% 49.9M 64s\n", + "337500K .......... .......... .......... .......... .......... 21% 33.0M 64s\n", + "337550K .......... .......... .......... .......... .......... 21% 36.0M 64s\n", + "337600K .......... .......... .......... .......... .......... 21% 43.7M 64s\n", + "337650K .......... .......... .......... .......... .......... 21% 50.2M 64s\n", + "337700K .......... .......... .......... .......... .......... 21% 49.8M 64s\n", + "337750K .......... .......... .......... .......... .......... 21% 51.8M 64s\n", + "337800K .......... .......... .......... .......... .......... 21% 44.2M 64s\n", + "337850K .......... .......... .......... .......... .......... 21% 50.2M 64s\n", + "337900K .......... .......... .......... .......... .......... 21% 52.1M 64s\n", + "337950K .......... .......... .......... .......... .......... 21% 50.5M 64s\n", + "338000K .......... .......... .......... .......... .......... 21% 43.7M 64s\n", + "338050K .......... .......... .......... .......... .......... 21% 50.2M 64s\n", + "338100K .......... .......... .......... .......... .......... 21% 50.3M 64s\n", + "338150K .......... .......... .......... .......... .......... 21% 52.0M 64s\n", + "338200K .......... .......... .......... .......... .......... 21% 44.4M 64s\n", + "338250K .......... .......... .......... .......... .......... 21% 52.6M 64s\n", + "338300K .......... .......... .......... .......... .......... 21% 51.3M 64s\n", + "338350K .......... .......... .......... .......... .......... 21% 50.3M 64s\n", + "338400K .......... .......... .......... .......... .......... 21% 31.0M 64s\n", + "338450K .......... .......... .......... .......... .......... 21% 27.0M 64s\n", + "338500K .......... .......... .......... .......... .......... 21% 26.6M 64s\n", + "338550K .......... .......... .......... .......... .......... 21% 1.34M 64s\n", + "338600K .......... .......... .......... .......... .......... 21% 15.3M 64s\n", + "338650K .......... .......... .......... .......... .......... 21% 17.7M 64s\n", + "338700K .......... .......... .......... .......... .......... 21% 40.8M 64s\n", + "338750K .......... .......... .......... .......... .......... 21% 34.7M 64s\n", + "338800K .......... .......... .......... .......... .......... 21% 40.7M 64s\n", + "338850K .......... .......... .......... .......... .......... 21% 14.4M 64s\n", + "338900K .......... .......... .......... .......... .......... 21% 50.7M 64s\n", + "338950K .......... .......... .......... .......... .......... 21% 44.0M 64s\n", + "339000K .......... .......... .......... .......... .......... 21% 27.4M 64s\n", + "339050K .......... .......... .......... .......... .......... 21% 31.4M 64s\n", + "339100K .......... .......... .......... .......... .......... 21% 50.1M 64s\n", + "339150K .......... .......... .......... .......... .......... 21% 50.4M 64s\n", + "339200K .......... .......... .......... .......... .......... 21% 43.0M 64s\n", + "339250K .......... .......... .......... .......... .......... 21% 51.9M 64s\n", + "339300K .......... .......... .......... .......... .......... 21% 50.9M 64s\n", + "339350K .......... .......... .......... .......... .......... 21% 50.4M 64s\n", + "339400K .......... .......... .......... .......... .......... 21% 43.8M 64s\n", + "339450K .......... .......... .......... .......... .......... 21% 52.4M 64s\n", + "339500K .......... .......... .......... .......... .......... 21% 49.6M 64s\n", + "339550K .......... .......... .......... .......... .......... 21% 50.4M 64s\n", + "339600K .......... .......... .......... .......... .......... 21% 44.0M 64s\n", + "339650K .......... .......... .......... .......... .......... 21% 49.7M 64s\n", + "339700K .......... .......... .......... .......... .......... 21% 50.5M 64s\n", + "339750K .......... .......... .......... .......... .......... 21% 51.3M 64s\n", + "339800K .......... .......... .......... .......... .......... 21% 44.9M 64s\n", + "339850K .......... .......... .......... .......... .......... 21% 50.6M 64s\n", + "339900K .......... .......... .......... .......... .......... 21% 38.0M 64s\n", + "339950K .......... .......... .......... .......... .......... 21% 26.9M 64s\n", + "340000K .......... .......... .......... .......... .......... 21% 24.9M 64s\n", + "340050K .......... .......... .......... .......... .......... 21% 49.9M 64s\n", + "340100K .......... .......... .......... .......... .......... 21% 1.28M 64s\n", + "340150K .......... .......... .......... .......... .......... 21% 18.1M 64s\n", + "340200K .......... .......... .......... .......... .......... 21% 40.9M 64s\n", + "340250K .......... .......... .......... .......... .......... 21% 33.2M 64s\n", + "340300K .......... .......... .......... .......... .......... 21% 40.1M 64s\n", + "340350K .......... .......... .......... .......... .......... 21% 22.9M 64s\n", + "340400K .......... .......... .......... .......... .......... 21% 24.6M 64s\n", + "340450K .......... .......... .......... .......... .......... 21% 46.9M 64s\n", + "340500K .......... .......... .......... .......... .......... 21% 45.4M 64s\n", + "340550K .......... .......... .......... .......... .......... 21% 31.0M 64s\n", + "340600K .......... .......... .......... .......... .......... 21% 24.5M 64s\n", + "340650K .......... .......... .......... .......... .......... 21% 49.2M 64s\n", + "340700K .......... .......... .......... .......... .......... 21% 50.0M 64s\n", + "340750K .......... .......... .......... .......... .......... 21% 50.7M 64s\n", + "340800K .......... .......... .......... .......... .......... 21% 43.8M 64s\n", + "340850K .......... .......... .......... .......... .......... 21% 48.5M 64s\n", + "340900K .......... .......... .......... .......... .......... 21% 52.2M 64s\n", + "340950K .......... .......... .......... .......... .......... 21% 52.3M 64s\n", + "341000K .......... .......... .......... .......... .......... 21% 41.8M 64s\n", + "341050K .......... .......... .......... .......... .......... 21% 51.1M 64s\n", + "341100K .......... .......... .......... .......... .......... 21% 52.1M 64s\n", + "341150K .......... .......... .......... .......... .......... 21% 52.6M 64s\n", + "341200K .......... .......... .......... .......... .......... 21% 44.3M 64s\n", + "341250K .......... .......... .......... .......... .......... 21% 50.5M 64s\n", + "341300K .......... .......... .......... .......... .......... 21% 52.6M 64s\n", + "341350K .......... .......... .......... .......... .......... 21% 51.9M 64s\n", + "341400K .......... .......... .......... .......... .......... 21% 45.6M 64s\n", + "341450K .......... .......... .......... .......... .......... 21% 42.5M 64s\n", + "341500K .......... .......... .......... .......... .......... 21% 24.2M 64s\n", + "341550K .......... .......... .......... .......... .......... 21% 25.8M 64s\n", + "341600K .......... .......... .......... .......... .......... 21% 1.27M 64s\n", + "341650K .......... .......... .......... .......... .......... 21% 18.3M 64s\n", + "341700K .......... .......... .......... .......... .......... 21% 50.6M 64s\n", + "341750K .......... .......... .......... .......... .......... 21% 22.7M 64s\n", + "341800K .......... .......... .......... .......... .......... 21% 44.5M 64s\n", + "341850K .......... .......... .......... .......... .......... 21% 23.2M 64s\n", + "341900K .......... .......... .......... .......... .......... 21% 51.3M 64s\n", + "341950K .......... .......... .......... .......... .......... 21% 23.3M 64s\n", + "342000K .......... .......... .......... .......... .......... 21% 41.8M 64s\n", + "342050K .......... .......... .......... .......... .......... 21% 37.7M 64s\n", + "342100K .......... .......... .......... .......... .......... 21% 28.7M 64s\n", + "342150K .......... .......... .......... .......... .......... 21% 51.2M 64s\n", + "342200K .......... .......... .......... .......... .......... 21% 44.7M 64s\n", + "342250K .......... .......... .......... .......... .......... 21% 50.3M 64s\n", + "342300K .......... .......... .......... .......... .......... 21% 52.6M 64s\n", + "342350K .......... .......... .......... .......... .......... 21% 50.5M 64s\n", + "342400K .......... .......... .......... .......... .......... 21% 41.3M 64s\n", + "342450K .......... .......... .......... .......... .......... 21% 51.5M 64s\n", + "342500K .......... .......... .......... .......... .......... 21% 50.3M 64s\n", + "342550K .......... .......... .......... .......... .......... 21% 49.8M 64s\n", + "342600K .......... .......... .......... .......... .......... 21% 44.1M 64s\n", + "342650K .......... .......... .......... .......... .......... 21% 51.1M 64s\n", + "342700K .......... .......... .......... .......... .......... 21% 48.9M 64s\n", + "342750K .......... .......... .......... .......... .......... 21% 49.4M 64s\n", + "342800K .......... .......... .......... .......... .......... 21% 43.7M 63s\n", + "342850K .......... .......... .......... .......... .......... 21% 51.4M 63s\n", + "342900K .......... .......... .......... .......... .......... 21% 50.7M 63s\n", + "342950K .......... .......... .......... .......... .......... 21% 39.9M 63s\n", + "343000K .......... .......... .......... .......... .......... 21% 26.5M 63s\n", + "343050K .......... .......... .......... .......... .......... 21% 51.9M 63s\n", + "343100K .......... .......... .......... .......... .......... 21% 26.7M 63s\n", + "343150K .......... .......... .......... .......... .......... 21% 1.28M 64s\n", + "343200K .......... .......... .......... .......... .......... 21% 14.9M 64s\n", + "343250K .......... .......... .......... .......... .......... 21% 26.6M 64s\n", + "343300K .......... .......... .......... .......... .......... 21% 42.9M 64s\n", + "343350K .......... .......... .......... .......... .......... 21% 51.5M 64s\n", + "343400K .......... .......... .......... .......... .......... 21% 21.6M 64s\n", + "343450K .......... .......... .......... .......... .......... 21% 24.1M 64s\n", + "343500K .......... .......... .......... .......... .......... 21% 42.3M 64s\n", + "343550K .......... .......... .......... .......... .......... 21% 50.4M 64s\n", + "343600K .......... .......... .......... .......... .......... 21% 29.3M 64s\n", + "343650K .......... .......... .......... .......... .......... 21% 35.9M 64s\n", + "343700K .......... .......... .......... .......... .......... 21% 49.9M 64s\n", + "343750K .......... .......... .......... .......... .......... 21% 52.2M 64s\n", + "343800K .......... .......... .......... .......... .......... 21% 43.2M 63s\n", + "343850K .......... .......... .......... .......... .......... 21% 51.3M 63s\n", + "343900K .......... .......... .......... .......... .......... 21% 51.0M 63s\n", + "343950K .......... .......... .......... .......... .......... 21% 48.6M 63s\n", + "344000K .......... .......... .......... .......... .......... 21% 43.7M 63s\n", + "344050K .......... .......... .......... .......... .......... 21% 49.7M 63s\n", + "344100K .......... .......... .......... .......... .......... 21% 50.3M 63s\n", + "344150K .......... .......... .......... .......... .......... 21% 49.6M 63s\n", + "344200K .......... .......... .......... .......... .......... 21% 45.0M 63s\n", + "344250K .......... .......... .......... .......... .......... 21% 52.3M 63s\n", + "344300K .......... .......... .......... .......... .......... 21% 51.1M 63s\n", + "344350K .......... .......... .......... .......... .......... 21% 52.3M 63s\n", + "344400K .......... .......... .......... .......... .......... 21% 43.4M 63s\n", + "344450K .......... .......... .......... .......... .......... 21% 52.4M 63s\n", + "344500K .......... .......... .......... .......... .......... 21% 37.7M 63s\n", + "344550K .......... .......... .......... .......... .......... 21% 29.6M 63s\n", + "344600K .......... .......... .......... .......... .......... 21% 24.1M 63s\n", + "344650K .......... .......... .......... .......... .......... 21% 1.35M 63s\n", + "344700K .......... .......... .......... .......... .......... 21% 16.0M 63s\n", + "344750K .......... .......... .......... .......... .......... 21% 17.8M 63s\n", + "344800K .......... .......... .......... .......... .......... 21% 22.0M 63s\n", + "344850K .......... .......... .......... .......... .......... 21% 41.4M 63s\n", + "344900K .......... .......... .......... .......... .......... 22% 25.7M 63s\n", + "344950K .......... .......... .......... .......... .......... 22% 39.5M 63s\n", + "345000K .......... .......... .......... .......... .......... 22% 25.3M 63s\n", + "345050K .......... .......... .......... .......... .......... 22% 38.5M 63s\n", + "345100K .......... .......... .......... .......... .......... 22% 49.2M 63s\n", + "345150K .......... .......... .......... .......... .......... 22% 50.3M 63s\n", + "345200K .......... .......... .......... .......... .......... 22% 23.1M 63s\n", + "345250K .......... .......... .......... .......... .......... 22% 52.4M 63s\n", + "345300K .......... .......... .......... .......... .......... 22% 50.9M 63s\n", + "345350K .......... .......... .......... .......... .......... 22% 50.7M 63s\n", + "345400K .......... .......... .......... .......... .......... 22% 41.6M 63s\n", + "345450K .......... .......... .......... .......... .......... 22% 51.4M 63s\n", + "345500K .......... .......... .......... .......... .......... 22% 51.1M 63s\n", + "345550K .......... .......... .......... .......... .......... 22% 51.5M 63s\n", + "345600K .......... .......... .......... .......... .......... 22% 40.6M 63s\n", + "345650K .......... .......... .......... .......... .......... 22% 51.7M 63s\n", + "345700K .......... .......... .......... .......... .......... 22% 50.6M 63s\n", + "345750K .......... .......... .......... .......... .......... 22% 51.6M 63s\n", + "345800K .......... .......... .......... .......... .......... 22% 41.5M 63s\n", + "345850K .......... .......... .......... .......... .......... 22% 50.3M 63s\n", + "345900K .......... .......... .......... .......... .......... 22% 51.7M 63s\n", + "345950K .......... .......... .......... .......... .......... 22% 51.5M 63s\n", + "346000K .......... .......... .......... .......... .......... 22% 30.5M 63s\n", + "346050K .......... .......... .......... .......... .......... 22% 36.9M 63s\n", + "346100K .......... .......... .......... .......... .......... 22% 29.3M 63s\n", + "346150K .......... .......... .......... .......... .......... 22% 39.0M 63s\n", + "346200K .......... .......... .......... .......... .......... 22% 1.28M 63s\n", + "346250K .......... .......... .......... .......... .......... 22% 17.7M 63s\n", + "346300K .......... .......... .......... .......... .......... 22% 23.3M 63s\n", + "346350K .......... .......... .......... .......... .......... 22% 51.3M 63s\n", + "346400K .......... .......... .......... .......... .......... 22% 34.4M 63s\n", + "346450K .......... .......... .......... .......... .......... 22% 22.1M 63s\n", + "346500K .......... .......... .......... .......... .......... 22% 27.8M 63s\n", + "346550K .......... .......... .......... .......... .......... 22% 33.1M 63s\n", + "346600K .......... .......... .......... .......... .......... 22% 45.1M 63s\n", + "346650K .......... .......... .......... .......... .......... 22% 36.6M 63s\n", + "346700K .......... .......... .......... .......... .......... 22% 36.6M 63s\n", + "346750K .......... .......... .......... .......... .......... 22% 46.2M 63s\n", + "346800K .......... .......... .......... .......... .......... 22% 44.6M 63s\n", + "346850K .......... .......... .......... .......... .......... 22% 47.1M 63s\n", + "346900K .......... .......... .......... .......... .......... 22% 50.3M 63s\n", + "346950K .......... .......... .......... .......... .......... 22% 50.1M 63s\n", + "347000K .......... .......... .......... .......... .......... 22% 43.9M 63s\n", + "347050K .......... .......... .......... .......... .......... 22% 51.2M 63s\n", + "347100K .......... .......... .......... .......... .......... 22% 48.1M 63s\n", + "347150K .......... .......... .......... .......... .......... 22% 51.3M 63s\n", + "347200K .......... .......... .......... .......... .......... 22% 44.3M 63s\n", + "347250K .......... .......... .......... .......... .......... 22% 51.4M 63s\n", + "347300K .......... .......... .......... .......... .......... 22% 51.8M 63s\n", + "347350K .......... .......... .......... .......... .......... 22% 50.8M 63s\n", + "347400K .......... .......... .......... .......... .......... 22% 45.1M 63s\n", + "347450K .......... .......... .......... .......... .......... 22% 50.4M 63s\n", + "347500K .......... .......... .......... .......... .......... 22% 52.3M 63s\n", + "347550K .......... .......... .......... .......... .......... 22% 46.2M 63s\n", + "347600K .......... .......... .......... .......... .......... 22% 25.3M 63s\n", + "347650K .......... .......... .......... .......... .......... 22% 21.6M 63s\n", + "347700K .......... .......... .......... .......... .......... 22% 1.37M 63s\n", + "347750K .......... .......... .......... .......... .......... 22% 9.99M 63s\n", + "347800K .......... .......... .......... .......... .......... 22% 35.8M 63s\n", + "347850K .......... .......... .......... .......... .......... 22% 26.3M 63s\n", + "347900K .......... .......... .......... .......... .......... 22% 39.6M 63s\n", + "347950K .......... .......... .......... .......... .......... 22% 29.0M 63s\n", + "348000K .......... .......... .......... .......... .......... 22% 20.9M 63s\n", + "348050K .......... .......... .......... .......... .......... 22% 42.0M 63s\n", + "348100K .......... .......... .......... .......... .......... 22% 36.0M 63s\n", + "348150K .......... .......... .......... .......... .......... 22% 28.6M 63s\n", + "348200K .......... .......... .......... .......... .......... 22% 38.2M 63s\n", + "348250K .......... .......... .......... .......... .......... 22% 48.1M 63s\n", + "348300K .......... .......... .......... .......... .......... 22% 47.9M 63s\n", + "348350K .......... .......... .......... .......... .......... 22% 48.2M 63s\n", + "348400K .......... .......... .......... .......... .......... 22% 42.4M 63s\n", + "348450K .......... .......... .......... .......... .......... 22% 49.8M 63s\n", + "348500K .......... .......... .......... .......... .......... 22% 51.1M 63s\n", + "348550K .......... .......... .......... .......... .......... 22% 51.4M 63s\n", + "348600K .......... .......... .......... .......... .......... 22% 42.7M 63s\n", + "348650K .......... .......... .......... .......... .......... 22% 48.7M 63s\n", + "348700K .......... .......... .......... .......... .......... 22% 49.9M 63s\n", + "348750K .......... .......... .......... .......... .......... 22% 48.4M 63s\n", + "348800K .......... .......... .......... .......... .......... 22% 42.4M 63s\n", + "348850K .......... .......... .......... .......... .......... 22% 51.8M 63s\n", + "348900K .......... .......... .......... .......... .......... 22% 50.0M 63s\n", + "348950K .......... .......... .......... .......... .......... 22% 51.6M 63s\n", + "349000K .......... .......... .......... .......... .......... 22% 44.0M 63s\n", + "349050K .......... .......... .......... .......... .......... 22% 48.5M 63s\n", + "349100K .......... .......... .......... .......... .......... 22% 47.0M 63s\n", + "349150K .......... .......... .......... .......... .......... 22% 43.6M 63s\n", + "349200K .......... .......... .......... .......... .......... 22% 19.3M 63s\n", + "349250K .......... .......... .......... .......... .......... 22% 1.27M 63s\n", + "349300K .......... .......... .......... .......... .......... 22% 22.0M 63s\n", + "349350K .......... .......... .......... .......... .......... 22% 28.2M 63s\n", + "349400K .......... .......... .......... .......... .......... 22% 38.3M 63s\n", + "349450K .......... .......... .......... .......... .......... 22% 37.9M 63s\n", + "349500K .......... .......... .......... .......... .......... 22% 16.2M 63s\n", + "349550K .......... .......... .......... .......... .......... 22% 29.9M 63s\n", + "349600K .......... .......... .......... .......... .......... 22% 33.2M 63s\n", + "349650K .......... .......... .......... .......... .......... 22% 38.2M 63s\n", + "349700K .......... .......... .......... .......... .......... 22% 52.8M 63s\n", + "349750K .......... .......... .......... .......... .......... 22% 36.2M 63s\n", + "349800K .......... .......... .......... .......... .......... 22% 45.4M 63s\n", + "349850K .......... .......... .......... .......... .......... 22% 50.4M 63s\n", + "349900K .......... .......... .......... .......... .......... 22% 52.9M 63s\n", + "349950K .......... .......... .......... .......... .......... 22% 50.1M 63s\n", + "350000K .......... .......... .......... .......... .......... 22% 43.3M 63s\n", + "350050K .......... .......... .......... .......... .......... 22% 48.9M 63s\n", + "350100K .......... .......... .......... .......... .......... 22% 48.9M 63s\n", + "350150K .......... .......... .......... .......... .......... 22% 50.9M 63s\n", + "350200K .......... .......... .......... .......... .......... 22% 45.2M 63s\n", + "350250K .......... .......... .......... .......... .......... 22% 53.4M 63s\n", + "350300K .......... .......... .......... .......... .......... 22% 49.9M 63s\n", + "350350K .......... .......... .......... .......... .......... 22% 51.1M 63s\n", + "350400K .......... .......... .......... .......... .......... 22% 45.3M 63s\n", + "350450K .......... .......... .......... .......... .......... 22% 52.0M 63s\n", + "350500K .......... .......... .......... .......... .......... 22% 52.7M 63s\n", + "350550K .......... .......... .......... .......... .......... 22% 47.5M 63s\n", + "350600K .......... .......... .......... .......... .......... 22% 43.1M 63s\n", + "350650K .......... .......... .......... .......... .......... 22% 30.5M 63s\n", + "350700K .......... .......... .......... .......... .......... 22% 21.6M 63s\n", + "350750K .......... .......... .......... .......... .......... 22% 1.37M 63s\n", + "350800K .......... .......... .......... .......... .......... 22% 10.1M 63s\n", + "350850K .......... .......... .......... .......... .......... 22% 38.8M 63s\n", + "350900K .......... .......... .......... .......... .......... 22% 24.4M 63s\n", + "350950K .......... .......... .......... .......... .......... 22% 41.1M 63s\n", + "351000K .......... .......... .......... .......... .......... 22% 17.1M 63s\n", + "351050K .......... .......... .......... .......... .......... 22% 47.5M 63s\n", + "351100K .......... .......... .......... .......... .......... 22% 30.5M 63s\n", + "351150K .......... .......... .......... .......... .......... 22% 29.9M 63s\n", + "351200K .......... .......... .......... .......... .......... 22% 42.3M 63s\n", + "351250K .......... .......... .......... .......... .......... 22% 25.8M 63s\n", + "351300K .......... .......... .......... .......... .......... 22% 46.2M 63s\n", + "351350K .......... .......... .......... .......... .......... 22% 50.0M 63s\n", + "351400K .......... .......... .......... .......... .......... 22% 37.2M 63s\n", + "351450K .......... .......... .......... .......... .......... 22% 53.2M 63s\n", + "351500K .......... .......... .......... .......... .......... 22% 54.6M 63s\n", + "351550K .......... .......... .......... .......... .......... 22% 51.3M 63s\n", + "351600K .......... .......... .......... .......... .......... 22% 46.3M 63s\n", + "351650K .......... .......... .......... .......... .......... 22% 53.8M 63s\n", + "351700K .......... .......... .......... .......... .......... 22% 54.3M 63s\n", + "351750K .......... .......... .......... .......... .......... 22% 53.7M 63s\n", + "351800K .......... .......... .......... .......... .......... 22% 45.1M 63s\n", + "351850K .......... .......... .......... .......... .......... 22% 51.1M 63s\n", + "351900K .......... .......... .......... .......... .......... 22% 54.7M 63s\n", + "351950K .......... .......... .......... .......... .......... 22% 52.7M 63s\n", + "352000K .......... .......... .......... .......... .......... 22% 45.0M 63s\n", + "352050K .......... .......... .......... .......... .......... 22% 52.8M 63s\n", + "352100K .......... .......... .......... .......... .......... 22% 53.2M 63s\n", + "352150K .......... .......... .......... .......... .......... 22% 24.6M 63s\n", + "352200K .......... .......... .......... .......... .......... 22% 45.0M 63s\n", + "352250K .......... .......... .......... .......... .......... 22% 27.4M 63s\n", + "352300K .......... .......... .......... .......... .......... 22% 1.28M 63s\n", + "352350K .......... .......... .......... .......... .......... 22% 17.6M 63s\n", + "352400K .......... .......... .......... .......... .......... 22% 23.6M 63s\n", + "352450K .......... .......... .......... .......... .......... 22% 33.9M 63s\n", + "352500K .......... .......... .......... .......... .......... 22% 50.5M 63s\n", + "352550K .......... .......... .......... .......... .......... 22% 20.3M 63s\n", + "352600K .......... .......... .......... .......... .......... 22% 27.7M 63s\n", + "352650K .......... .......... .......... .......... .......... 22% 31.1M 63s\n", + "352700K .......... .......... .......... .......... .......... 22% 52.6M 63s\n", + "352750K .......... .......... .......... .......... .......... 22% 44.5M 63s\n", + "352800K .......... .......... .......... .......... .......... 22% 26.2M 63s\n", + "352850K .......... .......... .......... .......... .......... 22% 51.9M 63s\n", + "352900K .......... .......... .......... .......... .......... 22% 49.4M 63s\n", + "352950K .......... .......... .......... .......... .......... 22% 50.8M 63s\n", + "353000K .......... .......... .......... .......... .......... 22% 43.3M 63s\n", + "353050K .......... .......... .......... .......... .......... 22% 50.7M 63s\n", + "353100K .......... .......... .......... .......... .......... 22% 51.5M 63s\n", + "353150K .......... .......... .......... .......... .......... 22% 50.1M 63s\n", + "353200K .......... .......... .......... .......... .......... 22% 41.9M 63s\n", + "353250K .......... .......... .......... .......... .......... 22% 51.2M 63s\n", + "353300K .......... .......... .......... .......... .......... 22% 51.2M 63s\n", + "353350K .......... .......... .......... .......... .......... 22% 51.3M 63s\n", + "353400K .......... .......... .......... .......... .......... 22% 43.9M 63s\n", + "353450K .......... .......... .......... .......... .......... 22% 49.9M 63s\n", + "353500K .......... .......... .......... .......... .......... 22% 50.7M 63s\n", + "353550K .......... .......... .......... .......... .......... 22% 48.8M 63s\n", + "353600K .......... .......... .......... .......... .......... 22% 42.9M 63s\n", + "353650K .......... .......... .......... .......... .......... 22% 52.7M 63s\n", + "353700K .......... .......... .......... .......... .......... 22% 31.0M 63s\n", + "353750K .......... .......... .......... .......... .......... 22% 22.8M 63s\n", + "353800K .......... .......... .......... .......... .......... 22% 1.38M 63s\n", + "353850K .......... .......... .......... .......... .......... 22% 9.17M 63s\n", + "353900K .......... .......... .......... .......... .......... 22% 54.0M 63s\n", + "353950K .......... .......... .......... .......... .......... 22% 26.6M 63s\n", + "354000K .......... .......... .......... .......... .......... 22% 25.3M 63s\n", + "354050K .......... .......... .......... .......... .......... 22% 22.0M 63s\n", + "354100K .......... .......... .......... .......... .......... 22% 31.8M 63s\n", + "354150K .......... .......... .......... .......... .......... 22% 53.0M 63s\n", + "354200K .......... .......... .......... .......... .......... 22% 25.0M 63s\n", + "354250K .......... .......... .......... .......... .......... 22% 39.4M 63s\n", + "354300K .......... .......... .......... .......... .......... 22% 32.1M 63s\n", + "354350K .......... .......... .......... .......... .......... 22% 52.4M 63s\n", + "354400K .......... .......... .......... .......... .......... 22% 43.4M 63s\n", + "354450K .......... .......... .......... .......... .......... 22% 48.9M 63s\n", + "354500K .......... .......... .......... .......... .......... 22% 49.6M 63s\n", + "354550K .......... .......... .......... .......... .......... 22% 52.1M 63s\n", + "354600K .......... .......... .......... .......... .......... 22% 43.3M 63s\n", + "354650K .......... .......... .......... .......... .......... 22% 50.8M 63s\n", + "354700K .......... .......... .......... .......... .......... 22% 50.6M 63s\n", + "354750K .......... .......... .......... .......... .......... 22% 50.8M 63s\n", + "354800K .......... .......... .......... .......... .......... 22% 43.9M 63s\n", + "354850K .......... .......... .......... .......... .......... 22% 51.8M 63s\n", + "354900K .......... .......... .......... .......... .......... 22% 50.7M 63s\n", + "354950K .......... .......... .......... .......... .......... 22% 53.2M 63s\n", + "355000K .......... .......... .......... .......... .......... 22% 46.6M 63s\n", + "355050K .......... .......... .......... .......... .......... 22% 51.5M 63s\n", + "355100K .......... .......... .......... .......... .......... 22% 50.9M 63s\n", + "355150K .......... .......... .......... .......... .......... 22% 52.0M 63s\n", + "355200K .......... .......... .......... .......... .......... 22% 26.1M 63s\n", + "355250K .......... .......... .......... .......... .......... 22% 26.5M 63s\n", + "355300K .......... .......... .......... .......... .......... 22% 54.5M 63s\n", + "355350K .......... .......... .......... .......... .......... 22% 1.27M 63s\n", + "355400K .......... .......... .......... .......... .......... 22% 19.4M 63s\n", + "355450K .......... .......... .......... .......... .......... 22% 35.4M 63s\n", + "355500K .......... .......... .......... .......... .......... 22% 30.6M 63s\n", + "355550K .......... .......... .......... .......... .......... 22% 24.0M 63s\n", + "355600K .......... .......... .......... .......... .......... 22% 24.8M 63s\n", + "355650K .......... .......... .......... .......... .......... 22% 31.8M 63s\n", + "355700K .......... .......... .......... .......... .......... 22% 31.2M 63s\n", + "355750K .......... .......... .......... .......... .......... 22% 49.3M 63s\n", + "355800K .......... .......... .......... .......... .......... 22% 27.5M 63s\n", + "355850K .......... .......... .......... .......... .......... 22% 35.8M 63s\n", + "355900K .......... .......... .......... .......... .......... 22% 45.5M 63s\n", + "355950K .......... .......... .......... .......... .......... 22% 52.8M 63s\n", + "356000K .......... .......... .......... .......... .......... 22% 44.3M 63s\n", + "356050K .......... .......... .......... .......... .......... 22% 54.5M 63s\n", + "356100K .......... .......... .......... .......... .......... 22% 54.8M 63s\n", + "356150K .......... .......... .......... .......... .......... 22% 53.6M 63s\n", + "356200K .......... .......... .......... .......... .......... 22% 47.7M 63s\n", + "356250K .......... .......... .......... .......... .......... 22% 53.0M 63s\n", + "356300K .......... .......... .......... .......... .......... 22% 56.0M 63s\n", + "356350K .......... .......... .......... .......... .......... 22% 56.0M 63s\n", + "356400K .......... .......... .......... .......... .......... 22% 46.3M 63s\n", + "356450K .......... .......... .......... .......... .......... 22% 53.9M 63s\n", + "356500K .......... .......... .......... .......... .......... 22% 52.4M 63s\n", + "356550K .......... .......... .......... .......... .......... 22% 54.5M 63s\n", + "356600K .......... .......... .......... .......... .......... 22% 47.7M 63s\n", + "356650K .......... .......... .......... .......... .......... 22% 37.0M 63s\n", + "356700K .......... .......... .......... .......... .......... 22% 50.0M 63s\n", + "356750K .......... .......... .......... .......... .......... 22% 24.8M 63s\n", + "356800K .......... .......... .......... .......... .......... 22% 21.5M 63s\n", + "356850K .......... .......... .......... .......... .......... 22% 1.29M 63s\n", + "356900K .......... .......... .......... .......... .......... 22% 19.6M 63s\n", + "356950K .......... .......... .......... .......... .......... 22% 53.2M 63s\n", + "357000K .......... .......... .......... .......... .......... 22% 18.1M 63s\n", + "357050K .......... .......... .......... .......... .......... 22% 32.4M 63s\n", + "357100K .......... .......... .......... .......... .......... 22% 28.3M 63s\n", + "357150K .......... .......... .......... .......... .......... 22% 52.7M 63s\n", + "357200K .......... .......... .......... .......... .......... 22% 24.0M 63s\n", + "357250K .......... .......... .......... .......... .......... 22% 26.8M 63s\n", + "357300K .......... .......... .......... .......... .......... 22% 39.6M 63s\n", + "357350K .......... .......... .......... .......... .......... 22% 30.4M 63s\n", + "357400K .......... .......... .......... .......... .......... 22% 47.0M 63s\n", + "357450K .......... .......... .......... .......... .......... 22% 51.9M 63s\n", + "357500K .......... .......... .......... .......... .......... 22% 52.5M 63s\n", + "357550K .......... .......... .......... .......... .......... 22% 52.9M 63s\n", + "357600K .......... .......... .......... .......... .......... 22% 41.3M 63s\n", + "357650K .......... .......... .......... .......... .......... 22% 53.0M 63s\n", + "357700K .......... .......... .......... .......... .......... 22% 52.6M 63s\n", + "357750K .......... .......... .......... .......... .......... 22% 52.5M 63s\n", + "357800K .......... .......... .......... .......... .......... 22% 47.2M 63s\n", + "357850K .......... .......... .......... .......... .......... 22% 50.1M 63s\n", + "357900K .......... .......... .......... .......... .......... 22% 52.2M 63s\n", + "357950K .......... .......... .......... .......... .......... 22% 45.2M 63s\n", + "358000K .......... .......... .......... .......... .......... 22% 44.6M 63s\n", + "358050K .......... .......... .......... .......... .......... 22% 52.6M 63s\n", + "358100K .......... .......... .......... .......... .......... 22% 52.0M 63s\n", + "358150K .......... .......... .......... .......... .......... 22% 49.7M 63s\n", + "358200K .......... .......... .......... .......... .......... 22% 31.0M 63s\n", + "358250K .......... .......... .......... .......... .......... 22% 36.7M 63s\n", + "358300K .......... .......... .......... .......... .......... 22% 24.9M 63s\n", + "358350K .......... .......... .......... .......... .......... 22% 53.4M 63s\n", + "358400K .......... .......... .......... .......... .......... 22% 1.29M 63s\n", + "358450K .......... .......... .......... .......... .......... 22% 17.1M 63s\n", + "358500K .......... .......... .......... .......... .......... 22% 20.6M 63s\n", + "358550K .......... .......... .......... .......... .......... 22% 35.2M 63s\n", + "358600K .......... .......... .......... .......... .......... 22% 40.1M 63s\n", + "358650K .......... .......... .......... .......... .......... 22% 26.7M 63s\n", + "358700K .......... .......... .......... .......... .......... 22% 28.3M 63s\n", + "358750K .......... .......... .......... .......... .......... 22% 27.3M 63s\n", + "358800K .......... .......... .......... .......... .......... 22% 29.5M 63s\n", + "358850K .......... .......... .......... .......... .......... 22% 51.6M 63s\n", + "358900K .......... .......... .......... .......... .......... 22% 33.6M 63s\n", + "358950K .......... .......... .......... .......... .......... 22% 53.5M 63s\n", + "359000K .......... .......... .......... .......... .......... 22% 46.1M 63s\n", + "359050K .......... .......... .......... .......... .......... 22% 50.4M 63s\n", + "359100K .......... .......... .......... .......... .......... 22% 53.1M 63s\n", + "359150K .......... .......... .......... .......... .......... 22% 53.4M 63s\n", + "359200K .......... .......... .......... .......... .......... 22% 45.5M 63s\n", + "359250K .......... .......... .......... .......... .......... 22% 48.3M 63s\n", + "359300K .......... .......... .......... .......... .......... 22% 52.4M 63s\n", + "359350K .......... .......... .......... .......... .......... 22% 53.2M 63s\n", + "359400K .......... .......... .......... .......... .......... 22% 46.0M 63s\n", + "359450K .......... .......... .......... .......... .......... 22% 49.4M 63s\n", + "359500K .......... .......... .......... .......... .......... 22% 52.5M 63s\n", + "359550K .......... .......... .......... .......... .......... 22% 53.6M 63s\n", + "359600K .......... .......... .......... .......... .......... 22% 44.9M 63s\n", + "359650K .......... .......... .......... .......... .......... 22% 52.0M 63s\n", + "359700K .......... .......... .......... .......... .......... 22% 54.4M 63s\n", + "359750K .......... .......... .......... .......... .......... 22% 31.5M 62s\n", + "359800K .......... .......... .......... .......... .......... 22% 27.4M 62s\n", + "359850K .......... .......... .......... .......... .......... 22% 29.6M 62s\n", + "359900K .......... .......... .......... .......... .......... 22% 1.38M 63s\n", + "359950K .......... .......... .......... .......... .......... 22% 13.4M 63s\n", + "360000K .......... .......... .......... .......... .......... 22% 17.5M 63s\n", + "360050K .......... .......... .......... .......... .......... 22% 20.0M 63s\n", + "360100K .......... .......... .......... .......... .......... 22% 37.9M 63s\n", + "360150K .......... .......... .......... .......... .......... 22% 23.7M 63s\n", + "360200K .......... .......... .......... .......... .......... 22% 29.4M 63s\n", + "360250K .......... .......... .......... .......... .......... 22% 49.4M 63s\n", + "360300K .......... .......... .......... .......... .......... 22% 25.4M 63s\n", + "360350K .......... .......... .......... .......... .......... 22% 29.7M 63s\n", + "360400K .......... .......... .......... .......... .......... 22% 30.3M 63s\n", + "360450K .......... .......... .......... .......... .......... 22% 53.0M 63s\n", + "360500K .......... .......... .......... .......... .......... 22% 53.5M 63s\n", + "360550K .......... .......... .......... .......... .......... 22% 51.2M 63s\n", + "360600K .......... .......... .......... .......... .......... 23% 45.0M 63s\n", + "360650K .......... .......... .......... .......... .......... 23% 52.1M 63s\n", + "360700K .......... .......... .......... .......... .......... 23% 53.7M 62s\n", + "360750K .......... .......... .......... .......... .......... 23% 51.7M 62s\n", + "360800K .......... .......... .......... .......... .......... 23% 44.1M 62s\n", + "360850K .......... .......... .......... .......... .......... 23% 53.6M 62s\n", + "360900K .......... .......... .......... .......... .......... 23% 54.3M 62s\n", + "360950K .......... .......... .......... .......... .......... 23% 51.8M 62s\n", + "361000K .......... .......... .......... .......... .......... 23% 43.6M 62s\n", + "361050K .......... .......... .......... .......... .......... 23% 52.5M 62s\n", + "361100K .......... .......... .......... .......... .......... 23% 53.3M 62s\n", + "361150K .......... .......... .......... .......... .......... 23% 52.9M 62s\n", + "361200K .......... .......... .......... .......... .......... 23% 42.8M 62s\n", + "361250K .......... .......... .......... .......... .......... 23% 31.8M 62s\n", + "361300K .......... .......... .......... .......... .......... 23% 29.6M 62s\n", + "361350K .......... .......... .......... .......... .......... 23% 40.2M 62s\n", + "361400K .......... .......... .......... .......... .......... 23% 32.5M 62s\n", + "361450K .......... .......... .......... .......... .......... 23% 1.28M 63s\n", + "361500K .......... .......... .......... .......... .......... 23% 19.9M 63s\n", + "361550K .......... .......... .......... .......... .......... 23% 20.7M 63s\n", + "361600K .......... .......... .......... .......... .......... 23% 34.0M 62s\n", + "361650K .......... .......... .......... .......... .......... 23% 48.7M 62s\n", + "361700K .......... .......... .......... .......... .......... 23% 26.1M 62s\n", + "361750K .......... .......... .......... .......... .......... 23% 27.3M 62s\n", + "361800K .......... .......... .......... .......... .......... 23% 27.5M 62s\n", + "361850K .......... .......... .......... .......... .......... 23% 33.2M 62s\n", + "361900K .......... .......... .......... .......... .......... 23% 37.7M 62s\n", + "361950K .......... .......... .......... .......... .......... 23% 36.0M 62s\n", + "362000K .......... .......... .......... .......... .......... 23% 45.3M 62s\n", + "362050K .......... .......... .......... .......... .......... 23% 52.4M 62s\n", + "362100K .......... .......... .......... .......... .......... 23% 49.4M 62s\n", + "362150K .......... .......... .......... .......... .......... 23% 53.2M 62s\n", + "362200K .......... .......... .......... .......... .......... 23% 44.7M 62s\n", + "362250K .......... .......... .......... .......... .......... 23% 52.7M 62s\n", + "362300K .......... .......... .......... .......... .......... 23% 50.6M 62s\n", + "362350K .......... .......... .......... .......... .......... 23% 53.2M 62s\n", + "362400K .......... .......... .......... .......... .......... 23% 43.5M 62s\n", + "362450K .......... .......... .......... .......... .......... 23% 52.7M 62s\n", + "362500K .......... .......... .......... .......... .......... 23% 52.5M 62s\n", + "362550K .......... .......... .......... .......... .......... 23% 53.5M 62s\n", + "362600K .......... .......... .......... .......... .......... 23% 45.9M 62s\n", + "362650K .......... .......... .......... .......... .......... 23% 51.6M 62s\n", + "362700K .......... .......... .......... .......... .......... 23% 52.2M 62s\n", + "362750K .......... .......... .......... .......... .......... 23% 53.0M 62s\n", + "362800K .......... .......... .......... .......... .......... 23% 18.2M 62s\n", + "362850K .......... .......... .......... .......... .......... 23% 49.1M 62s\n", + "362900K .......... .......... .......... .......... .......... 23% 27.1M 62s\n", + "362950K .......... .......... .......... .......... .......... 23% 1.30M 62s\n", + "363000K .......... .......... .......... .......... .......... 23% 22.4M 62s\n", + "363050K .......... .......... .......... .......... .......... 23% 30.3M 62s\n", + "363100K .......... .......... .......... .......... .......... 23% 22.8M 62s\n", + "363150K .......... .......... .......... .......... .......... 23% 31.5M 62s\n", + "363200K .......... .......... .......... .......... .......... 23% 23.4M 62s\n", + "363250K .......... .......... .......... .......... .......... 23% 23.5M 62s\n", + "363300K .......... .......... .......... .......... .......... 23% 48.6M 62s\n", + "363350K .......... .......... .......... .......... .......... 23% 24.4M 62s\n", + "363400K .......... .......... .......... .......... .......... 23% 44.2M 62s\n", + "363450K .......... .......... .......... .......... .......... 23% 40.2M 62s\n", + "363500K .......... .......... .......... .......... .......... 23% 52.8M 62s\n", + "363550K .......... .......... .......... .......... .......... 23% 46.6M 62s\n", + "363600K .......... .......... .......... .......... .......... 23% 43.9M 62s\n", + "363650K .......... .......... .......... .......... .......... 23% 50.7M 62s\n", + "363700K .......... .......... .......... .......... .......... 23% 53.5M 62s\n", + "363750K .......... .......... .......... .......... .......... 23% 52.8M 62s\n", + "363800K .......... .......... .......... .......... .......... 23% 44.3M 62s\n", + "363850K .......... .......... .......... .......... .......... 23% 51.8M 62s\n", + "363900K .......... .......... .......... .......... .......... 23% 53.7M 62s\n", + "363950K .......... .......... .......... .......... .......... 23% 52.7M 62s\n", + "364000K .......... .......... .......... .......... .......... 23% 44.0M 62s\n", + "364050K .......... .......... .......... .......... .......... 23% 50.5M 62s\n", + "364100K .......... .......... .......... .......... .......... 23% 53.3M 62s\n", + "364150K .......... .......... .......... .......... .......... 23% 53.7M 62s\n", + "364200K .......... .......... .......... .......... .......... 23% 44.9M 62s\n", + "364250K .......... .......... .......... .......... .......... 23% 52.5M 62s\n", + "364300K .......... .......... .......... .......... .......... 23% 31.2M 62s\n", + "364350K .......... .......... .......... .......... .......... 23% 26.9M 62s\n", + "364400K .......... .......... .......... .......... .......... 23% 21.9M 62s\n", + "364450K .......... .......... .......... .......... .......... 23% 1.42M 62s\n", + "364500K .......... .......... .......... .......... .......... 23% 13.5M 62s\n", + "364550K .......... .......... .......... .......... .......... 23% 17.1M 62s\n", + "364600K .......... .......... .......... .......... .......... 23% 20.6M 62s\n", + "364650K .......... .......... .......... .......... .......... 23% 25.8M 62s\n", + "364700K .......... .......... .......... .......... .......... 23% 48.9M 62s\n", + "364750K .......... .......... .......... .......... .......... 23% 27.2M 62s\n", + "364800K .......... .......... .......... .......... .......... 23% 23.4M 62s\n", + "364850K .......... .......... .......... .......... .......... 23% 19.2M 62s\n", + "364900K .......... .......... .......... .......... .......... 23% 35.1M 62s\n", + "364950K .......... .......... .......... .......... .......... 23% 52.2M 62s\n", + "365000K .......... .......... .......... .......... .......... 23% 37.7M 62s\n", + "365050K .......... .......... .......... .......... .......... 23% 50.7M 62s\n", + "365100K .......... .......... .......... .......... .......... 23% 52.1M 62s\n", + "365150K .......... .......... .......... .......... .......... 23% 52.1M 62s\n", + "365200K .......... .......... .......... .......... .......... 23% 45.2M 62s\n", + "365250K .......... .......... .......... .......... .......... 23% 50.4M 62s\n", + "365300K .......... .......... .......... .......... .......... 23% 49.9M 62s\n", + "365350K .......... .......... .......... .......... .......... 23% 52.8M 62s\n", + "365400K .......... .......... .......... .......... .......... 23% 45.7M 62s\n", + "365450K .......... .......... .......... .......... .......... 23% 49.8M 62s\n", + "365500K .......... .......... .......... .......... .......... 23% 52.1M 62s\n", + "365550K .......... .......... .......... .......... .......... 23% 53.1M 62s\n", + "365600K .......... .......... .......... .......... .......... 23% 45.1M 62s\n", + "365650K .......... .......... .......... .......... .......... 23% 52.1M 62s\n", + "365700K .......... .......... .......... .......... .......... 23% 49.5M 62s\n", + "365750K .......... .......... .......... .......... .......... 23% 53.1M 62s\n", + "365800K .......... .......... .......... .......... .......... 23% 45.5M 62s\n", + "365850K .......... .......... .......... .......... .......... 23% 51.7M 62s\n", + "365900K .......... .......... .......... .......... .......... 23% 41.3M 62s\n", + "365950K .......... .......... .......... .......... .......... 23% 22.3M 62s\n", + "366000K .......... .......... .......... .......... .......... 23% 1.30M 62s\n", + "366050K .......... .......... .......... .......... .......... 23% 21.3M 62s\n", + "366100K .......... .......... .......... .......... .......... 23% 29.0M 62s\n", + "366150K .......... .......... .......... .......... .......... 23% 22.4M 62s\n", + "366200K .......... .......... .......... .......... .......... 23% 29.9M 62s\n", + "366250K .......... .......... .......... .......... .......... 23% 48.7M 62s\n", + "366300K .......... .......... .......... .......... .......... 23% 21.2M 62s\n", + "366350K .......... .......... .......... .......... .......... 23% 28.2M 62s\n", + "366400K .......... .......... .......... .......... .......... 23% 19.4M 62s\n", + "366450K .......... .......... .......... .......... .......... 23% 32.2M 62s\n", + "366500K .......... .......... .......... .......... .......... 23% 46.2M 62s\n", + "366550K .......... .......... .......... .......... .......... 23% 54.3M 62s\n", + "366600K .......... .......... .......... .......... .......... 23% 44.6M 62s\n", + "366650K .......... .......... .......... .......... .......... 23% 52.3M 62s\n", + "366700K .......... .......... .......... .......... .......... 23% 53.2M 62s\n", + "366750K .......... .......... .......... .......... .......... 23% 53.1M 62s\n", + "366800K .......... .......... .......... .......... .......... 23% 42.8M 62s\n", + "366850K .......... .......... .......... .......... .......... 23% 53.3M 62s\n", + "366900K .......... .......... .......... .......... .......... 23% 53.0M 62s\n", + "366950K .......... .......... .......... .......... .......... 23% 54.1M 62s\n", + "367000K .......... .......... .......... .......... .......... 23% 45.2M 62s\n", + "367050K .......... .......... .......... .......... .......... 23% 50.4M 62s\n", + "367100K .......... .......... .......... .......... .......... 23% 50.8M 62s\n", + "367150K .......... .......... .......... .......... .......... 23% 53.7M 62s\n", + "367200K .......... .......... .......... .......... .......... 23% 44.4M 62s\n", + "367250K .......... .......... .......... .......... .......... 23% 50.8M 62s\n", + "367300K .......... .......... .......... .......... .......... 23% 53.4M 62s\n", + "367350K .......... .......... .......... .......... .......... 23% 42.9M 62s\n", + "367400K .......... .......... .......... .......... .......... 23% 36.4M 62s\n", + "367450K .......... .......... .......... .......... .......... 23% 23.3M 62s\n", + "367500K .......... .......... .......... .......... .......... 23% 50.8M 62s\n", + "367550K .......... .......... .......... .......... .......... 23% 1.30M 62s\n", + "367600K .......... .......... .......... .......... .......... 23% 14.4M 62s\n", + "367650K .......... .......... .......... .......... .......... 23% 28.0M 62s\n", + "367700K .......... .......... .......... .......... .......... 23% 19.1M 62s\n", + "367750K .......... .......... .......... .......... .......... 23% 52.1M 62s\n", + "367800K .......... .......... .......... .......... .......... 23% 17.4M 62s\n", + "367850K .......... .......... .......... .......... .......... 23% 34.4M 62s\n", + "367900K .......... .......... .......... .......... .......... 23% 45.1M 62s\n", + "367950K .......... .......... .......... .......... .......... 23% 38.3M 62s\n", + "368000K .......... .......... .......... .......... .......... 23% 32.8M 62s\n", + "368050K .......... .......... .......... .......... .......... 23% 42.9M 62s\n", + "368100K .......... .......... .......... .......... .......... 23% 52.9M 62s\n", + "368150K .......... .......... .......... .......... .......... 23% 49.1M 62s\n", + "368200K .......... .......... .......... .......... .......... 23% 46.0M 62s\n", + "368250K .......... .......... .......... .......... .......... 23% 52.0M 62s\n", + "368300K .......... .......... .......... .......... .......... 23% 51.3M 62s\n", + "368350K .......... .......... .......... .......... .......... 23% 52.2M 62s\n", + "368400K .......... .......... .......... .......... .......... 23% 44.1M 62s\n", + "368450K .......... .......... .......... .......... .......... 23% 52.7M 62s\n", + "368500K .......... .......... .......... .......... .......... 23% 53.0M 62s\n", + "368550K .......... .......... .......... .......... .......... 23% 52.6M 62s\n", + "368600K .......... .......... .......... .......... .......... 23% 44.8M 62s\n", + "368650K .......... .......... .......... .......... .......... 23% 52.5M 62s\n", + "368700K .......... .......... .......... .......... .......... 23% 52.8M 62s\n", + "368750K .......... .......... .......... .......... .......... 23% 53.3M 62s\n", + "368800K .......... .......... .......... .......... .......... 23% 44.7M 62s\n", + "368850K .......... .......... .......... .......... .......... 23% 51.7M 62s\n", + "368900K .......... .......... .......... .......... .......... 23% 26.7M 62s\n", + "368950K .......... .......... .......... .......... .......... 23% 53.4M 62s\n", + "369000K .......... .......... .......... .......... .......... 23% 24.5M 62s\n", + "369050K .......... .......... .......... .......... .......... 23% 1.30M 62s\n", + "369100K .......... .......... .......... .......... .......... 23% 22.0M 62s\n", + "369150K .......... .......... .......... .......... .......... 23% 17.3M 62s\n", + "369200K .......... .......... .......... .......... .......... 23% 21.7M 62s\n", + "369250K .......... .......... .......... .......... .......... 23% 31.5M 62s\n", + "369300K .......... .......... .......... .......... .......... 23% 17.6M 62s\n", + "369350K .......... .......... .......... .......... .......... 23% 32.9M 62s\n", + "369400K .......... .......... .......... .......... .......... 23% 46.4M 62s\n", + "369450K .......... .......... .......... .......... .......... 23% 29.3M 62s\n", + "369500K .......... .......... .......... .......... .......... 23% 48.5M 62s\n", + "369550K .......... .......... .......... .......... .......... 23% 54.4M 62s\n", + "369600K .......... .......... .......... .......... .......... 23% 44.8M 62s\n", + "369650K .......... .......... .......... .......... .......... 23% 52.3M 62s\n", + "369700K .......... .......... .......... .......... .......... 23% 53.6M 62s\n", + "369750K .......... .......... .......... .......... .......... 23% 51.3M 62s\n", + "369800K .......... .......... .......... .......... .......... 23% 46.1M 62s\n", + "369850K .......... .......... .......... .......... .......... 23% 52.0M 62s\n", + "369900K .......... .......... .......... .......... .......... 23% 50.7M 62s\n", + "369950K .......... .......... .......... .......... .......... 23% 50.3M 62s\n", + "370000K .......... .......... .......... .......... .......... 23% 43.5M 62s\n", + "370050K .......... .......... .......... .......... .......... 23% 50.4M 62s\n", + "370100K .......... .......... .......... .......... .......... 23% 52.1M 62s\n", + "370150K .......... .......... .......... .......... .......... 23% 52.4M 62s\n", + "370200K .......... .......... .......... .......... .......... 23% 43.9M 62s\n", + "370250K .......... .......... .......... .......... .......... 23% 52.5M 62s\n", + "370300K .......... .......... .......... .......... .......... 23% 52.3M 62s\n", + "370350K .......... .......... .......... .......... .......... 23% 52.8M 62s\n", + "370400K .......... .......... .......... .......... .......... 23% 33.8M 62s\n", + "370450K .......... .......... .......... .......... .......... 23% 42.5M 62s\n", + "370500K .......... .......... .......... .......... .......... 23% 28.6M 62s\n", + "370550K .......... .......... .......... .......... .......... 23% 52.0M 62s\n", + "370600K .......... .......... .......... .......... .......... 23% 1.28M 62s\n", + "370650K .......... .......... .......... .......... .......... 23% 12.5M 62s\n", + "370700K .......... .......... .......... .......... .......... 23% 26.3M 62s\n", + "370750K .......... .......... .......... .......... .......... 23% 25.4M 62s\n", + "370800K .......... .......... .......... .......... .......... 23% 17.5M 62s\n", + "370850K .......... .......... .......... .......... .......... 23% 52.2M 62s\n", + "370900K .......... .......... .......... .......... .......... 23% 29.9M 62s\n", + "370950K .......... .......... .......... .......... .......... 23% 23.1M 62s\n", + "371000K .......... .......... .......... .......... .......... 23% 45.9M 62s\n", + "371050K .......... .......... .......... .......... .......... 23% 53.2M 62s\n", + "371100K .......... .......... .......... .......... .......... 23% 52.3M 62s\n", + "371150K .......... .......... .......... .......... .......... 23% 52.4M 62s\n", + "371200K .......... .......... .......... .......... .......... 23% 45.2M 62s\n", + "371250K .......... .......... .......... .......... .......... 23% 52.7M 62s\n", + "371300K .......... .......... .......... .......... .......... 23% 50.7M 62s\n", + "371350K .......... .......... .......... .......... .......... 23% 52.0M 62s\n", + "371400K .......... .......... .......... .......... .......... 23% 44.9M 62s\n", + "371450K .......... .......... .......... .......... .......... 23% 53.2M 62s\n", + "371500K .......... .......... .......... .......... .......... 23% 50.6M 62s\n", + "371550K .......... .......... .......... .......... .......... 23% 53.3M 62s\n", + "371600K .......... .......... .......... .......... .......... 23% 43.9M 62s\n", + "371650K .......... .......... .......... .......... .......... 23% 48.6M 62s\n", + "371700K .......... .......... .......... .......... .......... 23% 50.4M 62s\n", + "371750K .......... .......... .......... .......... .......... 23% 48.9M 62s\n", + "371800K .......... .......... .......... .......... .......... 23% 43.3M 62s\n", + "371850K .......... .......... .......... .......... .......... 23% 48.2M 62s\n", + "371900K .......... .......... .......... .......... .......... 23% 50.2M 62s\n", + "371950K .......... .......... .......... .......... .......... 23% 49.9M 62s\n", + "372000K .......... .......... .......... .......... .......... 23% 43.0M 62s\n", + "372050K .......... .......... .......... .......... .......... 23% 29.1M 62s\n", + "372100K .......... .......... .......... .......... .......... 23% 1.30M 62s\n", + "372150K .......... .......... .......... .......... .......... 23% 20.4M 62s\n", + "372200K .......... .......... .......... .......... .......... 23% 17.3M 62s\n", + "372250K .......... .......... .......... .......... .......... 23% 21.9M 62s\n", + "372300K .......... .......... .......... .......... .......... 23% 29.9M 62s\n", + "372350K .......... .......... .......... .......... .......... 23% 19.7M 62s\n", + "372400K .......... .......... .......... .......... .......... 23% 30.9M 62s\n", + "372450K .......... .......... .......... .......... .......... 23% 51.1M 62s\n", + "372500K .......... .......... .......... .......... .......... 23% 24.7M 62s\n", + "372550K .......... .......... .......... .......... .......... 23% 50.3M 62s\n", + "372600K .......... .......... .......... .......... .......... 23% 41.5M 62s\n", + "372650K .......... .......... .......... .......... .......... 23% 48.8M 62s\n", + "372700K .......... .......... .......... .......... .......... 23% 50.4M 62s\n", + "372750K .......... .......... .......... .......... .......... 23% 50.8M 62s\n", + "372800K .......... .......... .......... .......... .......... 23% 41.9M 62s\n", + "372850K .......... .......... .......... .......... .......... 23% 49.1M 62s\n", + "372900K .......... .......... .......... .......... .......... 23% 50.4M 62s\n", + "372950K .......... .......... .......... .......... .......... 23% 49.1M 62s\n", + "373000K .......... .......... .......... .......... .......... 23% 40.8M 62s\n", + "373050K .......... .......... .......... .......... .......... 23% 48.4M 62s\n", + "373100K .......... .......... .......... .......... .......... 23% 50.2M 62s\n", + "373150K .......... .......... .......... .......... .......... 23% 49.5M 62s\n", + "373200K .......... .......... .......... .......... .......... 23% 42.8M 62s\n", + "373250K .......... .......... .......... .......... .......... 23% 47.1M 62s\n", + "373300K .......... .......... .......... .......... .......... 23% 51.3M 62s\n", + "373350K .......... .......... .......... .......... .......... 23% 51.2M 62s\n", + "373400K .......... .......... .......... .......... .......... 23% 42.9M 62s\n", + "373450K .......... .......... .......... .......... .......... 23% 50.5M 62s\n", + "373500K .......... .......... .......... .......... .......... 23% 48.7M 62s\n", + "373550K .......... .......... .......... .......... .......... 23% 29.3M 62s\n", + "373600K .......... .......... .......... .......... .......... 23% 1.44M 62s\n", + "373650K .......... .......... .......... .......... .......... 23% 10.7M 62s\n", + "373700K .......... .......... .......... .......... .......... 23% 12.2M 62s\n", + "373750K .......... .......... .......... .......... .......... 23% 19.6M 62s\n", + "373800K .......... .......... .......... .......... .......... 23% 29.8M 62s\n", + "373850K .......... .......... .......... .......... .......... 23% 50.4M 62s\n", + "373900K .......... .......... .......... .......... .......... 23% 20.3M 62s\n", + "373950K .......... .......... .......... .......... .......... 23% 30.7M 62s\n", + "374000K .......... .......... .......... .......... .......... 23% 24.1M 62s\n", + "374050K .......... .......... .......... .......... .......... 23% 49.4M 62s\n", + "374100K .......... .......... .......... .......... .......... 23% 50.5M 62s\n", + "374150K .......... .......... .......... .......... .......... 23% 43.8M 62s\n", + "374200K .......... .......... .......... .......... .......... 23% 43.2M 62s\n", + "374250K .......... .......... .......... .......... .......... 23% 50.0M 62s\n", + "374300K .......... .......... .......... .......... .......... 23% 49.5M 62s\n", + "374350K .......... .......... .......... .......... .......... 23% 49.1M 62s\n", + "374400K .......... .......... .......... .......... .......... 23% 40.3M 62s\n", + "374450K .......... .......... .......... .......... .......... 23% 50.3M 62s\n", + "374500K .......... .......... .......... .......... .......... 23% 51.1M 62s\n", + "374550K .......... .......... .......... .......... .......... 23% 49.0M 62s\n", + "374600K .......... .......... .......... .......... .......... 23% 42.6M 62s\n", + "374650K .......... .......... .......... .......... .......... 23% 51.8M 62s\n", + "374700K .......... .......... .......... .......... .......... 23% 51.8M 62s\n", + "374750K .......... .......... .......... .......... .......... 23% 50.6M 62s\n", + "374800K .......... .......... .......... .......... .......... 23% 42.7M 62s\n", + "374850K .......... .......... .......... .......... .......... 23% 50.7M 62s\n", + "374900K .......... .......... .......... .......... .......... 23% 50.9M 62s\n", + "374950K .......... .......... .......... .......... .......... 23% 49.1M 62s\n", + "375000K .......... .......... .......... .......... .......... 23% 43.8M 62s\n", + "375050K .......... .......... .......... .......... .......... 23% 49.1M 62s\n", + "375100K .......... .......... .......... .......... .......... 23% 29.4M 62s\n", + "375150K .......... .......... .......... .......... .......... 23% 1.45M 62s\n", + "375200K .......... .......... .......... .......... .......... 23% 6.27M 62s\n", + "375250K .......... .......... .......... .......... .......... 23% 32.9M 62s\n", + "375300K .......... .......... .......... .......... .......... 23% 18.2M 62s\n", + "375350K .......... .......... .......... .......... .......... 23% 22.5M 62s\n", + "375400K .......... .......... .......... .......... .......... 23% 26.7M 62s\n", + "375450K .......... .......... .......... .......... .......... 23% 43.2M 62s\n", + "375500K .......... .......... .......... .......... .......... 23% 47.7M 62s\n", + "375550K .......... .......... .......... .......... .......... 23% 29.5M 62s\n", + "375600K .......... .......... .......... .......... .......... 23% 43.3M 62s\n", + "375650K .......... .......... .......... .......... .......... 23% 42.4M 62s\n", + "375700K .......... .......... .......... .......... .......... 23% 47.6M 62s\n", + "375750K .......... .......... .......... .......... .......... 23% 51.2M 62s\n", + "375800K .......... .......... .......... .......... .......... 23% 44.0M 62s\n", + "375850K .......... .......... .......... .......... .......... 23% 50.1M 62s\n", + "375900K .......... .......... .......... .......... .......... 23% 49.0M 62s\n", + "375950K .......... .......... .......... .......... .......... 23% 48.4M 62s\n", + "376000K .......... .......... .......... .......... .......... 23% 42.5M 62s\n", + "376050K .......... .......... .......... .......... .......... 23% 49.7M 62s\n", + "376100K .......... .......... .......... .......... .......... 23% 50.1M 62s\n", + "376150K .......... .......... .......... .......... .......... 23% 48.3M 62s\n", + "376200K .......... .......... .......... .......... .......... 23% 43.9M 62s\n", + "376250K .......... .......... .......... .......... .......... 24% 50.0M 62s\n", + "376300K .......... .......... .......... .......... .......... 24% 50.2M 62s\n", + "376350K .......... .......... .......... .......... .......... 24% 50.0M 62s\n", + "376400K .......... .......... .......... .......... .......... 24% 42.2M 62s\n", + "376450K .......... .......... .......... .......... .......... 24% 47.8M 62s\n", + "376500K .......... .......... .......... .......... .......... 24% 49.1M 62s\n", + "376550K .......... .......... .......... .......... .......... 24% 50.0M 62s\n", + "376600K .......... .......... .......... .......... .......... 24% 33.3M 62s\n", + "376650K .......... .......... .......... .......... .......... 24% 49.9M 62s\n", + "376700K .......... .......... .......... .......... .......... 24% 1.30M 62s\n", + "376750K .......... .......... .......... .......... .......... 24% 12.0M 62s\n", + "376800K .......... .......... .......... .......... .......... 24% 13.6M 62s\n", + "376850K .......... .......... .......... .......... .......... 24% 33.8M 62s\n", + "376900K .......... .......... .......... .......... .......... 24% 48.0M 62s\n", + "376950K .......... .......... .......... .......... .......... 24% 28.0M 62s\n", + "377000K .......... .......... .......... .......... .......... 24% 34.7M 62s\n", + "377050K .......... .......... .......... .......... .......... 24% 24.2M 62s\n", + "377100K .......... .......... .......... .......... .......... 24% 46.1M 62s\n", + "377150K .......... .......... .......... .......... .......... 24% 51.4M 62s\n", + "377200K .......... .......... .......... .......... .......... 24% 40.4M 62s\n", + "377250K .......... .......... .......... .......... .......... 24% 49.9M 62s\n", + "377300K .......... .......... .......... .......... .......... 24% 49.3M 62s\n", + "377350K .......... .......... .......... .......... .......... 24% 49.4M 62s\n", + "377400K .......... .......... .......... .......... .......... 24% 44.2M 62s\n", + "377450K .......... .......... .......... .......... .......... 24% 44.5M 62s\n", + "377500K .......... .......... .......... .......... .......... 24% 49.1M 62s\n", + "377550K .......... .......... .......... .......... .......... 24% 47.8M 62s\n", + "377600K .......... .......... .......... .......... .......... 24% 41.9M 62s\n", + "377650K .......... .......... .......... .......... .......... 24% 52.3M 62s\n", + "377700K .......... .......... .......... .......... .......... 24% 53.5M 62s\n", + "377750K .......... .......... .......... .......... .......... 24% 52.5M 61s\n", + "377800K .......... .......... .......... .......... .......... 24% 44.8M 61s\n", + "377850K .......... .......... .......... .......... .......... 24% 53.2M 61s\n", + "377900K .......... .......... .......... .......... .......... 24% 53.8M 61s\n", + "377950K .......... .......... .......... .......... .......... 24% 49.3M 61s\n", + "378000K .......... .......... .......... .......... .......... 24% 41.7M 61s\n", + "378050K .......... .......... .......... .......... .......... 24% 48.2M 61s\n", + "378100K .......... .......... .......... .......... .......... 24% 51.1M 61s\n", + "378150K .......... .......... .......... .......... .......... 24% 42.2M 61s\n", + "378200K .......... .......... .......... .......... .......... 24% 1.29M 62s\n", + "378250K .......... .......... .......... .......... .......... 24% 16.8M 62s\n", + "378300K .......... .......... .......... .......... .......... 24% 19.8M 62s\n", + "378350K .......... .......... .......... .......... .......... 24% 15.2M 62s\n", + "378400K .......... .......... .......... .......... .......... 24% 28.3M 62s\n", + "378450K .......... .......... .......... .......... .......... 24% 29.1M 62s\n", + "378500K .......... .......... .......... .......... .......... 24% 35.4M 62s\n", + "378550K .......... .......... .......... .......... .......... 24% 50.6M 62s\n", + "378600K .......... .......... .......... .......... .......... 24% 21.9M 62s\n", + "378650K .......... .......... .......... .......... .......... 24% 52.2M 62s\n", + "378700K .......... .......... .......... .......... .......... 24% 50.1M 61s\n", + "378750K .......... .......... .......... .......... .......... 24% 48.5M 61s\n", + "378800K .......... .......... .......... .......... .......... 24% 41.1M 61s\n", + "378850K .......... .......... .......... .......... .......... 24% 49.8M 61s\n", + "378900K .......... .......... .......... .......... .......... 24% 50.1M 61s\n", + "378950K .......... .......... .......... .......... .......... 24% 49.6M 61s\n", + "379000K .......... .......... .......... .......... .......... 24% 43.6M 61s\n", + "379050K .......... .......... .......... .......... .......... 24% 51.5M 61s\n", + "379100K .......... .......... .......... .......... .......... 24% 45.7M 61s\n", + "379150K .......... .......... .......... .......... .......... 24% 49.7M 61s\n", + "379200K .......... .......... .......... .......... .......... 24% 44.5M 61s\n", + "379250K .......... .......... .......... .......... .......... 24% 50.6M 61s\n", + "379300K .......... .......... .......... .......... .......... 24% 48.8M 61s\n", + "379350K .......... .......... .......... .......... .......... 24% 48.9M 61s\n", + "379400K .......... .......... .......... .......... .......... 24% 44.1M 61s\n", + "379450K .......... .......... .......... .......... .......... 24% 52.0M 61s\n", + "379500K .......... .......... .......... .......... .......... 24% 47.7M 61s\n", + "379550K .......... .......... .......... .......... .......... 24% 49.8M 61s\n", + "379600K .......... .......... .......... .......... .......... 24% 40.8M 61s\n", + "379650K .......... .......... .......... .......... .......... 24% 34.0M 61s\n", + "379700K .......... .......... .......... .......... .......... 24% 1.48M 61s\n", + "379750K .......... .......... .......... .......... .......... 24% 9.97M 61s\n", + "379800K .......... .......... .......... .......... .......... 24% 10.7M 61s\n", + "379850K .......... .......... .......... .......... .......... 24% 14.7M 61s\n", + "379900K .......... .......... .......... .......... .......... 24% 29.7M 61s\n", + "379950K .......... .......... .......... .......... .......... 24% 48.3M 61s\n", + "380000K .......... .......... .......... .......... .......... 24% 27.3M 61s\n", + "380050K .......... .......... .......... .......... .......... 24% 34.8M 61s\n", + "380100K .......... .......... .......... .......... .......... 24% 23.9M 61s\n", + "380150K .......... .......... .......... .......... .......... 24% 50.3M 61s\n", + "380200K .......... .......... .......... .......... .......... 24% 41.2M 61s\n", + "380250K .......... .......... .......... .......... .......... 24% 49.2M 61s\n", + "380300K .......... .......... .......... .......... .......... 24% 46.5M 61s\n", + "380350K .......... .......... .......... .......... .......... 24% 48.4M 61s\n", + "380400K .......... .......... .......... .......... .......... 24% 44.4M 61s\n", + "380450K .......... .......... .......... .......... .......... 24% 52.1M 61s\n", + "380500K .......... .......... .......... .......... .......... 24% 45.6M 61s\n", + "380550K .......... .......... .......... .......... .......... 24% 50.7M 61s\n", + "380600K .......... .......... .......... .......... .......... 24% 43.2M 61s\n", + "380650K .......... .......... .......... .......... .......... 24% 50.9M 61s\n", + "380700K .......... .......... .......... .......... .......... 24% 49.4M 61s\n", + "380750K .......... .......... .......... .......... .......... 24% 51.1M 61s\n", + "380800K .......... .......... .......... .......... .......... 24% 43.7M 61s\n", + "380850K .......... .......... .......... .......... .......... 24% 52.6M 61s\n", + "380900K .......... .......... .......... .......... .......... 24% 51.6M 61s\n", + "380950K .......... .......... .......... .......... .......... 24% 50.4M 61s\n", + "381000K .......... .......... .......... .......... .......... 24% 41.7M 61s\n", + "381050K .......... .......... .......... .......... .......... 24% 50.7M 61s\n", + "381100K .......... .......... .......... .......... .......... 24% 51.5M 61s\n", + "381150K .......... .......... .......... .......... .......... 24% 50.5M 61s\n", + "381200K .......... .......... .......... .......... .......... 24% 30.3M 61s\n", + "381250K .......... .......... .......... .......... .......... 24% 1.33M 61s\n", + "381300K .......... .......... .......... .......... .......... 24% 14.8M 61s\n", + "381350K .......... .......... .......... .......... .......... 24% 10.5M 61s\n", + "381400K .......... .......... .......... .......... .......... 24% 42.8M 61s\n", + "381450K .......... .......... .......... .......... .......... 24% 27.4M 61s\n", + "381500K .......... .......... .......... .......... .......... 24% 25.3M 61s\n", + "381550K .......... .......... .......... .......... .......... 24% 48.8M 61s\n", + "381600K .......... .......... .......... .......... .......... 24% 21.0M 61s\n", + "381650K .......... .......... .......... .......... .......... 24% 52.0M 61s\n", + "381700K .......... .......... .......... .......... .......... 24% 51.3M 61s\n", + "381750K .......... .......... .......... .......... .......... 24% 51.0M 61s\n", + "381800K .......... .......... .......... .......... .......... 24% 42.3M 61s\n", + "381850K .......... .......... .......... .......... .......... 24% 52.9M 61s\n", + "381900K .......... .......... .......... .......... .......... 24% 50.6M 61s\n", + "381950K .......... .......... .......... .......... .......... 24% 51.8M 61s\n", + "382000K .......... .......... .......... .......... .......... 24% 45.4M 61s\n", + "382050K .......... .......... .......... .......... .......... 24% 52.9M 61s\n", + "382100K .......... .......... .......... .......... .......... 24% 50.9M 61s\n", + "382150K .......... .......... .......... .......... .......... 24% 52.2M 61s\n", + "382200K .......... .......... .......... .......... .......... 24% 45.8M 61s\n", + "382250K .......... .......... .......... .......... .......... 24% 52.5M 61s\n", + "382300K .......... .......... .......... .......... .......... 24% 53.1M 61s\n", + "382350K .......... .......... .......... .......... .......... 24% 50.5M 61s\n", + "382400K .......... .......... .......... .......... .......... 24% 45.8M 61s\n", + "382450K .......... .......... .......... .......... .......... 24% 52.7M 61s\n", + "382500K .......... .......... .......... .......... .......... 24% 50.9M 61s\n", + "382550K .......... .......... .......... .......... .......... 24% 53.2M 61s\n", + "382600K .......... .......... .......... .......... .......... 24% 37.3M 61s\n", + "382650K .......... .......... .......... .......... .......... 24% 31.7M 61s\n", + "382700K .......... .......... .......... .......... .......... 24% 35.4M 61s\n", + "382750K .......... .......... .......... .......... .......... 24% 51.0M 61s\n", + "382800K .......... .......... .......... .......... .......... 24% 1.31M 61s\n", + "382850K .......... .......... .......... .......... .......... 24% 12.2M 61s\n", + "382900K .......... .......... .......... .......... .......... 24% 14.9M 61s\n", + "382950K .......... .......... .......... .......... .......... 24% 29.6M 61s\n", + "383000K .......... .......... .......... .......... .......... 24% 26.9M 61s\n", + "383050K .......... .......... .......... .......... .......... 24% 29.6M 61s\n", + "383100K .......... .......... .......... .......... .......... 24% 42.7M 61s\n", + "383150K .......... .......... .......... .......... .......... 24% 28.6M 61s\n", + "383200K .......... .......... .......... .......... .......... 24% 37.1M 61s\n", + "383250K .......... .......... .......... .......... .......... 24% 49.1M 61s\n", + "383300K .......... .......... .......... .......... .......... 24% 48.0M 61s\n", + "383350K .......... .......... .......... .......... .......... 24% 52.1M 61s\n", + "383400K .......... .......... .......... .......... .......... 24% 46.0M 61s\n", + "383450K .......... .......... .......... .......... .......... 24% 49.1M 61s\n", + "383500K .......... .......... .......... .......... .......... 24% 51.5M 61s\n", + "383550K .......... .......... .......... .......... .......... 24% 52.6M 61s\n", + "383600K .......... .......... .......... .......... .......... 24% 45.1M 61s\n", + "383650K .......... .......... .......... .......... .......... 24% 50.9M 61s\n", + "383700K .......... .......... .......... .......... .......... 24% 48.8M 61s\n", + "383750K .......... .......... .......... .......... .......... 24% 52.9M 61s\n", + "383800K .......... .......... .......... .......... .......... 24% 45.7M 61s\n", + "383850K .......... .......... .......... .......... .......... 24% 51.5M 61s\n", + "383900K .......... .......... .......... .......... .......... 24% 50.8M 61s\n", + "383950K .......... .......... .......... .......... .......... 24% 50.6M 61s\n", + "384000K .......... .......... .......... .......... .......... 24% 44.4M 61s\n", + "384050K .......... .......... .......... .......... .......... 24% 52.3M 61s\n", + "384100K .......... .......... .......... .......... .......... 24% 51.6M 61s\n", + "384150K .......... .......... .......... .......... .......... 24% 28.0M 61s\n", + "384200K .......... .......... .......... .......... .......... 24% 44.9M 61s\n", + "384250K .......... .......... .......... .......... .......... 24% 37.3M 61s\n", + "384300K .......... .......... .......... .......... .......... 24% 1.33M 61s\n", + "384350K .......... .......... .......... .......... .......... 24% 16.3M 61s\n", + "384400K .......... .......... .......... .......... .......... 24% 10.0M 61s\n", + "384450K .......... .......... .......... .......... .......... 24% 47.5M 61s\n", + "384500K .......... .......... .......... .......... .......... 24% 22.7M 61s\n", + "384550K .......... .......... .......... .......... .......... 24% 26.3M 61s\n", + "384600K .......... .......... .......... .......... .......... 24% 33.2M 61s\n", + "384650K .......... .......... .......... .......... .......... 24% 51.8M 61s\n", + "384700K .......... .......... .......... .......... .......... 24% 31.3M 61s\n", + "384750K .......... .......... .......... .......... .......... 24% 38.3M 61s\n", + "384800K .......... .......... .......... .......... .......... 24% 39.8M 61s\n", + "384850K .......... .......... .......... .......... .......... 24% 52.2M 61s\n", + "384900K .......... .......... .......... .......... .......... 24% 52.8M 61s\n", + "384950K .......... .......... .......... .......... .......... 24% 52.0M 61s\n", + "385000K .......... .......... .......... .......... .......... 24% 43.1M 61s\n", + "385050K .......... .......... .......... .......... .......... 24% 50.9M 61s\n", + "385100K .......... .......... .......... .......... .......... 24% 50.8M 61s\n", + "385150K .......... .......... .......... .......... .......... 24% 52.3M 61s\n", + "385200K .......... .......... .......... .......... .......... 24% 43.7M 61s\n", + "385250K .......... .......... .......... .......... .......... 24% 53.5M 61s\n", + "385300K .......... .......... .......... .......... .......... 24% 53.9M 61s\n", + "385350K .......... .......... .......... .......... .......... 24% 51.4M 61s\n", + "385400K .......... .......... .......... .......... .......... 24% 45.6M 61s\n", + "385450K .......... .......... .......... .......... .......... 24% 53.6M 61s\n", + "385500K .......... .......... .......... .......... .......... 24% 51.7M 61s\n", + "385550K .......... .......... .......... .......... .......... 24% 51.7M 61s\n", + "385600K .......... .......... .......... .......... .......... 24% 43.1M 61s\n", + "385650K .......... .......... .......... .......... .......... 24% 40.3M 61s\n", + "385700K .......... .......... .......... .......... .......... 24% 31.6M 61s\n", + "385750K .......... .......... .......... .......... .......... 24% 41.8M 61s\n", + "385800K .......... .......... .......... .......... .......... 24% 1.48M 61s\n", + "385850K .......... .......... .......... .......... .......... 24% 9.36M 61s\n", + "385900K .......... .......... .......... .......... .......... 24% 12.0M 61s\n", + "385950K .......... .......... .......... .......... .......... 24% 15.0M 61s\n", + "386000K .......... .......... .......... .......... .......... 24% 18.3M 61s\n", + "386050K .......... .......... .......... .......... .......... 24% 30.1M 61s\n", + "386100K .......... .......... .......... .......... .......... 24% 52.2M 61s\n", + "386150K .......... .......... .......... .......... .......... 24% 19.9M 61s\n", + "386200K .......... .......... .......... .......... .......... 24% 26.8M 61s\n", + "386250K .......... .......... .......... .......... .......... 24% 50.0M 61s\n", + "386300K .......... .......... .......... .......... .......... 24% 51.1M 61s\n", + "386350K .......... .......... .......... .......... .......... 24% 53.0M 61s\n", + "386400K .......... .......... .......... .......... .......... 24% 43.8M 61s\n", + "386450K .......... .......... .......... .......... .......... 24% 49.7M 61s\n", + "386500K .......... .......... .......... .......... .......... 24% 52.4M 61s\n", + "386550K .......... .......... .......... .......... .......... 24% 53.1M 61s\n", + "386600K .......... .......... .......... .......... .......... 24% 45.5M 61s\n", + "386650K .......... .......... .......... .......... .......... 24% 49.2M 61s\n", + "386700K .......... .......... .......... .......... .......... 24% 49.3M 61s\n", + "386750K .......... .......... .......... .......... .......... 24% 51.0M 61s\n", + "386800K .......... .......... .......... .......... .......... 24% 42.4M 61s\n", + "386850K .......... .......... .......... .......... .......... 24% 50.6M 61s\n", + "386900K .......... .......... .......... .......... .......... 24% 51.4M 61s\n", + "386950K .......... .......... .......... .......... .......... 24% 51.5M 61s\n", + "387000K .......... .......... .......... .......... .......... 24% 44.2M 61s\n", + "387050K .......... .......... .......... .......... .......... 24% 50.4M 61s\n", + "387100K .......... .......... .......... .......... .......... 24% 49.5M 61s\n", + "387150K .......... .......... .......... .......... .......... 24% 51.6M 61s\n", + "387200K .......... .......... .......... .......... .......... 24% 43.9M 61s\n", + "387250K .......... .......... .......... .......... .......... 24% 49.0M 61s\n", + "387300K .......... .......... .......... .......... .......... 24% 48.4M 61s\n", + "387350K .......... .......... .......... .......... .......... 24% 1.51M 61s\n", + "387400K .......... .......... .......... .......... .......... 24% 7.23M 61s\n", + "387450K .......... .......... .......... .......... .......... 24% 18.7M 61s\n", + "387500K .......... .......... .......... .......... .......... 24% 14.4M 61s\n", + "387550K .......... .......... .......... .......... .......... 24% 17.8M 61s\n", + "387600K .......... .......... .......... .......... .......... 24% 23.7M 61s\n", + "387650K .......... .......... .......... .......... .......... 24% 22.7M 61s\n", + "387700K .......... .......... .......... .......... .......... 24% 26.2M 61s\n", + "387750K .......... .......... .......... .......... .......... 24% 48.9M 61s\n", + "387800K .......... .......... .......... .......... .......... 24% 45.3M 61s\n", + "387850K .......... .......... .......... .......... .......... 24% 52.9M 61s\n", + "387900K .......... .......... .......... .......... .......... 24% 52.6M 61s\n", + "387950K .......... .......... .......... .......... .......... 24% 48.9M 61s\n", + "388000K .......... .......... .......... .......... .......... 24% 44.6M 61s\n", + "388050K .......... .......... .......... .......... .......... 24% 52.5M 61s\n", + "388100K .......... .......... .......... .......... .......... 24% 53.8M 61s\n", + "388150K .......... .......... .......... .......... .......... 24% 51.9M 61s\n", + "388200K .......... .......... .......... .......... .......... 24% 45.6M 61s\n", + "388250K .......... .......... .......... .......... .......... 24% 51.0M 61s\n", + "388300K .......... .......... .......... .......... .......... 24% 53.1M 61s\n", + "388350K .......... .......... .......... .......... .......... 24% 52.0M 61s\n", + "388400K .......... .......... .......... .......... .......... 24% 44.7M 61s\n", + "388450K .......... .......... .......... .......... .......... 24% 51.2M 61s\n", + "388500K .......... .......... .......... .......... .......... 24% 51.9M 61s\n", + "388550K .......... .......... .......... .......... .......... 24% 52.9M 61s\n", + "388600K .......... .......... .......... .......... .......... 24% 43.7M 61s\n", + "388650K .......... .......... .......... .......... .......... 24% 53.3M 61s\n", + "388700K .......... .......... .......... .......... .......... 24% 51.1M 61s\n", + "388750K .......... .......... .......... .......... .......... 24% 51.9M 61s\n", + "388800K .......... .......... .......... .......... .......... 24% 30.6M 61s\n", + "388850K .......... .......... .......... .......... .......... 24% 1.50M 61s\n", + "388900K .......... .......... .......... .......... .......... 24% 9.34M 61s\n", + "388950K .......... .......... .......... .......... .......... 24% 12.4M 61s\n", + "389000K .......... .......... .......... .......... .......... 24% 15.9M 61s\n", + "389050K .......... .......... .......... .......... .......... 24% 15.5M 61s\n", + "389100K .......... .......... .......... .......... .......... 24% 50.7M 61s\n", + "389150K .......... .......... .......... .......... .......... 24% 29.6M 61s\n", + "389200K .......... .......... .......... .......... .......... 24% 26.7M 61s\n", + "389250K .......... .......... .......... .......... .......... 24% 25.5M 61s\n", + "389300K .......... .......... .......... .......... .......... 24% 49.7M 61s\n", + "389350K .......... .......... .......... .......... .......... 24% 49.0M 61s\n", + "389400K .......... .......... .......... .......... .......... 24% 44.0M 61s\n", + "389450K .......... .......... .......... .......... .......... 24% 50.1M 61s\n", + "389500K .......... .......... .......... .......... .......... 24% 50.9M 61s\n", + "389550K .......... .......... .......... .......... .......... 24% 51.3M 61s\n", + "389600K .......... .......... .......... .......... .......... 24% 41.7M 61s\n", + "389650K .......... .......... .......... .......... .......... 24% 49.7M 61s\n", + "389700K .......... .......... .......... .......... .......... 24% 50.6M 61s\n", + "389750K .......... .......... .......... .......... .......... 24% 50.7M 61s\n", + "389800K .......... .......... .......... .......... .......... 24% 42.6M 61s\n", + "389850K .......... .......... .......... .......... .......... 24% 50.5M 61s\n", + "389900K .......... .......... .......... .......... .......... 24% 50.5M 61s\n", + "389950K .......... .......... .......... .......... .......... 24% 50.9M 61s\n", + "390000K .......... .......... .......... .......... .......... 24% 42.2M 61s\n", + "390050K .......... .......... .......... .......... .......... 24% 50.6M 61s\n", + "390100K .......... .......... .......... .......... .......... 24% 50.6M 61s\n", + "390150K .......... .......... .......... .......... .......... 24% 49.8M 61s\n", + "390200K .......... .......... .......... .......... .......... 24% 44.7M 61s\n", + "390250K .......... .......... .......... .......... .......... 24% 50.7M 61s\n", + "390300K .......... .......... .......... .......... .......... 24% 52.6M 61s\n", + "390350K .......... .......... .......... .......... .......... 24% 46.6M 61s\n", + "390400K .......... .......... .......... .......... .......... 24% 1.32M 61s\n", + "390450K .......... .......... .......... .......... .......... 24% 12.4M 61s\n", + "390500K .......... .......... .......... .......... .......... 24% 16.9M 61s\n", + "390550K .......... .......... .......... .......... .......... 24% 49.0M 61s\n", + "390600K .......... .......... .......... .......... .......... 24% 14.3M 61s\n", + "390650K .......... .......... .......... .......... .......... 24% 32.2M 61s\n", + "390700K .......... .......... .......... .......... .......... 24% 31.0M 61s\n", + "390750K .......... .......... .......... .......... .......... 24% 45.6M 61s\n", + "390800K .......... .......... .......... .......... .......... 24% 24.1M 61s\n", + "390850K .......... .......... .......... .......... .......... 24% 51.4M 61s\n", + "390900K .......... .......... .......... .......... .......... 24% 51.3M 61s\n", + "390950K .......... .......... .......... .......... .......... 24% 48.8M 61s\n", + "391000K .......... .......... .......... .......... .......... 24% 43.4M 61s\n", + "391050K .......... .......... .......... .......... .......... 24% 52.0M 61s\n", + "391100K .......... .......... .......... .......... .......... 24% 49.3M 61s\n", + "391150K .......... .......... .......... .......... .......... 24% 50.4M 61s\n", + "391200K .......... .......... .......... .......... .......... 24% 41.7M 61s\n", + "391250K .......... .......... .......... .......... .......... 24% 49.8M 61s\n", + "391300K .......... .......... .......... .......... .......... 24% 49.1M 61s\n", + "391350K .......... .......... .......... .......... .......... 24% 52.3M 61s\n", + "391400K .......... .......... .......... .......... .......... 24% 42.2M 61s\n", + "391450K .......... .......... .......... .......... .......... 24% 51.1M 61s\n", + "391500K .......... .......... .......... .......... .......... 24% 52.4M 61s\n", + "391550K .......... .......... .......... .......... .......... 24% 52.3M 61s\n", + "391600K .......... .......... .......... .......... .......... 24% 41.2M 61s\n", + "391650K .......... .......... .......... .......... .......... 24% 52.0M 61s\n", + "391700K .......... .......... .......... .......... .......... 24% 51.2M 61s\n", + "391750K .......... .......... .......... .......... .......... 24% 51.3M 61s\n", + "391800K .......... .......... .......... .......... .......... 24% 41.7M 61s\n", + "391850K .......... .......... .......... .......... .......... 24% 47.1M 61s\n", + "391900K .......... .......... .......... .......... .......... 24% 1.48M 61s\n", + "391950K .......... .......... .......... .......... .......... 25% 10.5M 61s\n", + "392000K .......... .......... .......... .......... .......... 25% 11.6M 61s\n", + "392050K .......... .......... .......... .......... .......... 25% 16.2M 61s\n", + "392100K .......... .......... .......... .......... .......... 25% 14.7M 61s\n", + "392150K .......... .......... .......... .......... .......... 25% 33.3M 61s\n", + "392200K .......... .......... .......... .......... .......... 25% 41.9M 61s\n", + "392250K .......... .......... .......... .......... .......... 25% 30.3M 61s\n", + "392300K .......... .......... .......... .......... .......... 25% 26.1M 61s\n", + "392350K .......... .......... .......... .......... .......... 25% 50.8M 61s\n", + "392400K .......... .......... .......... .......... .......... 25% 44.8M 61s\n", + "392450K .......... .......... .......... .......... .......... 25% 48.8M 61s\n", + "392500K .......... .......... .......... .......... .......... 25% 50.8M 61s\n", + "392550K .......... .......... .......... .......... .......... 25% 50.6M 61s\n", + "392600K .......... .......... .......... .......... .......... 25% 44.2M 61s\n", + "392650K .......... .......... .......... .......... .......... 25% 51.9M 61s\n", + "392700K .......... .......... .......... .......... .......... 25% 48.7M 61s\n", + "392750K .......... .......... .......... .......... .......... 25% 49.6M 61s\n", + "392800K .......... .......... .......... .......... .......... 25% 44.2M 61s\n", + "392850K .......... .......... .......... .......... .......... 25% 49.7M 61s\n", + "392900K .......... .......... .......... .......... .......... 25% 49.4M 61s\n", + "392950K .......... .......... .......... .......... .......... 25% 51.2M 61s\n", + "393000K .......... .......... .......... .......... .......... 25% 46.3M 61s\n", + "393050K .......... .......... .......... .......... .......... 25% 50.5M 61s\n", + "393100K .......... .......... .......... .......... .......... 25% 51.8M 61s\n", + "393150K .......... .......... .......... .......... .......... 25% 52.0M 61s\n", + "393200K .......... .......... .......... .......... .......... 25% 44.2M 61s\n", + "393250K .......... .......... .......... .......... .......... 25% 53.0M 61s\n", + "393300K .......... .......... .......... .......... .......... 25% 51.6M 61s\n", + "393350K .......... .......... .......... .......... .......... 25% 51.6M 61s\n", + "393400K .......... .......... .......... .......... .......... 25% 37.9M 61s\n", + "393450K .......... .......... .......... .......... .......... 25% 1.33M 61s\n", + "393500K .......... .......... .......... .......... .......... 25% 20.5M 61s\n", + "393550K .......... .......... .......... .......... .......... 25% 16.5M 61s\n", + "393600K .......... .......... .......... .......... .......... 25% 17.3M 61s\n", + "393650K .......... .......... .......... .......... .......... 25% 13.6M 61s\n", + "393700K .......... .......... .......... .......... .......... 25% 29.5M 61s\n", + "393750K .......... .......... .......... .......... .......... 25% 47.1M 61s\n", + "393800K .......... .......... .......... .......... .......... 25% 40.0M 61s\n", + "393850K .......... .......... .......... .......... .......... 25% 22.8M 61s\n", + "393900K .......... .......... .......... .......... .......... 25% 51.9M 61s\n", + "393950K .......... .......... .......... .......... .......... 25% 52.4M 61s\n", + "394000K .......... .......... .......... .......... .......... 25% 43.7M 61s\n", + "394050K .......... .......... .......... .......... .......... 25% 48.1M 61s\n", + "394100K .......... .......... .......... .......... .......... 25% 51.4M 61s\n", + "394150K .......... .......... .......... .......... .......... 25% 52.8M 61s\n", + "394200K .......... .......... .......... .......... .......... 25% 45.6M 61s\n", + "394250K .......... .......... .......... .......... .......... 25% 50.2M 61s\n", + "394300K .......... .......... .......... .......... .......... 25% 50.5M 61s\n", + "394350K .......... .......... .......... .......... .......... 25% 51.1M 61s\n", + "394400K .......... .......... .......... .......... .......... 25% 43.9M 61s\n", + "394450K .......... .......... .......... .......... .......... 25% 49.8M 61s\n", + "394500K .......... .......... .......... .......... .......... 25% 49.5M 61s\n", + "394550K .......... .......... .......... .......... .......... 25% 51.2M 61s\n", + "394600K .......... .......... .......... .......... .......... 25% 45.1M 61s\n", + "394650K .......... .......... .......... .......... .......... 25% 48.5M 61s\n", + "394700K .......... .......... .......... .......... .......... 25% 52.1M 61s\n", + "394750K .......... .......... .......... .......... .......... 25% 50.0M 61s\n", + "394800K .......... .......... .......... .......... .......... 25% 44.4M 61s\n", + "394850K .......... .......... .......... .......... .......... 25% 49.4M 60s\n", + "394900K .......... .......... .......... .......... .......... 25% 45.4M 60s\n", + "394950K .......... .......... .......... .......... .......... 25% 1.49M 61s\n", + "395000K .......... .......... .......... .......... .......... 25% 9.42M 61s\n", + "395050K .......... .......... .......... .......... .......... 25% 12.2M 61s\n", + "395100K .......... .......... .......... .......... .......... 25% 16.0M 61s\n", + "395150K .......... .......... .......... .......... .......... 25% 16.8M 61s\n", + "395200K .......... .......... .......... .......... .......... 25% 20.1M 61s\n", + "395250K .......... .......... .......... .......... .......... 25% 52.0M 61s\n", + "395300K .......... .......... .......... .......... .......... 25% 31.3M 61s\n", + "395350K .......... .......... .......... .......... .......... 25% 28.2M 61s\n", + "395400K .......... .......... .......... .......... .......... 25% 44.2M 61s\n", + "395450K .......... .......... .......... .......... .......... 25% 51.9M 61s\n", + "395500K .......... .......... .......... .......... .......... 25% 51.7M 61s\n", + "395550K .......... .......... .......... .......... .......... 25% 51.0M 61s\n", + "395600K .......... .......... .......... .......... .......... 25% 41.0M 61s\n", + "395650K .......... .......... .......... .......... .......... 25% 51.6M 61s\n", + "395700K .......... .......... .......... .......... .......... 25% 52.3M 61s\n", + "395750K .......... .......... .......... .......... .......... 25% 49.7M 61s\n", + "395800K .......... .......... .......... .......... .......... 25% 45.8M 60s\n", + "395850K .......... .......... .......... .......... .......... 25% 51.1M 60s\n", + "395900K .......... .......... .......... .......... .......... 25% 51.4M 60s\n", + "395950K .......... .......... .......... .......... .......... 25% 51.6M 60s\n", + "396000K .......... .......... .......... .......... .......... 25% 45.5M 60s\n", + "396050K .......... .......... .......... .......... .......... 25% 51.7M 60s\n", + "396100K .......... .......... .......... .......... .......... 25% 52.0M 60s\n", + "396150K .......... .......... .......... .......... .......... 25% 51.1M 60s\n", + "396200K .......... .......... .......... .......... .......... 25% 44.6M 60s\n", + "396250K .......... .......... .......... .......... .......... 25% 53.9M 60s\n", + "396300K .......... .......... .......... .......... .......... 25% 52.1M 60s\n", + "396350K .......... .......... .......... .......... .......... 25% 50.6M 60s\n", + "396400K .......... .......... .......... .......... .......... 25% 34.3M 60s\n", + "396450K .......... .......... .......... .......... .......... 25% 52.4M 60s\n", + "396500K .......... .......... .......... .......... .......... 25% 1.32M 60s\n", + "396550K .......... .......... .......... .......... .......... 25% 12.3M 60s\n", + "396600K .......... .......... .......... .......... .......... 25% 16.1M 60s\n", + "396650K .......... .......... .......... .......... .......... 25% 41.4M 60s\n", + "396700K .......... .......... .......... .......... .......... 25% 13.9M 60s\n", + "396750K .......... .......... .......... .......... .......... 25% 30.4M 60s\n", + "396800K .......... .......... .......... .......... .......... 25% 27.2M 60s\n", + "396850K .......... .......... .......... .......... .......... 25% 25.7M 60s\n", + "396900K .......... .......... .......... .......... .......... 25% 51.3M 60s\n", + "396950K .......... .......... .......... .......... .......... 25% 47.9M 60s\n", + "397000K .......... .......... .......... .......... .......... 25% 45.6M 60s\n", + "397050K .......... .......... .......... .......... .......... 25% 51.0M 60s\n", + "397100K .......... .......... .......... .......... .......... 25% 51.2M 60s\n", + "397150K .......... .......... .......... .......... .......... 25% 52.6M 60s\n", + "397200K .......... .......... .......... .......... .......... 25% 42.4M 60s\n", + "397250K .......... .......... .......... .......... .......... 25% 51.0M 60s\n", + "397300K .......... .......... .......... .......... .......... 25% 50.2M 60s\n", + "397350K .......... .......... .......... .......... .......... 25% 48.7M 60s\n", + "397400K .......... .......... .......... .......... .......... 25% 44.0M 60s\n", + "397450K .......... .......... .......... .......... .......... 25% 50.6M 60s\n", + "397500K .......... .......... .......... .......... .......... 25% 51.2M 60s\n", + "397550K .......... .......... .......... .......... .......... 25% 51.0M 60s\n", + "397600K .......... .......... .......... .......... .......... 25% 44.9M 60s\n", + "397650K .......... .......... .......... .......... .......... 25% 51.3M 60s\n", + "397700K .......... .......... .......... .......... .......... 25% 51.6M 60s\n", + "397750K .......... .......... .......... .......... .......... 25% 51.9M 60s\n", + "397800K .......... .......... .......... .......... .......... 25% 44.7M 60s\n", + "397850K .......... .......... .......... .......... .......... 25% 49.2M 60s\n", + "397900K .......... .......... .......... .......... .......... 25% 53.2M 60s\n", + "397950K .......... .......... .......... .......... .......... 25% 51.6M 60s\n", + "398000K .......... .......... .......... .......... .......... 25% 1.49M 60s\n", + "398050K .......... .......... .......... .......... .......... 25% 10.4M 60s\n", + "398100K .......... .......... .......... .......... .......... 25% 11.2M 60s\n", + "398150K .......... .......... .......... .......... .......... 25% 16.7M 60s\n", + "398200K .......... .......... .......... .......... .......... 25% 17.4M 60s\n", + "398250K .......... .......... .......... .......... .......... 25% 19.1M 60s\n", + "398300K .......... .......... .......... .......... .......... 25% 50.0M 60s\n", + "398350K .......... .......... .......... .......... .......... 25% 29.9M 60s\n", + "398400K .......... .......... .......... .......... .......... 25% 23.9M 60s\n", + "398450K .......... .......... .......... .......... .......... 25% 51.1M 60s\n", + "398500K .......... .......... .......... .......... .......... 25% 51.0M 60s\n", + "398550K .......... .......... .......... .......... .......... 25% 52.0M 60s\n", + "398600K .......... .......... .......... .......... .......... 25% 44.0M 60s\n", + "398650K .......... .......... .......... .......... .......... 25% 52.0M 60s\n", + "398700K .......... .......... .......... .......... .......... 25% 51.5M 60s\n", + "398750K .......... .......... .......... .......... .......... 25% 48.1M 60s\n", + "398800K .......... .......... .......... .......... .......... 25% 43.5M 60s\n", + "398850K .......... .......... .......... .......... .......... 25% 51.3M 60s\n", + "398900K .......... .......... .......... .......... .......... 25% 51.3M 60s\n", + "398950K .......... .......... .......... .......... .......... 25% 49.8M 60s\n", + "399000K .......... .......... .......... .......... .......... 25% 43.2M 60s\n", + "399050K .......... .......... .......... .......... .......... 25% 52.1M 60s\n", + "399100K .......... .......... .......... .......... .......... 25% 52.5M 60s\n", + "399150K .......... .......... .......... .......... .......... 25% 51.5M 60s\n", + "399200K .......... .......... .......... .......... .......... 25% 43.6M 60s\n", + "399250K .......... .......... .......... .......... .......... 25% 53.8M 60s\n", + "399300K .......... .......... .......... .......... .......... 25% 54.2M 60s\n", + "399350K .......... .......... .......... .......... .......... 25% 54.5M 60s\n", + "399400K .......... .......... .......... .......... .......... 25% 42.7M 60s\n", + "399450K .......... .......... .......... .......... .......... 25% 53.3M 60s\n", + "399500K .......... .......... .......... .......... .......... 25% 36.4M 60s\n", + "399550K .......... .......... .......... .......... .......... 25% 1.36M 60s\n", + "399600K .......... .......... .......... .......... .......... 25% 18.1M 60s\n", + "399650K .......... .......... .......... .......... .......... 25% 9.80M 60s\n", + "399700K .......... .......... .......... .......... .......... 25% 34.1M 60s\n", + "399750K .......... .......... .......... .......... .......... 25% 16.0M 60s\n", + "399800K .......... .......... .......... .......... .......... 25% 24.0M 60s\n", + "399850K .......... .......... .......... .......... .......... 25% 35.4M 60s\n", + "399900K .......... .......... .......... .......... .......... 25% 48.2M 60s\n", + "399950K .......... .......... .......... .......... .......... 25% 27.5M 60s\n", + "400000K .......... .......... .......... .......... .......... 25% 44.3M 60s\n", + "400050K .......... .......... .......... .......... .......... 25% 51.4M 60s\n", + "400100K .......... .......... .......... .......... .......... 25% 46.4M 60s\n", + "400150K .......... .......... .......... .......... .......... 25% 51.3M 60s\n", + "400200K .......... .......... .......... .......... .......... 25% 43.5M 60s\n", + "400250K .......... .......... .......... .......... .......... 25% 52.0M 60s\n", + "400300K .......... .......... .......... .......... .......... 25% 47.3M 60s\n", + "400350K .......... .......... .......... .......... .......... 25% 50.3M 60s\n", + "400400K .......... .......... .......... .......... .......... 25% 43.8M 60s\n", + "400450K .......... .......... .......... .......... .......... 25% 49.4M 60s\n", + "400500K .......... .......... .......... .......... .......... 25% 51.4M 60s\n", + "400550K .......... .......... .......... .......... .......... 25% 49.1M 60s\n", + "400600K .......... .......... .......... .......... .......... 25% 44.5M 60s\n", + "400650K .......... .......... .......... .......... .......... 25% 52.9M 60s\n", + "400700K .......... .......... .......... .......... .......... 25% 51.5M 60s\n", + "400750K .......... .......... .......... .......... .......... 25% 49.9M 60s\n", + "400800K .......... .......... .......... .......... .......... 25% 43.1M 60s\n", + "400850K .......... .......... .......... .......... .......... 25% 51.8M 60s\n", + "400900K .......... .......... .......... .......... .......... 25% 50.1M 60s\n", + "400950K .......... .......... .......... .......... .......... 25% 51.8M 60s\n", + "401000K .......... .......... .......... .......... .......... 25% 34.4M 60s\n", + "401050K .......... .......... .......... .......... .......... 25% 1.51M 60s\n", + "401100K .......... .......... .......... .......... .......... 25% 11.1M 60s\n", + "401150K .......... .......... .......... .......... .......... 25% 10.9M 60s\n", + "401200K .......... .......... .......... .......... .......... 25% 13.4M 60s\n", + "401250K .......... .......... .......... .......... .......... 25% 14.4M 60s\n", + "401300K .......... .......... .......... .......... .......... 25% 38.2M 60s\n", + "401350K .......... .......... .......... .......... .......... 25% 34.8M 60s\n", + "401400K .......... .......... .......... .......... .......... 25% 27.1M 60s\n", + "401450K .......... .......... .......... .......... .......... 25% 28.7M 60s\n", + "401500K .......... .......... .......... .......... .......... 25% 52.5M 60s\n", + "401550K .......... .......... .......... .......... .......... 25% 50.7M 60s\n", + "401600K .......... .......... .......... .......... .......... 25% 44.4M 60s\n", + "401650K .......... .......... .......... .......... .......... 25% 48.4M 60s\n", + "401700K .......... .......... .......... .......... .......... 25% 50.4M 60s\n", + "401750K .......... .......... .......... .......... .......... 25% 51.1M 60s\n", + "401800K .......... .......... .......... .......... .......... 25% 43.9M 60s\n", + "401850K .......... .......... .......... .......... .......... 25% 51.3M 60s\n", + "401900K .......... .......... .......... .......... .......... 25% 49.8M 60s\n", + "401950K .......... .......... .......... .......... .......... 25% 50.4M 60s\n", + "402000K .......... .......... .......... .......... .......... 25% 41.6M 60s\n", + "402050K .......... .......... .......... .......... .......... 25% 52.0M 60s\n", + "402100K .......... .......... .......... .......... .......... 25% 49.1M 60s\n", + "402150K .......... .......... .......... .......... .......... 25% 52.4M 60s\n", + "402200K .......... .......... .......... .......... .......... 25% 43.7M 60s\n", + "402250K .......... .......... .......... .......... .......... 25% 52.0M 60s\n", + "402300K .......... .......... .......... .......... .......... 25% 51.0M 60s\n", + "402350K .......... .......... .......... .......... .......... 25% 51.3M 60s\n", + "402400K .......... .......... .......... .......... .......... 25% 42.4M 60s\n", + "402450K .......... .......... .......... .......... .......... 25% 53.2M 60s\n", + "402500K .......... .......... .......... .......... .......... 25% 37.3M 60s\n", + "402550K .......... .......... .......... .......... .......... 25% 52.3M 60s\n", + "402600K .......... .......... .......... .......... .......... 25% 1.37M 60s\n", + "402650K .......... .......... .......... .......... .......... 25% 10.2M 60s\n", + "402700K .......... .......... .......... .......... .......... 25% 16.2M 60s\n", + "402750K .......... .......... .......... .......... .......... 25% 47.3M 60s\n", + "402800K .......... .......... .......... .......... .......... 25% 13.5M 60s\n", + "402850K .......... .......... .......... .......... .......... 25% 19.3M 60s\n", + "402900K .......... .......... .......... .......... .......... 25% 29.5M 60s\n", + "402950K .......... .......... .......... .......... .......... 25% 33.6M 60s\n", + "403000K .......... .......... .......... .......... .......... 25% 45.7M 60s\n", + "403050K .......... .......... .......... .......... .......... 25% 53.8M 60s\n", + "403100K .......... .......... .......... .......... .......... 25% 53.6M 60s\n", + "403150K .......... .......... .......... .......... .......... 25% 50.7M 60s\n", + "403200K .......... .......... .......... .......... .......... 25% 45.7M 60s\n", + "403250K .......... .......... .......... .......... .......... 25% 53.6M 60s\n", + "403300K .......... .......... .......... .......... .......... 25% 50.2M 60s\n", + "403350K .......... .......... .......... .......... .......... 25% 52.1M 60s\n", + "403400K .......... .......... .......... .......... .......... 25% 47.2M 60s\n", + "403450K .......... .......... .......... .......... .......... 25% 53.2M 60s\n", + "403500K .......... .......... .......... .......... .......... 25% 53.5M 60s\n", + "403550K .......... .......... .......... .......... .......... 25% 53.3M 60s\n", + "403600K .......... .......... .......... .......... .......... 25% 46.4M 60s\n", + "403650K .......... .......... .......... .......... .......... 25% 55.9M 60s\n", + "403700K .......... .......... .......... .......... .......... 25% 55.8M 60s\n", + "403750K .......... .......... .......... .......... .......... 25% 54.8M 60s\n", + "403800K .......... .......... .......... .......... .......... 25% 44.0M 60s\n", + "403850K .......... .......... .......... .......... .......... 25% 50.1M 60s\n", + "403900K .......... .......... .......... .......... .......... 25% 53.4M 60s\n", + "403950K .......... .......... .......... .......... .......... 25% 52.9M 60s\n", + "404000K .......... .......... .......... .......... .......... 25% 45.0M 60s\n", + "404050K .......... .......... .......... .......... .......... 25% 31.3M 60s\n", + "404100K .......... .......... .......... .......... .......... 25% 1.50M 60s\n", + "404150K .......... .......... .......... .......... .......... 25% 10.4M 60s\n", + "404200K .......... .......... .......... .......... .......... 25% 11.7M 60s\n", + "404250K .......... .......... .......... .......... .......... 25% 14.0M 60s\n", + "404300K .......... .......... .......... .......... .......... 25% 23.9M 60s\n", + "404350K .......... .......... .......... .......... .......... 25% 22.9M 60s\n", + "404400K .......... .......... .......... .......... .......... 25% 18.6M 60s\n", + "404450K .......... .......... .......... .......... .......... 25% 33.6M 60s\n", + "404500K .......... .......... .......... .......... .......... 25% 30.8M 60s\n", + "404550K .......... .......... .......... .......... .......... 25% 52.4M 60s\n", + "404600K .......... .......... .......... .......... .......... 25% 45.9M 60s\n", + "404650K .......... .......... .......... .......... .......... 25% 51.5M 60s\n", + "404700K .......... .......... .......... .......... .......... 25% 53.9M 60s\n", + "404750K .......... .......... .......... .......... .......... 25% 51.4M 60s\n", + "404800K .......... .......... .......... .......... .......... 25% 46.1M 60s\n", + "404850K .......... .......... .......... .......... .......... 25% 52.2M 60s\n", + "404900K .......... .......... .......... .......... .......... 25% 52.1M 60s\n", + "404950K .......... .......... .......... .......... .......... 25% 52.5M 60s\n", + "405000K .......... .......... .......... .......... .......... 25% 43.1M 60s\n", + "405050K .......... .......... .......... .......... .......... 25% 51.5M 60s\n", + "405100K .......... .......... .......... .......... .......... 25% 52.9M 60s\n", + "405150K .......... .......... .......... .......... .......... 25% 52.9M 60s\n", + "405200K .......... .......... .......... .......... .......... 25% 45.7M 60s\n", + "405250K .......... .......... .......... .......... .......... 25% 52.0M 60s\n", + "405300K .......... .......... .......... .......... .......... 25% 52.3M 60s\n", + "405350K .......... .......... .......... .......... .......... 25% 54.2M 60s\n", + "405400K .......... .......... .......... .......... .......... 25% 46.9M 60s\n", + "405450K .......... .......... .......... .......... .......... 25% 53.2M 60s\n", + "405500K .......... .......... .......... .......... .......... 25% 52.9M 60s\n", + "405550K .......... .......... .......... .......... .......... 25% 51.8M 60s\n", + "405600K .......... .......... .......... .......... .......... 25% 29.3M 60s\n", + "405650K .......... .......... .......... .......... .......... 25% 1.34M 60s\n", + "405700K .......... .......... .......... .......... .......... 25% 12.2M 60s\n", + "405750K .......... .......... .......... .......... .......... 25% 15.3M 60s\n", + "405800K .......... .......... .......... .......... .......... 25% 31.1M 60s\n", + "405850K .......... .......... .......... .......... .......... 25% 15.8M 60s\n", + "405900K .......... .......... .......... .......... .......... 25% 20.1M 60s\n", + "405950K .......... .......... .......... .......... .......... 25% 33.0M 60s\n", + "406000K .......... .......... .......... .......... .......... 25% 29.1M 60s\n", + "406050K .......... .......... .......... .......... .......... 25% 47.4M 60s\n", + "406100K .......... .......... .......... .......... .......... 25% 51.7M 60s\n", + "406150K .......... .......... .......... .......... .......... 25% 51.3M 60s\n", + "406200K .......... .......... .......... .......... .......... 25% 43.7M 60s\n", + "406250K .......... .......... .......... .......... .......... 25% 52.9M 60s\n", + "406300K .......... .......... .......... .......... .......... 25% 53.3M 60s\n", + "406350K .......... .......... .......... .......... .......... 25% 51.6M 60s\n", + "406400K .......... .......... .......... .......... .......... 25% 42.4M 60s\n", + "406450K .......... .......... .......... .......... .......... 25% 52.7M 60s\n", + "406500K .......... .......... .......... .......... .......... 25% 53.1M 60s\n", + "406550K .......... .......... .......... .......... .......... 25% 53.2M 60s\n", + "406600K .......... .......... .......... .......... .......... 25% 45.4M 60s\n", + "406650K .......... .......... .......... .......... .......... 25% 51.7M 60s\n", + "406700K .......... .......... .......... .......... .......... 25% 54.1M 60s\n", + "406750K .......... .......... .......... .......... .......... 25% 53.5M 60s\n", + "406800K .......... .......... .......... .......... .......... 25% 44.8M 60s\n", + "406850K .......... .......... .......... .......... .......... 25% 51.5M 60s\n", + "406900K .......... .......... .......... .......... .......... 25% 52.3M 60s\n", + "406950K .......... .......... .......... .......... .......... 25% 52.8M 60s\n", + "407000K .......... .......... .......... .......... .......... 25% 44.5M 60s\n", + "407050K .......... .......... .......... .......... .......... 25% 52.2M 60s\n", + "407100K .......... .......... .......... .......... .......... 25% 35.6M 60s\n", + "407150K .......... .......... .......... .......... .......... 25% 1.51M 60s\n", + "407200K .......... .......... .......... .......... .......... 25% 8.57M 60s\n", + "407250K .......... .......... .......... .......... .......... 25% 13.6M 60s\n", + "407300K .......... .......... .......... .......... .......... 25% 13.9M 60s\n", + "407350K .......... .......... .......... .......... .......... 25% 17.2M 60s\n", + "407400K .......... .......... .......... .......... .......... 25% 18.5M 60s\n", + "407450K .......... .......... .......... .......... .......... 25% 53.5M 60s\n", + "407500K .......... .......... .......... .......... .......... 25% 28.4M 60s\n", + "407550K .......... .......... .......... .......... .......... 25% 32.1M 60s\n", + "407600K .......... .......... .......... .......... .......... 26% 45.3M 60s\n", + "407650K .......... .......... .......... .......... .......... 26% 51.8M 60s\n", + "407700K .......... .......... .......... .......... .......... 26% 51.4M 60s\n", + "407750K .......... .......... .......... .......... .......... 26% 50.3M 60s\n", + "407800K .......... .......... .......... .......... .......... 26% 45.6M 60s\n", + "407850K .......... .......... .......... .......... .......... 26% 51.4M 60s\n", + "407900K .......... .......... .......... .......... .......... 26% 52.5M 60s\n", + "407950K .......... .......... .......... .......... .......... 26% 53.4M 60s\n", + "408000K .......... .......... .......... .......... .......... 26% 43.0M 60s\n", + "408050K .......... .......... .......... .......... .......... 26% 52.2M 60s\n", + "408100K .......... .......... .......... .......... .......... 26% 50.8M 60s\n", + "408150K .......... .......... .......... .......... .......... 26% 52.9M 60s\n", + "408200K .......... .......... .......... .......... .......... 26% 44.6M 60s\n", + "408250K .......... .......... .......... .......... .......... 26% 53.2M 60s\n", + "408300K .......... .......... .......... .......... .......... 26% 51.7M 60s\n", + "408350K .......... .......... .......... .......... .......... 26% 54.1M 60s\n", + "408400K .......... .......... .......... .......... .......... 26% 45.9M 60s\n", + "408450K .......... .......... .......... .......... .......... 26% 51.9M 60s\n", + "408500K .......... .......... .......... .......... .......... 26% 52.7M 60s\n", + "408550K .......... .......... .......... .......... .......... 26% 52.9M 60s\n", + "408600K .......... .......... .......... .......... .......... 26% 46.9M 60s\n", + "408650K .......... .......... .......... .......... .......... 26% 35.7M 60s\n", + "408700K .......... .......... .......... .......... .......... 26% 1.38M 60s\n", + "408750K .......... .......... .......... .......... .......... 26% 22.2M 60s\n", + "408800K .......... .......... .......... .......... .......... 26% 8.54M 60s\n", + "408850K .......... .......... .......... .......... .......... 26% 20.1M 60s\n", + "408900K .......... .......... .......... .......... .......... 26% 22.8M 60s\n", + "408950K .......... .......... .......... .......... .......... 26% 18.8M 60s\n", + "409000K .......... .......... .......... .......... .......... 26% 29.2M 60s\n", + "409050K .......... .......... .......... .......... .......... 26% 34.2M 60s\n", + "409100K .......... .......... .......... .......... .......... 26% 51.5M 60s\n", + "409150K .......... .......... .......... .......... .......... 26% 39.0M 60s\n", + "409200K .......... .......... .......... .......... .......... 26% 44.2M 60s\n", + "409250K .......... .......... .......... .......... .......... 26% 54.4M 60s\n", + "409300K .......... .......... .......... .......... .......... 26% 53.8M 60s\n", + "409350K .......... .......... .......... .......... .......... 26% 52.0M 60s\n", + "409400K .......... .......... .......... .......... .......... 26% 45.7M 60s\n", + "409450K .......... .......... .......... .......... .......... 26% 53.1M 60s\n", + "409500K .......... .......... .......... .......... .......... 26% 54.1M 60s\n", + "409550K .......... .......... .......... .......... .......... 26% 51.4M 60s\n", + "409600K .......... .......... .......... .......... .......... 26% 44.1M 60s\n", + "409650K .......... .......... .......... .......... .......... 26% 53.9M 60s\n", + "409700K .......... .......... .......... .......... .......... 26% 54.9M 60s\n", + "409750K .......... .......... .......... .......... .......... 26% 53.7M 60s\n", + "409800K .......... .......... .......... .......... .......... 26% 45.2M 60s\n", + "409850K .......... .......... .......... .......... .......... 26% 53.2M 60s\n", + "409900K .......... .......... .......... .......... .......... 26% 52.8M 60s\n", + "409950K .......... .......... .......... .......... .......... 26% 52.9M 60s\n", + "410000K .......... .......... .......... .......... .......... 26% 42.9M 60s\n", + "410050K .......... .......... .......... .......... .......... 26% 51.7M 60s\n", + "410100K .......... .......... .......... .......... .......... 26% 53.3M 60s\n", + "410150K .......... .......... .......... .......... .......... 26% 34.5M 60s\n", + "410200K .......... .......... .......... .......... .......... 26% 1.52M 60s\n", + "410250K .......... .......... .......... .......... .......... 26% 10.2M 60s\n", + "410300K .......... .......... .......... .......... .......... 26% 10.8M 60s\n", + "410350K .......... .......... .......... .......... .......... 26% 13.6M 60s\n", + "410400K .......... .......... .......... .......... .......... 26% 22.0M 60s\n", + "410450K .......... .......... .......... .......... .......... 26% 15.5M 60s\n", + "410500K .......... .......... .......... .......... .......... 26% 50.6M 60s\n", + "410550K .......... .......... .......... .......... .......... 26% 24.8M 60s\n", + "410600K .......... .......... .......... .......... .......... 26% 36.9M 60s\n", + "410650K .......... .......... .......... .......... .......... 26% 46.0M 60s\n", + "410700K .......... .......... .......... .......... .......... 26% 48.7M 60s\n", + "410750K .......... .......... .......... .......... .......... 26% 51.6M 60s\n", + "410800K .......... .......... .......... .......... .......... 26% 43.6M 60s\n", + "410850K .......... .......... .......... .......... .......... 26% 51.9M 60s\n", + "410900K .......... .......... .......... .......... .......... 26% 49.8M 60s\n", + "410950K .......... .......... .......... .......... .......... 26% 51.1M 60s\n", + "411000K .......... .......... .......... .......... .......... 26% 45.2M 60s\n", + "411050K .......... .......... .......... .......... .......... 26% 52.2M 60s\n", + "411100K .......... .......... .......... .......... .......... 26% 49.5M 60s\n", + "411150K .......... .......... .......... .......... .......... 26% 51.9M 60s\n", + "411200K .......... .......... .......... .......... .......... 26% 44.1M 60s\n", + "411250K .......... .......... .......... .......... .......... 26% 49.2M 60s\n", + "411300K .......... .......... .......... .......... .......... 26% 51.4M 60s\n", + "411350K .......... .......... .......... .......... .......... 26% 51.4M 60s\n", + "411400K .......... .......... .......... .......... .......... 26% 44.8M 60s\n", + "411450K .......... .......... .......... .......... .......... 26% 51.8M 60s\n", + "411500K .......... .......... .......... .......... .......... 26% 51.7M 60s\n", + "411550K .......... .......... .......... .......... .......... 26% 51.8M 60s\n", + "411600K .......... .......... .......... .......... .......... 26% 43.0M 60s\n", + "411650K .......... .......... .......... .......... .......... 26% 43.3M 60s\n", + "411700K .......... .......... .......... .......... .......... 26% 51.5M 60s\n", + "411750K .......... .......... .......... .......... .......... 26% 1.37M 60s\n", + "411800K .......... .......... .......... .......... .......... 26% 10.2M 60s\n", + "411850K .......... .......... .......... .......... .......... 26% 3.31M 60s\n", + "411900K .......... .......... .......... .......... .......... 26% 48.5M 60s\n", + "411950K .......... .......... .......... .......... .......... 26% 51.8M 60s\n", + "412000K .......... .......... .......... .......... .......... 26% 2.32M 60s\n", + "412050K .......... .......... .......... .......... .......... 26% 51.9M 60s\n", + "412100K .......... .. 26% 35.5M=21s\n", + "\n", + "\n", + "Cannot write to ‘/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/00N_000E.tif’ (Software caused connection abort).\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/00N_010E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/00N_020E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/00N_030E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/00N_040E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/00N_040W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/00N_050E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/00N_050W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/00N_060W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/00N_070E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/00N_070W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/00N_080W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/00N_090E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/00N_090W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/00N_100E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/00N_100W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/00N_110E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/00N_120E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/00N_130E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/00N_140E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/00N_150E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/00N_160E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/00N_170E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/10N_000E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/10N_010E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/10N_010W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/10N_020E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/10N_020W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/10N_030E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/10N_040E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/10N_050E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/10N_050W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/10N_060W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/10N_070E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/10N_070W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/10N_080E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/10N_080W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/10N_090E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/10N_090W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/10N_100E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/10N_100W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/10N_110E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/10N_120E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/10N_130E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/10N_150E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/10N_160E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/10N_170E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/10S_010E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/10S_020E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/10S_030E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/10S_040E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/10S_040W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/10S_050E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/10S_050W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/10S_060W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/10S_070W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/10S_080W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/10S_110E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/10S_120E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/10S_130E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/10S_140E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/10S_150E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/10S_160E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/10S_170E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/10S_180W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/20N_000E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/20N_010E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/20N_010W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/20N_020E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/20N_020W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/20N_030E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/20N_030W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/20N_040E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/20N_050E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/20N_060W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/20N_070E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/20N_070W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/20N_080E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/20N_080W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/20N_090E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/20N_090W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/20N_100E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/20N_100W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/20N_110E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/20N_110W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/20N_120E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/20N_120W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/20N_160W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/20S_010E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/20S_020E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/20S_030E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/20S_040E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/20S_050E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/20S_050W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/20S_060W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/20S_070W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/20S_080W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/20S_110E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/20S_120E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/20S_130E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/20S_140E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/20S_150E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/20S_160E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/20S_180W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/30N_000E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/30N_010E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/30N_010W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/30N_020E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/30N_020W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/30N_030E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/30N_040E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/30N_050E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/30N_060E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/30N_070E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/30N_080E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/30N_080W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/30N_090E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/30N_090W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/30N_100E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/30N_100W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/30N_110E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/30N_110W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/30N_120E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/30N_120W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/30N_130E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/30N_160W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/30N_170W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/30S_010E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/30S_020E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/30S_030E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/30S_060W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/30S_070W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/30S_080W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/30S_110E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/30S_120E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/30S_130E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/30S_140E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/30S_150E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/30S_170E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/40N_000E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/40N_010E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/40N_010W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/40N_020E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/40N_020W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/40N_030E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/40N_040E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/40N_050E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/40N_060E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/40N_070E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/40N_070W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/40N_080E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/40N_080W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/40N_090E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/40N_090W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/40N_100E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/40N_100W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/40N_110E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/40N_110W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/40N_120E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/40N_120W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/40N_130E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/40N_130W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/40N_140E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/40S_070W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/40S_080W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/40S_140E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/40S_160E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/40S_170E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/50N_000E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/50N_010E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/50N_010W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/50N_020E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/50N_030E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/50N_040E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/50N_050E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/50N_060E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/50N_060W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/50N_070E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/50N_070W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/50N_080E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/50N_080W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/50N_090E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/50N_090W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/50N_100E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/50N_100W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/50N_110E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/50N_110W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/50N_120E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/50N_120W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/50N_130E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/50N_130W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/50N_140E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/50N_150E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/50S_060W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/50S_070W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/50S_080W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/60N_000E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/60N_010E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/60N_010W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/60N_020E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/60N_020W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/60N_030E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/60N_040E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/60N_050E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/60N_060E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/60N_060W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/60N_070E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/60N_070W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/60N_080E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/60N_080W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/60N_090E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/60N_090W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/60N_100E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/60N_100W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/60N_110E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/60N_110W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/60N_120E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/60N_120W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/60N_130E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/60N_130W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/60N_140E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/60N_140W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/60N_150E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/60N_150W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/60N_160E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/60N_160W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/60N_170E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/60N_170W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/60N_180W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/70N_000E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/70N_010E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/70N_020E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/70N_030E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/70N_040E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/70N_050E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/70N_060E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/70N_070E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/70N_070W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/70N_080E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/70N_080W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/70N_090E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/70N_090W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/70N_100E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/70N_100W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/70N_110E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/70N_110W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/70N_120E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/70N_120W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/70N_130E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/70N_130W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/70N_140E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/70N_140W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/70N_150E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/70N_150W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/70N_160E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/70N_160W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/70N_170E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/70N_170W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/70N_180W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/80N_010E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/80N_020E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/80N_030E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/80N_070E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/80N_080E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/80N_090E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/80N_100E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/80N_110E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/80N_120E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/80N_130E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/80N_130W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/80N_140E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/80N_140W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/80N_150E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/80N_150W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/80N_160E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/80N_160W.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/80N_170E.tif: Transport endpoint is not connected\n", + "/projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/80N_170W.tif: Transport endpoint is not connected\n" + ] + } + ], "source": [ - "# for TILE in TILES: \n", - "# string = \"wget https://glad.umd.edu/users/Potapov/GLCLUC2020/Forest_extent_2020/\" + TILE + \".tif -O /projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/\" + TILE + \".tif\"\n", - "# os.system(string)\n", + "TILES = [\"00N_000E\",\"00N_010E\",\"00N_020E\",\"00N_030E\",\"00N_040E\",\"00N_040W\",\"00N_050E\",\"00N_050W\",\"00N_060W\",\"00N_070E\",\"00N_070W\",\"00N_080W\",\"00N_090E\",\"00N_090W\",\"00N_100E\",\"00N_100W\",\"00N_110E\",\"00N_120E\",\"00N_130E\",\"00N_140E\",\"00N_150E\",\"00N_160E\",\"00N_170E\",\"10N_000E\",\"10N_010E\",\"10N_010W\",\"10N_020E\",\"10N_020W\",\"10N_030E\",\"10N_040E\",\"10N_050E\",\"10N_050W\",\"10N_060W\",\"10N_070E\",\"10N_070W\",\"10N_080E\",\"10N_080W\",\"10N_090E\",\"10N_090W\",\"10N_100E\",\"10N_100W\",\"10N_110E\",\"10N_120E\",\"10N_130E\",\"10N_150E\",\"10N_160E\",\"10N_170E\",\"10S_010E\",\"10S_020E\",\"10S_030E\",\"10S_040E\",\"10S_040W\",\"10S_050E\",\"10S_050W\",\"10S_060W\",\"10S_070W\",\"10S_080W\",\"10S_110E\",\"10S_120E\",\"10S_130E\",\"10S_140E\",\"10S_150E\",\"10S_160E\",\"10S_170E\",\"10S_180W\",\"20N_000E\",\"20N_010E\",\"20N_010W\",\"20N_020E\",\"20N_020W\",\"20N_030E\",\"20N_030W\",\"20N_040E\",\"20N_050E\",\"20N_060W\",\"20N_070E\",\"20N_070W\",\"20N_080E\",\"20N_080W\",\"20N_090E\",\"20N_090W\",\"20N_100E\",\"20N_100W\",\"20N_110E\",\"20N_110W\",\"20N_120E\",\"20N_120W\",\"20N_160W\",\"20S_010E\",\"20S_020E\",\"20S_030E\",\"20S_040E\",\"20S_050E\",\"20S_050W\",\"20S_060W\",\"20S_070W\",\"20S_080W\",\"20S_110E\",\"20S_120E\",\"20S_130E\",\"20S_140E\",\"20S_150E\",\"20S_160E\",\"20S_180W\",\"30N_000E\",\"30N_010E\",\"30N_010W\",\"30N_020E\",\"30N_020W\",\"30N_030E\",\"30N_040E\",\"30N_050E\",\"30N_060E\",\"30N_070E\",\"30N_080E\",\"30N_080W\",\"30N_090E\",\"30N_090W\",\"30N_100E\",\"30N_100W\",\"30N_110E\",\"30N_110W\",\"30N_120E\",\"30N_120W\",\"30N_130E\",\"30N_160W\",\"30N_170W\",\"30S_010E\",\"30S_020E\",\"30S_030E\",\"30S_060W\",\"30S_070W\",\"30S_080W\",\"30S_110E\",\"30S_120E\",\"30S_130E\",\"30S_140E\",\"30S_150E\",\"30S_170E\",\"40N_000E\",\"40N_010E\",\"40N_010W\",\"40N_020E\",\"40N_020W\",\"40N_030E\",\"40N_040E\",\"40N_050E\",\"40N_060E\",\"40N_070E\",\"40N_070W\",\"40N_080E\",\"40N_080W\",\"40N_090E\",\"40N_090W\",\"40N_100E\",\"40N_100W\",\"40N_110E\",\"40N_110W\",\"40N_120E\",\"40N_120W\",\"40N_130E\",\"40N_130W\",\"40N_140E\",\"40S_070W\",\"40S_080W\",\"40S_140E\",\"40S_160E\",\"40S_170E\",\"50N_000E\",\"50N_010E\",\"50N_010W\",\"50N_020E\",\"50N_030E\",\"50N_040E\",\"50N_050E\",\"50N_060E\",\"50N_060W\",\"50N_070E\",\"50N_070W\",\"50N_080E\",\"50N_080W\",\"50N_090E\",\"50N_090W\",\"50N_100E\",\"50N_100W\",\"50N_110E\",\"50N_110W\",\"50N_120E\",\"50N_120W\",\"50N_130E\",\"50N_130W\",\"50N_140E\",\"50N_150E\",\"50S_060W\",\"50S_070W\",\"50S_080W\",\"60N_000E\",\"60N_010E\",\"60N_010W\",\"60N_020E\",\"60N_020W\",\"60N_030E\",\"60N_040E\",\"60N_050E\",\"60N_060E\",\"60N_060W\",\"60N_070E\",\"60N_070W\",\"60N_080E\",\"60N_080W\",\"60N_090E\",\"60N_090W\",\"60N_100E\",\"60N_100W\",\"60N_110E\",\"60N_110W\",\"60N_120E\",\"60N_120W\",\"60N_130E\",\"60N_130W\",\"60N_140E\",\"60N_140W\",\"60N_150E\",\"60N_150W\",\"60N_160E\",\"60N_160W\",\"60N_170E\",\"60N_170W\",\"60N_180W\",\"70N_000E\",\"70N_010E\",\"70N_020E\",\"70N_030E\",\"70N_040E\",\"70N_050E\",\"70N_060E\",\"70N_070E\",\"70N_070W\",\"70N_080E\",\"70N_080W\",\"70N_090E\",\"70N_090W\",\"70N_100E\",\"70N_100W\",\"70N_110E\",\"70N_110W\",\"70N_120E\",\"70N_120W\",\"70N_130E\",\"70N_130W\",\"70N_140E\",\"70N_140W\",\"70N_150E\",\"70N_150W\",\"70N_160E\",\"70N_160W\",\"70N_170E\",\"70N_170W\",\"70N_180W\",\"80N_010E\",\"80N_020E\",\"80N_030E\",\"80N_070E\",\"80N_080E\",\"80N_090E\",\"80N_100E\",\"80N_110E\",\"80N_120E\",\"80N_130E\",\"80N_130W\",\"80N_140E\",\"80N_140W\",\"80N_150E\",\"80N_150W\",\"80N_160E\",\"80N_160W\",\"80N_170E\",\"80N_170W\"]\n", + "len(TILES)\n", + "for TILE in TILES: \n", + " string = \"wget https://glad.umd.edu/users/Potapov/GLCLUC2020/Forest_height_2020/2020_\" + TILE + \".tif -O /projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_height_2020/2020_\" + TILE + \".tif\"\n", + " os.system(string)\n", + " # string = \"wget https://glad.umd.edu/users/Potapov/GLCLUC2020/Forest_extent_2020/\" + TILE + \".tif -O /projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2020/\" + TILE + \".tif\"\n", + " # os.system(string) \n", "# string = \"wget https://glad.umd.edu/users/Potapov/GLCLUC2020/Forest_extent_2000/\" + TILE + \".tif -O /projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_extent_2000/\" + TILE + \".tif\"\n", "# os.system(string)\n", "# string = \"wget https://glad.umd.edu/users/Potapov/GLCLUC2020/Forest_height_2000/2000_\" + TILE + \".tif -O /projects/my-public-bucket/Data/Harris_et_al_PAPER/Potapov_Forest_height_2000/2000_\" + TILE + \".tif\"\n", @@ -10289,7 +18834,7 @@ "# Desired_output_folder = '/projects/my-private-bucket/dps_output/run_IPCC_classes_ubuntu/Global_IPCC_classes_ADE_v4/'\n", "# if not os.path.exists(Desired_output_folder):\n", "# os.mkdir(Desired_output_folder)\n", - "# TILES = [\"00N_000E\",\"00N_010E\",\"00N_020E\",\"00N_030E\",\"00N_040E\",\"00N_040W\",\"00N_050E\",\"00N_050W\",\"00N_060W\",\"00N_070E\",\"00N_070W\",\"00N_080W\",\"00N_090E\",\"00N_090W\",\"00N_100E\",\"00N_100W\",\"00N_110E\",\"00N_120E\",\"00N_130E\",\"00N_140E\",\"00N_150E\",\"00N_160E\",\"00N_170E\",\"10N_000E\",\"10N_010E\",\"10N_010W\",\"10N_020E\",\"10N_020W\",\"10N_030E\",\"10N_040E\",\"10N_050E\",\"10N_050W\",\"10N_060W\",\"10N_070E\",\"10N_070W\",\"10N_080E\",\"10N_080W\",\"10N_090E\",\"10N_090W\",\"10N_100E\",\"10N_100W\",\"10N_110E\",\"10N_120E\",\"10N_130E\",\"10N_150E\",\"10N_160E\",\"10N_170E\",\"10S_010E\",\"10S_020E\",\"10S_030E\",\"10S_040E\",\"10S_040W\",\"10S_050E\",\"10S_050W\",\"10S_060W\",\"10S_070W\",\"10S_080W\",\"10S_110E\",\"10S_120E\",\"10S_130E\",\"10S_140E\",\"10S_150E\",\"10S_160E\",\"10S_170E\",\"10S_180W\",\"20N_000E\",\"20N_010E\",\"20N_010W\",\"20N_020E\",\"20N_020W\",\"20N_030E\",\"20N_030W\",\"20N_040E\",\"20N_050E\",\"20N_060W\",\"20N_070E\",\"20N_070W\",\"20N_080E\",\"20N_080W\",\"20N_090E\",\"20N_090W\",\"20N_100E\",\"20N_100W\",\"20N_110E\",\"20N_110W\",\"20N_120E\",\"20N_120W\",\"20N_160W\",\"20S_010E\",\"20S_020E\",\"20S_030E\",\"20S_040E\",\"20S_050E\",\"20S_050W\",\"20S_060W\",\"20S_070W\",\"20S_080W\",\"20S_110E\",\"20S_120E\",\"20S_130E\",\"20S_140E\",\"20S_150E\",\"20S_160E\",\"20S_180W\",\"30N_000E\",\"30N_010E\",\"30N_010W\",\"30N_020E\",\"30N_020W\",\"30N_030E\",\"30N_040E\",\"30N_050E\",\"30N_060E\",\"30N_070E\",\"30N_080E\",\"30N_080W\",\"30N_090E\",\"30N_090W\",\"30N_100E\",\"30N_100W\",\"30N_110E\",\"30N_110W\",\"30N_120E\",\"30N_120W\",\"30N_130E\",\"30N_160W\",\"30N_170W\",\"30S_010E\",\"30S_020E\",\"30S_030E\",\"30S_060W\",\"30S_070W\",\"30S_080W\",\"30S_110E\",\"30S_120E\",\"30S_130E\",\"30S_140E\",\"30S_150E\",\"30S_170E\",\"40N_000E\",\"40N_010E\",\"40N_010W\",\"40N_020E\",\"40N_020W\",\"40N_030E\",\"40N_040E\",\"40N_050E\",\"40N_060E\",\"40N_070E\",\"40N_070W\",\"40N_080E\",\"40N_080W\",\"40N_090E\",\"40N_090W\",\"40N_100E\",\"40N_100W\",\"40N_110E\",\"40N_110W\",\"40N_120E\",\"40N_120W\",\"40N_130E\",\"40N_130W\",\"40N_140E\",\"40S_070W\",\"40S_080W\",\"40S_140E\",\"40S_160E\",\"40S_170E\",\"50N_000E\",\"50N_010E\",\"50N_010W\",\"50N_020E\",\"50N_030E\",\"50N_040E\",\"50N_050E\",\"50N_060E\",\"50N_060W\",\"50N_070E\",\"50N_070W\",\"50N_080E\",\"50N_080W\",\"50N_090E\",\"50N_090W\",\"50N_100E\",\"50N_100W\",\"50N_110E\",\"50N_110W\",\"50N_120E\",\"50N_120W\",\"50N_130E\",\"50N_130W\",\"50N_140E\",\"50N_150E\",\"50S_060W\",\"50S_070W\",\"50S_080W\",\"60N_000E\",\"60N_010E\",\"60N_010W\",\"60N_020E\",\"60N_020W\",\"60N_030E\",\"60N_040E\",\"60N_050E\",\"60N_060E\",\"60N_060W\",\"60N_070E\",\"60N_070W\",\"60N_080E\",\"60N_080W\",\"60N_090E\",\"60N_090W\",\"60N_100E\",\"60N_100W\",\"60N_110E\",\"60N_110W\",\"60N_120E\",\"60N_120W\",\"60N_130E\",\"60N_130W\",\"60N_140E\",\"60N_140W\",\"60N_150E\",\"60N_150W\",\"60N_160E\",\"60N_160W\",\"60N_170E\",\"60N_170W\",\"60N_180W\",\"70N_000E\",\"70N_010E\",\"70N_020E\",\"70N_030E\",\"70N_040E\",\"70N_050E\",\"70N_060E\",\"70N_070E\",\"70N_070W\",\"70N_080E\",\"70N_080W\",\"70N_090E\",\"70N_090W\",\"70N_100E\",\"70N_100W\",\"70N_110E\",\"70N_110W\",\"70N_120E\",\"70N_120W\",\"70N_130E\",\"70N_130W\",\"70N_140E\",\"70N_140W\",\"70N_150E\",\"70N_150W\",\"70N_160E\",\"70N_160W\",\"70N_170E\",\"70N_170W\",\"70N_180W\",\"80N_010E\",\"80N_020E\",\"80N_030E\",\"80N_070E\",\"80N_080E\",\"80N_090E\",\"80N_100E\",\"80N_110E\",\"80N_120E\",\"80N_130E\",\"80N_130W\",\"80N_140E\",\"80N_140W\",\"80N_150E\",\"80N_150W\",\"80N_160E\",\"80N_160W\",\"80N_170E\",\"80N_170W\"]\n", + "TILES = [\"00N_000E\",\"00N_010E\",\"00N_020E\",\"00N_030E\",\"00N_040E\",\"00N_040W\",\"00N_050E\",\"00N_050W\",\"00N_060W\",\"00N_070E\",\"00N_070W\",\"00N_080W\",\"00N_090E\",\"00N_090W\",\"00N_100E\",\"00N_100W\",\"00N_110E\",\"00N_120E\",\"00N_130E\",\"00N_140E\",\"00N_150E\",\"00N_160E\",\"00N_170E\",\"10N_000E\",\"10N_010E\",\"10N_010W\",\"10N_020E\",\"10N_020W\",\"10N_030E\",\"10N_040E\",\"10N_050E\",\"10N_050W\",\"10N_060W\",\"10N_070E\",\"10N_070W\",\"10N_080E\",\"10N_080W\",\"10N_090E\",\"10N_090W\",\"10N_100E\",\"10N_100W\",\"10N_110E\",\"10N_120E\",\"10N_130E\",\"10N_150E\",\"10N_160E\",\"10N_170E\",\"10S_010E\",\"10S_020E\",\"10S_030E\",\"10S_040E\",\"10S_040W\",\"10S_050E\",\"10S_050W\",\"10S_060W\",\"10S_070W\",\"10S_080W\",\"10S_110E\",\"10S_120E\",\"10S_130E\",\"10S_140E\",\"10S_150E\",\"10S_160E\",\"10S_170E\",\"10S_180W\",\"20N_000E\",\"20N_010E\",\"20N_010W\",\"20N_020E\",\"20N_020W\",\"20N_030E\",\"20N_030W\",\"20N_040E\",\"20N_050E\",\"20N_060W\",\"20N_070E\",\"20N_070W\",\"20N_080E\",\"20N_080W\",\"20N_090E\",\"20N_090W\",\"20N_100E\",\"20N_100W\",\"20N_110E\",\"20N_110W\",\"20N_120E\",\"20N_120W\",\"20N_160W\",\"20S_010E\",\"20S_020E\",\"20S_030E\",\"20S_040E\",\"20S_050E\",\"20S_050W\",\"20S_060W\",\"20S_070W\",\"20S_080W\",\"20S_110E\",\"20S_120E\",\"20S_130E\",\"20S_140E\",\"20S_150E\",\"20S_160E\",\"20S_180W\",\"30N_000E\",\"30N_010E\",\"30N_010W\",\"30N_020E\",\"30N_020W\",\"30N_030E\",\"30N_040E\",\"30N_050E\",\"30N_060E\",\"30N_070E\",\"30N_080E\",\"30N_080W\",\"30N_090E\",\"30N_090W\",\"30N_100E\",\"30N_100W\",\"30N_110E\",\"30N_110W\",\"30N_120E\",\"30N_120W\",\"30N_130E\",\"30N_160W\",\"30N_170W\",\"30S_010E\",\"30S_020E\",\"30S_030E\",\"30S_060W\",\"30S_070W\",\"30S_080W\",\"30S_110E\",\"30S_120E\",\"30S_130E\",\"30S_140E\",\"30S_150E\",\"30S_170E\",\"40N_000E\",\"40N_010E\",\"40N_010W\",\"40N_020E\",\"40N_020W\",\"40N_030E\",\"40N_040E\",\"40N_050E\",\"40N_060E\",\"40N_070E\",\"40N_070W\",\"40N_080E\",\"40N_080W\",\"40N_090E\",\"40N_090W\",\"40N_100E\",\"40N_100W\",\"40N_110E\",\"40N_110W\",\"40N_120E\",\"40N_120W\",\"40N_130E\",\"40N_130W\",\"40N_140E\",\"40S_070W\",\"40S_080W\",\"40S_140E\",\"40S_160E\",\"40S_170E\",\"50N_000E\",\"50N_010E\",\"50N_010W\",\"50N_020E\",\"50N_030E\",\"50N_040E\",\"50N_050E\",\"50N_060E\",\"50N_060W\",\"50N_070E\",\"50N_070W\",\"50N_080E\",\"50N_080W\",\"50N_090E\",\"50N_090W\",\"50N_100E\",\"50N_100W\",\"50N_110E\",\"50N_110W\",\"50N_120E\",\"50N_120W\",\"50N_130E\",\"50N_130W\",\"50N_140E\",\"50N_150E\",\"50S_060W\",\"50S_070W\",\"50S_080W\",\"60N_000E\",\"60N_010E\",\"60N_010W\",\"60N_020E\",\"60N_020W\",\"60N_030E\",\"60N_040E\",\"60N_050E\",\"60N_060E\",\"60N_060W\",\"60N_070E\",\"60N_070W\",\"60N_080E\",\"60N_080W\",\"60N_090E\",\"60N_090W\",\"60N_100E\",\"60N_100W\",\"60N_110E\",\"60N_110W\",\"60N_120E\",\"60N_120W\",\"60N_130E\",\"60N_130W\",\"60N_140E\",\"60N_140W\",\"60N_150E\",\"60N_150W\",\"60N_160E\",\"60N_160W\",\"60N_170E\",\"60N_170W\",\"60N_180W\",\"70N_000E\",\"70N_010E\",\"70N_020E\",\"70N_030E\",\"70N_040E\",\"70N_050E\",\"70N_060E\",\"70N_070E\",\"70N_070W\",\"70N_080E\",\"70N_080W\",\"70N_090E\",\"70N_090W\",\"70N_100E\",\"70N_100W\",\"70N_110E\",\"70N_110W\",\"70N_120E\",\"70N_120W\",\"70N_130E\",\"70N_130W\",\"70N_140E\",\"70N_140W\",\"70N_150E\",\"70N_150W\",\"70N_160E\",\"70N_160W\",\"70N_170E\",\"70N_170W\",\"70N_180W\",\"80N_010E\",\"80N_020E\",\"80N_030E\",\"80N_070E\",\"80N_080E\",\"80N_090E\",\"80N_100E\",\"80N_110E\",\"80N_120E\",\"80N_130E\",\"80N_130W\",\"80N_140E\",\"80N_140W\",\"80N_150E\",\"80N_150W\",\"80N_160E\",\"80N_160W\",\"80N_170E\",\"80N_170W\"]\n", "# TILES = [\"70N_030E\"]\n", "\n", "# i = 0\n", @@ -10392,17 +18937,21 @@ ], "metadata": { "kernelspec": { - "display_name": "R", - "language": "R", - "name": "ir" + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" }, "language_info": { - "codemirror_mode": "r", - "file_extension": ".r", - "mimetype": "text/x-r-source", - "name": "R", - "pygments_lexer": "r", - "version": "4.2.3" + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.13" } }, "nbformat": 4,